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Abstract
We show that the Hamiltonian action satisfies the Palais–Smale condition over a “mixed
regularity” space of loops in cotangent bundles, namely the space of loops with regularity
Hs , s ∈ ( 12 , 1), in the base and H1−s in the fiber direction. As an application, we give
a simplified proof of a theorem of Hofer–Viterbo on the existence of closed characteristic
leaves for certain contact type hypersufaces in cotangent bundles.

Mathematics Subject Classification 37J45

1 Introduction

Let (W , ω) be a closed symplectic manifold, and let H : T × W → R be a smooth
time-depending Hamiltonian, where T := R/Z. With the pair (H , ω) we can associate a
Hamiltonian vector field XH by

ıXH ω(·) = −dH(·),
and hence an induced Hamiltonian system by

ẋ = XH (x). (1.1)

One of the central problem in the theory of Hamiltonian systems is to find (one-)periodic
solutions of (1.1). Such periodic solutions can be found as critical points of a suitable action
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functional: the Hamiltonian action of a contractible loop x : T → W is given by

AH (x) :=
∫
D

x̄∗ω −
∫
T

H(t, x(t)) dt, (1.2)

where x̄ : D → W is a map on the disk D coinciding with x on ∂D ∼= T. For an arbitrary
(W , ω), the functional AH is unfortunately not well-suited for finding critical points using
classical Morse theory, and this has forced to develop new techniques to deal with it. One of
the most powerful is certainly Floer theory: The Floer homology FH∗(W , ω) of (W , ω) is
the homology of a chain complex which is generated by contractible one-periodic solutions
of (1.1). The boundary operator is defined by a suitable count of “negative L2-gradient flow
lines” of AH ; these are cylinders u : R×T → W which are asymptotic to pairs of periodic
orbits of XH and solve the nonlinear perturbed Cauchy–Riemann equation

∂su + Jt (u)(∂t u − XH (t, u)) = 0, (1.3)

where (Jt ) is a given loop of ω-compatible almost complex structures onW . As the notation
suggests, FH∗(W , ω) does not depend on the defining data H and J , and it is actually
isomorphic to the singular homology of M with respect to suitable coefficient rings. This
approach to the study of periodic orbits on general symplectic manifolds was introduced by
Floer in the late 80’s [12–14] under additional assumptions, and later extended more and
more by several authors, see e.g. [16,23,28]. Floer homology can be defined also for non-
compact symplectic manifolds which are suitably convex at infinity. In this case, the theory
requires the use of Hamiltonians having a suitable behavior at infinity and is a genuine infinite
dimensional homology theory: for instance, the Floer homology of T ∗M , the total space of
the cotangent bundle of a closed manifold M , is isomorphic to the singular homology of the
free loop space of M , see [3,5,32].

On particular symplectic manifolds however, a Morse theory for the Hamiltonian action
functional AH can be obtained by more classical methods. This is the case of the torusT2n ,
for which AH admits a smooth negative gradient flow on the space of contractible loops
of Sobolev class H1/2. The space of loops of class H1/2 in an arbitrary manifold does not
have a good structure of an infinite dimensional manifold due to the fact that curves of class
H1/2 might have discontinuities, but sinceT2n is a quotient ofR2n , the space of contractible
H1/2-loops on T2n can be identified with T2n times the Hilbert space of H1/2-loops in
R2n having zero mean. Although strongly indefinite (meaning that all its critical points have
infinite Morse index and co-index), the functional AH has good analytical properties on this
space. By using finite dimensional approximations, the H1/2-approach was used by Conley
and Zehnder [9] to prove Arnold’s conjecture on T2n five years before the birth of Floer
homology; see also [33] for a simplified proof. Another symplectic manifold which can be
dealt with by similar methods is CP

n , see [15].
In this and a follow up paper we aim at enlarging the class of symplectic manifolds

such that the action functional AH given by (1.2) induces a negative gradient flow with
good compactness properties on a suitable space of free loops. In the present paper we will
focus on cotangent bundles: the total space T ∗M of the cotangent bundle over a closed
manifold M carries a natural symplectic form ωstd, which in local coordinates (q, p) =
(q1, p1, ..., qn, pn) is given by ωstd = dq ∧ dp. In this setting, the functional AH reads

AH (x) =
∫
T

x∗λstd −
∫
T

H(t, x(t)) dt,

where λstd = pdq is the Liouville one-form. As domain of definition of AH we will take the
bundleM1−s over the Hilbert manifold of loops Hs(T, M), s ∈ ( 12 , 1)whose typical fibre is
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given by the space of H1−s-vector fields along γ ∈ C∞(T, M), and will endowM1−s with
a Riemannian metric which is naturally induced by the choice of a Riemannian metric on
M . For more details we refer to Sect. 2. Another class of manifolds that we aim at studying
is given by toric manifolds. In this case, the isotropic foliation given by the torus action will
play the role of the fibers of T ∗M . We will address these question in a forthcoming paper.

We recall that a C1-functional f : H → R, H Hilbert manifold endowed with a metric
〈·, ·〉, satisfies the Palais–Smale condition if every sequence (γn) ⊂ H such that

f (γn) → c, ‖d f (γn)‖ → 0,

admits a converging subsequence. Here ‖ · ‖ denotes the (dual) metric on T ∗H induced by
〈·, ·〉.
Theorem 1.1 Let M be a closed manifold, and let π : T ∗M → M be its cotangent bundle.
Furthermore, let H : T × T ∗M → R be a smooth time-depending Hamiltonian function
satisfying the growth condition

H(t, q, p) = 1

2
|p|2q + c, ∀(q, p) ∈ T ∗M \ K , ∀t ∈ T,

where K ⊂ T ∗M is a compact subset, | · | is the norm induced by a Riemannian metric on
M and c ∈ R is some constant. Then, for every s ∈ ( 12 , 1), AH : M1−s → R satisfies the
Palais–Smale condition.

The Palais–Smale condition is, as the natural replacement of compactness, a key property
in infinite-dimensional critical point theory, and, as such, it is the starting point to obtain a
“classical” Morse theory for the Hamiltonian action functional AH . Indeed, once one has a
negative gradient flow with good analytical properties for a strongly indefinite functional,
one can obtain a Morse theory e.g. using the Morse complex approach which is developed
in [2] (see also references therein). In this approach, one constructs a chain complex looking
at one-dimensional intersections of unstable and stable manifolds of pairs of critical points.
The difference with respect to Floer homology is that the Cauchy–Riemann equation (1.3)
is replaced by an ODE in an infinite dimensional manifold. We will address this problem in
a forthcoming paper.

In this paper, we will apply Theorem 1.1 to give a simplified proof of a Theorem of Hofer
and Viterbo [24] on the existence of closed characteristic leaves for certain contact type
hypersurfaces in T ∗M . To this purpose, we recall that solutions of (1.1) for an autonomous
(that is, time independent) Hamiltonian function H : T ∗M → R are contained in a level set
of H ; indeed, for any solution x : I → T ∗M of (1.1) we have

d

dt
H ◦ x(t) = dH(x(t))[ẋ(t)] = −ωstd(XH (x(t)), ẋ(t)) = −ωstd(ẋ(t), ẋ(t)) = 0.

We set � := H−1(κ), κ ∈ R, and suppose that � is compact, connected, and regular,
that is, XH is nowhere vanishing on �. As it is well-known, the Hamiltonian dynamics on
� essentially depends only on �, meaning that the dynamics of two different Hamiltonians
both defining � only differ by time-reparametrization: The symplectic form ωstd induces a
line distribution on � via

	� := ker ωstd|T ∗�,

and XH |� ∈ 	� . The line distribution 	� → � is usually called the characteristic line
bundle over � and induces a foliation of � (whose leaves are unparametrized Hamiltonian
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trajectories), called the characteristic foliation of �. In particular, finding periodic solutions
to (1.1) with energy κ is equivalent to finding closed characteristic leaves on � = H−1(κ).
In what follows we say that an hypersurface � ⊂ T ∗M is OM -separating if the bounded
component of T ∗M \ � contains the zero-section OM of the bundle T ∗M → M .

Theorem 1.2 Let� ⊂ T ∗M be a compact connectedOM-separating contact type hypersur-
face. Then there exists a closed characteristic leaf on �.

The hypersurface � ⊂ (T ∗M, ωstd) is called of contact type, if there exists a one-form
α ∈ �1(�) such that ωstd|� = dα and α does not vanish on 	� , or, equivalently, if there
exists a Liouville vector field Y on a neighborhood U of � (meaning that LYωstd = ωstd on
U , where L denotes the Lie derivative) which is everywhere transverse to� (c.f. [25, Section
4.3]). In contact geometry, one of themost famous open conjecture - universally known as the
Weinstein conjecture - states that every closed contact manifold possesses a closed Reeb orbit
(in our language, a closed charateristic leave). Such a conjecture was originally formulated
by Weinstein in the late 1970’s [37] under the additional assumption that the cohomology
do not vanish in degree one, and has received since then great attention. Nowadays, the
conjecture is known to be true in dimension 3 [35]; in higher dimension, the conjecture is
proved only in special cases. Theorem above can therefore be seen as a confirmation of the
Weinstein conjecture for certain contact type hypersurfaces in cotangent bundles. To our best
knowledge, the full Weinstein conjecture in cotangent bundles seems not to be known. In
contrast, it is known to hold for compact contact type hypersurfaces in twisted cotangent
bundles (T ∗M, ωstd −π∗σ), provided the closed two-form σ does not vanish on π2(M); see
[31].

