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1 Introduction

Motivation. Manganese arsenide (MnAs) is an interesting transition metal com-
pound. It is ferromagnetic above room temperature [1]. It can be grown as clusters in
arranged patterns on gallium arsenide (GaAs) substrates [2-4]. The pattern of those
clusters have great tunability, since the mean distance between clusters, the cluster
size, and the cluster shape are individually adjustable (see Figure 1.1). Further, the
Curie temperature of the clusters is around 340 K, which is higher than the one
for bulk MnAs (T, = 318K) [5]. All of this makes MnAs a promising material for
electronic devices with integrated magnetic elements, so-called magnetoelectronic
devices.

The most prominent application of magnetoelectronic devices is the data stor-
age on computers. Like it is the case for most magnetoelectronic devices, such
applications make use of the giant magnetoresistance (GMR) [6, 7] or tunnel mag-
netoresistance (TMR) [8]. In both cases two ferromagnetic layers are separated by a
thin non-magnetic metal layer (GMR) or insulating layer (TMR). Depending on the
relative orientation of the magnetization of the ferromagnetic layers, the resistance
through the layer system is higher — anti-aligned magnetizations — or lower — aligned
magnetizations — due to low or high spin-dependent scattering, respectively.

The magnetoresistance effect can be utilized in any applications where magnetic
fields have to be measured. However, the commercially biggest impact was the in-
troduction of the GMR in read heads of magnetic hard disk drives for computer
storage [9]. A GMR element or — more likely today — a TMR element sitting at the
top of the read head is used to read the storage information on the disk, which is
saved as magnetized regions representing the data bits of 0 and 1.

0.98 um

Figure 1.1. Scanning electron microscope (SEM) pictures of the different shaped, sized,
and arranged MnAs nanocluster: The diameter of the clusters varies between 170 nm and
1.2m [4].
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Such kind of storage devices are non-volatile, as the information does not get lost
when the power-supply is shut down. In contrast to that, dynamic random-access
memory (DRAM) — currently used as main memory of computers — is volatile, since
each data bit is stored as electrical charge in one capacitor (1C) accessed by one
transistor (1T) [10]. Those 1T1C cells are arranged in two-dimensional arrays, mak-
ing it possible to access any data bit in almost constant time, independent of its
physical location. This is not the case for conventional, non-volatile hard drives, as
the data access depends on the physical location due to, for example, rotation speed
of the disk and arm movement of the read head [11].

In order to combine both advantages — non-volatile and random-access — mag-
netoresistive RAM (MRAM) devices have been proposed and developed since the
early 90s [12]. The basic setup of MRAM devices is a planar array of GMR or
TMR elements on a substrate. Reading the storage bit of each element is done
by measuring the magnetoresistance of the layered structure, with layers oriented
parallel to the substrate. For writing the concept of a spin-valve is introduced. The
magnetization of one of the ferromagnetic layers is kept fixed (hard layer), while the
other can be easily changed by an external magnetic field (soft layer) [13]. There are
different approaches as to how the soft layer is switched. The field-induced switch-
ing — achieved by currents through nearby wires — has a scale limitation, since the
current has to be increased when reducing the wires. The diameter of the minimal
possible element is 90nm [12]. A switching utilizing the spin-transfer torque (STT)
[14] — a spin current through the layer rotates the magnetization — does not have
such scaling problems. Recent research by Nowak and co-workers from IBM shows
promising results for an STT-MRAM 4 kbit chip on which individual device sizes
were tested [15].

In MRAM devices the layers of GMR or TMR elements are stacked perpendicular
to the substrate. This is also true for other magnetoelectronic devices, since GMR
or TMR structures are usually made from thin film structures. Integrating those
kinds of geometries into larger planar device concepts — like in MRAM concepts — is
challenging. From the manufacturing point of view, current flows perpendicular to
the surface are not ideal [4].

750 nm

Figure 1.2. SEM pictures of two elongated MnAs nanocluster with a gap of about 10 nm:
The structure is shown before (left) and after (right) connecting the clusters by gold depos-
ition (as well as contact stripes). The dimensions of the resulting GMR-like device structure
are about 870 nm for the long cluster and 540 nm for the shorter cluster [16].
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An alternative architectural approach is to create planar GMR devices, which
are parallel to the substrate. This can be realized with hybrid structures like MnAs
nanocluster on GaAs. Figure 1.2 displays such an example. The simplest magneto-
electronic device has been constructed by connecting two MnAs clusters — grown
in close proximity to each other — with the help of thermal deposition of gold in
the cluster gap. Martin Fischer et al. performed magnetotransport measurements
through such arrangements of nanoclusters and observed magnetoresistance effects
as well as spin-valve like behavior of the structure [17]. Heiliger et al. calculated
theoretically the electrical transport through planar structures consisting only of
MnAs clusters [18]. Calculations of electrical transport through MnAs cluster ar-
rangements including gold layers are only possible, if the exact structure of gold on
MnAs is known. This leads to the main objective of this work, since the gold/MnAs
interface structure is unknown by experiment or theory and investigating it is a
crucial step for further research. Another interesting research question concerns the
exact structure of the surface facets of the MnAs nanocluster, as little is known
about the surface reconstructions of those crystal facets [2].

In order to investigate the raised question of how the gold grows on a MnAs
surface, a combined approach of Molecular Dynamics and Force Matching has been
chosen. Molecular Dynamics (MD) is an established computer simulation method
for simulating the classical movements of atoms or molecules. Among other applic-
ations the method is able to simulate the atomic deposition on a substrate. That
kind of problem — deposition simulations with MD — has been already applied
several times in research for different material systems, including surface analysis
[19-24]. However, MD simulations for the system of MnAs and gold — either in the
case of deposition simulations or for any other research problem — have never been
done. This means that there is no effective potential available in literature, which
is needed to describe the interaction in an MD simulation. Therefore, the method
of Force Matching is used additionally to create an effective potential by fitting a
potential model to ab initio reference data. In this way, since the effective potential
is still based on ab initio data, the approach with MD and Force Matching keeps
the predictive power of ab initio calculations. The alternative approach with ab
initio MD is not appropriate, as in this case the interaction is represented by full
quantum mechanical calculations in each simulation time step, which would be too
time consuming for a large-scale atomic deposition simulation.

Outline. This thesis is divided into five chapters. Chapter 1 — the above introduc-
tion of the thesis — is followed by setting the theoretical background for the thesis in
Chapter 2. This includes the basics of Molecular Dynamics (Section 2.1) and Force
Matching (Section 2.2). Chapter 3 gives details on fitting strategies for the gener-
ation of effective potentials by providing general concepts as well as explicit setup
rules in Section 3.1. It also presents the created effective potential for MnAs and
gold, continued by the validation of the potential in Section 3.2. In Chapter 4 the
simulation results obtained with the force-matched potential are discussed. The first
half of the chapter (Section 4.1) is dedicated to the surface simulations — preparing
steps for the deposition simulations — and the subsequent analysis of the different
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surfaces of MnAs. In the second half (Section 4.2) the results of the actual depos-
ition simulation of gold on MnAs and the analysis of the grown gold structure are
presented. The thesis ends with a summary of the main conclusions in Chapter 5.



2 Theoretical Background

As already mentioned, Molecular Dynamics is the main method for the investigation
of the physical problem at hand. Hence, most of the theoretical background is about
this established and popular simulation method. Since the conducted simulations
apply force-matched potentials, the basics of the complementary method of Force
Matching build the second big part of the chapter.

2.1 Molecular Dynamics

In Molecular Dynamics — also commonly abbreviated as MD — one solves Newton’s
equations of motion of a many-body particle system numerically in discrete time
steps. This basic summary of MD is a good starting point and guideline to get to
know the main concepts of Molecular Dynamics:

1. A discrete time step in MD consists of the following: Calculating the forces
between a set of particles with positions and velocities and afterwards obtaining
new positions and velocities of the system via Newton’s second law and the
previously calculated forces. This concludes one time step. It will be repeated
in a loop as often as time steps are required, resulting in a discrete time
evolution of the many-body particle system.

2. The many-body problem in MD needs to be treated numerically as only the
two-body problem can be solved analytically. The two-body problem has been
thoroughly investigated in the field of astronomy where the analytic solution
can be expressed by Kepler’s laws of planetary motions. In case of the three-
body problem, there exists in general no analytic solution. The three-body
problem has been also discussed most prominently in the field of astronomy.

3. The particles of the many-body particle system can be chosen as molecules, as
it might be suspected when looking at the name of MD. Molecules will occur
mostly in research areas like biology or chemistry. Since this work is centered
in solid state physics, the investigated systems consists of atoms, usually in
the crystallized state. However, in both cases only atoms or molecules are
described explicitly, the corresponding electrons are in general just included
effectively (see the following section for details).
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4. MD can be employed wherever Newton’s equations of motion apply and the
system behaves classically. In most cases atoms can be approximated as clas-
sical particles, as it will be discussed later. The use of Newtonian mechanics
also means that MD is deterministic, in comparison to the related Monte Carlo
simulation method which is of stochastic nature.

First introduced by Alder and Wainwright in the 1950s [25], MD was largely
responsible for establishing computer simulations as a third valid approach besides
theory and experiment. The success of this rather new research field was and still
is strongly linked to the emergence of computing powers over the last decades,
making it possible to simulate significantly large system sizes. Lying in between of
theory and experiment, computer simulations combine elements of both. Thus, it
is more than reasonable to name the field also computer experiments or numerical
experiments. Like in an experiment one has to set up a sample first and then
investigate the evolvement of the system over time. On the other hand, it is still
purely theoretical. Broken down, it is a calculation on a computer, solving the basic
theoretical equations of physics.

2.1.1 MD Basics

Quantum Mechanical Foundations. In its core MD is built upon Newton mech-
anics. Like mentioned above, this work employs simulations of atoms in the research
field of solid state physics, a research field where at first glance it may be a natural
concern to ask why classical Newton laws should work there. But as a matter of
fact, the foundations for the justified use of MD in this case is directly linked to the
non-relativistic quantum mechanical equation of motion: the stationary many-body
Schrédinger equation of the solid state!

~

HY(r,R)=FE¥(r,R), (2.1)

with
H=Ty+ T+ Von+Voe+Vor. (2.2)
The arguments of the many-body wave function ¥ of a system of atoms are the
positions of the electrons r = (71, -+ ,7n. ), & 3Ne-dimensional vector with N, being
the number of electrons, as well as the positions of the nuclei R = (Ry, -+, Rn,),

being the 3Ny-dimensional vector of N, nuclei. T is the operator corresponding
to the kinetic energy of the nuclei or the electrons respectively. YA/” represents the
operator for the Coulomb pair interaction with an index defining the interaction
partners ¢ and j.

Notation of the stated equation and the following derivation of the Born-Oppenheimer approxima-
tion are based on [26].
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The next step in solving the many body Schrédinger equation is applying the
Born-Oppenheimer approximation. The relatively low mass ratio of electrons to
nuclei makes it possible to treat the kinetic energy of the nuclei as a distortion,
H = ﬁo + fn, allowing to decouple the motion of nuclei and electrons. The
electrons — adapting almost instantly to the positions of the nuclei — move as if
there are in a potential of fixed nuclei. This leads to a Schrédinger equation just for
the electrons, since the nuclei only enter the equation as a parameter due to their
position R,

ﬁ0¢a(rv R) = ga(R)¢a (I’, R) (23)

For every parameter R there is a full basis set of quantum mechanical states denoted
by the electronic quantum number «. Hence, for every fixed R the analytic U(r,R)
of the general problem (2.1) can be expanded in this set, meaning

¥(r,R) = ZX&(R)¢a(r7R)' (2.4)

After inserting the above expansion in (2.1) and some further calculations — including
the usage of the above mentioned low mass ratio — we get another Schréodinger
equation, this time just for the nuclei

(Th + £a(R))xa(R) = Exa(R). (2.5)

The energy eigenvalues of the electrons — depending parametrically on the nuclei po-
sitions R — act as the effective potential for the nuclei. £,(R) is the high-dimensional
energy hypersurface defining the movements of the nuclei.

The focus lies now on the last equation: the Schrédinger equation for the nuc-
lei. There is no explicit description of electrons in MD, at least concerning the
actual time evolution of the many-body system. One usually speaks of atoms in
MD suggesting the electrons are somehow included directly, but that is only due to
terminology. They are represented indirectly by the eigenenergies €, (R) of course.

At this point the foundations stop being fully quantum mechanical.? Instead of
solving the Schrodinger equation (2.5), one considers the electronic ground state
eo(R) as the effective potential Veg and puts it into Newton’s equation of motions
for the nuclei or — from now on — atoms with masses m;

d*R;
dt?
The justification for this final step to Newtonian mechanics is done in the scope of
the Ehrenfest theorem. There, one can show the correspondence principle stating
that Newton’s laws are included in the laws of quantum mechanics when going to
the classical limit. This limit is applicable for the relatively heavy atoms behaving
like classical particles. If the de Broglie wavelength A\g, = fi/p of a particle with mo-
mentum p has a magnitude significantly smaller than other characteristic quantities

= ViVeg(R) = F,. (2.6)

m;

As long as the effective potential is based in some way on quantum mechanical ab initio calculations,
one could argue that the whole approach is still partly quantum mechanical or semi-classical.
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of the system, quantum effects are negligible. Assuming a mean thermal velocity of
vih X v/ kT /m at temperature T', the following approximation should hold for the
system to be still classical [27],

h h length of interaction,
ABr = — X —— < . i ) (2.7)
p  /mkgTl mean inter-particle distance,

with kg being the Boltzmann constant and A being the Planck constant divided by
27. Thus, very light atoms like hydrogen or helium can be problematic as well as
systems at extremely low temperatures (further details in [27]).

Depending on how the effective potential or the forces in (2.6) are evaluated,
MD can be split in two separate branches: ab initio MD and classical MD.? One
possibility is to do a full quantum mechanical calculation of the electronic ground
state in each time step by solving the electronic Schrodinger equation (2.3) with ab
initio methods. Hence, this branch is called ab initio MD. In that regard — meaning
the force calculation — the electrons are treated explicitly, while keeping in mind
the earlier statement about the treatment of electrons in MD being not explicit.

