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Zusammenfassung

In der vorliegenden Arbeit wurden drei verschiedene molekulare Materialien spek-
troskopisch untersucht. Des Weiteren wurden die verwendeten spektroskopischen Meth-
oden aufgebaut oder erweitert. Unter anderem wurde ein experimenteller Aufbau fiir
Photolumineszenz- Anregungsspektroskopie bei kryogenen Temperaturen fiir die Unter-
suchung der Besetzungsdynamik von Charge-Transfer-(CT)-Exzitonen in molekularen
Festkorpern konzipiert, aufgebaut und charakterisiert.

Zunéchst wurden Perylen-Derivate untersucht. Diese Derivate sind vielversprechend
fir eine Vielzahl von technischen Anwendungen, unter anderem als Autolacke, pH-
Sensoren oder als Bausteine von organischen Solarzellen. Fiir die vorliegende Arbeit
wurden spezielle Donor-Akzeptor-Molekiile synthetisiert, die gewissermaflen eine in-
tramolekulare Grenzflache darstellen. Ziel war es, die Ladungstransferraten zu bes-
timmen und durch verschiedene synthetische und experimentelle Methoden zu kontrol-
lieren.

Molekulare Festkorper, bestehend aus Heterostrukturen von Donor- und Akzeptor-
Molekiilen koénnen an der Grenzfliche zwischen beiden Materialien sogenannte CT-
Exzitonen ausbilden. Die Untersuchung von CT-Exzitonen ist entscheidend aus tech-
nischer Sicht-zur Optimierung von organischen Solarzellen—und auch aus Sicht der
Grundlagenforschung. Im Rahmen der Arbeit werden Erkenntnisse beziiglich des Be-
setzungsverhaltens des CT-Zustandes im Materialsystem Pentacen-Perflouropentacen
gewonnen. Die erzielten Ergebnisse haben potentiell eine gewisse grundsétzliche Trag-
weite fiir das Verstandnis von CT-Zusténden. So wurde festgestellt, dass ein moglicher
Lochtransfer vom Akzeptor in das Donormaterial nicht zu einem messbaren CT-Lu-
mineszenzsignal fithrt, der umgekehrte Fall des Elektronentransfer vom Donormaterial
hingegen schon. Da Proben hochster struktureller Giite mit einer wohldefinierten Gren-
zflache verwendet wurden, konnten die Messergebnisse eindeutig als Grenzflacheneffekt
identifiziert werden. Durch Untersuchung unterschiedlicher Molekiilorientierungen an

der Grenzfliche, konnte die Vermutung erhohter elektronischer Kopplung im Falle



eines sogenannten 7-stackings der Molekiile bestatigt werden. Fir das Materialsys-
tem Pentacen-Cgy konnte erstmalig an einer wohldefinierten Grenzfliche ein CT-Signal
direkt gemessen werden. Weiterhin zeigen die Messungen, dass ein langreichweitiger
Effekt die Dynamik der Cgg -Lumineszenz und die Mobilitat angeregter Zustande bee-
influsst.
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1 Introduction

The very making of this thesis depends heavily on several fundamental technological
developments and pioneering scientific discoveries of the last century: Starting with
the development of the first transistor by Bardeen, Brattain and Shockley [1], the dis-
covery of the laser by Theodore Maiman [2]' or the development of the first integrated
circuit by Kilby [3]? in the 1960s. The latter paved the way for modern day micro-
processing units and data storage. Silicon has since been established as the backbone
of modern computer technology, manifested, e.g., by the naming of the global hub for
high technology as “Silicon Valley”. As the base of applications expanded over the
course of time, so did the materials base. Hence, semiconductor devices nowadays act,
e.g., as light sources [lasers, light emitting diodes (LEDs)], detectors [charge-coupled
devices (CCDs)] and sources of electrical power (solar cells), thereby making use of a

broad combination of different materials.

However, natural resources are limited, and most devices rely on rare earth metals
and potentially hazardous materials. Since the late 1990s, the class of organic semi-
conductors has become increasingly popular as an alternative to the established inor-
ganic semiconductors. Nowadays, several display manufacturers employ organic light
emitting diode (OLED) technology due to its superior color contrast and mechani-
cal flexibility, as well as increased efficiencies, compared to conventional liquid crystal
displays (LCDs). Moreover, global demographics and the potential threats caused by
climate change demand new forms of sustainable and efficient light and energy sources.
The amount of sunlight reaching earth (=122 PW) exceeds the global consumption of
electrical power by almost four orders of magnitude [4]. This abundance strongly sug-

gests the use of solar energy as the primary energy source. While silicon-based devices

'Maiman is not universally credited with the invention of the laser, despite later being granted
the patent. Gordon Gould, who first came up with the acronym LASER (light amplification by
stimulated emission of radiation), is also attributed with the invention by some.

2Early predecessors were already fabricated at the end of WWII by engineers at Siemens.



have the largest market share (>90% [5]), the production costs are still high, despite
the very advanced manufacturing techniques. The use of organic materials offers a wide
range of potential advantages: low cost, due to solution-processibility; high mechanical
flexibility and low weight?; the possibility of engineering crucial device parameters such
as the electrical band gap by appropriate choice or by specific chemical synthesis of the

molecules constituting the device.

Beyond their prospective technological benefit, organic molecules and solids are an ac-
tive field of scientific research. As most device structures are hetero-systems of some
type, i.e., constituted of more than one type of molecule, there exists a region in ev-
ery structure in which an interface between the two materials is formed. The ongoing
miniaturization of electronic devices stresses the crucial role of the interfacial region.
Hence, (internal) interfaces will be the main topic of this thesis. The aim is to identify
spectroscopic signatures specific to the interface. For example, an excited state can
form at the interface where one material acts as (electron) donor (D), while the other
material is the (electron) acceptor (A). Such an excitation is commonly referred to as
a charge-transfer (CT) exciton. Its exciton binding energy can vary broadly, while it is
expected to be smaller than that of the bulk excitons in the individual constituents. A
larger exciton radius typically leads to such reduced binding energies. While interface-
specific spectroscopic signals are not always observable, other effects, e.g., altered decay
dynamics of the constituents, can arise as a consequence of the hetero-stacking of two
organic materials. CT states are of particular use for OPV applications as they act
as precursors leading to the separation of charges, the ultimate goal in OPV devices.
However, the beneficial properties of CT states are not limited to this kind of ap-
plications; they are also promising for OLED devices due to, e.g., the low operating
voltage [6] and the emission wavelength tunability achievable by an appropriate selec-
tion of D and A materials [7]. The insights gained in the course of this thesis will
possibly contribute to the understanding of this type of materials. Eventually, they
might even allow researchers and engineers working on the development of organic so-
lar cells, photodetectors, and OLEDs to improve device performance by, e.g., specific
control of the CT state’s properties through choice of respective molecules, molecular

orientation and interfacial properties at the internal interfaces.

Chaps. 2 and 3 act as an introduction to the theoretical background and description

3The generally very large absorption cross-section allows organic photovoltaics (OPV) cells to be
produced as thin-film structures with thicknesses on the order of 100 nm.



of experimental techniques which are a prerequisite for an understanding of the results
obtained in Chaps. 4-6. The focus is laid on the description of electronic states of
single molecules and the respective coupling mechanisms which can lead to, e.g., CT
reactions. The chapter on experimental techniques encompasses time-integrated and

time-resolved spectroscopic techniques.

The results section (Chaps. 4-6) opens with the discussion of a series of specially
synthesized perylene diimide (PDI) molecules. Here, synthesis was aimed at creating
interfaces on a molecular scale. More specifically, a molecular D-A complex was de-
signed, in which an electron lone pair localized on a nitrogen atom can act as electron
D [8]. The backbone of the molecule, essentially a perylene unit, acts as an electron
A [9]. In contrast to the systems discussed in Chap. 5 and 6, D and A are bound co-
valently. The chapter on the PDIs is dedicated mainly to the control of intramolecular
CT rates. Large rates are desirable in a typical device scheme for the active layer of
an OPV cell [10]. For the recombination of the separated electron-hole pair back to
the ground state, the opposite is desired in order to maximize the number of charges
to be extracted and thus increase device efficiency. The results obtained in this thesis
indicate that control of the CT rates can be established by different means: by proto-
nation and methylation, by variation of the D-A distance and by tuning the excitation

energies used in the time-resolved measurements.

Additionally, two different van der Waals heterosystems are investigated. From a fun-
damental perspective, the microscopic understanding of the excitonic and interfacial
processes in these types of materials is still at an unsatisfactory level. This hampers
further progress in device fabrication. For instance, the effect of the geometrical ori-
entation of the molecules at the interface is generally not well studied, owing to the
challenges involved in growing well-defined hetero-interfaces of ordered molecular ma-
terials. Theoeretical considerations hint at a significant dependence on the molecular
orientation, indicating formation efficiences varying in some cases by several orders
of magnitude [11]. To this end, samples of unprecedented structural quality are used
throughout this thesis, thus enabling more detailed study of the above-mentioned as-

pects.

The pentacene (PEN)-perflouropentacene (PFP) heterosystem is a very promising
model system for the study of interfacial CT interactions in well-defined heterostruc-

tures. While structurally almost identical, the large electronegativity of flourine signif-



icantly alters the electronic properties of PFP. For instance, PFP features an inverted
quadropole moment [12], compared to PEN, as well as overall lowered electronic state
energies [13]. Hence, PFP acts as an electron acceptor, while PEN is a donor in this
combination [14]. By means of templated sample growth [15], differences in coupling
strengths for different molecular orientations can be analyzed in the case of the model
system PEN-PFP. The coupling is expected to be enhanced for face-to-face growth.
In a face-to-face packing motif, the overlap of the 7t electron systems of D and A is
increased, compared to edge-to-edge orientation. In a commonly employed picture,
the molecular orbitals (MOs) of the constituents are unperturbed at the interface [7],
leading to an allowed electronic transition between the D highest occupied molecular
orbital (HOMO) and the A lowest unoccupied molecular orbital (LUMO). This as-
sumption is put to the test and the results obtained within this thesis indicate a more

complex formation process involving perturbated MOs.

In Chap. 6 the focus is shifted towards a related model structure, namely the PEN-
Ceo (Cgo) heterosystem. Generally, the most common applications are realized by com-
bining a polymer material with fullerene derivatives [16-19]. However, these systems
often only form blend films with very little crystal orientation. The added complexity of
the molecules further cumbers the understanding of the very fundamental processes of
charge-carrier generation, dissociation, transport, and extraction, respectively. Hence,
no unambigious identification of an interfacial CT state has been reported to date.
While PEN and Cg, are not as compatible structurally, compared to PEN and PFP,
smooth interfaces with very little mutual interdiffusion can still be achieved [20, 21].
In the case of the PEN-Cg system, the experiments lag behind the theoretical level of
knowledge.



2 Theoretical Background

This chapter outlines the theoretical foundations for the following studies.
It focuses especially on the electronic and optical properties of single
molecules and mechanisms of charge transfer. As excitations in a solid
are typically described in an excitonic picture, excitons in inorganic and

organic solids as well as CT excitons are discussed.

2.1 Electronic Processes in Organic Molecules

In this chapter, the fundamental electronic properties of organic molecules are intro-
duced. Already the definition of organic materials is somewhat arbitrary. One simple
and broad definition states that virtually any compound containing carbon is to be
named organic. Other definitions of the term “organic” require the carbon atoms to
be the main structural element of the compound, or, more specifically, the compound
must consist of (aromatic) hydrocarbons. For the sake of simplicity and generality, the
terms “molecular” and “organic” will be used equivalently in the following. The build-
ing blocks of the acenes and also of perylene and its derivatives, are benzene molecules.
Hence, the chapter will be restricted to the properties deriving from the delocalized

Tt-orbitals.

2.1.1 Delocalized mr-orbitals

From standard textbooks [22-24] it is known that atomic orbitals can hybidrize. For
instance, one s- and two p-orbitals can combine to form three so-called sp? hybrid-
orbitals. The energy required to lift one s-electron to a p-level is overcompensated by
a lowering of the total energy once a bond to another atom is made. The electronic

ground state configuration of carbon is (1s*)(2s%)(2p;)(2p,). The sp*-hybridization



leads to a (2sp3)(1pl) configuration and, e.g., to the planar ring geometry of benzene
(CsHg). In benzene each carbon atom forms bonds within the x-y-plane to two neigh-
boring carbon and one hydrogen atoms at a bond angle of 120°. These localized bonds
are called o-bonds. The six remaining unpaired p, electrons are oriented perpendic-
ular to the plane of the o-bonds and, thus, the plane of the molecule. The orbitals
overlap, further increasing the strength of the inter-atomic bond. The neighboring
orbitals become delocalized within the plane of the molecule. The bond length of the
C-C bonds within the ring (137 pm) is intermediate between C-C single (140 pm) and
double (135 pm) bonds, consistent with electron delocalization. The electrons are thus
equally distributed between the carbon atoms with the plane of the molecule forming
the nodal plane of electron density, meaning that the electrons are able to move rather

“freely”.

Figure 2.1: (a) The benzene molecule with its six p, electrons forming three double
bonds between the neighboring atoms at the 1-2, 3-4 and 5-6 positions and
respectively at the 2-3, 4-5 and 6-1 positions (b). (c) shows the resulting
delocalized m-electron system.

Due to the low strength of bonds formed by p, electrons, the lowest electronic transi-
tions in such molecules usually lie within the m-electron system. The 7t — 7t* transition
energy between the bonding 7t and antibonding 7t* state typically lies in the range of
1-4eV for many polycyclic aromatic hydrocarbons. Thus, they often comprise the
HOMO and LUMO. In more complex molecules inhabiting electron lone pairs, the
HOMO-LUMO transition may be of the n — 7* rather than of the T — 7* type [25].
Optical transition energies between the bonding and antibonding m-orbitals can be
approximated by assuming the electrons as free particles in a potential well. This very
crude approximation gives surprisingly precise estimates for the transition energy be-
tween the quantized states. A more precise description of the optical properties can be
obtained by the evaluating the transition dipole matrix element, jis;, as introduced in

the following chapters.



2.1.2 Born-Oppenheimer Approximation

Within the Born-Oppenheimer approximation the wavefunctions describing electronic
and nuclear motion in a molecule can be separated. This assumption is generally valid,
as the mass of the nucleus is much larger than that of the electrons (e.g., my/me ~
2 - 103 for hydrogen). The electron cloud can thus respond to any motion of the nuclei

quasi instantaneously. Consequently, the total wavefunction W, of the molecule

Wit (11, Q;) = xnv (Q5) - Ve (15, Q5) (2.1)

can be expressed as a product of one wavefunction, xn (Q;), describing nuclear motion
and another, W, (r;, Q;), describing the electronic motion. As the nuclei are seen as
rigid, the nuclear co-ordinate Q; enters as parameter in the electronic wavefunction
V. It is important to note that this does not imply that electron-nucleus interactions
vanish. The electrons are still attracted by the Coulomb potential created by the nuclei

fixed at certain positions in space.

2.1.3 Franck-Condon Principle

Adopting the principles of the Born-Oppenheimer approximation essentially means
that electronic transitions from state |i), e.g., the ground state, to state |f), e.g., the
first electronically excited state take place “vertically”. Starting from the ground-state
equilibrium co-ordinate Q!, the system is transferred to that point on the potential
energy curve of |f) that corresponds to the same co-ordinate. Essentially, this implies
that the nuclear framework remains constant during the transition (as the transition
time is on the order of 107'° s whereas one oscillation period of the nucleus is typically
on the order of 1071%s). As the momentum hk of the absorbed photon is negligibly
small compared to that of the nuclei, their respective momentum and thus also their

kinetic energy (7)) remains constant during the transition. Energy conservation



= (o) (o) - [0+ ) 22

thus leads to the conclusion that the transition will take place at the co-ordinate Q*
for which (T% (Q*)) = <TZ{, (Q*)> holds. The strength of transitions is determined by

the transition dipole matrix element

gi = (1ol (2.3)

The dipole operator, again in Born-Oppenheimer approximation, is the sum over all

nuclear and electronic co-ordinates and reads

fi —ez r, +—e Z Z Qm. (2.4)

The total state of the molecule consists of a nuclear part |v) and an electronic part |e).

Combining Egs. (2.3) and (2.4) yields the matrix element py;

piri = (epvgl —ed rn+ e Qmles)
= —e) (eslrale) (vplv) +ed (efle) (7| Qm [vi) (2.5)
= —eY (eflrale) (vylvi).

The right-hand side (r.h.s.) of the second row of Eq. (2.5) vanishes, because for two
different electronic wavefunctions (es|e;) = 0. The transition intensity is proportional
to the square of the transition dipole matrix element |uf;|?. Therefore, it follows that
the intensity distribution for a given electronic transition is proportional to the over-
lap integral between the vibrational wavefunctions, |v;), in the initial electronic state
and those of the final electronic state, |vf), respectively. It is thus determined by the
Franck-Condon factor S = (v¢|v;)?. From this relationship arise the very fundamental

spectroscopic observations valid for many molecular systems, which are explained in



more detail in the following. Also, as electronic transitions take place from one vibra-
tional level in the initial state to another in the final state, such transitions of coupled

electronic and vibrational excitations are termed vibronic.
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Figure 2.2: (a) Ilustration of the Franck-Condon principle. Transitions between the
two electronic states Sy and S take place where the vibrational wavefunc-
tions overlap the most. In the case shown here, absorption occurs from
the v/ = 0 to the v/ = 5 state. Fast vibrational relaxation the v/ = 0
state is followed by a flourescent transition to the v/ = 1 state, again the
two states for which wavefunction overlap maximizes. (b) Higher energy
states Sy relax to first excited singlet state through internal conversion
at the co-ordinate the two PEP intersect. Crossing from the singlet to the
triplet manifold is termed ISC and leads to the observation of the long-lived
phosphorescence.

Fig. 2.2 illustrates the Franck-Condon principle. The abscissa shows a generalized

molecular co-ordinate which, in the case of a diatomic molecule, would simply be



the inter-atomic displacement. On the ordinate the potential energy of the molecule is

plotted. In the more general case, the displacement co-ordinate would be n-dimensional

and thus the potential energy would be described by an n-dimensional hyper surface.

In Fig. 2.2 the horizontal offset of the potential curves is quite significant, while their

shape is almost identical. Consequently, when a photon is absorbed, the largest S is

achieved for the v/ = 0 — v/ = 5 transition. Following the absorption of a photon, the

molecule rapidly relaxes to the zero-vibrational level through the process of vibrational

relaxation. This typically takes place on a timescale ranging from 0.01 ps - 10 ps [26].

From the zero vibrational level, there exist in principle three different processes for the

relaxation back into the ground state:

10

e Radiative recombination: The system relaxes to the (electronic) ground state and

thereby emits a photon whose energy corresponds to the energy of the vertical
transition between the two states. This process thus obeys the Franck-Condon

principle. The typical timescale is 107%-1077s.

