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Summary 

 

The main objective of my study is to understand the functional evolution of novel morphologies 

in correlation with changes in the molecular genetic mechanisms over a period of time. One can 

understand the source for the existence of a wide diversity of forms by uncovering the 

developmental processes behind it. The plant evolutionary developmental biology (evo-devo) 

emerged as a branch of study that aims at unraveling the molecular and genetic mechanisms 

responsible for the origin and diversification of plant morphologies during the process of 

evolution. Flowering plants or angiosperms are the most dominating terrestrial plant ecosystems 

and flowers are the reproductive structures responsible for their successful adaptation. The 

flower comprises of four different floral organs as sepals, petals, stamens, and carpels. Variations 

in these organs have contributed considerably to the diversification of angiosperms. Moreover, 

the origin and diversification of the female reproductive organ, the carpel, was a major 

contributor for the evolutionary success of flowering plants. Therefore, the functional analysis of 

carpel developmental genes in phylogenetic informative species is one way of deciphering plant 

development in an evolutionary context. 

The molecular mechanisms governing carpel development have been studied intensively in the 

core eudicot model species Arabidopsis thaliana (Arabidopsis) and to some extent in the 

monocot model plant Oryza sativa (Rice). However, such studies are limited in other 

evolutionary lineages due to lack of genetically tractable model systems. To overcome this 

obstacle, the basal eudicot plant, Eschscholzia californica (California poppy) has been 

established as a versatile developmental model species based on its phylogenetic position and its 

amenability to genetic manipulation. Hence, the molecular genetics of carpel development in 

California poppy helps in bridging the evolutionary gap between monocots and higher eudicots.  

AGAMOUS (AG) is one of the important carpel developmental genes involved in specifying 

stamen and carpel identity in A. thaliana. In E. californica, there are two AG homologs, 

EScaAG1 and EScaAG2 which exhibit high sequence similarity at both nucleotide and protein 

levels. However, expression analyses through real-time qRT-PCR have shown that EScaAG2 is 

being expressed stronger in the inner stamen whorls and EScaAG1 transcripts are more abundant 

in the central carpels. Furthermore, down regulation of EScaAG1 through Virus-induced gene 

silencing (VIGS) resulted in the homeotic conversion of outer, peripheral whorls of stamens into 
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petals and VIGS-EScaAG2 led to the homeotic transformation of inner and central whorls of 

stamens into petals. Additionally, functional analysis of both EScaAG genes through VIGS has 

resulted in the homeotic conversion of carpels into petal-like structures. According to the ABCE 

model of floral organ specification, petal identity requires the presence of the floral homeotic B 

function genes. The results of the present study have shown that the expression of a subset of B 

function genes extends into the central fourth whorl when the C function is reduced. This 

suggests a phenomenon of B function gene regulation by the floral homeotic C function gene 

EScaAG2, a new functional domain of C class genes that has not been uncovered in any other 

model species. 

In the second project, Agrobacterium tumefaciens mediated stable genetic transformation was 

attempted for E. californica with a special emphasis on establishing a reproducible transgenic 

regeneration system. As a new source of explant tissue that was used as a starter culture, unripe 

seeds were selected and the protocol was optimized to produce embryogenic calli with efficient 

somatic embryogenesis and subsequent plant regeneration. The unripe seeds collected during a 

timeframe of 22-24 days after anthesis (DAA) proved to be suitable to induce callus production. 

Furthermore, the addition of sucrose in all the tissue culture growing media enhanced the 

efficiency of subsequent somatic embryogenesis, plantlet regeneration and root induction from 

the unripe seed sources. 
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Zusammenfassung  

 

Eines der wichtigsten Themen der biologischen Forschung ist es, die Entstehung und 

Entwicklung neuer Morphologien zu verstehen, die auch durch Änderungen der zu Grunde 

liegenden genetischen Netzwerke über evolutionäre Zeiträume entstehen. Diese 

Entwicklungsprozesse aufzudecken ist ein Weg, sich der Vielfalt biologischer Formen 

wissenschaftlich zu nähern. Der Forschungszweig der evolutionären Entwicklungsbiologie (Evo-

Devo) versucht dabei, die molekularen und genetischen Mechanismen zu entschlüsseln, die für 

die Entstehung und Diversifizierung der Pflanzenmorphologie während des Prozesses der 

Evolution verantwortlich sind.  

Blütenpflanzen oder Angiospermen dominieren heute die Landökosysteme. Ihre Blüten sind 

reproduktive Strukturen und bestehen im Allgemeinen aus vier verschiedenen Organen, den 

Kelchblättern, Blütenblättern, Staubblättern und Fruchtblättern. Variationen in den 

Blütenstrukturen haben selbst viel zur Diversifizierung der Angiospermen beigetragen. Auch war 

die Entstehung und die Diversifizierung der Fruchtblätter und des daraus entstehenden 

Fruchtknotens ein wichtiger Faktor für den evolutionären Erfolg der Blütenpflanzen. Daher ist 

die funktionelle Analyse von Karpell-Entwicklungsgenen in phylogenetisch informativen 

Spezies ein vielversprechender Forschungsansatz, um die pflanzliche Entwicklung in einem 

evolutionären Kontext besser zu verstehen. 

Die Fruchtblatt-Entwicklung wurde intensiv in der  höheren eudikotylen Modellpflanze 

Arabidopsis thaliana und dem monokotylen Getreide Oryza sativa untersucht. Ähnlich intensive 

Studien sind in solchen evolutionären Linien, die zwischen den höheren eudikotylen und den 

monokotylen Arten vermitteln, auf Grund fehlender Modellsysteme begrenzt. Aus diesem Grund 

wurde der basale eudikotyle Kalifornische Mohn, Eschscholzia californica,  aufgrund seiner 

phylogenetischen Position und der Möglichkeit genetischer Manipulationen als ein 

vielversprechender Modelorganismus für Studien zur Karpell-Entwicklung etabliert. Diese 

Studien können dazu beitragen, die evolutionäre Entwicklung besser zu verstehen, die zwischen 

monokotylen und höheren eudikotylen Pflanzen stattgefunden hat. 

AGAMOUS (AG) ist das C-Klasse Gen, das die Identität der Staubblätter und Karpelle in A. 

thaliana bestimmt. In E. californica gibt es zwei AG Gene, EScaAG1 und EScaAG2, welche 
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sowohl auf der Nukleotid-, als auch auf der Proteinebene eine hohe Ähnlichkeit aufweisen. Real-

time qRT-PCR Experimente zeigen, dass EScaAG2 stärker in den Staubblättern exprimiert wird, 

während Transkripte von EScaAG1 stärker in den Karpellen nachweisbar sind. Der transiente 

knock-down von EScaAG1 via virus-induced gene silencing (VIGS) resultiert in der 

homeotischen Transformation der äußeren Staubblattwirtel in Blütenblätter, der von EScaAG2 in 

der Transformation der inneren Staubblattwirtel in Blütenblätter. Die funktionelle Analyse beider 

EScaAG Gene zusammen durch VIGS führt zu homeotischer Transformation aller Staubblätter 

in Blütenblätter, sowie der Karpelle in Blütenblatt-ähnliche Strukturen. Die Blütenblatt Identität 

erfordert dabei das Vorhandensein der floralen homeotischen B-Klasse Gene. Die dargestellten 

Ergebnisse zeigen, dass die Expression eines Teils der B Funktion in den zentralen Wirtel hinein 

erweitert wird, wenn die Expression der C-Funktion reduziert wird.  Diese Ergebnisse lassen eine 

funktionelle Domäne der C-Klasse Gene in der Regulation von B-Klasse Genen erkennen, die 

bisher noch nicht bei anderen Modellorganismen entdeckt wurde. 

In einem weiteren Projekt  wurde mit Hilfe der Agrobacterium tumefaciens-vermittelten stabilen 

genetischen Transformation ein weniger transienter Ansatz zur Erstellung transgener Pflanzen, 

mit einem Schwerpunkt auf die Optimierung des Regenerationssystems, etabliert. Hierbei 

wurden unreife Samen als die optimalen Explantate etabliert und dahingehend optimiert, 

embryogene Kalli mit effizienter somatischer Embryogenese und Regeneration zu produzieren. 

Die unreifen Samen, welche während eines Zeitraums von 22- 24 DAA gesammelt wurden, 

zeigten sich als optimal geeignet, eine ausreichende Kallus Produktion zu induzieren. Die 

Zugabe von Saccharose in alle Wachstumsmedien der Gewebekulturen verbesserte weiterhin die 

Effizienz der somatischen Embryogenese, die Plantlet-Regeneration sowie die Wurzelinduktion 

aus den Explantaten unreifer Samen. 
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1 Introduction 

1.1 Evolutionary developmental biology of angiosperm flower 

 

Angiosperms or flowering plants are the most dominating seed plants on this planet and they 

show wide diversity of plant morphologies. On the other hand, they exhibit a group of common 

characteristics and flower is one of those conspicuous features and center of focus in the 

evolution of angiosperms (Baum and Hileman, 2006). Flowers are the reproductive structures of 

angiosperms. The flower is usually made up of four floral organs sepals, petals, stamens, and 

carpels, which are sculpted into a compact, whorled structure. Angiosperms display immense yet 

aesthetic floral diversity with these four floral organs either by showing alterations in the 

arrangement of floral organs, number, colour, size or symmetry. Moreover, the wide floral 

diversity was found to be rapid and present right from the evolution of angiosperms. This has 

fascinated the biologists to understand the gene regulatory networks (GRN) and developmental 

mechanisms that have evolved under different selection pressures to produce unique floral 

structures (Della Pina et al., 2014).  

In that direction, there have been extensive studies carried out for the past two decades in several 

eudicot model species, mainly in the Arabidopsis thaliana, Antirrhinum majus, Petunia hybrida, 

and Oryza sativa. Based on these studies, the four floral organs are identified by the specification 

of four classes of homeotic genes, which act in a combinatorial fashion and control the 

development of the flower (Bowman et al., 1991; Coen and Meyerowitz, 1991). Even though the 

flower development was studied in detail in several eudicot model species and more specifically 

in A. thaliana, the famous saying of origin and sudden appearance of angiosperms by Charles 

Darwin (1879) as an ‘abominable mystery’ still remains as a mystery to a large extent even today 

(Crepet, 2000). This is partly because of two reasons: firstly, flower developmental studies were 

concentrated in few model species of highly evolved core eudicots and secondly, lack of fossil 

records to trace back the primitive structures of flower origin. 
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Fig.1: The molecular phylogenetic tree of seed plants 

The phylogenetic tree showing the relationship between the gymnosperms and 

other angiosperm plant lineages. The highly evolved core eudicots model 

species A. thaliana, a basal eudicot model species E. californica and a monocots 

model species O. sativa were highlighted in the red box. Besides that, basal 

angiosperms have shown as a sister lineage to all other highly evolved 

angiosperms and gymnosperms are the sister clade to angiosperms (Chanderbali 

et al., 2009). 
 

 

Next generation sequencing has become a great tool by providing whole genome sequence for 

several model species. Based on the sequencing data, well refined molecular phylogenetic trees 

were developed to analyse the relationships among various genes and plant lineages (Mathews 

and Donoghue, 1999; Nickrent et al., 2000; Qiu et al., 1999; Soltis et al., 1999; Yang and 

Rannala, 2012). According to modern phylogeny, gymnosperms are the extant seed bearing 

plants and closest relatives of angiosperms (Fig.1) (Doyle, 1998). They bear reproductive organs 

as cone structures, consisting of microsporophylls as male reproductive structures and 

megasporophylls as female reproductive structure and there is no compact whorled flower 

architecture (Gernandt et al., 2011). Based on these structural differences between cones and 

flowers, comparative genetic studies between angiosperms and gymnosperms were hindered. 

Furthermore, there is no much evidence to support the idea of origin of flowers from the cone 

structures (Bateman et al., 2006). 

Subsequently, plant evolutionary developmental biology (evo-devo) has emerged as a branch of 

study to analyse the molecular basis of genetic mechanisms that could cause an effective 

phenotypic variation in floral forms during evolution. The sequencing data coupled with 

comparative genomics has provided a platform to understand the sequence of developmental 

events that can lead to the expansion of novel floral forms during evolution. 

In general, the genes and their encoding proteins control the development of an organism; 

however, the dynamics of morphological variation is not reflected in the sequence of the gene. 

Based on the trait homology studies among various phylogenetically informative species, several 

phenomena at the level of gene regulation were revealed. One of the scenario is, large sets of 

developmental regulatory genes act as transcription factors (TFs) in the plant kingdom and the 

number of transcription factor families is conserved among the land plants. On the other hand, 
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the number of transcription factors per family has increased drastically from mosses (10) to 

angiosperms (20-25). The enlargement of TF gene families is most frequently related to genome 

duplication events (Carroll, 2001; Dias et al., 2003; Hsia and McGinnis, 2003). Furthermore, the 

plant genomes are very large and main reason being the whole genome duplications (WGD). In 

plants, gene and genome duplications are the major factors contributed for the evolution of novel 

forms. Indeed it is widely accepted that one WGD has occurred in the common ancestors of all 

seed plants (gymnosperms and angiosperms) and one more in the ancestors of flowering plants 

(Jiao et al., 2011) and an additional duplication event occurred in the basal eudicots after 

divergence of Ranunculales from core eudicots (Cui et al., 2006). Also, there were several 

independent WGDs identified in many plant lineages. This infers that several present day 

flowering plants (including Arabidopsis, soybean, poplar, maize) carry a diploid genome of at 

least six successive WGD events and they refer as paleopolyploids (Blanc and Wolfe, 2004b).  

During WGD, a significant number of duplicated genes were deleted through a process known as 

'fractionation' and some genes were retained non-randomly in the genome due to the action of 

differential selection pressures (Blanc and Wolfe, 2004a; Blanc and Wolfe, 2004b; Maere et al., 

2005). The evolutionary fate of these duplicated genes through biased retention has been 

explained in two scenarios as ‘neo-functionalization and sub-functionalization’(Jiang et al., 

2013). The duplicated gene copies or paralogous genes, which are involved in gene regulatory 

networks (GRN) provide robustness to the networks (GRN) and facilitate diversification at the 

molecular level during evolution. Usually duplicated genes never retained for longer time in the 

evolution and they usually lost after duplication (Force et al., 1999; Nowak et al., 1997; Wagner, 

1999). However, gene copies that act as transcription factors are preferentially retained and lead 

to the development of new morphological forms (Liu et al., 2010). One of the good examples is 

the SEPALLATA (SEP1-4) genes, which are involved in various functions in different lineages 

and put forward a mechanism for floral diversification. SEP genes act redundantly to specify 

floral organ identity in A. thaliana, however, in monocots, they are involved in specifying 

inflorescence and floral organ identities by showing alterations in the expression pattern 

(Yockteng et al., 2013).  

The number and expression profile of a TF for a given plant species reflect the unique 

characteristics of that species, as the organogenesis and developmental behaviour of a plant 

species depends on the differential expression pattern of TFs. (Lespinet et al., 2002). The 
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changes in the protein coding regions of TFs can cause modifications in their expression profile 

and further effects its downstream gene regulatory networks (Stern and Orgogozo, 2008). One 

prominent example is TCP gene that regulates floral symmetry across different species by 

showing alterations in the spatio-temporal expression patterns and downstream genetic 

interactions (Hileman, 2014). Also, mutations in the promoter regions of target genes are 

responsible for change in the expression patterns and bring about significant morphological 

diversity (Eyre-Walker, 2006; Kaufmann et al., 2005). Besides that, mutations in the cis-

regulatory elements of developmental genes can also cause changes in the protein-protein 

interactions and leads to the change of expression domain either by adding a new expression 

domain or restricting its expression to certain locations (de Bruijn et al., 2012). The gain of 

expression domain is a rare case in animal systems and change in the spatio-temporal expression 

is a common pattern; while in plants due to gene duplications, gain of expression pattern is the 

main source of variation.  

Even though candidate gene approach is one of the ways to study the trait homology in a number 

of phylogenetically informative species to reveal sources and mechanisms of morphological 

variation, it has its own limitations in non-model plant species that are recalcitrant to genetic 

modification. However, this can be conquered to some extent through virus inducing gene 

silencing (VIGS) (Becker et al., 2011). 

 

1.2 Molecular genetics of flower development  

1.2.1 Floral organ specification 

 

The process of flower transition takes place in three successive phases: (i) transformation of 

shoot apical meristem (SAM) into inflorescence meristem (IM), (ii) conversion of inflorescence 

meristem to floral meristem (FM) and (iii) transformation of floral meristem into floral organs 

(Coen and Meyerowitz, 1991; Simpson and Dean, 2002). After a period of vegetative growth in 

the plant, a particular combination of endogenous and environmental signals converges and 

activates the expression of floral meristem identity genes LEAFY (LFY) and APETALA1 (AP1). 

These genes execute the transition of small outgrowth of cells at the flanks of inflorescence 

meristem into a floral meristem in each individual flower by repressing the inflorescence 

meristem genes (Chandler, 2012; Irish and Sussex, 1990; Weigel et al., 1992). Afterwards, floral 

organ primordia are developed from a small group of floral organ founder cells in the uppermost 
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cell layer of the FM (Bossinger and Smyth, 1996). FM identity genes as a second function 

activate floral organ identity genes in the respective whorls.  

 

1.2.2 ABCE model of the flower organ development 

 

Floral organ identity genes are the master regulators that play distinct functions in flower 

development and were grouped into ABCE classes. Hence, the genetic basis of flower 

development is best explained through ABCE model of flowering (Coen and Meyerowitz, 1991; 

Theissen, 2001). The homeotic mutant studies in two model species A. majus and A. thaliana has 

formed the basis for establishment of the ABCE model of floral organ identity. The homeotic 

mutants with transformation of sepals into carpels in the first whorl and petals into stamens in the 

second whorl define the A-function (Fig.2). The mutants with homeotic conversion of petals into 

sepals in the second whorl and stamens into carpels in the third whorl define the B-function 

(Fig.2). Whereas the mutants consist of only perianth organs without any reproductive organs 

define the C-function (Fig.2) (Krizek and Fletcher, 2005). A- function consisting of two genes 

APETALA1 (AP1) and APETALA2 (AP2) which specify the sepals in the first whorl, A (AP1 & 

AP2) function combined with B class genes APETALA3 (AP3) and PISTILLATA (PI) specify the 

petals in the second whorl. While B function genes (AP3 & PI) in combination with C class gene 

AGAMOUS (AG) specify the identity of stamens in the third whorl and C function gene (AG) 

alone specifies the carpels in the fourth whorl (Bowman et al., 1989; Coen and Meyerowitz, 

1991). Thus, it has been postulated that ABC class genes act in a combinatorial fashion to 

specify four floral organs in four whorls. The other important feature of the ABC model is that A 

and C class genes act in a mutually antagonistic manner, as the C class genes oppose the 

expansion of A class genes into the 4th whorl and A class genes negatively regulate the 

expression of AG into the 1st whorl (Gustafson-Brown et al., 1994). Furthermore, floral organs 

are nothing but the modified leaves; however, the mutation in the three ABC class genes did not 

result in the transformation of floral organs into leaf-like structures. The four SEPALLATA genes 

(SEP 1-4) act redundantly as co-factors by involving in a higher order protein complex for organ 

specification in all the floral whorls. This has formed the basis for the extension of ABC model 

to ABCE model of flowering, as the SEP genes were grouped into E class (Lohmann and 

Weigel, 2002; Theissen and Saedler, 2001). The D function includes the genes required for ovule 
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formation and not involved in the floral organ specification (Pinyopich et al., 2003). According 

to the ABCDE model of flowering, class A + E genes form into a quaternary complex and 

specify the identity of sepals, A + B + E class genes specify the petals, B + C+ E complex 

specifies the stamens, C + E complex specifies the carpels, and D + E class proteins specify the 

ovules (Theissen, 2001). Floral homeotic genes determine not only the identity of floral organs 

but also regulate their differentiation (Bowman et al., 1989; Ito et al., 2007; Ó'Maoiléidigh et al., 

2014; Wuest et al., 2012). The sepals are specified at the very onset of flower development 

(Causier et al., 2010; Kaufmann et al., 2010), and the petals are determined during intermediate 

stages of flower development (Wuest et al., 2012). Whereas, the stamens and carpels are 

specified immediately after the commencement of expression of B and C class genes. The 

carpels are the last organs formed in the central whorl of the flower and the FM is completely 

consumed in the process of gynoecium development, hence FM is determinate, unlike root 

meristem or shoot meristem, which are indeterminate (Fletcher, 2002). 

Moreover, all the A, B, C, D and E-function genes are MIKCC-type of MADS-box genes, with 

the exception of AP2 that belongs to AP2/ERF family of transcription factors. The floral organ 

identity genes specify various floral organs by forming into multimeric higher order complex 

(Bowman et al., 1989; Coen and Meyerowitz, 1991).  

 

 

Fig.2: Schematic representation of the ABCE model of flower development in 

Arabidopsis thaliana and homeotic transformations in the respective mutants. 
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a) Wild type flower containing sepals, petals, stamens and carpels from outer to inner 

whorls. b) A class mutant (ap2) flower consisting of carpels in the first whorl, 

stamens in the second and third whorls, and carpels in the fourth whorl. c) B class 

mutant (pi) flower consists of sepals in the first and second whorls, carpels in the 

third and fourth whorls. d) C class mutant (ag) flower consists of sepals in the first 

whorl, petals in the second and third whorls, and reiterations of perianth organs in the 

interior whorls. e) E class mutant (sep1 sep 2 sep3 sep4) flower consists of whorls of 

leaf-like organs (Krizek and Fletcher, 2005). 