The other possibility is approximating the effective potential by a model — rep-
resented by analytic or tabulated functions — to reproduce the energy hypersurface.
As it is the originally proposed approach, the branch is referred to as classical MD.
The parameters of the models are determined by fits to reference data, which is
theoretical — or more precisely — ab initio data in this work. The notion “classical”
should not be confused in the way that this approach is more classical than ab
initio MD since ab initio MD uses Newton’s equation as well. Even further, by using
force-matched potentials — effective potentials based on ab initio data — the concept
remains still ab initio.*

When comparing both branches, one has to acknowledge the simple fact that clas-
sical MD includes a considerable approximation by modeling the high-dimensional
energy hypersurface. The forces in ab initio MD are calculated accurately, at least
in the context of approximations needed to solve the Schrédinger equation with
ab initio methods (details in [26]). To be fair, the full quantum mechanical calcu-
lation in an ab initio MD step is usually done with a lower accuracy than the ab
initio calculation of the reference data for a potential model. The ab initio MD
would take too much time otherwise. Nevertheless, the models can only achieve an
effective representation of the quantum mechanical effects and interactions as the
electrons are left out explicitly, leading to a certain loss of accuracy. The successful
description of the energy hypersurface — and with that the implicit representation
of the electrons — depends strongly on the set of ab initio data and the quality of
the potential model. An important aspect which will be discussed in further details
in Section 3.1.

Aspects of ab initio MD and classical MD are partly based on [28]. Exact details on the foundations
of ab initio MD and its different types — for example Ehrenfest or Car-Parrinello MD — can be also
found there.

Of course, the statement is not true for empirical potentials, i.e., potentials based on experimental
data.
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Despite the shortcomings of classical MD, the effective models work surprisingly
well as it has been proven multiple times in research since the introduction of MD
[28]. Classical MD has not been replaced by ab initio MD because in question of
simulation duration and system size it is strikingly superior over ab initio MD. A
time step requires a full ab initio calculation, which can take up to several hours
or even days depending on the system size. Furthermore, the system size itself is
limited as only a calculation in the range of hundreds of atoms is still computation-
ally feasible. A simulation in classical MD can easily have millions of atoms, system
sizes which seem to be limitless in comparison. The same holds for the number of
time steps. Responsible for those advantages is the fast calculation of the forces. In
one time step classical MD just needs to evaluate the functions of the models and
their derivatives.

This work applies classical MD with force-matched potentials, since deposition
simulations require both, a reasonable large system size and a significant number of
time steps. Furthermore, force-matched potentials are applied to keep an ab initio
description. Consequently, in the following MD always refers to this classical MD
approach without further notice.

Numerical Aspects and the Phase Space of Statistical Mechanics. The
above section is dedicated to justify the use of MD as a tool for atomistic simulations.
There, the forces between the atoms and especially their origin in quantum mechanics
were focus of the discussion. But up to now, it was never mentioned how — with
knowledge of those forces — Newton’s equation of motions are solved, besides the fact
that it is done numerically. This numeric integration of Newton’s equation of motions
is not exact, leading to some undesirable long-term behavior of an MD simulation.
Symplecticity — a special property of an integration scheme — and ergodicity — a
concept from statistical mechanics — ensure that MD is still producing meaningful
results despite the downside. A fact suggesting the following aspects can be called
numerical foundations of MD, in the same way like it were the quantum mechanical
foundations in the previous section.

To get an idea of symplecticity and ergodicity some basic principles of statistical
mechanics need to be introduced. However, the introduction will be by no means
a complete rendition of this subject.® For in-depth details the reader is referred to
standard works on statistical mechanics.

Looking at experiments and MD simulations, at first sight the direct connection
between simulation results and experimental measurements is missing. In MD one
has the microscopic knowledge of positions and velocities of every particle. This
data is not accessible in experiment, at least when dealing with atomic particles.
In experiment macroscopic properties are measured, quantities like temperature
or pressure. The precise link between those two kinds of data is provided by the
theory of statistical mechanics, drawing the connection from the microscopic states
(microstates) to the macroscopic states (macrostates).

It loosely follows an extraction of the textbook Thermodynamics and Statistical Mechanics by
Greiner et al. [29]
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The first thing to do is to give a precise description of the microstate of a many-
body system. Knowing all generalized coordinates ¢(¢) and momenta p(t) at any
time defines the complete motion of the system. A microstate of a system with
N particles is identified as a set (q,,p,) with v = 1,...,3N, which is interpreted
as a point in a 6 N-dimensional space, called phase space. The Hamiltonian of the
system determines the sequence of phase space points (g, (t), p,(t)), the phase space
trajectory. Hence, H(q,(t), p,(t)) describes the temporal evolution of the system. For
a closed system with constant particle number N, volume V', and total energy F as
well as a Hamiltonian H with no explicit time dependency, the possible trajectories
always correspond to the same energy F. Thus, the particle system passes through
different phase points which all belong to the same hypersurface o(N,V, E) in the
phase space. For instance, the harmonic oscillator has the hypersurface in form of
an ellipse in two-dimensional phase space. The hypersurface is proportional to the
possible number of microstates Q(N,V, FE) and can be written down as an integral
over the phase space,

o(N,V,E)

g0

1 oo
(N, V, B) = = v | @V [ d™p s(H(gp) - B). (28)

09 is considered as the unit surface element occupied by a microstate. However, that
statement is somewhat problematic, since classic phase space is continuous and the
microstates are infinitely dense packed. Nevertheless, the consideration of the uncer-
tainty relation Ag Ap > h for every component v makes it possible to discretize the
phase space, as quantum mechanically the microstates cannot be packed arbitrarily
without contradicting the uncertainty relation. Thus, all microstates (g, p,) occupy
at least the volume A3V, The additional factor N! is necessary if the particles are
indistinguishable, which is identical to the condition that the Hamiltonian does not
depend on the explicit order of coordinates (g, p,).

With the above considerations in mind, one can give a definition of a so-called
ensemble: a collection of microstates on a hypersurface defined by macroscopic prop-
erties. In case of a microcanonical ensemble, the macroscopic properties are number
of particles, volume, and total energy, hence an NVE ensemble. A different example
is the canonical ensemble with a constant temperature T instead of the total energy
E.

Ensembles have certain characteristics and properties. In the following some of
which will be shortly stated for the microcanonical ensemble. The number of states
Q of the NVE ensemble is related to the entropy S of the system by the expression
S = kg In Q. Further, if two microcanonical systems are in direct contact — while
keeping the number of particles and volume for each system fixed — they will exchange
a net energy until the entropy is maximized. The two systems are then in equilib-
rium and have the same temperature. This fact is captured by the thermodynamic
definition of temperature

a8 1
BBy, ~ T (2.9)

10
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The most important characteristic of a microcanonical system is the basic postulate
of statistical mechanics. The probability of an NVE system to be in a certain mi-
crostate is the same for every microstate. Or in other words, each microstate of a
constant energy hypersurface is equally likely.

With that last property of an ensemble — the probability of a microstate — the
earlier mentioned connection between microstates and macrostates is made. Macro-
scopic quantities are the mean values of weighted microscopic quantities,

<A>ensemble: Z pfiansembleAi’ (210)

micro
states ¢
the weight being the probability of a microstate. (2.10) describes the so-called en-
semble average of a microscopic observable A;, for convenience, in discrete notation.%
The probability p;*¢ for the microcanonical ensemble is simply the inverse of the
number of states €2, since it is — in terms of statistics — the frequency of an event
divided by the total number of events,

e = | F=Hap), (2.11)
! 0 otherwise.

The probability for the canonical ensemble is proportional to the well-known Boltz-
mann factor e Fi/(#8T) Tt is derived when considering the probability of a micro-
state with energy FE; represented by a small system in a large heat reservoir with
temperature 7. The canonical partition function Z ensures normalization of the

probabilities,
= %e—Ei/(’fB” with Z = ) e Bi/thnD), (2.12)
SItI;itCersoi

There is a direct connection between p§ and p*“ as Z can be expressed with the
help of the number of states 2 by summing up over all constant energy states,

Z =S "Q(N,V, E;) e Fi/hsT) (2.13)
E;

Assuming only one energy state E;, the expression for p§ reduces to pj*¢. Then, pf is
indeed the probability of having a microstate of energy F;. However, in a microcan-
oncial ensemble the value is identical for every microstate. (2.13) shall conclude the
brief overview of statistical mechanics.

With this proper background the original starting point of the section — the
somewhat problematic long-term behavior of MD — is reconsidered. The numeric
integration of Newton’s equation of motion is achieved with so-called step-by-step
integrators. Without getting into much detail here (see Section 2.1.3), each step

For continuous notation: i = (qu,pv), >, — 1/n3N fd3Nq d*Np including the factor (N!)~! if
particles are indistinguishable.

11
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introduces a local error in order of the time step O(AtP), since the trajectories
are approximated. By choosing small time steps the local error is relatively low.
However, the local errors sum up to a global error, which depends exponentially on
the difference between exact and approximated trajectories times the order of the
local error. This can be demonstrated by the Lyapunov instability, also known as
the “butterfly effect” [28, 30]. Comparing two MD simulations with nearly identical
initial conditions shows an exponential divergence of initially close trajectories. Con-
sequently, MD cannot predict the true trajectories of a classical system in the long
run. Even if the real initial conditions were exactly known, the trajectories will
diverge significantly at some point. That raises the valid question why MD should
be applied at all.

The answer is given by statistical considerations in the context of ensemble theory,
where symplecticity — a property of the used integrator — plays an important role.
A symplectic integrator conserves the volume in phase space. As a consequence, the
numerically computed trajectories (g, (t), p,(t)) — solutions of the Hamiltonian of the
system — stay on the same hypersurface in phase space. The integrator never leaves
the ensemble. However, since it is an approximation, the hypersurface deviates from
the exact hypersurface. It can be shown that the approximated hypersurface belongs
to a so-called shadow Hamiltonian: a Hamiltonian perturbed in the order of the time
step which transfers to the true Hamiltonian in the limit of small time steps. As the
calculated trajectories solve the shadow Hamiltonian exactly, conserved quantities of
the Hamiltonian — like the total energy — are conserved on those trajectories. Thus,
throughout the simulation an approximated value of the total energy is conserved
and no drift in total energy is observed. The same holds for other ensemble averages
[28, 31]. Hence, in question of statistical averages, MD is indeed a valid tool despite
the divergence of the trajectories.

But even the divergence of trajectories is not as problematic as one might think
and should be considered from another point of view. Although the trajectories
are sensitive to the initial condition and slowly diverge from the exact temporal
evolvement, they stay in the same ensemble or — to be more precise — in a shadow
ensemble close to the exact one. The phase space is accessed on different routes
over time, but in the long run they will explore the same part of the phase space.
This whole aspect can be interpreted physically as a slight disturbance within the
experimental setup, like thermal fluctuations. Furthermore, as the initial conditions
are unknown, the divergence of trajectories is even advantageous. The system will
evolve into the correct hypersurface, regardless from where exactly the simulation
started. The longer the simulation runs, the more the system looses its initial state.
This loss of memory to the initial state is desirable, since the initial conditions are
artificially imposed and — by loosing them — the system ends up in a natural state
in equilibrium. Another thought is to look at the divergence from exact trajectories
not as a result of numerical approximations but rather as a result of different initial
conditions (further reading in [28, 32, 33]). From that perspective the concerning
numerical long-term behavior looses its weight.

To conclude the purpose of this section, the ergodic hypothesis has to be in-
troduced. In a nutshell symplecticity ensures the correct ensemble averages in an

12



2.1 Molecular Dynamics (MD)

init (R, V) linitialization
do while (t<tmax)
force(R,F) ldetermine the forces
integrate (R,V,F) lintegrate equations of motion
t =t + delt
sample () !'sample averages
end do

Listing 2.1. Fundamental structure of a simple MD program in pseudo code [33]

MD simulation. Ergodicity on the other hand, offers a strategy to actually calculate
those ensemble averages. It connects (2.10) — the formula for ensemble averages of
an observable — with the time average of that observable,

1 to+T7
<A>ensemble = ;~/t Aensemble(Qy(t),py(t)) dt. (214)
0
The relation is fulfilled, if — in the limit of 7 — 0o — the ensemble average is independ-
ent of the initial coordinate (g, (to), pv(to)) at time ty. An additional requirement is
that the trajectories explore the whole hypersurface of the ensemble in phase space
for 7 — oo [28, 29]. Consequently, an MD simulation has to run sufficiently long,
especially to reach nearly every phase point of the ensemble for a proper statistical
distribution. Notice, according to (2.14) the explicit knowledge of the probabilities
ensemble

p is not necessary. It just has to be guaranteed that the MD simulation
produces the correct ensemble.

Fundamental Structure of a Simple MD Program. At the beginning of this
chapter, the basic procedure of an MD loop has been already mentioned. In the
following an implementation of such a loop will be presented.” Listing 2.1 displays the
fundamental structure of a simple MD program whose elements are presented shortly.
The force and integrate routine are discussed in more details in Section 2.1.2,
Effective Potentials, and Section 2.1.3, Integration Schemes and Thermostats.

init(R,V)

Before starting the actual time evolution of the many-body system, it needs to be
initialized first. The positions R = {7;} and velocities V = {#;} of the particles
have to be set.® Whereas the positions depend directly on the particular physical
problem at hand and can be specified accordingly, the velocities are not known per
se and therefore have to be generated randomly as well as scaled afterwards to the

largely based on [33]

The notation of the nuclei or atoms positions changes here from the capitalized symbols to uncap-
italized ones. The notation is not to be confused with the notation for electron coordinates in the
paragraph about quantum mechanical foundations of MD.
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2 Theoretical Background

starting temperature Tp. The equipartition theorem of thermodynamics,
Nt
(Exin) = ?kBT, (2.15)

makes it possible to define the so-called instantaneous temperature 7'(¢) by replacing
the mean kinetic energy with the current kinetic energy, resulting in

kT (t) = —fEkin =% m; i (t)2. (2.16)

In thermal equilibrium 7'(¢) fluctuates around the actual temperature 7' of the
system. N¢ is usually assumed as 3V, the number of degrees of freedom of an N
particle many-body system in three dimensions. This, however, is strictly speaking
not exact. Due to momentum conservation the effective degrees of freedom are
reduced by three. Nevertheless, the particle number is mostly big enough in order
for the approximation 3N — 3 ~ 3N to hold. If periodic boundaries are turned
off (free boundaries), the number Nt is reduced even more, because in this case
angular momentum is conserved as well. When simulating molecules, the treatment
of degrees of freedom has to be done more carefully. Some degrees of freedom are not
active, hence, “frozen” at low temperatures, since the molecules can have stiff bonds
which “break” only at higher temperature. Only then, the corresponding degrees of
freedom can be accessed.

