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1. Introduction 
1.1 The heart 
The heart is a hollow muscle that pumps blood throughout the blood vessels by 

repeated, rhythmic contractions. The body requires oxygen and nutrients to 

carry on the process of life. A network of arteries and veins transports oxygen-

rich blood to the body and carries oxygen-poor blood back to the lungs. At the 

center of this continuous process is the heart, a beating muscle about the size 

of the fist in adult humans. The heart pumps approximately 5 liters of blood 

every minute, beating at 72 beats per minute and each heart beat circulates 

blood to both the lungs and the body. This is possible because of the heart’s 

complex internal structure.  

 

1.2 Heart development 
The heart is the first functional organ in the developing embryo and arises from 

cardiac progenitor cells derived from the embryonic mesoderm in the so-called 

heart field region1.The heart field initially forms as a crescent shaped structure 

in the anterior part of the embryo that later develops into a linear tube2, 3 (Figure 

1.1).  

a                                                                                            b 

   
Figure 1.1. Summary of mouse heart development. (a) Five major stages of heart 

development are shown: (1) cardiac crescent formation at embryonic day (E) 7.5; (2) formation 

of the linear heart tube at E8; (3) looping and the initiation of chamber morphogenesis at E8.5 

to E9.5; (4) chamber formation; and (5) chamber maturation and septation and valve formation. 

ao indicates aorta; a, atrium; la, left atrium; lv, left ventricle; ra, right atrium; rv, right ventricle; 

ot, outflow tract; sv, sinus venosa; and pa, pulmonary artery (adapted from Bruneau, 20024). 

(b) Scanning electron micrograph of an isolated adult cardiomyocyte (adapted from McDermott, 

20075). 

 

The tubular heart undergoes segmentation along the anterior-posterior 

axis, followed by rightward looping. This process results in the formation of the 
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right and left ventricles, the atrioventricular canal, the sinoatrial, and the outflow 

tract segments6, 7. Subsequently, the ventral side of the heart tube rotates and 

forms the outer curvature of the heart, with the dorsal side becoming the inner 

curvature8. The individual chambers balloon out from the outer curvature due to 

the rapid proliferation of resident myocardial cells. The developmental process 

is characterised by several transcription factors that are required for proper 

heart development like Nkx2.5, GATA4, MEF2, eHAND, Tbx5 and HRT 9-13. 

Recent studies have shown that mutations in the genes encoding these 

transcription factors can cause congenital heart anomalies. 

The contractile tissue of the heart is composed of individual cells, the 

cardiomyocytes (Figure 1.1 b). The cardiomyocyte is approximately 25 µm in 

diameter and about 100 µm in length. These cells contract constantly about 3 

billion times and pump around 7000 liters of blood per day along 100.000 miles 

of blood vessels14. The cardiomyocyte is composed of bundles of myofibrils 

that contain myofilaments. The myofibrils have distinct, repeating 

microanatomical units, termed sarcomeres, which represent the basic 

contractile units of the cardiomyocyte.  

1.3 Loss of cardiomyocytes during heart disease 

Cardiomyopathies, also called "heart muscle disease", are the measurable 

deterioration of the function of the myocardium. Heart disease is the 

predominant cause of disability and death in industrialized nations accounting 

for about 40% of all postnatal deaths15, 16. There are different types of 

cardiomyopathies like ischemic cardiomyopathy, nonischemic cardiomyopathy, 

dilated cardiomyopathy and hypertrophic cardiomyopathy.  

Ischemic cardiomyopathy/ myocardial infarction is a chronic disorder 

caused by either recurrent heart attacks or coronary artery disease (CAD). 

CAD is a disease in which there is hardening of the arteries on the surface of 

the heart (the coronary vessels) due to atherosclerotic plaques, which can 

result in occlusion (blockage) of a coronary artery following the rupture of a 

vulnerable atherosclerotic plaque. The resulting ischemia, in which the heart 

muscle does not receive enough oxygen-rich blood and energy metabolism 

gets exhausted, causes death or damage of cardiomyocytes. Myocardial 

infarction (MI) diminishes dramatically the number of cardiomyocytes, which 
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cannot be compensated by cardiac hypertrophy (increase in cardiomyocyte 

size). MI leads to a casscade of events including local hypoxia, infiltration of 

neutrofills, strong inflamatory response, developement of fibrous tissue, which 

collectively form a scar17. This leads to a decrease in the overall functionality of 

the heart. In addition, these events cause a local environment where 

cardiomyocytes near the scar are under different hemodynamic and metabolic 

pressure resulting in continous loss of cardiomyocytes. As cardiomyocytes are 

unable to undergo proliferation, it is very important to prevent cardiomyocyte 

loss or to reverse cardiac disease by adding new cardiomyocytes. There are 

different approches under consideration such as induction of cardiomyocyte 

proliferation, stem cell and progenitor based cell therapy approaches and tissue 

engineering18. Inhibition of cardiomyocyte apoptosis or improvement in survival 

of existing cardiomyocytes are some alternative stratergies to avoid major loss 

of cardiomyocytes in cardiac diseases19, 20. 

Cardiomyocyte generation may help to improve heart function also in 

other cardiac diseases like dilated cardiomyopathy (DCM) (involves dilation or 

enlargement of the heart’s ventricles together with the thinning of the chamber 

walls) and arrhythmias (irregular heartbeats, conditions in which there is 

abnormal electrical activity in the heart).  

a                                           b                                           

         
 
Figure 1.2: Cardiomyopathies (a) Myocardial infarction as result of a blocked left anterior 

descending coronary artery (adopted from pyroenergen.com). (b) Cross section of a human 

heart after myocardial infarction (scar: yellow dotted line) (adopted from 

http://library.med.utah.edu/WebPath/CVHTML/CV021.html) 
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1.4 Newt and zebrafish heart regeneration 
Oberpriller showed in 1974 that adult newts can regenerate their hearts. In 

2002, Ken Poss demonstrated that also adult zebrafish can regenerate their 

heart after removal of the apical region of the ventricle (Figure 1.3). The injury 

seals by a quick clotting mechanism, and the heart keeps sufficient contractile 

force to continue to drive circulation. First, within several days the clot seals the 

apex matures into a complex, fibrin clot. The fibrin clot in zebrafish is not 

typically replaced by scar tissue like in mammalian hearts. The injured heart 

apex was regenerated by generating new muscle in the next 30 days21-23. 

Higher indices of cardiomyocyte DNA synthesis and mitosis were detectable 

one week post injury and were observable for a few more weeks21. Both newt 

and zebrafish adult cardiomyocytes re-enter the cell cycle after injury24 25. 

These data suggested that cardiac regeneration is accomplished by re-

induction of cardiomyocyte proliferation.  

a                                            b                                      

 
Figure 1.3: Regenerating adult zebrafish heart. (a) Zebrafish. (b) Following surgical removal 

of a portion of the zebrafish ventricle, cardiomyocytes (green cells) adjacent to the wound site 

(dotted line) undergo proliferation and regenerate the heart (adopted from Jopling c. et.al 

2010). 

 

In the absence of lineage tracing technology the cellular origins of 

newly regenerated cardiomyocytes after resection of the ventricular apex had 

been unclear. Recently new genetic fate-mapping approaches based on the 

Cre/Lox system revealed that regenerated cardiomyocytes are derived from the 

proliferation of differentiated pre-existing cardiomyocytes22, 23. This was further 

supported by induction of the expression of positive cell cycle regulators and 

the decrease of the expression of cell cycle inhibitors. Specifically, it has been 

shown that the polo-like kinase 1 23 and a fibroblast growth factor (FGF) 

receptor22 are essential components of cardiomyocyte proliferation during 

zebrafish heart regeneration. In addition, they determined by optical voltage 
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mapping of surface myocardium in whole ventricles that electrical conduction is 

re-established between existing and regenerated cardiomyocytes between 2 

and 4 weeks post-injury. This indicates that newly formed myocardium is 

functionally incorporated into existing tissue. 

 
1.5 Basic events of the mammalian cell cycle  
Observations in zebrafish and newts suggest that induction of cardiomyocyte 

proliferation is a possible strategy to regenerate the human heart. Cell 

proliferation is a process where a single cell undergoes well-orchestrated 

events to form two daughter cells. The two most important events that occur 

during the passage through the cell cycle are the S phase (DNA-synthesis) and 

the M (mitosis) phase (Figure 1.3)26. To ensure proper progression through 

each phase, cells have developed a series of well controlled events that are 

governed by various molecular regulators such as cyclins, cyclin-dependent 

kinases (CDKs), CDK activators, CDK inhibitors (CDKIs) and members of the 

retinoblastoma protein family27, 28. Different cyclin-CDK complexes are required 

for distinct cell cycle events and their activities are regulated by cyclinH/CDK7 

and CKIs (p21CIP1, p27KIP1, p57KIP2) in both positive as well as negative 

manners, respectively. Cell cycle exit in most cell types is primarily mediated by 

the CIP/KIP (i.e. p21CIP1, p27KIP1, p57KIP2) and INK4 (i.e. p16INK4a, p15INK4b, 

p18INK4c and p19INK4d) family of CDKI proteins29. CDKIs regulate the cell 

cycle by inhibiting CDK activation either by binding to monomeric CDKs or 

disrupting Cyclin-CDK complexes. 
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Figure 1.4: Mammalian cell cycle. The cell cycle is divided into 4 major phases. DNA 

replication is confined to the part of cell cycle known as S phase. Cell division occurs during M 

phase. G1 phase is the gap between M phase and S phase; G2 is the gap between S phase 

and M phase (Alberts, 1994).  

 

The S phase is the part of the cell cycle in which DNA is replicated. It 

occurs between G1 phase and G2 phase and results in duplication of nuclear 

material. The M phase comprises karyokinesis (nuclear division) and 

cytokinesis (cytoplasmic division). The main purpose of mitosis is to segregate 

sister chromatids into two daughter cells, such that each daughter cell inherits 

one complete set of chromosomes. Mitosis is divided into five distinct stages: 

prophase, prometaphase, metaphase, anaphase and telophase. During mitosis 

the pairs of chromatids condense and attach to fibers that pull the sister 

chromatids to opposite sides of the cell. 

Cytokinesis is the final step of cell division. It is responsible for equal 

partitioning and separation of the cytoplasm, the nuclei, organelles and the cell 

membrane between daughter cells to complete mitosis. There are four major 

events contributing to cytokinesis (Figure 1.5) which include (a) determination 

of the division site, (b) cleavage furrow formation followed by membrane 

ingression, (c) midbody formation, and (d) cell separation30.  

 
 



Introduction   
 

7 

 
a                               b                           c                             d 

 
Figure 1.5: The subprocesses and the structures that mediate cytokinesis30. Four major 

events contributing to cytokinesis which include (a) determination of the cell division site, (b) 

cleavage furrow formation followed by ingression of membrane, (c) midbody formation and 

finally (d) cell separation (from Glotzer et al., 2005).  

 

Two major classes of proteins are important for cytokinesis: 1) 

chromosomal passenger proteins, which localize initially to chromosomes and 

centromeres and subsequently to the midzone and furrow (e.g. INCENP, 

Aurora-B/Ip11 kinase, anillin and Bir1/Survivin)31-34. The mis-localization of any 

of these proteins affects cytokinesis. Previously, mis-localization of anillin after 

10% serum stimulation has been associated to failure of cytokinesis in 

cardiomyocytes resulting in binucleation rather than proliferation. 2) Microtubule 

motor proteins like MKLP1, KLP3A and the polo kinase family35. These proteins 

provide structural support to localize and build the cleavage furrow36. The 

furrow contains actin, myosin and other proteins that are organized into a 

contractile ring called the actomyosin ring. This ring ingresses generating a 

membrane barrier 36, 37 and the ingressing furrow constricts components of the 

spindle midzone into a well focused structure called the midbody (Figure 1.5 

(c)). In the final cytokinetic event, called abscission, the furrow seals, 

generating two daughter cells30, 38-40(Figure 1.5 d). 

To achieve sucessful cytokinesis, many components of the cytokinesis 

machinery are highly regulated to ensure that they are able to perform a 

particular function at only a particular stage of the cell cycle. 

 

 
 



Introduction   
 

8 

 
1.6 Cardiomyocyte cell cycle activity during heart development  
 
1.6.1 Cardiomyocyte proliferation 
Cell cycle activity is an intrinsic component of cardiac differentiation and 

morphogenesis. An exceedingly high level of DNA synthesis (around 70%) is 

seen in the precardiac mesoderm of the myoepicardial plate in E8 mouse 

embryos41, 42. The onset of cardiomyogenic differentiation is accompanied by 

transient reduction in DNA synthesis (45%) at embryonic day (E) 11. This high 

rate of cell cycle activity contributes to the “ballooning” of ventricular 

cardiomyocytes from the tubular heart8. At later stages, the DNA synthesis rate 

is approximately 2-fold greater in cardiomyocytes of the compact layer of the 

myocardium as compared to the trabeculae. Subsequently, cardiomyocyte 

proliferation gradually declines and shortly after birth cardiomyocytes stop to 

proliferate43, 44. 

Fetal cardiomyocytes express high levels of cyclins and cyclin-

dependent kinases involved in G1, S, G2 and M-phase like cyclin D, A, B, E, 

Cdc2, Cdk2, Cdk4 and Cdk6 at both mRNA and protein levels45-48. Their 

associated kinase activities are also highly present. The protein levels of 

cyclins and their associated kinases become progressively and significantly 

downregulated in postnatal cardiomyocytes compared to fetal cardiomyocytes. 

The protein levels of cyclins A, B, D, E and Cdc2 become even undetectable in 

adult cardiomyocytes at protein level. Kinases like Plk1, Aurora B and other 

midbody proteins, which are involved particularly in late mitosis and 

cytokinesis, were demonstrated to be downregulated on both mRNA and 

protein level during heart development49. The downregulation in the expression 

of positive cell cycle regulators during normal development of cardiomyocytes 

have been shown to be concomitant with the specific upregulation of the CDKI 

molecules p21cip1 and p27kip1 50, 51. A review of the expression patterns of cell 

cycle proteins is provided in Table 1.1. 
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Table 1. Expression of cell cycle-related proteins in cardiomyocytes during development  
  

 
Table 1.1: Expression of cell cycle-related proteins in cardiomyocytes during heart 

development as determined by western blot (adapted from Pasumarthi et al., 2002). For 

expression level, the relative level of expression refers to values within an individual study only; 

- refers to not detected and ND, not determined. 

 

1.6.2. Cardiomyocyte hypertrophy and binucleation 

After Birth mammalian cardiomyocytes stop to proliferate and the increase in 

heart size is mediated by hypertrophy. This transition from hyperplasia to 

hypertrophy is marked by an increase in cell size and binucleation as 

cardiomyocytes lose their ability to complete cytokinesis52. Cardiomyocytes 

grow in cell size and volume and exhibit enhanced protein synthesis as well as 

a higher organization of the sarcomere to adapt to the demand for an increased 

workload and the greater hemodynamic challenge 53 54 (Figure 1.6). For 

example, the heart weight of a rat increases from 33.1 mg at postnatal day 1 to 

134.3 mg at postnatal day 12. Similarly the cardiomyocyte cell volume 

increased from 1503 µm3 to 3533 µm3. The cardiomyocyte number was 

increased from 13.6 x 106   to 21.9 x 106 44. The numbers of binucleated 
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cardiomyocytes were increased from 2.3% on day 1 to around 90.3% on day 

12.  

In rodents, the accumulation of binucleated cardiomyocytes starts 

around postnatal day four and by the third postnatal week 90% of the 

cardiomyocytes are binucleated43. In pigs the nuclei number can even go up to 

32 55. In humans, the withdrawal of cardiomyocytes from the cell cycle occurs 

within the first few weeks of life56 and the nuclei of cardiomyocytes in man 

attain an increase in ploidy. In contrast, adult cardiomyocytes from lower 

vertebrates like zebrafish are capable to divide and even regenerate their heart 

after injury 25, 57 21. This might be due to the fact that adult zebrafish contain 

mono-nucleated cardiomyocytes. The difference in binucleated cardiomyocytes 

in different species may be due to the species-specific hemodynamic 

demand58. The emergence of binucleation/polyploidy in mammals after birth 

may be due to the downregulation of proteins involved in cytokinesis. Recent 

immunofluorescence studies indicated that incorrect furrow ingression fails to 

promote abscission59 resulting in asymmetric furrow ingression (due to diffused 

localization of Anillin, a scaffold protein to stabilize RhoA and CD2AP) causing 

binucleation60.  

  
Figure 1.6: Schematic representation of heart development at the cellular level. Before 

birth heart growth is due to hyperplasia with a switch shortly after birth to the hypertrophic 

phase, where heart growth is due to increase in cell size and binucleation (adapted from Preeti 

Ahuja PhD thesis 2006).  

 
The accurate balance of polyploidization in different species suggests 

that polyploidization is controlled by a specific cellular program that has evolved 
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to avoid the tetraploidy checkpoint, acquisition of multiple centromers, aberrant 

mitosis, and chromosomal instability61. All mammalian species studied so far 

seem to own a program that allows generation of cardiomyocytes with different 

degrees of polyploidy after birth but the exact reason and the regulatory 

mechanisms which drive physiological polyploidization remain unknown62.  

During cardiac disease cardiomyocytes increase their polyploidy/ 

binucleation levels possibly due to response of cardiomyocytes to strong mitotic 

stimuli and lack of the cell division machinery adopting an abortive cell cycle63. 

Instead of cell division cardiomyocytes undergo under pathological conditions 

hypertrophy. Although this is initially compensatory for an increased workload, 

prolongation of this process leads to congestive heart failure, arrhythmia, and 

sudden death. 

 

1.7 Cardiomyocyte cell cycle exit  
Cellular differentiation describes the process by which a less specialized 

(unspecialized) cell becomes more specialized. Exit from the cell cycle is often 

essential for cell differentiation64. However, fetal cardiomyocytes proliferate 

during development even though they already contain a contractile apparatus 

and actively contract65.  

Mammalian cardiomyocyte cell cycle exit during neonatal phases 

correlates with the up-regulation of both p21CIP1 and p27KIP1 that persists in the 

adult heart50, 66. The deletion of p27KIP1 abrogates cell cycle withdrawal after 

birth. (ii) Overexpression of p21CIP1 prevents serum-induced protein synthesis 

and fetal gene expression in cultured neonatal cardiomyocytes67. (iii) Down-

regulation of p27KIP1 and p21CIP1 in varied pathological states indicate that 

these CDKIs contribute to cardiomyocyte cell cycle withdrawal. In contrast to 

p21CIP1 and p27KIP1, p57KIP2 is expressed exclusively in the fetal mammalian 

heart and is more known regarding differentiation and anti-apoptosis. The INK4 

family members do not appear to be significantly expressed in fetal or neonatal 

mammalian hearts and thus are unlikely to regulate cardiomyocyte cell cycle 

exit during development67, 68. 

Besides changes in cell cycle activity there are other important 

changes occurring during the switch from hyperplastic to hypertrophic growth 

including: (i) Isoform switching from beta-MHC to alpha-MHC. (ii) Isoform 
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switching of genes required for metabolism (e.g. GLUT1 to GLUT4)69 and 

sarcomere proteins (e.g. slow skeletal Troponin I to cardiac Troponin I)70. (iii) 

Decreased expression of atrial natriuretic factor (ANF)71. Collectively, these 

changes are referred as re-expression of the “fetal gene program”. 
 
1.8 Regeneration of the fetal and neonatal heart  
The mammalian fetal heart exhibits significant regenerative capacity. 

Cardiomyocyte-specific inducible deletion of a chromosome X-linked gene 

encoding holocytochrome c synthase, which is required for cell viability, ablates 

50% of fetal cardiomyocytes in male E13 mouse embryos72. By late-gestation 

the injured hearts exhibited almost complete recovery in morphology and size. 

There was an increase in DNA synthesis and mitosis observed in 

cardiomyocytes of injured compared to non-injured hearts. This suggested that 

proliferation of pre-existing cardiomyocytes contributed to the regeneration in 

fetal hearts, although contribution of stem cells and/or cardiac progenitor cells 

could not be ruled out in the regenerative response73. Similar observations 

were found in the early gestational sheep after MI. Regeneration was 

completed and heart function was recovered four weeks after MI 74. 

Collectively, these observations indicate that the fetal heart has significant 

regenerative capacities and that cardiomyocyte proliferation contributes to this 

process.  

More recently, Porrollo et al. had applied a resection injury model to the 

neonatal mouse heart75. In this study, approximately 15% of the muscle was 

removed from the left ventricular apex of one day-old mice (Figure 1.7). A large 

blood clot quickly sealed the wound after injury, and in a three-week period the 

ventricles fully healed without major scarring. Cardiomyocyte proliferation were 

boosted both near to and away from the resection plane to levels even higher 

than those normally seen in growing hearts. Genetic fate-mapping approaches 

identified that regenerated heart muscle cells are derived from the proliferation 

of differentiated pre-existing cardiomyocytes. By contrast, resection injuries 

performed in mice P7 led to the formation of a fibrotic scar and no regeneration. 