Internal conversion (IC): 1C is a non-radiative isoenergetic decay mechanism
between two states of same multiplicity, i.e., S,, — Sp,,n = m — 1. It occurs
predominantly in the vicinity of an intersection of the potential energy curves of
two states as here their nuclear energies match (isoenergetic). If the vibrational
level of state S, is an excited one, vibrational relaxation to the ground level will
occur. The time frame is the same as for vibrational relaxation. While extremely
efficient for transitions with m > 2 and n > 1, the transit to the ground state
So is very slow due to the large energy gap (~2eV) and the small overlap of
energy levels. Hence, radiative recombination becomes a competitive or even the

dominant relaxation mechanism.

Intersystem crossing (ISC) and phosphorescence: ISC describes the transition
from a state with a total spin of S = 0 in which electrons are pairwise coupled
to a state for which S = 1. It is, essentially, an internal conversion (IC) process
involving a spin flip. While it is generally selection rule forbidden, it can, however,
gain significance under certain circumstances. The molecules studied in this thesis
are constructed of lightweight atoms like hydrogen, carbon, nitrogen, oxygen and
flourine. Thus, spin-orbit interaction is expected to be low, as it scales with
the atomic charge number (and thus the atomic mass) squared. For theoretical
details on the ISC process, see Chap. 2.1.4.



e Besides those already mentioned, there exist several other mechanisms leading
to a relaxation to the ground state, all of which have in common the property of
being non-intrinsic and thus relying on bi-molecular interaction, complex forma-
tion or the existence of a so-called supramolecular species. The reader is referred

to Chaps. 2.1.4 and 4 in which these processes are treated in detail.

For the class of conjugated molecules studied in this thesis the most prominent vi-
brational excitation is associated with a vinyl stretching mode with an energy of
~175meV [27]. The population of the vibrational levels follows a Boltzmann dis-
tribution and thus, already at room temperature (kg7 & 25 meV), it is highly unlikely
(approx. 1:1000) to find a molecule in which even one vibrational quantum is excited.
Consequently, any probed transition will always be a v; = 0 — vy > 0 transition
where vy is the vibrational quantum number of the final state. That means performing
a fluorescence measurement yields information about the vibrational structure of the
ground state, whereas in an absorption measurement the excited state is probed [25].
The vibrational levels themselves are split again into rotational sublevels. Their ener-
gies, however, are on the 1eV energy scale and thus not resolved with the experimental

techniques used within this thesis.

2.1.4 The Triplet System

In systems with low coupling of the spin- and the orbital angular momentum, the
spin remains a good quantum number. Thus, two electrons with the same principle,
orbital and magnetic quantum numbers must have opposite spin, owing to Pauli’s
exclusion principle. As spin-orbit coupling increases with the atomic mass squared, its
magnitude can be expected to be small in the systems under study in this thesis. The
total wavefunction can be separated into two individual parts, the spatial wavefunction

¥ (r) and the spin part x (o), to give the total wavefunction:

qjtotal (I', 0) - ¢ (I’) X (U) : (26)
Electrons are fermions and consequently, Eq. (2.6) needs to be antisymmetric under

exchange of two electrons. As the product of two symmetric (antisymmetric) functions

will always yield a symmetric function, ¢ (r) needs to be antisymmetric, when x (o)
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is symmetric, and vice versa. As the two electrons are indistinguishable, the two
states (xy(1), x+(2)) and (x+(2), x;(1)) are identical. For the case of symmetric spin
wavefunctions (11 or ||, with the total spin S = 1), the total spin wavefunction has to
be described by the linear combination. One obtains three spin wavefunctions, hence

the name triplet:

X1 = xt(H)x+(2),
with Mg = mg, +mg, = +1

Xz = x1(1)x,(2),
with Mg = mg, +mg, = —1

x3 = cx+(1)x1(2) + x1(1)x+(2)]
with MS =0.

The spatial wavefunction 1 (r) is symmetric in the ground state, i.e., the state in which
both electrons have the same quantum numbers n, [ and m;. Hence, the corresponding

spin wavefunctions must have antisymmetric character:

X" = x+(Dxi(2) — xi(D)xr(2)

(2.8)
with Mg = 0.

The antisymmetric spin wavefunction is accompanied by a symmetric spatial wave-
function, yielding an overall singlet state. Dipole transitions between the singlet and
triplet systems are generally forbidden due to selection rules in the case of weak spin
orbit coupling. This holds true for optical excitations, owing to the bosonic nature
of photons, as well as for the subsequent relaxation processes from an intially opti-
cally excited state. The latter can, however, gain significant importance in the right
circumstances even in the system of low spin orbit coupling such as the molecules un-
der study in this thesis. Accordingly, the transitions from an (excited) singlet to an
(excited) triplet state has already been introduced as ISC in Chap. 2.1.3. The rate
constants for ISC are typically on the order of 103s™! to 108s™! [28].

12



In molecular dimers and crystals, another process can lead to the population of the
triplet state. A singlet exciton can decay to form two triplets of corresponding energy,
i.e., if Fgy > 2E7; holds true:

Sl — Tl + Tl- (29)

Consequently, the process is named singlet fission (SF) as one singlet exciton fissions
into two triplets. SF was first discovered in anthracene single crystals in 1965 [29] but
has since also been observed in many other molecular crystals. The development of
OPYV cells has recently sparked the interest in SF, as it potentially allows to exceed
the Shockley-Queisser limit [30]. PEN and PFP, as well as the class of PDIs have
proven to be capable of SF. SF has a significant influence on the S; states lifetime,
as it takes place on an ultrashort timescale (~10°fs) and thus with rate constants on
the order of 101 s71, typically leading to a strong quenching of the photoluminescence
(PL) intensity and lifetime observed in a time-resolved photoluminescence (TRPL)

experiment.

2.1.5 Electronic Coupling

Initially, an optical two-level system is considered in order to introduce the concept of
electronic coupling. This lays the theoretical foundation for the description of electron
transfer (ET) and excitation energy transfer (EET) processes which can occur in, e.g.,

molecular D-A complexes.

Coupling of an Optical Two-level System

Next, the electronic coupling between two systems A and B of which either can be in
the excited or ground state, respectively, is introduced. The classical analogy is the
coupling between two harmonic oscillators, e.g., two coupled pendula through a spring.
Details on the computation can be found in standard textbooks on quantum mechanics
(see e.g., Ref. [31]). The associated matrix element V' describes the coupling potential

and is defined as follows:
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V= (N BV [prP. (2.10)

The matrix element V' consists of two components: The Coulomb-interaction term

Voow and the exchange-interaction term V.

V= VCoul + Vege- (211)

The exchange interaction term V,,. depends exponentially on distance due to the link
to the overlap of wavefunctions of A and B. Hence, it is responsible for short range
interactions and has a significant impact only for interaction distances of ~1 nm. V_,.
causes triplet energy transfer and electron-transfer reactions. On the other hand, Viow
is proportional to 1/r* (long range interaction) and is the cause of singlet excitation

energy transfer (cf. Chap. 2.1.6).

The coupling of an optical two-level system is described in standard textbooks on quan-
tum mechanics as the simplest case of coupling. This concept is commonly described
as avoided crossing. The two states can be described in the unperturbed case by their

respective eigenfunctions |14 ), and their eigenenergies E4 p as

Hy |YaB) =Eap|tas) . (2.12)

The two-system Hamiltonian reads

. (B4 0
Hy=|{"" . (2.13)
0 Ep

If one now takes into account an external perturbation (coupling) V, the modified

Hamiltonian H’ reads
. . N F 0 0 Vv FE %4
A =H+v=|" + = . (2.14)
0 FEp V0 V* Ep

The perturbation leads to the new eigenfunctions [¢,) and |[¢)_) and a splitting of the

energy levels at the point of intersection. The corresponding eigenenergies are
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1 1
B =5(Ba+ Bp) 5\/(EA — Ep)? +4|V]2. (2.15)

If one makes the following substitutions in Eq. (2.15)

1
Ey=-(Ea+ Ep),

2 (2.16)
A = 3(Ba— Ep).

the new eigenenergies read

EL = Ey+ /A2 4+ 4]V ]2,
AL =|E, —E_|=2-\/A2+4|V]2

From Eq. (2.17), one immediately sees that the absolute energy Fy has no effect on the

(2.17)

splitting of the new states. A variation of Ey only shifts the zero point energy. A plot of
E4, Ep, Ey and E_ as function of the splitting A is shown in Fig. 2.3. According to Eq.
(2.16) E4 and E'p are lines with slopes of +1 and —1, respectively. One finds hyperbolic
curves for £, and E_, which asymptotically approach the original unperturbed energy
levels. It becomes evident that even for the case of E4 = Ep (degeneracy) the splitting

is no longer zero.

For the corresponding eigenstates one can compute

[y ) = Cosi) . ‘wA*B> + Sin(;) ‘¢AB*> ,

|v_) = — Sini) : ‘wA*B> + cos(;) ‘wAB*> : (2.18)
tan ® = T

It is obvious that for |[V| > A (strong coupling limit), ® ~ 7/2 and the eigenstates of

the perturbed system can be described by linear combinations of those of the uncoupled
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b)

Figure 2.3: The pertubartion V leads to an lifting of the degeneracy of the energy levels
for E4 = Fg. A quantum mechanical avoided crossing lifts the degeneracy
and induces the an energy level splitting A .

states. When |V| <« A (weak coupling limit), then ® ~ 0 and the system can be

described by the individual unperturbed eigenstates.

In general however, |14 ) are no longer the eigenstates of the modified Hamiltonian
H’. As a consequence of this, they are no longer stationary states. If one now measures
the system to be in the state |1)4) at ¢t = 0, there is a certain probabilty of finding the
system in the state |¢)p) at later times ¢ > 0. The perturbation V' thus induces a finite

transition rate between the two unperturbed states.

Indeed, the aformentioned also has some “practical” relevance regarding the benzene
molecule introduced in Chap. 2.1.1 The quantum stabilization of benzene is one of the
most fundamental examples of this phenomenon. As already illustrated above, in the
benzene molecule, the six carbon atoms are located at the vertices of a hexagon. One
would expect the electronic ground state of the molecule to consist of three double
bonds between neighboring atoms, whereas the other three bonds would be single
ones. The two different possible configurations are given in Fig. 2.1(a), (b) and are
described by the wavefunctions |¢4) and |¢pg). By symmetry it is fair to assume that
(pa| H|¢pa) = (¢8| H |dp), which allows conclusion that the ground state is doubly
degenerate. However, the off-diagonal matrix element (¢p| H |$4) is non-zero. This
coupling between the two states gives rise to an energy level below F,, and, therefore,
constitutes the true ground state of the benzene molecule. Thus, the total energy of
the molecule is lowered and it is more stable than initially expected. Moreover, as

the ground state is represented by a linear combination of |¢4) and |¢p), it cannot be
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represented by either Fig. 2.1(a) or Fig. 2.1(b). This is why the representation shown

in Fig. 2.1(c) is chosen, manifested by the term “delocalization”.

a) V=0 b) V>>E/M c) V<<E/

QA"BQAB’

Nuclear
coordinate Q

Figure 2.4: (a) The reorganization energy E) is a measure of the conformational change
when a molecule makes an electronic transition, e.g., between the ground
and excited state. In the case of strong coupling, the two individual po-
tentials are replaced by an entirely new potential (red curve) and a new
equillibrium co-ordinate Q* (b). (c) In the case of weak coupling the re-
sulting potential shows a splitting in the vicinity of the crossing point but
the two equillibrium co-ordinates Qa-g, Qap+ remain local minima.

Coupling Regimes and Wavefunction Localization

It is useful to make a distinction between different degrees of coupling strength. This
distinction is made by comparing the coupling strength V' to the reorganization energy
E\ which is a measure for the energy related to the changes in geometry when making
an electronic transition, e.g., from the ground state to an excited state. The degrees

of coupling stength have been classified into three regimes:

1. The “strong” coupling regime: The coupled system shows a total loss of the
vibrational structure with regard to the individual constituents. The coupling is
so strong that a new adiabatic potential curve is formed, accompanied by a red-
or blue-shift of the optical transistions. An example for this regime is given by

molecular dimers and excimers.

2. The “intermediate” regime: The individual chromophores’ vibrational structure

is retained. The delocalization is caused not by the electronic part ¥,; of the total
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wavefunction but by the nuclear part, yy, responsible for the vibrational struc-
ture of the molecule. However, depending on the orientation of the molecules,
red- or blue-shifts of the spectra can occur. The former is known as J- and the
latter as H-aggregatation. Both cases can be viewed as extreme cases of the

so-called Davydov-splitting.

3. The “weak” coupling regime: The optical spectra of the combined system resem-
ble the incoherent sum of the individual constituents. The individual vibrational
structures are retained. Thus, a Fermi’s golden rule (FGR) approach is valid.
This case describes incoherent energy transfer. Incoherent energy transfer pro-
cesses can be divided into EET and ET, respectively. These two concepts will be

discussed in the following sections.

It should be noted that the above classification was originally developed by R. L. Fulton
and M. Gouterman [32] for the case of two identical chromophores interacting with one
another. It is, however, also applicable in hetero-molecular systems or to the coupling
between two states (e.g., between an excited state and a cationic state) of one single

chromophore.

2.1.6 Excitation Energy and Electron Transfer Processes

ET as well as EET processes are driven by similar electron-electron and electron-
vibration interactions. The mathematical formalisms describing both are also similar.
Transition probabilities are calculated in the framework of first order perturbation
theory adopting a FGR form. In turn, the theories initially formulated by R.A. Marcus
[33] or Th. Forster [34,35] are realizations of such a FGR expression. The transition
rate k;y for a system to transfer from an initial state |i) to a quasi-continuum of states
|f) is given by first order perturbartion theory in the limit of a weak perturbation

(coupling) by

2w N 2
kip = 2 (V9] p(E)). (2.19)

where Vj; = (U] V | W) is the matrix element of the pertubartion operation belonging
to the corresponding transition, which was already treated by Eq. (2.11). p(Ey) de-
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notes the density of states (DOS) at the final state energy. For theoretical approaches
introduced in the following, the “weak” coupling regime applies (V' < A/4). This
implies that for all considerations the Born-Openheimer approximation remains valid
and electronic and nuclear co-ordinates may be separated. Eq. (2.19) factorizes into

an electronic and a nuclear part and then reads:

2
hf:§|wm-F0WD. (2.20)

— ——
electronic nuclear

Here, FCW D denotes the Franck-Condon weighted density of states. It constitutes
the thermally-averaged sum of vibrational wavefunction overlap in the initial and final

states, respectively. It is essentially the nuclear contribution to the transfer rate.

Charge-Transfer Processes in Molecular D-A Systems: The Marcus Model

In an ET process, an electron is transferred from a D to an A. The reaction scheme is
thus
D+A— DM+ A",

The Marcus model of ET describes the non-adiabatic (=“weak” coupling) regime. It
describes ET reactions in which no chemical bonds are formed or broken, the latter situ-
ation being covered by Eyring’s transition state theory. Here, the quantum-mechanical
description of the model will be given, while it can be derived in a classical manner,
yielding the exact same result. In the high-temperature limit (hy; << kgT'), all vibra-

tional modes v; are thermally excited. In this case the FC'W D obeys the expression:

1 AG*
FOWD = |——exp{ ——— 1. 2.21
W ArkpTEy eXp{ ksl } (2.21)

where E) is the reorganization energy and AG7 is the Gibbs free energy of activation.

R.A. Marcus derived for AG7 [33]:

(AG° + Ey)?

AG* =
G o\

(2.22)
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Combining Eqs. 2.20-2.22 one obtains the full expression

27 1 (AGP + E,)?
W= 2T L el BBV 29
v = 3 Vil i TE; eXp{ 4E\ksT (2.23)

According to Eq. (2.23) and, thus, to Marcus theory, the ET rate depends on the

following factors:

1. The distance between the D and A: due to the dependence |V; f|2, k‘% ; will gener-
ally decrease exponentially with increasing D-A distance. However, the nuclear
contribution (F'CW D) can also show a distance dependence in the Marcus theory,

thus yielding a more intricate overall behavior of k:% .

2. The Gibbs free energy of reaction: The energy reduction when the system is
transferred from the initial to the final state. It is defined as potential energy
difference AG° = G 7 — G, where G; and G are the Gibbs energies of the initial
and final state of the ET reaction. Thus, a more negative value implies a large

energy loss.

3. The reorganization energy: the energy cost incurred by molecular rearrangements

of D, A and surrounding medium during the ET process. Illustrated in Fig. 2.4.

-EA“:AGO‘(O AG(“:-EA AGO‘(—EA

W/

In (ki)

»

Ex
Gibbs free energy of reaction (- AGO)

Figure 2.5: Plot of the dependency of the ET rate k;; on the change of the Gibbs free
energy —AGY. Eq. (2.22) gives rise to the parabolic shape.

Additionally, the ET rate’s dependence on AG? can be divided into three distinct
regimes (cf. Fig. 2.5):
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1. The normal regime where £/ increases with increasing driving force AG°.

2. An activationless regime where k:% peaks. This regime is reached when AG® ~
—FE, and thus AG7 ~ 0.

3. The inverted regime where —E) < AG® and hence kf‘;{ is reduced for increasing
AG°.

U (n ()
£y —DA_D'ADA DA D°A DA DA _D*A" DA

D*A-
r Qr Q r Q" q

Figure 2.6: ET process illustrated by showing the correspondence between the elec-
tronic (on the Lh.s. of each panel) and the nuclear energy levels (on the
r.h.s.), respectively. (I) At the initial nuclear configuration Qo g, the low-
est unoccupied energy level of the DT A~ (denoted by a red circle) is too
high in energy. (II) At Q*, both energies become degenerate and electron
transfer occurs by tunnelling through the barrier. (IIT) The equillibrium
configuration of the DA~ is the counterpart of the situation shown in (I).

Adapted from Ref. [25].

The correspondence between the electronic energy levels and the nuclear energy levels
is illustrated in Fig. 2.6. Fig. 2.6 helps understand the importance of nuclear rear-
rangement for the ET process, in order for electronic energies to become degenerate
and electron tunneling to become energetically feasible. It is obvious that an ET can
only occur after thermal fluctuations bring the geometry of the system to the equillib-
rium co-ordinate QQ*. Alternatively, this can be done by optical excitation with excess

photon energy, which in turn is converted to vibrational energy.

