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Plasma display panel (PDP) with MgO-SrO double cathode layer and SiO2 diffusion barrier is

proposed to make the SrO layer free of contaminations. Time of flight-secondary ion mass

spectrometry (TOF-SIMS) analysis shows the diffusion of impurities, like Na and K, can be

effectively blocked while a new SrO layer is formed on top of the MgO layer. This structure shows

that high Xe gases can be used to improve the luminous efficacy 2.3 times and decrease the voltage

margin more than 10 V compared to the conventional PDP using Ne-Xe 15%. The aging time was also

significantly decreased to 3–4 h. VC 2011 American Institute of Physics. [doi:10.1063/1.3655329]

Plasma display panel (PDP) can provide vivid, high

quality images and so is suited for the display of realistic 3-

dimensional (3D) images. PDP has made big improvements

in its luminous efficacy and power consumption over the

years, but still needs further progress in order to meet the

green products requirements.1 One of the effective methods

used to reduce the discharge voltage and increase the lumi-

nous efficacy of a PDP is to use a high gamma cathode layer.

MgO has been one of the most widely used cathode materi-

als; however, it has limitations because of the large band gap

energy of about 7 eV, too large to induce the secondary elec-

tron emissions through the Auger neutralization process

using Xe ions.2–4 There have been many attempts to apply

other alkaline earth metal oxides such as SrO and CaO,

which have a lower band gap energy and, therefore, a higher

secondary electron emission coefficient for Xe ions when

compared to MgO.5,6 However, these materials have limita-

tions when applied to PDP using the normal fabrication pro-

cess, since they are very unstable and highly reactive with

H2O or CO2, resulting in the formation of hydroxides or car-

bonates when exposed to air. In a recent research, which

used a mixture of SrO and CaO, the luminous efficacy

almost doubledwith a Ne-Xe 30% content gas compared to

that of a panel using the conventional MgO employing Ne-

Xe 10%.4 However, the panel assembly fabrication process

needed to be carried out in either a nitrogen gas atmosphere

or in a vacuum. Another method which does not require a

special sealing process but still allows the use of the high

gamma property of SrO or CaO had been suggested.7 It uses

a double cathode layer structure consisting of a main-

cathode layer of an alkaline earth metal oxide like SrO and a

protecting MgO layer. It has been shown that a panel with

the double cathode layer could retain the high gamma prop-

erties of the SrO main-cathode layer, so that the high lumi-

nous efficacy and low driving voltage could be realized even

though the conventional sealing process was used. However,

the panels with the double cathode layer or binary alloy

needed a long aging time of 30–40 h for the stabilization of

the discharge voltages, compared to the MgO single cathode

layer panel.7–10 Based on the findings from the time of

flight-secondary ion mass spectrometry(TOF-SIMS) analysis

of the cathode layer, we suggest a diffusion barrier between

the dielectric and cathode layers in order to prevent the con-

tamination of the cathode layer by impurities originating

from the underlying dielectric layer, electrode, and glass sub-

strate, which occurs during the high temperature sealing

process.

The cathode layer is deposited after forming a transpar-

ent dielectric layer on front glass substrate. The substrate is

then aligned and sealed with a rear glass substrate and sin-

tered at a peak temperature of 450 �C for 4 h. Finally, the

assembled panel undergoes a thermal annealing process at a

temperature of 360 �C for 6 h in order to outgas and exhaust

all of the residual gases. During the sealing and annealing

processes, some elements like sodium and potassium come

out from the dielectric layer, electrode, and glass substrate

and diffuse into the cathode layer, as shown in Fig. 1, which

shows the vertical distribution of the elements in the cathode

and dielectric layers obtained by TOF-SIMS (TOF-SIMS V,

Ion-ToF GmbH). Fig. 1(a) shows the as-deposited layers and

(b) the layers after experiencing the high temperature sealing

process. Fig. 1(a) shows a clear layer structure for the MgO,

SrO, and dielectric layers, whereas an outward diffusion of

Sr through the MgO layer forms a new SrO I layer on top of

the MgO and at the same time, the diffusion of Na, K

through the SrO and MgO layers accumulates on the surface

of the newly formed SrO I layer. In order to reduce the con-

tamination of SrO, a 1 lm thick SiO2 layer is inserted as

shown in Fig. 2. The plasma-enhanced chemical vapor depo-

sition (PECVD, 310PC, Surface Technology System)

method is used in order to deposit SiO2 at 200 �C with 5%

SiH4/N2 (160 sccm), N2O (1500 sccm), and N2 (240 sccm)

gases at 73.3 Pa. The deposition rate was 34 nm/min when
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60 W of RF power was applied. In order to verify the effect

of the diffusion barrier, 2 in. test panels with 50 in. full high

definition (FHD) resolution specifications were fabricated

and tested for the experiment as shown in Table I.