 

 

1.3 MADS-box genes are the main players of flower development 

 

The MADS-box transcription factors are widely spread throughout the eukaryotes and it is one of 

the best-studied gene families among the plants. They play significant roles in the morphogenesis 

of different plant organs and are involved in various processes extending from embryonic 

development, gametogenesis, root development and floral organogenesis (Smaczniak et al., 

2012). The MADS box proteins are available to a lesser extent in protists, fungi, and other 

animals. About one to two MADS-box proteins were found to be present in algae, around 20 in 

mosses, and are greatly expanded to around 100 in flowering plants (Shore and Sharrocks, 1995; 

Theissen et al., 1996). Moreover, the expansion and diversification of MADS box genes play a 

crucial role in the evolution of flowering plants and many of them show conserved functions 

(Winter et al., 2002). The name MADS was derived from the first letters of the genes MCM1 

gene from Saccharomyces cerevisiae, AGAMOUS from Arabidopsis thaliana, DEFICIENS from 

Antirrhinum majus and SERUM RESPONSE FACTOR (SRF) from Homo sapiens in which this 

domain was first identified (Norman et al., 1988; Passmore et al., 1988; Schwarz-Sommer et al., 

1990; Yanofsky et al., 1990).  

There are two types of MADS-box proteins identified until now as Type I, and II, which were 

differentiated based on their structure, specificity, and ability to bind to the DNA. Type I MADS 

box proteins consist of a conserved 180 bp MADS domain and a variable region (De Bodt et al., 

2003; Kofuji et al., 2003; Par̆enicová et al., 2003). The Type I MADS- box genes are mainly 

involved in the female gametogenesis and seed development (reviewed by (Masiero et al., 

2011)). Type II MADS proteins constitute a modular domain called MIKC that has been named 
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after its characteristic domain structure: MADS domain (M), intervening domain (I), keratin-like 

region (K), and C-terminal domain (C) (Theissen, 2001). All the MADS box proteins possess 

characteristic MADS domain at the N-terminal end which is involved in the dimerization of 

proteins by binding to the target DNA at the CArG-box (the consensus sequence (CC (A/T6) 

GG)) (Riechmann et al., 1996b). MADS box proteins never bind to CArG-box containing target 

genes until they form homo or heterodimers (Fig.3) (Huang et al., 1996; Riechmann et al., 

1996a). Following the MADS box, a less conserved I- domain is present and which is involved 

in the formation of selective DNA binding dimers. Moreover, I- domain itself is very sufficient 

for the formation of DNA binding dimers along with MADS domain. K- domain is the second 

best conserved domain after MADS and is involved in the protein dimerization and C-terminal 

region is the most variable region of the MADS-box proteins entailed in transcriptional 

activation and in the formation of multimeric protein complexes (Becker and Theißen, 2003). 

The highly variable C-functional motif plays a significant role in determining functional 

specificity to the MADS box proteins (Krizek and Meyerowitz, 1996; Lamb and Irish, 2003; 

Riechmann et al., 1996b; Riechmann et al., 1996c). 

 

 

Fig.3: Schematic representation of MADS-box proteins in higher order complex 

formation. 
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As a first step, the MADS domain proteins (green and blue) form homo or hetero dimers 

and then they form higher order protein complex or quaternary complex as a second step. 

Subsequently, the complex binds to target gene at the CArG-box as a third step. Later on, 

MADS domain proteins recruit additional transcriptional co-factors (pink), which can 

mediate the transcriptional regulation and further influence the target gene specificity 

(Smaczniak et al., 2012). 

 

 

The type II MADS-box genes exist in two forms as MIKC* and MIKCc (Henschel et al., 2002). 

Genetic studies have revealed that the MIKC*-type genes control the development of male 

gametophytes (pollen) (Adamczyk and Fernandez, 2009; Verelst et al., 2007) and the MIKCc 

genes are the master regulators of the floral organ identity (members of ABCE class genes 

excluding AP2) (Coen and Meyerowitz, 1991; Sommer et al., 1990; Theißen and Saedler, 2001). 

They are also involved in various other processes such as AGL12 and AGL17 subfamily 

members act in the root development (Han et al., 2008; Tapia-López et al., 2008), OsMADS25 is 

involved in primary and lateral root development in rice (Yu et al., 2015). Whereas AGL15 

regulates the process of embryogenesis (Heck et al., 1995). Additionally, MADS-box 

transcription factors show pleotrofic functions. The FRUITFULL (FUL) gene is involved in 

more than one function such as carpel development and meristem identity and also involved in 

the regulation of fruit ripening (Airoldi and Davies, 2012; Fujisawa et al., 2013). 

 

1.4 Origin and evolution of the carpel  

 

The carpels are the female reproductive organs of angiosperms and are modified spore bearing 

leaves. Carpels often fused to form a gynoecium and enclose the ovules inside. Gynoecium is the 

most complex and multifunctional organ of the plant displaying high degree of morphological 

variability across the species. The basic structure of gynoecium consists of stigmatic tissue at the 

apex which facilitate pollination and pollen germination, a long style in the middle through 

which the pollen tube grows down towards ovules and a broad ovary at the base which encloses 

the placenta and ovules. The gynoecium attaches to the floral tube through a small stalk called 

gynophore. 
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The gynoecium also exhibits self-incompatibility mechanisms for the pollen and promotes out-

breeding in many plant species. After pollination, the directional growth of compatible pollen 

tubes ensures the fertilization of ovules, which subsequently transform into seeds, and the ovary 

transforms into a fruit. Overall, the gynoecium protects the seeds and aids in their dispersal by 

employing different mechanisms in different species. Based on these advantages, the gynoecium 

has proven to be a major factor in the evolutionary success of angiosperms (Scutt et al., 2006) 

and has become a well-suited model system for the investigation of plant development during 

evolution.  

The origin and evolution of carpels can be best understood through the comparative genetic 

studies in different phylogenetically informative model plant species. Based on the molecular 

phylogenetic data, extant gymnosperms are the closest relatives to angiosperms (Fig1). They 

consist of male and the female reproductive organs on separate branches or even on separate 

plants. The female reproductive structures called as megasporophylls are similar to carpels in 

angiosperms. However, megasporophylls bear the ovules naked and which is in contrast to the 

carpels that enclose the ovules inside and are well protected. Nevertheless, AG is the floral organ 

identity gene specifying stamen and carpel identity in angiosperms and its orthologue CyAG was 

found to be regulating the reproductive organ identity in the gymnosperms (Zhang et al., 2004). 

This infers that C class genes have originated before the divergence of angiosperms and 

gymnosperms, and its function is well conserved during evolution.  

On the other hand, basal angiosperms constitute the sister group to all other angiosperm lineages 

and which includes three major plant groups as Amborellales, Nymphaeales, and 

Austrobaileyales (ANITA group) (Fig.1). The flowers of which are usually small, bisexual, and 

protogynous. Carpels are the simple structures (apocarpic) and are incompletely closed by 

substances secreted from the carpel margins. The stigma consists of multicellular protrusions and 

is secretory. Carpels enclose single ovules in an anatropous placentation and ovules are covered 

by two integuments and possess a large (crassinucellar) nucellus. The female gametophyte is 

four-celled/ four nucleate structure (Williams and Friedman, 2004). Double fertilization produces 

an embryo and a biparental diploid endosperm (Williams and Friedman, 2002).  

The genetic analysis of carpel development in basal angiosperms shows that C class genes are 

expressed in the third and fourth floral whorls but in much broader domains and E- function 

genes are expressed in all the floral organs (Scutt et al., 2006). Additionally, a putative 
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orthologue of CRABSCLAW (CRC), an another important gene involved in carpel development is 

also present in basal angiosperms and shows similar expression pattern in the carpels as in the A. 

thaliana (Fourquin et al., 2005). 

In contrast, monocots are one of the major distinctive monophyletic group of angiosperms 

consisting of grasses, orchids and several economically important plant species and whose 

lineage was diverged from basal angiosperms at around 145 MYA (Scutt et al., 2006). In 

monocots, the flowers of grasses are highly derived and floral organ identity genes have been 

predominantly studied in two grass model species, rice, and maize, both belonging to Poaceae or 

grass family (Goto et al., 2001; Schmidt and Ambrose, 1998). Grasses contain unique flower 

structure that constitute stamens and carpels but lack obvious sepals and petals, instead, special 

structures called lemma and palea are present in the place of sepals; lodicules are present in the 

place of petals. The grass carpel comprises stigma, style, and an ovary with a single ovule. The 

transmitting track and septum are absent (Yamaguchi et al., 2004). In two grass model species, 

there are two C class genes due to gene duplication events and the two paralogues had shown 

clear subfunctionalization. Additionally, CRC orthologue DROOPINGLEAF (DL) in rice is 

involved in specifying carpel identity, floral meristem determinacy and midrib formation 

(Yamaguchi et al., 2004). 

Besides, core eudicots are the highly evolved monophyletic group in the angiosperm lineage 

containing several well-studied model species such as A. thaliana, A. majus and P. hybrida. The 

core eudicot plants consist of highly developed, well structured gynoecium and the molecular 

genetics of its development is well studied in several model species, albeit most thoroughly in A 

thaliana. 

 

1.4.1 Morphogenesis of the Arabidopsis thaliana carpels 

 

The gynoecium of A. thaliana consists of different organs and tissues which are organized into a 

complex structure in order to maintain the reproductive competence (Larsson et al., 2013). The 

complex structure of gynoecium comprises different spatial domains with apical-basal axis 

consisting of stigmatic tissue with single layer of papillary cells at the apex, followed by the 

short solid style containing the apical portion of the transmitting tract. Following the style, a 
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large and broad ovary is present and attaches to the flower base through a small stalk called 

gynophore (Fig.4a).  

Organogenesis of complex gynoecium in A. thaliana starts as a small dome of carpel primordium 

in the center of the floral meristem at stage 6 (Smyth et al., 1990). The carpel primordium cells 

divide and grow into a short tube like structure at stage 6 and 7, followed by the elongation of the 

short tube in the apical basal axis. While elongating longitudinally, the two carpels fuse 

congenitally and develop into a syncarpous gynoecium. Furthermore, the medial regions of the 

carpels grow inwards until they merge and form the medial domain. During this process, the 

gynoecium is differentiated into various regional domains such as apical vs. basal domains, 

medial vs. lateral and abaxial vs. adaxial (Larsson et al., 2013). The ovary walls are composed of 

two lateral valves, which represent the major portion of the ovary chamber (Balanza et al., 2006). 

Between the valves and replum, a specialized tissue called the valve margin develops (4b), which 

assist in releasing the seeds after fertilization (Ferrándiz, 2002). The valves and valve margins 

represent the lateral domains of the gynoecium. The medial domain contributes to the formation 

of septum, replum, placenta, ovules, transmitting tract, style, and stigma (Girin et al., 2009). 

The adaxial-abaxial axes are illustrated as internal and external surfaces of the ovary with 

reference to the main stem (Fig.4b). The adaxial axis of the medial domain carries ovules, 

transmitting tract, placenta, and a false septum. The septum divides the ovary into two locules, 

encloses the basal part of transmitting tract and the placenta (4b). Furthermore, the adaxial 

surface of the fused carpels at medial position shows meristamatic activity termed as carpel 

marginal meristem (CMM) and each gynoecium contains two CMMs (Azhakanandam et al., 

2008; Scofield et al., 2007). CMM is responsible for producing placenta, ovules, transmitting 

tract, style, and stigma (Wynn et al., 2011). In contrast, the abaxial axis of the medial domain 

encloses the replum, which is the abaxial surface of the septum (Fig 4b). 
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Fig.4: Depiction of Arabidopsis thaliana flower at anthesis stage. 

a) Longitudinal view of gynoecium with apical- basal axis patterning  

b) Cross section of gynoecium showing marginal tissues (Larsson et al., 2013). 

 

 

1.4.2 Molecular genetics of carpel development in A. thaliana 

 

In flowering plants, the core purpose of gynoecium is successful reproduction of enclosed ovules 

and dispersal of seeds after fertilization. A proper initiation of carpel primordia and correct 

patterning of the gynoecium are a prerequisite for accomplishing those functions. Moreover, the 

initiation and differentiation of gynoecium development is a complex process under strict genetic 

control. The complex gene regulatory networks ensure the proper identification of carpel 

primordia and differentiation of mature gynoecium along the apical-basal, medio-lateral, and 

abaxial-adaxial domains (Balanza et al., 2006). Although there are several genes involved in the 

domain specific organogenesis of the gynoecium, the contribution of each gene is limited. 

Indeed, many of the genes show redundant functions and at the same time, some genes function 

in overlapping domains. Nevertheless, their collective activity is critical for the development of 

competent gynoecium (Alvarez and Smyth, 1999; Azhakanandam et al., 2008; Nahar et al., 

2012).  
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For the simplicity of understanding, the genes and genetic interactions of gynoecium 

development are illustrated based on the chronological sequence of events as the specification of 

carpel identity, the spatial distribution of regional domains followed by specialization of cells 

and tissues to establish a mature gynoecium. 

 

1.4.2.1  Initiation of carpel primordia  

 

In A. thaliana, FM identity genes LFY and AP1 are being expressed uniformly in the young floral 

primordia and activate different floral-organ identity genes in distinct whorls. It has been shown 

that LFY induces the AP1 expression and AP1 is expressed throughout the floral primordia 

shortly after the LFY activation (Lohmann and Weigel, 2002). Later on LFY together with 

meristem identity gene WUSCHEL (WUS) activates the AG in the inner two whorls by directly 

binding to its second intron (Lenhard et al., 2001; Lohmann et al., 2001). However, the 

expression of AG is restricted to only central primordium with the contribution of WUSCHEL 

(WUS) (Lohmann et al., 2001). The gene, PERIANTHEA (PAN) regulates the expression of AG 

in a whorl specific pattern (Das et al., 2009). LFY, PAN, and WUS bind directly to the AG at its 

second intron and activate the AG expression in the fourth whorl (Das et al., 2009; Lenhard et al., 

2001; Weigel and Nilsson, 1995). Moreover, LFY and PAN are functionally similar in the 

activation of AG. In contrast, SEUSS (SEU) encodes a transcription adaptor protein and interacts 

physically with various MADS-box proteins AP1, SEP3, AGAMOUS-LIKE (AGL24), and 

SHORT VEGETATIVEPHASE (SVP). SEU binds to the MADS-box protein complex through a 

bridge protein called LEUNIG (LUG) and accomplishes the repression of AG expression in the 

1st and 2nd whorls (Sridhar et al., 2004; Sridhar et al., 2006). 

 

1.4.2.2 Specification of carpel organ identity 

 

AG is the C class gene involved in specifying stamen and carpel identity and is also involved in 

meristem termination (Bowman et al., 1991; Bowman et al., 1989). The flowers of the strong ag-

1 mutant show complete homeotic conversions of stamens into petals, carpels into sepals and 

recurrence of these perianth organs in an irregular phyllotaxy and it is termed as floral meristem 

indeterminacy (Bowman et al., 1989). Floral meristem determinacy (FMD) appears to be a 
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crucial step for correct patterning of the gynoecium, as the development of medial tissues are 

impaired in indeterminate flowers (Zúñiga‐Mayo et al., 2012). WUS maintains stem cell fate in 

the FM and down-regulation of WUS is required to maintain the FMD (Mayer et al., 1998; 

Schoof et al., 2000). The floral meristem identity gene LFY interacts with WUS and activates the 

AG in the central whorls during initial stages of flower development and in turn after carpel 

primordia initiation (at stage 6) AG inactivates the WUS and terminates the floral meristem 

activity. In this pathway, AG interacts with a zinc finger protein called KNUCKLES (KNU) to 

repress WUS. Additionally, CRABS CLAW (CRC), REBELOTE (RBL), SQUINT (SQN), 

ULTRAPETALA (ULT) and PERIANTHIA (PAN) are involved in the regulatory loop formed by 

AG, KNU and WUS and control the floral meristem termination (Alvarez and Smyth, 1999; 

Carles et al., 2004; Das et al., 2009; Lenhard et al., 2001; Liu et al., 2011; Lohmann et al., 2001; 

Maier et al., 2009; Prunet et al., 2008; Sun et al., 2009). 

Besides, SHOOT MERISTEMLESS (STM) is an another key factor responsible for the 

development and maintenance of meristems, as the loss of stm function causes the premature 

differentiation of meristematic cells. The BELL family member REPLUMLESS (RPL) [also 

called as PENNYWISE (PNY), BELL RINGER (BLR), VAAMANA (VAN), LARSON (LSN), and 

POUNDFOOLISH (PNF)] interact with STM and promote the carpel formation through the 

positive regulation of AG (Bao et al., 2004; Bhatt et al., 2004; Byrne et al., 2003; Roeder et al., 

2003; Smith and Hake, 2003; Yu et al., 2009). They function in parallel with LFY and WUS in 

the carpel development (Arnaud and Pautot, 2014). In addition to that, E class genes (SEP 1-4) 

act in combination with AG to specify the carpel identity in the 4th whorl (Ditta et al., 2004; 

Pelaz et al., 2000).  

 

1.4.2.3  Differentiation of gynoecium  

 

Once carpel identity is specified, the gynoecium development is initiated by activating different 

genetic pathways. The differentiation of gynoecium occurs on three axes of polarity: apical-

basal, abaxial-adaxial and medio-lateral patterns (Larsson et al., 2013).  
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Apical-basal domain:  

 

The interplay between hormones and transcription factors forms an integrative network that 

brings about the initiation of carpel primordia, gynoecium differentiation, ovule primordia 

initiation, and fruit development. The apical domain of gynoecium is represented by the style and 

stigma, which are regulated by several transcription factors such as CRABS CLAW (CRC), 

SPATULA (SPT), ETTIN (ETT), AINTEGUMENTA (ANT), JAGGED (JAG), LEUNIG (LUG), 

SEUSS (SEU), and STYLISH1 (STY1). These proteins determine the proper fusion of carpels and 

aid in fertilization (Alvarez and Smyth, 1999; Conner and Liu, 2000; Franks et al., 2002; Kuusk 

et al., 2002; Liu et al., 2000; Ohno et al., 2004). SPT shows defects in the development of the 

most carpel-specific tissues. Loss of spt function causes impaired development of apical tissues 

of the gynoecium and results in the improper fusion of carpels at the apex. The development of 

transmitting tract, style, and stigma were defective and leads to reduced frequency of fertilization 

and low seed production (Foreman et al., 2011; Girin et al., 2009). 

Additionally, multiple lines of evidence strongly indicated the role of auxin for apical to the 

basal patterning of the gynoecium (Hawkins and Liu, 2014). Once the flux of polar auxin 

gradient establishes in the carpel primordia to determine the apical-basal patterning, the key gene 

regulatory network activates to determine the ontogenesis of different regional domains. Auxin 

synthesizes at different regions and at various time periods and transports to the targeted regions 

in order to ensure the robust auxin maxima. STYLISH (STY1) activates transcription of the auxin 

biosynthesis gene YUCCA (YUC4) in the apical part of the developing gynoecia. Hence, in sty1 

sty2 double mutant, the auxin levels are reduced and show a phenotype of split style at the apex 

(Kuusk et al., 2002). 

Furthermore, AUXIN RESPONSE FACTORS (ARFs) perform the auxin signaling function. 

ETTIN (ETT) encodes an auxin response factor and specifies the abaxial fate of gynoecium 

(Nemhauser et al., 2000; Sessions et al., 1997). Mutant phenotype of ett shows diminished or 

lack of carpel valve tissues and extended style, stigma, and gynophores (Hawkins and Liu, 

2014). Additionally, KANADI (KAN) genes are also involved in the abaxial fate of the 

gynoecium along with ETT.  

Auxin transports from one cell to another in a chemiosmotic pattern. PIN-FORMED (PIN) and 

PINOID (PID) are the genes involved in the auxin transportation. Mutants of the pin and pid 
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show valveless gynoecium topped with stigmatic tissue. The weaker pin or pid mutants 

demonstrated that polar auxin transport is critical for gynoecium morphogenesis (Hawkins and 

Liu, 2014). 

 

Abaxial-lateral domain:  

 

In addition to the early specification of carpel identity, AG is also required for correct patterning 

of specific carpel tissues. In ag single mutants, the carpels are occupied by sepal-like structures 

due to antagonistic behavior between A and C class genes. However, in ap2ag double mutant 

with lacking A class function, carpel-associated structures were developed without valve tissues. 

It suggests that some more genes are involved in patterning the gynoecium and they act in an AG 

independent pathway (Liljegren et al., 2000). In that direction, CRABSCLAW (CRC) is one of the 

candidate gene involved in maintaining abaxial- adaxial patterning of gynoecium as crc mutants 

show a shorter and wider gynoecium with partially unfused carpel valves at the apex (Bowman 

and Smyth, 1999). Additionally, SHATTERPROOF 1/2 (SHP) genes specify the identity of valve 

margins and function in parallel to AG (Liljegren et al., 2000). Furthermore, INDEHISCENT 

(IND) and ALCATRAZ (ALC) promote valve margins along with SHP1/2 (Rajani and 

Sundaresan, 2001), whereas JAGGED (JAG), FILAMENTOUS (FIL) and FRUITFUL (FUL) 

genes specify the valve identity (Dinneny et al., 2004).  