Theorem 1.2 will be an immediate consequence of a nearby/dense existence theorem of
closed leaves for OM -separating hypersurfaces which are not necessarily of contact type.
Roughly speaking, if the contact condition is dropped, then one cannot expect the existence
of closed characteristic leaves on �, as many explicit examples show (see e.g. [18–20]).
However, one might hope to find closed characteristic leaves on hypersurfaces which are
arbitrarily close to�. To set the notation we define, following a suggestion of Kai Zehmisch,
a thickening of � to be a diffeomorphism 
 : (−a, a) × � → T ∗M , a ∈ R ∪ {+∞}, onto
an open precompact neighborhood U ⊂ T ∗M of � such that 
(0, ·) = ı� : � → T ∗M
canonical inclusion. For every σ ∈ (−a, a), we set �σ := 
({σ } × �), and denote with
P(σ ) the set of closed characteristic leaves contained in �σ . Notice that, if � is regular and
OM -separating, then up to shrinking the interval (−a, a) we can assume that each �σ is
regular andOM -separating. Also, every thickening can be realized as the flow of some vector
field on T ∗M which is transverse to �.

Theorem 1.3 Let � ⊂ T ∗M be a compact, connected,OM-separating hypersurface, and let

 be a thickening of �. Then there exists a sequence σn → 0 such that P(σn) �= ∅ for all
n ∈ N. Moreover, we can find a constant α = α(
) > 0 such that for every n ∈ N there
exists Pn ∈ P(σn) with

0 <

∣∣∣
∫
Pn

λstd

∣∣∣ < α.

Our proof of Theorem 1.3 follows closely the original argument of Hofer–Viterbo, never-
theless the new functional setting will enable us to strongly simplify the argument in its key
technical parts. Indeed, Hofer–Viterbo’s setting corresponds in the notation above to the case
s = 1, and it is well-known that in this case the Hamiltonian action AH does not satisfy the
Palais–Smale condition, because of the lack of compactness in the Hamiltonian part of the
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functional. Therefore, one has to introduce approximations of AH to achieve compactness,
and then pass to the limit for the approximations going to zero using a very delicate diagonal
argument. In our case instead we can work directly with the functional AH , see Sect. 3.

Structure of the paper In Sect. 2, we introduce the necessary background on the Hamil-
tonian action AH and on the functional setting, and prove Theorem 1.1. In Sect. 3, we show
how Theorems 1.2 and 1.3 follow from an existence theorem of critical points forAH , which
will be then proved in Sect. 4.

2 The Hamiltonian action functional

In this section, we introduce the functional setting for the Hamiltonian actionAH in (1.2) on
the cotangent bundle T ∗M of a closed manifold M and prove Theorem 1.1.We start recalling
some well-known facts about Riemannian metrics on M which will be useful later on.

2.1 Bumpymetrics

A Riemannian metric g yields a flow on T M (the geodesic flow) by

T M � (q, v) �→ (γ (t), γ̇ (t)), ∀t ∈ R,

where γ : R → M is the unique curve satisfying

∇γ̇ γ̇ = 0, and γ (0) = q, γ̇ (0) = v.

Here,∇γ̇ denotes the covariant derivative along γ associatedwith theLevi–Civita connection.
The curve γ is called the geodesic through the point q with initial velocity v. It is well-known
that periodic orbits of the geodesic flow are in one-to-one correspondence with the critical
points of the energy functional

E : H1(T, M) → R, E(γ ) := 1

2

∫ 1

0
|γ̇ (t)|2 dt,

where | · | := √
gγ (t)(·, ·) is the norm induced by the Riemannian metric, and H1(T, M)

is the Hilbert manifold of loops in M of class H1, i.e. absolutely continuous loops with
square integrable derivative. More details on the Hilbert manifold structure of H1(T, M)

and on the properties of the functional E can be found e.g. in [27] (see also [4]). Here we just
recall that the functional E satisfies the Palais–Smale condition , meaning that any sequence
(γn) ⊂ H1(T, M) such that

E(γn) → e, |dE(γn)| → 0,

admits a converging subsequence. In particular, e is a critical value of E. The next lemma
is certainly well-known to the experts, however we include its proof here for the reader’s
convenience.

Lemma 2.1 Let M be a closed manifold. Then there exists a Riemannian metric g on M such
that the set of critical values of the associated energy functional is discrete.

Proof Notice first that, for any Riemannian metric on M , zero is an isolated critical value
for E. Indeed, zero is a critical value since the set of constant loops �0M ∼= M is the (non-

123



113 Page 6 of 28 L. Asselle, M. Starostka

degenerate1; c.f. [27, Proposition 2.4.6]) critical manifold of global minima for E, and on
the other hand it is isolated because of the existence of a positive injectivity radius. Actually,
for ε > 0 sufficiently small the set �0M is a strong deformation retract of E−1([0, ε)); see
[27, Theorem 1.4.15].

A standard result in Riemannian geometry, orginally proved by Abraham [1] (see also
[6]), asserts that the set of Riemannian metrics on M all of whose closed geodesics are
non-degenerate (that is, the set of bumpy metrics) is residual in the set of all Riemannian
metrics. Thus, pick one such bumpy metric g, and let e ∈ [0,+∞) be a critical value
for the corresponding energy functional E. By the discussion above we can assume that
e > 0. Since E satisfies the Palais–Smale condition, the set crit (E) ∩ E

−1(e) is compact.
Moreover, in virtue of the Morse Lemma for the functional E (c.f. [27, Corollary 2.4.8]), any
connected component of crit (E)∩E

−1(e)must be an isolated critical manifold. In particular,
crit (E)∩E

−1(e) consists of finitelymany non-degenerate critical manifolds: indeed, suppose
by contradiction that K1, K2, ... are the connected components of crit (E) ∩E

−1(e), and for
each k ∈ N pick γk ∈ Kk . Then, (γk) ⊂ H1(T, M) is a Palais–Smale sequence for E
and hence, up to extracting a subsequence, it must converge to some γ ∈ crit (E) ∩ E

−1(e).
Therefore, the γk’s must eventually lie in the same connected component of crit (E)∩E

−1(e).
Finally, since crit (E) ∩ E

−1(e) consists of finitely many critical manifolds, it follows
again from [27, Corollary 2.4.8] that e is an isolated critical value of E.

2.2 The setting

Let M be a closed n-dimensional manifold. Hereafter we identify tangent and cotangent
bundles of M by means of the musical isomorphism

� : T M → T ∗M, X �→ �(X) := gπ(X)(X , ·)
induced by a fixed metric g on M . As we now recall, for s > 1

2 the fractional Sobolev space
Hs(T, M) of Hs-loops in M has a natural structure of Hilbert manifold, and for any r ∈ R

there exists a vector bundle

πr : Mr → Hs(S1, M)

over Hs(S1, M), whose typical fiber is given by “vector fields of regularity Hr” along a
smooth loop (for r < 0 these are actually elements in the dual space).

We denote by | · |q := √
gq(·, ·) the norm induced by the Riemannian metric g on TqM .

For q ∈ C∞(S1, M), the metric g induces an L2-scalar product on the space �(q∗T M) of
smooth vector fields along q by

〈·, ·〉 :=
∫ 1

0
gq(·, ·) dt .

The induced norm will be denoted by ‖ · ‖ without further specifying the loop q. Similarly,
we denote by

‖ · ‖∞ := sup
t∈[0,1]

| · |q(t).

1 A critical manifold C for E is called non-degenerate if the nullity of the Hessian of E at any γ ∈ C equals
the dimension of C.
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Lemma 2.2 Let q ∈ C∞(S1, M), and let 0 ≤ λ0(q) ≤ λ1(q) ≤ λ2(q) ≤ ... be the sequence
of ordered eigenvalues of the self-adjoint operator

−∇2
q̇ = ∇∗̇

q∇q̇ : �(q∗T M) → �(q∗T M),

where∇q̇ denotes the covariant derivative along q and∇∗̇
q = −∇q̇ its adjoint operator. Then,

there exist d = d(g, ‖q̇‖∞) > 0, and c = c(g),C = C(g) > 0 such that

c
(
j2 − d

) ≤ λ j (q) ≤ C
(
j2 + d

)
, ∀ j ∈ N, (2.1)

Moreover, any eigenvector ξ of −∇2
q̇ with ‖ξ‖ = 1 satisfies ‖ξ‖∞ ≤ √

2.

Proof See Appendix A.

For q ∈ C∞(S1, M) we denote by {λ j (q)} j∈N the set of ordered eigenvalues of ∇∗̇
q∇q̇,

and with {ξ j (q)} j∈N the corresponding set of orthonormal eigenvectors. For all r ≥ 0 we
set

Hr (q∗T M) :=
⎧⎨
⎩p =

+∞∑
j=1

p j ξ j (q) ∈ L2(q∗T M)

∣∣∣
+∞∑
j=1

(1 + λ j (q))r |p j |2 < +∞
⎫⎬
⎭ ,

and denote with H−r (q∗T M) := (Hr (q∗T M))∗ the dual space to Hr (q∗T M). Notice that
we can interpret elements in H−r (q∗T M) as formal series:

H−r (q∗T M) =
⎧⎨
⎩p =

+∞∑
j=1

p j ξ j (q)

∣∣∣
+∞∑
j=1

(1 + λ j (q))−r |p j |2 < +∞
⎫⎬
⎭ .

The self-adjoint operator ∇∗̇
q∇q̇ might have non-trivial (though finite dimensional) kernel,

which is namely generated by 1-periodic parallel vector fields along q. We set

N (q) := dim ker(∇∗̇
q∇q̇) ∈ {0, ..., n},

so that λ1(q) = ... = λN (q)(q) = 0 and λ j (q) > 0 for j > N (q), and define

〈ξ, ζ 〉r :=
+∞∑
j∈N

(1 + λ j (q))r ξ jζ j . (2.2)

We also define for r ∈ R the operator Ar = Ar (q) := (1 + ∇∗̇
q∇q̇)

r/2 by

Ar : Hr (q∗T M) → L2(q∗T M), Ar

⎛
⎝p =

+∞∑
j=1

p jξ j (q)

⎞
⎠ :=

+∞∑
j=1

(1 + λ j (q))r/2 p j ξ j (q),

so that ‖Arp‖2 = ‖p‖r holds for all p ∈ Hr (q∗T M). Notice that, by Lemma 2.2 we have
that:

• for all r > r ′, the inclusion Hr (q∗T M) → Hr ′
(q∗T M) is continuous and compact, and

• for all r > 1
2 , the inclusion Hr (q∗T M) → C0(q∗T M) is continuous and compact.