In order to scale the velocities to the starting temperature T, they are multiplied
with a scaling factor of

A= (To/T(1)'/?, (2.17)

according to the rule v; — Av;.

force(R,F)

After initializing positions and velocities, the actual MD loop starts by executing
the computationally most expensive routine. From the positions R = {7} the forces
F = {I*:,} on each atom as well as the potential energy of the system are calculated
using the effective potentials. To reduce computational effort, those potentials have
certain cutoff radii in order to limit the atomic interaction ranges. In general, at
every time step the routine has to loop over all atoms to determine the neighboring
atoms lying in the interaction range of one atom. This is avoided by using so-called
neighbor lists. A complete loop is only done after a predefined number of time
steps to update those lists. The force routine also contains the implementation of
periodic boundaries, since the interaction with particles from periodic boxes has to
be considered.

14



2.1 Molecular Dynamics (MD)

integrate(R,V,F)

The integrate routine updates the position R = {7;} and velocities V = {7;} from
the previously calculated forces F = {F;}. As mentioned in the beginning of this
section, this is achieved with a step-by-step integrator, which has a local error of
the order of the time step O(At?). Due to this local error, the size of the time step
has to be sufficiently small, resulting in the general limitation of the timescale in
MD. The convergence of the algorithm cannot be ensured for certain choices of the
time step size. The estimate

At

7funit

=0.1...0.001 (2.18)

gives an upper limit for the time step [27]. typnit is the time unit of the applied system
of units. The calculation within SI units is avoided for numerical reasons. Instead,
the chosen units have magnitudes according to the ones of the system. Specifying a
unit for energy, mass, and length (Ey/mg/Lg) defines a complete system of units.
A measure of energy divided by mass gives a measure of velocity squared. Building
the inverse, taking the square root, and multiplying the result with the measure of
length gives a measure of time [33], hence

my
tunit = Lo N (2.19)
With this formula tui is equal to 1.018 x 10~ s for a system of units with
Fo=1eV/mog=1u/Ly=1A. Thus, in order to satisfy (2.18), a time step of
At = 1fs is appropriate. A high temperature is also problematic, since two atoms
can get too close to each other in the duration of a time step. In case of kgT' > FEynit,
the estimate (2.18) is adapted in such a way that t,y;; is replaced by

Lo mo
r=—2 - [T0F,, 2.20
Utherm kBT 0 ( )

where the atom velocities are described with the mean thermal velocity Uiherm o
kT /mgy. However, only for very high temperatures like 7' = 11606 K, the cor-
responding energy kpT is equal to the chosen unit of energy Eg = 1eV. Next to
those two conditions, the time step At should be smaller than the inverse of the
highest frequency of the system (Debye frequency in case of solids). This is import-
ant for simulations including molecules, since molecular vibrations with very high
frequencies can occur [27].

sample ()

After incrementing the time step, the storage of the ensemble quantities is executed
at the end of the MD loop inside the sample routine. Instantaneous temperature as
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2 Theoretical Background

well as kinetic, potential, and total energy belong to that group. With the help of
the virial theorem the instantaneous pressure

N N
1 o _—
P(t) = 37 > omiti(t)? + Y iy (2.21)
i=1 i1
i<j

is also calculated in this routine [28].

2.1.2 Effective Potentials

As mentioned in Section 2.1.1, effective potentials are used to approximate the
global potential hypersurface produced by the electronic ground state 9(R). Since
the electrons are left out explicitly, one has to be careful in cases where electrons
play a key role in interactions or effects which are important in simulations, like
chemical reactions. Those effects have to be included in the fitting database of the
force-matched potential. But most importantly, the model has to be able to capture
them as well.

The approximation is carried out by an expansion of many-body potentials
depending on the atom positions R = {7}},

N N N

co(R) =Vea(R) =D _o(7) + > (7, 7) + > (5,7, 7) +--- . (2.22)
i=1 ij=1 ig,k=1
i]<j iij<k

The first term describes an external potential and is therefore not important for
the interaction of the atoms among each other. These interactions are captured
by the second and higher order terms. The higher order terms are quite expensive
to calculate. Hence, the expansion usually stops at the second term. By assuming
isotropic potentials, the models become simple pair potentials with different pair
functions for each element pair interaction. Truncating the expansion after the second
term is in some cases not sufficient, since many-body effects are neglected. There are
various models which overcome the shortcomings of pair potentials. Such models are
proposed for different types of interaction and binding types. The Embedded Atom
Method (EAM) is a potential model proposed for metals. For that reason it has
been chosen as the potential model to describe the ferromagnetic metal compound
MnAs and the metal gold.

The Embedded Atom Method. The EAM model® has first been introduced by
Daw and Baskes [36] for the simulation of metals. Since then, it has become the
standard potential for MD simulation of metals [28].

also known as Glue Model — an equivalent model of Ercolessi et al. [34] — or Finnis-Sinclair potential
by Finnis et al. [35].
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2.1 Molecular Dynamics (MD)

Within this model the potential energy of one atom does not depend linearly on
the neighborhood or coordination of that atom. This is in contrast to pair potentials.
For pair potentials the relation is linear, since the pair energy of an atom and one
of its neighbors is added to the total potential energy of the one atom independent
of other neighboring atoms. In case of the EAM model, however, each atom is
treated effectively as an impurity atom, which is embedded in the environment
of the other atoms. The energy — which the embedded atom gains — depends on
the density of the surrounding atoms. In this way, the model considers many-body
effects and ensures a non-linear dependence on the atom coordination. Daw and
Baskes originally identified the density of the atoms as the local electron density of
the atoms. For this reason, the derivation of EAM in their publication is based on
the density functional theory. However, due to gauge degrees of freedom, one should
not attribute a physical meaning to the density. Hence, in the following the density
will be only referred to as the transfer density.

The complete model consists of a standard pair term — accounting for repulsive
forces — and an embedding term,

N N
DR (ry) + D> U™ (),

VEAM =
3,0=1 =1
1<j
N
n; = Zp?OSt(Tij). (2.23)
7j=1
J#i

The transfer density n; is the sum of the so-called transfer functions pPos* (ri;). Those
functions depend on the type of the surrounding atoms or host atoms. The type of
embedding function is determined by the atom which is embedded within the host

atoms. The force component F;* acting on the ith atom is calculated by

0

F = —@Veﬂ(ﬁ’),
- g: <8¢¢j(m‘) xd — N OU;(n;) Opj(ri;) N U, (nj) 0pi(rij)> % — x;“‘
j=1 orij Tij on; orij on; ory; "
J#i

(2.24)

As already mentioned, the EAM model has several gauge degrees of freedom. Ac-
cording to [37, 38] there exist the following transformation rules

¢ij(R) = ¢ij(R) + Xipj(R) + Ajpi(R),
Ui(n;) = Ui(ni) — Aini - A\i, Aj € R for each atom type, (2.25)

as well as the two invariances

p(R) = kp(R),

Uln) — U ) . (2.26)

/~
RIS
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2 Theoretical Background

As the transformation rule (2.25) shows, all linear contribution of the transfer
density n; to the potential energy can be moved completely to the pair functions.
This confirms that the embedding term introduces the coordination-dependent inter-
action. It also shows that the embedding function has to be non-linear. Otherwise,
the corresponding EAM model could be replaced by an equivalent model of pair
functions.

Those gauge degrees of freedom have to be fixed in order to get a unique effective
potential, which is especially necessary when the model is used to fit it to reference
data. The fitting cannot be successful if there are — in the context of the optimiza-
tion — unnecessary degrees of freedom.

The fixing of the gauge degrees of freedom in (2.25) can be done by setting the
gradient of the embedding function at an arbitrary density to zero (U’(nam) = 0).
Thus, the nty, transformation constants \; are defined, meaning, all the gauge de-
grees of freedom of (2.25) are fixed. Either directly enforcing the transformation
rules with the \; or indirectly assuring the particular gradient gets adjusted to zero,
both ways will apply a certain gauge. The degree of freedom in (2.26) is applied
by restraining the domain of the embedding function to a distinct interval. That
way the scaling factor x is fixed. This can also be achieved by fixing the transfer
function for a particular distance to an arbitrary value (p(Tarb) = Parb)-

2.1.3 Integration Schemes and Thermostats

The integration of Newton’s equations of motion is closely connected to thermostats
and their implementations. The integrator used in this work — embedded in the MD
software package Lammps — produces an NVE ensemble. By modifying directly
the integrator, a temperature controlled NVT' ensemble can be achieved, meaning,
a thermostat can be implemented. The section first presents the derivation of this
so-called Velocity-Stormer-Verlet integrator and concludes with a short rendition
about the applied thermostats.'?

Stormer-Verlet Method. The Verlet algorithm [39] — based on the integration
method of Stérmer [40] — is directly derived from the Taylor series of the position
7(t), expanded at the time ¢, = At about the point ¢,. The index n denotes the
time discretization of the problem. The simulation duration is divided into k& + 1
fixed time steps t, = NAt + tgpary ranging from fgpart to teng. In particular, there is
tn + At = t,41. Thus, for each ith atom one gets

—

. s . Fi(tn) o , d*7(tn) A3 4

In this Taylor expansion, Newton’s equations of motion (2.6) have been already
used to replace the second derivative of the position 7. Summing up both terms in

10 The following mathematical derivations are mostly based on [28].
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2.1 Molecular Dynamics (MD)

(2.27) and solving for 7(t,,+1) yields

Fi(tn)

my

Fi(tns1) = 27 (tn) — 7i(tn_1) + At? + O(AtY), (2.28)

which is the Stérmer-Verlet method for 7. In order to calculate the new position
Ti(tn+1), one needs to know the positions of the previous times ¢,, and ¢,,_;. However,
the velocities are only implicitly given. By taking the difference of (2.27),

ﬁ(tn—&—l) - 7_"7,’(tn—1) = ng(tn)At + O(At3), (229)
an expression for the velocity is derived,

7:»i(tn-i-l) - ﬁ(tn—l)
2At

Ti(tn) = + O(At?). (2.30)
A direct control over the velocities — for example, needed for rescaling the velocities
in order to adjust the temperature — is achieved by the equivalent Velocity-Stérmer-
Verlet method [41].

The velocity enters the algorithm by using (2.30). Replacing the term —#;(¢,—1)
in the Stormer-Verlet method (2.28) with the help of (2.29) and transforming it to
Filtns1) gives

Fi(tn)

Fi(tna1) = 7i(tn) + U (tn) At + WAtQ + O(A). (2.31)

Further, using (2.28) also in (2.30) leads to

2
N N g Ot +O(AR). (2.32)

Adding the same expression for U;(t,+1), one gets

_% n __% n— F:z n F_;’L n
Gilt) + Ti(tnyy) = L +1)At7" (tna) | Filt +12)m+ ) At 4 O(A). (2.33)

Finally, inserting (2.30) and solving for ¥j(¢,+1) results in an expression for the
velocity at the new time step t,41

. ﬁi(tn—&-l) + E(tn)

Ui (tns1) = U (tn) + 5 At + O(At?). (2.34)

Both equations — (2.31) and (2.34) — constitute the Velocity-Stormer-Verlet method.
Because the forces have to be known at two times (¢, and ¢,41), the implementa-
tion is different to the previous one of the basic MD program in Listing 2.1. The
calculation of the velocity is split into two parts, one with the “old” and one with
the “new” forces. Listing 2.2 shows the changed pseudo code of the MD program.
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2 Theoretical Background

init(R,V) !initialization
force(R,F) !determine forces before MD loop
do while (t<tmax)
integratel (R,V,F) !first step velocity verlet
force(R,F) !determine new forces
integrate2(R,V,F) !second step velocity verlet
t =t + delt
sample () !sample averages
end do

Listing 2.2. Velocity-Stormer-Verlet MD program in pseudo code [33]

The choice for the Stérmer-Verlet method as MD integrator is founded on several
advantages. It is easy to implement, it is direct instead of implicit, and it offers the
explicit control over the velocities. Next to that, the MD integrator is time-reversible
and symplectic. As discussed in Section 2.1.1, especially the last property is very
important concerning the long-time stability of an MD integrator.

Thermostats through Friction. A thermostat has to supply or withdraw energy
to a many-body particle system via a heat current .Jg in order to control the tem-
perature of that system. In experiments, thermostats are realized by coupling the
regarded system to a much bigger system — the heat reservoir — with the desired
temperature Tp. Due to heat exchange, the temperature of both systems gets equal-
ized. Since the second system is significantly bigger than the first, small one, this
temperature is nearly equal to the desired temperature Tp. The duration for this
equilibration depends on the strength of the coupling to the heat reservoir.

In MD such a coupling to a heat reservoir can be implemented by introducing a
friction term into the equation of motions (2.6),

dv; =

By rearranging the time discretized version of the above equation,

i(tn+1) — Viltn)

: ~ = Fi(tn) — £(tn)miTi(tn), (2.36)

for v;(tp+1), one gets

Ti(tns1) = Ti(tn) + AtFi(t”) — At K(t,)Ti(tn),
m

(2

= (1 — At K(tn)) Ti(tn) + Atﬁi(tf). (2.37)

mg

(2.37) shows how the friction term influences the velocity. For the n-th simulation
step, the velocities are effectively scaled by a factor. Velocity scaling has been already
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2.1 Molecular Dynamics (MD)

introduced earlier to initialize the velocities at the beginning of a simulation. The
relation of this scaling factor A to the coupling factor « is

A= (1— At w(tn)), (2.38)
K(tn) = (1— \) /AL (2.39)

Inserting the expression for the force of (2.35) into the equations of the Velocity-
Stormer-Verlet algorithm, one obtains an adapted version of this integrator scheme,
where additional friction terms are included. By performing that extended algorithm
scheme, a thermostat can be successfully applied in an MD simulation. Different
definitions of the coupling  result in different types of thermostats.

Berendsen Thermostat. The thermostat after Berendsen [42] is based on the
assumption that the heat current Jg depends linearly on the temperature difference
of the system and heat reservoir,

AQ

Jo= "5

= a(Tp - T()). (2.40)

The heat quantity AQ — added or removed from the system — is the difference in
kinetic energy. By using the scaling factor A\ and § = Nfkp/2, it has the form

AQ = ABg =3 TP - 1) = AT 1), (2.41)

=1

Combining (2.40) and (2.41) yields

9 o —T(t) «
B T, _
=1+ (T(t) 1) vAt, v 5 (2.42)

The dampening parameter «y defines the strength of the coupling. With v = 1/At,
eq. (2.42) reduces to A\ = Tp/T(t), also known as the constraint method. The
correction to the desired temperature is executed instantly, which is the same for
the velocity initialization. A value of v within the interval [0,1/At] adapts the
current temperature exponentially to Tp, as proven by the equation

Q

A = 5@ -T), (2.43)

which is obtained when dividing (2.40) with 3.
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A direct expression for the coupling x can also be derived [27]. Approximating
the root in the following expression with a taylor expansion and using the relation
(2.38), one gets

()
Nl—I—i(;;Dt)—l)'yAt,
=1— k(t)At,
& w(t)~ ] (1 _ TTEQ . (2.44)

The Berendsen thermostat is easy to implement, since it can be realized by a simple
scaling of the velocities. Hence, the introduction of the friction term is not mandatory.
The disadvantage is — although the ensemble of a system in a heat reservoir is by
definition a canonical ensemble — the Berendsen thermostat does not produce an
exact canonical ensemble. However, it can be used to get a particle system to a
certain temperature. For a true canonical ensemble, the Nose-Hoover thermostat
has to be applied.