Thus, the capacity for myocardial regeneration is only transiently present in the 

neonatal mouse heart but is quickly lost by seven days after birth. 
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Figure 1.7: Heart regeneration in 1 day-old mice. 15% of the left ventricular apex of 1 day-

old mice was removed. A large blood clot quickly sealed the wound after injury and in a three-

week period the ventricles fully healed without major scarring. (a to d), Hematoxylin and eosin 

(H&E) staining of the mouse heart at 1, 2, 7, and 21 days post-resection. (e) H&E-stained 

sections at higher magnification. Dashed line indicates the resection plane. (f) Trichrome-

stained serial sections showing decrease in cardiac fibrosis by day 21. (adapted from Porrollo 

201175) 
 

1.9 Loss of regeneration capacity of the heart after birth 
As shown by Porrollo et al. P7 mice have lost the ability to regenerate the 

resected heart and instead form a fibrotic scar 75. Cardiomyocytes in fetal and 

day 1 neonatal mammalian hearts are mono-nucleated (<97%) and proliferative 

like adult zebrafish cardiomyocytes. However, mammalian cardiomyocytes lose 

the ability to divide but still undergo DNA replication without cytokinesis or 

karyokinesis. Thus, most cardiomyocytes are binucleated with diploid nuclei in 

the adult mouse heart and mono-nucleated with polyploid nuclei in the adult 

human heart (Figure 1.8)76. Consequently, the mammalian heart is unable to 

regenerate after the postnatal switch from hyperplasia to hypertrophy. 
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Figure 1.8: DNA content and proliferation capacity of cardiomyocytes during 

development and regeneration. Cardiomyocytes in fetal humans and mice are typically 

mono-nucleated with a diploid genome (2n) and increase in mass through cell division (blue 

arrows). Human cardiomyocytes after birth lose this capacity and typically undergo rounds of 

DNA replication without karyokinesis or cytokinesis, which results largely in mono-nucleated 

cardiomyocytes with tetraploid (4n) nuclei. Murine cardiomyocytes can a few days after birth 

only undergo DNA replication with karyokinesis but not cytokinesis, which results in binucleated 

cardiomyocytes (2n x 2n). By contrast, most cardiomyocytes in zebrafish hearts are mono-

nucleated with a diploid genome (2n) throughout life maintaining significant proliferative and 

regeneration capacity (adapted from Kikuchi 201222). 

 

In addition, it has been shown that fibroblasts affect the proliferative 

behavior of cardiomyocytes. Cardiac embryonic fibroblasts stimulate 

proliferation of neonatal cardiomyocytes while adult fibroblast stimulate 

hypertrophy77. Considering that only around 30% of all cells in the adult heart 

are cardiomyocytes, age-related changes in fibroblast behavior might 

contribute to the developmental changes in mammalian cardiac regenerative 

capacity.  

Mouse regenerative capacity is lost by postnatal day 7 and the 

mechanisms of cardiomyocyte cell cycle arrest remain unclear. However, 

recently Ahmed et al showed that Meis1 deletion in mouse cardiomyocytes was 

sufficient for extension of the postnatal proliferative window of cardiomyocytes 

from day 1 to day 7 and for re-activation of cardiomyocyte mitosis in the adult 

heart78. In contrast, overexpression of Meis1 in cardiomyocytes decreased 

neonatal myocyte proliferation and inhibited neonatal heart regeneration. Meis1 
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is required for transcriptional activation of CDK inhibitors p15ink4b, p16ink4a and 

p21CIP1. In addition, loss of Meis1 is known to regulate metabolism by switching 

energy metabolism from glycolysis to oxidative phosphorylation in HSC 79. 

These results indicate that reversal of adult cardiomyocyte cell cycle arrest may 

be achievable through careful analysis of early postnatal events. 

 

1.10 C14 carbon dating 
In 2009, Bergmann et. al. showed that DNA synthesis occurs in human 

cardiomyocytes on the basis of C14 level in DNA. After the Limited Nuclear 

Test Ban Treaty in 1963, the C14 concentrations dropped exponentially by 

diffusion from the atmosphere. The C14 is incorporated in the human body 

through plants and animals. At any given time the C14 concentration in the 

human body mirrors that in the atmosphere80, 81. As DNA is stable after a cell 

has gone through its cell division, the concentration of C14 in DNA serves as a 

date mark for when a cell was born and can be used to retrospectivel birth date 

cells in humans82, 83. They used accelerator mass spectrometry to determine 

the extent of postnatal DNA synthesis in the human heart. They claimed that 

cardiomyocyte turnover involves at most 1% of cells annually in individuals at 

25 years of age; by 75 years of age, it decreases to 0.45%84. This indicated 

annual turnover rates of cardiomyocytes of 0.2 to 2%. However, there was a 

clear negative correlation to age establishing that the turnover rate declines 

with age. By this premise ~50% of myocytes are replaced once during the 

course of life in humans, while an equal number lives as long as the organ and 

organism. They considered the involvement of polyploidization and estimated 

polyploidization-independent C14 values. However, this study did not exclude 

the differentiation of stem or progenitor cells into cardiomyocytes. 
Recently similar low-level DNA synthesis data were shown by Senyo 

et. al. in mouse85.  By combining two different pulse chase approaches, genetic 

fate-mapping with stable isotope labelling and multi-isotope imaging mass 

spectrometry, they showed that DNA synthesis of cardiomyocytes occurs at a 

low rate within newborn mice at 1%, in young adult at 0.015% and old adult 

mice at 0.007% per day. Interestingly, the rates were increased adjacent to 

areas of myocardial injury85. These values are similar to that of the Bergmann 

study. Genetic fate mapping showed that new cardiomyocytes were formed by 
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the division of pre-existing cardiomyocytes during normal ageing. Collectively, 

these study suggest that it might be possible to promote the regeneration of the 

mammalian heart through enhancing the endogenous cardiomyocyte turnover 

by cardiomyocyte proliferation. 

 

1.11 Induction of postnatal cardiomyocyte proliferation 
For many years the dogma is that adult cardiomyocytes are terminally 

differentiated 86. However, recently, a number of reports in addition to the C14 

dating have challenged this dogma. For example, the treatment with the 

mitogen FGF1 and pharmacological inhibition of the stress kinase p38 induces 

robust neonatal and adult cardiomyocyte mitosis in vitro as well in vivo87. In 

addition, FGF1 stimulation together with p38 inhibition (FGF1+p38i) reduced 

scarring and rescued cardiac function after MI. This study further supported the 

idea that mammalian cardiac regeneration can be achieved through promotion 

of cardiomyocyte proliferation. During the last two decades many molecules 

have been found that induce fetal and postnatal cardiomyocyte proliferation. 

These include overexpression of cell cycle regulators88-91 (e.g. cyclin D, cyclin 

A, cyclin B, Cdk2), overexpression of transcription factors92 (e.g. c-Myc, E2F2) 

or viral proteins93 (e.g. adenovirus E1A, SV40), knockout of cell cycle 

inhibitors66, 94-96 (e.g. p27KIP1, Retinoblastoma Protein) and external application 

of growth factors97-99 (e.g. IGF-1, FGF2, TWEAK) or kinase inhibitors (e.g. BIO, 

a pharmacological inhibitor of GSK3B)87. Although many of these growth/ 

mitogenic factors are capable of inducing cell cycle activation in 

cardiomyocytes, they exhibit different abilities to promote proliferation in 

neonatal cardiomycoytes and in adult cardiomyocytes. These studies 

suggested that a subpopulation of cardiomyocytes may be capable of 

proliferation.  

Factors promoting robust proliferation in adult cardiomyocytes have yet 

to be elucidated. To date, only the activation of TWEAK/FN14 signaling has 

demonstrated a significant induction of DNA synthesis in adult rat 

cardiomyocytes (around 40%)99. However, it did not induce significant mitosis 

and cytokinesis in vitro. Recently the human whole genome miRNA library was 

screened for neonatal cardiomyocyte proliferation using EdU (DNA analogue) 

in a 96-well format and found some positive hits100. Two of these positive hits, 
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hsa-miR-590 and hsa-miR-199a, were shown to promote cell cycle re-entry of 

neonatal and adult cardiomyocytes in vitro and in vivo. After MI in mice, these 

miRNAs stimulated marked cardiac regeneration and improved cardiac 

functional parameters. Thus, it appears promising to develop a mammalian 

cardiomyocyte high throughput-screening assay for inducers of cardiomyocyte 

proliferation to find new molecules with the potential to regenerate the 

mammalian heart101. 

 

1.12 Does heart regeneration occur from a subset of elite 
cardiomyocytes? 
Cardiomyocytes are a heterogeneous population containing cells that may be 

better suited for cell division after injury with a specific gene expression 

signature. For example, a study reported recently that Neuregulin1 promotes 

proliferation of differentiated mono-nucleated adult mouse cardiomyocytes in 

cell culture as well as in vivo102 consistent with the idea that some 

cardiomyocytes are more receptive to regeneration signals. A strong positive 

correlation exists between the percentage of mono-nucleated/diploid 

cardiomyocytes and the regenerative capacity of the heart. This positive 

correlation has led to the speculation that the adult human heart, where ~70 % 

of cardiomyocytes are mono-nucleated but polyploid, may maintain some 

margin of regenerative capacity103 104. 
During development P3 neonatal rat cardiomyocytes binucleate, unlike 

adult cardiomyocytes from hearts with regenerative capacity. Importantly, also 

50% of neuregulin-treated mono-nucleated adult rodent cardiomyocytes 

become binucleated instead of undergoing cell division102. While adult 

cardiomyocytes in rodents are mainly binucleated and very few are mono-

nucleated. In contrast, in humans the number of mono-nucleated 

cardiomyocytes is significantly larger. One hypothesis is that at least a 

subpopulation of mono-nucleated cardiomyocytes in humans maintained a 

differentiation level similar to P3 neonatal rodent cardiomyocytes. Then, 

identifying factors that promote P3 cardiomyocytes to divide rather than 

binucleate may provide a better approach to identifying regenerative factors for 

the adult human heart. FGF1+p38i treatment has been shown to efficiently 

promote P3 cardiomyocyte proliferation. However, its efficacy to induce 
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cardiomyocyte proliferation in adult rodent heart injury models is modest87 and 

it is unlikely that the observed restoration of physiological parameters was 

solely due to cardiomyocyte proliferation. But FGF1+p38i treatment may have a 

more robust regenerative impact in human hearts. 

 

1.13 Fucci (Fluorescent Ubiquitination-based Cell Cycle 
Indicator) 
 
Recently Sawano et al. developed the so-called Fucci system105. This system 

has been used for the visualization of the progress in the cell cycle in the living 

cell. The principle of the system is based on Cdt1 and Geminin, the replication 

licensing factors, that are only present at a particular phase of the cell cycle 106. 

The APCCdh1 and SCFSkp2 complexes are E3 ligase activities that mark a 

variety of proteins with Ubiquitinization in a cell cycle-dependent manner107. 

The SCFSkp2 complex is a direct substrate of the APCCdh1 complex but also 

functions as a feedback inhibitor of APCCdh1108 109 and these two ligase 

activities oscillate reciprocally during the cell cycle. The APCCdh1 complex is 

active in the late M and G1 phases, while the SCFSkp2 complex is active in the 

S and G2 phases (Figure 1.9 a).  

a                                                                                b 

                                          
Figure 1.9: Fluorescent Indicator for Cell-Cycle Progression, Fucci. (a) Cell-cycle 

regulation by SCFSkp2 and APCCdh1 maintains bistability between G1 and S/G2/M phases. 

(b) A fluorescent probe that labels individual G1 phase nuclei in red and S/G2/M phase nuclei 

green. (adapted from Asako Sakaue-Sawano et.al. 2008) 

 

Due to cell cycle-dependent proteolysis, protein levels of Geminin and 

Cdt1 oscillate inversely (Figure 1.9 b). Two fluorescent protein indicators such 

as monomeric Kusabira-Orange 2 (mKO2), fused to a fragment of Cdt1 (amino 

acids 30- 120), acts as an indicator for the G1 phase of the cell cycle. Similarly 

for visualizing S, G2 and M phases a fusion protein of a fragment of Geminin 
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(1-120) has a fluorescent protein monomeric Azami-Green1 (mAG1). These 

cell cycle indicators work by an ubiquitin-proteosome system via a rapid and 

highly selective degradation of these factors. Therefore, it can be used as an 

tool for investigating processes involving cell proliferation, growth and 

differentiation105. Although Fucci is composed of mKO2-hCdt1 (30/120) and 

mAG-hGem (1/110), single transfection of mAG-hGem (1/110) would be 

enough in conferring the information about proliferation.  

 

1.14 Screening of chemical libraries 
High-throughput screening of a molecule library is an important tool in modern 

research enabling to probe the diversity of chemical and biological space 

adding to published knowledge and to identify new biologically active small 

molecules creating data interesting to biologists and chemical biologists110, 111.  

To perform a high-throughput screening, the first task is to choose the 

right chemical library. There are diverse chemical libraries containing a variety 

of chemical compounds including natural, synthetic and semisynthetic 

compounds111. Each library includes a unique collection of small molecules 

including inhibitors, activators, and inducers, FDA-approved compounds, 

natural products, compounds for receptor de-orphaning, for chemical 

genomics, and for pathway targeting. To target a specific cellular phenomenon, 

organelle, pathway is of great interest. Therefore it is important to choose the 

library dependent on the addressed question and experimental setup. 
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Aim of the study 
Newt, zebrafish and newborn mice can regenerate their heart after injury 

through cardiomyocyte proliferation. In contrast, adult cardiomyocytes have 

stopped to proliferate, exited the cell cycle and fail to reenter the cell cycle after 

injury. Consequently, the adult mammalian heart does not regenerate. 

Importantly, significant evidence has been accumulated over the last years 

suggesting that adult mammalian cardiomyocyte proliferation can be induced. 

Thus, it is important to identify novel inducer that efficiently induces mammalian 

cardiomyocyte proliferation in order to regenerate or repair the injured heart. 

One way to achieve this is the establishment of a screening platform. 

The aim of this thesis is to develop a robust live fluorescence image-

based cardiomyocyte proliferation screening system utilizing chemical molecule 

libraries to identify novel inducers of postnatal cardiomyocyte proliferation. The 

system should be applicable to large molecule screens and easy to handle. In 

addition, it should eliminate the need of laborious and expensive techniques 

like immunofluorescence staining, incorporation of nucleotide analogues or cell 

count assays.  

 

The specific aims of this study were: 
Aim 1: Development and validation of a Fluorescent Ubiquitination-based 

Cell Cycle Indicator (Fucci) system for postnatal cardiomyocyte 

proliferation.  

Aim 2: Screening of modulators of nuclear receptors and of an epigenetics 

chemical library and validation of positive hits.  

Aim 3: Elucidation of downstream molecular signaling pathways for positive 

hits.  

Aim 4: Determining the potentcy of positive hits to induce adult 

cardiomyocytes proliferation in vitro.  

Aim 5: Assessing the relevance of the identified pathway for adult 

cardiomyocyte proliferation in vivo. 
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2. Materials 

2.1 Equipment 
2.1.1 Miscellaneous equipment 
The equipment listed in Table 2 was used in this work. 

Table 2.1: Name, model and supplier of used equipment. 

Equipment Model Supplier 
Agarose gel 

electrophoresis chamber 

B2 Separationssystem OWI 

Aliqouting pipette Repeater Plus Eppendorf 
Bacterial incubator InnOva 4200 New Brunswick 

Scientific 
Balance ALC 3100.2 Acculab 

Sartorius Belly dancer The belly dancer Stovall 
Chemical hood Vinitex Air Vinitex 
CO2 incubator Galaxy R New Brunswick 

Scientific 
CO2 incubator Innova co-170 New Brunswick 

Scientific 
Heating block Digital Heatblock VWR 
Laminar flow  Herasafe KS  Heraeus  
Luminescent image 

analyzer  

LAS-4000  FujiFilm  
Magnetic heating plate Combimag RCT IKA Werke 

Magnetic stirrer Stirrer VWR 
PCR cycler Gene Amp PCR System 9700 Applied 

Biosystems 
pH Meter pH 221 Microprocessor pH 

Meter 

HANNA 

Instruments 
Pipettes 2,5 µl; 10 µl; 

100µl; 200 µl 1000 µl 

Research Eppendorf 

Plate reader NanoQuant Tecan 
Power supply EV243; EV231 Consort 
Real-time PCR cycler CFX96 Real-Time System 

C1000 Thermal Cycler 

BioRad 

Roller mixer SRT6 Stuart 
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Equipment Model Supplier 
Rotator SB3 Stuart 
SDS-PAGE 

electrophoresis chamber 

X Cell Sure Lock Invitrogen 

Shaker MHL20 HLC 
Spectrophotometer NanoDrop 2000c PeqLab 
Thermo-block Digital heat block VWR 
Transfer chamber X Cell II Blot Module Invitrogen 
Trans illuminator Gel ix DNA and Protein imager Itas 
Vacuum pump Diaphragma Vacuum pump Vacuubrand 
Vortex VV3 VWR 
Waterbath U3 Sulabo 
 
 
2.1.2 Microscopes  
The microscopes used in this study are listed in Table 2.2. 

Table 2.2: Microscope type, model and supplier of used centrifuges. 

Microscopes Model Supplier 
Confocal microscope Axio Imager Z.1 Zeiss 
Fluorescence 

microscope 

Leica DMI 3000 B Leica 
Fluorescence 

microscope 

Leica DM 6000 B Leica 
 
 
2.1.3 Centrifuges 

The centrifuges used in this study are listed in Table 2.3. 

Table 2.3: Centrifuge type, model and supplier of used centrifuges. 

Centrifuge  Model Supplier 
Cooling centrifuge Universal 320R  Hettich Zentrifugen 
Cooling table centrifuge Heraeus Fresco 17 Heraeus 
Tabel top centrifuge Centrifuge 5415C Eppendorf 
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2.2 Miscellaneous materials 
2.2.1 Disposables 

The disposable materials listed in Table 2.4 were used in this work. 

Table 2.4: Product, type and supplier of used disposable materials. 

Materials Type Supplier 
Aliquoting pipette tips  Combitips  Greiner bio-one  
Bacterial culture tubes 14 ml PP Tube Greiner bio-one 
Cell culture dishes  10 cm Greiner bio-one 
Cell culture plates 24, 6, 96 Well Plates Greiner bio-one 
Cell scraper Cell Scraper Greiner bio-one 
Coverslips 24 x 50 mm Menzel Gläser 
Coverslips 12 mm diameter Menzel Gläser 
Filter paper Chromatography (3 mm) Whatman 
Injekt  1 ml Braun 
Latex gloves Satin plus Kimtech 
Microscope slides Mattrand, geschliffen 76 

x 26 mm 

Knittel Glaser 

Microscope slides Super frost ultra plus Menzel Gläser 
Nitril gloves Activ Aloe Blossom 
Nitrocellulose transfer 

membrane 

Protran Nitrocellulose Whatman 

PCR tubes 0.5 ml Eppendorf 
Pipette filter tips FT10; FT100; FT200; 

FT1000 

Greiner bio-one 

Pipette tips  10 µl; 200 µl; 1000 µl Greiner bio-one 
Plastic pipettes 2 ml; 5 ml; 10 ml; 50 ml 

cell star 

Greiner bio-one 

PAGE NuPAGE 4-12% Bis-Tris 

Gel 1.0 mm x 12 well 

Invitrogen 

PAGE NuPAGE 4-12% Bis-Tris 

Gel 1.5 mm x 10 well 

Invitrogen 

Reaction tubes 1,5 ml; 2 

ml 

Safe Lock Tubes Eppendorf 

Reaction tubes 15 ml; 50 

ml 

Cell Star TUBES Greiner bio-one 

Thin pipette tips for 

capillary filling 

20 µl Physio Care 

Concept  

Eppendorf 

Tissue culture flasks T75 Greiner bio-one 
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Materials Type Supplier 
Tissue culture flasks T25 Greiner bio-one 
Transfer pipettes Transfer pipettes Sarstedt 

 
2.2.2 Non-disposables  
The reusable materials listed in Table 2.5 were used in this work. 

Table 2.5: Product, type and supplier of used non-disposable materials. 

Materials Type/Purpose Supplier 
Forceps  Inox.4 Dumont  
Forceps  No 4 and No5 Neolab  
Glass bottles DURAN Schott 
Glass erlenmeyer flasks DURAN Schott 
Glass measuring 

cylinder 

DURAN Hirschmann 

Glass pipettes 2 ml; 5 ml; 10 ml; 25 ml Brand 

Glass beaker DURAN  Schott  

Hemocytometer 0.1 mm depth; 0.0025 

mm2 

Marienfeld 

ImmEdge pen  Immunostaining  Vector Lab  

Micro scale  019.96843 1 mm in 100 Novex  
 
 
2.3 Chemicals 
Product and supplier of the chemicals that were used in this work are listed in 

Table 2.6.  

Table 2.6: Product and supplier of used chemicals. 