Lemma 2.3 For every r ∈ R the operator Ar commutes with ∇q̇.
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Proof. It suffices to check that

(Ar∇q̇)ξ j (q) = (∇q̇A
r )ξ j (q), ∀ j ∈ N.

By definition we have that

Ar (ξ j (q)) = (1 + λ j (q))r/2ξ j (q)

and hence

(∇q̇A
r )ξ j (q) = (1 + λ j (q))r/2∇q̇ξ j (q).

On the other hand ∇q̇ξ j (q) is again an eigenvector for −∇2
q̇ corresponding to the eigenvalue

λ j (q), and hence

(Ar∇q̇)ξ j (q) = (1 + λ j (q))r/2∇q̇ξ j (q).

For every q ∈ M we denote by expq : TqM → M the exponential map, and choose
ε > 0 smaller than the injectivity radius of M . For every q ∈ C∞(S1, M) let Hs(q∗

Oε) ⊂
Hs(q∗T M) be the space of Hs-vector fields along q whose image is entirely contained in
the ε-ball around the zero-section of q∗T M , and define

Expq : Hs(q∗
Oε) → U s

q, ξ �→ Expq(ξ)(t) := expq(t)(ξ(t)).

Following [27, Sections 1.2-1.3], the differentiable structure on Hs(S1, M) is given by declar-
ing the collection {(U s

q, (Expq)
−1)} to be an atlas of Hs(S1, M). As it turns out, the inclusions

C0(S1, M) ↪→ Hs(S1, M) ↪→ C∞(S1, M)

are continuous homotopy equivalences. Extending the definition of Hr (q∗T M) to any loop
in Hs(S1, M) by mean of the differential of the map Expq yields now the desired vector
bundle πr : Mr → Hs(S1, M). Such a bundle carries a natural Riemannian metric, which
on the typical fiber is given by (2.2). We denote this metric again with 〈·, ·〉r , and observe
that it can be equivalently written as

〈ξ, ζ 〉r =
∫ 1

0
gq

(
(id + ∇∗̇

q∇q̇)
r ξ, ζ

)
dt = 〈(id + ∇∗̇

q∇q̇)
r ξ, ζ 〉.

For our purposes, it will be convenient to define another metric for the bundle πr , which
will be denoted by 〈·, ·〉emb

r ; as it turns out, 〈·, ·〉emb
r is equivalent to 〈·, ·〉r on every bundle

chart, thus on every bounded set (see Lemma 2.5), but in general the two metrics are not
globally equivalent (see Appendix 1). To define 〈·, ·〉emb

r we proceed as follows: By the
isometric embedding theorem of Nash–Moser, (M, g) admits an isometric embedding into
RN for some N ∈ N large enough. This yields an equivalent definition of

Hs(S1, M) :=
{
u ∈ Hs(S1,RN )

∣∣∣ u(·) ⊂ M
}
,

as well as a scalar product 〈·, ·〉emb
r on�(q∗T M) for every r ≥ 0 and every q ∈ C∞(S1, M):

〈ξ, ζ 〉emb
r :=

∫ 1

0
gq((id + �)r ξ, ζ ) dt, (2.3)

where �ξ := ξ̈ . As usual, we denote the extension of (2.3) to any loop in Hs(S1, M) again
with 〈·, ·〉emb

r .

123



The Palais–Smale condition for the Hamiltonian action on a… Page 9 of 28 113

For q ∈ C∞(S1, M) we set

L0 := 1 + �, L1 := 1 + ∇∗̇
q∇q̇.

The operators L0 and L1 are self-adjoint and positive, and clearly L0 ≥ L1, meaning that
the difference L0 − L1 is a positive operator. It is a result known as the Löwner–Heinz
theorem [21] (see also Kato [26]) that the function f (t) = tr is, for every r ∈ [0, 1], operator
monotone over the interval (0,+∞), meaning that if A ≥ B then Ar ≥ Br . This implies that
Lr
0 ≥ Lr

1 for all r ∈ [0, 1]. Therefore, since the function t �→ −t−1 is operator monotone
too [17], we obtain that L−r

0 ≤ L−r
1 , which is equivalent to saying that

‖ · ‖emb−r ≤ ‖ · ‖−r , ∀r ∈ [0, 1]. (2.4)

Recall that a sequence (qn) is bounded in Hs(S1, M) if there exists c > 0 such that

‖q̇n‖s−1 ≤ c, ∀n ∈ N.

Lemma 2.4 Let (qn) be a bounded sequence in Hs(S1, M). Then up to passing to a subse-
quence we have that qn → q ∈ C0(S1, M) uniformly.

Proof We see (qn) as a sequence in Hs(S1,RN ). By (2.4) we have that

‖q̇n‖emb
s−1 ≤ c, ∀n ∈ N.

Therefore,

‖qn‖emb
s ≤ ‖qn‖2 + ‖q̇n‖emb

s−1 ≤ c̃, ∀n ∈ N,

for some constant c̃ > 0, where we used the fact that M is compact. In particular, the
sequence (qn) ⊂ Hs(S1,RN ) is (s − 1

2 )-Hölder equicontinuous [10, Theorem 8.2], and
since qn(·) ⊂ M for all n ∈ N, this implies that the hypothesis of the Ascoli–Arzelá theorem
are satisfied. Therefore, there exists q ∈ C0(S1,RN ) such that qn → q uniformly. Now, by
pointwise convergence we readily see that q ∈ C0(S1, M).

We finish this section showing that the metrics 〈·, ·〉emb
r and 〈·, ·〉r are equivalent on every

bundle chart, and hence on every bounded set B ⊂ Hs(S1, M).

Lemma 2.5 Let Expq : Hs(q∗
Oε) → U s

q be the local parametrization of H
s(S1, M) around

q ∈ C∞(S1, M). Then, for everyγ ∈ U s
q the scalar products 〈·, ·〉emb

r and 〈·, ·〉r are equivalent
on Hr (γ ∗T M). As a corollary, for every B ⊂ Hs(S1, M) bounded, the metrics 〈·, ·〉emb

r |B
and 〈·, ·〉r |B are equivalent.

Proof Let q ∈ C∞(S1, M). By [30, Proposition 5.6.1], there exists a constant ε > 0 such
that L1 ≥ εL0, which in virtue of the Löwner–Heinz theorem implies that

εr Lr
0 ≤ Lr

1 ≤ Lr
0, ∀r ∈ [0, 1],

that is, that 〈·, ·〉emb
r and 〈·, ·〉r are equivalent in Hr (q∗T M).

Write now γ ∈ U s
q as γ = Expq(ξ). The assertion follows from the fact that the local

representation of the metric 〈·, ·〉emb
r resp. 〈·, ·〉r of Hr (Expq(ξ)∗T M) in Hr (q∗T M) is

equivalent to the Hilbert metric 〈·, ·〉emb
r resp. 〈·, ·〉r in Hr (q∗T M) (see the proof of Theorem

1.4.5 in [27]), combined with the fact that 〈·, ·〉emb
r and 〈·, ·〉r are equivalent in Hr (q∗T M).

The equivalence of the metrics on bounded sets follows now immediately from the fact
that every bounded set B ⊂ Hs(S1, M) can be covered by finitely many local charts. This
follows from Lemma 2.4; the details are left to the reader.
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2.3 The Palais–Smale condition

As in the previous section, let (M, g) be a closed Riemannian manifold. For s ∈ ( 12 , 1] we
consider the Hilbert-bundle π1−s : M1−s → Hs(S1, M). Given a smooth time-depending
Hamiltonian function H : T × T M → R such that

H(t, q, p) = 1

2
|p|2q , ∀t ∈ T,

outside a compact set K ⊂ T M , we can define the Hamiltonian action functional by

AH : Ms → R, AH (q,p) :=
∫ 1

0
gq(q̇(t),p(t)) dt −

∫ 1

0
H(t,q(t),p(t)) dt

= 〈q̇,p〉 − 1

2
‖p‖2 −

∫ 1

0
δ(t,q(t),p(t)) dt,

where δ : T M → R, δ(q, p) = H(t, q, p) − 1
2 |p|2q , is a smooth compactly supported

function. We also set

� : Ms → R, �(q,p) :=
∫ 1

0
δ(t,q(t),p(t)) dt . (2.5)

To see that AH is well-defined and of class C1,1 on M1−s , we embed M isometrically
into R

N . This induces an embedding of T M into R
2N , as well as an embedding of Ms−1

into E := Hs(S1,RN ) × H1−s(S1,RN ). We now extend AH to E by extending 〈q̇,p〉 with
the same formula, and H : T M → R to any smooth Hamiltonian onR2N which is quadratic
at infinity. On TM1−s we consider the splitting into horizontal and vertical subbundles
induced by the L2-connection, which is nothing else but the Levi–Civita connection applied
pointwise. Notice that such a splitting coincides with the splitting that one naturally obtains
by embeddingM1−s into E . Denoting with ξh and ξv respectively the horizontal and vertical
part of a tangent vector ξ ∈ T(q,p)M1−s , we define a Riemannian metric on M1−s by

〈·, ·〉M1−s := 〈·h, ·h〉s + 〈·v, ·v〉1−s . (2.6)

Following [25, Section 3.3], and using the fact that the gradient of the restriction is the
projection of the gradient, we obtain

Lemma 2.6 AH is well-defined over M1−s and of class C1,1. Moreover, for s ∈ ( 12 , 1), the
operator d� is compact. Finally, critical points of AH correspond to one-periodic solutions
of Hamilton’s Equation (1.1).