On the other hand, though REPLUMLESS (RPL) is required to promote the replum identity, it 

does not control replum development (Roeder et al., 2003). RPL does the replum identity by 

restricting the valve margin factors SHP1/2, IND and ALC to the valve margins and JAG, FIL, 

FUL and YAB3 to the valve tissues. Additionally, BREVIPEDICELLUS (BP) promote replum 

formation along with RPL. In turn, ASSYMETRICLEAVES 1/2 (AS) genes restrict the BP to the 

replum region. In summary, an antagonistic interaction between lateral factors like JAG, FIL, 

AS1/2, and medial factors such as BP and RPL together promote the formation of the valve and 

valve margin (Arnaud and Pautot, 2014).  

Concurrently, AP2 plays an important role in maintaining the growth of the replum and adjacent 

valve margins by repressing the action of BP, RPL to the replum, and SHP 1/2, IND to the valve 

margins. In addition to them, WUSCHEL like Homeobox 13 (WOX 13) shows its expression in 

the replum (Romera‐Branchat et al., 2013). 
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Furthermore, the transcription factors FIL, YABBY3 (YAB3), and JAG activate SHP genes which 

function in parallel to the AG pathway. In addition to that, AG and SHP directly or indirectly 

activate SPATULA (SPT) and CRC (González-Reig et al., 2012). 

 

Medio-Adaxial domain:  

 

The adaxial surface of the gynoecium exhibits meristematic activity and which is known as 

central marginal meristem (CMM). SEU is involved in the formation of ovules from the central 

marginal meristem (CMM). SEU works with AINTEGUMENTA (ANT ) in a redundant manner 

and regulates downstream genes in the formation of ovules as seu/ant mutants show complete 

loss of ovules (Azhakanandam et al., 2008). The multimeric complex formed by LUG, SEU, 

ANT, and FIL transcription factors regulate the development of medial domain of the gynoecium 

replum, septum, placenta, style, and stigma (Azhakanandam et al., 2008; Sridhar et al., 2004).  

Besides that, CLAVATA (CLV) gene promotes the differentiation of cells at the periphery of 

meristematic zone in the shoot meristems, floral meristems, and CMM of gynoecium and 

restricts the differentiation of meristematic cells from the central zone . The central zone of 

meristem is called “meristem promoting activity” (MPA), which is more STM predominant, 

whereas peripheral zone is more CLV predominant. CLV, CORYNE (CRN), and BARLEY ANY 

MERISTEM (BAM) work in a pathway and promote the meristem maintenance in the shoot 

meristem, FM, and in the CMM of the gynoecium (Clark et al., 1996; Durbak and Tax, 2011). 

Furthermore,  

 

1.5 Carpel identity as specified by C-class MADS-box genes 
 

The detailed study of C- class gene AG in various phylogenetically informative landmark plant 

species help us to understand the differential molecular mechanisms and genetic interactions 

responsible for the diversification of carpels during evolution. The function of AG was first 

characterized in the model plant, Arabidopsis thaliana by using the overexpression and knockout 

expression approaches. The Arabidopsis flower consists of four sepals in the outer whorl, four 

petals in the second whorl, six stamens in the third whorl and two carpels fused into a syncarpous 

gynoecium in the central whorl. whereas ag mutant flower shows four sepals in the outer whorl, 

four petals in the second whorl, six petals instead of six stamens in the third whorl and an 
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additional flower in the 4th whorl in the place of central gynoecium (Bowman et al., 1989). The 

additional flower encloses 70 floral organs of sepals and petals which are produced in a recurrent 

manner and it is termed as floral meristem indeterminacy (Yanofsky et al., 1990). 

AG like gene clade has been found in all the seed bearing plants, including gymnosperms 

suggesting that the gene has been evolved around 300-400 MYA and its function is well 

conserved during evolution in determining the male and female reproductive organ identity. 

However, owing to independent gene and genome duplication events in various lineages, the 

copy numbers of the AG gene in various plant species is varying. The consequences of gene 

duplication events lead to subfunctionalization or neofunctionalization. Even though the 

principal function of floral homeotic genes are comparable to core eudicot model species A. 

thaliana, the genetic and developmental mechanisms regulating those roles is varying between 

paralogous genes in different species. 

The whole genome duplication at the base of angiosperm lineage led to the formation of ovule-

specific D class genes (SEEDSTICK) and reproductive organ specifying C class genes (AG 

clade) (Kramer et al., 2004). The C class gene clade (AG) is responsible for the formation of 

carpels in angiosperms and origin and evolution of which is an important milestone in the 

evolutionary history of flowering plants (Becker and Theißen, 2003). The AG clade is further 

undergone recent duplication event and gave rise to euAG and PLENA clades. The euAG clade 

includes AG and PLENA clade consisting SHATTERPROOF 1 and 2 genes (SHP 1/2) of 

Arabidopsis. The detailed study of AG gene in Arabidopsis, Antirrhinum, Maize, and Rice has 

shown its crucial roles in reproductive organ development and meristem determinacy but 

regulate those functions in a different pattern in different organisms. In A. thaliana, the single 

AG is playing both the roles of reproductive organ development and meristem determinacy 

(Bowman et al., 1991) . Whereas in Antirrhinum, there are two AG orthologous genes PLENA 

and FARINELLI; PLENA (PLE) belongs to PLENA clade responsible for carpel identity; whereas 

FARINELLI (FAR) belongs to euAG clade and is responsible for stamen identity and both genes 

together specify the floral meristem determinacy (Davies et al., 1999; Schwarz-Sommer et al., 

1990). While in Z. mays, a monocot species consists of two AG orthologous genes, ZAG1 and 

ZMM2, which have also undergone clear sub-functionalization. However, the pattern is quite 

different from that of A. majus. ZAG1 determines the meristem determinacy and ZMM2 is 

responsible for stamen and carpel identity (Mena et al., 1996). In O. sativa, the two AG 
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orthologues OSMADS3 and OSMADS58 have also undergone clear sub-functionalization; 

OSMADS3 plays a major role in the stamen identity and OSMADS58 is involved in carpel 

identity and meristem determinacy (Yamaguchi et al., 2006). 

Moreover, AG subfamily members were functionally characterized in few basal eudicot model 

plants. In Opium poppy ( Papaver somniferum), there is a single AG lineage gene identified and 

which produces two alternative transcripts, PapsAG-1and PapsAG-2. These two proteins play 

distinct roles in stamen and carpel identity and FMD along with a degree of functional 

redundancy (Hands et al., 2011). Whereas in Thalictrum thalictrodes there were two AG lineage 

genes identified as ThAG1 and ThAG2 and ThAG1 specify the function of AG in A. thaliana 

while ThAG2 specifies ovule identity (Galimba and Di Stilio, 2015).  

Molecular basis of carpel development was majorly studied in core eudicots and to some extent 

in grass species of monocots and these kinds of studies are highly limited outside the model core 

eudicots and monocots. Hence, in order to understand the evolution of gynoecium, the molecular 

basis of genetic mechanisms underlying its development needs to be analyzed in more 

phylogenetically informative species outside the core eudicots.  

 

1.6 California poppy (Eschscholzia californica) is a versatile model species for 

evolutionary developmental genetics 

1.6.1 Unique morphogenetic characteristics of California poppy 

 

California poppy (Eschscholzia californica) belongs to basal eudicots, family Papaveraceae 

(order Ranunculales). The basal eudicots stand in between the monocots and higher eudicots in 

the phylogenetic tree. Hence, it is more interesting to have a model species from basal eudicots 

in order to bridge an evolutionary gap between the monocots and higher eudicots (Zahn et al., 

2006). 

California poppy is an annual to perennial herb and is native to the west coast of North America 

(Cook, 1962). It is a small plant with a generation period of three months. It produces a large 

number of fruits with about 80 to 100 seeds per fruit. In addition to that, the cultivation of 

California poppy is very easy with less effort throughout the year. Owing to its bigger flower 

size, collection and analysis of floral parts for molecular genetic studies is easy and convenient. 

Furthermore, shoot and floral morphogenesis was well studied in the wild-type plants and which 
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assists in comparative studies of mutants plants more easier (Becker et al., 2005). Virus-Induced 

Gene Silencing (VIGS) system is also well established as a reverse genetic tool in E. californica 

(Wege et al., 2007). Further, California poppy is amenable to stable transformation to produce 

stable mutants with less generation time. 

Besides that, E.californica has a small genome size of about six times bigger than that of A. 

thaliana (1100Mbp) and Floral Genome Project (FGP) has selected E. californica as a model 

organism to study the floral diversity among basal eudicots. Additionally, a large number of 

(about 6000) Expressed Sequence Tags (ESTs) of floral buds are available (Carlson et al., 2006). 

Several homologous genes that play a role in flower development, cell and tissue differentiation 

and secondary metabolism are available as large data sets (Carlson et al., 2006). Bacterial 

Artificial Chromosome (BAC) library resource is accessible now and large numbers of floral 

mutants are available along with the sequence information (Lange, 2010). Also, high throughput 

technologies like oligonucleotide microarray chip were compiled specifically for floral 

transcriptome of California poppy (Zahn et al., 2010). 

Furthermore, California poppy is a good source of alkaloids. The biochemical studies of petals 

and stamens have revealed that the principle carotenoid contents are esters of xanthophylls and 

eschscholtzxanthin. California poppy has ample amount of medicinal properties. Sanguinarine, a 

basic benzophenanthridine alkaloid found in the roots acts as an antimicrobial agent. Hence, 

California poppy is a competent model species for alkaloid biosynthesis as well as in the latex 

biochemistry (Park and Facchini, 2000). In view of possession of several unique characteristics, 

California poppy was selected as a versatile model species for evolutionary developmental 

genetic studies. 

 

1.6.2 Morphogenesis of E.californica gynoecium 

 

California poppy flower consists of two green sepals in the outer whorl, four orange colored 

petals in the second whorl, 18-34 small orange colored stamens in the third whorl which are 

arranged in 4-5 whorls and two leaf-like carpels fused to form a solid syncarpous gynoecium in 

the central whorl. The gynoecium consists of a broad ovary at the base, a short style in the 

middle and a stigma at the top in the form of four long protrusions covered with papillae. The 
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ovary is superior in position and consists of a single locule with parietal placentation and ovules 

are being attached in two rows (Becker et al., 2005).  

The presence of a floral tube around the ovary is a characteristic feature of California poppy. The 

apical-basal patterning of gynoecium in E. californica is similar to that of A. thaliana 

gynoecium. In the transverse section, the ovary consists of two valves on the lateral-abaxial 

position and two valve margins or carpel margins in the medial-abaxial axis (Fig.5).The replum 

develops between two valve margins in the medial-abaxial axis and placenta develops on the 

adaxial side. The two placentae grow inwards into the ovary locule and carry the ovules. In the 

case of A. thaliana, the gynoecium consists of two locules separated by a septum and a 

transmitting tract, whereas in E. californica the gynoecium consists of a single locule without a 

false septum and transmitting tract and hence, the pollen tube grows throughout the placenta 

(Becker et al., 2005). 

The morphogenesis of gynoecium starts at stage 5 of the flower development (Becker et al., 

2005). The carpel primordium protruded as a small arch of bulged floral meristem differentiated 

from the stamen primordia. At stage 6, the two carpel primordia grow longitudinally while the 

edge of carpel walls fuse at the medial position with developing placenta inwards. This is 

followed by the initiation of ovule primordia on the placental regions along with the radial 

growth of gynoecium at stage 7. Subsequently, each carpel constitutes 10 domains of five 

longitudinal, three medial and two lateral ridges at stage 8 (Becker et al., 2005). By stage 9-10, 

embryo sac is developed and which is followed by the formation of complete differentiation of 

gynoecium, which is receptive for fertilization by the end of stage 11. After fertilization, the 

gynoecium transforms into a fruit and encloses the seeds. The fruits elongate in size and reach to 

maturity at stage 12. Afterward, they become dry at stage 13. The dry fruits or capsules start to 

dehisce in the longitudinal direction from base to the apex while retaining both valves attached to 

the style at stage 14 (Cook, 1962). 
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Fig. 5: Schematic representation of E.californica gynoecium 

On the left side is the longitudinal view in apical-basal axis; On the right side, the 

transverse section of gynoecium was depicted with medio-lateral and abaxial-adaxial 

domains (Orashakova, 2011). 

 

The molecular genetic studies of carpel development in E.californica was started with CRC 

orthologous gene EcCRC (Orashakova et al., 2009). CRC is an important gene involved in carpel 

development (Bowman and Smyth, 1999). Moreover, CRC exhibits diversified functions in 

different species and the developmental mechanisms responsible for showing such functional 

diversity are important for understanding the evolution of gynoecium. CRC plays an essential 

role in the longitudinal growth of the gynoecium, abaxial-adaxial patterning and is responsible 

for nectary development in Arabidopsis (Bowman and Smyth, 1999). In contrast, CRC 

orthologue DROOPINGLEAF (DL) in rice confers carpel identity, floral meristem determinacy, 

and leaf midrib formation (Yamaguchi et al., 2004). While in E.californica, EcCRC is expressed 

and function in the abaxial identity of the carpels and aids in the growth of tissues that develop 

from the carpel margins (Orashakova et al., 2009). Additionally, it is responsible for the ovule 

initiation and placenta formation unlike the CRC of A. thaliana and also involved in the floral 

meristem determinacy (Orashakova et al., 2009). 
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2 Objectives 

  

The present study has two aims: 

The floral homeotic MADS-box gene AGAMOUS (AG) in Arabidopsis confers stamen and 

carpel identity and regulates floral meristem determinacy. The ag mutants show complete 

homeotic conversions of stamens into petals and carpels into sepals as well as indeterminacy of 

the floral meristem. Functional characterization of AG in several core eudicot species and in 

monocot species such as rice and maize suggest a conserved function of AG homologs in 

angiosperms. However, due to gene and genome duplication events, the AG orthologues exhibit 

different developmental mechanisms at various levels of gene regulation in various plant 

lineages. 

At this point, functional analysis of AG orthologues in E.californica, a basal eudicot species 

could unravel some of the mechanisms involved in the development of carpels in basal eudicots 

during evolution. The two EScaAG paralogues of E. californica are highly similar at both 

nucleotide and protein sequences but are maintained in the evolution without any functional 

constraints. Therefore, virus-induced gene silencing (VIGS) was employed for functional 

characterization of EScaAG genes in E. californica.  

Secondly, the stable transformation is still a critical tool for functional characterization of genes. 

The next objective of this study is to establish an efficient and less laborious Agrobacterium -

mediated stable transformation of E. californica using unripe seeds as a new explant source. To 

develop a stable transformation methodology, an explant source that is amenable to 

transformation needs to be established. The unripe seeds were optimized in order to induce an 

embryogenic callus through less laborious methodology as a preliminary step and further, the 

tissue culture process was optimized to produce efficient regeneration of plantlets. Subsequently, 

transformation efficiency of unripe seeds was analyzed by using the constitutive expression of 

GUS gene and knock-down RNAi-EcCRC gene construct. 
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3 Materials 

3.1 Plant material used 

California poppy (E. californica Aurantiaca ‘Orange King’) seeds were obtained from B&T 

world seeds SARL., Paguignan, France. 

 

3.2 Bacterial strains used  

Chemically competent and electrocompetent Escherichia coli strain DH5α was used for cloning 

vectors. Electrocompetent Agrobacterium tumefaciens strain GV3101 was used for plant 

transformation.  

 

3.3 Vectors used  

 
Plasmid vector  Bacterial 

selection 

  

Plant 

selection 

Purpose Source 

pART7 Ampicillin 

(100 μg/mL ) 

- Shuttle vector for 

overexpression 

construct 

Glycerol stock 

pMLBART Spectinomycin 

(150 μg/mL ) 

Basta 

(10 μg/mL ) 

Binary vector for 

overexpression 

construct 

Glycerol stock 

pTRV1/pTRV2 

 

Kanamycin 

(50 μg/mL ) 

 

Kanamycin 

(50 μg/mL ) 

VIGS Glycerol stock 

pHELLSGATE12 Spectinomycin 

(150 μg/mL ) 

Kanamycin 

(50 μg/mL ) 

Binary vector for 

ihRNAi  

CSIRO, Plant 

Industry, Canberra, 

Australia. 

pENTR/D-Topo Kanamycin  

(50 μg/mL)  

 

- Shuttle vector for 

ihRANi 

Invitrogen Life 

technologies GmbH, 

Frankfurt, Germany. 

pCX35S:GUS Kanamycin (50 

μg/mL ) 

Hygromycin 

(10 μg/mL ) 

Binary vector for 

overexpression  

Glycerol stock 
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3.4 Nucleic acid manipulation 

3.4.1 PCR  

The PCR reaction mixture consists of 5 µl of 10x PCR buffer, 1 µl of 10 µM dNTP mix, 3 µl of 

25 mM MgCl2, 0.5 µl of Taq DNA polymerase (5 µ/µl), 1.5 µl of forward primer (10mM), 1.5 µl 

of reverse primer (10mM), 50-100 ng of template DNA and finally made up the volume to 50 µl 

with nuclease-free water. 

 

3.4.2 Restriction digestion 

Restriction enzymes from NEB were used in all the digestion reactions. The total 10 µl reaction 

mixture consists of 1 µl of Buffer 4, 1 unit of restriction enzyme, 1 µg of plasmid DNA and 

ddH20 up to 10 µl. 

 

3.4.3 Ligation 

The 20 µl of ligation reaction mixture was prepared by adding 1 unit of T4 DNA ligase, 2 µl of 

ligase buffer, 1 µg of digested plasmid DNA, 300 ng of similarly cut DNA fragment and ddH20 

up to 20 µl. 

 

3.5 Nucleic acid analysis 

3.5.1 Gel electrophoresis 

For preparing the gel and documentation of the same, 1% of agarose powder (Sigma-Aldrich, 

Hamburg, Germany), 1x TAE buffer, 0.05% of DNA STAIN-G and 1x DNA loading dye were 

used. 

 

3.5.2 Isolation of RNA 

RNA was isolated by RNeasy Micro Kit (Qiagen, Hilden, Germany). 

 

3.5.3 cDNA synthesis: 

For preparing cDNA, 1 μg of total RNA, 1 μl of 50 μM oligo(dT) primer, 1 μl of annealing 

buffer, 2 µl of superscript III (200 U/µl) and RNase/DNase-free water up to 8 μl were used. 
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3.5.4 RT-PCR reaction mixture 

For setting up the RT-PCR, 1 µl of 1:10 dil cDNA, 5 µl of 10x PCR buffer, 1 µl of 10 mM dNTP 

mix (0.2 mM each), 3 µl of 25 mM MgCl2, 0.5 µl of Taq DNA polymerase (5 µ/µl), 1.5 µl of 

forward primer, 1.5 µl of reverse primer, 35.5 µl of nuclease free ddH2O were used. 

 

3.5.5 qRT-PCR 

For Syber Green master mix, 5 μl of 1:50 dilution cDNA, 10 μl SyBr, 5 μl of primers (400 to 600 

nM) and ddH2O upto 20 μl were used 

For probe master mix 5 μl of 1:50 dilution cDNA, 100 nM UPL probe, 200 nM of primers and 

ddH2O up to 20 μl were used. 

 

3.5.6 Sequencing 

For sequencing reaction, 0.5 µl of Big dye, 2. µl of the 5x buffer, 1.0 µl of gene specific primer 

(5mM), 1 µl of template DNA (200ng) and 5.5 µl of DNase-free dH20 were used.  

 

3.6 Phenotypic analysis 

3.6.1 SEM 

For this purpose, FAE solution (2% Formaldehyde, 70% Ethanol, 5% Acetic acid), 100% 

Methanol, 100% Ethanol, liquid CO2 and 2% Glutaraldehyde was used as a fixative. 

 

3.6.2 Histology 

FAE solution (3 % Formaldehyde, 5 % Acetic acid, 60 % Ethanol p.a., Tween-20), Ethanol and 

Rotihistol at various concentrations, paraplast, Safranin O, alcoholic fast green were used. 

 

3.6.3 Growth media  

3.6.3.1 Bacteria growth media (1 L) 

LB medium is used for growing Bacteria, 1% (w/v) peptone, 0.5% (w/v) yeast extracts, 1% (w/v) 

NaCl, 1.5% (w/v) of agar were used. 