Product Supplier Product Supplier 

Agarose  Roth  Agar  Roth  

Ampicillin  Calbiochem  Bromophenol blue Merck 

BSA Roth Chloroform Roth 

Collagenase Type II Gibco D-Glucose  Sigma  

DNA ladder  Bioline  DTT  Roth 
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Product Supplier Product Supplier 

Ethanol  Roth  Ethidium bromide  Fisher Scientific 

Formaldehyde (10% 

without methanol) 

Polyscience  Formalin (37% with 

10% methanol) 

Sigma 

FBS gold PAA Lab Glycerol Sigma 

Glycine Roth Heparin Fluka 

Hydrochloric acid Roth Hydrogen peroxide Sigma 

HRP-Substrate  Thermo 

Scientific  

HEPES Na Sigma 

IPTG Sigma Kanamycin Serva  

KCl  Roth  KH2PO4 Roth 

LB agar  Roth  LB medium Roth 

Lysis buffer (10x) Cell 

Signaling  

Methanol Roche 

MgCl2, 6H2O Roth MOPS buffer (20x) NuPage 

Mounting medium 

(Entellan/Xylol-

based)  

Merck  Mounting medium 

(Kaiser’s glycerol 

gelatin/water-based) 

Merck  

NaN3 Sigma  NaOH Roth 

Na2HPO4 Roth Nitrocellulose 

membrane  

Whatman 

Nonidet P40 Sigma dNTPs Invitrogen 

N-phenylthiourea Alfa aesar Oligo dT Invitrogen 

Para-formaldehyde Sigma Paraffin  Sigma 

PEG-3500 Sigma  Phenol red  Sigma  

Propanol Roche   

Precision Plus 

Protein Standard  

BioRad  Polyacrylamide 

precast gel  

Invitrogen  

Protease inhibitor 

cocktail 

Thermo 

Scientific 

2-Propanol Roche 

Reverse 

transcriptase (MMLV) 

Invitrogen  RNase inhibitor  Roche  
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Product Supplier Product Supplier 

Sodium citrate  Roth  Sodium chloride Sigma 

SDS Fluka Stripping buffer NuPage 

Sodium acetate  Roth  Tween 20 Sigma 

Triton X100 Sigma Trizol Invitrogen 

Tris base  Roth  Whatman filter paper  Whatman  

Xylol   Roth   

 
 
2.4 Enzymes 
The enzymes listed in Table 2.7 were used in this work. Compatible 10x buffers 

for different enzymes were supplied with the enzymes.  

Table 2.7: Product and supplier of used enzymes. 

Product Supplier Product Supplier 

DNase I  Roche  MMLV reverse 

transcriptase  
Invitrogen  

SalI  NEB  ScaI NEB 

Taq DNA 

polymerase  

Roche Top-Taq DNA 

polymerase  

Quiagen 

T4 DNA ligase Promega 

 
 
2.5 Oligonucleotides 
The oligos listed in Table 2.8 were used in this work. All primers were 

purchased from Sigma-Aldrich GmbH. 

Table 2.8: Oligonucleotides used in this study. 

Oligo name Primer sequence (5’-3’) Gene accession 

p21 AGGCAGACCAGCCTAACAGA U24174.1 

p21 CAGCACTAAGGAGCCTACCG U24174.1 

c-myc: CGAGCTGAAGCGTAGCTTTT NM_012603.2 

c-myc: CTCGCCGTTTCCTCAGTAAG NM_012603.2  

β-catenin ACAGCACCTTCAGCACTCT NM_053357.2 
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Oligo name Primer sequence (5’-3’) Gene accession 

β-catenin AAGTTCTTGGCTATTACGAC NM_053357.2 

PPARδ GAACAGCCACAGGAGGAGAC NM_013141.2 

PPARδ CCCATCACAGCCCATCTG NM_013141.2 

cyclin B gcgTAAAGTCAGCGAACAGTCAAG NM_171991.2 

cyclin B gcGGAGAGGGAGTATCAACCAAA NM_171991.2 

cyclin A gcgTATTTGCCATCGCTTATTGCT NM_053702.3 

cyclin A gcgCTGTGGTGCTTTGAGGTAGGT NM_053702.3 

cyclin D2 AAGAGAGAGGCGTGTTCGTC NM_022267.1 

cyclin D2 TTCCTTCTTGGGTTCAATGC NM_022267.1 

gapdh CAGAAGACTGTGGATGGCCC NM_001115114.1 

gapdh AGTGTAGCCCAGGATGCCCT NM_001115114.1 

 
2.6 Antibodies 
The primary and secondary antibodies used in this study are listed in Table 2.9 

including additional information. 

Table 2.9: Antibodies used in this study. 
Primary antibody 

Antigen Purpose/Dilution Isotype Supplier 

Alpha-sarcomeric 

actinin 

ICC, IHC 1:100 Mouse Abcam  

Aurora B ICC 1:150 Mouse Transduction 

Laboratories 

BrdU ICC  1:100 Rat Abcam 

Aurora B ICC 1:150 Mouse Transduction 

Laboratories 

Troponin I ICC 1:50 Rabbit Santa Cruz 

Tropomyosin ICC 1:200 Mouse  DSHB, J.J.-C. Lin 

Pan-actin   ICC 1:1000 Rabbit 

polyclonal 

Cell Signaling 

PDK1/PDPK1 ICC 1:1000 Rabbit Cell Signaling 
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Primary antibody 

Antigen Purpose/Dilution Isotype Supplier 

polyclonal 

PPARδ   WB- 1:500 Rabbit 

polyclonal 

Santa Cruz 

P27 (KIP/p27) ICC 1:2500 Mouse  Transduction 

Laboratories 

Cyclin A 

 

ICC 1:50 Rabbit 

monoclonal 

Santa Cruz 

β-catenin WB 1:1000 Rabbit 

monoclonal 

Cell Signaling 

Mcherry/Ds-Red 

 

ICC 1:200 Mouse  Clontech 

anti-mAG  

(Azami green) 

ICC 1:300 Rabbit 

monoclonal 

MBL 

GSK3B WB 1:100- Rabbit 

moclonal 

Cell Signaling 

PS9 GSK3B   WB 1:1000 Rabbit 

polyclonal 

Cell Signaling 

Akt WB 1:1000 Mouse  Cell Signaling 

P308 Akt WB 1:1000 Mouse  Cell Signaling 

PARP WB 1:1000 Mouse Transduction 

Laboratories 

CDC2 

 

ICC 1:50 Rabbit 

polyclonal 

Santa Cruz 

pRB 

(pRb807/811) 

 

ICC 1:100 Rabbit 

polyclonal 

Cell Signaling 

Survivin 

 

ICC 1:100 Mouse Santa Cruz 

Caveolin 3 

 

IHC 1:100 Rabbit 

polyclonal 

Transduction 

Laboratories 
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Primary antibody 

Antigen Purpose/Dilution Isotype Supplier 

Cyclin D2 WB 1:1000 Rabbit 

polyclonal 

Santa Cruz 

Anti-phospho-

Histone H3 

(Ser10) 

ICC, IHC 1:200 Rabbit 

polyclonal 

Cell Signaling 

 

Secondary antibody 

Antigen Purpose/Dilution Isotype Supplier 

Alexa Fluor 488 

Anti-Rabbit 

ICC 1:200 goat IgG Invitrogen 

Alexa Fluor 594 

Anti-Rabbit 

ICC 1:200 goat IgG Invitrogen 

Alexa Fluor 488 

Anti-Mouse 

ICC 1:200 goat IgG Invitrogen 

Alexa Fluor 594 

Anti-Mouse 

ICC 1:200 goat IgG Invitrogen 

Anti-Mouse IgG 

HRP-linked 

WB 1:10000 sheep IgG GE Health care UK 

limited 

Anti-Rabbit IgG 

HRP-linked 

WB 1:10000 donky IgG GE Health care UK 

limited 

 
 
 
2.7 Buffer and solutions  
The buffer and solutions used in this work are listed in Table 2.10. Unless 

specified otherwise the solutions were prepared in distilled and autoclaved 

water. Freshly prepared solutions for an application were not autoclaved. 
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Table 2.10: Compositions of buffers and solutions. 

Buffer/Medium/Solution Compositions 

 

Agarose gel loading buffer 0.25% bromophenol blue [w/v] 
0.25% xylene cyanol FF [w/v]  
15% Ficoll 400 [v/v] in dH2O 

Acetate buffer (pH 4.9) 85 g CH3COONa, 3H2O  

900 ml dH2O 

adjust pH with glacial acetic acid 

dH2O q.s. to 1 l  

Antigen retrivel buffer  0.1 M Tris/HCl buffer (pH 9.0) 

B-Block 2% blocking reagent [w/v] 

10% goat serum in PBST [v/v] 

0.1% Tween 20 [v/v] 

store at -20°C  

Conditioned water 75 g NaHCO3  

18 g sea salt  

8.4 g CaSO4  

dH2O water to 1000 ml  
pH: ≈6.8 -7.5, conductivity: 180-350 µS 

DEPC-Water 0.01% DEPC [v/v] in dH2O  

incubate overnight at RT and then 

autoclave for 60 min. 

DNase I solution 100 mg DNase I  

dissolve in 10 ml 10 µM MgCl2 solution, 

filter and store at -20°C 

MOPS Buffer (10x, 1000 ml) 4.18 g 3-[N-morpholino] propanesulfonic 

acid 

680 mg sodium acetate 

2 ml 0.5 M EDTA 

Dissolve in 1 l dH2O and store at 4°C in 

the dark without autoclavation (MOPS gets 

degraded) 
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PBS (1x) 8 g NaCl  

0.2 g KCl  

1.44 g Na2HPO4  

0.24 g KH2PO4  

Dissolve in 800 ml of dH2O, adjust pH to 

7.4 and add H2O q.s. to 1 l 

PCR buffer (10x) without MgCl2 20 ml KCl (1 M)  

4 ml TrisHCl (1 M), pH 9  

0.4 ml Triton X-100  

Sterile distilled water q.s. to 40 ml 

PFA in PBS (4%) 4 g PFA dissolve in 100 ml PBS (add few 

drops of NaOH). Heat at 55°C until PFA is 

dissolved. Cool and adjust the pH to 6-7  

PBT 0.1% Tween20 in PBS [v/v] 

PBA 5% BSA [w/v] 

0.02% NaN3 [w/v] 

Dissolve in PBS 

PBT 0.3% Triton X100 in PBA [v/v] 

RIPA buffer 2.5 ml 10% SDS in water  

15 ml NaCl (5 M)  

5 ml NP40  

25 ml 10% deoxycholate in water [w/v]  

1 ml EDTA (0.5 M)    

25 ml Tris (1M, pH 8.0)  

Dissolve in DEPC-treated water q.s. to  

500 ml. Don’t autoclave afterwards 

SADO mix 50 ml HEPES Na (200 mM; pH 7.6) 

50 ml NaCl (1.3 M)  

5 ml KCl (300 mM) 

5 ml NaH2PO4 (100 mM) 

1 ml glucose (2 M) 

Dissolve in 390 ml dH2O 

TBST (10x) 8 g NaCl  
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0.2 g KCl  

25 ml Tris (1 M; pH 7.5)  

1 ml Tween 20  

dH2O q.s. to 100 ml 

TAE running buffer (1x) 0.04 M Tris base 

0.002 M glacial acetic acid  

0.002 M EDTA, 2H2O  

Dissolve in dH2O  

TBS 40 g NaCl  

1.8 g tris base  

Dissolve in 4.5 l dH2O  

Adjust the pH 7.6  

dH2O q.s. to 5 l 

TBST 0.1% Tween 20 in TBS [v/v] 

Transformation buffer (KCM 

buffer)  

500 mM KCl  

150 mM CaCl2  

250 mM MgCl2 

Transfer buffer (20x) 163.2 g bicine  

209.3 g bis Tris  

12 g EDTA  

dH2O q.s. to 2 l 

Transfer buffer (1x) 250 ml 20x transfer buffer  

1 l methanol 

dH2O q.s. to 5 l 

TSB buffer 10 g PEG-3500  

5 ml DMSO  

1 ml 1 M MgCl2  

1 ml 1 M MgSO4  

LB medium (pH 6.1) q.s. to 100 ml 

Sterilize by passing through 0.45 µm filter 

and store at 4°C 

Wash buffer 110 mM NaCl  

3.5 mM KCl  
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2.7 mM CaCl2  

500 µl 1 M  

Tris HCl (pH 8.5) 

dH2O q.s. to 50 ml 

Stock perfusion buffer (KHP): 7.42 g/l NaCl    
0.34 g/l KCl 
2.08 g/l NaHCO3 
0.27 g/l MgSO4x7H2O 
0.16 g/l KH2PO4 
1.5 g/l D-Glucose 
20 ml Na Pyruvate 100 mM (solution) 
1.31 g/l Creatine    
2.5 g/l Taurine 

Buffer A  KHP + 100 mM CaCl2  (850 µl/50 ml) 
 

Buffer B  KHP + FAFBSA (0.5 g/500 ml) 
Buffer C  KHP + digest buffer (22 mg collagenase 

Type II + 86 mg FAFBSA                                   
+ 3.6 ml Buffer A/C) 
 

 
2.8 Kits  
The kits that were used in this work are listed in Table 2.11. 

Table 2.11: List of kits used in this study. 

Kit Purpose Supplier 

Agarose gel extraction kit cDNA isolation QIAGEN 

Bio-Rad Dc protein assay kit  Protein concentration  BIO-RAD  

Dual Luciferase Assay 

System  

Luciferase detection  Promega  

lipofectamine™ RNAiMAX kit  Cell transfection kit  Invitrogen  

NE-PER nuclear and 

cytoplasmic extraction kit  

Protein extraction 112 Thermo 

Scientific  

Nucleofactor Kit  Cell transfection kit Lonza 

PCR purification kit  PCR product cleanup  QIAGEN  

RNA easy  RNA isolation  QIAGEN  

SuperSignal West Femto Chemiluminescence   Thermo 
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Kit Purpose Supplier 

substrate  Scientific  

QIAprep spin Midiprep Plasmid extraction QIAGEN 

QIAprep spin Miniprep  Plasmid extraction  QIAGEN  

 
2.9 Antibiotics 
Antibiotics that were used in this study are listed in Table 2.12. Ampicillin, 

kanamycin and G-418 were stored at 4ºC. Chloramphenicol and zeocin were 

stored at -20ºC  

Table 2.12: Antibiotics and their working concentrations. 

Antibiotics Working concentration 

Liquid culture Agar plates  

Ampicillin  100 µg/ml 100 µg/ml 

Chloramphenicol  15 µg/ml  30 µg/ml 

Kanamycin  20 µg/ml  20 µg/ml 

Zeocin  50-500 µg/ml   100 µg/ml 

 
 
2.10 Plasmids  
Different constructs were used for in situ probe synthesis in this work. Gene 

name, construct backbone and restriction enzymes are listed in Table 2.13. 

Table 2.13: List of plasmids, restriction enzymes and respective RNA 

polymerases. 

Gene name Vector Resistance 
to 

Enzyme 

amhc Alpha MyHC clone 26 Ampicillin SalI 

mko2-cdt1 Mko2-cdt1(30/120) zeocin SalI 

mAG-hegeminin mAG-hgGeminin (1/110) Zeocin SalI  

amhc-mko2-cdt1 amhc-mko2-cdt1 (30/120) Zeocin SalI 

Amhc-mAg-

hGeminin 

amhc-mAg-hGeminin 

(1/110) 

Zeocin SalI 
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Gene name Vector Resistance 
to 

Enzyme 

TCF/LEF sites Topflash Ampicillin  

Mutated TCF/LEF 

sites 

Fopflash Ampicillin  

Luciferase  pGL4.75 (hRluc/CMV) vector 

(Promega 
Ampicillin  

 
2.11 Adenoviruses  
Adenoviruses that were used in this study are listed in Table 2.14. All viruses   
were stored at -80ºC. (Table 2.14). 
Table 2.14: List of adenoviruses, their target sites and sequences. 

Adenovirus  Target MOI (multiple of infection) 

Ad-mAG-

hgeminin  

Fucci construct express In 

S/G2/M  
400 

Ad-mko2-

cdt1 

Fucci construct express In 

G0/G1 
400 

Ad-DN-β-

catenin 

Dominant negative β-catenin 100 

Ad-DN-TCF Dominant negative TCF 100 

Ad-DN-Akt Dominant negative Akt 200 

 

2.12 RNA interference 
 
For siRNA-mediated β-catenin (80 nM) and PPARδ  (100 nM) knockdown in 

cardiomyocytes, we purchased following SiRNA from Qiagen, Germany, All 

Stars Negative Control siRNA (Qiagen) was used as a negative control. 

Table 2.15: List of RNAi, their target sites and sequences. 

Cat. No. Target Sequence (5’-3’) 

SIO2012003 β-catenin UUACAGGUCGGUAUCAAACCA 

SIO2012010 β-catenin UAGUCGUGGGAUCGCACCCTG 

SIO1963479 PPARδ  CCAGCGAGGGATGCCAGCAAA 
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SIO1963486 PPARδ  CCCATGAGTTCTTGCGCAGTA 

 

2.13 Growth media 
Different media used for bacterial, cardiomyocyte and non-myocyte culture in 

this work are listed in Table 2.16.  

Table 2.16: Name, purpose and formulation of used media. 

Media Purpose Formulation 

Neonatal medium Cardiomyocyte 

isolation 

from neonatal rat heart 

DMEM/F-12 medium 

supplemented with: 

3 mM Na-pyruvate  

2 mM L-glutamine  

0.1 mM Ascorbic acid  

1:100 Insulin/transferin/Na 

selenite 

0.2% BSA  

penicillin (100 U/ml) 

streptomycin (100 mg/ml) 

Preplating medium  Non-myocyte 

separation from 

harvested cells from 

neonatal rat heart 

DMEM/F-12 medium 

supplemented with 

10% FBS  

2 mM L-glutamine  

Penicillin (100 U/ml) 

Streptomycin (100 mg/ml) 

LB agar Propagation of bacteria 35 g in 1 l H2O 

LB medium Propagation of bacteria 20 g in 1 l H2O 

SOC medium Bacterial 

transformation  

Sigma 

Adult rat 

cardiomyocyte 

medium 

Cardiomyocyte 

isolation 

from adult rat heart 

M199 medium from GIBCO 
5 mM Creatine 

2 mM L-Carnitine  

5 mM Creatine  



Materials  37 

Penicillin (100 U/ml) 

Streptomycin (100 mg/ml) 

0.2% BSA 

 
2.14 Competent cells 
Different competent bacterial strains were used for transformation (Table 2.17). 

Table 2.17: Bacteria used as competent cells for plasmid propagation. 

Bacterial Strain Specification 

XL1-Blue Competent cells  

Dh5α Competent cells  

 
 
2.15 Software 

Software used for data analysis in this study is listed in Table 2.18. 

Table 2.18: Software used in this study and its application. 

Software Application 

Microsoft Office Excel, Word, 

Powerpoint 

Data anlysis and Documentation 

Adobe Photoshop, Illustrator, Reader Figure preparation 

Image J Image analysis 

GraphPad Prism Graphical representation and 

statistical analysis 
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3. Methods 
3.1 RNA isolation and reverse transcription (RT) 
The cultured cells were first washed 2 times with PBS. The cells were then 

scrapped from the culture plates using 10 µl of 2-mercaptoethanol + 1 ml lysis 

RW1 buffer from Qiagen. RNA extraction was carried out using the Qiagen 

RNA extraction kit. The RNA concentration was measured using Nanodrop and 

isolated RNA was dissolved in 30 to 50 µl RNase-free water and stored at -

80°C. 

cDNA was prepared from isolated RNA using MMLV or superscript II 

reverse transcriptase. For MMLV-mediated reverse transcription 1 μg RNA was 

incubated with 1 μl dNTP mix (10 mM), 0.5 μg oligo dT and RNase free water 

q.s. to 10 μl at 65°C  for 5 min. Then this reaction mixture was incubated with 2 

μl MMLV reverse transcriptase buffer (10x), 7 μl RNase free water and 1 μl 
MMLV reverse transcriptase at 37°C for 50 min. After 50 min the incubation 

reaction was inactivated by incubation at 80°C for 10 min and RNase free water 

was added q.s. to 100 μl. Synthesized cDNA was stored at -80°C for further 

use. 

 
3.2 cDNA amplification by PCR 
 
For PCR-mediated cDNA amplification, a standard PCR reaction was set up. 

As a template for the reaction 1 μl cDNA was used. A master mix was prepared 

by adding 10 pmol forward and reverse primers, 10 nmol dNTPs, 40 nmol 

MgCl2+, 0.5 U Taq polymerase and 1x PCR amplification buffer (MgCl2+ free). 

The amplification was carried out in a Gene Amp PCR System 9700 

thermocycler from Applied Biosystems under the following conditions: initial 

denaturation for 2-5 min at 94°C; 24-35 cycles of 30 s at 94°C, annealing at 

56°C to 59°C and extension of 1 min per 1 kb of product size at 72°C. After the 

last cycle the reaction was held for 7 min at the extension temperature to allow 

the completion of amplification of all products. Subsequently, the temperature 

was lowered to 4°C to stop the reaction 
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3.3 Agarose gel electrophoresis 

cDNA was resolved on 1.5-2% agarose gels prepared in TAE buffer containing 

EtBr. Electrophoresis was run for 30 to 60 min in TAE depending upon PCR 

product size. cDNA was visualized under UV light, λ=260 nm. 