We shall mention that, for s ∈ ( 12 , 1), AH is actually more regular than C1,1 even though
it is in general not smooth. More precisely, arguing as in Appendix A.3 in [25] one can see
that for every s ∈ ( 12 , 1) there exists k = k(s) ∈ N such that AH : M1−s → R is of class
Ck , with k(s) → +∞ as s ↓ 1

2 .
We recall that a sequence (qn,pn) ⊂ M1−s is called a Palais–Smale sequence for AH if

AH (qn,pn) → a for some a ∈ R and ‖dAH (qn,pn)‖ → 0. Without loss of generality we
can assume that both qn and pn are smooth. Here, with slight abuse of notation we denote
with ‖ · ‖ the dual norm on T ∗

(qn ,pn)
M1−s induced by the Riemannian metric 〈·, ·〉M1−s given

by (2.6). We are now in position to prove Theorem 1.1, which we reformulate for the reader’s
convenience with the following
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Proposition 2.7 For every s ∈ ( 12 , 1) the functional AH : M1−s → R satisfies the Palais–
Smale condition.

The key step to prove the proposition is the following

Lemma 2.8 Let (qn,pn) be a Palais–Smale sequence for AH . Then there exists a constant
C > 0 such that ‖pn‖1−s ≤ C and ‖q̇n‖s−1 ≤ C for all n ∈ N.

Proof of Lemma 2.8 We divide the proof in several steps.
Step 1 ‖q̇n‖s−1 is uniformly bounded iff ‖pn‖s−1 is uniformly bounded. For any vn ∈

H1−s(q∗
nT M) with ‖vn‖1−s ≤ 1 we compute

o(1) =
∣∣∣dAH (qn,pn)[0, vn]

∣∣∣
=

∣∣∣〈q̇n − pn, vn〉 −
∫ 1

0
∂pδ(t,qn(t),pn(t)) · vn dt

∣∣∣
≥ ∣∣〈q̇n − pn, vn〉

∣∣ − c‖vn‖
≥ ∣∣〈q̇n − pn, vn〉

∣∣ − c

and hence

‖j∗
1−s(q̇n − pn)‖1−s ≤ c, (2.7)

where j∗
1−s : L2(q∗

nT M) → H1−s(q∗
nT M) is the adjoint operator to j1−s : H1−s(q∗

nT M) →
L2(q∗

nT M) canonical inclusion. A straightforward computation shows that

j∗
1−s

(
v =

+∞∑
j=1

v jξ j (qn)
)

=
+∞∑
j=1

(1 + λ j (qn))s−1v jξ j (qn),

that is, j∗
1−s = (1 + ∇∗̇

qn∇q̇n )
s−1. Moreover, with q̇n =

+∞∑
j=1

q̇ j
nξ j (qn) we obtain

‖j∗
1−s q̇n‖21−s=

∥∥∥∥∥∥
+∞∑
j=1

(1 − λ j (qn))s−1q̇ j
nξ j (qn)

∥∥∥∥∥∥
2

1−s

=
+∞∑
j=1

(1 − λ j (qn))s−1|q̇ j
n |2 = ‖q̇n‖2s−1,

and similarly ‖j∗
1−spn‖1−s = ‖pn‖s−1. The claim follows from (2.7).

Step 2 ‖pn‖2 ≤ c(1 + ‖pn‖1−s). We compute

a + c‖pn‖1−s ≥ AH (qn,pn) − dAH (qn,pn)[(0,pn)]

= 1

2
‖pn‖2 −

∫ 1

0
∂pδ(t,qn(t),pn(t)) · pn dt +

∫ 1

0
δ(t,qn(t),pn(t)) dt

≥ 1

2
‖pn‖2 − c(‖pn‖ + 1)

which implies the claim.
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Step 3 ‖∇q̇npn‖−s is uniformly bounded. We compute for hn ∈ Hs(q∗
nT M):

c‖hn‖s ≥
∣∣∣dAH (qn,pn)[(hn, 0)]

∣∣∣
=

∣∣∣〈∇q̇nhn,pn〉 −
∫ 1

0
∂qδ(t,qn(t),pn(t)) · hn dt

∣∣∣
≥

∣∣∣〈∇q̇nhn,pn〉
∣∣∣ − c‖hn‖s

from which we deduce that ∣∣∣〈∇q̇nhn,pn〉
∣∣∣ ≤ c‖hn‖s .

Setting hn := ((1 + ∇∗̇
qn∇q̇n )

−s ◦ ∇q̇n )pn and using Lemma 2.3 we obtain

‖∇q̇npn‖2−s ≤ c‖∇q̇npn‖−s

which readily implies the claim.
Step 4 ‖pn‖1−s is uniformly bounded. We write pn = pparn + p̃n , where p

par
n is the parallel

component

pparn =
N (qn)∑
j=1

p j
nξ j (qn)

of pn and

p̃n :=
∑

j>N (qn)

p j
nξ j (qn).

Clearly,

‖pn‖1−s ≤ ‖pparn ‖1−s + ‖p̃n‖1−s = ‖pparn ‖ + ‖p̃n‖1−s,

where we have used the fact that ‖pparn ‖1−s = ‖pparn ‖. In particular, it suffices to show that
‖pparn ‖ and ‖p̃n‖1−s are uniformly bounded. We readily see that

‖∇q̇npn‖2−s = ‖p̃n‖21−s − ‖p̃n‖2,
and hence by Step 3

‖p̃n‖21−s ≤ c(1 + ‖p̃n‖2). (2.8)

Step 2 implies now that

‖p̃n‖2 ≤ ‖pn‖2 ≤ c(1 + ‖pn‖1−s) ≤ c(1 + ‖pparn ‖ + ‖p̃n‖1−s).

Substituting in (2.8) yields

‖p̃n‖21−s ≤ c(1 + ‖pparn ‖ + ‖p̃n‖1−s)

which implies

‖p̃n‖1−s ≤ c(1 + ‖pparn ‖1/2). (2.9)

Using again Step 2 we obtain

‖pparn ‖2 ≤ c(1 + ‖pparn ‖ + ‖pparn ‖1/2)
which implies that ‖pparn ‖, thus by (2.9) also ‖p̃n‖1−s , is uniformly bounded.
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Proof of Proposition 2.7 Let (qn,pn) be a Palais–Smale sequence forAH . ByLemmas 2.4 and
2.8 , up to extracting a subsequence we have that qn → q̄ uniformly to some q̄ ∈ C0(S1, M).
Therefore, up to neglecting finitely many n’s, we can suppose that all (qn,pn) lie inside a
bundle chart for M1−s around a smooth loop q, where for every r ∈ [−1, 1] the metrics
〈·, ·〉r and 〈·, ·〉emb

r are equivalent in virtue of Lemma 2.5.
From the proof of Lemma 2.8, Step 1, we see that

o(1) = ∥∥j∗
1−s

(
q̇n − pn

) − Grad�(qn,pn)v
∥∥emb
1−s,

where 〈Grad�(qn,pn)v, ·〉1−s = dp�(qn,pn)[·] denotes the vertical part of the gradient
of �. Since d� is a compact operator (see Lemma 2.6), up to a subsequence we have that
Grad�(qn,pn)v converges in H1−s . Therefore, j∗

1−s(q̇n − pn) converges in H1−s , which is
the same as saying that q̇n −pn converges in Hs−1. Now, pn converges in L2 (being bounded
in H1−s), and hence in particular converges in Hs−1. This implies that q̇n converges in Hs−1,
which in turns yields the convergence of qn in Hs .

On the other hand, from Step 3 in the proof of Lemma 2.8 we have that

o(1) = ∥∥j∗
s ∇q̇npn − Grad�(qn,pn)h

∥∥emb
s ,

where 〈Grad�(qn,pn)h, ·〉s = dq�(qn,pn)[·] denotes the horizontal part of the gradient of
�. Again, the compactness of d� yields that j∗

s ∇q̇npn converges (up to a subsequence) in
Hs , which is equivalent to saying that ∇q̇npn converges in H−s . This implies that, in the
notation of the proof of Lemma 2.8, p̃n converges in H1−s . Since the kernel of ∇∗̇

qn
∇q̇n is

finite-dimensional, we also have that pparn converges up to a subsequence in L2 (and hence
in H1−s). Therefore, pn converges in H1−s .

3 Proof of Theorems 1.2 and 1.3

In this section we prove Theorems 1.2 and 1.3 on the existence of closed characteristic leaves
for compact regular OM -separating hypersurfaces in cotangent bundles. To this purposes
we will employ the correspondence between one-periodic Hamiltonian orbits and critical
points of the Hamiltonian action AH . As the Hamiltonian dynamics depends up to time
reparametrization only on the hypersurface itself, we will choose a suitable one-parameter
family of Hamiltonian functions, which we now construct, to perform the argument.

3.1 A special Hamiltonian function

We choose a bumpy metric g on M and pull-back the standard symplectic form ω on T ∗M to
T M using the musical isomorphism. Given a compact regular OM -separating hypersurface
� ⊂ T M and a thickening
 : (−a, a)×� → T M ,we aimat proving that there is a sequence
of hypersurfaces �σn := 
({σn} × �), σn → 0, each carrying a closed characteristic leaf.

By assumption we can find 0 < ρ0 < ρ1 < +∞ such that

U := 
((−a, a) × �) ⊂ Bρ1(OM ) \ Bρ0(OM ),

where Bρ(OM ) ⊂ T M denotes the open disk bundle with radius ρ defined by g. We now fix
0 < δ < a and choose a cut-off function χ : (−1, 1) → R such that

χ ≡ 0 on (−1,−δ], χ ≡ 1 on [δ, 1), χ ′ > 0 on (−δ, δ).
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Furthermore, we pick a smooth function ϕ : R → R such that

ϕ ≡ 0 on (−∞, ρ1], ϕ(ρ) = 1

2
ρ2 on [2ρ1,+∞), ϕ′ > 0 on (ρ1,+∞)

and define a smooth family of Hamiltonians Hr : T M → R, r > 0, by

Hr (q, p) :=

⎧⎪⎪⎨
⎪⎪⎩

0 X ∈ B,

χ(σ ) · r X ∈ �σ , σ ∈ [−δ, δ],
r X ∈ UB, |p|q ≤ ρ1,

ϕ(|p|q) + r |p|q > ρ1,

where B and UB are the bounded and unbounded component of T M \ 
([−δ, δ] × �)

respectively. For each r ∈ (0,+∞) we have an associated Hamiltonian action

Ar := AHr : M1−s → R, Ar (q,p) := 〈q̇,p〉 −
∫ 1

0
Hr (q(t),p(t)) dt,

whose critical points are the 1-periodic orbits of the Hamiltonian flow defined by Hr and
ω. However, not all critical points of Ar are relevant for us, for we are looking for critical
points lying in �σ for some σ ∈ [−δ, δ]. Therefore, it will be essential for our purposes
to understand which kind of critical points can appear as critical points of the Hamiltonian
action Ar .