Typically, in a molecular D-A complex, the DT A~ state infers that electron and hole
are localized the different moieties of a molecular complex. For this, it is also referred
to as charge separated state (CSS). In the case of, e.g., D-A heterostructures, the

expression CT state is usually preferred.
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Determination of Gibbs Free Energy AG°

The Gibbs free energy AG® of a CT process gives the potential energy difference
between the intial and the final states in a reaction. As AGY it enters in Eq. (2.23),
which describes the rate constant of a charge transfer within the framework of Marcus
theory, it is important in revealing the microscopic mechanisms of the charge transfer

process. The following equation is commonly employed to estimate AG° [36]:

e? e? 1 1 1 1
AG® = Eyy — Erea —E0) — — ( + ) -—]. (224
4 00 (AmepesRee)  (8meg) \r+  r—/ \€ep € (2:24)
~—— —
=Aedox =Fc Correction term accounting for differences in €

Here, E,.q is attributed to the first reduction potential and E,, to the first oxidation
potential. Together they give the redox potential Acgor. Eop is the energy of the
S1 — S, transition, which is taken from the spectroscopic measurements as the center
of gravity between the lowest energy absorptive and highest energy PL features, re-
spectively. Ree corresponds to the edge-to-edge distance of the charge D and A and is
thus key to the magnitude of the Coulomb energy Eo. The last term of Eq. (2.24) is
introduced to correct for deviations between the solvents used in, e.g., cyclic voltam-
metry (CV) and optical measurements r+ and r— mark the respective ionic radii. Eq.

(2.24) is given relative to the Sy state energy.

A, cdor can be obtained experimentally, by performing either photoelectron spectroscopy
(PES) or CV measurements, respectively. In the isolated molecule and in absence
of intermediate energy levels, the optically measured Ey, transition energy' matches
Avedor- Consequently, A,..q.. is sometimes referred to as the electrochemical bandgap.
In turn, deviations between the values are indicative of intermediate states, which can

be related to, e.g., (electron) D groups.

Iwhich are exclusively 7t — mm*-excitations in the class of materials studied in this thesis
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Excitation Energy Transfer: Forster Theory

The concept and theoretical description of EET processes dates back to the work of
Th. Forster [34,35]. In the Forster theory of EET, a

D*+A— D+ A", (2.25)

reaction, transferring excitation energy from the D to the A takes place. The main
achievement of Forster’s work is in linking the analytical expression to entities which
are determinable experimentally. Forster derived a rate constant for an non-radiative
EET from the FGR expression [Eq. (2.19)] by approximating the Coulombic part of

the pertubation operation through a dipole-dipole term.

N N 2
2 i
kf}:j |/7;] |Mf|r<6i’9f) e

3
; Foy r (2.26)
T
B ?TGE‘ ek

Here, I'? is the dipole orientation factor, which can be approximated as I'* = 2/3 for
a random distribution of dipoles, e.g., for molecules in solution. 7 is the PL quantum
yield (PLQY) which will be introduced in Chap. 3.4, r denotes the distance between
the two interacting partners, and 7; is the native (i.e., when no As are present) excited
state lifetime of the D.

Forster linked the FCW D term to the emission and absorption spectra of the D and

A, respectively, yielding the spectral overlap integral Jr, which can be computed as

_ [ fp(\)ea(N) AdA
[ fo (M) dA ’

Jp (2.27)

with the normalized D emission spectrum, fp (A), and the A absorption spectrum (in
Lmol*em™), €4 (\). From this, the so-called Forster radius Ry can be derived, which
is defined as the D-A distance for which the EET efficiency amounts to 50 %:
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2, \ /0
Ry = 0.221 <anF> . (2.28)

Eq. (2.26) is applicable to all dipole-allowed electronic transitions. Hence it is the
description of singlet-singlet EET. The transfer decays with =5, ET processes which
are due to the exchange interaction part of the coupling matrix element |V;¢|* are
described by the Dexter theory.

2.2 Electronic Excitations in Molecular Crystals

Certain characteristic effects take place when going from the single molecule to in-
dividual molecules and finally to the solid. In general, the eigenstates of the con-
stituting atoms or molecules are no longer valid and must be replaced by by states
complying to the collective excitations of the crystal. The discrete energy levels of
the atoms/molecules and are replaced by the formation of the electronic bands, respec-
tively. However, owing to the comparably low intermolecular forces in molecular solids,
their optical spectra are still derived from those of the individual molecules. Generally,
one observes the following differences when making the transition to the condensed

phase:

e Solvent shift: Describes the shift of energy levels, usually toward lower energies.
This is caused by interaction with the neigbouring molecules, e.g., in solution with
the solvent molecules. The magnitude of the shift is generally different for the

different molecular states.

e Line broadening: The discrete molecular levels are broadened in the solid,
leading to excitonic bands. This is a consequence of the periodic potential in
a (crystalline) solid where excitation energy is delocalized over more than one

lattice site.

e Lifting of degeneracies and breaking of selection rules: Transitions which
are forbidden in the individual molecule may become (partially) allowed in the
solid. Here, the symmetry of the entire crystal and no longer solely that of the

molecule is the determining factor.
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e Davydov splitting: Describes a splitting of each molecular level into Z terms
in the solid. Here, Z is the number of translationally invariant molecules in the
unit cell. Resonant interaction between the molecules leads to a splitting on the
order of a few cm™! to several thousands of cm™!. Davydov splitting shows, e.g.,

as two distinct transitions depending on the polarization of the incident light.

2.2.1 Frenkel Excitons

In the solid, an entirely new type of excitation emerges, in addition to the effects
mentioned above. Due to Coulomb attraction, excited charge carriers, that is electrons
and holes, can form correlated pairs, so-called excitons. Their mutual attraction lowers
the total energy of the system, such that the exciton is frequently the lowest energy

excitation found in optical experiments on crystalline solids.

Depending on the correlation length of electron and hole, three distinctions are made to
classify excitons. The situation is schematically sketched in Fig. 2.7. Frenkel excitons
have the largest binding energy which can reach 1eV or more. Here, the excitons are
commonly localized on one lattice site. The other extreme is given by the Wannier
exciton with binding energies in the low meV range. This, in turn, leads to a very
delocalized nature of this type of excitons, with Bohr radii as large as 10nm. The
intermediate case is that of the so-called CT exciton. As only excitations related to
Frenkel and CT excitons will be dealt with in this thesis, the description of Wannier

excitons is omitted in the following.

As shown in Fig. 2.7, the Frenkel exciton corresponds to an excitation which is localized
on one lattice site. The considerable binding energy results from the fact that van der
Waals interactions are weak, which in turn infers weak Coulomb-screening of charges.
Along with the greatly reduced dielectric constants in molecular solids, compared to
inorganic crystals, the Coulomb attraction between the electron and hole grows to
the reported values. For electrons and holes to be able to move freely throughout
the crystal as independent entities, they must be promoted to a state in which the
HOMO and LUMO of two distant molecules are each singly occupied by a hole and an
electron, respectively. Such an excitation can be viewed as the organic equivalent of the

valence and conduction bands of an inorganic semiconductor. However, the correlated
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electron-hole pair can move through the crystal as a whole, typically by hopping-like

transport.

Frenkel Charge-Transfer Wannier-Mott
Exciton Exciton Exciton

Homo-molecular Hetero-molecular
System System

o
seli

Figure 2.7: On the L.h.s. the situation of the Frenkel exciton localized to one molecule
is shown. The other limit, that of the Wannier exciton is shown on the
r.h.s. Here, electron and hole can be separated by a distance many times
the lattice constant. In the middle, the intermediate case of the CT exciton
is shown.

Now, a molecular crystal with two molecules in the unit cell, e.g., the PEN and PFP
crystals studied in this thesis, is considered. Such a pair of molecules gives a physical
dimer and is sometimes referred to as a mini-exciton in the optically excited state [22].

The ground-state wavefunction and energy of the dimer are given by
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Wiotal = VaVB and Eq = 2E). (2.29)

Now, it is assumed that one of the molecules is promoted to an excited state ¥* with the
energy E*. The probability of finding either one of the molecules in the excited state is

equal. Consequently, the total wavefunction ¥

totar 1S given by the linear combination

. 1

total — \/§ (d}Adj*B + wsz) . (230)

The energies of the dimer are £} = E* = FE, + E* in the non-interacting case. This
situation is illustrated in Fig. 2.8(a). However, if the interaction V4 p becomes non-
zero, the energy degeneracy will be lifted. The theoretical description of this case
resembles the situation of quantum mechanical anti-crossing introduced in Chap. 2.1.5,
Egs. (2.10)-(2.18), for the case of degenerate energies (E4 = Ep). The matrix element
Vap describes the the resonant exchange of excitation energy between the molecules

and is given as:

Vap = (W3p| Vap [aty) - (2.31)

For the excited dimer case, the new eigenenergies now read:

El =E"+ Ey£Vag. (2.32)
Hence, the energy splitting amounts to 2V4p = A4. The quantity A, is known as the
Davydov splitting. Besides the resonance interaction, also the Coulomb interaction be-

tween the (altered) charge distribution of molecule A in the excited state and molecule

B in the ground state (and vice versa) has to be accounted for. It amounts to

D" = (Yu¥p| Hap [Yas) = (Ya¥i| Hap [ atp) - (2.33)

Already in the ground state there is Coulomb interaction, which consequently is given
by:
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Dy = (Ya¥p| Hap |V at) . (2.34)

Here, Dy is identical to the van der Waals binding energy of the molecules in the crystal.
The sum D = D* — Dy typically has a positive sign and actually resembles the “solvent
shift”, that is the red-shift of optical transitions compared to the solvated molecule.

The effects of the performed calculations are schematically shown in Fig. 2.8(b).

(a) Individual Monomers: (b) Dimer: (c) Periodic
A Has=0 Has# 0 Crystal
E* ™

EU .n A .n B DO DO

Figure 2.8: (a) Energy levels for a pair of uncoupled monomers, (b) a crystal where
only the two molecules in the unit cell are taken into account, giving a
physical dimer, and (c) the situation in which the full crystal periodicity is
taken into account. In the crystal the splitting increases to n - 2Vp for the
n translationally inequivalent nearest neighbors. Adapted from Ref. [22].

To account for the periodicity of a crystal, the dimer picture has to be extended. Again,
the case of a crystal with two molecules in the unit cell is considered. In this case, the
ground-state wavefunction is the direct product of the ground state of the individual
molecules ¥, o

N
Ve =A[] Yma- (2.35)

)

Here, A is an antisymmetrisation operator, ensuring that the total wavefunction is
antisymmetric. m runs over N units cells in the crystal while the indices v and 5 run
over the two (in the case considered here) molecules in the unit cell. If a localized
electron-hole pair excitation at the « site of the n-th unit cell is considered, while all

other molecules remain in the ground state, the wavefunction yields:
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Vo =AY . T Vs (2.36)
n,a#£m,3

It is important to note, that these wavefunctions are not eigenfunctions of the crystal
Hamiltonian. A Bloch-wave ansatz delivers a wavefunction appropriate to the crystal
symmetry and periodic potential. From Eq. (2.36), the delocalised wavefunction can

be obtained as: .
v (k) = TN ; W7, exp(ikRy o), (2.37)

where U* is the local exciton wavefunction R, , is the position vector of the molecule.
This approach takes into account the fact that all electronic excitations must be par-
tially delocalized, because the incident photon is delocalized according to its finite
wavelength. In the case of zero coupling all states differing in k would be degenerate.
In general, the coupling in an organic crystal is weak. However, it is non-zero and
consequently and leads to non-negligible (exciton) band dispersion and the Davydov
splitting mentioned earlier. The band dispersion is typically highly anisotropic due to
the intrinsic anisotropy of most molecules leading to a strongly varying electronic cou-
pling for different crystalline axis. For a detailed theoretical treatment of this particular

matter, the reader is referred to textbooks and review articles [22, 37].

2.2.2 Charge-Transfer Excitons

The regime intermediate to the two limiting cases of highly-localized Frenkel- and
delocalized Wannier-excitons is that of CT excitons. This term is applied to electronic
excitations in which the electron-hole separation is larger than the molecular structural
units. As electron and hole are localized and different molecules, the state has, at least
partially, ionic character. This is why they have been referred to as ion pair states in

the past.

As indicated in Fig. 2.7, this type of excitation is found in homo-molecular crystals,
i.e., consisting of only one type of molecule, as well as in hetero-molecular ones. In
the former, the excitations are intermediate to the respective energies of lowest-lying
Frenkel excitons and the localized S,, — Sj transitions. This renders them hard to
observe, as especially the S, — Sy transitions frequently have very large oscillator

strengths. However, their polar character makes CT-transitions subject to the Stark
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effect. Hence, an electroabsorption measurement, where a modulated DC electric field

is applied to the crystal, can reveal the nature of optical transition.

In addition to CT states in homo-molecular crystals, they can also appear in hetero-
molecular systems. In this scenario, one of the two constituents typically acts as
electron donor, while the other is an acceptor. The hetero-systems can consist of mixed
crystals of alternating structure with a DADA stacking order. Such mixed crystals can
be grown in different D:A ratios. Alternatively, phase-separated crystals can be grown.
Here, there exists only a narrow internal interfacial region in which the two phases
are in direct contact. Ideally, this internal interface is molecularly smooth, with no
mutual intercalation between molecules of the respective phases. Both crystal types
are the subject of this thesis. As can be seen schematically in the bottom part of Fig.
2.7, CTs of this second type are frequently the lowest-energy transitions of the singlet

subsystem.

CT systems are both scientifically interesting as well as potentially technologically
relevant. First, CT states are being discussed as precursors to charge separation.
charge separation (CS) is relevant for OPV, as here electron and hole must be efficiently
separated to allow a current to flow. In this regard, D-A systems such as the PEN-PFP
and PEN-Cgy are promising candidates for potential device applications. Besides, they
can be utilized as model-systems for the study of internal interfaces. Here, especially
the coupling of molecules in the interfacial region is of great interest. Generally, the
coupling is expected to be in the weak regime, rendering unperturbed D and A MOs,

respectively.
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3 Experimental Details

Te following chapter illustrates in detail the experimental techniques car-
ried out within this thesis. The description includes the setups for linear
aborption and continous wave (CW) PL, TRPL, photoluminescence ex-
citation (PLE) and PLQY, respectively.

3.1 Linear Absorption

Linear absorption measurements are used to measure dipole-allowed transitions be-
tween the occupied states and the unoccupied states. In terms of molecular spec-
troscopy, this corresponds to the HOMO - LUMO transition. Additionally, higher
states, e.g., LUMO+1, LUMO+2, etc. are also probed. In the case of molecular solids,
the excitons corresponding to the HOMO-LUMO transition might also be observed.

Different experimental setups were used to the obtain the data presented in this thesis.
For measurements of individual molecules in solution, a commercially available instru-
ment! is used. Here, two different light sources, a tungsten halogen and an Xenon arc

lamp, are used to cover a spectral range of 1.38-6.2eV (200-900 nm).

When lateral resolution was of no issue, the same experimental arrangement as de-
scribed in Chap. 3.3 was used. A standard 50 W tungsten halogen lamp is imaged onto
a pinhole of 100 pm diameter. The pinhole, in turn, is imaged at a 1:1 magnification
onto the sample surface. The same detection scheme as in the PLE setup is used. The
different techniques all have in common the method of data processing. To measure

the absorption (or absorbance), three separate measurements must be performed. A

L«Cary 3 UV-VIS Spectrophotometer”, Varian
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background measurement, to correct for scattered light reaching the detector, a refer-
ence measurement, which gives the 100 % transmission baseline and finally the actual

sample transmission spectrum. The absorption A is given by
A=1-T—R. (3.1)

A is computed from the sample’s transmission spectrum, T, a reference spectrum T,
typically the respective substrate without any coverage, and a background measure-

ment Ipg to account for stray-light and dark-current of the detector:

Ts — Ipg

A=1- =" "2,
Tr — Ipg

(3.2)

The reflection R is neglected and assumed add a constant (but small) offset across the
wavelength region of interest. In molecular spectrocpy of dissolved samples, the molar

exctintion coefficient € is commonly used. € is defined as

_ A
ce-d

€

(3.3)

where ¢ is the molar concentration (measured in mol - L™!) and d is the optical path

length (for samples in liquid solution typically the length of cuvette).

3.2 Time-Resolved Photoluminescence

Spectroscopy

In contrast to linear absorption, the occupation density of emissive states is monitored
in PL spectroscopy. The concert of the two methods typically yields a shift of the
emission maximum towards lower energies, with respect to the absorption maximum.
This effect is known as the Stokes shift, which forms an important material parame-
ter. A time-resolved photoluminescence experiment adds information on the relaxation
dynamics of the emissive states. For systems in which more than one radiative decay
channel exists, transient PL data can be used to indentify individual channels by their

characteristic decay behavior. In general, the measured decay always incorporates the
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superposition of radiative and non-radiative channels. Furthermore, changes in the

behavior are often indicative of newly introduced (non-radiative) decay channels.

3.2.1 Experimental Setup

The experimental setup used to acquire time-resolved data can the subdivided into
three different sections: excitation, microscope and detection sections respectively.
A tunable titanium:sapphire laser? pumped by a frequency-doubled Nd:YVO laser?
is used as excitation source. It provides tunable excitation energies ranging from
1.13-1.77¢V (700-1100nm) with an maximum power of 3W. In the configuration
employed in this experiment, the pulse length of the emitted radiation is on the or-
der of 100fs at a repetition rate of ((79.0 & 0.1) MHz) MHz. This corresponds to a
separation of approximately 12.8ns between two consecutive pulses. To extend the
range of excitation wavelengths, a frequency doubling and tripling unit is employed,
providing near-continouus excitation from 1.13-4.96eV (250-1100nm). This enables
resonant excitation of a broad range of different materials. The system is designed in
an all-reflective configuration to ensure minimum temporal pulse distortion. The use
of reflective optics also guarantees low loss of excitation power throughout the entire
range of excitation wavelengths. The excitation light is coupled to the microscope sec-
tion via a periscope and a beamsplitter with a transmission:reflection ratio of 70:30.
The ratio of the beamspliter is chosen as the emitted light level is usually the limiting
factor of detection sensitivity while at the given ratio an excitation power of up to
100 mW is still available under optimum cirumstances. The microscope is operated in
a confocal manner, ensuring excitation and detection pathways are in focus simultane-
ously. Again, all-reflective optics are used in the Schwarzschild microscope objective.
The operator benefits from the long working distance (w; = 17.6mm). Through the
high numerical aperture (NA = 0.5) near-diffraction-limited spot sizes of 5pm are
achieved. The sample itself is mounted in a He-flow cryostat to allow measurements
under cryogenic conditions. Temperatures as low as 4 K can be achieved while the unit
of resistive heater and PID controller allows temperature-dependent measurements up
to temperatures of 320 K at approximately 0.1 K precision. As previously mentionend,

the objective is also used to collect the light emitted from the sample. The emitted light

24Tsunami”, SpectraPhysics
3“Millenia eV”, SpectraPhysics

33



again passes the beamsplitter and finally passes through the sole transmissive optic in
the setup, the focussing lense which images the sample surface onto the spectrometer
slit. A beamsplitter can mounted between focussing lense and spectrometer entrance
which guides the light to a camera. By this way, the position of the excitation light
on the sample can be measured. Additionally, through the installed motorized xy-
scanning stage, the entire sample can be scanned automatically and measured spectra

can be correlated to the respective areas on the sample surface.