 

3.6.3.2 Plant growth and tissue culture media 

a) Plant sterilization  
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2% Sodium hypochlorite  

Tween-20 or Triton X-100  

b)  B5 liquid media (1L) 

3.16 g of B5 salts  

20 g sucrose 

c) Callus induction media with selection (CIM) (1L) 

3.16 g B5 salts 

30 g sucrose         

8.4 g phytoagar 

2 mg NAA 

0.1 mg BAP 

300 mg Timentin  

d) Somatic embryo induction media (SEIM)(1L) 

3.16 g B5 salts 

30 g sucrose         

8.4 g Phytoagar 

1 mg NAA 

0.5 mg BAP  

300 mg Timentin 

e) Plant regeneration media (PRM) (1L) 

3.16 g B5 salts 

30 g Sucrose         

5 g Gelrite 

 

3.7 Genomic DNA isolation by CTAB method 

Liquid nitrogen, 2x CTAB buffer, 20 ml Chloroform, 5 ml Isopropanol (100%), 1 ml sterile TE 

buffer, 3 ul RNase (10 mg/ml), and Phenol: Chloroform in 1:1 ratio, 3 M Sodium Acetate, and 

70% Ethanol were used. 
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3.8 Southern blotting  

a. Depurination buffer: 250 mM HCl 

b. Denaturation buffer: 0.5 M NaOH, 1.5 M NaCl 

c. Neutralization buffer: 0.5 M Tris-HCl, 1.5 M NaCl 

d. 20X SSC: 3 M NaCl, 0.3 M Sodium citrate 

e. Maleic acid buffer: 0.1 M Maleic acid, 0.15 M NaCl 

f. Hybridisation buffer: 5x SSC, 5x Denhardt’s solution, 0,5% SDS 

g. Low Stringent Buffer: 2x SSC, 0,1% SDS 

h. High Stringent Buffer: 0,1x SSC, 0,1% SDS 

i. Blocking solution (Roche) 

j. Blocking reagent: Maleic acid solution (Autoclaved), 0.5 % blocking solution (Roche) 

k. Washing buffer B: 0.3% Tween-20 in Maleic acid buffer 

l. Detection buffer: 100 mM Tris-Base, pH 9.5, 100 mM NaCl 

m. Stripping buffer: 0.2 M NaOH, 0.1% SDS 

n. Antibody solution: 0.05% Anti-Digoxigenin-AP (Roche, Mannheim, Germany) in 

blocking solution 

 

3.9 Transient GUS assay 

The GUS staining solutions were prepared using the following materials: 

a) Wash buffer (10 ml) containing 0.342 ml of 1 M Na2HPO4, 158 ml of1 M NaH2PO4, 0.600 

ml of 50 mM K3Fe (CN) 6, 0.600 ml of 50 mM K4Fe (CN) 6, 8.300 ml of MQ H2O. 

b) Stain solution (10 ml) consists of 0.342 ml of 1 M Na2HPO4, 0.158 ml of 1 M 

NaH2PO4,0.600 ml 50 mM K3Fe (CN) 6, 0.600 ml of 50 mM K4Fe (CN) 6,  0.209 ml of 2 mM X-

Gluc, 8.091 ml MQ H2O. 

 

3.10 VIGS infiltration buffer 

10 mM MgCl2, 10 mM Acetosyringone and 0.1 mM MES. 

 

3.11 Other buffers used 

a) 2% CTAB (w/v) consists of 100mM Tris (pH=8.0), 20 mM EDTA (pH=8.0), 1.4 M 

NaCl, 1% PVP (Polyvinyl pyrrolidone) 
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b) SOC media consists of 2% Tryptone, 0.5% Yeast extract, 10 mM NaCl, 2.5 mM KCl, 10 

mM MgCl2, 10 mM MgSO4, 20 mM glucose 

c) TE-buffer consists of 10 mM Tris-HCl, pH 8.0, 1 mM EDTA pH 8.0 

d) 50X TAE consists of 40 mM Tris-acetate (pH 7.5), 1mM EDTA 

e) Bacterial plasmid DNA extraction (STET) buffer containing 8% sucrose, 5% Triton X-

100, 50 mM EDTA, 50 mM Tris pH 8.0 

f) 10X MOPS buffer consisting of 0.2 M (N-morpholino) propanesulfonic acid (MOPS) 

and sodium acetate 

g) RNA denaturation buffer consisting of 10ml of 100% deionized formamide, 3.5ml 40% 

formaldehyde, 1.5ml of 10 x MOPS buffer. 

h) RNA loading buffer consisting of 25% (w/v) Ficoll type 400, 0.1 M EDTA solution (pH 

8.0), 25% (w/v) bromophenol blue. 

 

3.12 Enzymes used 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Name Purchased from 

Reverse Transcriptase Invitrogen, Karlsruhe, Germany 

T4 DNA Ligase New England Biolabs, Frankfurt am 

Main, Germany 

Restriction enzymes New England Biolabs, Frankfurt am 

Main, Germany 

Proteinase K Invitrogen, Darmstadt, Germany 

LR clonase Invitrogen, Darmstadt, Germany 

DNase I Roche, Mannheim, Germany 

SYBR Green mix Roche, Mannheim, Germany 

RNaseA New England Biolabs, Frankfurt am 

Main, Germany 
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4 Methods 

4.1 Preparation of plant material 

 

A commercial variety of California poppy, E.californica var Aurintiaca was used as the base 

plant material for the current study. The seeds of which were sown in jiffy pots containing 1:3 

ratios of peat: soil and incubated for 3 days at 4°C. Later the pots were shifted to the greenhouse, 

with maintaining controlled conditions of 19 hours photo period. 

 

4.2 Plasmid vector construction 

4.2.1 Construction of VIGS-based vectors 

 

The single gene construct pTRV2-EScaAG1 was made by amplifying a 395 bp fragment of 

EScaAG1 from the EScaAG1 ORF by using the primers VIGSEcAG1A to add a BamHI 

restriction site at the 5' end of the PCR product and EcAG1VIGS to add an XhoI restriction site 

at the 3' end. The resultant PCR fragment was digested with BamHI, XhoI and cloned into a 

similarly cut pTRV2 vector (Ratcliff et al., 2001) to provide the pTRV2-EScaAG1 plasmid.  

Simultaneously, a 477 bp fragment of EScaAG2 was amplified from the EScaAG2 ORF by using 

the primers VIGSEcAG2A to add a BamHI restriction site at the 5' end of the PCR product and 

EcAG2VIGS to add an XhoI restriction site to the 3' end. The resultant PCR fragment was 

subjected to digestion with BamHI, XhoI and cloned into a similarly cut pTRV2 vector to 

provide the pTRV2-EScaAG2 plasmid. 

The double construct pTRV2-EScaAG1/AG2 was made by amplifying a 190 bp fragment of 

EScaAG1 from the EScaAG1 coding region by using the primers XbaVIGSEcAG1Bfw to add an 

XbaI restriction site to the 5' end of the PCR product and EcAG1VIGSXhorev to add an XhoI 

restriction site to the 3' end and resultant PCR product was digested with XhoI, XbaI. At the 

same time, a 214 bp fragment of EScaAG2 was amplified from the EScaAG2 coding region by 

using the primers EcoVIGSEcAG2Afw to add an EcoRI restriction site at the 5' end and 

EcAG2VIGSXbarev to add an XbaI restriction site at the 3' end. The resultant PCR fragment was 

digested with EcoRI, XbaI. Subsequently, ligation was performed with the resultant EScaAG1, 

EScaAG2 fragments with the EcoRI and XhoI cut pTRV2 vector to provide the pTRV2-
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EScaAG1/AG2 plasmid. The inserted fragments in the single and double gene constructs were 

confirmed by using restriction digestion and sequencing tools. 

Consequently, the resultant positively confirmed plasmids were transformed into Agrobacterium 

tumefaciens strain GV3101 through electroporation. The transformed Agrobacterium colonies 

containing TRV1 and TRV2 plasmids were selected using gentamycin and kanamycin (50 µl/ml 

each). The cells were grown up to an OD550 of 0.7- 0.85, collected the pellet and dissolved in 

the LB liquid.  

 

4.2.2 Construction of stable transformation based vectors 

4.2.2.1 EcCRC overexpression construct 

 

The whole open reading frame of EcCRC was used to make the overexpression construct. The 

pART7 plasmid was used as a shuttle vector. The EcoR1 restriction site was introduced to the 

forward primer and BamH1 restriction site was anchored to the reverse primer. The resulting 

PCR fragment EcoR1-EcCRC-BamH1 was cloned into the multiple cloning site of pART7 

through restriction digestion. The shuttle vector pART7 was further digested with Not1 and the 

whole cassette of CaMV35S: EcCRC fragment was introduced into pMLBART binary vector. 

The construct was made available by one of my colleagues Svetlana Orashakova, was used for 

overexpression of EcCRC through Agrobacterium-mediated stable transformation. 

  

4.2.2.2 EcCRC Knock-down expression construct 

 

The gateway technology is one of the cloning methods that take the advantage of the site-specific 

recombination properties of bacteriophage lambda (Landy, 1989). Topo cloning was carried out 

to construct the intron-hairpin cassette to knock-down the gene expression. pENTR/ D-Topo 

vector was used as an entry vector. Forward primer was designed by introducing a four base pair 

sequence CACC at the 5’ end of the forward primer (EcCRCihRNAiFor) and reverse primer 

(EcCRCihRNAiRev) was used to amplify a 150 bp blunt-end PCR product from the EcCRC 

open reading frame. The purified PCR product was transferred into a pENTR/ D- Topo entry 

vector through Topo cloning reaction. After confirming the presence of EcCRC gene fragment 

through colony PCR and sequencing reaction in the entry vector, LR cloning was performed to 
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transfer the EcCRC fragment into the binary vector pHELLSGATE12 by using LR clonase 

enzyme. The pENTR/D-Topo-EcCRC vector was incubated with pHELLSGATE12 along with 

LR clonase enzyme for overnight at 25°C. Later the reaction was inactivated with Proteinase K 

for 10 min and immediately transformed into E.coli through freeze-thaw method. Subsequently, 

the two EcCRC fragments inserted in the opposite orientation separated by an intron in the 

pHELLSGATE12 vector were confirmed through colony PCR, restriction digestion, and 

sequencing methods. 

 

4.3 Bacteria manipulation 

4.3.1 Preparation of competent cells for E. coli and Agrobacterium  

 

The DH5α E. coli cells were grown for overnight in 5 ml of LB medium at 37°C. The overnight 

starter culture was added to 1000 ml of fresh LB medium and incubated in a shaker until they 

reach to an early log phase (OD600 0.2-0.4). Immediately, the culture was transferred to ice, 

divided the 1000 ml of culture into four parts by pouring into ice-cold centrifuge bottles, and 

centrifuged at 5000 rpm for 10 min at 4°C. From here onwards, the culture was maintained on 

the ice. The supernatant was discarded and the pellet was dissolved in ice-cold 0.1 M CaCl2 at 

half volume of the original culture and incubated on ice for 1 hour. The cells were then 

centrifuged again at 5000 rpm for 10 min at 4°C and the pellet was resuspended with 0.1 M 

CaCl2 at 1/10th of the original volume. This was followed by centrifugation at 5000 rpm for 10 

min at 4°C. The supernatant was removed and resuspended the pellet with ice-cold sterile 

glycerol to a final concentration of 10% (v/v). The cells were then centrifuged again at 5000 rpm 

for 10 min at 4°C. Afterwards, each pellet was then resuspended by gentle swirling with 1 ml of 

ice-cold sterile glycerol. Later 50 µl of culture was aliquot into 0.2 ml tubes and snap freeze in 

the liquid nitrogen. Immediately the cells were frozen in the -80°C freezer. 

The Agrobacterium competent cells were prepared in the same way as DH5α E. coli cells except 

that the cells were grown at 28°C instead of 37°C.  
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4.3.2 Transformation of E. coli through Electroporation 

 

The electrocompetent E. coli cells were maintained at -80°C freezer in small aliquots in the 

tubes. The tube was taken from the freezer and kept immediately on ice for thawing. About 50 

ng of a plasmid solution was added to the tube containing 50 µl of competent cells and mixed 

gently. Then the mixture was transferred to a pre-cooled cuvette (gap 0.2 cm) and gave a short 

pulse in the electroporator at 25 μF capacitor, 200 Ω (ohm) resistance and 2.5 KV field strength 

between 6.25 –12 kV/cm for 4 to 8 milli sec. Consequently, 1 ml of SOC medium was added to 

the cuvette and mixed by inversion and transferred the solution to a 1.5 ml tube. Subsequently, 

the tube was incubated for an hour at 37°C in a shaking incubator (200 rpm). Afterwards, 50, 

100, and 200 μl of the resulting culture was spread on the LB plates (containing the appropriate 

antibiotics) and grown for overnight at 37°C. 

 

4.3.3 Transformation of E.coli through freeze-thaw method 

 

The cloning reaction mixture of 2 μL was added to a vial of chemically competent E. coli cells 

and mixed gently. Afterwards incubated on ice for 30 minutes and subjected to heat shock for 30 

seconds at 42°C in a water bath without shaking. Immediately the vial was transferred to the ice 

and 250 μL of S.O.C. medium that was maintained at room temperature was added. Later, the 

vial was incubated at 37°C with shaking in a shaking incubator for an hour. Finally, 50 and 200 

μL of bacterial culture was used to spread on the prewarmed LB plates with selective antibiotics. 

The plates were incubated for overnight at 37°C.  

 

4.3.4 Transformation of A. tumefaciens through Electroporation  

 

The electrocompetent A. tumefaciens cells were maintained at -80°C freezer in small aliquots in 

tubes. The tube was taken from freezer and kept immediately on the ice for thawing and about 50 

ng of a plasmid solution was added to the tube containing 50 µl competent cells and mixed 

gently. Then the mixture was transferred to a pre-cooled cuvette (gap 0.2 cm) and gave a short 

pulse in the electroporator at 25 μF capacitor, 400 Ω (ohm) resistance and 2.5 KV field strength 
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between 6.25-12 kV/cm for 4 to 8 milli sec. Consequently, 1 ml of LB was added to the cuvette, 

mixed by inversion and immediately transferred to 1.5 ml tube. The tube was incubated for 1 

hour at 28°C with shaking incubator (200 rpm). Afterwards, 100, 150, and 200 μl of the resulting 

culture was spread on the LB plates (containing the appropriate antibiotics) and grown for 2 to 3 

days at 28°C (Weigel and Glazebrook, 2006). 

 

4.3.5 Agrobacterium culture preparation for stable transformation 

 

The overexpression construct pMLBART: 35S-EcCRC, the knockdown expression construct 

pHELLSGATE12:35S:ihpRNAi-EcCRC, pMLBART:35S-GFP and pCX35S:GUS gene 

constructs were transformed into Agrobacterium strain GV3101 through electroporation. The 

Agrobacterium strains containing those plasmids were maintained at -80°C as glycerol stocks 

and were later on used to infect the unripe seeds. The glycerol stocks of GV3101 carrying a 

binary plasmid was scratched with toothpick and infected the 5 ml of LB liquid media as a starter 

culture and agitated for overnight at 28°C. The next day, 1 ml of the grown starter culture was 

used to infect 100 ml of fresh LB media and grown for overnight (OD5000.8-1.0). The culture 

was then transferred to a falcon tube and centrifuged at 4000 rpm for 20 min. The resulting 

supernatant was discarded and the pellet was resuspended in the B5 liquid medium and incubated 

again for two more hours (OD5000.8-1.0). 

 

4.3.6 Agrobacterium culture preparation for VIGS 

 

Agroinfiltration was carried out in order to induce virus-induced gene silencing (VIGS) in E. 

californica. VIGS is a method that exploits an RNA-based antiviral defense mechanism. The 

plants were infected with a modified virus vector carrying a gene of interest that was targeted for 

silencing. A. tumefaciens strain GV3101 containing the vector constructs pTRV1, pTRV2-

EScaAG1, pTRV2-EScaAG2, pTRV2-EScaAG1/AG2, and pTRV2-E as a negative control, and 

pTRV2-EScaPDS as a positive control were maintained as glycerol stocks at -80°C. All the six 

plasmids containing Agrobacterium cultures were grown individually for overnight at 28°C in 

the 4 ml LB liquid medium supplemented with 50 μg/ml kanamycin sulphate, 10 μg/ml 

gentamycin sulphate, and 100 μg/ml rifampicin as a starter culture. The following day, the 4 ml 
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starter culture was mixed with 40 ml of fresh LB media and incubated for overnight until they 

grow to a late exponential phase (OD600 0.8-1.0). Subsequently, the cultures were centrifuged at 

4000 rpm for 20 min at room temperature (RT) and the pellet was dissolved in 20 ml of 

infiltration buffer by vortexing thoroughly and kept at room temperature for two hours. 

 

4.4 Plant manipulation 

4.4.1 Agroinfiltration for inducing VIGS 

 

The pTRV1 containing infiltration buffer was mixed with pTRV2-G (G=EScaAG1, EScaAG2, 

EScaAG1/AG2, EcPDS and Empty vector) containing buffer in 1:1 ratio and mixed well. The 

resultant suspension was injected to the shoot apical meristem of three weeks old plants. About 

0.1 to 0.2 ml of suspension was injected into the shoot apical meristem by using a 2 ml syringe 

having a needle of 0.45 mm x 25 mm as described (Wege et al., 2007). Consequently, the 

infected plants were incubated for 24 hrs at 4°C in the dark and were moved to greenhouse. 

 

4.4.2 Agrobacterium-mediated stable transformation  

 

The fruits at 22 DAA were collected and sterilized by washing with 70% ethanol for 1 min, 

followed by rinsing in the sterile water. Later the fruits were immersed in 2% sodium 

hypochlorite with a drop of Tween-20 or Triton X-100 and shook for 20 min. This is followed by 

rinsing and washing with sterile water for 3-4 times until the remnant of the bleach was removed. 

Thereafter, the fruits were air dried and opened with a sterile scalpel. The seeds have been 

slightly wounded with a sterile scalpel while removing from the fruits in order to facilitate the 

better penetration of Agrobacterium into the seeds. Simultaneously, the wounded seeds were 

immersed in the B5 liquid inoculation medium, agitated for about 20 min and blot them dry on 

sterile filter papers. The seeds were then co-cultivated on primary callus induction medium 

(CIM) for two days.  

After two days of co-cultivation, the seeds were scrapped out from the CIM and washed in the 

sterile distil water for twice and suspended in the Timentin with potassium clavulanate solution 

for about 20 min. Then they were blotted dry on sterile filter papers and transferred to 

CIM+Selection medium. 
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4.4.3 Callus induction and somatic embryogenesis 

 

The seeds were transferred to fresh CIM with selection at weekly intervals. After two weeks, the 

seeds started forming white globulous embryogenic calli. These calli were transferred to somatic 

embryo induction media with selection (SEIM+Sel) (Park and Facchini, 2000). Two weeks later, 

the calli started forming somatic embryos, which were separated and transferred to plant 

regeneration medium (PRM). The developing somatic embryos were transferred to fresh PRM at 

15 days interval until they develop proper root and shoot system.  

Selected plantlets with healthy root systems were transferred to vermiculite and covered with 

polythene bag in order to maintain humidity for a week. Thereafter the plantlets were shifted to 

1:3 ratio of peat: soil mixture in jiffy pots and acclimatized to greenhouse conditions.  

 

4.5 Nucleic acid analysis 

4.5.1 Plant RNA Extraction 

 

The samples of first buds or young leaves from the wild type plants and down-regulated plants 

(maximum 100 mg) were collected and kept immediately in the liquid nitrogen. Then the 

samples were homogenised with sterilized mini pestles in 1.5 ml tubes. Thereafter the samples 

were processed by following the plant-RNA-OLS®Kit manufacturer’s instructions (Omni Life 

Science, Bremen, Germany). 

 

4.5.2 Preparation of RNA Gel 

 

The overall quality of RNA was assessed by electrophoresis on a denaturing agarose gel. One 

gram of agarose was added to 72 ml of water and heated until agarose was dissolved, and then 

cooled down to 60°C. Subsequently, 10 ml of 10X MOPS running buffer and 18 ml of 37% 

Formaldehyde (12.3 M) were added. The mixture was poured immediately into a gel plate with a 

comb and assembled the gel by adding enough 1X MOPS running buffer to cover the gel. 

Afterwards, the RNA samples were prepared by adding 0.5x Formaldehyde loading dye to each 

RNA sample, heated to 65°C for 5 min, and loaded onto the gel. Then followed the standard 
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electrophoresis at 85 V for 45 min. Afterwards, the gel was viewed and analysed using a gel-doc 

instrument equipped with UV light and a digital camera. 

 

4.5.3 Complementary DNA (cDNA) Synthesis 

 

The RNA samples were used to synthesize the first strand cDNA using the Superscript III Kit 

(Invitrogen, Karlsruhe, Germany) by following manufacturer’s protocol. 

 

4.5.4 Plasmid DNA Extraction 

 

For isolation of plasmid DNA, 2 ml of bacterial culture was grown overnight in a shaking 

incubator. On the next day, the grown culture was centrifuged at a maximum speed for 1 min. 

The resultant supernatant was discarded and resuspended the pellet with 400 μl of STET buffer 

and 40 μl of 10 mg/ml Lysozyme. The suspension was incubated in the boiling water for 40 

seconds followed by centrifugation at a maximum speed for 5 min. The genomic DNA and other 

debris collected as a pellet was removed slowly using a toothpick and the plasmid DNA 

recovered in the supernatant was purified by adding equal volume of pre-cooled 2-propanol and 

centrifuged at a high speed for 5 min. Thereafter, the supernatant was removed and the pellet was 

washed by adding 70% ethanol followed by centrifugation at a high speed for 5 min. 

Consequently, the supernatant was removed and 50 μl of TE buffer supplemented with 10 mg/ml 

RNase A was added to the pellet and incubated at 37°C for an hour to allow the plasmid DNA to 

dissolve in the TE buffer. Afterwards, the concentration of the plasmid DNA was determined by 

using the spectrophotometer.  

 

4.5.5 Restriction digestion of Plasmid DNA 

 

Restriction digestion was done for construction of vectors during cloning and also for the 

confirmation of inserted fragment in the cloned vector. The master mix for digestion was 

prepared according to the recommendation of the restriction enzymes manufacturer instructions 

(New England Biolabs, Frankfurt am Main, Germany). The contents of the master mix were 

mixed thoroughly and incubated at 37°C for 1 hour, followed by inactivation in the water bath at 
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65°C for 20 min. Subsequently, the digested DNA was analyzed through standard gel 

electrophoresis.  