 
3.4 cDNA elution from agarose gel 
Resolved PCR products were purified from agarose gel using the QIAquick gel 

extraction kit according to manufacturer’s instructions (QIAGEN) and eluted 

with 30 μl nuclease free water. 

 

3.5 Cloning, recombinant adenoviral generation and infection 
Cardiomyocyte-specific Fucci constructs were generated by cloning an alpha-

MHC promoter in front of mCherry-hCdt1 (30/120) as well as mAG-hGem 

(1/110). mCherry-hCdt1 (30/120) and mAG-hGem (1/110) constructs were 

PCR amplified from respective lentiviral vectors provided by A. Miyawaki by 

using salI restriction containing primers (23). A 1028 bp cDNA fragment (primer 

pair containing SalI restriction sites) was amplified from mCherry-hCdt1 

(30/120) plasmid and a 1058 bp cDNA fragment (primer pair containing SalI 

restriction sites) from mAG-hGem (1/110).  All amplified cDNAs were resolved 

by agarose gel electrophoresis and eluted from the gel. Then this amplified 

fragments were kept separate salI restictions and also at the same time 

pAlpha-MyHC (clone 26) for SalI restriction. This restriction treatment leaves 

SalI sticky ends at both ends. Separately, SalI-restricted Fucci fragments were 

ligated with pAlpha-MyHC (clone 26) SalI-restricted fragment by incubating a 

mixture of 5 μl rapid ligation buffer (2x), 3 μl eluted cDNA, and 1 μl T4 DNA 

ligase (joins between the 5'-phosphate and the 3'-hydroxyl groups) at 4°C 

overnight. The plasmids were tested in in neonatal cardiomyocytes for their 

specificity and expression by Amaxa (electroporation based) transfection 

system. These constructs were then used to generate adenoviruses (Sirion 

Biotech GmbH). Neonatal P3 cardiomyocyte cultures were infected with 

adenoviruses 2 days after isolation at 400 M.O.I. in fresh medium. Infection 

efficiency of cardiomyocytes was > 90% as determined by live fluorescence 

imagining and indirect immunofluorescence staining’s. For inhibition 
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experiments neonatal cardiomyocyte cultures were infected with adenoviruses 

expressing DN-Akt (200 M.O.I) 47, DN-β-catenin and DN-TCF4 (both 100 

M.O.I., Vector Biolabs) two days after isolation. Cells were washed after 24 h. 

 

3.6 Preparation of competent E.coli cells 

A single colony of E. coli strain (DH5α or XL1Blue) was inoculated in 5-6 ml 

LB medium and cultured overnight at 37°C with shaking. The 4 ml of grown 

culture was added into fresh 250 ml LB and grown to early logarithmic phase 

(OD600=0.3-.6). The culture was centrifuged for 5 min at 2500 rpm at 4°C in a 

table top centrifuge. The bacterial pellet was resuspended in 25 ml cold TSB 

buffer (1/10th volume of the bacterial suspension) and incubated on ice for 10 

min. Competent cell suspension was aliquoted into cold eppendorf tubes (100 

μl and 200 μl) and snap frozen in liquid nitrogen. Aliquoted frozen competent 

bacterial cells were stored at -80°C. 

 
3.7 Transformation of E. coli competent cells 

Part of a ligation reaction mixture (5 μl) or 1-10 ng of plasmid DNA was added 

to 20 μl KCM buffer; water was added q.s. to 100 μl in a 1.5 ml eppendorf  

tube. An equal volume of thawed competent cells was added to the reaction 

mixture and mixed by flicking. The reaction mixture was incubated on ice for 20 

min followed by incubation at RT for 10 min. Then 1 ml of LB medium (without 

any antibiotic) was added to the mixture and incubated for 1 h at 37°C with 

vigorous shaking. Finally cells were plated on LB Agar plates containing 

appropriate antibiotic. Plates were incubated at 37°C overnight. 

 

3.8 Plasmid DNA isolation 

The “mini-prep” method is useful for preparing partially purified plasmid DNA in 

small quantities from a number of transformants. It is based on the alkaline 

lysis method using SDS113. A single colony was selected and inoculated in 3 to 

5 ml of LB medium containing the appropriate antibiotic with a sterile pipette tip. 

Bacterial cells were cultured overnight at 37°C with vigorous shaking. The cells 

were harvested by centrifugation for 4 min at 4000 rpm in a table top centrifuge 

(Eppendorf 5415C). Plasmid DNA was isolated using the QIAGEN miniprep kit 

following the manufacturer’s instructions. At last plasmid DNA was extracted 



Methods  41 

from the affinity column with 30 μl sterile water. Large amount of plasmid DNA 

was prepared using the QIAGEN Plasmid Midi Kit according to the 

manufacturer’s instructions. 

 

3.9 Determination of the concentration of nucleic acids  
The DNA and RNA concentrations in solution were estimated using a 

spectrophotometer (Nanodrop 2000c-Peqlab). The absorbance of the solution 

was measured at 260 nm and the concentration of nucleic acids was calculated 

by the manufacturers software based on the Beer-Lambert Law (Aλ =εbc). 

Where Aλ is the absorbance (Aλ = log10 P0 / P), ε is the molar absorbtivity 

(molar extinction coefficient), b is the path length of the sample and c is the 

concentration of the compound in solution.  

The molar absorbtivity of double stranded DNA is ε = 50 cm-1 M-1, for 

single stranded DNA is ε = 33 cm-1 M-1, and for RNA is ε = 40 cm-1 M-1  

 

3.10 Determination of protein concentration 

Protein concentration was estimated using the BioRad DC Protein Assay Kit 

which is based on the Lowry method114. The 5 μl protein extract was mixed with 

5 μl water, 20 μl reagent A and 200 μl reagent B and incubated for 15 min at 

RT. Absorbance of the solution was measured by a microplate reader 

(spectrophotometer from Tecan) at λ=720 nm. Protein sample concentration 

was calculated by the manufacturer’s software based on a standard curve that 

was determined using BSA standards. 

 

3.11 Western blot analysis 

Rat neonatal cardiomyocytes cultured on 6 well plates were homogenized in 

lysis buffer (20 mM Tris, pH 7.4, 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% 

Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM β-glycerol phosphate, 1 

mM Na3VO4, 1 mg/ml leupeptin) containing 1 mM PMSF and Protease 

Inhibitor Cocktail (Roche). Cells were suspended in this buffer. After 15 min 

incubation on ice, the samples were briefly sonicated and centrifuged at 17,000 

x g at 4°C for 10 min. Nuclear extracts were prepared according to the 

manufacturer instructions (Thermo Scientific). The protein concentration was 

determined using BioRad DC Protein Assay according to manufacturer’s 
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protocol. Equal amount of proteins were resolved by 10% Novex Bis- Tris Gels 

(Invitrogen) and blotted on nitrocellulose membranes115. Membranes were 

blocked with 5% non-fat dry milk (DM) or 5% BSA in Tris-buffered saline (TBS) 

(10 mM Tris–HCl (pH 7.5), 150 mM NaCl) with 0.1% Tween 20 for 1 h at RT 

and incubated with primary antibodies diluted in 5% milk/TBS/T and/or 

5%BSA/TBS/T overnight at 4°C: rabbit polyclonal anti-Cyclin D2 (1:1000), anti-

PPARδ  (1:500) (both Santa Cruz, DM), anti-phospho-GSK3B (DM), anti-pan-

actin (DM), anti-PDK1 (BSA) (all 1:1000, Cell Signaling, DM), rabbit monoclonal 

anti-β-catenin (1:1000, Cell Signaling, BSA), anti-GSK3B (1:1000, BD 

Transduction Laboratories, DM), mouse monoclonal phospho (308) anti-Akt 

(1:1000, BSA), anti-Akt (1:1000, DM) (both Cell Signaling), anti-KIP/p27 

(1:2500, DM), anti-PARP (1:1000, DM) (all BD Transduction Laboratories). 

Antigen/antibody complexes were visualized using horseradish peroxidase-

conjugated secondary antibodies (Amersham) and Super Signal @ ECL 

detection system (BioRad). Chemiluminescence was documented by a blot 

developing system from FujiFilm, which can detect chemiluminescence. 

 

3.12 Immunofluorescence staining 
Staining was performed as previously described116, 117. The cells in culture were 

washed shortly (not > 30 sec) with PBS. For staining cells were fixed for 15 min 

in 3.7% methanol-free formaldehyde at RT. Cells were washed thrice with PBS 

and permeabilised in 400 µl / well D-PBS with 0.5% Triton-X100 for 10 min at 

RT (for BrdU staining cells were afterwards incubated with 2N HCl/1% Triton X-

100 and incubated for 30 min at RT, and cells were washed thrice with PBS). 

Then cells were blocked with 5% goat serum/0.2% Tween-20/PBS for 20 min 

and incubated 1 h at RT with primary antibodies (for BrdU staining incubated 

overnight at 4°C with anti-BrdU antibody. Subsequently, samples were washed 

thrice with with 0.1 % Nonidet P40 in PBS, and incubated with corresponding 

secondary antibodies conjugated to Alexa Fluor 488 and Alexa Fluor 594 

(1:200 Invitrogen) for 45 min at RT. Cells were washed and incubated with 

DAPI (DNA visualization) for 15 min. subsequentely cells were washed and 

mounted on glass slide. Primary antibodies: mouse monoclonal anti-

mCherry/Ds-Red (1:200, Clontech), anti-Tropomyosin (1:200, Sigma), anti-

Actinin (1:100, Abcam), anti-Aurora B (1:200), anti-p27 (1:50) (both BD 



Methods  43 

Transduction Laboratories), rabbit polyclonal anti-Troponin I, anti-Cyclin A, anti-

cdc2, (all 1:50, Santa Cruz), anti-phospho-Histone H3 (Ser10) (1:200, 

Millipore), antipRb807/ 811 (1:100, Cell Signaling), anti-mAG (1:300, MBL), rat 

monoclonal anti- BrdU (1:100, Abcam). For BrdU, cells were cultured in 30 μM 

BrdU (neonatal P3: last 24 hours, P8: last 24 hours,  adult: last 5 days)  

 
3.13 Screening of small molecule libraries 

Neonatal cardiomyocytes were seeded in 100 μl medium at a density of 15,000 

cells per 96 well for 2 days. Then cells were infected with Ad-mAG-

hGem(1/110). After 24 h cells were washed and treated with compounds 

dissolved in DMSO (Nuclear Receptor Ligand Library, 74 compounds, Enzo 

Life Science; Epigenetics Screening Library, 54 compounds, Cayman 

Chemicals) at 3 different concentrations (10 nM, 250 nM and 30 μM). AG 

expression was analyzed every 12 h for the following 4 days by visual 

inspection using a Leica fluorescence microscope. For quantitative analysis 

every 12 hours a random field of around 100 cells was evaluated. The maximal 

number of mAG-hGem(1/110) expressing cells was used to normalize the data 

against DMSO control as fold change. Hit compounds were defined as those 

higher than two fold 

 

3.14 RNA interference 

For siRNA-mediated β-catenin and PPARδ  knockdown, neonatal 

cardiomyocytes were transfected 48-72 h after seeding and PBS washing by 

lipofectamine™ RNAiMAX kit (Invitrogen) with 100 nM of validated siRNAs 

(Qiagen). Cells were washed after 4 h by PBS and stimulated after 48 h with 1. 

DMSO, 2. Carbacyclin. All Stars Negative Control siRNA (Qiagen) was used as 

a negative control. Efficiency of siRNAs was verified by RT-PCR analysis using 

β-catenin and PPARδ  specific primers (see Materials). 

 
3.15 Luciferase assay 

Cells were assayed for β-catenin-mediated transcriptional activation by using a 

reporter containing either functional (TOPflash) or mutated (FOPflash) Tcf 

binding sites A total of 2 μg TOPflash or FOPflash reporter plasmids (Upstate 

Signaling) were cotransfected with 2 μg pGL4.75 (hRluc/CMV) vector 
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(Promega) into 2 millions neonatal cardiomyocytes using the Nucleofactor kit 

(Amaxa) and were plated in 24-well plates. Cells were cultured for 3 days and 

were subsequently stimulated with selected compounds (1. DMSO, 2. 

carbacyclin) for 24 h. Reporter activity was measured by using the Dual 

Luciferase Assay System (Promega). TOPflash or FOPflash activity was 

normalized to the measured Renilla luciferase activity of pGL4.75, an internal 

standard for transfection efficiency. The results were showed in fold change in 

luciferase activity. 
 
3.16 Isolation of neonatal rat heart cells 
Neonatal rats (P3 and P8) were decapitated, the chest was opened and hearts 

were removed with a curved forcep. Isolated hearts (10 to 20) were placed in a 

petridish containing 20 ml PBS without Ca2+ and Mg2+ and 5 mM glucose on 

ice. Using a scalpel blade, the aorta and the atria were removed. The 

remaining ventricles were gently squeezed with forceps to remove the blood 

and washed with PBS without Ca2+ and Mg2+ containing 5 mM glucose. The 

ventricles were placed on a dry petridish and were minced as small as possible 

using a scalpel blade. The minced heart tissue was transferred to a Corex 

glass tube, containing 10 ml of digestion buffer and one magnetic stir bar, in a 

37°C water bath on a magnetic stirrer (200 to 300 rpm). After 3 min the Corex 

glass tube was removed that the tissue could settle on the bottom (3 min tissue 

sedimentation). Subsequently the supernatant was discarded. This wash step 

was followed by a series of digestion steps each with 10 ml digestion buffer. 

The first two digestion steps involved 10 min of digestion followed by 5 min 

sedimentation. This procedure was continued with 8 min digestion and 5 min 

sedimentation for 5 steps more. After each sedimentation step, the supernatant 

containing the cells was collected and transferred to 50 ml falcon tube 

containing 4 ml ice-cold horse serum (each tube to collect 40 ml supernatant) 

and kept on ice. The tubes containing the cell suspension in horse serum were 

centrifuged at 330 x g for 3 minutes at 4°C. Subsequently the supernatant was 

discarded and the cell pellets were resuspended in preheated preplating 

medium (37°C, 10 ml per 5 hearts). The cell suspension was preplated on 10 

cm cell culture dishes (10 ml cell suspension/dish) and incubated for 1h 30 min 
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at 37°C at 5% CO2 level. During this preplating, non-myocytes attach to the cell 

culture dish whereas cardiomyocytes get enriched in the medium. 

The supernatant from the preplating step was collected in 50 ml falcon 

tubes. Cells were pelleted at 330 x g for 3 min at 4°C and RNA was isolated 

from the cell pellet (cardiomyocytes) or from the attached non-myocytes after 

washing twice with PBS using the QIAGEN RNA easy kit according to 

manufacturer’s instructions. 

 

3.17 Isolation of adult rat heart cardiomyocytes 

The adult cardiomyocytes were provided by Dr. Felix Engel isolated by 

collagen-based digestion from 12-week-old rats using langendorff perfusion 

system116. The perfusion system was assembled as shown in figure 3.1. The 

isolated cells were washed with pre-warmed washing buffer and calcium was 

re-introduced. Then cell were centrifuged, supernatant removed and replaced 

with adult cardiomyocytes medium. The cells were plated on previously 

laminin-coated glass coverslips and incubated at 370C in CO2 incubator.  

 

 

Figure 3.1: Perfusion system for isolation of adult rat cardiomyocytes. (adapted from Dr. 

Felix Engel PhD thesis) 
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3.18 PPARδ transgenic mouse model 

The transgenic mouse model with tamoxifen inducible cardiomyocyte-restricted 

overexpression of a constitutively active mutant PPARδ gene (VP16-PPARδ) 

has been described previously.21, 22 The transgenic line of VP16-PPARδ driven 

by the human cytomegalovirus immediate early enhance/chicken β-actin 

promoter was crossed with the tamoxifen inducible αMyHC-Mer-Cre-Mer 

(TMCM) transgenic mice23 to generate the tamoxifen inducible transgenic mice 

with cardiomyocyte-restricted overexpression of VP16-PPARδ (TMVPD). 

Tamoxifen (Sigma) (80 μg/g of body weight/day) was administered by intra-

peritoneal injection once daily for 5 days to induce cardiomyocyte-restricted 

PPARδ overexpression in adult mice (3 months). TMCM and TMVPD mice 

were anesthetized 14 days after tamoxifen induction, hearts were perfused with 

cardioplegic buffer and fixed with 4% paraformaldehyde. The heart was 

embedded in paraffin. Paraffin-embedded sections (5 μm thick) were obtained 

for immunostaining.  

 

3.19 Immunostaining of heart sections 
Mounted sections were deparaffinised by washing slides two times with xylol 

(10 min first and second time for 5 min) and then series of ethanol : water 

mixtures (99.4:0.6, 96:4, 70:30, 50:50) for 5 min each step. At last sections 

were washed with distilled water at least for 5 min. Following antigen retrieval in 

boiling EDTA Buffer (1 M EDTA, pH 8.0) for 8 min, sections were cooled down 

to RT (keep for 30 min at RT). After cooling down the slides were rinsed thrice 

with PBS for 5 min. Each tissue section was circumscribed with an ImmEdge 

pen. The section was blocked with 5% goat serum/0.2% Tween-20/PBS for 30 

min, incubated overnight at 4°C with rabbit anti-phospho-Histone H3 (Ser10) 

(1:200, Millipore) and mouse anti-sarcomeric alpha Actinin (1:100, Abcam), 

Subsequently, samples were washed thrice with PBS and incubated with 

corresponding secondary antibodies conjugated to Alexa Fluor 488 and Alexa 

Fluor 594 (Invitrogen).  

 

 
 
 



Methods  47 

3.20 Statistical analysis 

For immunofluorescence analyses 50 cardiomyocytes in five random fields of 

two different subpopulations were counted per experiment equaling a total cell 

number of 500 cardiomyocytes. Data of at least three independent experiments 

are expressed as mean ± SEM. Results were analyzed by Graph Pad Prism 

(version 4.00, Graph Pad Software Inc.). Statistical significance was 

determined using a two tailed Student’s t-test and analysis of variance 

(ANOVA). The values of p < 0.05 were considered statistically significant.  
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4 Results 
 
4.1 Cloning and generation of cardiomyocyte-specific recombinant 
adenoviral Fucci constructs  
In order to test whether the Fucci system can be utilized to monitor cell cycle 

re-entry in fully differentiated cardiomyocytes we have overexpressed via 

adenovirus a non-functional hCdt1 deletion mutant fused to mCherry (mCherry-

hCdt1(30/120)) as well as a non-functional human Geminin deletion mutant 

fused to a monomeric version of Azami Green (mAG-hGem(1/110)) in primary 

neonatal rat cardiomyocytes under the control of the cardiomyocyte specific 

alpha-MHC promoter (Figure 4.1 a).  

  
Figure 4.1: Cloning and generation of cardiomyocyte-specific recombinant adenoviral 

Fucci constructs. (a) Diagrammatic representation of cloning and generation of cardiomyocyte 

specific fucci constructs.  (b) PCR amplification of Fucci constructs using specific primers 

containing salI restriction site. (c) Cardiomyocyte-specific Fucci constructs alpha-MHC-

mCherry-hCdt1(30/120)) and alpha-MHC-mAG-hGem(1/110)) were generated (amplified Fucci 

sequence and pAlpha-MyHC (clone 26) plasmid was first restricted by SalI separately and 

Fucci constructs were ligated with salI restricted with pAlpha-MyHC (clone 26) using T4 ligase). 

Restriction of cardiomyocyte-specific Fucci plasmids and pAlpha-MyHC (clone 26) by SalI 

restriction (c).  
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To generate cardiomyocyte-specific Fucci constructs, we cloned an 

alpha-MHC (myosin heavy chain) promoter in front of mCherry-hCdt1 (30/120) 

as well as mAG-hGem (1/110). mCherry-hCdt1 (30/120) and mAG-hGem 

(1/110) DNA sequence were PCR amplified from respective vectors provided 

by Atsushi Miyawaki105 (Figure 4.1 b, c). The primers were designed in a way 

that both contain a SalI restriction site. These SalI sites were used to insert the 

amplified sequence from the Fucci plasmids into pAlpha-MyHC (clone 26) 

plasmid (Figure 4.1 a). The constructs were further checked for cardiomyocyte-

specific expression in neonatal cardiomyocytes (Figure 4.2 a, e). These 

plasmids have been used to generate adenoviral constructs (Sirion Biotech 

GmbH). 