Before doing that we shall observe that periodic orbits with period T �= 1 for the Hamil-
tonian flow of Hr which are contained in some �σ are detected as critical points of the
Hamiltonian actionATr . Indeed, let x : R/TZ → T M be a T -periodicHamiltonian orbit for
Hr contained in�σ , and consider the reparametrized curve x̃ : R/Z → T M, x̃(t) := x(T t).
Then

˙̃x(t) = T ẋ(T t) = T XHr (x(T t)) = T XHr (x̃(t)).

On the other hand, on �σ we have that

Hr = χ(σ) · r , HTr = χ(σ) · Tr ,
so that HTr = T · Hr on �σ . Therefore,

˙̃x(t) = T XHr (x̃(t)) = XT ·Hr (x̃(t)) = XHTr (x̃(t)),

that is, x̃ is a 1-periodic orbit for the Hamiltonian flow of HTr , and hence belongs to the
critical point set of ATr . This shows that the family of Hamiltonians Hr detects all possible
closed characteristic leaves contained in �σ , for σ ∈ [−δ, δ].

We now take a closer look at critical points of Ar by first noticing that critical points of
Ar on non-regular energy levels are necessarily constant, and hence have non-positive Ar -
action. Also, regular energy levels H−1

r (a) are either of the form �σ for some σ ∈ [−δ, δ],
or (for a > r ) sphere bundles over M , so that for every a > r projected Hamiltonian
orbits are geometrically closed geodesics. However, the parametrizations do not coincide if
r < a < r +2ρ2

1 with the usual parametrizations of closed geodesics, as the Hamiltonian Hr

is not kinetic. We will refer to such critical points as fake closed geodesics. For a ≥ r + 2ρ2
1

critical points ofAr contained in H−1
r (a) are instead of the form (γ, γ̇ ), for γ closed geodesic

on (M, g) of length 1. Indeed, for a ≥ r + 2ρ2
1 we have that

Hr (q, p) = 1

2
|p|2q + r .
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For any critical point (q,p) of Ar contained in H−1
r (a), a ≥ r + 2ρ2

1 , we additionally have

Ar (q,p) = 1

2
|p(0)|2 − r = 1

2

∫ 1

0
|q̇(t)|2 dt − r = E(q) − r . (3.1)

Our next step will be to show that, for r sufficiently large, fake closed geodesics cannot arise
as critical points of Ar with non-negative action. Indeed, Hamilton equations for fake closed
geodesics read ⎧⎨

⎩
q̇ = ϕ′(|p|)

|p| · p,

∇q̇p = 0.
(3.2)

Therefore,

Ar (q,p) = 〈q̇,p〉 −
∫ 1

0
Hr (q(t),p(t))dt

=
〈
ϕ′(|p|)

|p| p,p
〉
−

∫ 1

0

(
ϕ(|p(t)|) + r

)
dt

= ϕ′(|p(0)|) · |p(0)| − ϕ(|p(0)|) − r , (3.3)

where we have used the fact that t �→ |p(t)| is constant. Now set

r0 := 1 + max
ρ≤2ρ1

|ϕ′(ρ) · ρ − ϕ(ρ)| (3.4)

and observe that, for all r ≥ r0 and all fake closed geodesics we have Ar (q,p) ≤ −1, for
|p(0)| ≤ 2ρ1. Summarizing, we have shown the following

Lemma 3.1 There exists r0 > 0 such that for all r ≥ r0 critical points of Ar of non-negative
action are either constants or closed geodesics, or are contained in�σ for some σ ∈ [−δ, δ].

We end this section showing that Theorems 1.2 and 1.3 immediately follow from

Theorem 3.2 Let � ⊂ T M be a compact regular OM-separating hypersurface, 
 be a
thickening of �. Then, for every r > 0 there exists a non-constant critical point (qr ,pr ) of
Ar with Ar (qr ,pr ) ∈ [0, α], where α = α(
) > 0 is some constant. Moreover, the function
r �→ Ar (qr ,pr ) is continuous and non-increasing.

Proof of Theorem 1.3 Let r0 be given by (3.4). By Lemma 3.1 we can assume that all the
critical points of Ar , r ≥ r0, are closed geodesics with

Ar (qr ,pr ) = E(qr ) − r .

Since g was chosen to be bumpy, by Lemma 2.1 the set of critical values of E is discrete, and
hence

Ar (qr ,pr ) + r = E(qr ) = const. ∀r ≥ r0.

However, this would imply that Ar (qr ,pr ) < 0 for r large enough. Therefore, there exists
R ≥ r0 such that (qR,pR) is a critical point for AR lying in �σ for some σ ∈ [−δ, δ]. If
(qR,pR)(R) ⊂ � then we are done. Otherwise we claim that

inf
{
r ≥ r0

∣∣ (qr ,pr ) ∈ �σ , for some σ ∈ [−δ, δ]} ≤ α + r0,
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where α is the constant given by Theorem 3.2. Indeed, for all r ≥ r0 smaller than the infimum
above we have that (qr ,pr ) is a closed geodesic and hence, using the uniform boundedness
of r �→ Ar (qr ,pr ) and Lemma 2.1, we obtain

Ar (qr ,pr ) + r = E(qr ) = E(qr0) = Ar0(qr0 ,pr0) + r0 ≤ α + r0

which implies that

r ≤ α + r0 − Ar (qr ,pr ) ≤ α + r0.

In particular, we can find R ≤ α + 2r0 such that (qR,pR) lies in �σ for some σ ∈ [−δ, δ].
This yields

∣∣∣〈q̇R,pR〉
∣∣∣ =

∣∣∣AR(qR,pR) −
∫ 1

0
HR(qR(t),pR(t)) dt

∣∣∣
=

∣∣∣AR(qR,pR) − HR(qR(0),pR(0))
∣∣∣

≤
∣∣∣AR(qR,pR)

∣∣∣︸ ︷︷ ︸
≤α

+
∣∣∣HR(qR(0),pR(0))

∣∣∣︸ ︷︷ ︸
≤R≤α+2r0

≤ 2(α + r0). (3.5)

The claim follows now by recursively choosing δ > 0 such that

(qR,pR)(R) �⊂ 
([−δ, δ] × �).

Observe that (3.5) yields the desired uniformestimate on the symplectic actionof the sequence
of closed characteristic leaves, for

〈q̇R,pR〉 =
∫
PR

λ,

where PR is the characteristic leaf determined by (qR,pR).

The proof of Theorem 1.2 given Theorem 1.3 is standard, however we include it here for
completeness.

Proof of Theorem 1.2 Let Y be a Liouville vector field on a neighborhood of � such that
Y � �, and let ϕσ be its flow. Since � is compact, the map


 : (−a, a) → T ∗M, (σ, x) �→ ϕσ (x),

is a diffeomorphism onto an open precompact neighborhood U of �, for a > 0 sufficiently
small. From LYω = ω we have that

d

ds
(ϕσ )∗ω = (ϕσ )∗LYω = (ϕσ )∗ω

and hence, since (ϕ0)∗ = id, we conclude that (ϕσ )∗ω = eσ ω. Assume now that v ∈ 	�(x);
then for all w ∈ Tx� we have

0 = ω(v,w) = eσ ω(v,w) = (ϕσ )∗ω(v,w) = ω(Tϕσ (x)[v], Tϕσ (x)[w]).
Since ϕσ is a diffeomorphism we conclude that Tϕσ (x)[v] ∈ 	�σ (ϕt (x)). Therefore,
Tϕσ : 	� → 	�σ is an isomorphism of line bundles; in particular, ϕσ induces a one-to-
one correspondence P �→ ϕσ (P) between P(0) and P(σ ) for all σ ∈ (−a, a). The claim
follows now from Theorem 1.3.
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Remark 3.3 An hypersurface � ⊂ T ∗M for which a thickening as in the proof above exists
is called stable. Obviously, Theorem 1.2 extends to compact stable hypersurfaces which are
OM -separating. It is worth noticing that the stability condition is in general weaker than the
contact condition, see e.g. [8].

4 Proof of Theorem 3.2

In this section we prove Theorem 3.2. The proof is based on two key ingredients: one is
essentially the Palais–Smale condition for the functionalAr , the other is the fact that we have
a transfer homomorphism in cohomology for the negative gradient flow of Ar , as we now
show. Hereafter we suppose that r > 0 is fixed.

4.1 The key propositions

We start recalling the minimax lemma for the Hamiltonian actionAr . The proof follows from
the Palais–Smale condition for Ar by standard arguments and will be omitted.

Proposition 4.1 Suppose that U ⊂ M1−s is an open neighborhood of

crit(Ar ) ∩ A
−1
r (a), a ∈ R.

Then there exist ε > 0 and t0 > 0 such that the following holds: for every t ≥ t0

φt
r

({Ar ≤ a + ε} \ U) ⊂ {Ar ≤ a − ε},

where φt
r denotes the time-t-flow of − gradAr√

1 + ‖gradAr‖2
.