 

4.5.6 Polymerase Chain Reaction (PCR) 

 

The standard PCR was carried out either during the cloning procedure in order to amplify a gene 

of interest and/or for the confirmation of the cloned fragment in the plasmid vector. The standard 

master mix was used and the samples were mixed well and gave a short spin with a 

microcentrifuge. PCR program include initial denaturation for one cycle at 95°C for 5 min, 

followed by, 35 cycles of denaturation at 94°C for 30 sec, annealing at 52-58°C for 30 sec and 

extension at 72°C for 30 sec- 1 min, followed by final extension for one cycle at 72°C for a 

duration of 5 min was used.  

Ta was used based on the formula (Ta= Tm-5°C) and usually ranged between 52-58°C. The 

amplification of DNA was analysed through standard gel electrophoresis. 

 

4.5.7 Colony PCR 

 

Colony PCR was exploited for determining the cloned fragment of DNA in plasmid constructs 

after cloning. Individual colonies were picked from the overnight grown bacterial plates and 

resuspended in 10 μl of sterile water. The resulting 2 μl suspension was used as a template for 

the PCR reaction and a standard PCR protocol was followed for 25 µl of total reaction mixture.  

 

4.5.8 Agarose Gel Electrophoresis 

 

The standard agarose gel was prepared by adding 1% agarose in 1x TAE buffer and dissolved by 

heating in a microwave. Then allowed it to cool down to 60°C, added 0.05% of DNA STAIN-G, 

followed by pouring into a gel plate and allowed it to solidify. The DNA sample was mixed with 

1x DNA loading dye and loaded on the solidified agarose gel. Standard electrophoresis was 

carried out at 120 V for 40 min and then documented the gel using a gel-doc instrument 

equipped with UV light and a digital camera. 
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4.5.9 DNA Sequencing 

 

The presence of gene fragment after cloning was confirmed by sequencing with gene specific 

primers. First PCR was performed by using a PCR program which include initial denaturation at 

96°C for 1 min for one time, followed by 15 cycles at 96°C for 10 sec, 50°C for 5 sec and 60°C 

for 1 min 15 sec, followed by 5 cycles with 96°C for 10sec, 50°C for 5 sec, 60°C for 1min 30 

sec, followed by 10 cycles of 96°C for 10 sec, 50°C for 5 sec, 60°C for 2 min. Subsequently 

moved the tube to 4°C and followed further sequencing reaction by adding 5 µl ddH2O and then 

the samples were sent to sequencing laboratory for obtaining nucleotide sequence. The ABI files 

obtained from them were analysed through Bio Edit software (Platt et al., 2007). 

 

4.5.10 Expression analysis of EScaAG paralogous genes through RT- PCR in VIGS down-

regulated plants 

 

Total RNA was isolated from buds of different developmental stages, floral organs at anthesis, 

young fruits, green and mature seeds using plant-RNA-OLS®Kit following manufacturer’s 

instructions (Omni Life Science, Bremen, Germany). One μg of total RNA was reverse 

transcribed into cDNA using Superscript III Kit (Invitrogen, Karlsruhe, Germany). The amount 

of cDNA template to be used for each tissue was standardized by using an endogenous control of 

the E. californica EST sequence (NCBI accession: CD476630) closest to the A. thaliana ACTIN2 

gene, the primer pair actin2RTQfw and actin2RTQrev were used. Paralogue specific primer pairs 

spanning at least one intron were used to discriminate between EScaAG1 and EScaAG2. 

EcAG1RTFw primer and EcAG1RTRevspan were used to amplify EScaAG1 and EcAG2RT Fw 

primer and EcAG2RTRevspan were used to amplify EScaAG2. RT-PCR was performed for 35 

PCR amplification cycles and the sizes of the amplified products were 191 bp for Actin2, 420 bp 

for EScaAG1, and 800 bp for EScaAG2. 
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4.5.11 Expression analysis of EScaAG paralogous genes through qRT-PCR in VIGS 

treated plants 

 

The inherent EScaAG1/2 genes expression was analyzed by isolating the total RNA from the 

wild type plant flowers of different developmental stages, floral organs at anthesis, young fruits, 

and leaves. Additionally, the down-regulation of EScaAG gene expression was measured using 

qRT-PCR on the first buds of untreated, empty vector (pTRV2-E), pTRV2-EScaAG1, pTRV2-

EScaAG2, and pTRV2-EScaAG1/2 treated plants.  

Additionally, expansion of B class genes into the 4th whorl was also analysed through qRT-PCR 

in the petaloid gynoecium of VIGS treated plants using two types of samples collected viz young 

carpel from small buds before anthesis (1-2mm diameter) and the mature carpels of a bud close 

to anthesis (5-8mm diameter). One μg of total RNA was reverse transcribed into cDNA using the 

Superscript III Kit (Invitrogen, Karlsruhe, Germany). The reference genes selected were E. 

californica ACTIN2 and GAPDH. The amount of cDNA and the concentration of primers were 

optimized and the efficiency of estimated primer pairs was found to be between 400 and 600 nM. 

Paralogue specific primer pairs were designed to discriminate between EScaAG1 and EScaAG2 

by spanning at least one intron in the forward primer and extending through a 15 bp deletion part 

of EScaAG1 at C-terminal end in the reverse primer. The primers were tested further for 

paralogue specificity using sequencing PCR. The expression of EScaDEF1, EScaDEF2, and 

EScaGLO was quantified using intron-spanning primers in gynoecium pools of the wild type and 

treated samples with the help of Light Cycler 480. For quantification of EScaDEF1 the Universal 

Probe Library (UPL) probe # 132 and for ACTIN, UPL probe # 136 were designed by using UPL 

Assay Design Centre of Roche and SyBr was used for the rest of the other genes.  

The qRT-PCR program consisting of heating the samples at 95°C for 5 min, followed by 45 

cycles of 10 sec at 95°C, 10 sec at 60°C, and 10 sec at 72°C was employed. Melting curve 

analysis was performed to prevent the formation of primer dimers and unspecific PCR products. 

GeNorm VBA applet was used to estimate the Cp values based on three biological replicates and 

further three technical replicates were used for each biological replica (Vandesompele et al., 

2002) Normalization Factor (NF) and Standard Deviation (SD) were calculated based on the 

expression of two selected reference genes GAPDH and ACTIN.  
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4.5.12 Expression analysis of EcCRC through RT-PCR in putative stable transformants 

 

RNA was isolated from fresh leaves of wild type, putative transformants of EcCRC 

overexpression and EcCRC knock-down expression plants using RNeasy Plant Mini Kit (Qiagen, 

Hilden, Germany). One μg of total RNA was reverse transcribed into cDNA using Superscript III 

kit (Invitrogen, Karlsruhe, Germany). The amount of cDNA template used for each sample was 

standardized by using an endogenous control of the E. californica ACTIN. The primer pairs 

actin2RTQfw and actin2RTQrev were used for amplifying the control gene ACTIN. 

Simultaneously, EcCRC gene specific primers EcCRCRTfor and eccrcRTQrev primers were 

used for 35 PCR amplification cycles to amplify a 550 bp fragment of EcCRC in the 

overexpression plants. Similarly, EcCRC gene specific primers forward primer 

(EcCRCihRNAiFor) and reverse primer (EcCRCihRNAiRev) were used for 35 cycles to amplify 

a 150 bp of EcCRC fragment from the leaf tissues of knock down expression plants. 

 

4.5.13 Genomic DNA isolation 

 

About one gram of young leaf tissue was collected from young plants and ground into a fine 

powder in the pre-cooled sterile mortar and pestle in presence of liquid nitrogen. Immediately the 

powder was transferred to a 50 ml Falcon tube containing 15 ml of the extraction buffer [2x 

CTAB buffer]. The mixture was incubated at 65°C for 20 min in a water bath with occasional 

gentle swirling. Then cooled the mixture to room temperature (RT), added an equal volume of 

chloroform and shook gently. Subsequently, the solutions in the falcon tubes were centrifuged at 

5000 g for 10 min and collected the supernatant. Afterwards, the supernatant was extracted with 

an equal volume of Isopropanol and incubated for 10 min at RT and then subjected to 

centrifugation for 30 min at 5000 rpm at 4°C. The supernatant was discarded and added 1ml of 

STE buffer (sterile TE), 3 µl of RNase (10 mg/ml) and incubated for 40 min at 37°C for 

digesting the RNA. Afterwards, phenol: chloroform was added in the 1:1 ratio to get rid of the 

garbage and the supernatant was collected. Later 1/10th volume of 3 M Sodium Acetate (NaAc) 

and 0.7 vol of Isopropanol were added to precipitate the DNA. Afterwards, the pellet was 

washed with 70% ethanol, followed by drying under vacuum and re-hydrated the precipitate in 
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50 µl of TE for at least an hour. The quality of genomic DNA was analysed through gel 

electrophoresis and quantity was measured through spectrophotometer.  

 

4.5.14 Genotyping of putative transformants through southern blotting 

 

Genomic DNA was extracted using Peqlab Mini Gold kit (Peqlab, Erlangen, Germany). The 

young and fresh leaves were collected from the wild type and putative transformants. The 

collected samples were frozen immediately in the liquid N2 and were homogenized using sterile 

pre-cooled mortar and pestle. Further processing of samples was performed according to the used 

kit manufacturer’s instructions. The concentration of genomic DNA was measured and about 5 

µg was digested with Hind111 for overnight followed by separation of digested fragments 

through electrophoresis in 0.7% agarose gel at 50 mA for 8 hours. Simultaneously, followed the 

gel washing by depurination for 15 min in 250 mM HCl, denaturation for twice for 15 min 

incubation time, followed by neutralisation for twice for about 15 min and finally followed the 

equilibration for 25 min in the 20x SSC.  

Subsequently, the DNA fragments from the gel were transferred to a Hybond N+ membrane by 

using the capillary blotting System. The DNA probe for BAR gene was prepared by DIG labeling 

PCR and the pMLBART vector was used as a positive control. Afterwards, the membrane was 

washed in 2x SSC and then dried for 2 hours in the oven at 80°C. This is followed by overnight 

hybridization with DIG-labeled probe and performed the stringent washing of the membrane. 

Subsequently, the detection of signal was carried out using a LAS- 3000 mini luminescent image 

analyzer. 

 

4.6 Phenotypic analysis 

4.6.1 Scanning Electronic Microscopic examination of gynoecium 

 

SEM was performed for detecting the surface structure of phenotypic flowers. Gynoecia and 

petals of the wild type flower as a positive control and gynoecia of EScaAG1 and EScaAG2 

VIGS treated plants at anthesis stage were collected. The samples were processed in a Methanol-

Ethanol based method followed by critical point drying (CPD). Further, the samples were gold 
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coated and observed under SEM for the changes in the cellular structure of gynoecium tissue of 

VIGS-EScaAG treated plants.  

 

4.6.2  Histological sectioning of buds 

 

It has been deployed for detailed microscopic examination of cells and tissues of phenotypic 

flowers and fruits. The first buds at around 1.6 to 2.5 mm diameter were collected from the 

wildtype, pTRV2-E, pTRV2-EScaAG1, pTRV2-EScaAG2, and pTRV2- EScaAG1/EScaAG2 

infected plants. These fresh buds were fixed first in the FAE solution and then embedded firmly 

in the Paraplast Plus (Tyco Healthcare, http://www.tyco.com). Afterwards, the enclosed bud 

tissues were sectioned with microtome as 7 mm thickness and were stained with Safranin and 

Fast Green for 24 hours and counterstained with alcoholic Fast-Green (Chroma, 

http://www.chroma.com) solutions for 3 min as described (Orashakova et al., 2009). 

 

4.6.3 Transient GUS assay 

 

The calli samples were transferred to a microfuge tube containing the GUS staining solution. The 

tubes were left open to remove any trapped air and were incubated for about 48 hours at 37°C 

with agitation. Subsequently, the stain solution was removed and replaced with 70% ethanol for 

twice in the subsequent 24 hours. Afterwards, the samples were observed for blue coloration.  

 

4.6.4 In situ hybridization 

 

The experiments were carried out by Svetlana Orashakova, Evolutionary Developmental 

Genetics Group, University of Bremen. The experimental procedure and the probe used for 

detection of EScaAG1/2 expression were described previously (Orashakova et al., 2009; Yellina 

et al., 2010). 
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5 Results  

 

The study has been carried out on two main objectives in order to understand the molecular 

genetics of carpel development in California poppy. In the first project, the functional 

characterization of EScaAG paralogues was carried out by deploying VIGS methodology. In the 

second project, a preliminary attempt was made for the establishment of Agrobacterium-

mediated stable genetic transformation, where in high frequency somatic embryogenesis and 

plant regeneration system was achieved by using the unripe seeds as the new explant source in E. 

californica.  

 

5.1 Functional analysis of EScaAG paralogues through VIGS 

5.1.1 Sequence analysis of AG paralogues in E.californica 

 

E. californica consists of two AG orthologues namely EScaAG1 and EScaAG2, which show high 

sequence similarity at both untranslated regions (UTR), and open reading frames (ORF). They 

share about 75% similarity at the nucleotide level including the 5'UTR and ORF. Additionally, 

the translated amino acid sequences share about 81.7% similarity. When the two EScaAG 

sequences of E.californica were aligned against AG of A. thaliana, they exhibited an amino acid 

sequence identity of 66.6% and 61.1% respectively (Yellina et al., 2010). However, there are few 

differences between two sequences, the EScaAG2 nucleotide sequence showed a 40 bp insertion 

and 14 bp deletions in the 5' UTR, and a 15 bp deletion in the 3' coding region of EScaAG1. 

Based on these sequence dissimilarities paralogue specific primers were designed. The forward 

primer was designed by extending through an intron and the reverse primer was made spanning 

through a 15 bp nucleotide sequence deletion of EScaAG1 at C-terminal end. 
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Fig. 6: Protein sequence alignment of EScaAG1 and EScaAG2. 

Identical amino acids of two paralogues are indicated by dots and dissimilar residues 

are indicated by the respective amino acids. The five amino acid deletion is marked by 

dashes with a red box at the C-terminal region of EScaAG1. 

 

 

5.1.2 Expression analysis of EScaAG paralogues in E. californica 

 

The two EScaAG paralogues showing high sequence similarity were examined further for their 

expression pattern. The expression pattern of two EScaAG paralogues in E. californica was 

analysed as a preliminary attempt through RT-PCR on cDNA pools isolated from different 

stages of the flower development, different parts of the flower at anthesis, and at various seed 

development stages. The paralogue specific primers were used to differentiate the expression 

pattern of two paralogues and the expression of EcACTIN2 (EcACT2) served as a control. The 

expression could be detected for both the paralogues; however, the EScaAG1 transcripts were 

present more abundantly than that of EScaAG2 (Suppl.Fig 1). The experiments have been carried 

out in triplicates. RT-PCR on floral organs at anthesis detects that EScaAG1 and EScaAG2 

showed strong expression in stamens and carpels and an attenuated expression in sepals and 

petals (Suppl.Fig.1). Furthermore, both paralogous genes are expressed throughout the flower 

development, assayed in buds from 0-3 mm size, in young fruits and green seeds. However, the 

expression is decreased later on in the mature seeds (Suppl.Fig.1). 
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On the other hand, due to an overall low EScaAG2 expression, RT-PCR expression profiles were 

inconsistent among the technical replicates for EScaAG2 gene. To overcome this problem, a 

more sensitive technique, quantitative real time PCR (qRT-PCR) was deployed. It was carried 

out in four floral organs namely sepals, petals, stamens, and carpels of the flower at anthesis, 

young fruits, leaves, and buds of different developmental stages (Fig.7A). The differential 

expression pattern of EScaAG1 and EScaAG2 was established using paralogue specific primers. 

As evident from RT-PCR results, the overall expression level of EScaAG2 was lower than that of 

EScaAG1. Both paralogues are highly expressed in the stamens and carpels of the mature flower 

and they show extremely low expression in sepals and petals. Moreover, EScaAG2 showed 

stronger expression in the stamens compared to EScaAG1 and EScaAG1 showed its strongest 

expression in the carpels. 

Additionally, EScaAG1 and EScaAG2 genes are expressed throughout the flower development 

extending from organ initiation to differentiation (bud stages 1 to 9 followed based on (Becker et 

al., 2005)). Furthermore, both genes are being strongly expressed in young fruits; however, show 

negligible expression in the leaves (Fig. 7A). In conclusion, the overall expression of EScaAG1 

was more distinct than that of EScaAG2 in all the tested organs such as sepals, petals, carpels, all 

stages of buds, leaves and, young fruits, in contrast to the stamens, in which the expression of 

EScaAG2 was 1.5 times higher than that of EScaAG1 (Fig. 7A).  
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Fig. 7: Expression analysis of EScaAG1 and 2 genes in wild type plants analyzed 

through qRT-PCR and in situ hybridization  

A) qRT-PCR based relative expression analysis of EScaAG1 and EScaAG2 in various 

tissues of wild type E. californica. Actin and GAPDH were the reference genes. B-I) 

Expression domains of EScaAG1/2 genes in bud stages from 2 to 9. B) longitudinal 

section of bud at stage 2; C) longitudinal section of bud at stage 3; D) longitudinal section 

of bud at stage 4) E: longitudinal section of bud at stage 6; F) longitudinal section of bud 

at stage 7; G) transverse section of bud at stage 7; H) transverse section of bud at stage 8; 

I) transverse section of bud at stage 9. All scale bars = 100 μm. 

Abbreviations: fm, floral meristem; g, gynoecium; gw, gynoecium wall; ov, ovule; p, 

petal; pl,placenta; pp, petal primordium; se, sepal; sp, stamen primordium; st, stamen. 

 

Additionally, in situ hybridization was carried out by Svetlana Orashakova to obtain more 

detailed spatio-temporal expression domains of EScaAG1 and 2. However, as the open reading 

frames and UTR’s of EScaAG1 and EScaAG2 are highly similar, it was difficult to generate 

probes that could discriminate between both paralogous genes. Hence, the expression patterns 

observed were considered common to both paralogues and it is described later on as EScaAG 

gene expression. 

The EScaAG gene expression was first observed in stage 2 buds before the initiation of the 

gynoecium and was visible as lateral domains in a few cells in the floral meristem where in the 

stamen primordia were found to be initiated later (Fig. 7B). In stage 4 buds, the expression was 

uniformly expanded in the floral meristem but was excluded from the central primordium where 

in the gynoecium developed later (Fig. 7C). By late stage 4, EScaAG expression was stronger in 

the boundaries between the stamen anlagen and weak expression at the tip in the floral meristem 

just before gynoecium initiated (Fig. 7D). In stage 6, strong expression was found in the region 

adjacent to the placenta, the apical part of the medial carpel wall and in the stamens (Fig. 7E). 

Later on in late stage 6, EScaAG1/2 expression was restricted to the adaxial side of the 

gynoecium and in the stamens (Fig. 7F). In transverse sections of the developing flower bud, 

EScaAG expression was confined to the apical part of the ovules and it was absent in the 

placenta. In later stages of ovule development, the EScaAG expression was stronger on the 

adaxial side compared to the abaxial side (Fig. 7G, H, I). In summary, EScaAG genes were 
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expressed during initiation of floral meristem at stage 2, during early development of stamen and 

carpel primordia and later in the developing stamens and ovules. 

 

5.1.3 Functional analysis of EScaAG genes in conferring stamen identity  

 

Functional characterization of EScaAG1 and EScaAG2 genes was accomplished through Virus-

Induced Gene Silencing (VIGS). AGAMOUS (AG) is involved in specifying stamen and carpel 

identity and floral meristem determinacy in A. thaliana (Yanofsky et al., 1990). The down-

regulation of EScaAG1 and EScaAG2 expression was carried out by infecting 1) a set of 120 

plants with pTRV1 + pTRV2- EScaAG1, 2) 120 plants with pTRV1 + pTRV2-EScaAG2, 3) 120 

plants with pTRV1 + pTRV2-EScaAG1/AG2 and 4) the control treatments consisted of a set of 

12 plants infected with pTRV1 + pTRV2-E, an empty vector as a negative control and 5) another 

set of 12 untreated wild type plants as a positive control. The first three flowers of each plant 

were scored and based on the strength of the silenced phenotype the flowers were categorized 

into four types: a) wild-type resembling flowers that did not show any obvious silencing effect. 

b) weak phenotypic flowers without any altered floral morphology except an increase in the 

stamen number. c) medium phenotypic flowers showing partial homeotic conversion of stamens 

into petals and flattened or normal gynoecium with or without enclosed ovules. d) strongly 

silenced flowers with no obvious stamens in the 3rd whorl along with an orange colored 

gynoecium with enclosed additional gynoecium or additional flower inside the 4th whorl. 

In the first set of 120 plants inoculated with pTRV2-EScaAG1, a total of 239 flowers were 

analyzed, out of which 122 flowers (51%) showed homeotic conversion of stamens and carpels 

(Tab.1). Similarly, in the second set of the 120 plants infected with pTRV2-EScaAG2, 209 

flowers were analyzed, out of which 118 flowers (56.4%) expressed homeotic transformation of 

reproductive structures. In the third set of 120 plants infected with the dual gene knock-down 

cassette pTRV2-EScaAG1/AG2, out of 261 flowers analyzed, 174 flowers (66.6%) showed 

homeotic transformations in the 3rd and 4th whorls of the flower. On the other hand, in all the 36 

flowers observed from 12 plants of pTRV2-E had neither homeotic conversions nor signs of loss 

of floral meristem termination (Tab.1). 
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Table.1: Summary of total phenotypes observed during the VIGS-EScaAG down-

regulation  

 

 

 

E. californica wild-type flower consists of two fused sepals occupying the floral whorl one, four 

petals arranged alternatively in two consecutive whorls, varying number of 18 to 34 stamens 
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arranged in four to five whorls and central whorl containing a bicarpellate gynoecium (Becker et 

al., 2005). Downregulation of EScaAG1/2 genes in E. californica resulted in homeotic 

conversion of stamens into petals in the 3rd whorl, loss of carpel identity into petal-like structures 

in the 4th whorl. Furthermore, loss of floral meristem determinacy was observed in two types of 

meristems, one in the ring meristem in third whorl and another one in the central floral meristem 

in the fourth whorl. Additionally, the ovule development was severely hampered in EScaAG 

down-regulated plants.  