The detection section consists of a grating spectrometer? with a focal length of f =
260 mm. A grating turret with three gratings installed simultaneously offers the choice
between broad spectral acquisition window and high resolution in different spectral
regions. The highest resolution obtained is approximately 0.1 nm. The dual exit-port
configuration with a motorized mirror enables rapid switching between to different de-
tectors. For time-integrated measurements, a high-sensitivity thermoelectrically-cooled
silicon CCD?® is used. It high sensitivity facilitates the detection of low light levels. A
low dark-current and noise level is achieved by cooling the detector to temperatures as
6

low as —60°C. For time-resolved measurements, a “synchro-scan” Streak Camera® is

attached to the second exit port of the spectrograph.

The operation principle of a streak shall be explained in-depth. Photons exciting
the spectrograph are spectrally dispersed in its image plane. The entrance optics
of the Streak camera images the light passing through the horizontal entrance slit
onto a photocathode (S20). Through the photo-electric effect electrons are released
instantaneously. By this, not only the horizontal distrubution corresponding to the
specific wavelength of the impinging photons is conserverd. Additionally, the temporal
order in which electrons are released corresponds to the temporal order of the incident
photons. The emitted electrons are accelerated through a vacuum tube. During their
passage through the center of two capacitor plates to which a sinusoidally modulated
high voltage is applied. By means of a trigger signal from the laser source the phase
and frequency of the modulation voltage are locked to those of the laser. The limit for
temporal window is given by the segment of the sine is an good approximation described
by a linear function. Generally speaking, the temporal resolution is limited by different

factors: The pulse-length of the exciting laser light, the width of the horizontal entrance

4“Cornerstone 74068”, Newport/Oriel
5¢iDus BV-440BU”, Andor Technologies
SHamamatsu Photonics
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slit, the electron optics in the sreak unit, and ultimatively by Heisenberg’s uncertainty
relation. On the other hand, the maximum time window is firstly limited by the linear
region of the sinus function and secondly by time window (/12.8ns) between two

consecutive excitation pulses.

In this work, a the majority of measurements where performed on molecules dissolved in
various solvents. To facilitate the measurements and allow the use of standard cuvettes
(12.5mm x 12.5mm cross-section), a drop-in module was constructed. The module
houses its own focussing/collimation optics, the cuvette holder itself and a beam-dump

to absorb excitation light passing through the cuvette without being absorbed by the

sample.
Excitation Microscope Detection
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Figure 3.1: Schematic drawing of the TRPL-Setup used in the framework of this the-
sis. The setup allows for measurements at high spatial, temporal and spec-
tral resolution of a broad range of excitation energies and at cryogenic
temperatures.

3.2.2 Data Evaluation

In an TRPL experiment one always monitors the population dynamics of the emissive
state. In a solid excitons can be assumend the main source of luminescence. Thus,
the observed lifetime of excitonic luminescence, 7p;, depends merely on the exciton

population Nx:
dNx(t)

dt

x Nx(t). (3.4)
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Equation 3.4 can be solved analytically and yields
Ni(t) = Noe:vp_%. (3.5)

The population Ny and thus the PL intensity Ip; decay in a single-exponential man-
ner with a decay-constant of 1/7p,. This is generally true for all cases in which the
dynamics only depends on the the population of the emissive state. Exceptions are
given, e.g., in the case of the recombination of an electron-hole plasma. Here the dy-
namics depend on the product of electron and hole population and the resulting decay

dynamics are of parabolic behaviour.
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Figure 3.2: Three-level system that was assumend for the calculations. The arrows
indicate the corresponding rates between the levels.

Deviations from the expected single-exponential behavior allow to extract interesting
properties of the system under study. An example shall be given for an idealized optical
three level system (cf. Fig. 3.2), consisting of the ground state |0) the excited state |1)
from where emission occurs and a third state, |2), which is able to interact with |0) as

wells as with |1). For the three states involved, the rate equations are as follows

dN,

TISO = +k’02N2 + l{iglNl, (36)
dN
7; = — (ko1 + ko1) N1 + k12 No, (3.7)
dN.
d—; = — (k1o + koz) Ny + ko1 Ny (3.8)

As in a transient PL experiment the system is excited by a short laser pulse which

promotes the |1) < |0) transition, the dynamics of |0) are irrevalent. From transient
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PL data, the sum of the two rates ko1 + koj is obtained. The information on (de-
)population dynamics of Ny are considered not accessible by PL and thus a “dark”
state. It will be shown that there exists an analytical solution to equations Eq. (3.7)
and Eq. (3.8). The set of equations can be written as a matrix equation of the form
N =AN , where
A [— (ko1 + ka1) k12
ko1 — (k12 + ko2)

is the coefficient matrix. A general solution can be assumed to be given by N = Gert
with 7 and @ the eigenvalues and -vectors, respectively. Using |A — Ir| = 0 we obtain

for the eigenvalues r two decay constants

ki — ; [Tr(A) & (Tr (A) - 4Det (A)) " 2] | (3.9)

For the eigenvectors of the system we obtain

kvs + koo + k;
P R (3.10)
k21

The general solution is given by

N
(Nl) = Chajexp™ + Cyazexp™. (3.11)
2

At t = 0, immediately after the excitation pulse, N;(t = 0) = 1 and Ny(t = 0) = 0, we

thus obtain o 12
=142
Cy ka1kio

(3.12)

Reversible processes (e.g., charge separation, ISC) in individual molecules or bimolecu-
lar process frequently show bi-exponential decay dynamics. From the (bi-exponential)
fitting of the experimental data the two decay components, 71, 75 and their respec-
tive amplitudes a; and ay are obtained. If now, for example, a quenching study is
performed, k¢, could be determined by measuring the PL lifetime with no quencher
present. The missing three rate constants k19, ko1 and kga can then be calculated from

from the following equation
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3.3 Photoluminescence Excitation Spectroscopy

The experimental technique where a continously tunable excitation source is used to
detect the PL intensity as a function of the excitation wavelength is known as PLE.
The most common use of this technique is to study the absorptive behaviour of samples
grown on opaque substrates. In this case, an absorption measurement in transmission
geometry is impossible without etching or thinning of the substrate. Generally speak-
ing, one assumes the relation between PL intensity Ip;, at a fixed detection wavelength,

Apet, and excitation intensity Ig,. to be as follows:

[PL X a()\Exc) A Prad : [E:cc()\Ezc) (314)

Here, a(\g,.) denotes the absorption coefficient of the material, derived from Lambert-
Beer law. The probability for excited carries to relax to the emissive state, v, and their
subsequent probability of radiative recombination, P,.4, are assumed to be excitation
wavelength independent. One assumes that the carriers “forget” how they reach the
emissive state which makes v independent of Ag,.. In this case, a measure directly
proportional to the absorption coefficient is obtained if /g, is held constant. However,
sometimes 7 = Y(Agge) is @ more precise description of physical reality. In this case, the
coupling efficiency between absorptive states and the emission channel can be deduced
by comparing PLE and absorption measurements. Both, qualitative and quantitative
deviations between the two spectra give insight into the intricate relaxation dynamics

of individual molecules and molecular crystals.

The PLE measurements performed within the framework of this thesis where obtained
with to different experimental setups, depending on specific requirements. For measure-

ments on the PDI material system described in section 4, a commercial flourometer’

"“FlouroLog”, Horiba Scientific
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was used. Here, a 250 W Xenon arc lamp is used as excitation source. The white-light
sepctrum is dispersed by a double-monochromator delivering excitation linewidths of
0.1nm. Emitted light is again dispersed by a grating monochromator and detected by
photomultiplier tube and Germanium detector for measurements in the VIS and NIR
spectral region, respectively. The setup however is limited to measurements at room

temperature and offers only very limited spatial resolution.

Within this thesis, a setup for PLE measurements has been developed. Again, a Ti:Sa
laser® is used as primary light source. The Ti:sa produces 1 W of pulsed output, when
pumped by a 5W intra-cavity frequency-doubled Nd:YVo laser’. A low dispersion
mirror set is used to generate pulses of 30 fs length. This comes at the cost of a reduced
tuning range, which is in this case about 1.48-1.61¢eV (770-840nm). A photonic crystal
fiber (PCF)! generates a white-light supercontinuum spanning roughly two octaves.
Within the crystal fiber, a combination of self phase modulation, Raman scattering,
and soliton generation leads to a spectral broadening of the fundamental laser pulse. To
select the desired excitation wavelength from the supercontinuum, a homebuilt prism
monochromator is used. The facet of a single mode fiber is used as slit. The fiber is
mounted on a motorized stage allowing selection of the desired wavelength. To excite
the sample, the end facet of the fiber (d = 400 um) is imaged by an achromatic lense
onto the sample surface. To cool the samples to cryogenic temperatures, a closed-cycle
helium cryostat!! is employed. The emitted light is imaged onto the entrance slit of
the f/4.1 grating spectrometer?. In this configuration, an intensity of 0.5mW /nm is
obtained under ideal circumstances. Taking the 1:3 de-magnification of the fiber facet
into account, the laser spot size of 130 pm corresponds to a peak excitation density in
the range of 12W/c?m. A value sufficient for the material classes under study, if a

sensitive combination of grating blaze wavelength and CCD is selected.

To take into account fluctuations in excitation power during the runtime of the ex-
periment, a back reflection from the focussing lense is constantly monitored with a
laser power meter'. By this effects caused the non-constant intensity distribution of

the supercontinuum as well as power fluctuations over time a are eliminated from the

8«Tsunami”, SpectraPhysics
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10«FemtoWhite 800”7, NKT Photonics
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13¢pM100 w/ S130A Si-Diode”, Thorlabs

39



measured PLE signal.

Unlike convententional PLE setups, where a monochromatic detection is used (as the
spectral information is gained by tuning the excitation wavelength), in the setup used
here, a liquid nitrogen cooled Si CCD is used as detection. This allows, in principle,
2D PLE measurements, where individual PLE traces can be extracted from the entire
emission spectrum of the sample. The use of a pulsed excitation source in principle
also allows the measurement of time-resolved PLE spectra. This is planned as a future
step of experimental implemention.

Photonic Crystal Fiber

Ti:sapphire e [ (] %
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Slit on
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Figure 3.3: Schematic drawing of the PLE setup. By taking advantage of a highly non-
linear PCF an octave-spanning bright white-light supercontinuum is used
as excitation source after being dispersed by the prism monochromator.

3.4 Photoluminescence Quantum Yield

The determination the electro- and PL quantum yield is one of the key parameters
of characterization of flourescent materials. Its technological benefit is crucial for
optimization of devices such as OLEDs. Beyond, the characterization of, e.g., the
temperature-dependence of the PLQY gives insight on the nature of non-radiative
decay channels or - in the case of condensed matter - parameters such as spatial fluc-

tuations of material parameters (e.g., disorder-related effects).

The experimental apparatus is illustrated in Fig. 3.4. An excitation laser of choice is
used to excite the sample which is mounted inside an integratig sphere. The sphere

is coated with a diffuse high reflectance coating, yielding nearly perfect Lambertian
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Figure 3.4: (a) Schematic drawing of the experimental setup used for the determination
of the PLQY. (b) Hlustration of how the PLQY is determined experimen-
tally from the measurement of power emitted from the sample (green) and
laser (light grey). This is referenced again the laser power with no sample
(dark grey) installed in the integrating sphere.

behaviour and a minimum reflectance of 98 % in the wavelength region of interest. By
this, all anisotropy in the spatial emission characteristics can be compensated for. The
challenge and main source of error lies in the precise calibration of the spectral response
of the detection scheme!*. A calibrated Tungsten halogen light source'® which is held
at constant temperature is used for this purpose. In general, the PLQY is defined as

follows:

number of photons emitted (3.15)

= humber of photons absorbed

To determine the PLQY (Eq. (3.15)), first the number of photons absorbed has to
be determined. To this end, two measurements have to be performed: 1) the laser
spectrum impinging on the integrating sphere. 2) a measurements with the sample
installed in the sphere, in which both, the laser and the sample spectrum are recorded.
The respective areas are then integrated and Acqc. w/oSampie — Aewe.w/Sample gives the
absorbed power and ratio of the former and the integrated PL area Apy, then gives the

photoluminescence QY:
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Aexc.,w/oSample - Aexc,,w/Sample » 100%
APL

n= (3.16)
Additionally, PLQY measurements are complementary to TRPL, as the combination
of both techniques allows the separation of radiative recombination rate, k, and non-

radiative recombination rate, k,,:

K,

P S (3.17)

n

In general, there exists more than one non-radiative recombination channel. For this

reason, ky, is written as Y. k,, in Eq. (3.17).
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4 Interfaces on a Molecular Scale:

44

Perylene Diimides

Perylene derivatives such as the perylene diimides (PDIs) were initially
synthesized in the 1910s. From the 1950s on, they found a broad range of
applications, e.g., as high-grade pigments in industrial applications such
as automotive finishes [38]. Since these early days, PDIs have developed
into one of the most valueable material classes of molecular electron-
ics. Recently, advanced uses in contactless pH measurements, as metal
cation sensors, and as active layers in OPV are proposed. Moreover, SF
has been reported in slip-stacked thin-films of ortho-phenyl-substituted
PDIs [39] and it is also expected to occur in rigidly linked dimers. Be-
yond their technological benefit, PDIs are also ideal model systems for
charge and energy transport studies. Their high thermal and photo-
chemical stability along with their preferable spectral range and electron
acceptor properties favor such fundamental investigations [9]. While a
vast number of publications investigate core- and imide-N-substituted
PDIs, only very few focus on perylene dihydrazides (PDHs). Utilizing
a short fluorophore-fluorophore distance, nitrogen-nitrogen linked pery-
lene and naphthalene imide dyads and triads are used as model systems
for the investigation of (single) molecular wires and intramolecular en-
ergy transfer [40-43]. Their use as dyes in p-type dye sensitized solar
cells leads to a sharp increase of solar cell efficiency: the formation of
dye-localized long-lived charge separated states enables increased hole
injection [44-47]. PDIs also promise to be able to compete with the
fullerenes (discussed in Chap. 6) as electron transporting materials due
to their high electron mobility, thermal stability, and structural variety.
However, their, in general, strong tendency to form aggregates is detri-
mental with regard to possible applications [48]. The synthesis of the
molecules studied in this thesis was aimed at creating an intramolecu-
lar donor-acceptor complex. The charge-separation and -recombination
rates are controlled by different methods, i.e., protonation of the donor
moiety, increase of donor acceptor distance and variation of excitation

energy, respectively.



4.1 Sample Synthesis

The samples discussed in the following were synthesized by Eduard Baal from the
group of Prof. Dr. Jorg Sundermeyer of the faculty of Chemistry at Philips University
Marburg. Eduard Baal also performed the infra-red (IR) spectroscopy and CV mea-
surements. density functional theory (DFT) calculations were performed by Malcolm
Bartlett, also with the group of Prof. Sundermeyer and Remco W. A. Havenith from

the University of Groningen.

Sample synthesis was aimed at obtaining the shortest possible D-A distance at the
imide position. This position was deliberately chosen due to the presence of a node
in the MOs of unsubstituted PDI. By this, orbital overlap is minimized and a defined
“intramolecular interface” is obtained. The overall high aggregation tendency was
overcome by covalently linking the PDIs via an imide nitrogen-nitrogen bond, which
results in a perpendicular fluorophore orientation. This, in turn, leads to a reduced
tendency of stacking. These beneficial properties could make nitrogen-nitrogen linked

PDIs a serious competitor [48-51].

To probe the distance dependence of the photophysical properties, e.g., possible CT
interactions, ethylene, propylene and hexylene bridge units are introduced to separate
the donating amine and the PDI imide groups (cf. Fig. 4.1). The use of non-conjugating
bridging units minimizes mixing of D and A MOs. Contrastingly, the more commonly
used phenyl spacing units bear their own 7-electron systems. As a consequence, the
overall lower energy levels compared to non-conjugating units allow carrier localization
on the bridge and thus “hopping”-like transport. The 7-electrons themselves also
provide rich carrier dynamics of their own. Details on the synthetic process can be

found in Ref. [52].
4.2 Photoluminescence Quenching through Charge
Separation

Intramolecular CT has been discussed in the literature as origin for PL. quenching. To
this end, PLQY measurements were performed on the reference “swallowtail” Langhals

compound 1 and that of the derivatives of 1.
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Figure 4.1: Overview of the PDI molecules synthesized for the study of internal inter-
faces on a molecular scale.

The effect of symmetrical substitution of the carbon atom at the imide position by
nitrogen (cf. Fig. 4.1) was investigated by PLQY measurements introduced in Chap.
3.4. The results from steady-state spectroscopic measurements are presented in Fig.
4.2. The data corroborate the assumption that the photophysical properties of the
Perylene backbone are not altered by the chemical substitutions. In line with the liter-
ature, the absorption maximum is located at 2.36 eV for samples dissolved in chloroform
(ChCl3) [40,53]. A ~30meV blue-shift is observed, if acetonitrile (MeCN) is used as
solvent, resulting in a well-established value of the absorption maximum (2.39 eV) [54].
Additionally, the Franck-Condon principle (cf., Chap. 2.1.3) is obeyed, indicated by
the near mirror-symmetry of absorption and emission spectra. The vibronic progres-
sions are spaced equidistantly by 170 meV and are unchanged in their spectral position
and relative intensities, for all samples. Unlike the other spectroscopic properties, the
PLQY is substantially changed for the nitrogen-bearing samples. The effect is visual-
ized in Fig. 4.2(b), where the PL is compared on an absolute scale (note the logarithmic
ordinate). The PL intensity drops more than one order of magnitude, indicating a re-
duction of the PLQY from almost 1 for 1 to below 0.005 for 2. Thus, the presence

of the electron lone pair at the amine group strongly suggests that a CT reaction is
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responsible for the quenching of the PLQY.
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Figure 4.2: Normalized absorption (dashed) and PL (solid) spectra of 1 (as reference),
H>2, H23 and Mey2. (b) Absolute PL of the same samples on a semi-
logarithmic scale.

This conclusion is supported by DFT and time-dependent density functional theory
(TDDFT) computations. For the nitrogen-bearing samples, the order of the MOs is
altered. The m MO of the perylene core no longer constitutes the HOMO. Hence, the
bright 7t <— 7t* transition is no longer the lowest energy electronic transistion (cf. Fig.
4.3). The calculations corroborate the assumption of decay to the radical anion state,

PDI*~.

4.2.1 Effect of Protonation

It has already been reported in the literature [8], that protonation of the D group is

expected to lower the oxidation potential of the former, possibly to a level at which the
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PL-quenching CT process becomes energetically unfavorable. To this end, the nitrogen

moiety of samples 2-5 was protonated using different protonation agents.