Nosé-Hoover Thermostat. This thermostat was proposed by Hoover [43], who
modified the so-called extended system method of Nose [44]. The basic idea is to
consider the heat bath as an additional degree of freedom, which also determines the
coupling of the particle system to the heat bath. The time behavior of the coupling
factor x(t) is described by the ordinary differential equation!!

dk 1 (&Y 9
iy > mt? — NeksTp | - (2.45)
i=1

There are several ways to implement the integration of this differential equation
[27, 28], but they all have in common that (t) is integrated in a similar way like
the equations of motion. The dampening factor M is a free parameter, which has
to be determined beforehand to get the appropriate strength for the coupling.

Langevin Thermostat. The Langevin thermostat has been proposed to simulate
solvent atoms or molecules, without explicitly simulating the solvent. The idea
behind it is that the solved particles randomly bump into the not existing particles
of the solvent or the heat bath. For that reason a stochastic noise term § (t) is added
next to the standard friction term of (2.35),

mU; = F:z — Km;U; + S‘;(t) (2.46)

The exact background of the thermostat is described in [46]. The thermostat can be
used beyond the original purpose. Like the Berendsen thermostat, it is suited to get
the system efficiently to a desired temperature. In the used MD software Lammps,
the implementation is equal to Brownian dynamics [47].

" Details on the derivation of this equation can be found in [43, 45)
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2.2 Force Matching (FM)

2.2 Force Matching

This section is intended to convey the basic concepts of Force Matching (FM): the
fitting of a potential model to ab initio data. Those basics of FM include in principle
the quantum mechanical basics of solving the electronic Schrodinger equation (2.3),
since the calculation of forces and energies from that equation is crucial for FM.
However, details on how (2.3) is solved explicitly is omitted at this point. The reader
is referred to basic literature on the topic, for example found in here [26].

The section is split into two parts. Apart from a short description of the basics
of FM, the implementation of FM within the software package potfit is presented.

2.2.1 FM Basics

The concept of FM was proposed and tested by Ercolessi and Adams in 1988, based
on the example of generating a glue potential for aluminum [48]. In this concept the

main task is optimizing the so-called target function!?
Z(a) = Zp(a) + Zc(o), (2.47)
with
Ng )
Zr(e) =S g (Fule) — ), (2.48)
k=1
Nc )
Zo(a) = Zwr (Ar(a) — A,Q) . (2.49)
r=1

The potential model — depending on the set of parameters a of length n — is
fitted to Ng reference data values F) by taking the squared difference to the val-
ues F(a) of the model. The reference values F) belong to so-called reference
configurations — atomic structures the model should describe — and can be the force
component of each atom, the energy per atom of each configuration, and the stress
tensor of each configuration box. By varying the parameters «, the corresponding
values Fj(a) — calculated from the potential model — have to be adjusted to the
reference values. Each configuration can be weighted by the factor ug. Also, energy
and stress reference data have individual weights. The number of force components
is significantly larger than the number of energy or stress values, since there is, for
example, only one energy per configuration. Hence, those values have to be weighted
separately in the target function. The forces are usually weighted by the inverse of
the magnitude of the corresponding atomic force vector. In addition to reference
data, the target function can also include special constraints, represented by the
term Zc. Those constraints get important when the potential model has degrees of
freedom which have to be fixed.!

2 notation as in [48, 49].
131n potfit the constraints are referred to as dummy constraints, which are discussed in Section 3.1.1.
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Optimizing the target function Z is nothing else than applying the method of
least squares derived by GauB. The function fu(x;) — described by n parameters
a = {a;} — has to be fitted to known data values y;, consequently

falzj)=y;, j=1,...,m. (2.50)

Such a system of equations is usually overdetermined (m > n). Hence, no exact
solution exists for those systems. However, minimizing the sum of the squared
residuals yields an approximate solution for the requested set of parameters «;. The
proposed target function Z is basically such a sum and with the above definitions
one gets

Z(o) =Y wj (falz) — ;). (2.51)
j=1

The optimization of Z can be conducted directly in one step if f(z;)q is a linear
polynomial of the form "7 ; x'~!q;.'* This is not the case for FM. The highly
non-linear problem has to be solved with iterative methods. From a starting point
g, these methods approximate the minimal solution oy, step by step. The software
potfit for applying FM uses different iterative methods. The software — including
the implemented search algorithms — is presented in the following section.

2.2.2 potfit: An Implementation of FM

The program potfit uses a deterministic method derived by Powell to minimize
(2.51). It is deterministic, since it usually leads always to a minimum. However,
the resulting minimum does not necessarily coincide with the global minimum of
the configuration space spanned by parameters «;. Thus, an additional algorithm
called Simulated Annealing is implemented, which searches the configuration space
stochastically. Due to its stochastic nature, Simulated Annealing cannot get stuck
in local minima. But being stochastic also means that the method is very slow. For
this reason potfit combines both methods.'® At the beginning of the optimization,
Simulated Annealing gets the target function to the attraction regime of the global
minimum. After that, the algorithm of Powell provides the final optimization of Z.
In Figure 2.1 this basic scheme of potfit is shown. The scheme is taken from the
doctoral thesis of the first developer of potfit Peter Brommer [49], where further
details of the program can be found. Here, only the basics of the two mentioned
optimization methods are shortly introduced.

M From there, an equivalent set of normal equations is derived. This is a system of linear equations
which can be solved by direct methods like Gaussian elimination.

5 Instead of Simulated Annealing potfit also offers an alternative named Differential Evolution. How-
ever, since the method has not been applied in this work, it will not be discussed any further.
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Read input data
(run-time parameters, starting potential, reference configurations)

|
‘ Optimization? }—&‘ Simulated Annealing }—>‘ Powell algorithm‘
[ I
no
|

Final evaluation of target function

Write final potential —>

Write information on fit deviations/averages

Figure 2.1. Basic working scheme of potfit [49]: After reading different input data, the
stochastic algorithm Simulated Annealing is executed. This is followed by a run of the
deterministic Powell algorithm. In the end the output data is written, including final potential
and fitting errors. Those values can be also calculated directly for a given potential by turning
off the optimization step, making it easier to compare quickly different potentials.

Simulated Annealing. Proposed by Kirkpatrik et al. [50], Simulated Annealing
is based on the Monte Carlo (MC) method [51]. But instead of minimizing the total
energy of a many-body system — which is the typical application for MC — the target
function Z(«a) is optimized. In direct analogy to MC, one parameter of the set a is
changed randomly. The change Ac is accepted if it leads to an improvement of Z(av),
meaning the value of the target function decreases. If the target function gets worse,
the change can still be accepted according to a probability P(AZ) = exp(—AZ/T),
which is the analogue to the Boltzmann factor (compare eq. (2.12)). The artificial
temperature 1" has the units of Z and is only an auxiliary quantity needed for the
probability factor. Due to the acceptance of changes where the target functions
increases, the algorithm is able to leave the attraction regime of a certain minimum.
Again, this is not possible for deterministic algorithms like the one by Powell.

Since the method of Simulated Annealing was originally used for discrete systems,
a variable step size has to be introduced for the continuous case to reasonably scan
the entire configuration space. For this purpose Corona et al. [52] proposed to change
the new parameter set o’ with the formula

Ot/ = o + rupey. (2.52)

Every hth coordinate direction of the configurations space has an adaptive step size
vp. The factor r is a random number within the interval [—1, 1] and ey, is the unit
vector of the according coordinate direction. In potfit this formula has to be adapted.
Changes of a single «; can lead to overswinging of the interpolating splines, since
the «; are the spline knots of the potential functions. By adding a Gaussian to the
sampling point in question, this problem is avoided as the neighboring spline knots
are changed as well [49]. The adaptive regulation of the step size is coupled to the
acceptance rate. If the acceptance rate is too high, the step size is too small and has
to be reduced. If the acceptance rate is too low, the step size has to be increased
(details in [52]). With this rule the algorithm begins to scan the configuration space
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with a predefined starting temperature. After that, this temperature is successively
reduced in defined cycles of iterations, which explains the name Simulated Annealing.
Like the annealing of a metal, the algorithm “cools” the system slowly to find
the optimum. The repeated reduction of the temperature stops according to two
criteria [38]:

1. The values of Z(a) of successive temperature cycles do not change within a
certain accuracy. The algorithm is therefore located in a minimum.

2. The current value of Z is so far very similar to the previous optimum Z(copt ).

If only the first condition applies, the algorithm is stuck in a local minimum and
the algorithm is started again at aopt. If both conditions are true, the algorithm
terminates with avpt as the best value. Starting from a high temperature as well as
using a slow cooling increases the probability to find the global minimum. However,
those settings also show why this optimization algorithm is very slow in general.
Consequently, the accuracy for the stopping criteria is chosen to be relatively big.
The algorithm has to find the attraction regime of the global minimum. The final
optimization is done by the Powell algorithm.

Powell Algorithm. In numerics there is a typical strategy to find iteratively the
minimum of a function depending on various variables x. First, a search direction in
the configuration space of the variables is determined according to specific criteria.
Beginning from a starting point @, the minimum along that direction is calculated.
This concludes one iteration. From the found minimum x; the next iterations k
start in the same fashion until the x; remain unchanged within a defined accur-
acy. The speed of the algorithms strongly depends on the way how directions are
chosen. The simplest idea is to take the steepest descent of the function, which is
the negative gradient ¢ = —VZ (). However, unlike conjugate gradients'® those
standard gradients discard previous gained search directions towards the minimum,
often resulting in a lengthy zigzag search path. Consequently, conjugate gradient
methods are the standard iterative search algorithms.

There are different implementation of such conjugate gradient methods. The
special form of Z as well as the expensive calculation of its gradients make the al-
gorithm of Powell especially suited for Force Matching and is therefore implemented
in potfit. In the following a very shortened rendition of the original publication of
Powell [53] is given. Details like omitted steps during the derivation or convergence
performances of the algorithm can be found there.

Using Powell’s notation, (2.51) can be written as

Z@)=Y" [f(k)(a)] . (2.53)

18 Exact definition and introduction will be omitted at this point.

26



2.2 Force Matching (FM)

Further, the first and second derivations of f*) are defined by

" (). (2.54)

Now, the variable vector & shall be the iterative approximation to the actual min-
imum at & + §. Then, the derivatives in each direction are zero at this point € + 4.
By applying the chain rule and subsequently dividing with the factor two, one gets

Zgz E+8)fPE+8) =0, i=1,..,n (2.55)

Taking the Taylor series in € about d and neglecting the expression GE;) &) f*)(€)
finally leads to

i{ig }5j=—§:g§k)(§)f(’“)(£), i=1,...,n. (2.56)
k=1

7j=1

Solving the linear system of equations in (2.56), gives the correction § = Y1 ; J; e;
to the current approximation £&. With that, the minimum can be iteratively calcu-
lated via the points &£, = &,_; + A0, whereby A, is determined when minimizing
the function Z (& + A\d) along the direction §. As long as & does not happen to
be a stationary point during the iterations, the convergence of the algorithm is
mathematically guaranteed [53].

The disadvantage of this so-called generalized least squares method is the ex-

plicit evaluation of the gradients g(k)

. (&) at every iterative step. Therefore, Powell
proposed a method without calculating derivatives, based on the generalized least
squares method. This iterative method starts by initializing n linear independent
directions d(1),d(2), ..., d(n), which span the configuration space of the variable &.

Additionally, one defines the estimated derivative of f(¥) along the ith direction as
mZgﬁ)(E)dj(z), i=1,...,n, j=1,...,m. (2.57)
=1

By taking the coordinate directions as the directions d(7), the above derivatives are
calculated according to a normalized numerical derivative,

A () = Slf J(E1y e &1y Eireys Einty o &n) — FB)(6)

€

, (2.58)

for the first iteration. In the next step, the correction § is expressed with the help
of the vectors d(i). Substitution in (2.56) yields

i {i v(k)(i)v(k)(j)} aj) =p(i), i=1,...,n,

with § = Z q(i)d(z) and p(i Z A (g (2.59)
i=1
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2 Theoretical Background

Like in (2.56) new corrections of d can be calculated with the above formula. In
order to get an approximation v(*)(8) for the gradient along the direction of 8, the
derivative with respect to A from minimizing Z (& + A§)'7 is used. In each iteration
one v¥)(t) and one d(t) are substituted by the mentioned gradient approximation
v(¥)(§) and the correction &, respectively, according to special criteria [53]. The
substituted directions are also pairwise conjugate to each other [53]. The biggest
advantage, however, is the fact that the derivatives of Z only have to be calculated
once.

Y"In potfit this minimization is realized by the algorithm of Brent [54].
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3 Generation of Effective Poten-
tials

As mentioned earlier in the introduction, the first step towards tackling the initial
question of gold (Au) deposition on MnAs is the generation of an effective potential
describing the interactions between the different atomic elements in an MD simula-
tion. This is a necessary step, since no effective potential for the MnAs system or
the specific problem of depositing Au atoms on a MnAs surface has been developed
in the literature yet.

The chapter is split in two parts. First, general facts and ideas concerning fitting
strategies beyond the previous mentioned basics of Force Matching are introduced.
Second, details on the generation of the EAM potential for the MnAs/Au interface
system are presented, including the resulting potential itself as well as the validation
of the latter.

3.1 Fitting Strategies

The generation of an effective potential in the scope of Force Matching is by far a
non-trivial optimization problem and it involves more than a simple run of the potfit
program package. In order to produce a potential with the desired properties for a
specific situation, it requires “much skill, work, and intuition” [28]. The main reason
behind this statement is that the potential development is not a straightforward
process, where one explicit strategy must lead to success. Figure 3.1 shall illustrate
that point. When looking at the fitting process in the most general and abstract
way — counting everything which can influence the potential as a parameter — it is
an iterative optimization cycle with parameters being optimized until a termination
condition is reached. From that point of view it should be possible to investigate
the optimization systematically in order to find the best set of parameters. However,
especially the term “systematically” proves to be problematic in several aspects
as the situation is more complex than the above statement suggested. As seen in
Figure 3.1, there are parameters of different nature: the potential model and para-
meters, potfit run-time parameters, and the reference configurations. Some of those
parameters depend on one another. There are various paths to correct and adapt
the potential and its parameters, symbolized by the arrows. And, concerning the
termination conditions, the criteria selecting the paths act on different levels.
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3 Generation of Effective Potentials

Figure 3.1. Work flow diagram of the general, iterative optimization cycle of a potential
generation, considered as a classical optimization loop with termination conditions: The
notion “parameters” summarizes all the elements which influence the fitting process of the
potential. The arrows depict the different optimization paths and dependencies within the

parameters:

AN

MD snapshots
with new
potentials

|
|
|
|
reference |
|

e.g., number/location of
sampling points, cutoff radii, ...

potential model
and parameters

e.g., weights, annealing
temperature, rescale, ...

potfit run-time
parameters

termination conditions:

4\

fitting results

e.g., root mean squares (forces,
energies), punishments,
potential form, ...

validation of

N

cycle.