In what follows C is an arbitrary compact subset of H1(S1, M) ⊂ Hs(S1, M). This
implies that

sup
π−1(C)

Ar ≤ α, ∀r > 0,

where with slight abuse of notation we denote the bundle projection π1−s : M1−s →
Hs(S1, M) with π . Here, α > 0 is some constant independent of r . Indeed, by construction
we have

Hr (q, p) ≥ H0(q, p) ≥ 1

2
|p|2q − β

for some constant β > 0, and hence on π−1(C) we obtain

Ar (q,p) ≤ 〈q̇,p〉 − 1

2
‖p‖2 + β ≤ c‖p‖ − 1

2
‖p‖2 + β

≤ sup
p∈π−1

1−s (C)

(
c‖p‖ − 1

2
‖p‖2 + β

)
=: α.

Notice that ifC were compact in Hs(S1, M)but unbounded in H1(S1, M) then the supremum
above would be infinite. Since Ar satisfies the Palais–Smale condition, we can find ε > 0
and γ > 0 such that

‖gradAr‖√
1 + ‖gradAr‖2

≥ ε, on {‖p‖1−s ≥ γ } ∩ A
−1
r ([0, α]).
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Therefore, for γ ′ := γ + α
ε2

+ 1 we have that

φt
r

(
π−1(C) ∩ {‖p‖1−s ≥ γ ′}

)
∩ OHs = ∅, ∀t ≥ 0,

whereOHs denotes the zero-section ofM1−s → Hs(S1, M). Indeed, let (q,p) ∈ π−1(C)∩
{‖p‖1−s ≥ γ ′}; then by the assumption on γ ′, φt

r (q,p) ∈ Hs(S1, M) ∩ {‖p‖1−s ≥ γ } for
t ∈ [0, α

ε2
+ 1], hence in particular is not contained in OHs , and for t > α

ε2
+ 1 we have

Ar (φ
t
r (q,p)) − α ≤ Ar (φ

t
r (q,p)) − Ar (q,p)

=
∫ t

0

d

dσ

(
Ar (φ

σ
r (q,p))

)
dt

= −
∫ t

0

‖gradA(φσ
r (q,p))‖2√

1 + ‖gradA(φσ
r (q,p))‖2 dt

≤ −
∫ t

0
ε2 dt

< −
( α

ε2
+ 1

)
ε2

= −α − ε2,

that is,Ar (φ
t
r (q,p)) < 0. For a given t0 > 0we pick a cut-off function ϕ : [0,+∞) → [0, 1]

such that

ϕ

∣∣∣[0,γ ′+1] ≡ 1, ϕ

∣∣∣[γ ′′,+∞)
≡ 0,

for some γ ′′ > γ ′ + 1 such that

φt
r

(
π−1(C) ∩ {‖p‖1−s ≤ γ ′ + 1}

)
⊂ {‖p‖1−s < γ ′′}, ∀t ∈ [0, t0],

and consider the truncated normalized negative gradient vectorfield

Vr (q,p) := −ϕ(‖p‖1−s) · gradAr (q,p)√
1 + ‖gradAr (q,p)‖2 .

With a slight abuse of notation we denote the flow of Vr again with φt
r . The next proposition

states that φ
t0
r induces a transfer homomorphism in cohomology; in particular, π−1(C) is

not displaced from OHs by φ
t0
r . This represents the analogue of the intersection proposition

[24, Proposition 1] in our setting; we also refer to [25, Chapter 3, Lemma 10] for an anal-
ogous statement in the linear setting. In what follows, H∗ denotes the Alexander–Spanier
cohomology with coefficients in some given commutative ring.

Proposition 4.2 There exists an injective group homomorphism βt0 such that the following
diagram commutes

H∗(φt0
r (π−1(C)) ∩ OHs

)

H∗(Hs(S1, M))

(
π

∣∣
φ
t0
r (π−1(C))∩OHs

)∗

ı∗
H∗(C)

βt0

where ı : C → Hs(S1, M) denotes the canonical inclusion. In particular, if C �= ∅ then

φt0
r (π−1(C)) ∩ OHs �= ∅.
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The rest of this subsection will be devoted to the proof of Proposition 4.2. The key
ingredient of the proof will be a representation lemma for the flow φt

r analogous to [24,
Lemma 7].

If we denote by D the L2-connection, then we readily see by working in local coordinates
that

[DX ,∇q̇]Y = R(X , q̇)Y ,

where R denotes the Riemann curvature tensor, hence in particular is a zero-order operator.
Therefore,

[DX ,−∇q̇∇q̇]Y = −DX∇q̇∇q̇Y + ∇q̇∇q̇DXY

= −∇q̇DX∇q̇Y − R(X , q̇)∇q̇Y + ∇q̇∇q̇DXY

= −∇q̇∇q̇DXY − ∇q̇R(X , q̇)Y − R(X , q̇)∇q̇Y + ∇q̇∇q̇DXY

= −∇q̇R(X , q̇)Y − R(X , q̇)∇q̇Y

is an operator of order 1. In particular

[DX , 1 − ∇q̇∇q̇] = [DX ,−∇q̇∇q̇]
is an operator of order 1. Similarly one can show that, for every 	 ∈ R,

[DX , (1 − ∇q̇∇q̇)
	] = [DX , (1 + ∇∗̇

q∇q̇)
	]

is an operator of order at most 2	 − 1 (c.f. [29, Lemma 2.11]).

Lemma 4.3 (Representation Lemma) Denote by σ t
r := π ◦ φt

r the projection to Hs(S1, M)

of the flow φt
r , and by P(t, 0) the L2-parallel transport along σ ·

r from H1−s((σ 0
r (·))∗T M)

to H1−s((σ t
r (·))∗T M). Then,

φt
r (q,p) = P(t, 0)

[
a(t, (q,p)) · j∗

1−s q̇ + b(t, (q,p)) · p + K (t, (q,p))
]
,

where:

• a : R × M1−s → (−∞, 0] maps bounded sets into precompact sets and satisfies
a(0, ·) ≡ 0,

• b : R × M1−s → (0,+∞) maps bounded sets into precompact sets and satisfies
b(0, ·) ≡ 1, and

• K : R × M1−s → M1−s is a “compact” fibre-preserving map such that K (0, ·) ≡ 0.

Remark 4.4 In the proposition above, by compact we mean that, for any compact set C ⊂
Hs(S1, M) and any bounded set B ⊂ π−1(C)we have that K (t, B) ⊂ M1−s is precompact.

Proof For t ∈ R we denote by σ̇ t
r (·) ∈ Hs−1(σ t

r (·)∗T M) the tangent field to σ t
r (·) ∈

Hs(S1, M). Dropping the subscript q̇ from the covariant derivative and recalling that j∗
	 =

(1 + ∇∗∇)−	 and

gradAr (q,p) = (gradAr (q,p)h, gradAr (q,p)v)

= (
j∗
s ∇∗p − grad�(q,p)h, j∗

1−s(q̇ − p) − grad�(q,p)v
)
,
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where � : M1−s → R is given by (2.5) and grad� is computed with respect to the
〈·, ·〉M1−s -metric given by (2.6), we compute:

D d
dt σ

·
r

(
j∗
1−s σ̇

·
r

)
= j∗

1−s D d
dt σ

·
r
σ̇ ·
r + [D d

dt σ
·
r
, j∗

1−s]σ̇ ·
r

= j∗
1−s∇

( d

dt
σ ·
r

)
+ [D d

dt σ
·
r
, j∗

1−s]σ̇ ·
r

= j∗
1−s∇

( d

dt
φ·
r

)h + [D d
dt σ

·
r
, j∗

1−s]σ̇ ·
r

= −ϕ̃(φt
r ) · j∗

1−s∇
(
j∗
s ∇∗φt

r

)
+ϕ̃(φt

r ) · j∗
1−s∇grad�(φt

r )
h+[D d

dt σ
·
r
, j∗

1−s]σ̇ ·
r

= −ϕ̃(φt
r ) · j∗

1 ∇∇∗φt
r + ϕ̃(φt

r ) · j∗
1−s∇grad�(φt

r )
h + [D d

dt σ
·
r
, j∗

1−s]σ̇ ·
r ,

where

ϕ̃(·) := ϕ(·)√
1 + ‖gradAr (·)‖2

.

Therefore, we obtain

D d
dt σ

t
r

(
j∗
1−s σ̇

t
r + φt

r

)

= −ϕ̃(φt
r ) · j∗

1∇∇∗φt
r + ϕ̃(φt

r ) · j∗
1−s∇grad�(φt

r )
h + [D d

dt σ
t
r
, j∗

1−s]σ̇ t
r +

( d

dt
φ·
r

)v

= −ϕ̃(φt
r ) · j∗

1∇∇∗φt
r + ϕ̃(φt

r ) · j∗
1−s∇grad�(φt

r )
h + [D d

dt σ
t
r
, j∗

1−s]σ̇ t
r

− ϕ̃(φt
r ) · j∗

1−s

(
σ̇ t
r − φt

r

) + ϕ̃(φt
r ) · grad�(φt

r )
v

= −ϕ̃(φt
r ) · (j∗

1−s σ̇
t
r + φt

r

) + [D d
dt σ

t
r
, j∗

1−s]σ̇ t
r

+ ϕ̃(φt
r ) · ((1 − j∗

1 ∇∇∗)φt
r + j∗

1−sφ
t
r + j∗

1−s∇grad�(φt
r )

h + grad�(φt
r )

v)
= −ϕ̃(φt

r ) · (j∗
1−s σ̇

t
r + φt

r

) + κ1(φ
t
r ),

where

κ1(φ
t
r ) := ϕ̃(φt

r ) · ((1 − j∗
1 ∇∇∗)φt

r + j∗
1−sφ

t
r + j∗

1−s∇grad�(φt
r )

h + grad�(φt
r )

v)
+[D d

dt σ
t
r
, j∗

1−s]σ̇ t
r .