The down-regulation of EScaAG genes in VIGS treated plants was analysed by the quantitative 

RT-PCR (qRT-PCR) and phenotyping analysis. Both the analyses were confined to the first three 

flowers of each plant and avoided the later formed flowers as the frequency of putative knock-

down phenotype is known to decrease in the successive flowers (Wege et al., 2007). The 

downregulation of EScaAG genes expression was examined by qRT-PCR on first buds of 1 to 3 

mm diameter (corresponding to bud stages 2 to 9), in EScaAG1, EScaAG2, and EScaAG1/2 

VIGS silenced plants. The knock-down expression analysis of the first buds was correlated with 

the phenotype of the later formed 2nd and 3rd flowers of that plant. The scenario was found to be 

inconsistent with previous experiments wherein VIGS downregulated flowers of E.californica in 

99% of the cases (n = 414), when the second flower of the plant showed a stronger phenotype, 

the first flower of that plant exhibited strongest phenotype (Orashakova et al., 2009; Wege et al., 

2007). This persistent nature of phenotypes allowed to analyse the knock-down expression of a 

gene in the first buds through quantitative RT-PCR based on the phenotype of the second flower. 

The differential expression pattern of EScaAG genes through qRT-PCR in VIGS-EScaAG treated 

plants revealed that both genes were down-regulated irrespective of the gene targeted for down 

regulation. This suggests that the observed phenotypes were resulted from overlapping effect of 

both EScaAG paralogues (Fig.8). Based on the qRT-PCR analysis, the expression of EScaAG1 

was reduced from 70% to 10% of its wild-type expression and EScaAG2 expression was reduced 

from 25% to less than 5%. In case of the pTRV2-EScaAG1/2 vector, both genes were reduced 

similarly to around 20%. Six out of seven plants buds selected for qRT-PCR analysis showed 

silencing of both EScaAG1 and EScaAG2 genes and one plant (pTRV2:AG2-1) treated with 

pTRV2- EScaAG2 exhibited reduction of EScaAG2 expression but increased EScaAG1 

expression relative to untreated plants. This might be due to the variability of VIGS experiments. 
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However, the rest of the six buds showed a significant reduction of expression of EScaAG genes 

as expected. 

 

 

Fig.8: qRT-PCR analysis of first bud of E. californica untreated (U) and VIGS 

treated plants.  

Individual plants treated with pTRV2-EScaAG1, pTRV2-EScaAG2 and pTRV2-

EScaAG1/AG2 respectively. The numbers at the end of each treatment on X-axis 

indicate the plant number of corresponding treatments. The relative expression of 

EScaAG1 and EScaAG2 are set at one in untreated plants. 

 

 

In VIGS-EScaAG treated plants, the homeotic transformation of the 3rd whorl of stamens into 

petals has occurred in three ways. In the first case, i) complete conversion of all the stamens (4 to 

5 whorls) into petals; ii) the second scenario comprised of partial conversion of only a set of 

stamen whorls into petaloid-like organs and the rest of the stamen whorls remained normal 

without any homeotic transformation; iii) the third case consists of an increase in the number of 

stamens without any homeotic conversions. Out of these three scenarios, first and third scenarios 

were occurred in both EScaAG paralogues irrespective of the gene down-regulated. On the other 

hand, the second scenario of partial homeotic conversion of only few whorls of stamens into 

petals occurred in a paralogue specific manner. In pTRV2-EScaAG1 infected plants, 64 flowers 
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(26.7%) expressed partial homeotic transformation of only the outer stamen whorls into petaloid 

organs (Fig.9 G, I), and three flowers (1.25%) showed a complete homeotic conversion of all 

stamens into petals (Fig.9 B). 

In the down regulation of the pTRV2-EScaAG2 gene, 45 flowers (21.5%) exhibited homeotic 

conversion of only the inner whorl of stamens into petaloid organs (Fig.9 H, J) and 8 flowers 

(3.8%) exhibited complete homeotic transformation of all stamens into petals (Fig.9 C). 

Furthermore, in plants infected with pTRV2-EScaAG1/AG2, 96 flowers (36.7%) showed partial 

homeotic conversion of outermost and innermost whorls of stamens into petals with normal 

stamen morphology in the middle whorl(s) (Fig.9 K) and 17 flowers (6.5%) displayed complete 

homeotic transformation of all stamens into petals (Fig.9 C,D,F).  

 

 

Fig.9: Phenotypes of VIGS-EScaAG treated plants with homeotic transformation of 

stamens into petals.  

A, E: wild type flower; B, C, D: completely transformed stamens into petals in VIGS-

EScaAG1/2 phenotypic flowers; G, I: partial transformation of outer whorl of stamens 

into petals in VIGS-EScaAG1 phenotypic flowers; H, J: partial transformation of inner 

whorl of stamens into petals in VIGS-EScaAG2 down regulated flowers; K: 
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transformation of outermost and innermost whorl of stamens into petals in EScaAG1/2 

down regulated flowers.  

 

Moreover, the homeotic transformation of stamens occurred in a gradual transition ranging from 

mosaic staminoid-petaloid structures to complete petal like organs (Suppl.Fig.2 M). On the other 

hand, 36 flowers from the plants infected with pTRV1 and pTRV2-E were analysed and all of 

them had shown normal stamens and carpels as of wild type (Suppl.Fig.2 L). Homeotic 

transformation of neither stamens nor carpels was observed.  

 

5.1.4 VIGS-EScaAG genes display a loss of carpel identity  

 

The wild type gynoecium in E. californica is green coloured cylindrical structure. Down 

regulation of EScaAG function in California poppy has resulted in the transformation of carpels 

into petal-like structures. The homeotic transformation of the gynoecia has occurred in two 

forms, either into a (i) flat green gynoecium or (ii) flat orange gynoecium (Fig.10 B, C, D) in the 

4th whorl. The former appears as flat and slender compared to wild type gynoecia, the latter type 

was flat, more petal like with orange color. In addition to that, both flat green and flat orange 

gynoecia were either empty or enclosed very few ovules. In some other instances, the flat green 

gynoecium had multiple gynoecia enclosed inside.  

 

 

Fig.10: Homeotic transformations of the gynoecium in VIGS-EScaAG treated 

plants. 
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A: Green and solid gynoecium of wild type plant on the left side and flat green 

gynoecium without ovules on the right side; B: flat green gynoecium; C: flat orange 

gynoecium without ovules; D: petal like gynoecia of VIGS treated plants 

 

In case of pTRV2-EScaAG1 inoculated plants, 24% of 239 flowers showed flat green gynoecia 

and 12.7% displayed orange petal like gynoecia. In case of pTRV2-EScaAG2 down regulated 

plants, 31.4% of 209 flowers exhibited flat green gynoecium and 21% flowers showed orange 

gynoecia. Whereas in pTRV2-EScaAG1/2 double knockdown plants, 36% of 261 flowers 

showed flat green and 20.5% flowers displayed orange gynoecia (Suppl.Fig.3). 

The flat green gynoecium was similar to wild type gynoecium in its external morphology; 

however, orange petal-like gynoecium consisted of striated regions of orange- green colors. The 

mosaic pattern of gynoecium was further analysed through Scanning Electron Microscopy 

(SEM) to deduce the cellular structure. In general, the petal surface of wildtype flower in 

E.californica consists of parallelly spaced long narrow tubular cells (Fig.11 A) and the carpel 

surface consists of small compact cells with scattered stomata (Fig.11 B) (Becker et al., 2005). 

SEM micrographs of flat orange gynoecia in VIGS-EScaAG flowers demonstrated the mosaic 

pattern of long, narrow, and tubular petal cells running beside the small, compact cells of carpel 

surface with scattered stomata (Fig.11 C, D). These observations indicated that the orange-

pigmented gynoecia of EScaAG1/2 downregulated flowers had not only a partial petal-like 

pigmentation but also acquired the characteristics of petal-like cell surface and thereby 

confirming the partial transformation of gynoecia into petal-like organs. 

 

 

Fig 11: Scanning Electron Micrograph (SEM) analysis of surface structure of 

petaloid gynoecium 
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A: the wild type carpel tissue; B: wild type petal surface; C& D: petaloid gynoecium in the 

central floral whorl of VIGS-EScaAG plants showing long, narrow tubular petal cells 

running parallel to small, compact carpel cells containing stomata. 

 

The orange petal-like gynoecia of EScaAG down-regulated plants with inferred petal cellular 

characteristics were further tested for the expression domains of B- class genes. qRT-PCR was 

conducted to further analyse the hypothesis that the expression domains of floral homeotic B- 

genes were expanded to the central gynoecium whorl of EScaAG1 and 2 VIGS treated plants. 

Three B-class genes namely EScaDEF1, EScaDEF2, and EScaGLO and two C- class genes: 

EScaAG1 and EScaAG2 of E. californica were examined. Two types of tissues were selected for 

analysis; i) carpels at anthesis stage of the flower (mature carpels) and ii) carpels at pre-anthesis 

stages (young carpels). The samples were collected from untreated, pTRV2-E mock plants, 

pTRV2-EScaAG1, EScaAG2 and EScaAG1/2 treated plants. qRT-PCR expression studies have 

shown that the C-class genes were expressed upto the expected level in the carpels at young and 

mature stages in the wild-type flowers. However, the B-class gene ortholog, EScaDEF1 was 

expressed comparatively at a higher level than expected in the carpels of untreated plants, while 

the expression of other two B-class genes EScaDEF2 and EScaGLO were hardly detectable in 

the gynoecium.  

Subsequently, the expression of B and C- class genes were recorded in the gynoecia of VIGS 

treated plants. The relative expression of all analyzed genes in the gynoecia of untreated plants at 

pre-anthesis was normalized to one (Fig.12 A). In the gynoecia of VIGS treated plants (Fig.12 

B), the expression of EScaAG1 was reduced to about 20-50% and EScaAG2 expression was 

highly reduced in most of the gynoecia. On the contrary, VIGS-EScaAG treatments had not 

influenced EScaDEF1 expression in the gynoecia and it showed same level of expression in the 

gynoecium as in the wild type gynoecium. However, there was 5.8 to 17.7 fold increase in the 

expression of EScaDEF2 as compared to the expression in untreated gynoecia. Additionally, 

EScaGLO transcripts were also increased significantly upon silencing the C- function genes by 

2.2 to 5.7 times in the EScaAG1 and EScaAG2 VIGS treated plants. These expression analyses 

indicated that in the central whorl, with reduction of expression of EScaAG genes, there was a 

significant increment in the expression of two B-function genes EScaDEF2 and EScaGLO in 
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EScaAG1 and EScaAG2 down-regulated plants compared to the untreated or mock-treated 

plants.  

 

 

Fig.12: qRT-PCR expression analysis in young and mature carpels.  

A: qRT-PCR of EScaAG1, EScaAG2, EScaDEF1, EScaDEF2, and EScaGLO in the 

gynoecia of wild-type plants; B: qRT-PCR of EScaAG1, EScaAG2, EScaDEF1, 

EScaDEF2, and EScaGLO in the gynoecia of VIGS treated plants.  

Abbreviations used here are yc- young carpel, mc- mature carpel, U- untreated plants. 

 

 

5.1.5 EScaAG1 and EScaAG2 both regulate floral meristem determinacy 

 

Downregulation of EScaAG genes affects the floral meristem determinacy in various degrees 

based on the strength of the gene silencing. A strong reduction of EScaAG gene expression has 

resulted in the severe phenotypic changes and a slight reduction of EScaAG transcripts produced 

weak phenotypes. The strong phenotypic flowers exhibited prolonged floral meristem activity in 

the form of either additional floral organs or carpel-like structures, or additional gynoecium 

enclosed inside the normal gynoecium in the 4th whorl (Fig.13 B- J).  
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Fig. 13: Loss of floral meristem determinacy in VIGS-EScaAG flowers. 

A,E: wild type flower and gynoecium; B,C,D:VIGS-EScaAG flowers showing enclosed 

multiple gynoecia inside the petaloid gynoecium; F,G,H,I: gynoecium enclosing 

additional carpel-like structures; J:enclosed additional flower inside the gynoecium in 

the 4th whorl. 

 

In very weak phenotypic flowers, there were no obvious homeotic organ conversions. However, 

a significant increase in stamen number in the VIGS-EScaAG treated plants was observed (Tab 

2). Under normal conditions, E. californica flowers produce 18 to 26 stamens that are arranged 

in 4-5 consecutive whorls. Here, the untreated or wild type plants that were grown under the 

same conditions as the VIGS treated plants on an average 26.3 stamens were produced per 

flower. Whereas in VIGS-EScaAG1 treated plants without any homeotic conversions 31.9 

stamens were produced, while in VIGS-EScaAG2 treated plants 33.4 stamens were produced in 

each flower and in plants treated with EScaAG1/AG2, around 35.5 stamens per flower produced. 
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Table.2: Number of stamens in wild-type and EScaAG treated plants 

 

 

 

5.1.6 EScaAG paralogues regulate ovule identity 

 

The down-regulation of EScaAG1 and EScaAG2 paralogous genes has further shown that they 

regulate the ovule identity. The VIGS-EScaAG downregulated phenotypic plants enclosed only 

sparse number of ovules inside the gynoecium. In weak phenotypic flowers, where no 

morphological defects were observed have shown normal ovule development. However, in 

medium phenotypic flowers, sparse number of ovules were produced compared to the wild type 

situation. Whereas in the severe phenotypic flowers with gynoecium as flat green structure or flat 

orange or petal-like structures, severe defects in the ovule development was observed. Neither 

the flat gynoecium nor the petal-like gynoecium enclosed the ovules, both types of gynoecia 

were completely empty without any ovules. 

The D- class gene SEEDSTICK (STK) and SHATTERPROOF (SHP1/2) are responsible for 

specifying ovule identity in A. thaliana. In E.californica, the STK orthologue is EScaAGL11. 

Impaired ovule development in the EScaAG1/2 down-regulation background hint that EScaAG 

genes might be involved in specifying the ovule identity along with EScaAGL11 while SHP 

genes are absent in E. californica (Zahn et al., 2006). 
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5.2 Establishment of somatic embryogenesis and regeneration of unripe seeds in E. 

californica  

 

For any plant species, some explant tissues are more amenable to transform than other tissues 

and at the same time, highly transformable tissues may not be amenable to regeneration. 

Development of protocols to transform a particular tissue is always associated with establishment 

of plant regeneration protocols for that same tissue. In the current project, unripe seeds were 

selected as a new explant source because of its ease of isolation and high amenability to 

regeneration. Thus as a first step, plant regeneration protocol was established using unripe seeds.  

 

5.2.1 Seeds of a defined stage serve as explants for E. californica 

 

The development of an efficient transformation system is a prerequisite for functional genomics 

studies of any crop species. To optimize the conditions for Agrobacterium-mediated DNA 

transfer of E. californica, establishment of callus induction and plant regeneration through 

somatic embryogenesis is mandatory. The explants that are amenable to regeneration through 

somatic embryogenesis were subsequently exposed to Agrobacterium tumefaciens for genetic 

manipulation of the same. 

Furthermore, the optimal developmental stage is an important aspect for the selection of tissue to 

be used as an explant and therefore, different explant sources such as cotyledons and hypocotyls 

were selected and followed the published protocol in order to produce the embryogenic calli and 

regenerated plants through somatic embryogenesis (Park and Facchini, 2000). Cotyledons were 

excised from germinated seedlings after five days and incubated on primary callus induction 

medium (CIM) to induce the callus production. Hypocotyls were isolated by cutting below the 

cotyledons and incubated on CIM. In about 4-6 weeks, both explants were started producing the 

calli. The calli were transferred to somatic embryo induction medium (B5 medium containing1 

mg L-1 NAA, 0.5 mg L-1 BAP and 8 g L-1 Phytoagar) as stated in the methodology (Park and 

Facchini, 2000). However, only few numbers of somatic embryos were regenerated from each 

callus during six weeks of incubation time (Table 3). Afterwards, the somatic embryos were 

transferred to plant regeneration medium (hormone free B5 medium and 8 g L-1 Phytoagar) and 

incubated for 4-8 weeks in order produce individual plantlets. Though the somatic embryos 
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developed healthy shoot system, root formation was completely absent even after eight weeks of 

incubation on plant regeneration medium. Therefore, individual plantlets could not be recovered 

even after several months of incubation due to lack of root system. In addition to that, aseptic 

isolation of cotyledons and hypocotyledons was highly laborious and tedious.  

 

Table 3: Regeneration of E. californica through somatic embryogenesis by using cotyledons 

and hypocotyledons as explants 

 

 

 

 

 

 

 

 

 

 

 

 

 

All these reasons have led to the establishment of stable transformation of E. californica in our 

laboratory using a new explant source. Unripe seeds or immature seeds were selected as new 

explant source of E. californica and tested their callus induction potential. The immature seeds 

gave rise to embryogenic calli on CIM in 2-4 weeks of incubation time. However, consistent 

behaviour of callus induction was absent from the unripe seeds. Therefore, optimization of 

immature seed stage was found to be necessary in order to achieve stable transformation at a less 

laborious way. The ideal stage of the seed was determined based on different selection criteria. 

At first, the fruits were selected based on different sizes such as 3 to 5 cms, 5 to 9 cms and 9 to 

12 cms. However, this parameter did not assist much to select an optimum stage of the seed. 

Secondly, maturity index of fruits was taken into consideration and based on that the fruits were 

categorized into green seeds and black seeds. Black seeds were always germinated into normal 

Experim

ent 

number 
Explant used 

 

No. of  

explants 

used 

No. of 

calli 

produced 

No. of  

somatic  

embryos  

produced 

No. of plants 

regenerated 

1 Cotyledons 200 69 4 0 

2 Cotyledons 440 263 4 0 

3 Cotyledons 760 167 0 0 

4 Cotyledons 60 20 1 0 

5 Hypocotyledons 340 191 0 0 

6 Hypocotyledons 562 280 0 0 

7 Hypocotyledons 52 28 2 0 
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seedlings, whereas green seeds produced calli sporadically. Thereafter, the green seeds were 

analysed further at different stages of their development.  

Afterwards, days after anthesis (DAA) was selected as a third criteria and the fruits containing 

green seeds were collected at different days after anthesis (DAA) spanning from 10 to 27 DAA. 

These seeds were observed under light microscope and were categorized based on the significant 

changes in the seed structure (Table 4). At 10-14 DAA, the seeds contained light green, shiny 

seed coat and were filled with a translucent liquid endosperm (Fig. 14 A, B, C). There was no 

embryo-like structures visible under the light microscope possibly because of its small size. At 

15-18 DAA, the seeds were characterized by a green and shiny seed coat with enclosed milky 

white liquid endosperm (Fig.14 D, E, and F). Consequently, the seeds collected during 20-24 

DAA were green in colour with irregularly textured seed coat and without any shining. The seeds 

at this stage consist of milky but solid endosperm. However, the embryonic structures were still 

invisible under microscope (Fig.14 G, H, I). From 25 DAA onwards, the seeds were having a 

greenish-brown seed coat with irregular texture and without shining (Fig.14 J, K, and L). The 

endosperm was solid and milky. At this stage, the embryo has grown large enough and visible 

under light microscope as a heart-shaped differentiated structure (Fig.14 J).  

 

Table 4: Characterization of seeds through light microscopic observation based on DAA  

 

DAA 

Thickness 

of fruit 

coat (mm) 

Nature of  

endosperm Description of seed coat 

1 10-14 0.2 to 0.5 

Colour less & liquid 

consistency 

Light green, shiny and  smooth 

textured  

2 15-19 0.6 to 0.9 

Milky white & liquid 

consistency Greenish, shiny, irregular textured 

3 20-24 0.9 to 1.0 

Milky white & solid 

consistency 
Dark green and irregular textured 

4 25-27 0.95 to 0.5 

Milky white & solid 

consistency 
Brownish green and irregular texture 
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Fig.14: Microscopic examination of unripe seeds at different DAA.  

A, B, C: seeds of stage 1 having a liquid endosperm; D, E, F: seeds of stage 2 showing a 

milky, liquid endosperm; G, H, I: seeds of stage 3 having a solid and milky endosperm; 

J, K, L: seeds at stage 4 having a solid and milky endosperm with a differentiated heart-

shaped embryo indicated by an arrow.  

 

Afterwards, the morphological differences of seeds observed under a light microscope at 

different DAA were correlated with the callus induction efficiency. 
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5.2.2 Callus induction  

 

About 20 seeds were collected from four representative developmental stages, spanning from 10 

to 27 DAA and incubated on CIM for four weeks in order to define the optimal stage of the seed. 