30

potential

e.g., stability in simulation,
lattice structure properties, any
desired property, ...

final potential




3.1 Fitting Strategies

The first group of termination conditions are the fitting results, which are avail-
able directly after a potfit run. Among the fitting results is the root mean square
deviation (rms), a measure of the deviation between potential model and reference
data. It is therefore a key criterion for the mathematical quality of the fit, but not
necessarily an indicator for the physical quality of the potential, since the potential
quality strongly depends on the selection of the reference data. The validation of
the potential — the important testing of quantities not included in the fit — is the
indicator for the quality of the potential. In contrast to the fitting results, the val-
idation of the potential is a post-processing evaluation. Thus, the criteria involved
are more of indirect nature. Also, the criteria may have a rather qualitative nature,
making it harder to decide which parameter should be changed. In addition, all the
stated aspects depend on the physical problem at hand and the individual chosen
performance requirements for the potential. Therefore, in summary it is quite diffi-
cult to propose a general systematic strategy.

Nevertheless, there are guidelines and rules which should be true in general. For
starters, there is some sort of hierarchy within the parameters. A few parameters
should be simply set at the beginning, rather than optimized (see Section 3.1.2).
That optimization path may be introduced later in the iterative fitting procedure.
In accordance with that rule is the fact that there is a typical optimization path in
the beginning of every potential generation. After setting up the starting paramet-
ers, calculating the ab initio reference data, and executing potfit the quality of the
resulting potential is checked. Either it is obvious from the direct fitting results or
more indirectly shown by first validation tests, it will usually be necessary to adapt
the parameters of the fitting process. The first thing to consider are the reference
configurations, especially when starting from scratch. In that case the reference
structures are most certainly unrealistic or, at least, insufficient to represent the
desired physical situation. The typical approach to correct for this is producing MD
snapshots with the new potential and replace or complement the reference configur-
ations. Then, the optimization process is started again. The cycle can be repeated
and offers therefore a general strategy to improve iteratively the reference data and
the potential, comparable to a self-consistent mechanism.

However, the optimization and — as the result — the potential can fail despite
this strategy and one has to reconsider other parameters and therefore, different
optimization paths. The type of failure strongly depends on the physical problem
and particular situation. And, as mentioned previously, it is not always directly
apparent which of the parameters should be changed.

In the following, a basic set up of a potential generation will be presented by dis-
cussing some of the parameters displayed in Figure 3.1. Most of the information
can be found in the diploma and doctoral thesis of Peter Brommer [38, 49] and the
potfit wikipedia [55], as well as further details. At the end, a few general remarks are
made trying to summarize some lessons which have been learned from experience.
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3 Generation of Effective Potentials

3.1.1 Basic Setup

Selecting the Reference Configurations. The basic procedure of a potential
generation with potfit starts with the crucial step of selecting the appropriate ref-
erence configurations. Appropriate means selecting them carefully according to the
situation the potential will be applied to. That includes crystal structure, composi-
tion, temperature, or pressure. The general rule is that the set of structures should
be close to the structures which will appear later in the simulation. One should
be very careful when using a potential in situation it has not been trained for. In
that case it will be some sort of extrapolation, which is not the primary purpose
of Force Matching. The goal is to interpolate between the set of structures to de-
scribe a particular situation. This sounds like no further information can be gained,
but — keeping in mind the limits of ab initio calculations — the main advantage of
MD and using a force-matched potential is the significant increase in system size as
well as decrease of computation time.

The selection of the reference structures also defines the transferability of the
potential. The transferability of a potential indicates how broad the application
range of the potential is. For example, a potential fitted to bulk structures will
most certainly perform bad at surface structures. Including surface structures to
the reference database improves the performance at the surface. It has therefore
a higher transferability and can be used more generally. However, it shows lower
precision at bulk simulations. What may be gained in transferability will be lost
in individual accuracy. The cause of this deficiency is the fact that the energy hy-
persurface ,(R) of equation (2.3) is represented by simple model functions. By
solving (2.3), the energy hypersurface €,(R) can be calculated for every possible
atomic configuration R. It is “transferable” to any situation. However, the model
functions — an approximation of the energy hypersurface — cannot account for every
possible configuration.

After defining the application range of the potential — meaning selecting the
fundamental types of structures — those structures have to be modified further. At
this point, they are usually available as ground state structures, which is unfavor-
able for two reasons. First, the reference structure should contain as much reference
information as possible. Initially having ground state structures prevents this, since
no forces act on the atoms and only the energy of the structure will effectively enter
the target function of the fitting routine. Second, the model functions in potfit are
implemented as tabulated functions,' interpolated with splines. The spline knots —
sampling points of the functions — are the parameters a of the optimization run
with potfit. As the potential models are in general functions of the pair distance r;;
between two particles (exception: embedding functions or angle dependent terms)
the number and location of the sampling points is connected to the occurrence of pair
distances in the reference database. Pair distances should appear in every sampling

potfit also supports analytic functions. Advantage: parameters are global and less in numbers
compared to the sampling points of tabulated functions. Disadvantage: the potential form is
constrained by the analytic function.
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3.1 Fitting Strategies

point interval, otherwise some parameters do not influence the target function. Such
non-supported parameters can take an arbitrary value and the optimization run will
fail. This problem most certainly arises in case of ground state structures, since the
pair distances are distributed as peaks, at least for solids with periodic structure.
Thus — as shown in Figure 3.1 — there is a mutual dependence between sampling
points and reference configurations. Regarding the problem at hand, either of them
has to be set while the other is adapted.

A common approach is setting the sampling points as an equidistant grid and
making sure that all parameters are supported by the reference data. This leads to
the modification of the ground state structures, which has been already discussed
above. The basic idea is to introduce disorder to some extent, which can be achieved
with different strategies. One strategy is using an MD simulation at certain temper-
atures to produce snapshots, similar to the proposed main strategy at the beginning
of the optimization cycle. As there is probably no potential available, either an
ad-hoc potential? is taken or short ab initio MD runs are performed. Another pos-
sibility is distorting slightly the lattice dimensions and, afterwards, displacing the
atoms randomly from their equilibrium position. Those strategies are not mandatory,
any other approach with the same effect will suffice. However, they should be in
accordance with the physical problem one wants to describe with MD simulations.

Preparing the Starting Potential. Another important preparation is choosing
the basic potential model. This step usually occurs at the same time as or even
prior to selecting the reference configurations, since the model can help creating
sufficient reference configurations. Even more evident, it is essential to check for an
appropriate model before considering the generation of an effective potential for the
given material system. Every potential model has its limits, some are known at this
stage and determine the decision for a particular model. But one must always be
aware that problems can arise in the course of the fitting process. A wrong model
may be also the reason for a failed fit.

After selecting the potential model, the parameters of that model have to be
set. In case of tabulated potentials the parameters are the sampling points, cutoff
radius, and gradients at the lower and upper boundary of each function. As discussed
earlier, the number and location of the sampling points is related to the reference
configurations. Using this relation, a necessary set of sampling points can be found,
serving as a first setup. The values of the sampling points can be chosen arbitrarily.
Thus, setting all the sampling points to zero is a valid approach. But care must be
taken when using EAM models, as the transfer functions have to be different to
zero. Otherwise, the transfer density is zero and therefore has no influence on the
target function. Any non-zero values correct this behavior. Taking values of a linear
function is one way to achieve that.

There are strategies to optimize the number or location of the sampling points but
these parameters belong to the group of parameters which should be simply set at the

Usually a crude approximation of a potential, for example, an effective potential that is intended
for a different material.
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beginning and only considered later in the whole optimization cycle. The same holds
for the cutoff radius and the gradients at the boundary of each function. The cutoff is
usually in the range of a few angstroms. It is limited to improve computational speed.
A good estimate for the minimal cutoff is given by looking at ab initio calculations of
different pair distances. Two different choices for the gradients at the boundary can
be made. Either they are set to fixed numbers — usually natural boundary conditions
are employed — or included as additional free parameters to the optimization. An
exception is the gradient at the cutoff radius. As the interaction range ends at the
cutoff, the function values of the distance dependent functions are kept at zero in
potfit. Thus, the only reasonable choice is also fixing the gradients to zero, since the
functions should be smooth at the cutoff.

Again, setting the gradient values as well as the other potential parameters is
less important at this stage. The goal is having a sufficient set of parameters to
work with, meaning, being able to perform first optimization runs with potfit. The
systematic analysis of those parameters should be introduced later.?

Gauge Considerations. In the case of an EAM potential, the preparation of the
starting potential is completed when the transfer densities are scaled to a domain
of (—1;1] for the embedding function, which is the internal potfit convention and
executed in the context of fixing the gauge degrees of freedom. This fixing is crucial
for a successful fit and — as mentioned in Section 2.1.2 — can be achieved by setting
the gradients of the embedding functions for a particular density to zero and by
scaling the transfer densities to a specific definition area. The general approach of
keeping such a gauge during an optimization run is realized by so-called dummy
constraints

wo(f(x0) — fo)*, (3.1)

which are added to the target function and should vanish in the optimization min-
imum (f(xo) being the gradient for example, explicit details in [38]). In that manner
the correct gauge is adjusted throughout the optimization. However, in the course of
the optimization run the dummy constraints can be “drown out” leading to transfer
densities outside the domain. Two additional strategies are implemented in potfit
to counteract this behavior. Firstly, by “punishing” densities which are far off the
definition area [38],

N;
2 .
szd]zv Z:L"chonﬁg?
i=1

(nji — Nmin)  if 7ji < Nmin,
dji = (nji - nmax) if Nji < Mmax, (32)

0 otherwise.

3 The potfit run-time parameters fall into the same category. The most noteworthy ones are energy
weight and starting temperature of the Simulated Annealing algorithm, with reasonable values of
50 to 100 for the weight and 1 for the temperature.
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Secondly, repeatedly rescaling the potential to the correct gauge by applying directly
the transformation rules in egs. (2.25) and (2.26). Both strategies do not work
perfectly well.

At the end of an optimization it is still possible to have punishments. If the
punishments are too high, the fit results should be reconsidered as the optimization
run has probably been negatively influenced. Reducing the number of sampling
points for the embedding functions can help in this situation.

Due to the spline interpolation the periodic rescaling is not an exact operation
and introduces errors. That is why rescaling is an additional option which can be
incorporated at the compiling stage. And, for that reason, it is listed as a potfit run-
time parameter in the work flow diagram in Figure 3.1. However, since potfit uses
internally different gauges for the rescale and non-rescale part, care must be taken.
For example, if one performs a run with rescaling and afterwards a run where the
rescaling is disabled, either the dummy constraints are able to adjust the potential
to the new gauge or the gauge must be adapted to match the gauge of the rescale
part.

To conclude this paragraph, the starting potential should be scaled to the correct
gauge, for example, by performing one Powell optimization step with an additional
rescaling. It is possible to start without the scaling, but the search algorithm — in
particular Simulated Annealing — will most certainly take too much time to get to
the right gauge.

3.1.2 General Remarks

As mentioned at the beginning of this chapter, the biggest challenge for a successful
potential generation proved to be the lack of a general systematic strategy. There
are a lot of different parameters of different types. The influence of the parameters
on the fit results is difficult to trace, i.e., it is not apparent which conclusion should
be drawn when changing such a parameter. Consequently, the overall systematic
“grip” on the fitting process is hard to find and a lot of time is spent on getting
a “feel” for the parameters. In this paragraph some gained knowledge on how to
approach this problem appropriately are presented.

The most important aspect is the building of a potential database where all the
relevant information are put together. This includes the fitting parameters as well as
the various fitting results. A database is a very helpful tool, since the fitting problem
usually evolves rather fast in a significant number of different potentials. Thus, the
obvious purpose is to keep track of all the potentials. However, the more important
feature of such a database should be the ability to quickly compare the various
potentials and their quantities. Since the parameter space is not quite transparent
at first sight, the influences of the different parameters have to be investigated ex-
tensively. The process involves a lot of trial and error. Nevertheless, it provides deep
insight into the particular fitting problem and the shape of the parameter space.
For example, despite the fact that the root mean squares differ the corresponding
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potentials can be very similar in potential form. They are obviously in the same
domain of the parameter space, the fitting just exhibits different local minima which
are close together. By just looking at the root mean square this correlation might
have been missed. Such knowledge helps evaluating the importance of a parameter
or decision criterion at a certain stage in the fitting procedure.

The above statement contains an aspect which has been mentioned before, the
hierarchy of parameters. Sampling points, cutoff radii, or energy weight are not
important at the beginning of the fitting process. If a potential fails to produce a
desired property in any satisfactory manner, adjusting and optimizing those para-
meters will not introduce this property, even though the rms is reduced in the
process. The necessary information was not included in the first place, thus, the
reference configurations have to be reconsidered. On the other hand, if the basic
information exists in the data, optimizing the parameters of “lower” hierarchy and
therefore reducing the rms will most certainly enhance the desired quality of the
potential.

At this stage of fine tuning, the “overfitting” of a potential should be tested. This
can be used as a strategy to optimize the number of sampling points. Increasing the
number of sampling points will improve the rms as more parameters are introduced
into the over-determined fitting problem. However, at some point the potentials are
fitted too closely to the reference data. The extreme would be one fitting parameter
for every reference data. That is not the desired goal. As mentioned earlier, the
potential should be able to interpolate between the different reference configurations,
describing structures nearby the reference configurations. To avoid this behavior
of overfitting, the final potential is checked against reference configurations not in-
cluded in the potentials. If the rms of those “test structures” does not get reduced
or even gets worse, overfitting takes place and the number of sampling points has
reached its limit (strategy proposed in [56]).