 
4.2 Fucci system in primary differentiated rat cardiomyocytes 
To investigate the expression of Fucci constructs in neonatal cardiomyocytes, 

we transfected neonatal cardiomyocytes after 48 h of isolation in cardiomyocyte 

medium with different M.O.I. of Ad-mCherry-hCdt1 (30/120) and Ad-mAG-

hGem (1/110) adenoviral vectors (Figure 4.2 a, b, e, g). Ad-mCherry-

hCdt1(30/120) infection resulted in the expression of mCherry-hCdt1(30/120) in 

more than 90% of neonatal cardiomyocytes (95.2% ± 3.0%) based on mCherry 

staining and counterstaining against cardiomyocyte-specific Troponin I (Figure 
4.2 a). To verify the specificity of the alpha-MHC promoter we analyzed the 

expression of mCherry-hCdt1(30/120) also in non-myocytes. For this purpose 

we used our standard neonatal cardiomyocyte cultures (contain up to 10% of 

non-myocytes) as well as non-enriched cultures (no pre-plating) containing 

around 50% of non-myocytes (Figure 4.2 c, d). In both cultures we detected 

less than 1% of mCherry-hCdt1 (30/120)-positive non-myocytes after 

adenoviral infection confirming the specificity of the alpha-MHC promoter 

(0.83% ± 0.21%) (Figure 4.2 c). Taken together, our data are in agreement 

with the literature describes that the majority of cardiomyocytes has exited the 

cell cycle and thus should be Cdt1-positive. 

Ad-mAG-hGem(1/110) infection resulted in the expression of mAG-

hGem(1/110) of less than 1.5% of cardiomyocytes (1.3% ± 0.2%; (Figure 4.2 
e). Stimulation with 10% fetal calf serum (FCS), an inducer of cell cycle re-

entry, increased the expression of mAG-hGem(1/110) around 10-fold (14.1% ±  
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Figure 4.2: Fucci system in primary differentiated neonatal rat cardiomyocytes. (a) and 

(b), Enriched and non-enriched cardiomyocytes cultures infected with Ad-mCherry-

hCdt1(30/120) stained for mCherry expression (red) and counter-stained against 

cardiomyocyte-specific Troponin I (green). DAPI was used to visualize nuclei (blue). (b), 

Representative example for enriched cultures. (c), Quantitative analysis for enriched and non-

enriched cultures (n=6). (d) Quantitative analysis of cardiomyocytes and non-cardiomyocytes in 
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non- enriched culture. (e), Ad-mAG-hGem(1/110) infected  enriched P3 cardiomyocytes were 

stimulated with serum starved or 10% fetal calf serum, stained for mAG expression (green) and 

counter stained against cardiomyocyte-specific actinin (red) and DNA (DAPI, blue). (f) 

Quantitative analysis of (e) in cardiomyocytes and non-cardiomyocytes (n = 6). (g) and (h), 
Quantitative analysis (n = 6) and representative live pictures of control or 10% FCS stimulated 

neonatal cardiomyocyte cultures infected with Ad-mAG-hGem(1/110) (green). : **: p < 0.01. 

Scale bar = 50 µm in (a) and 100 µm in (c). 

 

2.1%, p < 0.01) (Figure 4.2 f), while less than 0.3% of non-myocyte were mAG-

positive (Figure 4.2 f) (serum starvation: 0.02% ± 0.01%, FCS: 0.27% ± 

0.09%). The FCS-induced mAG-hGem(1/110) expression could be easily 

detected by visual inspection. The number of mAG-hGem(1/110)-positive cells 

per field was increased more than 5-fold compared to the control (9 ± 3 vs. ≤ 1, 

(Figure 4.2 g, h).This suggests that the required degradation machinery is still 

intact and that the overexpressed mAG-hGem(1/110) is actively degraded in 

differentiated cardiomyocytes.  

Overexpression of neither mCherry-hCdt1(30/120) nor mAG-

hGem(1/110) increased DNA synthesis measured by BrdU incorporation 

confirming that the overexpressed proteins are inactive (Figure 4.2 i) 
Collectively, these data suggest that the Fucci system can be utilized in 

differentiated cardiomyocytes. 
 

4.3 mAG-hGem(1/110)  expression in presence of known inducers of CM 
proliferation 
In order to evaluate our screening strategy we have stimulated neonatal 

cardiomyocytes with fibroblast growth factor 1 (FGF1) and an inhibitor of the 

p38 mitogen-activated protein (MAP) kinase (p38i). This combination has been 

shown to be a potent inducer of cardiomyocytes proliferation116. Accordingly it 

induced Geminin-expression in neonatal cardiomyocytes (25.8% ± 2.7% vs. 

3.3% ± 0.3%, p < 0.01) (Figure 4.3. e, f). FGF1/p38i stimulation after Ad-mAG-

hGem(1/110) infection increased the expression of mAG-hGem(1/110) in 

neonatal cardiomyocytes approximately 18-fold compared to the control (20.0% 

± 2.6% vs. 1.1% ± 0.2%, p < 0.01) (Figure 4.3. c, d). The FGF1/p38i-induced 

mAG-hGem(1/110) expression could be easily detected by visual inspection. 

The number of mAG-hGem(1/110)-positive cells per field was increased more 

than 9-fold compared to the control (9 ± 3 vs. ≤ 1) (Figure 4.3. a, b).  
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Figure 4.3: mAG-hGem(1/110) expression in presence of known inducers of 

cardiomyocyte proliferation.  
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(c) and (d) P3 cardiomyocyte cultures infected with Ad-mAG-hGem(1/110) were treated with 

DMSO or FGF1+p38i and stained for mAG expression (green) and counterstained against 

cardiomyocyte-specific Actinin (red). DAPI was used to visualize nuclei (blue). (d), Quantitative 

analysis of (c) (n = 6). (a) and (b), Quantitative analysis (n = 6) and representative live pictures 

of control or FGF1+p38i-stimulated neonatal cardiomyocyte cultures infected with Ad-mAG-

hGem(1/110) (green). : **: p < 0.01. Scale bar = 100 µm (e), Representative examples of 

enriched neonatal cardiomyocyte cultures serum-starved or stimulated with FGF1 + p38i 

stained for Geminin (green), Tropomyosin (red) and DNA (DAPI, blue). (f), Quantitative 

analysis of (e) (n = 4).**: p < 0.01. Scale bar = 50 µm. 

 
4.4 Screening strategy 

The use of the Fucci system to detect the induction of cell cycle re-entry allows 

two different screening approaches: loss of signal (mCherry-hCdt1(30/120)) or 

gain of signal (mAG-hGem(1/110)) (Figure 4.4 a). Overexpression of mCherry-

hCdt1(30/120) resulted in a signal that could be easily detected by visual 

inspection (Figure 4.4 b). However, less mCherry-positive cardiomyocytes 

were detected during live cell observation than after immunofluorescence 

staining analysis (Figure 4.4 a). In addition, this approach appears to be error-

prone due to the unavoidable presence of non-myocytes. Drug-induced 

increase of the mCherry-hCdt1(30/120)-negative non-myocyte population will 

result in a “false loss of signal” giving the wrong impression that 

cardiomyocytes have re-entered the cell cycle (Figure 4.4 d). Therefore, this 

approach appears not optimal.  

 In contrast, screening based on geminin appears to be very stringent 

as the noise of the system is very low (<1.5% mAG-hGem(1/110)-positive 

cardiomyocytes) and proliferating non-myocytes will increase the signal only 

minimal (< 0.5% mAG-hGem(1/110)-positive non-myocytes) (Figure 4.4 c).  

Collectively, our data suggest that this screening approach based on mAG-

hGem(1/110) expression can be utilized to screen small molecule libraries for 

molecules that induce cardiomyocytes cell cycle re-entry. 
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Fig 4.4: Schematic representation of possible screening approaches in which induction 

of proliferation is associated with a loss or gain of signal (a). (b), Representative live 

pictures of a control neonatal cardiomyocyte culture infected with Ad-mCherry-hCdt1(30/120) 

(red) (b) and Ad-mAG-hGem(1/110) (c). (d), Schematic representation of the effect of drugs 

inducing non-myocyte proliferation mocking loss of signal. 
 

4.5 Screening of chemical libraries identifies carbacyclin 
Two small molecule libraries were screened for molecules that induce 

cardiomyocytes cell cycle re-entry: a nuclear receptor ligand library (Enzo Life 

Sciences) and an epigenetics-screening library (Cayman Chemicals). 

Cardiomyocytes were isolated from 3-days-old neonatal rats, enriched and 

seeded at 15,000 cells per well in a 96-well plate. After 2 days the cells were 
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infected with an adenovirus expressing mAG-hGem(1/110) under the control of 

the cardiomyocyte specific alpha-MHC promoter. One day later at day 3 cells 

were washed and treated with the different compounds at three different 

concentrations (10 nM, 250 nM and 30 µM). DMSO served as negative control, 

10% FCS and FGF1/p38i as positive controls. Subsequently, mAG-

hGem(1/110)-positive cells per field were recorded for 4 days at intervals of 12 

h. Data are represented as fold change increase of the observed maximal 

number of mAG-hGem(1/110)-positive cells per field in comparison to the 

average maximal number in DMSO treated cultures over time (Table 4.1). The 

workflow of this screen is summarized in (Figure 4.5 a).  

The positive control FGF1/p38i treatment induced a 10-fold increase 

while 10% FCS, a weaker inducer of cell cycle re-entry, a 5-fold increase in 

mAG-hGem(1/110)-positive cells per field. Most of the tested small molecules 

had no effect on cardiomyocyte cell cycle re-entry. However, 8 compounds 

induced at least a 2-fold increase in mAG-hGem(1/110)-positive cells (Figure 
4.5 b and Table 4.1). The most potent treatment was 250 nM carbacyclin 

inducing a 9-fold increase (Figure 4.5 b). These data suggested that 

carbacyclin is a new inducer of cardiomyocytes proliferation. 
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Figure 4.5: Screening of chemical libraries identifies carbacyclin. (a), Work flow of the 

applied screening strategy. (b), Quantitative analysis of the screen of a nuclear receptor ligand 
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library and an epigenetics screening library. (c), Representative live pictures of control or 

carbacyclin-treated neonatal cardiomyocyte cultures infected with Ad-mAG-hGem(1/110) 

(green). (d), Quantitative analysis of c (n = 6). (e), Structure of carbacyclin. **: p < 0.01. Scale 

bar = 100 µm. 

 

4.6 Validation of carbacyclin as inducer of cardiomyocyte proliferation 
In order to validate the screening data and to find the optimum concentration of 

positive hits with regards to induction of cell cycle re-entry, we treated P3 

neonatal cardiomyocytes with all positive hits including trans-retinoic acid, 4-

hydroxy retinoic acid, TTNPB, RG-108, cay-10433, sinefungin, nicotinamide 

and cabacyclin at 10 nM, 100 nM, 250 nM, 1 µM and 5 µM. Cells were cultured 

for 2 days and pulse-labeled with BrdU for the final 24 hours, a marker of DNA 

synthesis. Carbacyclin induced BrdU incorporation in a dose-dependent 

manner with an optimal concentration of 1 µM (46.3% ± 3.8% vs. DMSO: 3.6% 

± 0.6%, p < 0.01) (Figure 4.6 a, b), while other compounds only moderately 

induced BrdU incorporation in cardiomyocytes (Figure 4.6 a, b, c, d, e, f and 
g). 

To determine the effect of carbacyclin on cardiomyocyte proliferation, 

we assessed its effect on well-characterized cell cycle genes on RNA and 

protein level. Carbacyclin induced the expression of cell cycle perpetuating 

factors like phospho-RB, cyclin D2, cyclin A, cyclin B, cdc2, and c-myc (Figure 
4.6 c to f). In addition, carbacyclin stimulation resulted in the downregulation of 

the cell cycle inhibitors p21 and p27 (Figure 4.6 c to f). These data suggested 

that carbacyclin induces cell cycle re-entry of neonatal cardiomyocytes. 
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Figure 4.6: Validation of carbacyclin as inducer of cardiomyocytes proliferation. (b), 

Carbacyclin induced dosage dependent BrdU incorporation of neonatal cardiomyocytes (n = 6). 
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(a), Representative example of neonatal cardiomyocytes stained for BrdU (red) and Troponin I 

(green, cardiomyocyte-specific). DNA was visualized using DAPI (blue). (c to e), Treatment 

with carbacyclin induced increased expression of cell cycle promoting factors and a decrease in 

expression of cell cycle inhibitors. (c), Representative examples of RT-PCR analysis at 48 h. 

(d), Representative examples of Western blot analysis at 48 h. (e), Representative examples of 

immunofluorescence analysis at 48 h. Cardiomyocytes were stained for Troponin I or 

Tropomyosin (red, cardiomyocyte-specific), cell cycle regulators (green) and DNA (blue). (f), 

Quantitative analysis of e (n = 6). **: p < 0.01. Scale bar = 50 µm. 
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Figure 4.7: Validation of other positive hits as inducer of cardiomyocyte cell cycle re-

entry. (a) to (g), Dose-dependent incorporation of BrdU in neonatal cardiomyocytes (n = 4). *: p 

< 0.05; **: p < 0.01      

 
 
4.7 Carbacyclin induces mitosis in neonatal cardiomyocytes 
To assess if carbacyclin regulates karyokinesis in neonatal cardiomyocytes, we 

assayed mitosis by immunofluorescence staining of phosphorylated histone-H3 

at ser10 (H3P). Carbacyclin increased the number of H3P-positive cells 11.5-

fold resulting in 4.6% ± 0.4% H3P-positive cardiomyocytes compared to 0.4% ± 

0.1% in control (p < 0.01) at three days after carbacyclin stimulation (Figure 4.8 
a, c). This value is comparable to that of proliferating cell lines and the mitotic 

index of fetal cardiomyocytes during embryonic development (E12, 3.7% ± 

0.6%)116. The H3P-positive cardiomyocytes were also increased after treatment 

of other positive hits (Figure 4.8 g). Thus the carbacyclin induced neonatal 

cardiomyocyte karyokinesis more efficiently than the other 7 identified 

compounds. 

 

4.8 Carbacyclin induces cell division in neonatal cardiomyocytes. 
To test whether carbacyclin treatment induces cardiomyocyte cell division, we 

assayed cytokinesis using utilizing Aurora B antibodies. Carbacyclin treatment 

increased the number of Aurora B-positive cells 11.5-fold compared to control 

resulting in 4.7% ± 0.4% Aurora B-positive cardiomyocytes (control: 0.4% ± 

0.1%, p < 0.01) (Figure 4.8 b, c). Cardiomyocytes stimulated with carbacyclin 

were found in all stages of cell division including the final stages of cytokinesis 

(Figure 4.8 e, d). In addition the cells underwent, as previously described 

transient dedifferentiation of the sarcomeric apparatus during mitosis (Figure 
4.9). Compared to DMSO carbacyclin treatment did also not induce 

cardiomyocyte binucleation at day 5. As positive control we utilized 10% FCS 

(DMSO: 10.6% ± 1.4%; 1 µM carbacyclin: 12.5% ± 1.6%; 10% serum 36.7% ± 

3.3%. **: p < 0.01; n = 6) (Figure 4.10). These data indicate that carbacyclin 

induces neonatal cardiomyocytes to re-enter the cell cycle and then to divide. 

Moreover, continuous stimulation of neonatal cardiomyocytes resulted in an 

increase in cardiomyocyte cell density over time (Figure 4.8 f). Taken together, 

carbacyclin is a potent inducer of neonatal rat cardiomyocyte proliferation.  
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Fig 4.8: Carbacyclin induces Mitosis and cell division in neonatal cardiomyocytes (a, b, 

c,) Carbacyclin (1 µM) induced H3P and Aurora B positive neonatal cardiomyocytes. 

Representative examples of neonatal cardiomyocytes stained for Tropomyosin (red, 

cardiomyocyte-specific) and H3P (green) identifying mitotic neonatal cardiomyocytes. (b) 
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Representative example of neonatal cardiomyocytes stained for Troponin I (green, 

cardiomyocyte-specific) and Aurora B (red, central spindle) identifying neonatal cardiomyocytes 

undergoing cytokinesis. DNA was visualized using DAPI (blue). (c) Quantitative analysis of a 

and b (n = 4). (d and e) Representative pictures of cardiomyocyte are in different phases of 

mitosis and mid body formation. (f) Representative examples of cell density experiments. 

Continuous stimulation of cardiomyocytes with carbacyclin resulted in cardiomyocyte 

proliferation. (At day 7 cells were fixed and stained with Tropomyosin (red) and DAPI (blue)). 

(g). Quantitative analysis of H3P-positive cardiomyocytes (n = 4). For each compound the most 

efficient concentration regarding BrdU incorporation was used (for 7 and 8 10 nM). *: p < 0.05; 

**: p < 0.01 Scale bar = 50 µm (a and b), Scale bar = 100 µm (f). 

  

 

Figure 4.9: Indicators of cardiomyocyte cell division. Disassembly of myofibrils during 
carbacyclin-induced cardiomyocyte cell division. The extent of sarcomere disassembly was 
assessed in carbacyclin-treated cardiomyocytes using Troponin I (green). Cells were stained 
for Aurora B (red) and DNA (DAPI, blue) to assess the cell cycle status. Striations were 
apparent in resting/unstimulated cells. During pro-metaphase, sarcomeres became 
disassembled and were reassembled during late anaphase. 
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Fig 4.10: Carbacyclin does not induce binucleation in cardiomyocytes. Quantitative 

analysis of the percentage of binucleated cardiomyocytes after 5 days of treatment with 

DMSO,, 1 µM carbacyclin and 10% serum. (Cells were treated on day 0 and day 3) (n = 6). **: 

p < 0.01. 

 
4.9 Non-myocytes do not affect carbacyclin-induced neonatal 
cardiomyocyte proliferation  
It is known that the presence of non-cardiomyocytes affects the cardiomyocyte 

proliferation in culture and also during heart development. Therefore we were 

interested to determine whether the presence of non-cardiomyocytes in culture 

affects the potency of carbacyclin to induce P3 neonatal cardiomyocyte 

proliferation. We used non-enriched cultures containing around 50% of non-

cardiomyocytes. Carbacyclin 1 µM treatment induced DNA synthesis in more 

than 40% of cardiomyocytes (42.2% ± 5.7%; vs. DMSO: 4.8% ± 0.8%, p < 

0.01) (Figure 4.11 a, b). 
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Fig 4.11: Carbacyclin induced cardiomyocyte cell cycle re-entry does not 

correlate/affected with abundance of non-cardiomyocytes. (a) Non-enriched P3 

cardiomyocyte culture (around 50% non-cardiomyocytes) were treated with DMSO or 

carbacyclin and stained for BrdU (green) and counter stained against cardiomyocyte-specific 

Troponin I (green). DAPI was used to visualize nuclei (blue). (b), Quantitative analysis of (a) (n 

= 6).  **: p < 0.01. Scale bar = 100 µm. 

 
4.10 Activation of the PPARδ-induced pathway is required for 
cardiomyocyte proliferation 
Carbacyclin is a chemically stable carbocyclic analog of prostacyclin, a known 

potent agonist of PPARδ, which is associated to 3-phosphoinositide-dependant 

protein kinase-1 (PDK1)/p308Akt and pGSK3Β/β-catenin signaling as well as 

promotion of proliferation. Thus, we wondered if carbacyclin activates the 
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PPARδ/PDK1/p308Akt/pGSK3Β/β-catenin-pathway in neonatal 

cardiomyocytes, we utilized different small molecules, dominant negative 

proteins and siRNAs and assayed for induction of DNA synthesis by BrdU 

incorporation in neonatal cardiomyocytes (Figure 4.12). Stimulation of 

cardiomyocytes with 1 µM carbacyclin resulted in the up regulation of PPARδ, 

PDK1 and an increase in nuclear PPARδ and β−catenin (Figure 4.13 a, b). 

Taken together, these data show that carbacyclin activates PPARδ signaling in 

cardiomyocytes. 

  

Figure 4.12: Model of the carbacyclin-induced signaling pathway in neonatal 

cardiomyocytes. 
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Figure 4.13: Activation of the PPARδ -pathway is required for cardiomyocyte 

proliferation. To determine whether the activation of the PPARδ /PDK1/p308Akt/pGSK3B/β-

catenin pathway by carbacyclin is required for the induction of cardiomyocyte proliferation we 

utilized different small molecules, dominant negative proteins and siRNAs and assayed for 

induction of DNA synthesis by BrdU incorporation in neonatal cardiomyocytes. (a), 

Representative examples of Western blot analysis showing that carbacyclin increased the 
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expression of PPARδ at 48 h and PDK1 at 24 h. (b) The increase in nuclear PPARδ and β-

catenin at 48 h after carbacyclin treatment. (c) and (d), Two agonist of PPARδ , carbacyclin and 

GW0742 significantly increased DNA synthesis in neonatal cardiomyocytes. (d) Quantitative 

analysis of c. (n=6) (e), Inhibition of PPARδ  by siRNA or the antagonist GSK3787 abolished 

the effect of carbacyclin on cardiomyocyte DNA synthesis (scr: scrambled). (n=6)  (f) The 

siRNA-mediated knockdown of PPARδ mRNA was checked by PCR. *: p < 0.05; **: p < 0.01 

Scale bar = 50 µm. 