DFT calculations confirm the assumption that a protonation increases the oxidation
potential, i.e., lowers the D’s energy level [cf. Fig. 4.3(a) and (b)]. However, the proto-
nated variant of sample 2, 2p, shows no significant recovery of PL intensity compared to
2. DFT calculations do not take into the account effects of the sourrounding medium,
i.e., the solvent. In a realistic scenario, there will always be an equilibrium between
those protons bound to the donating amine moiety, and those dissolved in the solvent.
The exact magnitude of this effect depends on the basicity of the solvent compared to
that of the protonation target. It can be estimated by comparing the results of the
PLQY measurements. For instance, by calculating the ratio of PLQY for two different
D-A distances and comparing the result to that obtained for the respective protonated
samples. For 2 and H22 the ratio amounts to unity. Controversely, for 3 and H23 a
ratio of two is calculated. The same ratio is expected for both couples, as there is no
reason for protonation to be more (or less) effective for either of the samples (2 and
3). From this, one can conclude that most likely another mechanism is responsible for

inefficiency of the protonation.

Additional evidence for this claim is given by CV measurements. For unpronated
sample 2, a second oxidation potential is observed, intermediate to the electrochemical
bandgap at 2.46 V which can be related to the HOMO-LUMO transition. However, for
H>2, no such second oxidation potential is observed. This indicates that the oxidation
potential attributed to the donor level is increased and thus the energetic position
is shifted to energies lower than the fundamental transition. Consequently, this can
be interpretated as clear evidence that de-protonation does not occur to a significant

extent.

It is safe to assume that only a minority of protons is permanently solvated in the
equilibrium. Hence, a different effect must be responsible for the absent recovery of
PL intensity. For instance, this could be an excited state hydrogen transfer (ESHT).
Several experiments were carried out to provide evidence for a hydrogen bond between
the amine moiety and the perylene-centered carbonyl unit. Firstly the crystal structure
of H22b, which forms crystallites when sublimed, is compared to that of 2b. From

the X-ray diffraction measurements its is evident that the carbonyl bond at the imide
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position is elongated in Hs2b, compared to 2b. This is taken as indication of a

hydrogen bond between the donating proton and the carbonyl oxygen.

Comparitive IR measurements corroborate the afformentioned assumptions (cf. Tab.
4.1). The hydrogen bond is indicated by a shift of the two modes associated with the
C-O bond by 12cm~! and 17em™!, respectively, when comparing 2 and Hy2. Also,

a weak trend is emminent for increasing D-A distances, e.g., for 5 and Hy5 the shift

1

reduces to only 1em™t and 3cm™!, respectively.

Table 4.1: Overview of IR absorption features associated with the C-O bond. The
data for the uncharged samples are presented in the first three columns are
compared to those of the charged samples are given in the second three

columns.

Uncharged CO’ (cm™!) CO” (em™!) Charged CO’ (em™') CO” (cm™1)

1 1697 1658

2 1707.6 1666.8 H,2 1719.7 1683.4

2b 1708.8 1664.3 H>2b 1728.6 1996.3
H,3 1695.3 1654.0

3 1692.8 1651.9 Me,3 1696.0 1652.5

4 1692.7 1647.3 H>4 1688.6 1654.9

5 1691.3 1650.1 H,5 1692.4 1653.1

As final check of consistency, a methylated sample is investigated. Methylation should
in principle have the same effect as protonation. However, instead of a proton, a
methyl group is used to lower the D’s energy level. As the methylene binds covalently
to the nitrogen, a de-protonation effect is virtually excluded. Also, generally speaking,
hydro-carbons are very weak acids (40 < pK, < 50). They are thus considered too
weak proton donors for hydrogen bonding to occur [55]. Both, the PLQY (cf. Fig. 4.2)
as well as the PL lifetime (cf. Tab. 4.3) fully recover for the methylated sample Mey3.
3 was chosen for methylation because a methylated 2 could not be obtained, even with

the strongest methylations agents available.

Further investigations are required to fully confirm that an ESHT leads to the absent
recovery of PLQY under protonation. A time-resolved VIS-pump - broadband IR-
probe experiment could provide an answer to this question. Regardless, as proof for
the existence of a hydrogen bond has been given and de-protonation is excluded, the

assumption of an ESHT appears convincing.
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Figure 4.3: MO energy level diagram based on the S; excited state B3LYP/6-31G*
calculated for 2 (a) and H22 (b) showing the effect of protonation upon the
amine donor MO. Protonation stabilizes the amine MO and, thus, radiative
recombination should be favoured over IC. (c) illustrates the hydrogen bond
between the amine-centered proton and the carbonyl oxygen.

4.2.2 Effect of Altered Donor-Acceptor Distance

As the mechanism behind the quenching of the PLQY has unambigiously been identi-
fied as a (photoinduced) CT process, its exact nature shall be investigated closer. To
this end, a systematic variation of the D-A distance is beneficial. Therefore, the series
of samples bearing spacing units in between the nitrogen-nitrogen pairs of compound
2 is studied. The spacers consist of alkyl chains of two, three and six methylene (CHj)
groups for 3, 4, and 5, respectively.

CV measurements are carried out to determine the respective oxidation and reduction
potentials. The results are given in Tab. 4.2 along with an estimate of the Gibbs
free energy of charge separation, AGcg. The variations in F(y) obtained from the
absorption measurements are <5meV, while the A, 4., values are reduced by 30 meV
compared to the former. This corrobates the assumption of an additional energy level,
intermediate to the lowest optically bright transition. Additionally, the A, ¢4, of all
donor-bearing samples is significantly lowered, compared to the reference compound 1
(Aredor = 2.46€V).

The Gibbs free energy AGeg was calculated according to Eq. (2.24). The edge-to-edge

distance R.. is determined by DFT calculations and taken as the nitrogen-nitrogen
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edge-to-edge distance. It should be noted that these values offer the upper limit of
the D-A distance, because calculations assume stretched alkyl chains. The €.y and
€5 values are the dielectric constants of the respective solvents (for CV and optical
measurements, respectively). The radii r+ and r— are the ionic radii and taken from

the literature as 200 nm for the cation and 471 nm for the anion [56].

Table 4.2: Optical and electrochemical bandgaps for the sample series with increasing
D-A distance. Estimates for AG¢cg are given relative to the first excited
singlet state (.S7).

Sample Ey_¢ (€V) Ayegor (€V) Ree (pm)  AGes (eV)

1 2.303 2.46 - -

2 2.305 2.26 143 -1.64
3 2.302 2.27 373 -0.34
4 2.304 2.10 458 -0.37
5 2.297 2.26 797 0.08

¢(CHCl;) = 4.81,  ¢(DCM) =893,  e(MeCN) =375

The results of the calculation indicate that the S; — C'SS decay becomes more favor-
able with decreasing D-A distance. For 2a and 2b (no alkyl spacers), the energy of
the CSS is well below that of the S; state. For the Cy and Cj alkyl spacer bearing
3 and 4 AGg¢g is significantly lower than for 2 and 2b. In the case of 5, decay to
the CSS becomes energetically unfavorable. This occurence of a CSS confirms that PL
quenching is due to a CT process. Note that the Gibbs free energy for 5 is calculated
assuming a stretched alkyl chain. Calculations using shorter D-A distances for 5 result
in a AGgs = —0.14¢eV (for R.. = 500 pm), making CS favorable again. This hefty
dependence on R,.. emphasizes the importance of the D-A distance on the formation

and population efficiency of the CSS.

The findings agree with the optical measurements. As shown in Fig. 4.4, all samples
show virtually identical absorption spectra, similar to the first series shown in Fig. 4.2.
Spectral shapes and positions again show no effect on the appendage of substituents.
Constrastingly, the PLQYs depend heavily on the distance between perylene backbone
and D unit [illustrated in Fig. 4.4(b), which shows the absolute emission intensities].
The addition of the amine groups and their electron lone pairs invoke a drop in PLQY
of more than two orders of magnitude, compared to 1. The systematic introduction
of alkyl chains as spacer units leads to a recovery of the PLQY. Eventually, for 5 (Cg

spacing unit) an efficiency of ~0.64 is obtained, even in the unmasked neutral form.
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Figure 4.4: (a) Normalized absorption (dashed) and PL (solid) spectra of 1 to 5. (b)
Absolute PL of the same samples on a semi-logarithmic scale.

4.3 Excited State Dynamics

4.3.1 Analysis of Decay Dynamics

TRPL measurements provide further insight into the temporal dynamics of the popula-
tion of the emissive S state. Characteristic decay profiles are shown in Fig. 4.5(b). The
reference compound 1 shows a single-exponential decay with a characteristic lifetime
of ~4ns as is expected due to its virtually exclusively radiative decay. Drastic devia-
tions from this behavior are found for the amino-substituted compounds. Samples 2, 3
and 4 no longer show single-exponential behavior but rather more complex dynamics

which are well-described bi-exponentially. While the initial decay (tqs) is fastest for
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2, the lifetime recovers for larger distances and the is almost single-exponential again

for sample 5, incorporating the longest (Cg) spacer.

Table 4.3: Spectroscopic properties of the samples under study. PLQYs (®pr) and

decay times measured by TRPL. All values are given for F.,. = 2.8¢eV.

Sample Solvent @pp, (%)  trast (PS)  tsiow (PS) Afast Adlow R?
1 CHCI; >90.0 3908 + 92 (= tRef) 83.24+0.2% 0.98
2 CHCl; 0.5 18.0+£0.1 269 £+ 26 92.0+0.1 6.8+0.2 0.98
3 CHCl; 5.4 59.0+0.1 1345+14 83.7+0.3 14.4 4+ 0.1 1
4 CHCl; 6.1 132 +1 729 £+ 20 95.14+0.5 9.24+0.6 1
5 CHCI; 64.0 591 £122 2179+374 27.1+11.6 71.5+11.5 1
H->2 CHCI; 0.5 30+£1 2090 £529 94.0+0.1 50+0.1 0.98
H>3 MeCN 10.3 254+ 87 6368 561 80.7 0.3 16.44+0.1 0.99
Me>3 MeCN 89.0 3472 £ 84 (=tpr) 87.5 +0.42 0.97

2>100 % because of “backsweeping” effect in the streak camera.
¢(CHCl3) = 4.81, ¢(DCM) = 8.93, ¢ (MeCN) = 37.5

As already mentioned, CV measurements and theoretical calculations indicate that an
electron transfer from the amine is responsible for the PL quenching. More precisely,
the molecule rapidly decays from its S; state to the PDI*~ CSS. In accordance with
previous reports, the fast, initial quenching is assumed to give a figure for the rate of
CS and thus decay to the CSS [57-59]. The decay profile for sample Me33 could not be
approximated by bi-exponential functions anymore. Here, rate of CS is determined by
the fitted single-exponential lifetime ¢py. As the intrinsic radiative lifetime is expected
to be given by reference sample 1 and is supposedly unchanged for all samples, the kcg

is obtained:

kes = 1/tpr — 1/t ger. (4.1)

The observation of a non-single-exponential behavior for 2 and 4 - 5 can have various
physical origins. The majority of which can be excluded due to careful measures taken
during the experiments. In Tab. 4.4 all possible non-intrinsic mechanisms, which can
lead a non-single-exponential decay are summarized. Dependencies on experimental
conditions and observable effects respective mechanisms would show are also given.
Additionally, 1TH-NMR measurements were carried out to rule out sample contamina-

tions by another soluble PDI-specimen, which could lead to the observed long-lived PL
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component. Aggregation as an explanation for a non-single-exponential behavior seems
unlikely for 2, since a strong structural similarity to 1 is given and 1 is widely known
for its very low aggregation tendency. Additionally, the spectroscopic measurements
show no indication of aggregation, which is typically indicated by a broadening of res-
onance and overall red-shift of absorption and PL spectra (cf. Chap. 2.2). Moreover,
the respective amplitudes of the fast and slow decay component vary for the different

samples, showing generally an increased Ay, /A 45t Tatio with increasing D-A distance
(cf. Tab. 4.3).

Table 4.4: Non-intrinsic mechanisms leading to non-single-exponential decay dynamics.

Dependency Sample Concentra- Excitation Spectral
tion power shift

Mechanism

FRET ++ 0 0

Two-Photon ab- o ++ 0

sorption

Multi-electron 0 ++ 0

excitation

Aggregation ++ 0 ++

Dimerization 0 0 ++

The TRPL data provides further insight into the CS dynamics of individual molecules
as bimolecular or aggregation effects and other extrinsic origins are excluded: vary-
ing the excitation fluence and concentrations in the sample solutions over several or-
ders of magnitude provide identical results. Intriguingly, the PL decay is non-single-

exponential for all D-bearing samples.

This infers the existence of an additional, reservoir, state in the molecule feeding the
bright transition: the emission from an optical two-level system of localized states will
always yield a single-exponential decay. Adding a second, possibly non-radiative decay
channel again results in a single exponential decay. The combined decay rate in the
law of decay is given by the sum of the two individual rates (1/tcompinea = 1/t1 +1/t2).
Consequently, an additional reservoir needs to be involved to invoke a bi-exponential
decay. A bi-exponential decay will result exclusively from the independent population
of this reservoir, which is able to feed the originally considered emissive state. Taking
into account this mathematical fact sheds new light on the obtained experimental

results.
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The CSS is a viable candidate for the proposed reservoir state. This infers that the
photoinduced CS is accompanied by the reverse process, which repopulates of the
emissive state. In turn, the repopulation leads to the observed bi-exponential PL
decay, the CSS acting as shelving state. Following the method described in Chap.
3.2.2, the three rates kcg, kr-cs and kcg (cf. Fig. 4.5) can be obtained from the two
trast and tgo, and the ratio Ajryq/Agew of the respective amplitudes. The value for
ko1 (cf. Chap. 3.2.2) is taken from the inverse single-exponential lifetime 1/tg.s of

reference 1.
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Figure 4.5: (a) Proposed energy level diagram for the decay of the excited S; state
probed by TRPL. (b) Transients of the reference sample 1 as well as the
samples from the distance series, 2 to 5, respectively.

The obtained rate constants are shown in Fig. 4.6. A clear dependence of the kcg and
k.cs on the D-A distance is observed, both decreasing with distance. The fact that
kcs and k.cg are correlated and not anti-correlated is intriguing at first. A possible
explanation is schematically shown in Fig. 4.7(a). There, simplified PEPs for all three
states involved are given. With decreasing D-A distance, the CS process becomes
more and more exergonic, while ocurring in the “normal” Marcus regime. For 2, both
kcs and AGes peak. The spectral and temporal emission characteristics of 2 in a
poly(methyl methacrylate) (PMMA) matrix are temperature-independent in the range
from 10-300K [cf. Fig. 4.6(b)]. This observation reveals that the CS reaction occurs

close to the Marcus optimum region and, thus, almost activationsless.

For the reverse CS process, rate constants are generally reduced by almost two orders
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Figure 4.6: (a) Rate constants deduced by the method explained in the text, for for-
ward and reverse charge separation (black, red), respectively, and for charge
recombination (blue). The R.. values reflect the D-A distances obtained
by DFT. (b) Temperature-dependence of kcg of 2 in a PMMA matrix over
a temperature range of 10-300 K.

of magnitude, compared to the forward process [cf. Fig. 4.6(a)]. The reverse process is
endergonic (AG"®S > 0) in all cases, the only exception being 5, depending on which
D-A distance is assumed. Consequently, the k,.cg are more than one order of magnitude
lower than those for forward CS. The observation of decreasing k,.cs with increasing
D-A distance is puzzling at first, but can be understood when considering the situation
shown in Fig. 4.7(b). While going from 2—5, the AG"®S values , the reorganization
energies B increase more rapidly (with increasing D-A distance), hence reducing

the CT rate growing with donor-acceptor distance.

Finally, for kcg, the dependence on the D-A distance is significantly lowered. Again, the
largest rates are obtained for the shortest D-A distances. This behaviour is explained
in Fig. 4.7(b), where the PEPs for the the ground state, the exicted 7 state and the
CSS are schematically shown. In all cases, the intersection of initial and final state’s
PEPs is in close proximity to the potential energy minimum of the CSS. Consequently,
the rates depend less strongly on AG but to a larger extent on the (exponentially)

decreasing overlap of PDI core and amine donor MOs, respectively.

4.3.2 Dependence on Excitation Energy

Next, the dependence of the PL decay and, therefore, the electron transfer rate con-

stants (kcg), on the excitation photon energy is discussed. Four different excitation
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Figure 4.7: Proposed scheme of the PEPs for the forward (a) and reverse CS processes
(b) for the distance series 2-5.

energies are used in time-resolved measurements, 2.5eV, 2.8eV, 3.3eV, and 4.5eV (cf.
Fig. 4.9). Pumping at 2.5eV and 2.8eV excites the system into the S; electronic
state, while higher-lying singlet states, denoted S,, are excited with excitation photon
energies of 3.3eV and 4.5€V.

Initially, the reference sample 1 is discussed. Fig. 4.8(a) shows the comparison of
the linear absorption and PLE data. The peak positions and intensities show good
overall agreement. Strikingly, in three distinct spectral regions (3.0-3.2¢eV; 3.4-3.5€V;
4.1-4.6eV), the PLE signal is significantly lowered, compared to the absorption mea-
surement. This indicates a violation of Kasha-Vavilov’s rule. While it is generally
assumed that the quantum efficiency is independent of the excitation energy (Vavilov’s
law), this rule is not obeyed here. This phenomenon, commonly referred to as “anti-
Kasha”-behavior, has been subject of research studies for many years [60,61]. The
deviations infer an additional loss channel, as the PLQY is lowered in the respective
excitation energy regions. One possibility is that of an ISC to a higher lying triplet

state. It has been shown, that for higher energy excitation, ISC rates can significantly
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Table 4.5: TDDFT (B3LYP/6-31G**) calculations for the first ten triplet excitation
energies using DALTON 2.0. Energies given in eV.

Sample 1 2 3 4 5
Mode #

1 1.236743 1.242301 1.238784 1.240160 1.240974
2 2.676726 2.145085 1.880988 1.887959 1.941363
3 2.788240 2.150013 1.933428 1.929191 1.959174
4 2.952286 2.684797 2.679917 2.681089 2.681879
5 2.978699 2.788131 2.786522 2.786900 2.785632
6 2.983389 2.925977 2.951342 2.946222 2.946871
7 3.053460 2.931112 2.961256 2.954997 2.948360
8 3.192909 2.978014 2.973610 2.957820 2.952136
9 3.247663 3.104894 3.049473 3.045296 3.031313
10 3.252397 3.315574 3.170836 3.161499 3.144373

increase and become competitive to S, — S; IC and vibrational relaxation (VR), re-
spectively [60] even in materials with negligeable spin-orbit coupling. DFT calculations
reveal multiple triplet states close to the higher lying singlet states (cf. Tab. 4.5). Con-
sequently, an accelerated ISC appears plausible. The TRPL transients in Fig. 4.8(c)
reveal a dependence of the PL lifetimes on excitation energy is, i.e. for higher excitation
energies, a 1.7-fold lifetime increase is observed. Hence, the excited state dynamics of
the S; state are no longer independent of the excitation energy. In addition, spectral
positions and relative weights of the vibronic progressions (VPs) in the PL spectra
show small but observable differences (cf. Fig. 4.8). These findings are not trivial and
the most likely explanation lies in an external effect. The charge-distributions are ex-
pected to significantly differ between the S; and the higher lying states. In general,
the orientation of the molecular dipole will also change. The dipole-dipole interaction
between solute and solvent molecules infers a reorientation of the electron-distribution
of the solvent molecules and, in some cases, also of the nuclei. As nuclear motion is

comparably slow (cf. Chap. 2.1.2), solvent reorganization times can increase.