Another useful strategy is including validation results as early as possible in the
fitting cycle. In the context of different types of parameters and their hierarchy,
considering the results of the validation helps steering the overall fitting process
from the start. The early feedback from validation tests gives hints for wrong or
incomplete reference data, which were not visible in the direct fitting results. Also,
the influence of parameter modifications can be better seen and understood. Im-
portant for this strategy to work is to find a clear definition of what the potential
should accomplish at the least, such as a mandatory property (or properties) which
the parameters of the potential can be easily checked against. As the validation is
a post-processing evaluation, the implementation of this comparison is problematic.
Automation of certain evaluation steps should be considered from the beginning,
since a lot of different potentials have to be compared in the course of the fitting
process.
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3.2 Effective Potential for the MnAs/Au Interface System

3.2 Effective Potential for the MnAs/Au Interface Sys-
tem

The generation of the effective potential for the MnAs/Au interface system involved
a lot of the adjustment paths shown in Figure 3.1. As previously mentioned, from this
flow diagram the optimization loop with the adaption of the reference configurations
is important at the beginning of the process. The reference configurations are the core
of the potential. For this reason, a short description of those reference configurations
is given in the following, where the initial optimization loop is apparent. Afterwards,
some additional details on the fitting process are presented, next to the resulting
potential. In the end of this section the crucial validation of the effective potential
is discussed.

3.2.1 Fitting Process of the Potential

The explicit fitting process for the EAM potential has been done according to the
strategies mentioned in Section 3.1. However, most of the general strategies were
gained during the process and not applied from the beginning. Therefore, a full
description of the process is omitted at this point. The preceding section of the
fitting strategies shall fulfill the purpose instead as it conveys the approach taken.
The focus in this section lies on the reference configurations used for the final
potential as well as on the final stage of the process, the fine tuning.

Reference Configurations. The MnAs/Au interface system with gold growth
on MnAs is the main application of the desired potential. Thus, the reference
configurations need to describe gold bulk and surface structures (system I), MnAs
bulk and surface structures (system II), and interface structures (system III). Table
3.1 gives an overview of the used reference configurations, separated in the three
different systems I-III. The crystal type, specific structures, number of configurations,
and average number of atoms per configuration are listed as well as some details
about the generation of the reference structures. In total, the reference database
consists of 174 different configurations with an overall number of 16246 atoms.
Together with three force components for each atom and an energy value for each
configuration, the reference database consists of 48912 single reference data points
the final potential has been fitted to. Structures of system I and II were treated
separately, meaning potentials for each system were created first. Only in the last
step of building the final potential, all three different systems have been considered.
The separate treatment was employed, since it is an interface system, hence, MnAs
and gold are separated and not mixed in one alloy. Especially concerning the final
step this approach proved to be advantageous.

Several approaches were applied to produce a sufficient set of reference structures,
strategies already mentioned in Section 3.1.1. The general idea is starting from
appropriate ground state structures and modifying them accordingly. Quantitative
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details of that modifying process are not crucial. The objective was always to get
the radial distribution of the ground state structures smeared out sufficiently.

Table 3.1. An overview of the reference configurations: The first three columns display the
general system, lattice type, and specific structure. The structure of the {10-10} MnAs sur-
face includes three different surface terminations, labeled As2, Asl and Mn (see Figure 3.2).
The fourth column describes the number of configurations N, as well as the average number
of atoms per configuration N,. In the last column some information about the generation
of the reference configurations are given. MD snapshots with an ad-hoc or an intermediate
potential were used. Also, the lattice constants have been strained with additional random
shifts of the atoms out off their equilibrium position.

system type structure N./N, comment
I: Au fce bulk 15/64  strained
23/64  MD (ad-hoc), 300K
{100} surface 15/72  strained
22/84  MD (ad-hoc), 300 K
IT: MnAs NiAs  bulk 15/108 MD (ad-hoc), 300K
15/128 MD (intermediate), 600 K

{10-10} surface

As2 9/85.3  ab initio MD, short run
As2 8/128  MD (intermediate), 300 K
As2, Asl, Mn 24/90  strained

III: MnAs/Au NiAs/— {10-10} surface/
Au adatoms
As2 3/76 manual placement of Au

As2 9/120  MD (ad-hoc)

As2, Asl, Mn 16/122.6 MD (intermediate)
deposition of Au

System I - Au Reference Configurations:

The starting structure for all the different reference configurations was a face centered
cubic lattice with the experimental lattice constant. Surface and bulk structures
were then modified as follows. The volume was strained along the cubic lattice
constant (maximum strain 3%) with additional random shifts of the atoms out off
their equilibrium position. Furthermore, MD snapshots simulated with an ad-hoc
potential were produced at room temperature. The surface structures include only
the {100} surface. Although the starting structure is based on a face centered cubic
crystal (fcc) with the experimental lattice constant, the final potential reproduces
the ab initio lattice constant (see Section 3.2.2).
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c-axis
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Figure 3.2. MnAs in the hexagonal NiAs structure: On the left, arrangement in a hexagonal
cell showing the full dimension of the lattice parameters a and ¢. On the right, the different
surface terminations of the {10-10} surface. The surface can either be terminated with one
As layer (Asl), one Mn layer (Mn), or two successive As layers (As2).

System II - MnAs Reference Configurations:

MnAs reference configurations are based on the hexagonal NiAs crystal structure,
the structure in which the MnAs nanoclusters crystallize in experiment [2—4]. The
experimental lattice constants were chosen for the starting structure. In a first set of
reference structures, an ad-hoc pair potential was utilized. This potential is derived
from a simple pair distance relation calculated with ab initio methods. Several MD
snapshots of bulk structures at room temperature were created with the ad-hoc
potential. Surface structures are considered by including the {10-10} surface with
three different surface terminations. They are shown in Figure 3.2, next to the
hexagonal NiAs structure. The {10-11} surface is also apparent in experiment, but
investigating that particular surface was originally not intended when building the
database. However, as the validation of the potential shows later, other surfaces like
the {10-11} surface are described by the potential with an accuracy equivalent to the
{10-10} surface. Snapshots from ab initio MD simulations and strained structures
are used as reference configurations for the {10-10} surface. The strained structures
were produced by increasing and decreasing the unit volume up to 20% while keeping
the lattice parameter ratio of ¢ over a fixed. Like in the case of the strained gold
structures, the atom positions are shifted randomly by a small amount.

The potentials generated from the first set of configurations exhibit non repulsive
behavior for short pair distances, especially the As-As interaction. That was corrected
by supplementing the final reference configurations with MD snapshots at higher
temperature (around 600K), produced with an intermediate potential.
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System IIT - MnAs/Au Reference Configurations:

For the last system reference configurations had to be found which represent the
deposition of gold atoms on the MnAs surface. A first set included configurations
where a few gold atoms are manually placed above the MnAs {10-10} surface. Addi-
tionally, a small amount of gold atoms were simulated on top of the MnAs surface,
again with the help of an ad-hoc pair potential based on ab initio pair distance
calculations. A potential was created with this first set, enabling Au deposition
simulations on the three different surface terminations. MD snapshots from those
simulations complement the final configuration database.

Ab Initio Calculations. The ab initio calculations of the reference calculations
were done with the VASP program package [57-60]. That includes also the ab initio
MD runs required to create suitable reference structures. The projected augmented
wave method (PAW) was used with employing the PBE parameterization of the
generalized gradient approximation (GGA) to the exchange-correlation functional.
Extensive convergence tests were performed beforehand to determine the appropriate
numerical parameters of the ab initio calculations.

The most important parameter is the k-point mesh as the forces are very sensitive
to it. The k-mesh density is kept consistent as far as the different cell sizes of the
system I-1II allow it. Explicit values for the gamma-centered and automatically
generated k-grid are a 4 x 4 x 4 grid for the bulk structures and 1 x 4 x 4 grid for the
surface structures. A further essential parameter is the energy cutoff of the plane
wave expansion. In VASP this is governed by the variable ENCUT. The influence of
the ENCUT parameter turned out to be less important than the k-mesh. Starting
from a relatively high setting of ENCUT= 800¢€V for the structures of gold (system
I), the parameter could be reduced to 400 eV for the other two systems, still yielding
sufficiently accurate results. In the final setting the absolute value of the total forces
on each atom and the energies for each configuration show convergence of at least
two decimal places in their respective units (eV/A and eV). Since the smallest value
of the total force has the magnitude of 10~!, this also means that the accuracy is
at least one significant number for the smallest magnitudes of the reference data?.
It is a reasonable accuracy, as the typical rms of a fitted potential model is in the
range of 10 to 100meV /A for the forces.

All structures including MnAs were calculated magnetically by setting ISPIN=2
(collinear spin-polarized calculation). For the smearing the method of Methfessel-
Paxton order 1 was used with a smearing width of SIGMA=0.2eV.

Fine Tuning. As mentioned in the previous paragraph, EAM potentials were first
generated for gold and MnAs separately. After various different potfit runs and
intermediate potentials, final potentials for each system were available. Several fine

Which are the small forces, as the magnitude of the energies is about 1eV.
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tuning steps were done in the last stages of the optimization. The effects of different
energy weights, cutoff radii, and reduced sampling point densities were investigated
by including some validation results in the process. The lattice parameters and
surface energies predicted by the potential were compared to the corresponding ab
initio values. Both quantities are not used as fit data (keeping in mind, fit data are
only forces and energies) and picked as mandatory quantities the potential should
at least reproduce. This approach — among other things — made it possible to detect
artificial wiggles of the potential functions, especially at the long range boundary.
If reducing the sampling points or the cutoff radius of a function has no or only
little influence on those quantities, the potential is adapted accordingly. Reducing
the sampling points is often a good idea, since it avoids the overfitting problem. In
that regard, calculations of the root mean square of test structures revealed no sign
of overfitting.

Some additional conclusion could be drawn from the comparisons. The long range
contribution of the embedding density in the transfer function turned out to be not
important. This led to a significant reduction of the cutoff radius for those functions,
as seen in the final potential. The parameter space of the fitting problem in the
fine tuning stage consists of various local minima, i.e., having different potentials
with a comparable accuracy. Since the changes in that accuracy are small and not
always improving the quality of the considered quantity, it showed that the maximal
optimization limit for some parameters has been reached. Another important aspect
in that fine tuning stage was doing potfit runs without the periodic rescaling as
it introduces additional errors. Only using the dummy constraint for keeping the
gauge avoids the behavior and led to improvements of the potentials. Like mentioned
earlier, the internal implementation of the gauge had to be adapted, because potfit
uses different types of gauges for the rescale and non-rescale part. Furthermore,
the embedding function boundary at high densities caused sometimes problems as
the extrapolated values outside the definition regime were not “repulsive”, mean-
ing, the embedding function runs to significant negative embedding energies for
high densities. Such behavior has been handled by either adapting the number of
sampling points or, in this case more efficient, artificially changing and fixing the
upper boundary to force the embedding function to a more desirable extrapolation
regime. Although the measure seems a bit drastic, the influence on the potential
and its accuracy was only marginal and therefore acceptable.

With both EAM potentials available for each system — MnAs and Au — the
next effort was joining them in order to build the EAM potential for the complete
interface system. Starting from the two generated EAM potentials for each sys-
tem, the interaction between MnAs and Au has been introduced, i.e., two new pair
functions — Mn-Au and As-Au — were added. Taken as a starting potential, an
optimization run to reproduce the values of all three reference configuration was
performed in a first attempt. The general problem with this approach is that the
achieved accuracy of the individual potentials is lost at the end of the optimization
run. In order to keep the quality of the potentials, the former interactions had to be
fixed (adjustable option in potfit). The step is reasonable, since the potential — like
mentioned before — should describe an interface system between MnAs and Au
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and not some sort of alloy including all elements. Even with that idea of fixing in
mind, the joining of all interactions proved to be still challenging. The two new pair
functions have to be adapted and therefore were not fixed. However, the question
remains if all the functions of the existing potentials for MnAs and Au should be
kept fixed. A reasonable choice is keeping the embedding and transfer functions free
to be optimized, as those functions can be influenced by the reference configurations.
The transfer densities and embedding energies for each element are included in the
interaction of Mn-Au and As-Au.

It turned out that this assumption was not mandatory. The interaction of MnAs
with Au can be built by the new pair functions and the fixed transfer and embed-
ding functions. The reason is the fact that fixed functions have an influence on the
gauge of the EAM model. One gauge degree of freedom makes it possible to move
contributions from the pair interactions to the transfer functions and vice versa
(see (2.25)). Fixing the pair functions will fix this gauge degree of freedom. But the
gauge is now not necessarily equal to the one potfit is trying to conserve by applying
periodic rescaling and dummy constraints. Further, the optimization with periodic
rescaling fails when using fixed pair functions. Thus, periodic rescaling had to be
turned off in general. With the dummy constraints enabled, the optimization runs
successfully, i.e., a minimum is found. However, the constraints and punishments
are unnecessary and even problematic, since they do not vanish in the minimum of
the optimization if the gauge is different. In that case they have a negative effect
on the search for the minimum.

To find out the best setting for the joining of all interactions, different combina-
tions of those settings were tested. That included fixing either transfer function or
embedding function or both, as well as choosing reference configurations from all
three systems or just the ones from system III. Disabling the dummy constraints
and punishments was also added to the testing, for the reasons discussed above.
The best result was achieved by fixing all functions except the new pair functions,
turning off any dummy constraints and punishments (potfit option “nopunish”), and
using only the reference structure of system III°. Keeping the transfer function and
embedding function free leads to a loss in accuracy of the individual potentials for
MnAs and Au, like it was the case when joining the interactions without using fixed
potentials.

Final Potential. The numerical quality of a potential fit is represented by the root
mean square deviation. As pointed out earlier, the rms is a measure for the deviation
of potential values Fj(c) and reference data F}. It is defined by

Nr

Frms(a) = | 1/Nr Y (Fi(a) — FQ). (3.3)
k=0

Technical note: in order to use the generated models for MnAs and Au for this kind of reference
structures, a new sampling point at the minimum left boundary had to be added by extrapolation
and removed after optimization.
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Table 3.2. The root mean square deviations of the energies per configuration as well as
the force components of each atom between the EAM model and the reference data of each
system: In the case of system I and II, the values correspond to the fit of the individual
EAM models for Au and MnAs, respectively. For system III the deviations are the results
of fitting the pair functions Mn-Au and As-Au to the reference data, while all other model
functions were kept fixed during the optimization.

rms deviations energies [meV] forces [meV/A]
system [: Au 6.38 33.90

system II: MnAs 16.45 92.85

system III: MnAs/Au 45.56 213.33

In contrast to the target function (2.47), the rms does not include any dummy
constraints or weights. Hence, the rms is the true indicator for a mathematically
successful optimization run, since it describes the unbiased deviation of model values
and reference data.