 

GW0742, another agonist of PPARδ , also induced BrdU incorporation 

in neonatal cardiomyocytes (17.8% ± 3.2% vs. DMSO: 3.4% ± 0.5%; p < 0.01, 

(Figure 4.13 c, d) suggesting that carbacyclin-mediated cell cycle re-entry 

requires activation of PPARδ. This conclusion was further supported by the fact 

that carbacyclin-mediated induction of BrdU incorporation was significantly 

reduced by 100 nM GSK3787, a specific inhibitor of PPARδ (46.9% ± 4.2% to 

18.3% ± 3.4%; p < 0.01, (Figure 4.13 e), as well as by siRNA-mediated knock 

down of PPARδ  (46.9% ± 4.2% to 13.2% ± 3.9%; p < 0.01, (Figure 4.13 e). 

The siRNA-mediated knockdown of PPARδ  mRNA was checked by PCR (Fig 

4.13 f). Collectively, these data suggest that carbacyclin induces cardiomyocyte 

proliferation by activating PPARδ . 

 

4.11 Role of PDK1-Akt-β-catenin axis in carbacyclin induced 

cardiomyocyte proliferation 
Previously, it has been shown that activation of different signaling pathways, 

including PI3 kinase and extracellular-signal-regulated kinases (ERKs), can 

mediate cardiomyocyte proliferation99. However, neither 20 µM PD98059, an 

inhibitor of ERKs, nor 10 µM LY294002, an inhibitor of PI3 kinase, affected 

carbacyclin-mediated induction of BrdU incorporation (Figure 4.14 a, b). In 

contrast, overexpression of dominant negative Akt (DN-Akt) markedly 

decreased BrdU incorporation (45.3% ± 3.0% to 14.2% ± 2.9%; p < 0.01, 

(Figure 4.14 a, b). Moreover, BrdU incorporation was also decreased after 

addition of 20 µM PHT427, a dual inhibitor of PDK1/Akt (20.8% ± 2.4%; p < 

0.01, (Figure 4.14 b). Stimulation of cardiomyocytes with 1 µM carbacyclin 

resulted in the up-regulation of phosphorylation of Akt at Thr308 and GSK3Β. 
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Fig 4.14: PDK1-Akt-β-catenin axis required for carbacyclin induced cardiomyocyte 

proliferation (a) and (b) Akt phosphorylation at position 308 is required for carbacyclin-induced 

DNA synthesis but not PI3 kinase-induced AKT phosphorylation (LY 294002) or ERK activity (P 

98059). These inhibitors do not significantly decrease DNA synthesis in neonatal 

cardiomyocytes. (b) Quantitative analysis of a. (n=6). (a) and (b) The DN-Akt  as well as PDK1 

and Akt dual inhibitor PHT427 inhibited carbacyclin induced BrdU incorporation. (Adenoviral 
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GFP is used as control for DN-Akt) (n=6). (c) Representative examples of Western blot 

analysis showing that carbacyclin increased the phosphorylation of p308 Akt and pS9-GSK3Β 

at 48 h. (d) and (f) Inhibition of β-catenin signaling by siRNA (β-cat), adenoviral overexpression 

of dominant negative β-catenin or TCF as well as blocking the activity of β-catenin/ PPARδ 

complexes by FH535 abolished the effect of carbacyclin on cardiomyocyte DNA synthesis. **: p 

< 0.01, n = 6. (g) The siRNA-mediated knockdown of PPARδ mRNA was checked by PCR. *: p 

< 0.05; **: p < 0.01 Scale bar = 50 µm. (e), In addition, carbacyclin induced β-catenin-mediated 

transcriptional activation, which was assayed by using reporter containing either functional 

(TOPflash) or mutated (FOPflash) Tcf binding sites. (h) Representative examples of neonatal 

cardiomyocytes stained for actinin (red, cardiomyocyte-specific) and β-catenin (green) showing 

increase in nuclear β-catenin in cardiomyocytes at 48 h after carbacyclin treatment. DNA was 

visualized using DAPI (blue). Scale bar = 50 µm. 

 

at Ser9 (Figure 4.14 c).  These data suggest that not PI3 kinase-mediated but 

PDK1-mediated phosphorylation of Akt is required for carbacyclin-mediated cell 

cycle re-entry of postnatal cardiomyocytes. 

Finally, also inhibition of β-catenin signaling by siRNA-mediated knock 

down of β-catenin significantly reduced BrdU incorporation (8.9% ± 1.3% vs. 

scrambled siRNA: 42.8% ± 4.0%, p < 0.01, (Figure 4.14 f). The siRNA 

mediated knockdown of β-catenin mRNA was confirmed by PCR (Figure 4.14 
g). In addition, BrdU incorporation was also inhibited by overexpression of 

dominant negative β-catenin (DN-β-cat) (46.4% ± 5.2% to 14.8% ± 2.2%, p < 

0.01), addition of 15 µM FH 535, an inhibitor of nuclear PPARδ/β-catenin 

complexes (9.3% ± 1.3%, p < 0.01), or overexpression of dominant negative 

TCF (DN-TCF) (12.3% ± 4.3%, p < 0.01, (Figure 4.14 d). It has been shown 

before that translocation of β-catenin in to the nucleus and inhibition of its 

ubiquitinization induces cardiomyocytes proliferation118, 119. Also carbacyclin 

treatment resulted in nuclear translocation of β-catenin compared to DMSO 

(Figure 4.14 h). In addition, we assayed for β-catenin-mediated transcriptional 

activation by using a reporter containing either functional (TOPflash) or mutated 

(FOPflash) Tcf binding sites. Cells stimulated with carbacyclin increased 

reporter activity 2.3-fold compared to control p < 0.01) (Figure 4.14 e). 

Finally, we tested whether the effect of carbacyclin on cardiomyocyte 

cell cycle entry can be further enhanced by FGF1, p38i or the GSK3B inhibitor 

BIO (which are known to induce cardiomyocytes proliferation). Our data 
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demonstrate that carbacyclin only in combination with 5 µM of BIO significantly 

increased the number of BrdU-positive (63% ± 7.4 vs. 46.4% ± 4.3, p < 0.01) as 

well as H3P-positive cardiomyocytes (5.89% ± 0.53% vs. 4.48% ± 0.38%, p < 

0.01) compared to carbacyclin treatment (Figure 4.15 a, b).  

  
Figure 4.15: BIO enhanced carbacyclin induced cardiomyocyte proliferation. The effect of 

carbacyclin on neonatal cardiomyocyte cell cycle reentry is significantly increased in the 

presence of 5 µM BIO but not FGF1/p38 inhibitor. (a), Quantitative analysis of BrdU 

incorporation (n = 6). (b), Quantitative analysis of mitosis by H3P staining (n = 6). **: p < 0.01.  
 

Collectively, these data suggest that carbacyclin induces 

cardiomyocytes proliferation by activating the PPARδ-PDK1 autoregulatory 

pathway and β-catenin signaling. 

 

4.12 Carbacyclin induces adult cardiomyocyte mitosis 
Previously, it has been shown that newborn mice can regenerate their heart. 

However, this ability is lost in postnatal day 7 mice75. Therefore, we tested 
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whether carbacyclin can also induces cell cycle re-entry in postnatal day 8 (P8) 

rat cardiomyocytes. The BrdU incorporation was increased by more than 5-fold 

upon carbacyclin treatment (14.5% ± 1.7%vs. 2.73% ± 0.4%, p < 0.01; (Figure 
4.16 a, b). A closer analysis revealed that carbacyclin mainly induced mono-

nucleated cardiomyocytes to enter the cell cycle (Figure 4.16 c), content of 

binucleated cells: 41.5% ± 6.1%). The mitotic index (H3P-positive 

cardiomyocytes) was almost 7-fold increased (1.16% ± 0.13% vs. 0.17% ± 

0.04%, p < 0.01; (Figure 4.16 d, e). 

To determine if carbacyclin can induce cell cycle re-entry also in adult 

cardiomyocytes we repeated cell proliferation assays using ventricular 

cardiomyocytes from 12-weeks-old rats. Carbacyclin treatment increased the 

expression of mAG-hGem(1/110) at day 5 from less than 0.01% (DMSO) to 

1.5% ± 0.2% (p < 0.01, (Figure 4.17 a, b) and resulted in 1.4% ± 0.2% BrdU-

positive cardiomyocytes at day 6 (pulse-labeled final 5 days, control: < 0.001%, 

p < 0.01) (Figure 4.17 a, b). For the assessment of cell division we analyzed 

100.000 adult cardiomyocytes from 4 independent experiments and found in 

the control in total 1 H3P and 1 Aurora B-positive c. In contrast, we detected 

after carbacyclin stimulation in total 58 H3P- and 34 Aurora B-positive adult 

cardiomyocytes (Figure 4.17 c, d). 

Carbacyclin induced cell cycle re-entry preferentially in mononuclear 

cells. Of all positive adult cardiomyocytes 58.6% ± 5.0% of BrdU-positive, 

58.1% ± 6.4% of H3P-positive and 61.7% ± 7.3% of Aurora B-positive cells 

were mono-nucleated (Figure 4.17 e). Taken together, our data demonstrate 

that carbacyclin is a potent inducer of mononuclear adult rat cardiomyocyte cell 

cycle re-entry and that our screening system allows the identification of small 

molecules that promote cardiomyocyte proliferation. 
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Fig 4.16: Carbacyclin induces P8 cardiomyocyte proliferation, preferentially in mono-
nucleated cells. (a to c), Carbacyclin induces P8 neonatal cardiomyocyte cell cycle re-entry. 

(b and c), Quantitative analysis of BrdU incorporation (n = 4). (a) Representative example of P8 

cardiomyocytes stained for BrdU (red) and Troponin I (green, cardiomyocyte-specific). Nuclei 

were visualized using DAPI (blue). (d and e), Carbacyclin induces P8 cardiomyocyte mitosis. 
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(d) Representative example of P8 cardiomyocytes stained for H3P (green) and Tropomyosin 

(red, cardiomyocyte-specific). Nuclei were visualized using DAPI (blue). (e) Quantitative 

analysis of mitosis by H3P staining (n = 4). **: p < 0.01.  

 

 

Figure 4.17: Carbacyclin induces adult cardiomyocyte cell cycle and mitosis, 
preferentially in mono-nucleated cells. (a) Carbacyclin induced mAG expression after 
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infection with Ad-mAG-hGem(1/110) as well as BrdU incorporation in adult (n = 6). (b), 

Representative example of adult cardiomyocytes stained for mAG or BrdU (green) and 

Troponin I (red, cardiomyocyte-specific). Nuclei were visualized using DAPI (blue). (c and d) 

Carbacyclin treatment induced mitosis and cytokinesis in adult cardiomyocytes. (c), 
Quantitative analysis (n = 6). (d), Representative examples of adult cardiomyocytes undergoing 

mitosis and cytokinesis stained for Tropomyosin or Troponin I (red, cardiomyocyte-specific) and 

H3P or Aurora B (green). (e), Carbacyclin induced cell cycle re-entry preferentially in 

mononuclear cells. Of all positive adult cardiomyocytes 58.6% ± 5.0% of these cells were BrdU-

positive, 58.1% ± 6.4% were H3P-positive and 61.7% ± 7.3% Aurora B (Aur B)-positive **: p < 

0.01. Scale bar = 50 µm. 

 

4.13 Dominant active PPARδ induces cardiomyocyte mitosis in vivo 

To determine whether PPARδ activation can induce adult cardiomyocyte cell 

cycle re-entry also in vivo, we utilized a transgenic mouse model with tamoxifen 

inducible cardiomyocyte-restricted overexpression of a constitutively active 

mutant PPARδ gene (VP16-PPARδ)120, 121 The transgenic line of VP16-PPARδ 

driven by the human cytomegalovirus immediate early enhance/chicken β-actin 

promoter was crossed with the tamoxifen inducible alpha-MyHC-Mer-Cre-Mer 

(TMCM) transgenic mice122 to generate tamoxifen inducible transgenic mice 

with cardiomyocyte-restricted overexpression of VP16-PPARδ (TMVPD). Adult 

mice (3 months old) were injected with tamoxifen into TMCM and TMVPD and 

analyzed for adult mitotic cardiomyocytes (H3P-positive) after 14 days. 

Cardiac-specific overexpression of dominant active PPARδ resulted in a more 

than 8-fold higher number of mitotic adult cardiomyocytes (Figure 4.18 a, b, c, 
d). 

Taken together, our screening tool enabled us to identify carbacyclin as 

a potential inducer of cardiomyocyte cell cycle re-entry. Moreover, we validated 

our system by demonstrating that activation of PPARδ, the target of 

carbacyclin, induces cell cycle activity in neonatal as well as adult 

cardiomyocytes in vitro and in vivo.  
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Figure 4.17. Dominant-active PPARδ  induces cardiomyocyte mitosis in vivo. (a to c), 

Representative sections of hearts from control mice (tamoxifen inducible alpha-MyHC-Mer-Cre-

Mer, TMCM) and tamoxifen inducible transgenic mice with cardiomyocyte-restricted 

overexpression of VP16-PPARδ (TMVPD) two weeks after tamoxifen injection. Sections were 

stained with anti-Actinin (red, cardiomyocytes-specific) and anti-H3P (green, stains mitotic 

cells) antibodies. Nuclei were visualized with DAPI. (d), Quantitative analysis of mitotic 

cardiomyocytes (n = 4, 3 sections per heart). **: p < 0.01. Scale bar = 25 µm. 
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DISCUSSION 
5.1 Fucci system for screening new inducers of cardiomyocyte 
proliferation 
To the best of our knowledge, there is no system available to efficiently screen 

for new inducer of proliferation of differentiated mammalian cardiomyocytes. 

Our study describes a new fluorescence-based live imaging-screening assay 

allowing the efficient identification of small molecules promoting cardiomyocyte 

proliferation. This system eliminates the need of laborious and expensive 

techniques like immunofluorescence staining, incorporation of nucleotide 

analogues, metabolic activity or cell count assays. These assays have their 

own limitations for screening drug libraries. The system can be applied to 

neonatal as well as adult mammalian cardiomyocytes. We validated our model 

through a small-molecule screen in two ways: first, we used well-known 

inducers of cardiomyocyte proliferation, and second, through the identification 

and characterization of compounds with previously unknown actions on 

mammalian cardiomyocyte proliferation. 

We screened two chemical libraries containing 134 compounds 

identifying carbacyclin, a potent agonist of PPARδ, as potent inducer of 

cardiomyocyte proliferation. Several lines of evidence support this conclusion. 

First, carbacyclin regulates the expression of genes required for cell cycle 

progression. Second, it activates β-catenin signaling, which is known to be 

involved in cardiomyocyte proliferation118. Third, it induces DNA synthesis, 

mitosis and cytokinesis but not binucleation in postnatal cardiomyocytes. 

Fourth, mitosis is associated with transient dedifferentiation of the contractile 

apparatus. Finally, its effect on cardiomyocytes was more potent than 10% 

serum, which is known to induce cycle re-entry but induces rather binucleation 

than proliferation60. In fact the effect of carbacyclin was comparable to the 

effect of FGF1+p38i, which has previously been shown to induce 

cardiomyocyte mitosis, to reduce scarring and to rescue function after 

myocardial infarction87. Thus, carbacyclin is a potent inducer of postnatal 

cardiomyocyte proliferation.  

It is important to note that we screened with 3 different concentrations 

because the potencies of the molecules in our library (effector concentration for 

half-maximum response (EC50)) can vary from the nM range to greater than 30 
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µM. If a compound is used at a too low or too high concentration its specific, or 

on-target effect might be lost or it might act toxic, respectively. For example, if 

we had chosen the typical standard concentration of 10 µM or 10 nM for all 

drugs we would have overlooked carbacyclin. Thus screening at multiple 

concentrations, ranging from low to high, maximizes the probability of testing 

each compound at a near-optimal concentration. In the ideal case, as noted by 

many others, small-molecule inducers would be less expensive, more easily 

controlled and possibly more efficient than growth factors in cardiomyocyte 

proliferation123 124.  

However, one disadvantage of our system is that use of primary cells 

do not allow to screen large compound libraries. The establishment of a stem 

cell line that stably expresses the Fucci system might be an alternative. This 

line could be expanded to large amounts, differentiated selectively into 

cardiomyocytes and utilized to screen large compound libraries. However, as 

stem cell-derived cardiomyocytes do not reach a high degree of 

differentiation125 126, it remains unclear whether such a screen will indeed 

identify compounds that have an effect on adult cardiomyocyte proliferation. 

For example it is known that c-myc can enhance cardiomyocyte proliferation in 

development but in the adult heart it induces hypertrophy 127 128. This suggests 

that unknown mechanisms are activated in the adult cardiomyocyte that divert 

developmental signaling pathways usually resulting in cardiomyocyte 

proliferation. Thus, it is important to have a screening system that is based on 

primary postnatal cardiomyocytes.  

 

5.2 Mono-nucleated cardiomyocytes are more competent to proliferate 
A closer analysis of the P8 and adult cardiomyocyte cultures treated with 

carbacyclin revealed that the majority of cardiomyocytes that entered the cell 

cycle and mitosis were mono-nucleated. Similar observations have been made 

in neuregulin-treated cardiomyocytes102. These data suggest that there are 

different populations of cardiomyocytes with different proliferative potentials. It 

is well established that different populations of cardiomyocytes exist129 and that 

they differ in their proliferation potential130, a finding consistent with the idea 

that some cardiomyocytes are more receptive to regeneration signals. This 

might be especially important for human therapy as a significant amount of 
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human cardiomyocytes is mono-nucleated103. In the future it will be important to 

determine whether a subpopulation of cardiomyocytes with a higher 

proliferation potential exists in order to better elucidate the signaling pathways 

to stimulate their proliferation. 
The carbacyclin-induced proliferation rate of cardiomyocytes decreases 

from P3 neonatal cardiomyocytes to P8 and adult cardiomyocytes.  This 

decrease values were correlated with an increase in binucleated 

cardiomyocytes. In P3 neonatal cardiomyocytes more than 90% of the 

cardiomyocytes were mono-nucleated and carbacyclin treatment resulted in 

around 45% BrdU-positive cells. In contrast, P8 cardiomyocytes more than 

40% of the cardiomyocytes were binucleated and only 15% were BrdU-positive. 

In adult rat cardiomyocytes, of which around 90% are binucleated, carbacyclin 

induced less than 1.5% BrdU incorporation in 5 days. Importantly, the majority 

of cycling cardiomyocytes were mono-nucleated, indicating that mono-

nucleated cardiomyocytes have a higher proliferation competent than 

binucleated cardiomyocytes. However, the BrdU incorporation rate in the 

population of mono-nucleated cardiomyocytes decreased with age, too. This 

might be due to an increase in the expression of inhibitory molecules of 

PPARδ such as NCOR2/SMRT (silencing mediator for retinoid or thyroid-

hormone receptors), SMRT and histone deacetylase-associated repressor 

protein (SHARP)131 and class I histone deacetylases. In future experiments it 

will be important to determine their expression in cardiomyocytes and to assess 

whether their inhibition or knockdown enhances the proliferation competence of 

adult cardiomyocytes. Finally, our data support the idea of a mono-nucleated 

subpopulation of adult cardiomyocytes that appears to be more responsive to 

regenerative signals. 

 

5. 3 Carbacyclin acts through the nuclear receptor PPARδ 

Carbacyclin is a chemically stable carbocyclic analog of prostacyclin, a known 

potent agonist of PPARδ. Hence, we have demonstrated that carbacyclin 

induces PPARδ expression as well as downstream signaling resulting in 

cardiomyocyte proliferation. PPARs are best known as regulators of energy 

homeostasis132, 133. They have many beneficial physiological functions ranging 

from enhancing fatty acid catabolism, improving insulin sensitivity, inhibiting 
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inflammation and thrombosis, and promoting angiogenesis134-136. It is shown 

that cardiomyocyte-restricted PPARδ deletion in mice perturbs accordingly 

myocardial fatty acid oxidation causing cardiac dysfunction, hypertrophy, and 

lipotoxic cardiomyopathy137. In contrast, cardiac-specific overexpression of 

PPARδ has been shown to be protective to ischemia/reperfusion (I/R) injury138. 

Moreover, mice overexpressing dominant active PPARδ in adult 

cardiomyocytes are protected from TAC-induced pressure overload120. Our 

analyses demonstrate that cardiac-specific overexpression of dominant active 

PPARδ in vivo induces adult cardiomyocyte mitosis.  

There is so far no report regarding the function of PPARδ in 

cardiomyocyte proliferation. However, PPARδ  has been associated with 

different proliferative diseases like hyperproliferative skin disorders and cancer 

as well as with proliferation of several cell types139, 140. It will be interesting in 

the future to determine if PPARδ-induced cardiomyocyte cell cycle re-entry 

contributes to the protective effects of PPARδ in I/R- and TAC-induced injury. 

 
5.4 PPARδ signaling inducing cardiomyocytes proliferation through   

PPARδ/PDK1/p308Akt/pGSK3B/β-catenin       

In some cancers PPARδ levels were increased correlating with a role in cell 

proliferation. The PDK1 is target gene of PPARδ. PPARδ activates PDK1/Akt 

signaling in diverse cell types to enhance cell survival and proliferation132 140. It 

has been shown that PDK1 and PPARδ do auto regulatory cascade141. We 

found increased expression of PPARδ after treatment with PPARδ agonists. 