Out of 40 seeds incubated at two developmental stages spanning from 10-19 DAA, only 3 % 

seeds produced calli and the remaining seeds were un-reactive without any response of either 

germination or callus production. On the other hand, at 20-24 DAA, on an average out of three 

technical replicates about 53% of the seeds produced white, embryogenic calli after two weeks 

of incubation on CIM medium (Table 5). Whereas the seeds from 25-27 DAA, on an average 

11.5% calli produced and rest of the seeds were either germinated into normal plantlets on CIM 

medium or remained unresponsive during the four weeks of incubation. 

The morphological examination of seeds at different DAA through light microscopy combined 

with the callus induction efficiency revealed that the seeds at 20-24 DAA produced high 

frequency of embryogenic calli. Furthermore, when the seeds from 20-24 DAA were analysed in 

detail, the seeds at 22 DAA were produced about 83 % of calli. This hints that 22 DAA is the 

optimum time frame in order to produce high-frequency of callus in E. californica. 

 

Table 5A: Callus induction efficiency of unripe seeds at different DAA 

 

 DAA Number of seeds 

incubated 

Average number 

of calli produced

Percentage of 

callus induction 

(%) 

1 10-14 20 0 0 

2 15-19 20 0.6 3 

3 20-24 20 10.6 53 

4 25-27 20 2.3 11.5 
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Table 5B: Callus induction efficiency of unripe seeds during 20- 24 DAA 

 

 DAA Number of seeds 

incubated 

Average number 

of calli produced 

Percentage of 

callus induction 

(%) 

1 20 20 8.3 41.5 

2 21 20 11.3 56.5 

3 22 20 16.6 83 

4 23 20 13.6 68 

5 24 20 8.6 43 

 

Nevertheless, due to practical difficulties in collection and subsequent processing of seeds at 22 

DAA, the unripe seeds were collected in a time window of 20-24 DAA for subsequent 

experiments 

 

5.2.3 Somatic embryogenesis and root induction of regenerated shoots/ plantlets 

 

The root formation was completely absent in the regenerated plantlets after following the 

published protocol. Therefore, root induction medium was optimized by supplementing the plant 

regeneration medium (B5 medium, 8 g L-1 Phytoagar) with five different types of rooting 

hormones. The treatments as described in Table 6 consisting of three hormone supplements 

namely NAA (1-Naphthaleneacetic acid), BAP (6-Benzylaminopurine), and GA3 

(Gibberellic acid) enriched in the basic B5 medium at different concentrations. About five 

somatic embryos were taken for each treatment and incubated for one month. However, no roots 

were produced in any of the treatments. 

Thereafter, the vitality of sucrose in the root induction was realized (through personal 

communication by Prof.Dr.Wolfgang Heyser, Plant physiology, University of Bremen) and 

eventually sucrose was added to the basic B5 medium at a concentration 30 g L-1 (Fig. 15). The 
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five somatic embryos incubated on plant regeneration medium supplemented with sucrose 

produced roots in two weeks of incubation time. 

Subsequently, the importance of sucrose was realized in tissue culture media for somatic 

embryogenesis and root formation (Iraqi and Tremblay, 2001; Kamenicka, 1998) Therefore, 

sucrose was added at 30 g L-1 to SEIM also. The addition of sucrose has shown enormous effect 

on somatic embryogenesis by producing 70 somatic embryos per calli. 

 

Table 6: Optimization of rooting through the addition of supplements in the PRM 

B5 medium + concentration 
of hormone 

No.of shoots 
incubated/plate 

No.of roots produced/shoot 

Basic B5 medium 
No hormones 5 No response 

NAA (mg/L) 
0.5 5 No response 
1.0 5 No response 
1.5 5 No response 
2.0 5 No response 

BAP (mg/L) 
0.1 5 No response 
0.2 5 No response 
0.3 5 No response 
0.4 5 No response 

NAA+BAP (mg/L) 
0.1+0.3 5 No response 
0.2+0.5 5 No response 
0.3+0.8 5 No response 
0.4+1.0 5 No response 

½ MS+NAA (mg/L) 
0.5 5 No response 
1.0 5 No response 
1.5 5 No response 
2.0 5 No response 

IAA (mg/L) 
0.1 5 No response 
0.3 5 No response 
0.5 5 No response 
0.8 5 No response 

IAA+GA3 (mg/L) 
0.1+0.3 5 No response 
0.2+0.5 5 No response 
0.3+0.8 5 No response 
0.4+1.0 5 No response 

Sucrose (g/L) 
30 5 7-10 
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Fig 15: High-efficiency somatic embryogenesis and root induction through addition of 

sucrose to the growing media 

 

 

5.3 Agrobacterium-mediated genetic transformation of E. californica 

 

About 1000 unripe seeds at stage 3 (20-24 DAA) were collected and inoculated with four types 

of gene constructs as given below and 171 unripe seeds were untreated without any inoculation 

to serve as a positive control. 

i) Agrobacterium GV3101 strain containing pMLBART_35S:EcCRC overexpression 

construct of EcCRC 

ii) Agrobacterium GV3101 strain containing pHELLSGATE12_35S:hpRNAi:EcCRC 

knock-down expression construct of EcCRC 

iii) Agrobacterium GV3101 strain containing pMLBART:GFP reporter gene for inducing 

constitutive expression of GFP. 

iv) Agrobacterium GV 3101 strain containing pCX35S:GUS reporter gene for constitutive 

expression of GUS  
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The seeds after infection and co-cultivation have been grown on the CIM+ selection medium. 

The selection agent was added based on the vector construct used for the infection, either 10 mg 

L-1 Basta for pMLBART, 50 mg L-1 Paromomycin for pHELLSGATE12, or 10 mg L-1 

Hygromycin against pCX35S and were incubated at 25 °C in the dark. The embryogenic calli 

were produced in about two weeks (Fig16 B). Subsequently, the resistant calli were transferred 

to SEIM and incubated for about four weeks. Afterwards, the SE’s were transferred to PRM and 

incubated for one more month in the light conditions. The SE’s were developed shoots and root 

system along with secondary somatic embryogenesis (Fig.16 D, E).  

 

 

 

Fig.16: Agrobacterium-mediated stable transformation of E. californica through 

somatic embryogenesis and plant regeneration by using unripe seeds as a new 

explant source.  

A: unripe seeds collected from stage 3; B: embryogenic calli produced in 2 weeks; C: 

somatic embryogenesis; D: plant regeneration; E: on regeneration medium with Gelrite; 

F: individual transgenic plant after hardening. 

 

 

 When the seeds were collected in a time frame of 20- 24 DAA, the percentage of callus 

production was about 52%, however, when the seeds were collected at a timeframe of 22 DAA, 

the callus induction efficiency was increased to 85- 90% in the untreated conditions. However, 
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due to Agrobacterium treatment, only 22% of the resistant calli were produced from 

pMLBART_35S: EcCRC overexpression construct and about 56% of resistant calli were 

recovered from pMLBART_35S: hpRNAi-EcCRC knock-down expression construct that were 

able to produce somatic embryos (Tab 7). Whereas about 59.2% of resistant calli were produced 

from the pCX35S:GUS construct, and about 41% calli produced from 35S::GFP construct and all 

the resistant calli were moved to the SEIM+ Sel medium. 

 

Table 7: Transformation and regeneration of efficacy of unripe seeds in E. californica 

 

Construct used pMLBART-
35S:EcCRC 

pHELLSGATE12-
35S:EcCRC 

pMLBART-
35S:GFP 

pCX35S:GUS

No of seeds used 217 148 334 129 

No.of seeds 
produced calli 

45 32 65 27 

No of calli 
produced SEs 

10 18 27 16 

No of plants 
regenerated 

6 15 20 15 

No of positive 
transformants 

1 0 0 3 

Percentage of 
Regeneration 
(%) 

0.4 0 0 2.3 

 

 

Genotyping of putative transformants was carried out by isolating the cDNA from leaf tissues of 

the wild-type plants and six putative transgenic plants transformed with EcCRC overexpression 

construct pMLBART_35S: EcCRC. It has been shown that EcCRC is not expressed in the leaves 

of wild-type E. californica plants (Fig.17 a) (Orashakova et al., 2009).  
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Fig.17: Genotyping of putative transformants using RT-PCR on leaf cDNA 

(a) EcCRC expression profile in different tissues of wild type plant (b) RT-PCR on leaf 

cDNA of putative pMLBART_35S:EcCRC over expression lines. 

 

 

Therefore, EcCRC gene specific primers were used to amplify a partial sequence of the 550 bp 

fragment from the cDNA isolated from leaf tissues of wild type and putative transformants of 

pMLBART_35S:EcCRC over expression lines. The result showed that out of the six independent 

lines of pMLBART_35S:EcCRC, only 1 (line 4) plant has shown to be positive (Fig.17 b). 

However, no altered phenotype was observed in the fruit or leaf morphology. 

Further, the fruits were embedded in the FAE fixation solution and histology sections were 

observed under microscope for changes in the tissue organization of the fruits. However, there 

were no alterations in the tissue sections made from the fruits of pMLBART-35S:EcCRC 

overexpression lines (data not shown). This might be due to low copy number insertion. Usually 

low copy number insertion results in a low expression of the gene and it is obvious that if the 
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expression of a targeted gene does not reduce below a certain critical threshold level, that could 

not result in a mutant phenotype (Prelich, 2012). Also, there were no positive putative 

transformants observed from knock-down EcCRC construct and from the constitutive expression 

of pMLBART_35S:GFP construct. In contrast, in the constitutive expression lines of GUS 

construct, a few calli have shown positive signal after Gus staining. However, the signal was 

very week (Fig.18).  

 

 

Fig.18: Histochemical GUS expression analysis of E.californica calli transformed with 

pCX35S:GUS construct through Agrobacterium using unripe seeds as explants. 
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6 Discussion 

 

Homeotic mutants provide valuable source of information on molecular networks regulating 

plant development during evolutionary process. The present study focussed on the comparison of 

degree of conservation of C class genes in distantly related major plant groups such as A. 

thaliana, O. sativa and E. californica. The functional characterization of carpel developmental 

genes in California poppy was undertaken by deploying two genetic tools: Agrobacterium-

mediated stable genetic transformation and virus-induced gene silencing (VIGS). Rapid and 

highly efficient VIGS methodology has been the main tool for detailed analysis of EScaAG1 and 

EScaAG2 paralogues in E.californica. The two EScaAG paralogues of E.californica were found 

to be recent duplicates of the AG clade with an estimated age of 51 million years as calculated by 

a penalized likelihood approach (Sanderson, 2003). This divergence time was obtained by using 

a maximum likelihood tree for the AG subfamily (Shan et al., 2009), calibrated with taxon ages 

as reported (Moore et al., 2007). It has long been suggested that several duplication events 

occurred in the AG clade (Becker and Theißen, 2003; Jager et al., 2003; Theissen et al., 1996). 

The duplication event in E.californica is found to be within the basal eudicots and is independent 

of a duplication event of euAG genes in core eudicots (Zahn et al., 2006). 

 

6.1 Functional analysis of EScaAG1 and EScaAG2 gene paralogues using VIGS 

6.1.1 High sequence similarity at nucleotide and protein levels  

 

The EScaAG1 and EScaAG2 paralogues are highly similar throughout the ORF and UTR 

regions. They shared 81.7% sequence similarity in the open reading frame and were 75.5% 

identical when the 5'UTR was included. Furthermore, both paralogues share 69% similarity 

when the two amino acid sequences were compared. It is generally believed that the duplicated 

genes will not survive for a long time in the genome unless they diversify either in expression 

and/or function (Liu et al., 2010). In situ hybridization have shown that EScaAG1 and EScaAG2 

have similar expression patterns in stamens and carpels and EScaAG1 is being expressed at much 

higher levels compared to EScaAG2 (Zahn et al., 2006). However, no reduced constraint on 

EScaAG2 was deduced from the analysis of the ratio of synonymous to non-synonymous 

nucleotide substitutions on the branch leading to EScaAG2 (Shan et al., 2009). A recent shift in 
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constraint on EScaAG2 may also not be detectable (Leebens-Mack and dePamphilis, 2002). 

Moreover, the molecular evolutionary analyses indicate that both EScaAG1 and EScaAG2 have 

been evolved under selective constraint for much of the approximately 50 million years since 

their duplication. Based on the above considerations, it has been inferred that both EScaAG1 and 

EScaAG2 genes are selectively maintained in the lineage leading to E. californica. 

 

6.1.2 Differential expression pattern of EScaAG paralogues  

 

From the RT-PCR and qRT-PCR expression studies, the general inference drawn is that the 

expression level of EScaAG2 is lower than that of EScaAG1 in all the tissues where it is being 

expressed. However, in stamens, EScaAG2 is being expressed stronger than EScaAG1. 

Additionally, further qRT-PCR expression analysis in different stamen whorls has revealed more 

surprising results that there is a gradual increment of EScaAG1 expression from the outer whorl 

of stamens to inner whorl of stamens and in the carpels. On the other hand, EScaAG2 expression 

is stronger in the inner whorl of stamens compared to outer whorl of stamens and carpels (Lange 

et al., 2013). In conclusion, EScaAG2 show its peak expression in the inner whorl of stamens and 

EScaAG1 show its maximum expression in the carpels.  

 

6.1.3 Homeotic conversions of VIGS-EScaAG paralogues genes 

 

In E. californica, the two AG orthologous EScaAG1 and EScaAG2 act as C-function genes. In 

pTRV2-EScaAG1 severe phenotypic flowers, the reproductive organs were homeotically 

converted into petaloid organs, and further perianth organs developed inside the fourth whorl. 

Hence, it can be suggested that EScaAG1 is required to specify the identity of the stamens and 

carpels and to confer floral meristem determinacy. On the other hand, when the second paralogue 

EScaAG2 was downregulated, the severe phenotypic flowers have shown homeotic conversion 

of stamens into petals and carpels into petaloid organs, and loss of floral meristem determinacy. 

In case of EScaAG1/AG2 double gene knockdown, the phenotypic flowers revealed a 

complementary interaction of two genes and the whole scenario demonstrates that they are 

partially redundant. However, due to high sequence similarity between the two paralogues, the 

VIGS method could not be able to silence the paralogues individually and it was demonstrated 
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by qRT-PCR that in each single gene knock-down, there was a slight downregulation of the 

second gene too (Fig 8). 

Nevertheless, in VIGS-EScaAG1 medium phenotypic flowers, only the outer whorls of stamens 

were converted into petals and the inner whorls of stamens remained as stamens (Fig.9 G, I). In 

contrast, the inner whorls of stamens were converted into petals and outer whorl of stamens 

remained unchanged in VIGS-EScaAG2 downregulated flowers (Fig.9 H, J). Moreover, in the 

VIGS-EScaAG1/AG2 double gene knock-down medium phenotypic flowers, both the outermost 

and innermost whorls of stamens were converted into petals or petaloid organs and middle 

whorls remained as stamens (Fig.9 K). This is in correlation to their expression patterns, as 

EScaAG2 show strongest expression in the inner whorl stamens and EScaAG1 is strongly 

expressed in the outer whorl of stamens.  

Besides that, the stamen identity in general is specified by the combination of B and C- class 

genes in the wildtype flowers, whereas in sei-1 mutant flowers, the stamen identity is completely 

lost (Lange et al., 2013). Expression analysis of EScaAG paralogous genes through qRT-PCR in 

the sei-1 mutant has shown that the expression of EScaAG2 is strongly reduced compared to 

EScaAG1 (Lange et al., 2013). Based on the deviated spatial distribution of the homeotic 

conversions of stamens into petals in different whorls (Fig.9 G-I), and differential expression 

pattern of the two paralogues in the stamens and carpels (Lange et al., 2013), a new dimensional 

role of EScaAG2 in stamen development, mainly in the inner whorl of stamens is suggested. This 

kind of expression difference between two AG paralogues along with sub-functionalization was 

also proposed in Thalictrum thalictroides with a new dimensional role of ThtAG2 in ovule 

identity (Galimba and Di Stilio, 2015). The distinct floral morphology of E. californica with 

variable number of spirally arranged stamens and developmental mechanism of ring meristem in 

promoting additional stamen whorls is proposed in this study.  

Downregulation of EScaAG genes lead to homeotic conversion of carpels into flattened orange 

petaloid gynoecium with cell surface structure typical for petals (Fig.14 C, D). Whereas in A. 

thaliana, the ag mutant exhibit homeotic conversion of stamens into petals, carpels into sepals 

and this is due to antagonistic nature between A and C class genes; when C class genes are 

absent, the position is occupied by A class genes and results in the sepal identity in the 4th whorl 

(Coen and Meyerowitz, 1991). In A. thaliana, SUPERMAN (SUP) is a cadastral gene that 

prevents the expansion of expression domains of the B- function genes AP3 and PI into the 
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fourth whorl and therefore carpels are converted to sepal-like organs (Sakai et al., 1995b). In A. 

majus, the ple-1/far double mutant exhibits homeotic conversions of stamens into petals, and 

carpels into petals (Schwarz-Sommer et al., 1990). The homeotic transformation of carpels into 

petaloid structures instead into sepals is due to an expansion of the B- function genes into the 

fourth whorl as a result of a C- function reduction. In case of A. majus, the putative SUP 

orthologue OCTANDRA (OCT) requires PLE or FAR to exclude B- function gene expression 

from the fourth whorl. Hence OCT function depends on the PLE/FAR, while SUP in A. thaliana 

acts independent of AG (Davies et al., 1999). The scenario of homeotic conversion of carpels 

into petal-like structures due to down-regulation of EScaAG 1/2 paralogues is more similar to A. 

majus and is in contrast to A. thaliana. Moreover, the homeotic conversion of carpels into a 

petaloid gynoecium coincides with the expansion of the expression domains of two B class genes 

EScaDEF2 and EScaGLO into the central floral whorl of EScaAG1 and EScaAG2 down-

regulated plants. On the other hand, the third B- class gene EScaDEF1 is expressed in the 

gynoecia of untreated and wild-type plants and its expression levels were unaffected by the 

reduction of C- class gene expression in the VIGS treated plants (Fig.12). These findings suggest 

that though the EScaDEF1 expression is independent of class C gene expression, EScaDEF2 and 

EScaGLO are negatively regulated by EScaAG genes in the central floral whorl. Hence, it can be 

proposed that the negative regulation of B- function genes in the fourth whorl may involve the 

activation of an unknown cofactor that could positively regulated by EScaAG1 and 2 genes to 

restrict B- function expression to the second and third whorls in the wild type plants. Thus, the 

regulation of California poppy B- function genes in the 4th whorl is more similar to A. majus 

compared to A. thaliana.  

This type of C- class dependent regulation of B- class genes was not observed in monocots also. 

In rice, the downregulation of AG homologues, OSMADS58 and OSMADS3 result in neither the 

transformation of carpels into lodicules nor the expansion of the expression domains of the B- 

class genes into the 4th whorl (Yamaguchi et al., 2006). This suggests a scenario of C-dependent 

B-gene expressions in the central 4th whorl and B-dependent C-expression (at least EScaAG2) in 

the 3rd whorl. This whole scheme hint three possibilities for the evolution of class C-dependent 

regulation of class B gene expression (i) This type of regulation had evolved before the monocot 

and eudicot lineages diverged but was lost independently, in lineages leading to Arabidopsis and 

rice (ii) The C-dependent regulation of B- expression evolved once in the eudicots before the 
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divergence of Ranunculales and was lost in the lineage leading to Arabidopsis after their split 

from the asterids. (iii) Class C genes were recruited twice independently, once in the lineage that 

led to E. californica after it diverged from the rest of the dicots, and a second time in the lineage 

leading to Antirrhinum after its divergence from the lineage leading to Arabidopsis. Owing to 

lack of C-class homeotic mutants from basal angiosperms or non-grass monocots, all three 

possibilities are equally considerable. The C-class dependent B- gene expression in E. 

californica as a representative of a basal eudicot lineage and A. majus, a member of the asterids 

clade might be more ancestral scenario compared to the C- independent regulation of B-class 

genes in A. thaliana. 

 

6.1.4 EScaAG genes regulate the termination of meristem activity in both stamen and 

carpel whorls 

 

A reduction of EScaAG1 and EScaAG2 functions in E. californica contributes to defects in floral 

meristem termination in both the stamen and the carpel whorls, albeit in a more complex pattern. 

The loss of meristem determinacy in E. californica was demonstrated as enclosure of an 

additional flower inside the gynoecium in the fourth whorl (Fig. 19 A) and which is similar to the 

phenomenon observed in A. majus. However, such a phenomenon observed is in contrast to the 

scenario in A. thaliana, where the additional flower is enclosed inside the third whorl (Davies et 

al., 1999). 
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Fig.19 A: Schematic representation of flower structure in Antirrhinum, 

Arabidopsis, and California poppy.  

The whorl numbers are highlighted to indicate the AG phenotypic differences in three 

species. The ple mutant in A. majus encloses additional flower inside the 4th whorl; in 

case of A. thaliana, ag mutant exhibits additional flower enclosed in the 3rd whorl, 

whereas in the case of E.californica, the scenario was more similar to A. majus with an 

additional flower encircled inside the 4th whorl. 
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B: Hypothetical model of C class dependent regulation of B class gene expression in 

E. californica.  

The ABCE model of E.californica consisting of the B-class genes (yellow boxes) 

EScaDEF1, EScaDEF2, and EScaGLO that are supposed to be expressed in the second 

and third whorl. Out of two C class genes (green boxes), EScaAG1 is expressed in a 

gradual increasing manner from outer whorl stamens to central whorl, whereas EScaAG2 

is expressed highest in the inner whorl of stamens. Two E class genes EScaAGL2 (blue 

boxes) is expressed in all whorls and EScaAGL9 is expressed in petals, stamen and carpel 

whorls (Viaene et al., 2010). Red bars indicate repression of gene expression and 

repression mechanism of EScaAG1 and EScaAG2 expression to the reproductive whorls 

of the flower is still enigmatic. Whereas the repression of EScaDEF2 and EScaGLO by 

the C class gene EScaAG2 is direct or mediated by a co-factor. 