The collective rms deviations of the final potential for MnAs/Au is shown in
Table 3.2. The rms errors are calculated for the set of energies and forces separately,
which are the two types of reference data the potential has been fitted to. As men-
tioned previously, individual EAM models of Au (system I) and MnAs (system II)
were produced. The interaction between Au and MnAs was realized by fitting the
pair functions Mn-Au and As-Au to the reference structures of system III, while
keeping all other model functions fixed. For that reason rms deviations of three
different optimization runs are available. The rms errors increase with every system,
starting from I to III. On the one hand, this behavior can be explained by the
applicability of the potential model to the material system in general. However, the
conclusion seems obvious that the rising number of elements in the model is re-
sponsible for the increasing rms as well. The complexity of the model increases with
every element, since new potential functions are added.® As the problem gets more
complicated, the EAM model may work better for a system with fewer elements.

With the help of the so-called scatterplot, the fit result is visualized by plotting
every fitted potential value against the corresponding reference data point. Figure 3.3
shows the scatterplots of the final potential for each system. The straight line y = =
through the origin is equivalent to perfect agreement. A failed optimization run is
immediately visible if the scatterplot has absolutely no resemblance to a straight
line. The accuracy of a fit is represented by the thickness of the scatterplot, which
can be seen by comparing the rms deviations of Table 3.2 to the line thickness of
the particular scatterplots. The analysis of the scatterplots makes it also possible
to detect problematic reference structures, i.e., structures the model describes signi-
ficantly worse in comparison to other configurations. Such information is valuable
in finding the appropriate reference configurations (referring to Section 3.1.1).

The total number of functions of an EAM model iS ntotal = Nelem (Nelem + 5)/2, Nelem being the
number of elements.
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Figure 3.3. The scatterplots representing the fitting data for each system: The potential
values (y axis) are plotted against the reference values (x axis). The upper plots show the
fitting data of the energies, the lower plots those of the forces. A perfect agreement represents
the red line y = x through the origin.

Figure 3.4 displays the functions of the final EAM model for the MnAs/Au in-
terface system. The potential model consists of 12 functions, that includes 6 pair
functions for each pair interaction as well as 3 transfer functions and 3 embedding
functions for each element. The points on each function line are the optimized
sampling points (spline knots) of the potfit run, whereas the lines are the tabulated
function values of the potential format of the MD package LAMMPS [61, 62]. For
this potential format LAMMPS uses a linear interpolation scheme, thus, the function
values are the result of a spline interpolation with a very narrow spacing of each
point”. For the pair functions the number of sampling points is 20 with a relatively
high cutoff radius of 7. = 7 A. The pair functions of Mn-Au (14) and As-Au (10)
are an exception as they have shorter cutoff radii in the range of 4 to 5A. The
same holds for the transfer function with 11 to 12 sample points. Like mentioned
previously, the shorter radii are the result of the fine tuning of the potential. The
long range contribution of those functions had negligible influence on the target
function. For all functions the spacing of sample points is equidistant, with one

potfit offers the possibility to write the potential output for LAMMPS. The responsible routine had
to be adapted in order to consider different cutoff lengths correctly.
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Figure 3.4. The final EAM potential for the MnAs/Au interface system: The plots show
the spline knots of each model function and the corresponding cubic spline interpolation.

exception at the lower boundary of the Au pair interaction. The spacings have the
same distance of approximately 0.25 A for every pair and transfer function. However,
the spacing distance of the embedding function depends on the available density
range and the applied gauge and is determined in the internal rescaling scheme. The
complete list of sampling points can be found in the Appendix.

3.2.2 Validation of the Potential

The importance of validating the potential has already been stressed several times.
The optimization on its own does not ensure the quality of a generated effective
potential. Only the comparison of quantities — evaluated with the potential — to
data not included in the fit can show the reliability. There are all kinds of different
quantities the potential can be checked against, but usually one considers properties
that are related to the situation the potential will be used later in an MD simulation.
In that regard, when using the potential for situations it has not been trained and
validated for, one should keep in mind possible shortcomings of the results.
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In order to validate the potential for MnAs/Au, bulk properties of both MnAs and
Au were tested first. That included the most basic validation test of running a simple
MD simulation to check whether the potential model stabilizes the structures of Au
and MnAs, which is the fcc or hexagonal NiAs structure respectively. After fulfilling
this requirement a quantitative analysis was done by looking at the structural and
elastic properties, i.e., the lattice parameters and elastic constants. As the main
purpose of the potential is to simulate the gold deposition on the MnAs surface,
the focus was put on the surface energies of MnAs for the second part of the
validation. Additionally, since in the fitting process different intermediate potentials
were unstable during surface simulations, it became necessary to take a closer look
at the surface properties of MnAs.

Structural and elastic properties of bulk MnAs and Au. The lattice con-
stants derived by the EAM potential model are a = 3.658 A and ¢ = 5.497 A in the
case of MnAs. For fcc Au the potential predicts a value of a = 4.155 A. Compar-
isons to the corresponding ab initio values show excellent agreement. The relative
deviations are less than 0.1% for all lattice parameters (summarized in Table 3.3
on p. 48 ). A lot of effort was put into joining all interactions for the final poten-
tial to keep this accuracy, already provided by the single EAM models for Au and
MnAs (see previous Section 3.2.1). The comparison to experimental values of the
lattice constants reveals a typical relative deviation from ab initio lattice constants,
which is in general of the order of a few percent. On the one hand, the deviations
are due to the approximation of the exchange-correlation functional. On the other
hand, one has to keep in mind that ab initio values are the result of ground state
calculations — meaning the values correspond to a temperature of 0 K — whereas the
values from experiment are taken at finite temperatures. MD simulations consider
temperature effects, but in this case a static calculation was done first to focus on
the comparison with ab initio data.®

The lattice constants were determined by minimizing the potential energy as a
function of the atom coordinates, a feature provided in the MD package LAMMPS.
Another approach is plotting the potential energy with respect to the lattice con-
stants — like it is done in Figure 3.5 — and subsequently looking for the minimum of
the 2d plot. It has been used to check for any inconsistencies. If there are at least two
lattice constants, this approach allows only the calculation of the optimal volume by
plotting the potential energy over volume or the pressure over volume. Besides the
excellent prediction of the ab initio lattice constants, the corresponding potential
energy hypersurface is represented very accurately as well. Like already mentioned,

In a dynamic calculation — employed by an MD simulation — the thermal expansion coefficient for
gold was estimated to 15.3-107% /K by considering the increase in lattice constant in the temperature
range from 287K to 296 K. This is in good agreement with the experimental thermal expansion
coefficient of 14.2 - 107% /K at room temperature [63]. In case of MnAs the same calculation was
done for the volumetric coefficient of thermal expansion. In the ferromagnetic range (7' < 311 K)
the calculated coefficient has the magnitude of ca. 5-107° /K. Which again is a good qualitative
agreement with experiment, since at least two experimental values are reported in literature of the
same magnitude (5-107° /K [64] and 18 - 107° /K [65]).
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Figure 3.5. Potential energy versus lattice constant: The comparison with ab initio data
is done for the two lattice constants a and ¢ of the hexagonal MnAs (upper plots) and the
one lattice constant a of fcc Au (lower plot). In the case of MnAs the plots were taken by
setting the respective other lattice constants to ¢ = 5.50 A and a = 3.66 A, which are the
resulting lattice constants from minimizing the potential energy.

Figure 3.5 displays the potential energy versus lattice constants in comparison to
ab initio data. Again, this is data which has not been considered for the optim-
ization. Concerning MnAs the plots represent cuts through the two dimensional
hypersurface F(a, ¢) at ¢ = 5.50 A and a = 3.66 A. The complete hypersurface shows
similar agreement to the ab initio counterpart, but is omitted for lack of adequate
visualization.

When looking at the reference data, it is not surprising that the potential is
able to describe the potential energy depending on the lattice constants. Perhaps
not with the explicit accuracy, but the potential is expected to reproduce the basic
structural properties, since the reference data contains strained structures. In the
neighborhood of the equilibrium lattice constants, the potential is based on strained
structures of the reference data. Hence, it accurately interpolates those structures.
However, above that range the reference data does not include structures with that
level of strain. Thus, outside a lattice constant variation of approx. +7% for MnAs
and +£3% for Au the results are actually an extrapolation, which still results in a
very good description of the potential energy.
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Table 3.3. Structural and elastic properties in comparison with ab initio data not included
in the fit. Lattice constants, potential energy per unit cell, and elastic constants are shown.
The experimental lattice constants are displayed as well. All data without an upper index
are results of this work.

MnAs EAM GGA_PBE Experiment
Uattice[A] 3.658 3.660 3.730°
Clattice|A] 5.497 5.498 5.668°
Epot[eV /unit_cell]  28.18 28.24

C11][GPa] 104.53  109.80° 40.00°
C12[GPa] 42.61 42.72% 8.00°
C13]GPa] 41.26 43.38¢ 10.00¢
Cs33[GPa] 121.11  138.43% 110.0¢
C14[GPa] 64.22 69.47° 34.00°
Au EAM GGA_PBE Experiment
Aattice| A 4.155 4.156 4.0784
Epot[eV /atom] 3.221 3.220

C11]|GPa] 156.18  154.64 201.07¢
C12[GPa] 111.55 132.68 169.37¢
C14|GPa] 27.37 25.92 45.10°

@ ab initio calculation from [66]. Experimental measurements at:

42K [67], © 303K and in the paramagnetic state [68],
4 room temperature [69], and ¢ 50 K [70].

The elastic constants were determined by deforming the simulation box in dif-
ferent directions and calculating the change in the stress tensor, as they are the
link between the stress and strain tensors. A LAMMPS script provided by the used
distribution version® was employed for the actual calculation. The resulting five
independent elastic constants of the hexagonal system MnAs are C1; = 104.53 GPa,
Cho = 42.61 GPa, C13 = 41.26 GPa, (33 = 121.11 GPa, and Cyy = 64.22 GPa. For the
cubic system of gold the potential evaluates the three independent elastic constants
as C11 = 156.18 GPa, C12 = 111.55GPa, and Cyy = 27.37 GPa. The comparison
with ab initio data shows a good agreement. For most of the calculated elastic con-
stants the relative deviation is approx. less than 5%, in three cases even less than
1%. The constants Cyy and Cs3 of MnAs as well as Co of gold are an exception
with higher deviation of 7.5%, 12.5%, and 15.9%, respectively. Noteworthy is the
fact that the ab initio MnAs elastic constants are taken from an external source
[66]. Hence, the values do not only help validating the potential, but they confirm
the ab initio calculations of this work in general.

In the case of gold, the trend of the corresponding experimental elastic constants
is well reproduced by the EAM potential. The relative ordering of the three con-
stants is conserved, the values are shifted in the same direction, and the relative
deviations range from 20 to 40 %. The same cannot be stated for MnAs, as seen

¥ located in the “examples” folder of the installation directory
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by the high relative deviations. However, one has to consider that the experimental
values are measured at 303 K and, most importantly, in the paramagnetic state,
where the hexagonal NiAs crystal structure is slightly distorted (orthorhombic) [68].
Still, the relative ordering of the constants is reproduced except for Ch2 and Cis,
which the EAM potential also missed in comparison to the ab initio values. This is
acceptable, since the values are relatively close together.

The elastic constants and their counterparts — ab initio and experimental — are
displayed in Table 3.3 in addition to the lattice constants. The table also shows the
potential energy per unit cell as well as the experimental lattice constants for MnAs
and Au.

Surface Energies of MnAs. Apart from the validation of the potential, the
purpose of calculating the surface energies of MnAs was also to analyze which
surface structure is the most stable. This information has been used later for the
surface and deposition simulations.

The surface energy is the difference in energy between a surface structure and a
bulk reference structure per surface area. Hence, in this work the surface energies
are calculated according to the following definition,

st = EsNurf - Elg)\ll.llk,ref’
2A
with By yop = NI B 4 N(A) pas),

(3.4)

EX . denotes the energy of an N-layer surface slab. E{Xllk’ref is the energy of the
corresponding N-layer bulk reference structure, which consists of the energy per
layer of each element, EM™) or E(A%) times the number of occurring layers, NMn)
or N(%) respectively. Symbol A represents the area of the surface. The factor two
stems from the fact that the slab is usually described by a structure where the
periodic boundaries are turned off in directions of the surface, leading to two surface
sides. The surface energies are obtained in a static calculation, meaning one uses
ideal structures with atoms in their equilibrium position. The considered surface
structures are motivated from experiment. In Figure 3.6 three different surface
directions are shown, which the MnAs nanoclusters exhibit during their growth
[2, 4]. Each direction can be terminated with different layers, being either a Mn
layer, an As layer, or — in case of the {10-11} surface — a mixed layer of Mn and As.

Comparing the surfaces energies of different terminations to ab initio data is
subject to some restrictions. In order to calculate the energy per layer of Mn or
As, the energy of one Mn or As atom in the bulk is required. This is not possible
with the used ab initio code VASP. However, the energy of the periodic MnAs
unit cell can be calculated, which consists of two Mn and two As atoms. For this
reason a reference bulk energy is obtained as multiples of the energy per unit cell.
Consequently, comparisons are only considered for surface structures which can be
periodically continued. The surface terminates directly at the boundary of a periodic
cell of MnAs. Such structures usually consist of two different surface terminations at
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Figure 3.6. The different terminations of the MnAs surface planes {10-10}, {10-11}, and
{0001}: The {0001} surface has two possible terminations, consisting either of one As layer
(As) or one Mn layer (Mn). The {10-11} surface can be terminated with one Mn layer (Mn)
or a mixed layer of As and Mn (As_Mn). Both surface planes are displayed on the left. On
the right, the three different terminations of the {10-10} surface are shown, labeled as Asl,
Mn, and As2. The latter corresponds to two successive As layers.

both open ends. The resulting surface energies are therefore a mean of both surface
terminations. The exception is the {10-10} surface, since — when applying periodic
boundaries in that direction — the surface structure starts and ends with the Asl
layer at both sides.

In summary, four different comparisons are carried out by this approach. They
are listed in Table 3.4. The relative deviations are at least lower than 12%, two of
which even show a deviation around 1%. In that case, surface slab and bulk reference
energies exhibit the same deviation from the corresponding ab initio values. Thus, the
deviation gets canceled out when taking the difference. The already good agreement
gains more importance considering the statement of Rosch et al. [71]. They express
the fact that surface energies are hard to reproduce even with EAM potentials. Their
published potential for NbCry shows a deviation in surface energy of about 30%.
Another noteworthy aspect concerns the selection of the reference configuration.
Recalling Table 3.1, the reference configurations only include the {10-10} surface
direction. Nevertheless, the other surfaces are described with a similar accuracy,
proving the transferability of the effective potential in this regard.