Similarly, we see that

D d
dt σ

t
r

(
j∗
1−s σ̇

t
r − φt

r

)
= ϕ̃(φt

r ) · (j∗
1−s σ̇

t
r − φt

r

) + κ2(φ
t
r ),

where

κ2(φ
t
r ) = ϕ̃(φt

r ) · ((1 − j∗
1∇∇∗)φt

r − j∗
1−sφ

t
r + j∗

1−s∇grad�(φt
r )

h − grad�(φt
r )

v)
+[D d

dt σ
t
r
, j∗

1−s]σ̇ t
r .
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The variation of constants formula yields now

(
j∗
1−s σ̇

t
r + φt

r

)
(q,p) = exp

(
−

∫ t

0
ϕ̃(φτ

r )dτ
)

· P(t, 0)
[
j∗
1−s q̇ + p

]

+
∫ t

0

(
exp

(
−

∫ t

ρ

ϕ̃(φτ
r )dτ

)
· P(t, τ )

[
κ1(φ

ρ
r )

]
dρ

= exp
(

−
∫ t

0
ϕ̃(φτ

r )dτ
)

· P(t, 0)
[
j∗
1−s q̇ + p

]
+ K1(t, (q,p)) (4.1)

and on the other hand

(
j∗
1−s σ̇

t
r −φt

r

)
(q,p)=exp

( ∫ t

0
ϕ̃(φτ

r )dτ
)

· P(t, 0)
[
j∗
1−s q̇ − p

]
+K2(t, (q,p)), (4.2)

where

K2(t, (q,p)) =
∫ t

0

(
exp

( ∫ t

ρ

ϕ̃(φτ
r )dτ

)
· P(t, τ )

[
κ2(φ

ρ
r )

]
dρ.

Subtracting (4.2) to (4.1) we obtain

φt
r (q,p) = 1

2

[
exp

(
−

∫ t

0
ϕ̃(φτ

r )dτ
)

− exp
( ∫ t

0
ϕ̃(φτ

r )dτ
)]

︸ ︷︷ ︸
:=a(t,(q,p))

·P(t, 0)
[
j∗
1−s q̇

]

+1

2

[
exp

(
−

∫ t

0
ϕ̃(φτ

r )dτ
)

+ exp
( ∫ t

0
ϕ̃(φτ

r )dτ
)]

︸ ︷︷ ︸
=:b(t,(q,p))

·P(t, 0)
[
p
]

+ 1

2

(
K1(t, (q,p)) − K2(t, (q,p))

)
.

It is straightforward to check that the functions a and b have the desired properties. Now set

K (t, (q,p)) := 1

2
P(0, t)

[
K1(t, (q,p)) − K2(t, (q,p))

]
.

We readily see that all the operators appearing in the functions κ1 and κ2 are compact, hence
the fact that K is a compact fibre-preserving map follows from the fact that parallel transport
“behaves well” with respect to compactness; for more details we refer to [24, Section 3].

Proof of Proposition 4.2 In virtue of the representation Lemma 4.3 we see that the problem

φt
r (π

−1(C)) ∩ OHs �= ∅, t ∈ [0, t0],
is equivalent to finding solutions of

0 = a(t, (q,p)) · j∗
1−s q̇ + b(t, (q,p)) · p + K (t, (q,p)), (4.3)

on π−1(C). We equivalently rewrite (4.3) as

p = − 1

b(t, (q,p))
·
(
a(t, (q,p)) · j∗

1−s q̇ + K (t, (q,p))
)

=: T (t, (q,p)), (4.4)

where T : [0, t0]×π−1(C) → π−1(C) is a fibre-preserving map mapping bounded sets into
precompact sets and additionally satisfying

T (0, ·) ≡ 0
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and

T (t, ·) ≡ 0 on π−1(C) ∩ {‖p‖1−s ≥ γ ′′}.
We are now in position to apply Dold’s fixed point transfer [11] (see also [22]). This yields
a transfer homomorphism trt , t ∈ [0, t0], such that the following diagram is commutative

H∗
(
φ−t
r

(
φt
r (π

−1(C)) ∩ OHs

))

trt

H∗(C)

π∗

id∗
H∗(C)

where with slight abuse of notation we denoted with π∗ the map induced in cohomology by

π

∣∣∣
φ−t
r

(
φt
r (π

−1(C))∩OHs
) : φ−t

r

(
φt
r (π

−1(C)) ∩ OHs
) → C .

In particular, we obtain that π∗ is injective, and hence the desired homomorphism is given
by

βt := (φ−t
r )∗ ◦ π∗.

One now easily checks the commutativity of the diagram in the statement of Proposition 4.2.

4.2 The proof

Now we explain how Theorem 3.2 follows from Propositions 4.1 and 4.2 . If M is not
simply-connected we choose C = {γ }, where γ ∈ C∞(S1, M) is a smooth non-contractible
loop.

IfM is simply connected the choice ofC is more subtle, since for an arbitraryC we cannot
exclude that the critical point of Ar coming from the minimax procedure be constant. We
recall that Sullivan’s theory ofminimalmodels for rational homotopy type [34,36] guarantees
that the rational cohomology groups of H1(T, M) (thus, of Hs(T, M) since they are homo-
topically equivalent) do not vanish in arbitrary large degree. Moreover, for any k ∈ N we
can find a compact set C ⊂ H1(S1, M) such that the inclusion ı : C ↪→ H1(T, M) induces
an isomorphism in cohomology ı∗ : H∗(H1(T, M)) → H∗(C) up to degree k (c.f. [7]).
Therefore, we choose k > dim M such that Hk(H1(T, M)) �= 0 and pick C ⊂ H1(S1, M)

compact as above; notice that C is a fortiori compact in Hs(S1, M).
In both cases, we obtain a bounded continuous non-increasing minimax function via

θ : (0,+∞) → [0,+∞), θ(r) := inf
t≥0

sup
φt
r (π

−1(C))

Ar .

The fact that θ is non-increasing and bounded is obvious. By Proposition 4.2 we also see
that

sup
φt
r (π

−1(C))

Ar ≥ inf
OHs

Ar = 0, ∀t ≥ 0,

thus θ(r) ≥ 0. As far as continuity is concerned, we observe that for r1 ≥ r2 and fixed t ≥ 0
we have (for sake of simplicity we assume that the both suprema are attained, say at (q1,p1)
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and (q2,p2) respectively)

0 ≤ sup
φt
r2

(π−1(C))

Ar2 − sup
φt
r1

(π−1(C))

Ar1 = Ar2(q2,p2) − Ar1(q1,p1)

≤ Ar2(q2,p2) − Ar1(q2,p2)

= �r1(q2,p2) − �r2(q2,p2)

≤ sup
(q,p)∈T M

(
δr1(q, p) − δr2(q, p)

)
,

where � : M1−s → R and δ : T M → R are as in (2.5). Therefore, we obtain (also here
we assume for sake of simplicity that both infima are attained, say at t1 and t2 respectively)

0 ≤ θ(r2) − θ(r1)

= inf
t≥0

sup
φt
r2

(π−1(C))

Ar2 − inf
t≥0

sup
φt
r1

(π−1(C))

Ar1

= sup
φ
t2
r2 (π−1(C))

Ar2 − sup
φ
t1
r1 (π−1(C))

Ar1

≤ sup
φ
t1
r2 (π−1(C))

Ar2 − sup
φ
t1
r1 (π−1(C))

Ar1

≤ sup
(q,p)∈T M

(
δr1(q, p) − δr2(q, p)

)
,

and the claim follows. Theorem 3.2 finally follows from the next

Lemma 4.5 For every r > 0 there exists (qr ,pr ) ∈ critAr non-constant with Ar (qr ,pr ) =
θ(r).

Proof. The fact that θ(r) is a critical value for Ar follows from Proposition 4.1. In case M is
not simply-connected, the fact that the corresponding critical point (qr ,pr ) is non-constant
follows from the fact that we are working on a connected component of non-contractible
loops.

In case M is simply connected we need a more refined argument to exclude that (qr ,pr )
be constant; this will make use of the assumptions on the compact set C . We first notice that
(qr ,pr ) is necessarily non-constant if θ(r) > 0, as constant critical points have non-positive
Ar -action. Therefore, we can assume that θ(r) = 0 and that all critical points of Ar at level
zero are constant.

We start noticing that a sufficiently small neighborhood U ⊂ Hs(S1, M) of the set �0M
of constant loops (which we recall is diffeomorphic to M) cannot contain non-constant
closed geodesics for (M, g). This follows from the fact that, since s > 1

2 , H
s-closedness

to a constant loop implies C0-closedness, and the claim follows from the positivity of the
injectivity radius of (M, g). In particular, the image of any loop in U is contained in a small
Riemannian ball. From this we see that �0M is a strong deformation retract of U : Indeed,
we first “regularize” loops in U to obtain a set {E < ε} ⊂ H1(S1, M), ε > 0 small enough,
and then use the negative gradient flow of the energy functional E, as recalled in the proof
of Lemma 2.1, to deform {E < ε} into �0M .

By assumption we now have that V := π−1(U) is a neighborhood of

crit(Ar ) ∩ A
−1
r (0).
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Thus, Proposition 4.1 yields ε > 0 and t0 > 0 such that for all t ≥ t0

φt
r

({Ar ≤ ε} \ V) ⊂ {Ar ≤ −ε}.
Using the definition of θ(r), we find t1 ≥ 0 such that

φt1
r (π−1(C)) ⊂ {Ar ≤ ε}.

Therefore,

φt0
r

(
φt1
r (π−1(C)) \ V

)
⊂ {Ar ≤ −ε},

which implies that

φt0
r

(
φt1
r (π−1(C)) \ V

)
∩ OHs = ∅.

Since φ
t0+t1
r (π−1(C)) ∩ OHs �= ∅ by Proposition 4.2, we deduce that

φt0+t1
r (π−1(C)) ∩ OHs ⊂ φt0

r (V).