This leads to activation PDK1, Then PDK1 induced Akt signaling by Akt 

phosphorylation at P308. Subsequently it induces phosphorylation of GSK3B at 

Ser9. Then GSK3B phosphorylation inhibits the ability of GSK3B to 

phosphorylate β-catenin and its destabilization by proteasomal degradation. 

This results into stabilization and nuclear accumulation of β-catenin. It known 

that the nuclear accumulation of β-catenin results to enhanced expression of 

TCF/ LEF target genes include cyclin D1, c-Myc, and PPARδ itself142. The 

increased expression of cell cycle genes results into cell proliferation. PPARδ 

trans-activates PDK1, which in turn perpetuates the proliferative signaling 

cascade143.  



Discussion  80 
 

Recent work shows that PPARδ regulates bone turnover144. The 

activation of PPARδ amplified Wnt signaling activity and TCF-dependent 

transcription in osteoblasts and MSCs through two mechanisms, including 

transcriptional regulation of Wnt co-receptor having PPARδ responsive element 

(Lrp5) and direct interaction with β-catenin. It is interesting in the future to 

determine the role of Lrp5 in cardiomyocyte proliferation. 

Besides regulating the Akt-β-catenin signaling, PPARδ is also involved 

in Retinoic acid (RA) signaling, which is a very important regulation of 

cardiomyocyte proliferation in early heart development145, 146. RA can promote 

as well as inhibit growth depend on activation of two different alternative 

nuclear receptors PPARδ and retinoic acid receptor respectively147. Partitioning 

of RA between the two receptors is regulated by the intracellular lipid binding 

proteins CRABP-II and FABP5 and they drive RA from the cytosol to nuclear 

RAR and PPARδ receptors, respectively and enhances the transcriptional 

activity of their cognate receptors. Thus the effect of RA depends on the ratio of 

CRABP-II/FABP5 (Figure 5.1). In our screen we found the retinoic acid and 

their mimics induced moderate cardiomyocytes proliferation and are less potent 

than carbacyclin. This might be due to a non-favourable CRABP-II/FABP5 ratio.  

    
Figure 5.1: Retinoic acid induces cell growth via PPARδ  activation. Retinoic acid activates 

two alternative nuclear receptors RAR or PPARδ to inhibit or induce proliferation.  
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5.5 PPARδ, energy metabolism and cardiomyocyte proliferation 

So far, PPARδ has been implicated mainly as a regulator of energy metabolism 

in adipose tissue and muscle, where it acts as a sensor for metabolic 

substrates in the form of fatty acids and enhances thermogenesis, fatty acid 

catabolism and mitochondrial function120, 148. In the skeleton PPARδ itself has 

recently emerged as an important factor in the regulation of energy 

homeostasis122. It has been shown that activation PPARδ by its agonist can 

increase glycolysis and fatty acid synthesis as well as glucose and fatty acid 

transport and fatty acid oxidation supporting cell growth138. During embryonic 

heart development, energy metabolism in highly proliferative fetal 

cardiomyocytes is mainly based on glycolysis while during postnatal 

development it shifts to oxidative phosphorylation (non-proliferative)149. Thus, 

changes in energy metabolism might be a way to overcome the cell cycle arrest 

in cardiomyocytes. This is supported by the fact that adult cardiomyocytes 

change their metabolism in a variety of pathophysiologic conditions when they 

re-express fetal genes, change their energy metabolism and partially re-enter 

the cell cycle62 24 149. In addition, recent work has demonstrated that deletion of 

Meis1 is sufficient to extend the proliferation potential of postnatal 

cardiomyocytes beyond day 1 to day 7. Meis1 is known to regulate energy 

metabolism. Loss of meis1 induces switching of the energy metabolism from 

glycolysis to oxidative phosphorylation in hematopoietic stem cells79. 

Furthermore, inducible Meis1 deletion induced adult cardiomyocyte mitosis in 

vivo78. In carbacyclin induced neonatal cardiomyocyte proliferation might be 

due to abundance of favourable energy after PPARδ activation. 

Furthermore it has recently been shown that 5' adenosine 

monophosphate-activated protein kinase (AMPK) activation of FoxOs promotes 

cell-cycle withdrawal and inhibits Igf1 gene expression in neonatal 

cardiomyocytes. Igf1 is a direct downstream target of cardiac Fox transcription 

factors, which is negatively regulated by FoxOs and positively regulated by 

FoxM1, dependent on AMPK activation status (indicator of metabolic stress)150. 

This indicates Fox’s integrate metabolic status and cell cycle withdrawal in 

neonatal cardiomyocytes. Immediately after birth and prior to feeding, the 

mammalian heart is subjected to a period of starvation in which growth factor 
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signaling is reduced and cardiomyocytes are under metabolic stress. At the 

same time, expression of FoxM1, which promotes cardiomyocyte proliferation, 

is down regulated and FoxOs are activated, concomitant with induction of cell 

cycle inhibitors. Mice lacking FoxM1 in cardiomyocytes exhibit decreased cell 

proliferation after birth, whereas cardiomyocyte-specific loss of FoxO1 and 

FoxO3 delays neonatal cell cycle withdrawal. In the future it will be important to 

elucidate the role of PPARδ in the integration of metabolism and cell cycle 

progression in cardiomyocytes. 

Finally pharmacological PPARδ agonists have entered the stage of 

clinical trials as lipid-lowering drugs, our findings open potential new 

therapeutic avenues for the treatment of heart diseases based on energy and 

metabolic adjustments. 
Our screen has identified carbacyclin as a potential inducer of 

cardiomyocyte proliferation and its target PPARδ  as a new regulator of 

cardiomyocyte proliferation.  
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Summary 
Cardiovascular diseases remain among the leading cause of deaths worldwide 

accounting for about 40% of all postnatal deaths. Though the current therapies 

offer a temporary cure, owing to their limitations, there is still a need to develop 

alternative therapies. Adult mammalian hearts cannot regenerate as zebrafish, 

newt, and 1-day-old mice hearts do after an injury22, 24, 75. Heart regeneration 

occurs in these animals by proliferation of pre-existing cardiomyocytes. During 

mammalian heart development the heart grows through cardiomyocyte 

proliferation, which rapidly ceases after birth62, 65. Therefore, we were interested 

in inducing postnatal cardiomyocyte proliferation in mammals by utilizing a 

chemical biology approach. 

 We established a cardiomyocyte-specific live fluorescent-based fucci 

technique to screen small molecules to induce cardiomyocyte proliferation. We 

validated the platform first with known inducers and then screened two small 

molecule libraries containing modulators of nuclear receptor and epigenetic 

signatures in neonatal cardiomyocytes. Positive hits were further analyzed for 

their capacity to induce cell cycle re-entry and mitosis in P3 rat cardiomyocytes 

by for example BrdU incorporation and histone H3 phosphorylation analyses. 

We found that carbacyclin, an agonist of PPARδ, induces robust cell cycle re-

entry of cardiomyocytes. 

 Carbacyclin in neonatal cardiomyocytes induced DNA synthesis, mitosis 

and cytokinesis but not binucleation. The effect of carbacyclin on 

cardiomyocytes was more potent than 10% serum (induces rather binucleation 

than proliferation)60. In fact it was comparable to the effect of FGF1+p38i, which 

has previously been shown to induce cardiomyocyte mitosis, to reduce scarring 

and to rescue function after MI87, 116 . 

It has been shown that 1-day-old, but not 7-day-old, mice can 

regenerate their heart75. Therefore, we tested whether carbacyclin can induce 

P8 and adult cardiomyocytes cell cycle re-entry. Carbacyclin induced both 

BrdU incorporation and mitosis in P8 and adult cardiomyocytes in vitro. A 

closer analysis of P8 and adult cardiomyocytes revealed that the majority of 

cardiomyocytes that entered the cell cycle were mono-nucleated. Similar 

observations have been made in Neuregulin-treated cardiomyocytes102. This 
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result might be important for human therapy, as a majority of human 

cardiomyocytes is mono-nucleated103. These data suggest that different 

populations of cardiomyocytes with different proliferative potential exist129 130. 

The PPARs are best known as regulators of energy homeostasis and 

have many beneficial physiological functions132, 133, 148. The cardiomyocyte-

restricted PPARδ deletion causes cardiac dysfunction, hypertrophy, and 

lipotoxic cardiomyopathy137. In contrast, overexpression of PPARδ has been 

shown to be protective to ischemia/reperfusion (I/R) injury and TAC-induced 

pressure overload120, 138. We found cardiomyocyte-restricted inducible 

dominant-active PPARδ in vivo induces adult cardiomyocyte mitosis.  

 PPARδ increases fatty acid synthesis and catabolism as well as glucose 

and fatty acid transport and glycolysis, which might support cardiomyocyte cell 

cycle re-entry. Recently, it has been shown that deletion of Meis1, which is 

known to shift energy metabolism from glycolysis to oxidative phosphorylation, 

is sufficient to extend the proliferation potential of postnatal cardiomyocytes 

beyond day 1 to day 778. Thus, changes or shift in energy metabolism might be 

a way to overcome the cell cycle arrest in cardiomyocytes. 

 We have shown that activation of PPARδ by carbacyclin induces the 

PPARδ/PDK1/p308Akt/pGSK3β/β-catenin pathway. This data coincides with 

recently published data that PPARδ governs Wnt signaling and bone turnover 

by activation of direct interaction with β-catenin and activation of Lrp5144. The 

stabilization and translocation of β-catenin to nucleus is important to induce 

cardiomyocyte proliferation and we found enhanced carbacyclin-induced 

cardiomyocyte proliferation in the presence of BIO118, 119. 

 Taken together, our data indicate that the fucci system can be utilized as 

screening platform for chemical libraries, natural compound libraries and whole 

genome siRNA libraries to identify critical signaling pathways, druggable 

targets and compounds to promote cardiac regeneration based on 

cardiomyocyte proliferation; if this is possible. The presented screening system 

eliminates the need of laborious and expensive techniques like 

immunofluorescence staining, incorporation of nucleotide analogues or cell 

count and metabolic assays. Our initial screen has identified carbacyclin as a 

potential inducer of cardiomyocyte proliferation and its target PPARδ as a new 

regulator of cardiomyocyte proliferation and as a new target for regenerative 
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heart therapies. To our knowledge, this is the first live-imaging screening tool to 

identify inducers of cardiomyocyte proliferation and the first description that 

carbacyclin induces cardiomyocyte proliferation. We have dissected the 

carbacyclin-induced PPARδ/PDK1/p308Akt/pGSK3β/β-catenin signaling 

pathway. Our data suggest moreover that carbacyclin induces cell cycle re-

entry specifically in mono-nucleated cardiomyocytes in vitro and that 

overexpression of dominant-active PPARδ induces adult cardiomyocyte mitosis 

in vivo.   

 

Outlook 

In the future, it will be interesting to determine whether PPARδ-induced 

cardiomyocyte cell cycle re-entry contributes to the protective effects of PPARδ 

in I/R- and TAC-induced injury. It will be important to determine how activation 

of PPARδ by its agonist carbacyclin or overexpression of dominant-active 

PPARδ regulates Wnt and other signaling pathways to induce cardiomyocyte 

cell cycle re-entry. In addition, it appears worthwhile to determine how the 

metabolic status of cardiomyocytes influences their proliferation competence. 

Finally, our results warrant further preclinical investigations towards a 

carbacyclin-based strategy to treat cardiac disease. 
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Zusammenfassung 

Herz-Kreislauf-Erkrankungen gehören nach wie vor zu den häufigsten 

Ursachen für Todesfälle weltweit, die rund 40% aller postnatalen Todesfälle 

zugrunde liegen. Gegenwärtige Therapien bieten in der Regel nur eine 

vorübergehende symptomatische Behandlung, da sie die primäre Ursache der 

meisten Herzerkrankungen, den Verlust an Herzmuskelzellen, nicht beheben 

können. Aus diesem Grund gibt es die Notwendigkeit neue Therapien zu 

entwickeln. Adulte Säugetierherzen können nicht wie der Zebrafisch, der Lurch 

bzw. 1 Tage-alte Mäuse ihr Herz nach eine Verletzung regenerieren22, 24, 75. Die 

Herzregeneration erfolgt bei diesen Tieren durch die Proliferation von bereits 

vorhandenen Herzmuskelzellen. Zudem wächst das Herz während der 

Säugertierentwicklung ebenfalls durch die Proliferation von Herzmuskelzellen. 

Aus einem unbekannten Grund hören die Zellen jedoch kurz nach der Geburt 

auf zu proliferieren62, 65. Deshalb sind wir daran interessiert mittels eines 

chemisch-biologischen Ansatzes neue Induktoren der 

Herzmuskelzellproliferation zu identifizieren. 

 Hier haben wir eine Herzmuskelzell-spezifische Fluoreszenz-basierte 

Methode entwickelt, um kleine chemische Moleküle effizient auf ihre Fähigkeit 

Herzmuskelzellproliferation zu induzieren zu untersuchen. Die Methode wurde 

zunächst mit bekannten Induktoren validiert und dann genutzt, um zwei 

Molekül-Bibliotheken (1: Modulatoren nukleärer Rezeptoren; 2: Epigenetische 

Modulatoren) nach Kandidaten zu untersuchen. Identifizierte Kandidaten 

wurden weiter auf ihre Fähigkeit analysiert, den Zellzyklus in Herzmuskelzellen 

zu reaktivieren (z.B. BrdU-Einbau), Mitose zu induzieren (Histon H3 

Phosphorylierung). In dieser Arbeit wurde Carbacyclin, ein Agonist von PPARδ, 

als robuster Aktivator des Zellzyklus in Herzmuskelzellen identifiziert. 

 Carbacyclin induzierte in Herzmuskelzellen DNA-Synthese, Mitose und 

Cytokinese, aber nicht Binukleation. Die Wirkung von Carbacyclin auf 

Herzmuskelzellen war stärker als 10% Serum (induziert eher Binukleation als 

Proliferation)60. In der Tat war die Wirkung von Carbacyclin vergleichbar mit der 

von FGF1 + p38i, welche bekanntermaßen Mitose in Herzmuskelzellen in vivo 

induzieren und zur Verringerung der Narbenbildung und einer verbesserten 

Herzfunktion nach einem Herzinfarkt führen87, 113. 
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 Es hat sich gezeigt, daß 1-Tage-alte, nicht aber 7-Tage-alte Mäuse ihre 

Herzen regenerieren können75. Deshalb haben wir getestet, ob Carbacyclin 

auch in Herzmuskelzellen von 8-Tage-alten und adulten Ratten den Zellzyklus 

aktivieren können. Carbacyclin induzierte sowohl BrdU-Einbau als auch Mitose 

in P8 und adulten Herzmuskelzellen in vitro. Eine genauere Analyse der P8 

und adulten Herzmuskelzellen offenbarte, dass die Mehrheit der 

Herzmuskelzellen, die den Zellzyklus aktiviert haben, mononuklär waren. 

Ähnliche Beobachtungen wurden in Neuregulin-behandelten Herzmuskelzellen 

gemacht102. Dieses Ergebnis könnte für menschliche Therapieansätze von 

Bedeutung sein, da ein Großteil der menschlichen Herzmuskelzellen 

mononukleär ist103. Diese Daten deuten darauf hin, dass verschiedene 

Populationen von Herzmuskelzellen mit verschiedenen Proliferationspotential 

existieren127, 128. 

 PPARs sind am besten als Regulatoren der Energie-Homöostase 

bekannt und haben viele positive physiologische Funktionen132, 133, 148. Die 

Herzmuskelzell-spezifische Eliminierung von PPARδ resultiert in kardialer 

Dysfunktion, Hypertrophie und lipotoxischer Kardiomyopathie137. Im Gegensatz 

dazu wirkt die Überexpression von PPARδ schützend hinsichtlich 

Ischämie/Reperfusion Schädigung und TAC-induzierter Drucküberlastung120, 

138. Unsere Daten zeigen, dass die induzierbare, Herzmuskelzell-spezifische 

Überexpression einer dominant-aktiven Form von PPARδ in vivo die Mitose 

von erwachsenen Herzmuskelzellen induziert. 

 PPARδ erhöht die Fettsäure-Synthese und -Abbau sowie Glukose und 

Fettsäure Transport und Glykolyse. Das könnte zum Effekt von Carbacylin 

hinsichtlich der Aktivierung des Zellzyklus beitragen. Vor kurzem wurde z.B. 

gezeigt, dass die Deletion von Meis1, welches bekanntlich den 

Energiestoffwechsel der Glykolyse zur oxidative Phosphorylierung verschiebt, 

ausreicht, um das Proliferationspotential postnataler Herzmuskelzellen über 

Tag 1 bis Tag 7 auszudehnen78. So könnten Änderungen oder Verschiebungen 

im Energiestoffwechsel eine Möglichkeit sein, den Zellzyklusarrest in 

Herzmuskelzellen zu überwinden. 

 Wir haben gezeigt, dass die Aktivierung von PPARδ durch Carbacyclin 

den PPARδ/PDK1/p308Akt/pGSK3β/β-Catenin Signalweg induziert. Diese 

Daten decken sich mit kürzlich veröffentlichten Daten, welche beschreiben, 
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dass PPARδ den Wnt-Signalweg und den Knochenstoffwechsels durch 

Aktivierung der direkten Interaktion mit β-Catenin und Aktivierung von Lrp51 

reguliert144. Die Stabilisierung und Translokation von β-Catenin zum Kern 

erscheint wichtig für die Induktion der Herzmuskelzellproliferation. Diese 

Annahme wurde bestärkt durch die Beobachtung, dass die Carbacyclin-

induzierte Proliferation von Herzmuskelzellen in der Gegenwart von BIO 

deutlich erhöht war118, 119. 

 Zusammengenommen legen unsere Daten Nahe, dass ein Fucci-

basiertes System als Screening-Plattform genutzt werden kann, um chemische 

Bibliotheken, natürlichen Substanzbibliotheken und ganze Genom siRNA-

Bibliotheken zu analysieren, um kritische Signalwege, therapeutische Ziele und 

neue Moleküle zu identifizieren, die zur Entwicklung von Strategien zur 

Behandlung von Herzerkrankungen wesentlich beitragen. Das vorliegende 

Screening System eliminiert die Notwendigkeit von aufwendigen und teuren 

Verfahren wie Immunfluoreszenzfärbung, Einbau von Nukleotid-Analoga, 

Zellzahlbestimmungen oder metabolischer Untersuchungen. Unsere ersten 

Untersuchungen haben Carbacyclin als potenzieller Regulator der 

Herzmuskelzellproliferation identifiziert und PPARδ als neues Ziel für die 

Etablierung regenerativer Therapien für Herzerkrankungen. Unserem Wissen 

nach ist dies das erste „Live-Imaging Screening-Tool“ zur Identifikation von 

Induktoren der Herzmuskelzellproliferation sowie die erste Beschreibung bzgl. 

des Effektes von Carbacyclin auf die Herzmuskelzellproliferation. Wir haben 

den Carbacyclin-induzierten PPARδ/PDK1/p308Akt/pGSK3β/β-Catenin-

Signalweg analysiert. Darüber hinaus deuten unsere Daten darauf hin, dass 

Carbacyclin spezifisch Proliferation in mononukleären Herzmuskelzellen in vitro 

induziert und dass die Überexpression von dominant-aktiven PPARδ in vivo in 

mitotischen adulten Herzmuskelzellen resultiert. 
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No. compounds time [h] 12 24 36 48 60 72 84 96 
1 DMSO  0 0 1 1 0 1 0 0 
2 25-Hydroxyvitamin D3 10 nm 1 1 1 1 1 0 0 0 

  250 nm 1 1 1 1 0 1 0 0 
  30 µM 1 1 1 1 0 0 0 0 

3 Retinoic acid, all trans 10 nm 1 2 2 2 2 2 1 1 
  250 nm 1 2 1 1 1 1 1 1 
  30 µM 1 1 1 1 1 1 1 1 

4 9-cis Retinoic acid 10 nm 1 2 2 1 1 1 0 0 
  250 nm 1 1 1 1 1 1 1 1 
  30 µM 1 1 1 1 0 0 0 0 

5 13-cis Retinoic acid 10 nm 1 1 2 2 1 1 1 1 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 1 1 1 1 0 1 0 0 

6 4-Hydroxyphenylretinamide 10 nm 1 1 1 1 1 1 0 0 
  250 nm 0 1 1 1 1 1 0 0 
  30 µM 1 1 1 1 0 0 0 0 

7 AM-580 10 nm 1 1 1 1 1 1 1 1 
  250 nm 1 1 1 0 1 0 0 0 
  30 µM 1 1 1 1 0 0 0 0 

8 TTNPB 10 nm 2 2 2 3 2 1 1 1 
  250 nm 1 2 1 1 1 1 1 1 
  30 µM 0 1 1 0 0 0 0 0 

9 Methoprene acid 10 nm 1 1 1 1 1 1 1 1 
  250 nm 1 1 1 1 0 1 1 1 
  30 µM 1 1 1 1 0 0 0 0 

10 WY-14643 10 nm 0 1 1 1 1 0 1 1 
  250 nm 1 1 0 1 0 1 1 1 
  30 µM 1 1 1 1 1 1 1 1 

11 Ciglitazone 10 nm 1 0 1 0 1 1 0 0 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 0 1 1 0 0 0 0 0 

12 Tetradecylthioacetic acid 10 nm 1 1 1 1 1 0 0 0 
  250 nm 1 1 1 1 0 1 0 0 
  30 µM 1 1 0 1 0 0 0 0 

13 5,8,11,14-Eicosatetraynoic acid 10 nm 0 1 1 1 0 1 1 1 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 1 1 1 0 0 0 0 0 