 

 

In addition to loss of floral meristem determinacy in the 4th whorl in E. californica, there was an 

indeterminacy in the 3rd whorl of VIGS-EScaAG1/2 treated plants. About 38 to 40 floral organs 

were present in EScaAG1/2 down-regulated plants in the 3rd whorl irrespective of the severity of 

the phenotype (Fig. 9 E,F,I,J,K). Moreover, the average number of stamens in the weak 

phenotypic flowers without any homeotic transformations was also found to be more than that of 

wild-type plants (Tab.2). These observations support the inferences drawn from A. thaliana and 

A. majus that even a mild reduction in C-class protein affects floral meristem determinacy 

(Causier et al., 2009; Mizukami and Ma, 1995). The morphogenesis of E. californica flowers 

differ from most core eudicots in a way that the innermost stamen whorls are still being formed 

when the central gynoecium is initiated. A ring of cells with meristematic activity is still 

maintained around the gynoecium while the central floral meristem is consumed in the process of 

gynoecium initiation. This study suggests that a mild reduction in EScaAG1/2 expressions is 

sufficient for a prolonged meristem activity in this ring shaped meristem that produces additional 

stamen whorls in EScaAG1 and 2 VIGS-treated flowers. The influence of pTRV2-EScaAG1/2  

on the stamen whorls is especially interesting as the number of stamens in the wild type E. 

californica are variable, ranging between 18-34 even under identical conditions and constant 

light (Becker et al., 2005). In E. californica, the number of stamens generally varies with the 

stature of the plant. Healthy plants produce more number of stamen whorls under well-grown 
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conditions, which has been also reported in Stellaria media (chickweed) (Haskell, 1949). The 

production of extra number of stamens from the ring meristem is hypothesized here to be 

determined by the quantity of EScaAG2 expression in E. californica flowers. Even the slight 

differences in the timing and dose of EScaAG2 transcript abundance between plants could result 

in variations in the number of stamens in the wild type plants. This might indicate a stature-

dependent regulation of EScaAG2 floral homeotic gene in the ring like meristem. Moreover, a 

direct link could exist between floral homeotic gene action and male fecundity in natural 

populations. This additional function of the EScaAG2 in E. californica in the zone of 

meristematic activity around the gynoecium might represent a more general mode of function for 

class C genes in the large sub-group of angiosperms with several stamen whorls and often 

varying stamen numbers. The duration of class C gene activity in the meristems generating these 

stamen whorls might also determine the stamen number in these species. In general, 

zygomorphic flowers are more efficient in pollen transfer and needs less pollen. On the other 

hand, actinomorphic flowers with cross pollination mechanism needs more pollen grain in order 

to achieve more seed set (Walker-Larsen and Harder, 2000). However, the functional evolution 

of such morphological changes as increase in stamen number needs to be analyzed further.  

In A. thaliana, SUP regulates the floral organ number and the sup mutation prompts the 

development of extra whorls of stamens inside the third whorl and which is at the expense of 

carpels (Hiratsu et al., 2002; Sakai et al., 1995a). In A majus, the oct mutation also exhibits a 

similar phenotype of extra whorl of stamens as sup in A. thaliana. Moreover, the ple/far double 

mutant of A majus and ag/sup double mutant of A. thaliana also causes the similar phenotype. 

This indicates that PLE/FAR share the functionality of OCT in this role (Davies et al., 1999; 

Schwarz-Sommer et al., 1990). In E. californica, the stamen number was enhanced in VIGS-

EScaAG1/2 phenotypic flowers but without the loss of carpel identity and is due to the presence 

of ring meristem. The extra numbers of stamens are produced in the inner whorls of stamens at 

the expense of ring meristem instead of consuming the central meristem. Owing to high 

expression pattern of EScaAG2 in the inner whorl of stamens, it can be postulated that EScaAG2 

might be playing the main role in sharing the functions of SUP or OCT rather than EScaAG1 in 

E.californica. 

Furthermore, it can be speculated that the two types of floral meristems in E.californica flower, 

one is in the border of 3rd and 4th whorl as ring meristem and the other one in the central dome as 
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central floral meristem are regulated differentially by two EScaAG genes. Depending on their 

highest expression pattern, it can be postulated that EScaAG1 is responsible for FMD in the 

central meristem and EScaAG2 is responsible for the FMD in the ring meristem.  

Additionally, the dose-dependent regulation of AG protein produces different range of 

phenotypes in A. thaliana, a mild loss of AG protein results in loss of reproductive organ identity 

and a severe loss of protein results in FM indeterminacy. Therefore, it has been suggested that 

high amount of AG protein is required to confer FMD and low amount of AG protein is 

sufficient to specify stamen and carpel identity (Sieburth et al., 1995). Hence, the small amount 

of protein loss leads to FMD in the central whorl without any homeotic transformations and 

indicates that FMD requires ample amount of protein compared to reproductive organ identity. 

Whereas in E .californica, a small amount of AG protein reduction resulted in the loss of ring 

meristem identity in the 3rd whorl without any homeotic conversions, medium amount of loss of 

AG protein resulted in sacrificing the reproductive organ identity and severe loss of AG protein 

resulted in the loss of FMD in the 4th whorl. This indicates that ring meristem requires high 

amount of protein compared to central FM and organ identity in E. californica. 

Furthermore, the severe reduction of EScaAG protein in VIGS-EScaAG1/2 flowers showed the 

loss of stamen identity and FMD, the carpelloid characteristics are still remained to be 

maintained. This might indicate that there are more carpel developmental genes acting in an 

EScaAG independent pathway. In A. thaliana, agap2shp1shp2 quadruple mutant exhibited the 

complete absence of carpel features (Pinyopich et al., 2003). However, SHATTERPROOF1/2 

(SHP1& SHP2) genes are not present in E. californica (Zahn et al., 2006). On the other hand, the 

severe phenotypic VIGS-EScaAG1/2 flowers with flat orange gynoecia were completely devoid 

of ovules consistently and the ovules were replaced with carpelloid structures enclosed inside the 

gynoecium. This is in correlation with the scenario in A. thaliana where AG play crucial role in 

ovule identity along with D- class gene AGL11 (Pinyopich et al., 2003). This indicates that the 

ovule identity in E. californica is also determined by the interaction of EScaAG1/2 and 

EScaAGL11. As the VIGS could not downregulate the complete expression of EScaAG, the 

residual amount of expression might be sufficient to specify the carpel identity or further 

cofactors involved in an EScaAG independent pathway needs to to be studied further through 

complete knockout mutants for EScaAG paralogues genes. 
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6.2 Somatic embryogenesis and plant regeneration using immature seeds of E. 

californica  

 

A reliable and efficient regeneration system is a prerequisite for genetic manipulation of any 

plant species. Although there are successful transformation protocols available for E. californica, 

the direct application of published protocols could not be reproduced and further, the isolation of 

stated explants was highly time-consuming, laborious, and unsuccessful. Therefore, optimization 

steps have been developed for E. californica var aurantiaca. The plants were grown under 

controlled conditions in a greenhouse and immature seeds were collected to induce callus 

production. The stage of unripe seeds, the duration of the callus induction period, somatic 

embryogenesis, and root induction were established to optimize a regeneration protocol. 

The developmental stage of the explant is a crucial factor for the in vitro culture and regeneration 

of plants. The quality of callus induction and regeneration capacity is strongly dependent on the 

developmental stage of the explant. A good observation parameter reflecting the physiological 

state of the explant is DAA. The seeds at 22 DAA had the highest regeneration potential and 

proved to be a suitable stage for in vitro culture of California poppy. However, based on seasonal 

variations, growing conditions, and pollination timings, a time window of around 22 to 24 DAA 

proves to be optimum for producing embryogenic calli. On the contrary, the seeds collected 

outside this time frame were found to be either unreactive or produce non-embryogenic calli or 

germinated into normal seedlings after four weeks of incubation.  

Additionally, hormone free basic B5 medium could not induce roots and results in unsuccessful 

plant regeneration through somatic embryogenesis and therefore, culture medium was 

established for callus induction, somatic embryogenesis, and root formation by adding 30 g/L 

sucrose. Sucrose is one of the most important carbon sources in the micropropagation of plants 

mainly for somatic embryogenesis and root induction (Iraqi and Tremblay, 2001; Kamenicka, 

1998). The addition of sucrose to the SEIM has been resulted in the production of 70 somatic 

embryos per calli. Moreover, there was a continuous production of secondary somatic embryos 

from the remaining calli. On the whole, a highly efficient regeneration system of California 

poppy was achieved by culturing unripe seeds at 22 DAA on B5 medium containing 30 g/L 

sucrose in all the growing media. 
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6.3 Establishment of Agrobacterium tumefaciens -mediated transformation  

 

Although there are a number of publications available describing successful Agrobacterium-

mediated transformation of California poppy by using various explants (Apuya et al., 2008; Park 

and Facchini, 2000), the ability to transform California poppy using Agrobacterium tumefaciens 

is currently restricted, and this might be partly due to the lack of clearly-written transformation 

protocols. 

Agrobacterium-mediated transformation was carried out using unripe seeds collected at 22 to 24 

DAA, inoculated for 20 min with Agrobacterium culture containing respective plasmid 

(OD=1.0) and co-cultivated for 2 days on CIM. Later on, the seeds were cultured on CIM + 

Timentin with potassium clavulanate (100 mg/l) + plant selection for 2-4 weeks, and sub-

cultured for every 2 weeks interval on fresh medium. Then, the embryogenic callus was 

transferred to the regeneration medium. Although the transient expression of the uidA gene was 

observed, the GUS expression was low. Furthermore, in the EcCRC over expression putative 

transformants, though the transgene integration was confirmed through RT-PCR on leaf cDNA 

in one independent line, further detection by southern blotting was not successful. On the other 

hand, the putative transgenic line didn’t show any altered phenotype. This might be due to low 

copy number insertion. These results suggest that though the unripe seeds were proven to be the 

good explant source for high throughput somatic embryogenesis and plant regeneration, 

Agrobacterium mediated genetic transformation still needs to be optimized further.  

In order to increase the transformation efficiency, one of the possible routes is exposing the 

slightly wounded explants with Agrobacterium infection medium at different concentrations (OD 

600 1.2-2.0). Additionally, infection should be carried out for different time periods in order to 

induce better inoculation and allowing the Agrobacterium to pass through different tissues of the 

seed to reach the embryo, as the embryo is present as a few cells deep inside the endosperm in 

California poppy. Another parameter that can further improve the transformation efficiency is 

changing the co-cultivation period. Longer co-cultivation periods can help the A. tumefaciens to 

infect the seeds in a more efficient way. However, all the mentioned parameters should be tried 

in a gradual manner with comparisons to the already established protocol, otherwise, too longer 

infection may cause the over growth of the A. tumefaciens and too shorter conditions could lead 

to poor transfer of Agrobacterium and there by poor transformation efficiency. 
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6.4 Advantages and disadvantages of VIGS and Stable transformation  

 

Stable genetic transformation is one of the important molecular tools for the genetic engineering 

of plants. Stable transformation mediated by Agrobacterium tumefaciens, a soil plant pathogenic 

bacterium is the method of choice because of its exceptional ability to transfer the gene of our 

interest in the T-DNA region of the tumour-inducing (Ti) plasmid into the nucleus of target 

explant cells, where it is stably integrated into the host genome and transcribed (Hoekema et al., 

1983; Petit and Tempé, 1978). Therefore, it is one of the attracted and most widely accepted 

techniques in the molecular breeding for improvement of agriculturally important and medicinal 

crops. Additionally, for functional genomics studies, as a reverse genetic tool, stable genetic 

transformation plays a pivotal role. Its role is more important in the functional characterization of 

perennial plants. 

At the same time, stable transformation has its disadvantages. It is highly laborious and tedious 

because of tissue culture process. Furthermore, establishment of regeneration protocol for each 

genotype and individual explant source is tiresome. As an example, in case of barley, the whole 

process of regeneration from explant to generating plantlets takes about 10 months duration 

(Bartlett et al., 2008). 

On the contrary, Virus-induced gene silencing (VIGS) has become a powerful technology in 

recent years for functional characterization of genes in a broad range of species. VIGS is an 

efficient system to analyze the gene functionality for both forward and reverse genetic studies. In 

the reverse genetic approach, it takes advantage of post transcriptional gene silencing (PTGS) 

phenomenon of the plant. PTGS is an RNA based silencing system of the plant which uses the 

plant innate defence system to down regulate the expression of gene of our interest (Watson et 

al., 2005). 

Several dicots species were successfully infected by TRV based viral vectors. The main 

advantage of TRV based vectors is that they can infect meristamatic cells, hence can assist in 

functional genomics studies of flower and fruit development and aid in the evolutionary 

developmental genetic studies (Ratcliff et al., 2001; Wege et al., 2007). On the other hand, 

introduction of virus into plants is easy and thus established well in several model species. 

Furthermore, VIGS avoids the laborious tissue culture-based plant transformation procedures 
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and thus applicable to many recalcitrant species such as peanut (Tiwari et al., 2015), maize, 

barley, grapevine, pea, soybean, and so many other dicots (Becker and Lange, 2010). Wheat is 

the most recalcitrant cereal species to tissue culture in vitro (Shah et al., 2009). Stable 

transformation is still limited to a few responsive varieties with quite different transformation 

frequencies such as the model spring genotype ‘Bobwhite’ (Cheng et al., 1997; Hu et al., 2003). 

Usually, gene functional analysis is carried out through knockout mutants. Due to the polyploidy 

state of wheat genomes, functional redundancy of homologous genes hinder further analysis 

(Lawrence and Pikaard, 2003). In this case, VIGS has become the best alternative for 

simultaneous knockdown of expression of multiple related gene copies in polyploidy wheat 

(Manmathan et al., 2013).  

Furthermore, partial sequence information is sufficient to silence a specific gene. VIGS is well 

suited to plants, where a complete knock-out or a mutation is lethal in embryo and seedling of 

sexually reproducing plant species (Burch-Smith et al., 2006). Additionally, it has been shown 

that VIGS can co-silence extremely redundant genes simultaneously by using a highly identical 

sequence. 

Nevertheless, there are few limitations of VIGS methology, such as it cannot differentiate the 

functionality of highly redundant genes. At the same time, upon VIGS inoculation, depending on 

the penetrance of the virus, wide range of phenotypes were observed and hence large number of 

plants needs to be analysed (Becker and Lange, 2010). Hence VIGS can be used as a rapid and 

preliminary methodology to study the first hand functionality of a gene, which is followed by a 

stable genetic transformation results in confirmation of the gene function in detail. Stable 

transformants also provide further source material to study the interaction partners. 
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7 Conclusions and outlook 
 

Gene function analysis of EScaAG1 and EScaAG2 in E. californica has brought out some 

interesting findings. Though EScaAG2 showed similar expression pattern as EScaAG1 through in 

situ hybridization, the present study through qRT-PCR expression analysis coupled with 

functional characterization has shown the importance of EScaAG2 in stamen organ identity 

mainly in the inner stamen whorls and ring meristem activity.  

Additionally, the second intron in AG acts as the promoter region and carries various cis-

regulatory elements. The promoter region of AG in A. thaliana consists of several CArG box 

variants, multiple MYB binding sites and a single LFY binding site. CArG boxes are the binding 

sites for other MADS box proteins in order to form homo or hetero dimers. Hence cis-regulatory 

elements of EScaAG1 and 2 needs to be analysed individually in order to understand the 

functional evolution of EScaAG2 after gene duplication. 

Besides that, the cadastral cofactors which are involved in the restriction of expansion of B class 

genes into 4th whorl along with EScaAG1/2 is remaining as a blank still as there is no SUP 

orthologue identified in E. californica. 

An another important gene involved in carpel development in E. californica is EcCRC, which 

regulates the central floral meristem determinacy in E. californica. Therefore the gene cascade 

and molecular mechanism involved in the two types of floral meristems in E. californica can 

explain the subfunctiuonalization of two EScaAG genes.  
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9 Appendix  

9.1 Suppl.Fig.1: Relative expression analysis of EScaAG paralogues in E. 

californica  

 

 
RT-PCR expression analysis of two EScaAG genes in floral organs at anthesis, various 
floral developmental stages, leaves, young fruits, and seeds is shown. The expression of 
EcACTIN2 (EcACT2) served as a control expression in all RT-PCR experiments. 

 

 

 

9.2 Suppl.Fig.2: Histological section of VIGS-EScaAG phenotypic flower 

 

 
(L) Transverse section of a flower of an untreated plant. (M) Transverse section of a 

flower from an EScaAG1 VIGS treated plant showing homeotic conversion of stamens 

into petals, petaloid- stamen mosaic structures, malformed stamens, the central 

gynoecium showing lack of tissue differentiation, ovules, and placenta. 

Abbreviations: p: petals; pst: petaloid stamens; s: sepals; st: stamens; cw: carpel walls. 
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9.3 Suppl.Fig 3: Percentage of homeotic transformation of gynoecia in VIGS: 

EScaAG treated plants 

 

 

 

 

The X-axis denotes the various EScaAG down regulated plants and the Y-axis represents the 
percentages of different carpel identity phenotypes observed (pTRV2-EScaAG1, n=239; EScaAG2, 
n=209, EScaAG1/2, n=261 flowers). The green color symbolizes the occurrence of flat green 
gynoecia; the orange color symbolizes flat orange gynoecia. Stripes indicate gynoecia enclosing 
ovules, plane color indicates a gynoecium lacking ovules, and the dotted pattern indicates 
additional organs enclosed by the gynoecium. 
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9.4 Suppl Table: List of primers used 
 

Primer Sequence Purpose 
Actin2RTQfw  TTACAATGAGCTTCGTGTTGC RT-PCR reference gene
Actin2RTQrev  CCCAGCACAATACCTGTAGTAC RT-PCR reference gene
EcAG2RTFwprimer  GAGAGAGAGAGAGAGAGAGAA

TGAGAA 

RT-PCR paralogue specific 
primer for EScaAG2 

EcAG1RTRevspan  CCTAGAGTCATAACCAGAAGAA
GTC 

RT-PCR paralogue specific 
primer for EScaAG1 

EcAG2RTRevspan  CGCTAGAAATCATGTCGTTGTAT
TCG 

RT-PCR paralogue specific 
primer for EScaAG2 

P27-5  GGGATGACGCACAATCC sequencing primer for 
pHELLSGATE12 

P27-3  GAGCTACACATGCTCAGG sequencing primer for 
pHELLSGATE12 

EcCRCRNAi 
forwardpri 

CACCGGCTTTCATCAGGGTTTTT
G 

For making RNAi-knock 
down expression construct  

EcCRCRNAi 
reversepri 

CGATGCGGTATATCAGGATG For making knock down 
expression construct 

GFPforward  ATGCCACATACGGAAAGCTC wild type GFP primer
GFPreverse  GGGTCTTGTAGTTCCCGTCA wild type GFP primer
EcCRCihRNAifor  CACCGGACTACCTTTCTCACACT

GAGC 
For making RNAi-knock down 
expression construct 

EcCRCihRNAiRev  CCCTGATGAAAGCCACTGAT For making RNAi-knock down 
expression construct  

EcAG1RTFW2  GCAGATCCCTCAAATTCTGC RT-PCR paralogue specific 
primer to EScaAG1 

GAPDH QRT Fw GCTTCCTTCAACATCATTCC Reference gene primer for 
qRT- PCR 

GAPDH QRT Rev  AGTTGCCTTCTTCTCAAGTC Reference gene primer for 
qRT- PCR 

ACTIN-136-F  AAGAGCTCGAAACTGCCAAG Reference gene primer with 
UPL probe from Roche for 
qRT-PCR 

ACTIN-136-R  CATCGGGAAGCTCGTAATTT Reference gene primer with 
UPL probe from Roche for 
qRT-PCR 

EcAG1 QRTFw1  AGAAGAGGGAGATTGATTTGC EScaAG1 primer for qRT-PCR
EcAG1QRTRev1  AAGTTCCTAGAGTCATAACCAG EScaAG1 paralogue specific 
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primer for qRT-PCR 
EcAG2 QRT Fw  CGAAACTAGATTAGAGAAAGGC EScaAG2  primer for qRT-

PCR 
EcAG2 QRT 
Revspan 

CGCTAGAAATCATGTCGTTGTAT
TCG 

EScaAG2 paralogue specific 
primer for qRT-PCR 

EcDEF1-132-F  GGATGGGAGAGGATTTGGAT EScaDEF1 primer with UPL 
probe from Roche 

EcDEF1-132-R  TTCCAGATTTTGCTCAAGACTTC EScaDEF1 primer with UPL 
probe from Roche 

EcDEF2RTQfor2  ATTTGGTGGAGGAGATGATGAG EScaDEF2 primer for qRT-
PCR 

EcDEF2RTQrev2 TTTTGAAGATTGGGATGGCTA EScaDEF2 primer for qRT-
PCR 

EcGLORTQfor2 TCTAGCACTGGCAAGATGTC EcGLO primer for qRT-PCR
EcGLORTQ rev2 TTGATTCTATCCACTTCAGCAC EcGLO primer for qRT-PCR 
 