Next, the kcg rates for the distance series 2-5 is discussed. The CS rates of all samples
peak at 2.8 eV excitation energy. They subsequently decrease for higher and lower exci-
tation energies, respectively. Sample 5 shows an overall weak dependence on excitation
energy. This is probably owed to the already low kcg; the PLQY already approaches

that of 1. The initial increase of kcg is most pronounced for 2. For an excitation with
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Figure 4.8: (a) Comparison of absorption (shaded grey area) and PLE spectra for ref-
erence sample 1. The detection is set to the PL maximum (2.3eV). The
colored arrows indicate the excitation energies used to determine the de-
pendence of kcg on E.... Both spectra are normalized to their respective
intensities at 2.33¢V excitation. (b) The results of the excitation energy-
dependent TRPL measurements. (c) The normalized PL spectra corre-
sponding to the transients in panel (b).

2.8 eV photon energy, the system is transferred to a higher vibrational sublevel of the
S; state (compared to E.. = 2.5eV). The surplus vibrational energy might facilitate
the transition to the CSS and thus increase the CS rate and efficiency. Several studies
show an impact of high-energy vibrational levels on excited state reactions, e.g., CT
processes [62-64]. Vibrational relaxation within the S; excited state of perylene in
solution has been measured to occur on a timescale of 30 ps, very well on a timescale
comparable to 1/kcg of 2 [65], and, hence, on the same timescale as the ultra-fast
decay to the CSS.

Possibly, the general assumption of all photophysical and -chemical reactions proceed-
ing from a vibrationally relaxed state (as a consequence of Kasha’s rule) does not

hold. Alternatively, the dissipation of the excess excitation energy to the surrounding
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medium could lead to a local heating. This increased vibrational motion of the solvent
molecules then would give rise to distortions of either the length of the D-A spacing or
the reorganization energies. For 3-5 kcg(Eepe = 2.5€V) is already lowered, compared
to 2. Consequently, the dependence of 1/kcg on the which vibrational level within the
electronic S state is excited, is a lot less pronounced. For higher excitation energies,
the dynamics of the S; excited state are influenced, presumably again by solvent effects.
The above findings strongly demand further investigations to disentangle the intricate
interplay, e.g., solvent-molecule interactions, leading to the observed dependence of

excited state dynamics on excitation energy.
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Figure 4.9: Semi-logarithmic plot of the kcg determined by TRPL measurements for
samples 2b (squares), 3 (circles), 4 (up-pointing triangles) and 5 (down-
pointing triangles). The dashed vertical lines indicate the respective exci-
tation energies into the S; and higher energy S, absorption regions. Inset:
Excitation energy dependence of the reference sample 1 plotted on a loga-
rithmic scale. The color of the traces represent the color of the respective
excitation wavelength. A clear increase of lifetime (fitting yields a 1.7-fold
increase from 2.5¢eV to 4.5eV) with excitation energy is observed.

Sample 3 displayed a puzzling behavior when excited in the ultraviolet (UV) spectral
range. In the case of excitation at 4.5eV, an irreversible transition occurs, leading to a
remarkable increase in PL intensity, while at the same time k¢cg is strongly quenched
(cf. dashed line in Fig. 4.9). From mass spectroscopy it becomes clear that the most
likely explanation lies in a bond cleavage of the bon connecting the PDI backbone and

the D group. However, it is unclear why this behavior is exclusively observed for the
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sample bearing the C, spacer.

4.4 Conclusions

In summary, the characterization of new PDIs, chromophores with a directly nitrogen
bound donor -NR2 attached to the acceptor perylene imide core was studied. In par-
ticular, a well soluble 2 is investigated, which is isoelectronically related to reference
“swallowtail” 1. These PDHs with very short donor-acceptor distances exhibit a very
efficient PL quenching. The process responsible for PL quenching in unprotonated
compounds could be attributed to the MO associated with the terminal amine at an
energy intermediary to the 7t and 7* orbitals; protonation and/or methylation are ex-
pected to reduce the energy of this MO to below that of the 7t and 7* orbitals, reducing
the PL quenching. However, upon protonation, only a weak recovery of PLQY is ob-
served, despite DFT calculations predicting elsewise. This behavior was attributed to
a intramolecular hydrogen bond between the D-centered proton and the carbonyl oxy-
gen. By this, the protonation effect is disabled and consequently PL recovery is absent.
The intramolecular CT was analyzed in a series of samples with the donor linked to the
PDI acceptor core via a varying number of -(CHy)- spacer groups, thus at distinctively
different distances. Control of the CT across the intramolecular interfaces is achieved
by three different methods. D methylation proved to be the most efficient, as indicated
by quantum efficiency and time-resolved measurements. The donor-acceptor distances
for the ground and excited state compounds are determined by DFT and TDDFT
calculations, and used to calculate AGY®. The elongation of the spacer effectively pre-
vents overlap of the donor and acceptor orbitals. The observed exponential distance
dependence is in accordance with a through-space type mechanism. This experimental
observation is unaffected by spurious effects in the spacer units from, e.g., delocalized
m-electron systems. The excitation energy dependence of kcg reveals the intricate in-
terplay of charge-separation and IC processes. The pronounced non-single-exponential
decay dynamics infer the presence of a dark shelving state within the system as ex-
trinsic effects can be excluded. The CSS was succesfully identified as aforementioned
shelving state. Furthermore, the excitation-energy dependent decay dynamics and re-
vealed that even in comparetively low polar media, solvent reorganization can have a

significant impact on excited state dynamics.
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5 Correlation of Structural and
Optical Properties in PEN-PFP

Heterostructures

In the following chapter, the promising model system PEN-PFP is intro-
duced. Initially, the assigment of the absorption signatures of the unitary
PEN and PFP thin films is performed. The identifed signatures are com-
pared to those found in three different heterostructure samples. A new
signature at ~1.55¢eV is assigned to a CT transition at the PEN-PFP
interface. The careful analysis of PLE measurements shows that the CT
state has appreciable oscillator strength in all three heterosystem sam-
ples. Most promonently, the absence of any PFP-related signatures in
the PLE measurements of the heterostacks hints that population of the
CT state by hole-transfer does not occurs. This implies, that the com-
monly employed picture of unperturbed MOs might not hold in the case
of PEN-PFP heterostacks.

5.1 Sample Growth and Structure

Three different PEN-PFP heterosystems are investigated in the following, with all
samples having a nominal thickness of 40 nm. Firstly an intermixture blend of both
molecules in a stoichiometrically equivalent ratio with exclusive upright molecular ori-
entation. Secondly, to probe the influence of molecular orientation, two different layered
heterostacks, will be investigated. In either case 20nm of PFP were grown on top of
20nm PEN, with the constituent molecules uprightly oriented in the “standing” sample

and a lying molecular orientation in the “lying” sample.
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For the PLE measurements all samples were prepared on silicon substrates. In order
to measure the absorption spectrum in a transmission geometry, the samples need to
be grown on a transparent substrate. In this case, SiO, and graphene-coated fused
silical are used as substrates. On bare Si(001) and SiO,, both, PEN and PFP adopt a
standing molecular orientation. PEN crystallizes in the thin-film [66] phase while PFP
crystallizes in the Siegrist-phase [67]. In the case of graphene-coated substrates, the
situation is changed: Both systems adopt a lying orientation, which is the Campbell-
phase [68] of PEN. For PFP a m-stacked polymorph is found. Here, the molecules are
slip-stacked and growth is perfectly planar, i.e., the molecular plane is parallel to the
substrate. This is not the case for PEN, where the molecules are slightly tilted about

the short axis.

Remarkbly, in multilayer structures such as the the heterostructures studied here, the
bottom layer can also induce the polymorph of the layer deposited on top. Hence,
for a PEN bottom layer grown on, e.g., graphene-coated fused silica, a PFP top layer
will crystallize in the 7-stacked polymorph. Hence, the (substrate templated) bottom
layer acts as template for the top layer. This effect also is observed for all other
mutual orientations and substrates. A detailed description of the growth procedure

and structural characterization can be found in Ref. [69].

5.2 Identification of Unitary Film Resonances

The linear absorption spectra are obtained with an alteration of the PLE setup in-
troduced in Chap. 3.3. A tungsten halogen lamp is focussed onto a pinhole aperture
of 100 pm diameter which, in turn, is imaged onto the sample. The magnification is

chosen such that the spot size corresponds to that in the PLE measurements.

A detailed analysis of the spectra of the respective four unitary films and comparison
with intermixed and stacked samples allows an assigment of unitary signals to those
observed in the heterosystems. The absorption spectra of the three standing samples
are shown in Fig. 5.1(a). The spectra of PFP and PEN dissolved in dichlorobenzol
(DCB) are given for reference. Comparing the lowest-lying resonance in solution, the
peak at 1.94eV is assigned to the slightly red-shifted HOMO-LUMO transition. The
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Figure 5.1: Linear absorption measurements of the unitary PFP (top panels) and PEN
(middle panels) films, respectively, and the two heterostack samples (bot-
tom panels). In part a), the spectra for the standing molecular orientation
are given, while b) shows those for lying case. The linear absorption for
PFP and PEN dissolved in dichlorobenzol is given for reference (shaded
areas). The shaded areas graphs of the heterostacks are obtained by sum-
ming the absorption of the respective constituents. The dashed vertical
lines indicate the position of resonances in the heterostacks and illustrate
the minor shifts in peak positions compared to the unitary samples. The
measurements were performed with a spatial resolution of approximately
100 pm and at a lattice temperature of 20 K.

next two resonances observed in solution are the equidistantly spaced vibronic pro-
gressions of the HOMO-LUMO transition, spaced by (180 + 10) meV. They appear in
the thin film spectrum as weak shoulders, again slightly red-shifted by approximately
40meV. Now turning to the lowest excitations observed, the peak at 1.76eV can be
assigned to the Davydov split exciton resonance. Davydov splitting in Siegrist-phase
PFP amounts to 25 meV [70], but is not resolved here due to the limited spatial resolu-
tion of the setup and small size of crystalline domains. For the standing PEN [middle
panel in Fig. 5.1(a)] the assignment of the resonances is unambigious. In contrast to
PFP, no solvent-to-crystal shift is observed in PEN. In line with literature, the peak
at 2.14 eV is identified as the molecular HOMO-LUMO transition [71]. The excitonic
resonace resides at 1.85eV with the higher energy Davydov component at 1.97eV. The

difference of the two components amounts to 120 meV and is thus large, compared to
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PFP. In general, Davydov splitting is attributed to dipole coupling of translationally
noninvariant adjacent molecules in the unit cell. As both, PFP and PEN adopt a
very similar crystal structure it is highly unlikely that the orientation of the transi-
tion dipole moments alone is sufficient to explain the fivefold difference in Davydov
splitting between PEN and PFP, respectivley. As theoretical calculations show, the
magnitude of splitting depends strongly on the amount of mixing between Frenkel and
CT states [72-75]. Also, it is predicted that a significated planar delocalization of the

lowest excitons - and thus increased CT character - exists in PEN.

Table 5.1: Overview of transition energies observed in the absorption spectra of the
dissolved PFP and PEN and from the unitary films as obtained by fitting
the spectra with multiple Gaussians (see text for details).

Sample X, (eV) X (eV) HL (eV) HLy, (eV) HLg, (eV)
PFP in DCB - - 1.98 2.16 2.34
PEN in DCB - - 2.14 2.31 2.48
PFP standing 1.76 1.79 (not resolved) 1.94 2.14 2.29
PEN standing 1.85 1.97 2.14 2.31 2.38
PFP lying 1.67 ; 1.87 2.23 2.43
PEN lying 1.8 1.98 2.12 2.25 ;

For the samples in lying configuration [Fig. 5.1(b)] the assigment of the resonances is
again straightforward. The peak labeled “HL” is again related to the HOMO-LUMO
transition of dissolved PFP. Intruigingly, the redshift is even further increased, when
compared to standing PFP, and amounts to 100meV. As mentioned, PFP grown
on graphene adopts a 7-stacked polymorph with the molecular plane parallel to the
substrate. Consequently, as already elaborated in Chap. 2.2.1, no Davydov splitting
occurs due to the essentially parallel oscillators. This is evident when comparing the
linewidths of the excitonic resonance of standing and lying orientation, the width being
significantly narrower in the latter. This is attributed to the missing higher Davydov
component, which, although not resolved, leads to the broadening of the excitonic
signature in the standing configuration. For lying PEN, the peak related to the HOMO-
LUMO transition again is found at 2.14 eV, with no apparent solution-to-crystal shift.
Also, the intensity of the lowest resonances is reduced, compared to their standing
counterparts. This is due to the tilt of the short molecular axis where the transition
dipole of the lowest excitation resides. The lowest lying absorption in both stacks is
attributed to the PFP exciton at 1.69€V for the lying sample. The PEN exciton is
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observed 1.82¢V in the lying sample. The higher lying Davydov component is found
at 1.96eV.
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Figure 5.2: Transition strengths of the different signatures in unitary standing PFP
and PEN respectively, as well as in the PFP-PEN intermixture. The values
were obtained by fitting multiple Gaussians to the absorption spectra and
are normalized to the most pronounced transition in each of the three cases.
See text for details.

The following section will deal with the intermixed sample. The absorption spectrum
is presented in Fig. 5.3. It shows numerous resonances which seem to be significantly
shifted with respect to the unitary films or even completely new in their nature. To
shed light on this aspect, the absorption data of all three are further analyzed. To
this end, the respective spectra for standing PEN and PFP are normalized and fitted
by multiple Gaussians in the energy range from 1.4eV to 2.5eV. In the case of PEN,
five Gaussians are used (the two Davydov components along with the HOMO-LUMO
transition and its respective two observable vibronic progressions), in the case of PFP
the number reduces to four, because the Davydov splitting is not resolved. As a next
step, the intermixed sample is described by the nine Gaussian oscillators of PFP and
PEN. For the fitting process the energetic positions of the transitions of the unitary
films are fixed, allowing a +2% tolerance. The tolerance range is chosen to account
for minor energetic shifts due to structural difference between the unitary films and
the intermixture. For the intermixed sample an additional Gaussian oscillator had to
be included to reach a satisfactory level of fitting (R? =~ 0.99) in order to fit the low
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energy level new peak at around 1.55eV. The results of the fitting procedure are also

given in Tab. 5.2.

Table 5.2: Peak energies from the unitary films used to fit the absorption spectra of
the three heterostructutes.

Sample CT (eV) E, (eV) Ej3(eV) Ey(eV) Es(eV) Eg (eV) Er (eV)
intermixture 1.58 1.74 1.89 2.1 2.24 2.42

lying - 1.67 1.83 1.97 2.12 2.26 (2.36)
heterostack

standing - 1.76 1.85 1.96 2.11 2.27 2.44
heterostack

The fact that the transition at 1.55€V is unique to the intermixed sample and that it
cannot be fitted as superposition of unitary film transitions is taken as clear evidence
that it arises from intermolecular coupling between PEN and PFP. Tentatively, the
peak is assigned to a CT transition. The transition strengths of the different signa-
tures in standing PFP and PEN, respectively, as well as in the PFP-PEN intermixture
are shown in Fig. 5.2. For unitary PFP and PEN the respective relative intensities are
rather similiar. In the case of the intermixture the peaks likely related to the respective
PFP and PEN HOMO-LUMO transitions (and vibronic progressions thereof) are most
pronounced. In the intermixture the intensity of excitonic PFP and PEN signatures is
drastically altered: the PFP excitonic signature vanishes entirely, as does the higher
energy Davydov component of PEN. On the other hand, the lower energy component
remains at a significant intensity (cf. Fig. 5.3). However, as it is only separated by
30meV from the PFP HOMO-LUMO, an assignment to either of the two is not nec-
essarily unambigious. The actual intensity of the PEN excitonic contribution might
be substantially lower. One has to bear in mind that the fitting process and relat-
ing of unitary signals to those found in the intermixture is no definitive evidence and
could lead to false conclusions. There is, nevertheless, no question that the resonace at
1.55eV is unique to the intermixed sample and likely due to intermolecular CT tran-
sition. Comparing the absorption spectrum of the intermixture with those of the two
heterostacks it becomes evident that the low-energy transition at 1.55eV is entirely
absent in the heterostacks. This is however not unexpected as the interfacial region
where the two constituent molecules “meet” is comparatively small with respect to the
intermixed sample. This also manifests the very high structural quality of the samples

indicating high interface smoothness and only short ranged intercalation between the
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bulk of PFP and PEN.

Despite not being observed in absorption, it is known from PL experiments that the CT
state is also present in the heterostacks [76]. To this end, a high-sensitivity technique

such as PLE can be employed to gain further information on the absorptive behavior.
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Figure 5.3: Linear absorption of the intermixed film showing the new resonance at
1.55€eV which is tentatively attributed to a PEN-PFP CT transition. The
overlay (grey bars) shows the relative contributions of the signatures from
the unitary films to the total absorption signal, taken from Fig. 5.2.

5.3 Coupling of the Lowest-lying States to the CT
State

To gain further information on the CT state in the heterostacks, PLE measurements
are performed on the three heterosystem samples. If the CT state is present in the
stacks, it is also expected to show in the PLE measurements as the quantum yield of
the CT state is assumed to be comparatively high in the case of direct (resonant with
the CT transition at F ~ 1.55eV) excitation.