14 6-Formylindolo [3,2-B] carbazole 10 nm 1 1 1 1 1 0 0 0 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 1 1 0 0 0 0 0 

15 Diindolylmethane 10 nm 1 1 1 0 0 0 0 0 
  250 nm 1 1 0 0 0 0 0 0 
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 30 µM 0 0 0 0 0 0 0 0 
16 Acetyl-S-farnesyl-L-cysteine 10 nm 1 1 1 1 1 1 1 1 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 1 1 0 0 0 1 0 0 
17 S-Farnesyl-L-cysteine 10 nm 1 1 1 1 1 1 1 1 
 methyl ester 250 nm 1 1 1 1 1 1 1 1 
  30 µM 1 0 0 0 0 0 0 0 
18 N-Acetyl-S-geranygeranyl- 10 nm 1 1 1 1 1 1 1 1 
 L-cysteine 250 nm 1 1 1 1 1 1 1 1 
  30 µM 1 1 1 1 1 1 1 1 
19 AGC (Acetyl-geranyl-cysteine) 10 nm 1 1 1 1 0 1 0 0 
  250 nm 1 1 1 0 0 0 0 0 
  30 µM 0 1 1 1 0 0 0 0 
20 Farnesylthioacetic acid 10 nm 1 1 1 1 0 1 0 0 
  250 nm 1 1 1 1 0 1 0 0 
  30 µM 1 0 0 0 0 0 0 0 
21 Bezafibrate 10 nm 1 1 1 1 1 1 0 0 
  250 nm 1 1 1 1 0 1 0 0 
  30 µM 1 1 1 1 0 0 1 1 
22 LY 171883 10 nm 1 1 1 1 1 0 0 0 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 1 1 1 1 0 0 0 0 
23 15-Deoxy-D12,14- 10 nm 1 1 0 1 1 0 1 1 
 prostaglandin J2 250 nm 1 0 1 1 0 0 0 0 
  30 µM 1 1 1 1 1 0 0 0 
24 Troglitazone 10 nm 1 1 1 1 1 1 1 1 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 0 1 0 0 0 0 0 0 
25 CITCO 10 nm 1 1 1 1 1 1 1 1 
  250 nm 1 1 1 0 0 0 0 0 
  30 µM 1 1 0 0 0 0 0 0 
26 Paxilline 10 nm 1 1 1 1 1 1 1 1 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 0 1 0 0 0 0 0 0 
27 24(S)-Hydroxycholesterol 10 nm 1 1 0 1 0 1 0 0 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 0 1 0 0 0 0 0 0 
28 24(S),25-Epoxycholesterol 10 nm 0 1 1 0 0 0 1 1 
  250 nm 1 1 1 0 0 0 0 0 
  30 µM 1 1 0 0 0 0 0 0 
29 Pregnenolone-16(alpha)- 10 nm 1 1 1 0 1 0 0 0 
 carbonitrile 250 nm 1 1 1 0 0 0 0 0 
  30 µM 1 1 0 0 0 0 0 0 
30 Carbacyclin 10 nm 1 2 2 2 2 1 1 1 
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 250 nm 4 8 9 9 8 6 5 5 

30 µM 1 1 1 1 1 1 1 1 
31 Clofibric acid 10 nm 0 1 1 1 0 1 0 0 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 0 1 1 1 0 1 0 0 
32 BADGE 10 nm 1 1 0 1 1 0 0 0 
  250 nm 1 1 1 1 0 1 0 0 
  30 µM 1 1 0 1 0 0 0 0 
33 GW 9662 10 nm 1 1 2 1 1 1 1 1 
  250 nm 1 1 0 0 0 0 0 0 
  30 µM 1 0 0 0 0 0 0 0 
34 Gemfibrozil 10 nm 0 1 1 1 1 0 1 1 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 1 0 0 0 0 1 0 0 
35 GW 7647 10 nm 1 1 1 1 1 1 1 1 
  250 nm 1 1 2 1 1 1 1 1 
  30 µM 1 1 1 1 0 0 0 0 
36 3,5-Diiodo-L-thyronine 10 nm 1 1 1 1 0 1 0 0 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 1 1 1 0 0 0 0 0 
37 3,5-Diiodo-L-tyrosine 10 nm 0 1 1 1 1 1 0 0 
  250 nm 1 1 1 1 0 0 1 1 
  30 µM 1 1 1 0 0 0 0 0 
38 all-trans-Retinol 10 nm 1 1 1 1 0 1 1 1 
  250 nm 1 1 1 1 1 1 1 1 
  30 µM 1 1 0 0 0 0 0 0 
39 13-cis-Retinol 10 nm 1 1 1 1 1 1 1 1 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 1 0 0 0 0 0 0 
40 Retinyl acetate 10 nm 1 1 1 1 1 1 1 1 
  250 nm 1 2 2 1 1 0 0 0 
  30 µM 1 0 0 0 0 0 0 0 
41 3,5-Diiodo-4-hydroxy- 10 nm 1 1 1 1 1 1 0 0 
 phenylpropionic acid 250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 1 0 0 0 0 0 0 
42 Cholic acid 10 nm 1 1 1 1 0 1 0 0 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 1 0 0 0 0 0 0 
43 Deoxycholic acid 10 nm 0 1 1 1 1 1 1 1 
  250 nm 1 1 1 1 1 0 1 1 
  30 µM 1 0 1 1 0 0 0 0 
44 Chenodeoxycholic acid 10 nm 1 1 1 1 0 0 0 0 
  250 nm 0 0 0 0 0 0 0 0 
  30 µM 0 0 0 0 0 0 0 0 
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45 Glycocholic acid 10 nm 1 1 1 0 0 0 1 1 
  250 nm 1 0 0 0 0 0 0 0 
  30 µM 0 0 0 0 0 0 0 0 
46 Glycodeoxycholic acid 10 nm 1 0 0 0 0 0 0 0 
  250 nm 0 0 0 0 0 0 0 0 
  30 µM 1 1 1 1 1 1 1 1 
47 Taurocholic acid 10 nm 1 1 1 1 0 0 0 0 
  250 nm 1 0 0 0 0 0 0 0 
  30 µM 0 0 0 0 0 0 0 0 
48 Taurodeoxycholic acid 10 nm 1 1 1 1 1 0 0 0 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 1 0 0 0 0 0 0 
49 Rifampicin 10 nm 1 1 1 1 1 1 0 0 
  250 nm 1 1 1 1 1 1 0 0 
  30 µM 1 1 1 1 1 0 0 0 
50 Dexamethasone 10 nm 1 1 0 0 0 0 0 0 
  250 nm 0 0 0 0 0 0 0 0 
  30 µM 0 0 0 0 0 0 0 0 
51 Lithocholic acid 10 nm 1 1 1 0 1 1 0 0 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 1 1 0 0 0 0 0 0 
52 5b-Pregnan-3,20-dione 10 nm 1 1 1 1 1 0 1 1 
  250 nm 1 1 2 1 1 0 0 0 
  30 µM 1 0 0 0 0 0 0 0 
53 Hyperforin 10 nm 1 1 1 1 1 0 0 0 
  250 nm 1 1 1 0 0 0 0 0 
  30 µM 1 0 0 0 0 0 0 0 
54 Farnesol 10 nm 1 1 1 1 1 1 0 0 
  250 nm 1 1 2 1 1 0 1 1 
  30 µM 1 1 1 0 0 0 0 0 
55 3a, 5a-Androstenol 10 nm 1 1 1 1 0 1 1 1 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 1 0 0 0 0 0 0 
56 TCPOBOP 10 nm 1 1 1 1 1 0 0 0 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 0 0 0 0 0 0 0 
57 N-Oleoylethanolamide 10 nm 1 1 1 1 1 1 0 0 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 0 0 0 0 0 0 0 
58 GW4064 10 nm 1 1 1 1 1 0 0 0 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 1 1 1 0 0 0 0 0 
59 Geranylgeraniol 10 nm 1 1 1 1 1 1 0 0 
  250 nm 1 1 1 1 1 0 0 0 
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 30 µM 1 0 0 0 0 0 0 0 
60 6a-Fluorotestosterone 10 nm 1 1 1 1 1 0 0 0 
  250 nm 1 1 1 0 0 0 0 0 
  30 µM 1 0 0 0 0 0 0 0 
61 Tamoxifen 10 nm 1 1 1 1 1 1 0 0 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 0 0 0 0 0 0 0 0 
62 Mifepristone 10 nm 1 1 1 1 0 0 0 0 
  250 nm 1 1 1 0 0 0 0 0 
  30 µM 0 0 0 0 0 0 0 0 
63 Estrone 10 nm 1 1 1 1 1 1 0 0 
  250 nm 1 1 1 0 0 0 0 0 
  30 µM 0 0 0 0 0 0 0 0 
64 13(S)-Hydroxy-9Z, 10 nm 1 1 1 1 1 0 0 0 
 11E-octadecadienoic acid 250 nm 1 1 1 0 0 0 0 0 
  30 µM 0 0 0 0 0 0 0 0 
65 Cortisone 10 nm 1 1 1 1 1 0 0 0 
  250 nm 1 0 1 0 0 0 0 0 
  30 µM 0 0 0 0 0 0 0 0 
66 Progesterone 10 nm 1 1 1 1 1 0 0 0 
  250 nm 1 1 1 0 0 0 0 0 
  30 µM 1 1 0 0 0 0 0 0 
67 17b-Estradiol 10 nm 1 1 1 1 1 1 0 0 
  250 nm 0 1 1 1 1 0 0 0 
  30 µM 1 0 0 0 0 0 0 0 
68 Pregnenolone 10 nm 0 1 1 1 1 0 0 0 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 0 0 0 0 0 0 0 
69 Androstenedione 10 nm 1 1 1 1 1 0 0 0 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 0 0 0 0 0 0 0 
70 1a,25-Dihydroxyvitamin D3 10 nm 0 1 1 1 1 1 1 0 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 0 0 0 0 0 0 0 
71 Docosa-4Z,7Z,10Z,13Z, 10 nm 1 1 1 1 1 0 0 1 
 16Z,19Z-hexaenoic acid 250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 0 0 0 0 0 0 0 
72 3-Methylcholanthrene 10 nm 1 1 1 1 1 1 1 0 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 0 0 0 0 0 0 0 0 
73 Acitretin 10 nm 1 1 1 1 1 0 0 1 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 0 0 0 0 0 0 0 
74 Pioglitazone 10 nm 1 1 1 1 1 0 0 0 



Appendix  101 
  
 250 nm 1 1 1 1 1 0 0 0 

30 µM 1 0 0 0 0 0 0 0 
75 4-Hydroxyretinoic acid 10 nm 2 3 3 2 2 1 0 0 
  250 nm 1 1 1 1 1 1 1 0 
  30 µM 1 1 1 0 0 0 0 0 
76 3-amino benzamide 10 nm 1 1 0 1 1 1 1 0 
  250 nm 1 0 0 1 1 1 1 1 
  30 µM 1 0 1 0 0 0 0 0 
77 Phthalazinone pyrazole 10 nm 1 1 1 1 1 1 1 1 
  250 nm 1 0 1 0 0 0 0 1 
  30 µM 1 1 1 1 0 0 0 0 
78 AGK2 10 nm 1 1 1 0 1 1 0 1 
  250 nm 1 1 1 1 1 1 1 0 
  30 µM 1 1 1 0 0 0 0 0 
79 Mirin 10 nm 1 1 1 1 1 0 0 0 
  250 nm 1 1 1 1 0 0 1 1 
  30 µM 1 1 1 1 1 0 0 0 
80 chidamide 10 nm 1 1 1 1 1 1 0 0 
  250 nm 1 1 1 1 1 1 1 1 
  30 µM 1 1 1 1 0 0 0 0 
81 SAHA 10 nm 1 1 1 1 1 1 1 0 
  250 nm 1 1 1 1 0 0 1 1 
  30 µM 1 1 0 1 0 0 0 0 
82 F-Amidine 10 nm 1 1 1 1 1 0 1 1 
  250 nm 1 1 1 1 0 1 0 1 
  30 µM 1 1 0 0 0 0 0 0 
83 4-iodo-SAHA 10 nm 1 1 1 1 1 0 1 1 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 1 1 0 0 0 0 0 0 
84 UNC0321 10 nm 1 1 1 1 0 0 0 1 
  250 nm 1 1 0 0 1 0 0 0 
  30 µM 1 0 0 0 0 0 0 0 
85 Isoliquiritigenin 10 nm 1 1 1 1 0 1 1 0 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 1 0 0 0 0 0 0 0 
86 CAY10603 10 nm 1 0 1 1 0 0 1 1 
  250 nm 1 1 1 0 0 0 0 0 
  30 µM 1 1 1 0 0 0 0 0 
87 Pimelic diphenylamide 106 10 nm 1 1 1 1 0 1 0 1 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 1 1 1 0 0 0 0 0 
88 3-deazaneplanocin-A 10 nm 1 1 1 1 1 0 1 0 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 1 0 0 0 0 0 0 
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89 2,4-OPD 10 nm 1 1 1 1 1 0 0 1 
  250 nm 1 1 1 1 1 1 1 0 
  30 µM 1 0 1 1 0 0 0 0 

90 2-PCPA (hydrochloride) 10 nm 1 1 1 1 1 1 1 0 
  250 nm 1 1 1 1 0 1 0 1 
  30 µM 1 1 0 0 0 0 0 0 

91 Tubastatin A (trifluroacetate salt) 10 nm 1 1 1 1 1 0 0 1 
  250 nm 1 1 0 0 0 0 0 0 
  30 µM 1 0 1 0 0 0 0 0 

92 Nicotinamide 10 nm 1 1 1 1 1 1 1 0 
  250 nm 1 2 2 2 2 2 1 0 
  30 µM 1 1 1 0 1 0 0 0 

93 Zebularine 10 nm 1 1 1 1 0 1 0 1 
  250 nm 1 1 1 1 0 1 1 1 
  30 µM 1 1 0 0 0 0 0 0 

94 (S)-HDAC-42 10 nm 1 1 1 1 1 1 1 0 
  250 nm 1 1 1 1 1 1 1 1 
  30 µM 1 1 1 1 1 1 1 0 

95 Trans-resveratrol 10 nm 1 1 1 1 1 0 0 1 
  250 nm 1 1 1 1 1 0 1 1 
  30 µM 1 1 1 0 0 0 0 1 

96 DMOG 10 nm 1 1 1 1 0 1 1 0 
  250 nm 1 1 1 1 1 1 0 1 
  30 µM 1 1 1 1 1 0 1 0 

97 Cl-Amidine 10 nm 1 1 1 1 1 1 0 1 
  250 nm 1 1 1 1 0 0 1 0 
  30 µM 1 1 1 0 0 0 0 1 

98 Garcinol 10 nm 1 1 1 1 0 1 0 0 
  250 nm 1 1 1 1 1 1 1 1 
  30 µM 1 1 1 0 0 0 0 0 

99 BIX01284 (hydrocholride hydrate) 10 nm 1 1 1 1 1 1 0 0 
  250 nm 1 1 1 1 1 0 0 1 
  30 µM 1 1 1 1 0 0 0 0 
100 Valproic acid ( sodium salt) 10 nm 1 1 1 1 1 0 1 0 
  250 nm 1 1 1 1 1 1 1 0 
  30 µM 1 1 1 1 1 0 1 0 
101 splitomicin 10 nm 1 1 1 1 1 0 1 1 
  250 nm 1 1 1 1 1 1 0 1 
  30 µM 1 1 1 1 0 1 0 1 
102 MS-275 10 nm 1 1 1 1 1 1 0 1 
  250 nm 1 1 1 1 0 0 1 0 
  30 µM 1 1 1 0 1 0 0 0 
103 trichostatin A 10 nm 0 1 1 1 1 1 1 0 
  250 nm 1 1 1 1 0 0 0 1 



Appendix  103 
  
 30 µM 1 0 1 0 0 0 0 0 
104 Ellagic acid 10 nm 1 1 1 1 0 1 0 1 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 1 1 1 1 0 0 0 
105 Suramin (sodium salt) 10 nm 1 1 1 0 1 1 1 0 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 1 1 1 1 0 0 0 0 
106 Tenovin-1 10 nm 1 1 1 1 1 0 0 1 
  250 nm 1 1 1 1 0 1 0 0 
  30 µM 1 1 1 0 0 0 0 0 
107 CBHA 10 nm 1 1 1 1 1 0 1 0 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 1 1 1 1 0 0 0 0 
108 HNHA 10 nm 1 1 1 1 1 1 1 1 
  250 nm 1 1 1 1 1 1 1 0 
  30 µM 1 1 1 1 1 1 1 0 
109 (-)- Neplanocin A 10 nm 1 1 1 1 1 0 1 1 
  250 nm 1 1 1 1 1 0 0 1 
  30 µM 1 1 1 1 0 0 0 1 
110 Sciptaid 10 nm 1 1 1 1 1 1 0 1 
  250 nm 1 1 1 1 0 0 1 0 
  30 µM 1 1 1 1 0 0 0 0 
111 JGB1741 10 nm 1 1 1 1 0 1 1 0 
  250 nm 1 1 1 1 1 0 0 1 
  30 µM 1 1 1 1 1 1 0 0 
112 Tinovin-6 10 nm 0 1 1 1 1 1 1 1 
  250 nm 1 1 1 1 1 1 1 0 
  30 µM 1 1 1 1 0 0 0 0 
113 M-344 10 nm 1 1 1 1 0 1 0 1 
  250 nm 1 1 1 1 0 1 0 1 
  30 µM 1 1 1 0 0 0 0 0 
114 RG-108 10 nm 1 1 1 1 1 1 0 0 
  250 nm 1 2 2 3 3 2 1 0 
  30 µM 1 1 1 1 1 1 1 0 
115 CAY10433 10 nm 1 1 2 1 1 1 1 0 
  250 nm 2 2 3 3 3 2 1 1 
  30 µM 1 1 1 1 1 1 0 1 
116 Sinefungin 10 nm 1 1 1 1 1 0 1 1 
  250 nm 1 2 2 2 2 1 1 1 
  30 µM 1 1 1 1 0 1 0 0 
117 Suberohydroxamic acid 10 nm 1 1 1 1 1 0 1 1 
  250 nm 1 1 1 1 0 0 0 1 
  30 µM 1 0 0 0 0 0 0 0 
118 I-BET 10 nm 1 1 1 1 1 1 0 1 
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 250 nm 0 1 1 1 1 0 0 0 
30 µM 1 1 1 1 0 0 0 0 

119 Sodium butyrate 10 nm 1 1 1 1 1 0 0 0 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 1 1 0 0 0 0 0 
120 Oxamflatin 10 nm 1 1 1 1 1 0 0 0 
  250 nm 1 0 0 0 0 0 0 0 
  30 µM 0 0 0 0 0 0 0 0 
121 2,3,5-triacetyle-5-azacytidine 10 nm 1 1 1 1 0 1 0 0 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 1 1 1 0 0 0 0 0 
122 piceatannol 10 nm 1 1 1 1 1 1 0 0 
  250 nm 1 1 1 1 1 0 0 0 
  30 µM 1 1 1 0 0 0 0 0 
123 S-adenosylhomocysteine 10 nm 1 1 1 1 1 0 0 0 
  250 nm 1 1 1 1 0 0 0 0 
  30 µM 1 1 1 0 0 0 0 0 
124 UNC0638 10 nm 1 1 1 1 1 0 1 0 
  250 nm 0 1 1 1 0 1 0 0 
  30 µM 1 1 1 1 0 0 0 0 
125 Anacardic acid 10 nm 1 1 1 1 0 1 0 1 
  250 nm 0 1 1 1 1 0 0 0 
  30 µM 1 1 1 0 0 0 0 0 
126 Salermide 10 nm 1 1 1 1 1 0 1 0 
  250 nm 1 1 0 1 0 1 0 0 
  30 µM 0 1 1 0 0 0 0 0 
127 UNC0224 10 nm 1 1 1 0 0 1 0 1 
  250 nm 1 1 1 0 0 0 0 0 
  30 µM 1 1 0 0 0 1 0 0 
128 EX-527 10 nm 1 1 1 1 1 1 1 0 
  250 nm 1 1 1 1 0 1 1 0 
  30 µM 1 1 0 1 1 1 1 0 
129 CCG-100402 10 nm 1 1 1 1 1 0 0 1 
  250 nm 1 1 1 1 0 0 1 1 
  30 µM 1 1 1 0 0 0 0 1 
130 10% FCS  2 3 4 5 6 6 4 2 
131 FGF1+ p38 inhibitor  3 8 9 10 10 9 7 3 
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