Using again Proposition 4.2 we obtain that the diagram

H∗(φt0
r (V))

j∗
H∗(φt0+t1

r (π−1(C)) ∩ OHs )

H∗(Hs(S1, M))

(π |
φ
t0
r (V)

)∗ (π |...)∗

ı∗
H∗(C)

βt0+t1

commutes. Thus, the fact that βt0+t1 is injective implies that the map

j∗
k ◦ (π |

φ
t0
r (V)

)∗k : Hk(Hs(S1, M)) → Hk(φt0+t1
r (π−1(C)) ∩ OHs )

is non-zero and injective, and this contradicts the fact that

Hk(φt0
r (V)) ∼= Hk(V) ∼= Hk(U) ∼= Hk(M) = 0.
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Appendix A. Proof of Lemma 2.2

In this section we give a proof of Lemma 2.2 on the growth rate of the eigenvalues of the
self-adjoint operator ∇∗̇

q∇q̇, for a given smooth loop q ∈ C∞(S1, M). Moreover, we provide

a uniform bound for the L∞-norm of the corresponding eigenvectors with L2-norm equal
one.

We consider a time-depending local chart ϕ : S1 × Bε(0) → M with ϕ(·, 0) = q and the
induced map

C∞(S1,Rn) → �(q∗T M), ξ �→ (t �→ dϕ(t, 0) · ξ(t)).

In this setting we have

∇q̇ξ = ξ̇ + �(·, q̇(·)) · ξ, (A.1)

with

|�(·, q̇(·))| ≤ α‖q̇‖∞ (A.2)

for some constant α > 0 depending only on g. The quadratic form Q : C∞(S1,Rn) → R

associated with the self-adjoint operator ∇∗̇
q∇q̇ reads

Q(ξ) :=
∫ 1

0
|∇q̇ξ |2 dt .

Using (A.1), (A.2), and the elementary inequality (a + b)2 ≤ 2(a2 + b2), we compute

Q(ξ) =
∫ 1

0
|ξ̇ + �(·,q(·)) · ξ |2 dt

≤ 2
∫ 1

0

(
|ξ̇ |2 + |�(·,q(·)) · ξ |2

)
dt

≤ 2
∫ 1

0

(
|ξ̇ |2 + α2‖q̇‖∞|ξ |2

)
dt

≤ D
∫ 1

0

(
|ξ̇ |2eucl + E(‖q̇‖∞)|ξ |2eucl

)
dt =: Q+(ξ),

where D, E(‖q̇‖∞) > 0 are suitable constants depending respectively only on the metric g
and on the metric and the L∞-norm of q̇. Similarly, employing the inequality (a − b)2 ≥
1
2a

2 − b2 we obtain

Q(ξ) =
∫ 1

0
|ξ̇ + �(·,q(·)) · ξ |2 dt

≥
∫ 1

0

(1
2
|ξ̇ |2 − |�(·,q(·)) · ξ |2

)
dt

≥ d
∫ 1

0

(
|ξ̇ |2eucl − e(‖q̇‖∞)|ξ |2eucl

)
dt =: Q−(ξ),

where again d, e(‖q̇‖∞) > 0 are suitable constants. From the variational characterization of
the eigenvalues of a self-adjoint operator T on a Hilbert space H

λ j (T ) = max
codim(V )= j

min
S∩V Q,
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where Q is the associated quadratic form and S ⊂ H is the unit sphere, we deduce that

λ j (Q
−) ≤ λ j (q) ≤ λ j (Q

+),

and it is now an easy exercise to show that
⎧⎨
⎩

λ j (Q−) = c( j2 − d(‖q̇‖∞)),

λ j (Q+) = C( j2 + d(‖q̇‖∞)).

, ∀ j .

Indeed, the operator associated with Q− (the argument being analogous for Q+) is given by

ξ �→ −d
(
ξ̈ + e(‖q̇‖∞)ξ

)
,

and hence its eigenvalues are given by d(4π2 j2 − e(‖q̇‖∞).
Let now ξ be an eigenvector of∇∗̇

q∇q̇ with ‖ξ‖2 = 1, and let λ2 > 0 be the corresponding

eigenvalue, that is −∇2
q̇ξ = ∇∗̇

q∇q̇ξ = λ2ξ . We set

u := (ξ,
1

λ
∇q̇ξ) ∈ �(q∗T M) × �(q∗T M),

where �(q∗T M) × �(q∗T M) is endowed with the product L2-metric, and compute

|u(t1)|2 − |u(t0)|2 =
∫ t1

t0

d

dt
|u(t)|2 dt

= 2
∫ t1

t0
gq(∇q̇u, u) dt

= 2
∫ t1

t0

(
gq(∇q̇ξ, ξ) + gq(

1

λ
∇2
q̇ξ,

1

λ
∇q̇ξ)

)
dt

= 0.

It follows that the function t �→ |u(t)| is constant. In particular,

c = ‖u‖2 = ‖ξ‖2 + ‖ 1
λ

∇q̇ξ‖2 = 1 +
∫ 1

0

1

λ2
gq(∇∗̇

q∇q̇ξ, ξ) dt = 2,

so that |ξ(t)|2 ≤ |u(t)|2 ≤ 2 for all t ∈ [0, 1], an the claim follows.

Appendix B. Non global equivalence of themetrics 〈·, ·〉r and 〈·, ·〉emb
r

In this section we provide an example showing that the metrics 〈·, ·〉r and 〈·, ·〉emb
r defined in

Sect. 2 are not globally equivalent for every r ∈ (0, 1] (notice that for r = 0 the two metrics
coincide by construction).

Thus, let

M := S1 = {z ∈ C : |z|2 = 1} ⊂ C � R
2

be the unit circle endowed with the restriction of the euclidean metric. Set

qn(t) := e2π int , pn(t) := ie2π int , ∀n ∈ N.
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For fixed n ∈ N, we observe that, for every t ∈ T, the vectors qn(t) and pn(t) form an
orthonormal basis of Tqn(t)R

2, and pn(t) ∈ Tqn(t)S
1. In particular, pn ∈ Tqn H

s(S1, M). For
any w ∈ �(q∗

nT S1) we have

ẇ(t) = 〈ẇ(t),pn(t)〉 · pn(t) + 〈ẇ(t),qn(t)〉 · qn(t) = ∇q̇nw(t) + 〈ẇ(t),qn(t)〉 · qn(t).
Differentiating the identity 〈w(t),qn(t)〉 = 0 we get

〈ẇ(t),qn(t)〉 = −〈w(t), q̇n(t)〉.
We can now estimate

‖w‖21 ≤ (‖w‖emb
1 )2 = ‖w‖2 + ‖ẇ‖2 = ‖w‖2 + ‖∇q̇nw‖2 + ‖〈w(t), q̇n(t)〉 · qn(t)‖2

≤ ‖w‖21 + ‖w‖2 · ‖q̇n‖2 ≤ (1 + (2πn)2)‖w‖21,
that is, ‖ · ‖1 and ‖ · ‖emb

1 are equivalent on �(u∗
nT S1). By the Löwner-Heinz theorem, the

norms ‖ · ‖r and ‖ · ‖emb
r are equivalent on �(q∗

nT S1) for every r ∈ [0, 1].
On the other hand, we readily see that, for r ∈ (0, 1], there is no constant c independent

of n such that ‖ · ‖emb
r ≤ c‖ · ‖r . Indeed, for w = pn we have

(1 + ∇∗̇
qn∇q̇n )pn = pn, (1 − �)pn = (

1 + (2πn)2
)
pn,

where we used the fact that

∇q̇npn(t) = prTqn (t)S1 ṗn(t) = prTqn (t)S1

(
− (2πn)2qn(t)

)
= 0, ∀t ∈ T.

Therefore,

‖pn‖r = ‖pn‖ ≡ 1, ‖pn‖emb
r = (

1 + (2πn)2
)r → ∞ as n → +∞.

In particular, the two norms are not globally equivalent.

References

1. Abraham, A.: Global analysis, volume 14, Proc. Sympos. Pure Math. Amer. Math. Soc., Providence, RI
(1970)

2. Abbondandolo, A., Majer, P.: A Morse complex for infinite dimensional manifolds—part I. Adv. Math.
197, 321–410 (2005)

3. Abbondandolo, A., Schwarz, M.: On the Floer homology of cotangent bundles. Commun. Pure Appl.
Math. 59(2), 254–316 (2006)

4. Abbondandolo, A., Schwarz, M.: A smooth pseudo-gradient for the Lagrangian action functional. Adv.
Nonlinear Stud. 9(4), 597–623 (2009)

5. Abbondandolo, A., Schwarz, M.: The role of the Legendre transform in the study of the Floer complex
of cotangent bundles. Commun. Pure Appl. Math. 68(11), 1885–1945 (2015)

6. Anosov, D.V.: On generic properties of closed goedesics. Math USSR-Izvestiya 21(1), 1 (1983)
7. Bott, R.: Morse theory old and new. Bull. Am. Math. Soc. 7(2), 331–358 (1982)
8. Cieliebak, K., Frauenfelder, U., Paternain, G.P.: Symplectic topology of Mañé’s critical values. Geom.

Topol. 14(3), 1765–1870 (2010)
9. Conley, C.C., Zehnder, E.: Morse-type index theory for flows and periodic solutions for Hamiltonian

equations. Commun. Pure Appl. Math. 37(2), 207–253 (1984)
10. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional sobolev spaces. Bull. Sci.

Math. 136(5), 521–573 (2012)
11. Dold, A.: The fixed point transfer of fibre preserving map. Math. Z. 148, 215–244 (1976)
12. Floer, A.: Morse theory for Lagrangian intersections. J. Differ. Geom. 28(3), 513–547 (1988)
13. Floer, A.: Symplectic fixed points and holomorphic spheres. Commun. Math. Phys. 120(4), 575–611

(1989)

123



113 Page 28 of 28 L. Asselle, M. Starostka

14. Floer, A.: Witten’s complex and infinite-dimensional Morse theory. J. Differ. Geom. 30(1), 207–221
(1989)

15. Fortune, C.: A symplectic fixed point theorem for CPn . Invent. Math. 81, 29–46 (1985)
16. Fukaya, K., Ono, K.: Arnold conjecture and Gromov–Witten invariant. Topology 38, 933–1048 (1999)
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