The spectra in Fig. 5.4 show the absorption and PLE measurements for the intermixed
sample [panel (a)], and the standing and lying heterostack [panels (b) and (c) respec-
tively]. As shown in the previous section, in the intermixed sample, the lowest lying
PFP and PEN exciton lines vanish or are at least diminished. The emerging resonance

at 1.88¢eV can either be interpretated as superposition of the weakened PEN lower
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Figure 5.4: Comparison between the absorption (light grey) and PLE (colour) spectra
for the intermixed heterostructure (a), the standing (b) and lying (c) het-
erostack, respectively. The dashed grey line indicates the energetic position
of the CT exciton. The PLE detection was set to 1.38 eV in all three cases.
The PLE spectra are scaled by factors of 15 and 3 for the standing and
lying structures for clarity.

energy Davydov component and PFP HOMO-LUMO transition or alternatively as a
new intermolecular exciton line. All peaks observable in absorption are reproduced in
the PLE spectrum. Additionally, the intensities in absorption and PLE measurement
match in the energy range from 1.8V to approximately 2.1eV. This indicates that
all states are coupled to the emissive CT exciton with constant efficiency. For energies
above 2.1 eV, the intensity of the PLE spectrum is reduced compared to the absorption
spectrum. This can be explained in the following way: for higher excitation energies
the energy difference between excited state becomes very large. Hence, more surplus
energy has to be dissipated as heat and the likelihood of a non-radiatve recombina-
tion increases. One noteworthy deviation is the minor blue-shift of the CT peak from
1.55eV (absorption) to approximately 1.56eV (PLE). The blue-shift is accompanied
by an apparent narrowing of the PLE linewidth.
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Next, the heterostack samples [cf. Fig. 5.4(b) and (c)] are considered. As initially
mentioned, the quantum efficiency under direct excitation is assumed to be fairly high.
This assumption proves to be justified, as the CT-related resonance at 1.55¢€V is clearly
observed in the PLE spectra of both the standing and the lying heterostack. Com-
paring the respective intensities reveals information on the microscopic processes at
the internal interfaces. A significant difference is found in the PLE signal strength,
the sample with lying molecular orientation showing a by far higher intensity. This
is in line with previous results [76] in which the same trend was observed, in this
case the signal strength of the CT PL was measured. The increased signal strength is
linked to an increased electronic coupling between the molecules at the interface. In
the lying heterostack sample, the 7-electron systems can efficiently overlap due to the
face-to-face orientation of the molecules. Contrastingly, in the head-to-head molecu-
lar arrangement of the standing counterpart, this overlap is greatly diminished. An
alternative explanation for the increased PL intensity is given by taking into account
the orientation of the transition dipole moment (TDM) of the respective higher energy
(S3¢—Sp) transition. The TDMs are oriented parallel to the long molecular axis for
both, PEN and PFP. Hence, the absorption efficiency (at E.,. = 3€V) is increased in
the lying heterostack, compared to the standing one. By the following argument, the
second interpretation can be dismissed in favour of the first: For the CT PL a 4.8-fold
increase was measured when comparing standing and lying heterostacks. However, the
PL intensity of the transition related to the PFP exciton is increased only 1.7-fold.
Consequently, the difference cannot be explained solely by enhanced absorption in the
lying heterostack or alternatively by possible experimental uncertainties. The PLE
measurements strongly support the assumption of increased electronic coupling caused
by m-stacking at the internal interface. A 4.4-fold increase is obtained when comparing
the intensity of the CT-related PLE signals of lying and standing heterostacks. This
result is in very good agreement with the observed increase in CT intensity from the

PL measurements [76].

The most striking feature regarding the PLE measurements is the lowest lying peak
in the absorption measurements, the transition assigned to the PFP exciton. This
transition is completely absent in the corresponding PLE spectra of the standing and
lying heterostack. In contrast, the resonance attributed to the PEN exciton is present
in both spectra. According to Eq. (3.14), the PLE signal is proportional to the product
of a(X), the absorption probability, and v(\), which describes the relaxation efficiency
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to the emissive state. A vanishing PLE signal thus infers that at least one of the two
factors must be zero. Consequently, it can be assumed that the PFP exciton is not
coupled to the CT state. To phrase this finding differently, population of the CT state
by hole-transfer from PFP is not observed. Moreover, the PLE intensity is diminished
in all spectral regions in which PFP predominantly absorbs the incident light [indicated
by the arrows in Fig. 5.4(b)-(c)]. This indicates that the excitations created in the PFP

part of the heterostructure are decoupled from the CT state.
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Figure 5.5: (a) Linear absorption measurements for the intermixed sample, as well as
the two respective unitary films [(b) and (c)], which are given for reference.

Next, the higher energy absorption spectra are considered. The linear absorption
spectra from 2.0eV to 4.0eV are given in Fig. 5.5. The intermixture [Fig. 5.5(a)] shows
two pronounced resonances at 3.1eV and 3.4eV. These resonances are absent in the
unitary PEN and PFP films. Moreover, the spectra feature no distinct resonances
at all between 2.5eV and 3.5eV. Only a very weak resonance is observed at 3.2¢eV
in the standing PEN. However, none of the higher energy signatures is observed in

the heterostacks. This can again be explained by the small volume in which the both
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constituents interface. Similiary to the absorption measurements in the lower energy
spectral region, the sensitivity of the linear absorption experiment is again to low
too measure this interfacial effect. This strongly demands PLE measurements to be
performed for excitation energies >3 eV which are unfortunately inaccessible with the

experimental setup used in this thesis.

5.4 Implications for the Nature of the CT State
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Figure 5.6: Energy level diagram for standing PFP-PEN heterostacks. The HOMO
levels are determined by UPS for samples grown on silicon substrate. The
LUMO level is taken from the literature values for the transport gap (=
2.2¢eV) in the case of PEN. In the case of PFP it is approximated from the
optical gap assuming the same exciton binding energy as in PEN (Ep =
0.35eV) due to lack of experimental values. Data taken from Refs. [13]
and [77].

The classical understanding of CT excitons relies on the energy difference between
donor HOMO and acceptor LUMO. A simple expression for the energy of a CT state
is given by [7]:

Bor =a (B (D)~ B () - - 2O (L LY (1 L)

(4megesrpa)  (8meg rp  ra) \e €ref

This expression strongly resembles Eq. (2.24), which was used to estimate the Gibbs
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free energy change for the formation of the CSS in Chap. 4.2.2. While Eq. (5.1) can
yield accurate results for CT complexes in solution or supermolecular donor-acceptor
units, its use is rather limited in solid-state D-A systems. In the solid state, additional
factors such as polarization effects and charge-carrier delocalization have to be consid-
ered. Also, as the molecules are in a fixed position, interface geometry and molecular
anisotropy have to be accounted for. A more precise description of the energy of the

CT-state is given by the following expression:

ECT:[D_EA_EC(T)_EPa (52)

where I is the ionization potential of the D and E4 the electron affinity of the A. Ex(r)
is the Coulomb attraction energy between the electron and the hole separated by a
distance r. Finally, Ep accounts for the polarization energy of the lattice caused by the
(polar) CT exciton. The ionization potential describes the energy required to remove
an electron from the highest occupied state; in other words, it defines the energy level of
the HOMO with respect to vacuum level. Ip is experimentally accessible through PES,
whereas F4 can be obtained by means of inverse photoelectron spectroscopy (IPES)

or electron energy loss spectroscopy (EELS).

For the PFP-PEN system, the level aligment is shown in Fig. 5.6 for the standing
and lying configuration, respectively. Notably, the respective HOMO levels of PFP
and PEN are shifted in opposite directions when going from the standing to the ly-
ing configuration. As a consequence, the offset between the PEN HOMO and PFP
LUMO, denoted Apesero in the following, also drastically varies. In the case of stand-
ing stack it amounts to approximately 0.35¢eV, whereas for the lying case it increases
to 1.65eV. According to the UPS data presented in Fig. 5.6, the energy of the CT
should differ by more than 1.0eV between the standing and lying configurations. The
optical experiments, however, show only minor changes in the energetic positions of
the transitions assigned to the CT. This is universally true for all applied techniques,
absorption, PL, and PLE spectroscopy, and also for all three heterosystem samples
under study. The energies determined from the optical experiments locate the CT at
1.55€V in absorption and at 1.4 eV in emission. While Aperero(lying) = 1.65€V is large
enough to possibly be in agreement with the results presented here, this is not the case
for Apetero(standing) = 0.35e¢V. The determination of the [FE values is problematic

due to the limited escape depth of the electrons in UPS measurements. Thickness
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dependent measurements reveal that the spectra of the stacked samples are purely
weighted superpositions of the unitary films with no energy shifts or novel spectral
features [13]. Hence, a bending of the HOMO bands towards the mutual interface,
which could potentially solve the energy level alignment issues, does not occur. To
summarize, this indicates the shortcomings of a model relying on Ecr being solely
constituted of the superposition of the unperturbed HOMO and LUMO of the donor

and acceptor molecule, respectively.
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Figure 5.7: Possible excitation pathways leading to the excitation of an interfacial (CT)
state at the PEN-PFP heterojunction. (a) shows the case of an ET process
from the D to the A, while in (b) the case of a hole-transfer is illustrated. In
(c) the case of direct excitation of the CT state is shown. They are denoted
as hybrid CT orbitals (hCT) to point out that they possibly constitute
newly formed hybrid MOs at the interface, similiar to those observed in
the intermixture.

The results obtained by the PLE measurements corroborate the assumption of a newly
formed interfacial CT state. In general, three different pathways are expected to lead
to a population of this state: a) electron-transfer from the electron donor moiety, b)
hole-transfer from the electron acceptor moiety, and c) direct (resonant) excitation of
the CT. Fig. 5.7 illustrates these three pathways. While emission from the CT state is
observed in the case of direct excitation and via excitation of into the PEN resonances,
all transitions related to PFP are absent in the PLE spectra of the CT emission of both,
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the standing and the lying heterostack, respectively. The prelinary results obtained for
the higher energy resonances in the intermixture hint that direct excitation of the CT

state might also be possible from the PFP ground state.

To date, no ab initio calculations of interfacial CT excitons in the PEN-PFP het-
erosystem exist. The results presented here demand strong efforts to be made in this
field. While the interpretation of a newly formed state at the interface is conclusive,
its nature needs to be thorougly investigated both, theroretically and experimentally.
Especially questions of band bending of excitonic bands and coupling efficiencies to the

newly formed CT state need to be addressed.
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6 Charge-Transfer Across Internal
Interfaces: PEN-Fullerene Cgg

In the final chapter, another promising material system is introduced:
The PEN - Buckminster-fullerene (Cgp) heterosystem is being discussed
as material class for highly-efficient OPV cells. While the majority of
research studies deal with blends of PEN and Cg or closely-related poly-
mers in combination with derivatives of Buckminster-fullerene, very few
are focussed on ordered heterostructures and actual interfacial properties.
To this end, the linear optical properties of the individual constituents
and the heterostacks will be discussed, followed by TRPL measurements
in order to determine the decay dynamics of the excited states. The
results also indicate a distinct PL signature which is found exclusively
in the heterostructures and is thus possibly related to a PEN-Cgy CT
transition. Further, the PL dynamics of Cgg show non-negligible changes

in the presence of an underlying PEN layer.

6.1 Sample Growth and Single Molecule Properties

The samples under study in this work were prepared by Dr. Tobias Breuer and Andrea
Huttner from the group of Prof. Dr. Gregor Witte. All samples under study are grown
by (organic) molecular beam epitaxy (OMBE).

The properties of PEN have been treated in the previous chapter to which the reader
is referred. Here, only a brief introduction of the structural and electronic properties
of Cgp is given. Buckminsterfullerene is the chemical compound with the formula Cg
(molecular weigth: 720.66 gmol™!). Its structure resembles that of a football (soccer

ball), consisting of twenty hexagons and twelve pentagons. The carbon atoms are
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located at each vertex of the polygon. In the solid phase Cgg adopts a face centered
cubic (FCC) crystal structure with a room temperature lattice constant of 1.415nm
[78]. For individual molecules in solution the PLQY is on the order of 10™* while it
increases to 1072 in the condensed phase. The main decay channel for excitations is an
ISC process to the T level at 1.55eV [79]. The lowest lying dipole transition is parity
forbidden and found at an energy of 1.85eV. The value of the transport gap is still
under discussion but it is expected to be at 2.6eV [80,81].

When grown on a silicon substrate, PEN adopts the thin-film phase. Here, the
molecules are uprightly oriented. If the substrate is coated with a monolayer of
graphene, PEN alters its molecular orientation. In this case it adopts the Siegrist
phase where the long axis of the molecule is aligned parallel to the substrate. Un-
like the case of PEN-PFP interfaces introduced in the previous chapter, a templated
growth is not possible in the case of PEN and Fullerenes. The latter two molecules
are structurally far less compatible, e.g., differing remarkbly in shape (PEN: rod-like;
Ceo: spherical), size, and intrinsic isotropy. In order to achieve a well-defined internal
interface, special care must be taken during sample growth. For instance, when Cg is
grown on top of PEN, the Cgp film homogenity strongly depends on growth parame-
ters, e.g., substrate temperature. A two-dimensional Cgy distribution is achieved only
for samples grown at cryogenic temperatures [20]. The homogenity also depends on
molecular orientation of in the underlying layer. Uprightly oriented PEN induces crys-
talline growth of Cgg, while a bottom layer of lying PEN molecules results in a more
amorphous Cgy layer. A similiar effect is obtained when growing Cgg as bottom layer
and subsequently depositing PEN on top. The choice of substrate will substantially
influence sample homogenity and crystallinity, e.g., larger crystallites are achieved for

growth on NaCl, compared to silicon substrate.

The interface region makes up only a small fraction of the entire sample volume. Thus,
the majority of the sample can be considered bulk PEN and Cgg, respectively. Ad-
ditionally, no evidence for mutual intercalation of molecules was found in a study on
the structural properties of the heterosystem [21], despite it beeing theoretically pro-
posed for some growth scenarios [82]. Intercalation of molecules could increase the
effetive interfacial area. As no intercalation is observed, a “sharp” molecular interface

is assumed [21].
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6.2 Linear Absorption and Photoluminescence

Excitation
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Figure 6.1: Linear absorption spectra of unitary PEN and Cgy films of 20nm thick-
ness each. For reference also the absorption spectra of two heterostructures
(5nm PEN + 20nm Cgy and 20nm PEN + 20nm Cg, respectively), in-
dicating that the absorption of the heterostacks is in good agreement a
superposition of the two constituents. The colored arrows indicate the
three distinct excitation energies used in Chap. 6.4.

In Fig. 6.1, the linear absorption spectra for the unitary PEN and Cgy films, as well
as that of two heterostacks are shown. For the assignment of peaks for the PEN film
the reader is referred to Chap. 5.2, as the samples are structurally indentical. For the
Cgo sample, two distinct resonances at 2.7eV and 3.6eV are observed. These are in
concurrence with the literature and correspond to band-to-band transitions deriving
from the molecular energy levels, i.e., they are related to the molecular HOMO-n -
LUMO+4m (n,m > 1) transitions [83]. The HOMO-LUMO transition, i.c., the lowest
lying electronic transition is dipole-forbidden in the single molecule. However, in the
solid state, structural disorder can lead to distortions of the icosahedral symmetry
of the Cgy molecules and thus the lowest transitions become partially allowed [84].
Consequently, a lack of observable low energy transitions can be interpreted as an
effect of low disorder. Additionally, the Urbach energy, obtained by fitting of the
low energy absorption tail [cf. Fig. 6.1(b)] amounts to 0.56eV. As comparison, typical
values found in the literature range from 0.35eV to 1.8 eV [83,85]. This corroborates the

assumption that disorder plays a comparitively small role in the systems under study.
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Fig. 6.2 shows the the PLE spectrum of the unitary Cgy sample in the low energy region.
The comparison with the absorption measurement (grey shaded graph) directly reveals
that indeed distinct resonances in the low energy region can be observed. This again
demonstrates the superior sensitivity of the PLE technique. The lowest energy peak in
the PLE spectrum is located at 1.86eV. In turn, the most intense peak in given range of
the PLE spectrum, is situated at 2.03 eV, blue-shifted by approximately 175 meV from
the 1.86 eV peak. The same amount of shift, however in opposite direction, is observed
for the most prominent peak in the PL spectrum, located at 1.7eV. It can thus be
concluded that the 1.86eV peak marks the position of the the purely electronic 0-0
transition [84,86]. Its very low intensity again underlines the dipole forbidden character.
However, the transitions can gain significant intensity when a vibrational mode is
involved in a Herzberg-Teller (HT) (vibrational) coupling scheme. This mode has been
identified as the t, vibrational mode [87] at a frequency of 1437 cm™!, identified as
IR active mode [87,88]. Other studies have reported a doublet structure energetically

separated by 30meV, for each of the peaks. This structure is not reproduced here.
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Figure 6.2: PLE (dots) and PL (solid black line) spectra of the unitary Cgp film taken
at a lattice temperature of 20K. For comparison the linear absorption
spectrum of that same film is also given (grey shaded area). The PLE
detection window is indicated by the shaded red area.
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6.3 Interfacial Effects in the Heterostacks

Now turning from the unitary film to the properties of the PEN-Cgy heterostacks, the
low-temperature PL spectra are presented in Fig. 6.3. In line with the values found in
the literature for Cgp thin films, three main resonances are identified at 1.7eV, 1.62¢V,
and 1.52 eV, respectively [83,86,89-91]. In the context of a HT coupling scheme, the
peaks at 1.7eV and 1.52eV are related to the purely electronic 0-0 transition at 1.86 eV
under participation of one (1.7€V) or two (1.52€eV) vibrational quanta of the t;, mode.
This has been theoretically proposed [87] and experimentally evidenced [84]. The origin

of the 1.62 eV resonance is not entirely clear.

In the presence of a PEN bottom layer, a slight shift towards higher energies is observ-
able for all three resonances. This shift is tentatively attributed to an altered size of
the crystallites [20] and presumably not due to a superimposed PEN signal. PEN can
be ruled out because of the low intensity of the PL under the given experimental con-
ditions. Additionally, a peak at ~1.8eV appears in the spectrum of the heterostacks.
While the obvious conclusion is that this peak is due to PL from the PEN free exci-
ton (FX), the reference measurement (cf. grey shaded graph in Fig. 6.3) curve casts
doubt on this conclusion. Again, the intensity is far to weak for the PEN FX to be

accountable for this observation.
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Figure 6.3: Comparison of the low-temperature PL spectra (E.,. = 3¢eV) of a 20nm
unitary Cgo thin film (black) and the heterostacks with a 5nm and 20 nm
PEN bottom layer. The grey shaded shows the spectrum of an unitary
PEN sample of 20 nm thickness measured under the same conditions.
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Next, the temperature dependence of the PL is discussed. The temperature-dependent
PL intensities for the unitary Cgy film and the two heterostacks are shown in Fig. 6.4.
To ensure as little contribution as possible from the PEN film, the excitation energy
was set to 3.0eV and a very narrow spectral range around the Cgy emission maximum
was extracted. Intriguingly, the data show qualitative differences, when comparing the
temperature-dependent data for the two main PL peaks of the unitary film with those
of the heterostructure samples. Apparently, the bulk PL from the Cgq is influenced by
the presence of the PEN film. The two heterostructures show a qualitatively similiar
behavior. The PL intensity has a local maximum at around 70K (as in the unitary
film), and subsequently decreases to about 80 % of that value at a temperature of 40 K.
The local minimum is followed by the overall maximum value for 7' = 22 K. The PL
from the unitary film exhibits a very steep incline from 300 K and 100 K, a plateau is
reached with only a moderate increase of PL intensity between 100 K and 22 K. The

structure of minima an maxima is not reproduced.