Fig. 3 shows the vertical distribution of elements in the

cathode and dielectric layers of the panels with the 1 lm

thick SiO2 layer before (Fig. 3(a)) and after (Fig. 3(b)) the

4 h 450 �C high temperature process. Fig. 3(a) shows the

clear layer structure of the SrO-MgO double cathode with

the SiO2 diffusion barrier between the SrO and dielectric

layers. In Fig. 3(b), we can find the Sr diffusion through the

MgO layer and formation of a new SrO I layer on top of the

MgO. The diffusion of the Na and K through SiO2 is blocked

effectively, so that their levels inside of the newly formed

SrO I layer are negligible. Fig. 4 shows the luminance and

luminous efficacy of the panels with the different types of

cathode layers. The reference values are taken from the panel

with the single MgO layer and the Ne-Xe 15% gas. When a

SrO-MgO double cathode layer is used, the panel with the

Ne-Xe 15% shows a 20 V reduction in the lower end of the

voltage margin and 40% increase in the luminous efficacy.

However, it took 30–40 h of aging for this double cathode

layer panel to have stabile voltages, as can be seen in Fig. 5,

which shows the variation of the firing and sustain voltages

according to the aging time for the various types of cathode

layers.

When the SiO2 diffusion barrier is adopted, the panel

using Ne-Xe 15% gas shows a 30 V reduction in the lower

end voltage margin and a 55% increase in the luminous effi-

cacy compared to the reference panel. In addition to these

improvements in the voltage margin and luminous efficacy,

a more important improvement occurs regarding the aging

time, as can be seen in Fig. 5, when the SiO2 diffusion bar-

rier is adopted. It can be seen that the long 30–40 aging time

needed for the panel with the SrO-MgO double cathode layer

without the diffusion barrier is now reduced to 3–4 h when

FIG. 1. (Color online) The element distribution obtained by the TOF-SIMS.

(a) As-deposited SrO-MgO double cathode layer. (b) The same sample after

furnace process at 450 �C for 4 h.

FIG. 2. (Color online) The schematics of suggested double cathode layer

with the diffusion barrier.

TABLE I. The test panel specifications.

Parameter Value

Resolution and cell pitch 50 in. FHD and 576 lm

Front dielectric �¼12 and 30 lm

Barrier rib height 120 lm

ITO gap 60 lm

MgO layer thickness 500 nm

SrO-MgO layer thickness SrO: 500 nm, MgO: 120 nm

Phosphor Monochrome green

Aging conditions Square pluses/50 kHz, 300 V

FIG. 3. (Color online) The element distribution obtained by the TOF-SIMS.

(a) As-deposited SrO-MgO double cathode layer with the SiO2 diffusion

barrier. (b) The same sample after furnace process at 450 �C for 4 h.

171501-2 Lee et al. Appl. Phys. Lett. 99, 171501 (2011)

Downloaded 21 Feb 2012 to 134.176.64.241. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions



the SiO2 diffusion barrier is adopted. Fig. 4 also shows that

even when the Xe content is increased to 30%, if the panel

has the SrO-MgO double cathode layer with the diffusion

barrier, its lower voltage margin is still smaller by 10 V but

the highest measured luminous efficacy is 2.3 times larger

when compared to the reference. Considering that the Xe

content in the reference panel is 15%, this low voltage char-

acteristic of panel with 30% Xe gas markedly shows the ben-

efit of using high a gamma cathode material like SrO. A life

time test shows that the PDP with the SrO-MgO double cath-

ode layer exhibits a longer life time than that of one with the

traditional MgO single cathode layer which can be ascribed

to the low voltage characteristic of the former one.

In conclusion, the importance of the prevention of con-

tamination in the cathode layer is reported in PDP. Through

the analysis of cathode layer using a TOF-SIMS, it has been

found that impurities like Na and K in the dielectric layer,

electrode, and glass substrate diffuse through the cathode

layer during the high temperature sealing process and accu-

mulate on the cathode surface, which eventually leads to the

increased driving voltage and aging time and decrease in lu-

minous efficacy. This diffusion can be effectively blocked

by the adoption of a SiO2 diffusion barrier made using the

PECVD method. When the panel adopted this diffusion

barrier togetherwith the SrO-MgO double cathode layer, it

showed one order of magnitude decrease in the aging time

and a greatly improved luminous efficacy at reduced vol-

tages when compared to those of the panel equipped with the

conventional MgO cathode layer without the diffusion

barrier.
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FIG. 4. (Color online) The luminance and luminous efficacy of the various

panels.

FIG. 5. (Color online) The driving voltage variations according to the aging

time with the MgO single layer, the SrO-MgO double layer, and the SrO-

MgO double layer with the SiO2 diffusion barrier.
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