From the fact that PEN alters the temperature dependence of the Cgy PL, it can be as-
sumed that this effect is related to the mobility of excited species in the bulk of Cgy. In
polycrystalline and disordered media, the exciton diffusion length is generally reduced
with decreasing temperature. This is due to the dominant role of thermally activated
hopping mechanisms in the transport of excitations. However, band-like transport also
occurs, even in disordered systems. Hence, the intricate interplay of the two mecha-
nisms can yield puzzling results when effects related to mobility are studied. In the
case studied here, the situation is further complicated by the nature of Cgo: at elevated
temperatures, the Cgg molecules exhibit a rapid rotatory motion. This motion occurs
freely and independently for the individual molecules in the crystal structure. With
decreasing temperatures, the angular frequency slows down and the motion becomes
discontinuous until the molecules become entirely locked in their orientation. There ex-
ist different values for the temperature at which locking occurs, ranging from 250 K [92]
down to 100 K [93]. When the angular frequency of the molecules is high, the 7t orbitals
of neighboring molecules do not overlap sufficiently long for mechanical distortions to
be transferred or band transport to occur. This implies that the excitations are truly
localized on one lattice site. However, when the rotation begins to freeze out, the ex-
citon mobility increases. Thus, the excitons are able to diffuse through the crystal and
reach, e.g., defects acting as (non-)radiative recombination centers. Given the results in

Fig. 6.4, PEN appears to act as such a defect for the Cgy excitations. The temperature
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at which the local minima occur in the heterostack samples (i.e. 240-50 K) is probably
related to the overall maximum of exciton mobility. For even lower temperatures, the
hopping transport becomes irrelevant and the PL intensity increases again. Whether
the quenching is by relaxation of Cgg excitons to a CT state formed at the PEN-Cgq
interface or induced by “real” structural defects remains unclear. These results also ex-
plain in part why such a broad range of exciton diffusion lengths of Cgg excitons exists
in the literature [94-96], the values ranging from 5-40nm. Experimental conditions
and sample structures have to be considered carefully when discussing the complex

process of exciton diffusion in Cgp.
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Figure 6.4: Arrhenius plots of the temperature dependence of the PL intensity for a
unitary Cgo film (upward triangles), and heterostacks with 5nm (down
triangles) and 20nm (squares) PEN bottom layer with a 20nm Cgq layer
grown on top. The data are extracted for the three main PL peaks at 1.7eV
(a), and at 1.63eV (b) and 1.5eV (c), respectively. The individual curves
are normalized to the respective maximum and offset vertically for clarity.

To probe the dynamics of the Cgy excitons, time-resolved PL experiments were car-
ried out. In order to exclusively create carriers in the Cgg layer, the excitation energy
again was set to 3eV. To further reduce the influence of a possible superposition of
PEN and Cgy signals, the transients were extracted from a narrow spectral window
(1.65-1.73 eV) which incorporates the PL maximum of the Cgo. In this spectral region,
the PL intensity of standing PEN is negligible. The transients shown in Fig. 6.5 are
for the Cgo film and for heterostacks with a bottom layer of 5nm and 20nm PEN,
respectively. For reference, the transients of the PEN FX resonance as well as the
self-trapped exciton (STE) measured for a unitary PEN film are also given. The de-

cay of the Cgp exciton can be described by a single-exponential function with a decay

83



constant of (881 4 18)ps. This is in agreement with values found in the literature,
which are on the order of 750-1200 ps [97-99]. From the data in Fig. 6.5 it becomes
evident, that the PL lifetime of Cgy excitons is significantly reduced when the substrate
is precovered with a PEN film. Further, the magnitude of the lifetime reduction in-
creases with the thickness of the PEN layer. For both, 5nm and 20 nm PEN coverage,
the transients can be fitted single-exponentially to a satisfactory degree (R* > 0.97).
The obtained lifetimes amount to (614 & 8) ps and (417 £ 6) ps for dpgx = 5nm and
dppny = 20nm, respectively. It should be noted however, that the transients of the
heterostacks are better described non-exponentially (e.g., bi-exponentially). This hints
at the complexity of the recombination dynamics occurring in the heterostacks. This
is in stark contrast to the case of PEN-PFP, where the lifetimes of the unitary films
are unaffected in the stacked samples (cf. Chap. 5 and Ref. [76]).
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Figure 6.5: Comparison of the TRPL measurements of the Cgy emission maximum for
the unitary Cgy sample and the two heterstacks. The excitation energy was
set to 3eV and the transients were extracted from a narrow spectral range
around the Cgyp PL maximum to ensure a miniscule contribution from the
PEN PL.

Hence, already the mere observation of the lifetime quenching is unexpected. Foremost,
because the interface and (or) the PEN layer appears to influence the bulk properties of
the Cgg. The interfacial region is small compared to the bulk, and mutual intercalation
of the constituent molecules is not observerd [21]. It is thus safe to assume that the
quenching must be caused by a long range mechanism. Elsewise, the magnitude of
the quenching of the PL lifetime is unexplicable. A frequently discussed quenching
mechanism is (Forster) resonant energy transfer (RET). RET is typically efficient on

a length scale of 1-40 nm between the two interacting partners. In contrast to photon
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reabsorption, RET is not accompied by a spectral shift, i.e., no cutoff of the high energy
end of the PL spectrum is observed. Contrastingly, it is characterized by a decrease
of PL intensity and altered PL lifetime. This is in line with the data presented here,
where only minor spectral shifts are measured. The RET rate can be calculated by the
means of Eq. (2.26) and relies on the spectral overlap of (energy) D and A. On the one
hand, it can occur between the two molecules of the same type (commonly referred
to as homo-RET), in this case RET can promote the migration of excitons through
the crystal. On the other hand, a hetero-RET describes the interaction of molecules
of different type. Furthermore, the mechanism is not limited to any specific type of
(excited) species present in the crystal, as long as the respective D emission and A

absorption spectra overlap sufficiently.

In the case of the PEN-Cgy sample with 20nm PEN, the quenching efficiency obtained
from the TRPL measurements amounts to £ = 1 — Thetero/ Tunitary = 1 —417 ps/881 ps =
0.53. Under the assumption of homogenous excitation of the sample, and consequently,
uniform distribution of excitons in the Cgy film, the average distance between the D (in
this case a Cgp exciton) and the A ground-state PEN is half the total heterostack thick-
ness, i.e., 20nm for the thickest heterostack. Hence, the Forster radius Ry, which is
defined as the distance of 50% quenching efficiency, would have to amount to ~20 nm.
However, the radius calculated by the means of Eq. (2.28) is only Ry ~ 1.1 nm. Conse-
quently, a quenching of the Cgq lifetime by simultaneous excitation of an PEN exciton is
insufficient to account for the magnitude of the observed effect. As mentioned earlier,
RET can also occur between an exciton and other excited species, such as individ-
ual charges, polaron pairs, or other excitons (in this case the excitons act as their
own quenchers). As the interface between PEN and Cgq is expected to generate CT
excitons which ultimately may be dissociated into free charges, the aforementioned
species should be present in the system under study. A hole localized on PEN rep-
resents a cationic state, whose absorption is typically red-shifted with respect to the
ground state absorption. Thus, the comparatively small overlap between Cgy emis-
sion and PEN absorption spectrum would increase. However, such a exciton charge
annihilation (ECA) process affords the lifetime of the charges to be on the order of
the time interval between to successive excitation pulses (=12.5ns). Otherwise, such
a cascaded effect would not be observable. ECA to a significant degree has indeed
been observed (Ref. [100]) in blended films of organic semiconductors. Additionally,
in Ref. [97] ECA has been observed in a Cgy thin film under different experimental
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condition by using a scanning tunneling microscopy (STM) technique and measuring
the electroluminescence (EL) in a Hanbury-Brown-Twiss experiment. Both, the EL
intensity and lifetimes were quenched as function of the tunneling current. At higher
injection rates, excitons already already present in the system are annihalitated by the
injected, unbound electrons. The results show that ECA is generally possible in the

Ceo system.

6.4 Possible Interfacial CT-State

In Chap. 5 on the PEN-PFP heterosystem, a CT-related signal was observed in PL
and absorption (PLE) measurements for all sample structures. For the PEN-Cg sys-
tem an unambiguous identification of C'T-related transitions is not as straightforward.
While there are a vast number of studies [16-19,101-106] dealing with heterosystems
of polymers and fullerene derivatives, the majority of these focus on disordered bulk
heterostructures. Generally, these consist of domains of the respective constituents
which vary widely in their properties, e.g., size, crystallinity, and molecular orienta-
tion. These types of materials are not well-suited, to identify effects arising genuinely

from the interaction of molecules at the interface.
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Figure 6.6: (a) PL spectra of three different heterostacks of PEN and Cg in the NIR
spectral range. The emission of a 100 nm thick unitary Cgp film is given
for reference (grey dots), indicating no emission in the respective spectral
region. The excitation energy was set to 1.55eV (800nm). (b) The energy
level diagram for a heterostack of 13nm PEN covered with 13nm Cgy on
PEDOT:PSS substrate. Adapted from Ref. [107].
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Regardless of the aforementioned, optical signals unique to the heterosystem can be
obtained, even if oscillator strengths prove to be very weak. The graph in Fig. 6.6(a)
shows a PL spectrum of PEN-Cgo heterostacks in the NIR spectral range. For reference,
the spectrum of an unitary Cg film is also given. The most prominent signal at 1.17eV
is clearly observed exclusively in those samples with PEN coverage. To shed further
light on the origin of the signal at 1.17 eV, PES measurements from Ref. [107] are taken
into account. For the PES measurements, an approximately 6 nm thick Cg layer grown
on top of a 13nm PEN bottom layer was chosen. The substrate used in the study was
PEDOT:PSS, a conducting polymeric material. The resulting energy level diagram is
shown in Fig. 6.6(b). The corresponding values for the LUMOs are obtained by adding
to the HOMO level energy the HOMO-LUMO transition energy, e.g., the transport
gap. For PEN, a value of 2.2V is broadly accepted. For Cgg, this value varies from
2.4eV to 3.4eV. A value of 2.6eV [80] is selected because of the structural similarities
of the samples under study here and those in the cited article. Given this value for
the HOMO-LUMO transition, the hetero-offset Ajetero between PEN HOMO und Cgg
LUMO amounts to 1.15eV. As no other transitions in either of the constituents that
low in energy are known, the transition at 1.17eV is tentatively assigned to the Cg
LUMO - PEN HOMO transition and is thus tentatively labeled a CT transition.

To further elucidate the nature of this transition, its excitation energy dependence is
probed by using three distinct excitation energies. Besides the below-gap excitation
at 1.5eV, excitation energies of 3.0eV and 4.5eV were selected. Unfortunately, the
PLE experiment is not suited for this measurement, due to a lack of both detection
(Eget < 1.1€V) and excitation energy range (Fe.. > 2.5€eV). For E... = 3.0eV, the
excitation predominantly takes place in the Cgy (cf. colored arrows in Fig. 6.1). As
discussed previously, the TDM of the second allowed transition is orientated along
the long molecular axis of PEN and is thus inaccessible in the case of standing PEN.
Finally for, E... = 4.5eV absorption takes place in both constituent materials. The
results of the excitation energy dependent measurements are presented in Fig. 6.7.
Intriguingly, for the case of excitation at 3.0eV, no PL in the spectral range of the
CT-related signal is observed. At 4.5eV, the signal is much more pronounced due to

the very large absorption cross-section in both PEN and Cg, respectively.

This result comes unexpectedly, since electron- and hole-transfer should both lead to
the excitation of the CT state. Apparently, as in the case of PEN-PFP, a population of

the CT-related state via a hole-transfer from the acceptor (Cgg) does not occur. This
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Figure 6.7: PL spectra of the CT-related transition for various excitation energies
(1.5eV, 3.0eV and 4.5¢eV). In the case of 1.5eV excitation a Gaussian
fit of the peak is added as guide to the eye.

result seems in conflict with the literature, where photon absorption in the Cgy layer
has been shown to efficiently generate photocurrent in a photodetector [108] and in an
OPV [109] device scheme. Two very important aspects have to be taken into account.
First, one could argue that this is due to the fact that the carriers are highly localized
in Cgg, especially at the low temperatures used in the experiments presented in this
thesis. As a consequence, diffusion to the heterointerface and consecutive dissocation
/ population of the CT is far less likely. However, Cgy molecules and crystals also
feature a very high ISC yield (PLQY on the order of 1073), accompanied by a long
triplet lifetime on the order of 7 > 1ps [110]. This renders non-negligible (triplet)
exciton diffusion lengths (Lp = 8-40nm) [94-96]. In turn, photocurrents can still
reach the values reported in Refs. [108,109]. Also, when 2PPE or SHG experiments
are performed as, e.g., in Refs. [111,112], multiplicity is not of concern, an aspect which
is often ignored. However, as the ground states of both PEN and Cg, are of singlet
character, this plays an undeniable role when considering optical (dipole) transitions.
This provides an explanation as to why the CT-related PL is not observed when exciting
with 3eV laser light. On the other hand, if, at 1.5eV, the CT is directly excited across
the internal interface, the singlet CT state is populated and radiative recombination
to the singlet ground states is allowed. The very low intensity of the CT-related PL is
explained by the generally miniscule absorption cross sections of CT states and thus
low direct population of the CT singlet state. Furthermore, theoretical considerations

for the radiative recombination rates from the singlet CT state to the ground state (of
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PEN) have been calculated to be in the range of 10°s™* [113].

A figure of merit for the exciton binding energy of the CT exciton can be estimated from
the excitation energy dependent measurement. Given the energy difference between
the energy of the excitation light in the case of direct excitation and the energetic
position of the CT-related PL, E... — Ecrpr, = 1.55eV —1.17eV = 0.38 eV, it becomes
evident that the binding energy of the CT exciton lies in the range of 0.4eV. Such
a value is not uncommon in organic semiconductors however, it appears exceedingly
large for CT excitons, given that it amounts, e.g., to only 0.1eV in the PEN-PFP
heterosystem. Also, such a large binding energy should prohibit or at least hamper

dissocitation of CT excitons into free electrons and holes, respectively.
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7 Conclusions

The field of organic semiconductors is an ever emerging one. Yet, a comprehensive
interpretation of many effects remains elusive. This thesis aims to help close some of
the gaps and so contribute to achieving these higher goals. The interpretation of the
formation of CT states at an organic D-A interface is still very crude and often relies
on the simplification that an organic solid is little more than an individual molecule in
a periodic surrounding. However, this picture has been challenged by many results in

the past decade and is further challenged by the results presented here.

The material class of substituted perylenes was introduced. The broad range of po-
tential applications and almost endless possibilities for chemical modifications make
this class of materials an important and highly promising area of investigation and
prompted the analyses discussed here. As is true for many organic materials, the
comprehensive understanding of fundamental processes occurring in these system, is
still far from satisfactory understood. For this thesis, novel PDI chromophores with a
special focus on substitution at the iminde-N position were synthesized. The process
responsible for PL quenching in unprotonated compounds could be attributed to the
MO associated with the terminal amine at an energy interfering with the optically
bright 7t <— 7t* transition. The CS dynamics are controlled by chemical modifications
and by controlling experimental conditions, respectively. The observation of drastically
reduced PLQY upon introduction of a potential electron donor unit was attributed to
a CT process to 7t orbital of the perylene core. Protonation of the D unit led to only
a weak recovery of the PLQY despite DFT calculations suggesting elsewise. The puz-
zling observation of a non-single-exponential decay of the emissive state was interpreted
in terms of a reversible CS process, leading to de- and repopulation of the optically
bright S; state. By careful evaluation of the decay dynamics, a three-level model was
proposed. Following an established procedure, all relevant rates, including the dark

ones, could be extracted from the experimental data. The results shed light on the
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PEPs of the excited states and revealed unexpected behavior in the Marcus theory of
CT. Finally, by exciting higher lying singlet states, the CS could also be controlled.
This apparent anti-Kasha behavior was attributed to two effects. First, a very large
number of vibrational quanta are excited due to the excess energy. This in turn alters
the vibrational coupling between the excited singlet and CSS, respectively. This then
affects the CS rates. Alternatively, the dissipation of the excess excitation energy to the
surrounding medium could lead to a local heating. This increased vibrational motion
of the solvent molecules than would give rise to distortions of either the length of the

D-A spacing or the reorganization energies.

The second study was aimed at investigating the properties of an interface made up
of two semiconducting organic materials. Also, the impact of molecular orientation on
electronic coupling at the heterointerface was an aim of the study. Lastly, the coupling
of excitations located in the D and A, respectively, to the CT state was investigated. To
this end, the excitation energy-dependent injection efficiency was studied. Indeed, by
utilizing a highly sensitive PLE technique, a CT state could be detected in absorption.
The evaluation of the two different molecular arrangements at the interface revealed the
effect of increased coupling due to the m-stacking of the interfacial molecules. However,
the measured CT state energy proved to be incompatible with measurements on the
hetero-offset determined by UPS. In stark contrast to the results from UPS, the CT
state’s energy is unchanged for the different molecular orientations in the experiments
performed in this work. This indicates that the idea of superimposing the two quasi-
particle energies of the D and A entities in order to reveal the CT energy is deficient.
This is corroborated by the lack of an observable hole-transfer from the PFP to the

CT state, which is in conflict with the picture of a “simple” CT exciton.

In the case of the PEN-Cg( heterosystem, such a comprehensive picture could not be
obtained. This is mainly due to the complexity of the energy levels in the Cgy systems,
the large shifts of electronic energy levels with the degree of crystallinity, and the
structural differences between the two constituents, compared to PEN-PFP. Especially
the latter aspect impedes a study of the effects of altered electronic coupling resulting
from mutual molecular orientation at the interface. Despite the challenges in the growth
of samples of high structural quality, various effects related to the heterointerface were
observed. Firstly, a quenching mechanism, leading to drastically reduced lifetimes
of the Cgp-based excitons was found. While a RET from the excited Cgy state to

ground state PEN appears likely intuitively, the vanishing overlap integral between
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the potential partners renders this path unlikely. On the other hand, an ECA-type
RET could also be possible. The red-shift of cationic states and the long lifetime of
charges in this type of organic semiconductors renders this explanation a plausible
one. Still, a definitive answer requires a more sophisticated technique (e.g., transient
absorption spectroscopy) than was available in the context of this thesis. To date
(and to the knowledge of the author), no direct spectroscopic evidence of a CT state
for well-defined heterointerfaces of PEN and Cgy exists. Within this thesis, specific
spectroscopic signatures related to the heterointerface were found. While the possible
CT state’s energy could be located at (1.17 4+ 0.04) eV in emission, there again exist
contradictory results obtained by PES. Furthermore, the results of the excitation
energy-dependent experiments again indicate that a hole-transfer from the A material
does not lead to detectable CT PL. This reinforces the assumption that the frontier

MOs are perturbed at an organic heterointerface.

Because of the potential implications of the obtained results, efforts should be under-
taken to theoretically address aspects such as formation of CT states at the interface
or the injection efficiency into the former. Both crystalline systems under study form
an ideal starting point for ab initio calculations on small molecule model systems, as
their opto-electronic properties are far less complex than those of materials typically
used in OPV structures, e.g., polymer chains. The open-circuit voltage, V¢, directly
linked to CT exciton energy, and is one of the key aspects of device optimization.
Hence, knowledge of the respective energies and possibly even predictive capabilities

are strongly desired in this regard.
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