Since the energy per atom species can be computed with the EAM potential,
(3.4) is further applied to calculate the surface energies of the remaining individual
surface terminations. Hence, the additional surface energies in Table 3.4 are actually
predictions.
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Table 3.4. Surface energies of MnAs in ¢V /A?: The surface energies of the first four entries
are calculated with surface and bulk reference structures having the same stoichiometry as
the MnAs periodic cell. Hence, comparisons to ab initio data were possible. Three of the
four surface energies are the mean of two different terminations due to the periodic cell
requirement. The surface structures of the remaining table entries do not fulfill the periodic
cell requirement. However, the effective potential is still able to predict the surface energies
of those terminations.

MnAs: surface type EAM GGA_PBE
{10-10}_As2Mn  0.0973  0.1070
{10-11}_ Mn_AsMn  0.0693 0.0699

{0001}_As_Mn 0.0831  0.0942
{10-10}_As1 0.0595  0.0589
{10-10} As2 01232
{10-10}_Mn 0.0714
{10-11}_Mn 0.0642
{10-11}_AsMn 0.0745
{0001}_Mn 0.0640
{0001}_As 0.1023
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4 Simulation Results

The developed EAM potential for the MnAs/Au interface system has been applied
in various MD simulations. In order to find a suitable MnAs surface for the growth
simulation, an analysis of different possible MnAs surfaces was done at first. After-
wards, the actual deposition simulation of Au on MnAs was performed.

All MD simulations are done with the MD package LAMMPS [61, 62]. The visual
representation of the MD snapshots is realized with the visualization software ovito
[72, 73]. Next to the visualization of atomistic simulation data, the software has also
a few analysis features, which have been used to investigate the grown structure of
gold.

4.1 Surface Simulations

Before performing the actual deposition simulations, the MnAs surface has to be
prepared in a preceding surface simulation. When starting from a cut bulk structure
as surface structure, one has to make sure that the surface is described without
introducing artificial effects and that the surface is relaxed appropriately. Further-
more, the exact structure and stability of the different surface terminations of MnAs
nanoclusters are experimentally unknown. Hence, it is also an interesting question
for the experimentalists, besides that it is necessary to know on which surface the
deposition should be simulated. The most stable structure in simulation is most
likely the surface structure occurring in experiment.

Figure 4.1 displays a cross-sectional transmission electron microscopy (TEM)
image of a typical MnAs nanocluster from experiment. The surface directions of the
three different surfaces are indicated, which have also been characterized in experi-
ment. The surface facets of the nanoclusters exhibit no atomic steps, i.e., they are
atomically flat [2]. This is an important information considering the correct setup
of the surface structure for the simulation. The according surface terminations have
been already introduced in the discussion and validation of the surface energies
(Section 3.2.2). This time, they are shown in comparison to an experimental MnAs
nanocluster, illustrating the direct connection to the experimental structure.
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Figure 4.1. Surfaces in experiment and simulation: On the left, a cross-sectional TEM image
of a typical MnAs nanocluster, taken from [2]. The surface directions are determined by
experiment, whereas the explicit surface terminations are unknown. On the right, the already
presented different surface terminations in direct comparison to the MnAs nanocluster.

4.1.1 Simulation Setup and Settings

For the preparation of the surfaces, a few things have to be considered in order to
reproduce the surface behavior correctly in the simulations. Figure 4.2 shows the
used setup of the simulation box. The atomic layers of the surface structure — or
substrate — are assigned to three areas which are treated differently in the MD
simulation. The lowest atomic layers are kept fix by excluding them from the actual
MD integration scheme, by which the atom positions are updated each time step.
Since periodic boundary conditions are turned off in the direction perpendicular to
the surface, the fixed layers avoid a drift of the whole structure. This is required
especially in a deposition simulation, because incoming atoms (adatoms) hit the
substrate and transfer their momenta to the latter.

The area above the fixed layers is temperature controlled (NVT ensemble). The
second area enables temperature control without influencing the surface structure
directly. Furthermore, in the following deposition simulations the substrate will be
heated by the incoming deposition particles, as they transfer their kinetic energy
towards the substrate. Hence, the additional kinetic energy has to be withdrawn
from the system. The explicit thickness of the thermalized area is less important. It
just should be ensured that the additional kinetic energy is sufficiently removed from
the system over time. The actual surface area is not constrained by a thermostat
and represents a standard NVE ensemble. Thus, the surface can develop freely and
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NVE ensemble

NVT ensemble

fixed layers

Figure 4.2. The general simulation setup for the different surfaces: In order to describe
all possible relaxations or reconstructions of a surface, the structure is prepared in three
different areas. The lowest layers of atoms are kept fixed. Above, an NVT ensemble is
employed with the help of a thermostat. The layers at the top are not thermalized by using
a standard NVE ensemble. With regard to the following deposition simulations, this setup
additionally guarantees that momentum and kinetic energy transferred to the substrate by
an incoming deposition particle do not lead to a position shift or heating of the substrate.

all possible relaxations or reconstructions' can take place. A basic rule is that the
layer thickness of this area has to be bigger than the cutoff radius of the interaction
model. Such a fixed/ NVT/NVE layer setup mimics a surface in the best way.

For each surface terminations, simulations with similar settings were performed.
The average particle number of all simulation boxes with the different surface termin-
ations is 100 000. Depending on the specific surface terminations, the number varies
slightly. When generating the structures, the number of considered unit cells in each
dimension were chosen in a way to have comparable surfaces. The dimensions of
the simulation box are in the order of 10 nm in each space direction (values between
8 and 16 nm). However, the box is not cubic. It is a tilted triclinic box due to the
hexagonal symmetry of the MnAs structure. According to the specific set up shown
in Figure 4.2, the explicit division of the different areas is as follows: At least 3
atomic layers are kept fix, while around 15 layers are controlled by a thermostat.
The remaining layers (40 to 50) stay in an NVE ensemble.

The simulation run is split in two phases. First, a kinetic energy corresponding
to a temperature of 300 K is distributed to every atom. At the beginning of the
simulation, the kinetic energy drops to the half, because the other half converts to
potential energy. Therefore, the Langevin thermostat is applied to get the sample
quickly to the desired temperature of 300 K, since this kind of thermostat is espe-
cially suited for this purpose. Afterwards, when the temperature is reached, the
Nose-Hoover thermostat generates the canonical ensemble (NVT') at that temper-
ature in the middle area. Each phase is simulated for 50 000 time steps, resulting in
a total number of 100 000 steps. With a time step size of 1fs, the overall simulation
duration is therefore 0.1 ns.

with emphasis on “possible”, since — depending on the explicit box size or atom composition at the
surface — not every surface reconstruction is possible.
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{0001} _As

{0001} Mn

Figure 4.3. Basic stability analysis of the {0001} surface in the As termination (top) and
Mn termination (bottom): On the left, the surface structure before the simulation based on
a cut, ideal bulk structure. On the right, the relaxed surface structure after the simulation
at 300 K. The As terminated surface is stable to some extent. A few As atoms move away
from the original layer position and build a bond to neighboring As atoms. This effect is
not observed in the case of the Mn termination. The surface structure stays intact.

4.1.2 Analysis of the Different Surfaces of MnAs

General Stability of the Surface Terminations. The calculated static surface
energies presented in Section 3.2.2 give first clues on the stability of the surfaces.
However, as it will be clear during the following analysis, a low surface energy does
not necessarily result in a stable structure when running a dynamic surface simula-
tion.

Figure 4.3, Figure 4.4, and Figure 4.5 summarize the basic results of all seven
surface simulations for each surface termination by displaying the start and end
configuration of the structures. The start configurations (on the left) are the cut bulk
structures before the actual simulation. The end configurations (on the right) are
the resulting structures after performing the simulation with the above introduced
parameters and settings, which prepare the surface to a temperature of 300 K. Only
the top layers and an extract of the whole surface plane are illustrated in these
figures. Each figure belongs to one surface direction with all its terminations.

The simulation results for the {0001} surface direction — Figure 4.3 — suggest
stable surfaces, as the basic surface structure stays intact for both terminations.
However, at the As terminated surface some distortions are visible. A few As atoms
build closer bonds to neighboring As atoms. Comparison to the surface energies
reveals that the surface energy for the Mn terminated surface fits the result of the
simulation, since the surface energy is relatively small and, hence, suggesting that
the surface structure is stable. For the As termination the conclusion cannot be
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Figure 4.4. Basic stability analysis of the {10-11} surface in the AsMn termination (top)
and Mn termination (bottom): On the left, the surface structure before the simulation based
on a cut, ideal bulk structure. On the right, the relaxed surface structure after the simulation
at 300 K. The AsMn terminated surface remains intact. The surface in the Mn termination
keeps its basic structure. Nonetheless, a few Mn atoms diffuse into the substrate and occupy
interstitial sites of the third layer, also a Mn layer (see Section Mn Interstitials below for
further analysis).

drawn this easily. The surface energy is relatively big (second largest surface energy).
Still, the surface remains stable to some extent. But as shown later, heating the
substrate leads to further decomposition of the first layer structure. Some As dimers
are created, hovering and desorbing from the surface (see also Section As Dimers
below).

In case of the {10-11} surface direction — Figure 4.4 — the surface with the mixed
Mn and As layer remains intact. For the Mn terminated surface, the basic surface
structure is intact. However, Mn atoms of the first layer diffuse into the substrate
and occupy interstitial states of the third layer (see also Section Mn Interstitials
below). The simulation results agree with the considerable low surface energies.
However, although the Mn terminated surface has a lower surface energy than the
AsMn termination, the simulation shows that it is energetically more favorable for
some Mn atoms to diffuse into the substrate.

According to the simulation results in Figure 4.5, only the Asl termination of
the {10-10} surface direction remains stable at 300 K. The first layer of the As2
termination immediately dissolves and the As atoms move towards the second As
layer. There, close bonds are formed and As dimers are beginning to desorb from the
surface, hovering above it (see also Section As Dimers below). In case of the Mn
terminated surface, the surface starts loosing its structure after a short simulation
duration. Several layers deep an amorphous structure of mixed As and Mn atoms
occurs.
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{10-10}_As2

{10-10}_As1

{10-10}_Mn

Figure 4.5. Basic stability analysis of the {10-10} surface in the As2 termination (top),
Asl termination (middle), and Mn termination (bottom): On the left, the surface structure
before the simulation based on a cut, ideal bulk structure. On the right, the relaxed surface
structure after the simulation at 300 K. The first As layer of the As2 terminated surface
immediately dissolves at the beginning of the simulation. All its As atoms move to the
second layer of As atoms and start to form close bonds. During that process a few arsenic
dimer molecules desorb from the surface by hovering above the latter (see also Section As
Dimers below). The surface structure of the Asl termination stays intact. In contrast to
the stable Asl terminated surface, the surface of the Mn termination looses completely its
structure and an amorphous structure of several atom layer thickness is built.
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The stability of the Asl termination fits very well to the corresponding surface
energy. As a matter of fact, it is the lowest surface energy of all the terminations.
Hence, the stability of the surface structure has been expected. The same holds
for the As2 termination. Since it has the highest surface energy, the instability of
the surface structure has been also expected. However, the instability of the Mn
termination contradicts the relatively low surface energy of the Mn termination.

Especially the last case proves the statement made in the introduction of this
section: a low surface energy does not necessarily result in a stable structure when
running a dynamic surface simulation. If a particular surface coordination is “ener-
getically close” to another surface structure with a lower energy, the system may
be able to evolve into the structure with lower energy. For the Mn termination of
the {10-10} direction, the consideration of the surface energy over time revealed a
significant drop in this “dynamic” surface energy and, therefore, confirming such
a suggested behavior. The same drop in surface energy is observed for the {10-
11}_Mn surface termination, after a significant number of Mn atoms diffused into
the substrate. With the same reasoning the stability of the {0001}_As surface termi-
nation — despite the relatively high surface energy — is explained. The surface stays
stable, since in the energy hypersurface no other local energy minima are “reachable”
for the current system state. However, after heating the system it is able to evolve
to other energy states.

In summary, at least one termination of each surface direction is stable in an
MD simulation. Which is an important result, because in experiment those three
surface directions are observed. Hence, the surface simulations show consistency
with experiment.

As Dimers. The As dimers occurring in the MD simulation of the {10-10}_Asl
termination are also observed in other research studies. Experimental investigations
[74-76], ab initio calculations [77-79], and MD simulations [80-82] deal with epitaxial
growth of thin film GaAs and the role of As dimers during molecular beam epitaxy
(MBE). In such MBE growth experiments molecular beams of Asy (also Asy) and
atomic Ga are produced to deposit the material on the substrate. Investigations
involve — among other things — the desorption and sticking rates of As dimers on
the substrate surface as well as bond length and binding energies (for the latter see
Table 4.1 on p. 61).

The ab initio and MD studies analyze especially the dynamics and adsorption
mechanism of the As dimers, which cannot be observed directly in experiment. Those
studies report different binding states of As,, including a strong chemisorption state
and an intermediate, physisorbed energy plateau. This physisorbed state corresponds
to Aso molecules hovering slightly above the substrate surface, since they are weakly
bound. Without significantly changing their energy, those physisorbed Asy molecules
are quite mobile on the surface, making it possible for them to find stronger bonding
sites [77]. Furthermore, the studies calculated bond lengths of isolated, physisorbed
(about 2.12 A), and strongly bound chemisorbed As dimers (about 2.54 A) [80].

99



4 Simulation Results

{10-10}_As2

{0001} As

Figure 4.6. Formation and desorption of As dimers at the {10-10}_As2 surface (left) and
the {0001}_As surface (right): Both substrates are heated up to 600K in the course of the
simulation. In case of the {0001} _As surface the heating is necessary to dissolve the structure
of the surface further to force the formation of As dimers, which is shown in the sequence
of MD snapshots. The {10-10}_As2 surface on the other hand exhibits As dimers already at
300 K. However, the process gets accelerated when heating the substrate, displayed in the
end configuration on the left.

All the above stated findings about As dimers are observed in the present surface
simulations as well and, therefore, confirm the predictions of the EAM potential
in that particular situation. These findings also suggest a reasonable and correct
behavior of the potential in MD simulations of MnAs surfaces. The physisorbed state
of several hovering Asy molecules is visible in Figure 4.6 on the left. Some isolated
As dimers can also be seen. When performing a longer MD run, the weakly bound
As dimers occasionally get the appropriate momentum transferred by the surface
and desorb from the latter. This process can be accelerated by continuously heating
the substrate. Figure 4.6 shows the MD snapshot after such heating. Simulation
parameters are the same as those for the surface simulation done before, except
longer time steps and heating is ensured.

The right side of Figure 4.6 shows the same heating simulation for the {0001}_As
surface termination. Like mentioned before, this surface remains unchanged to a
certain degree. Some As atoms of the top layer break the order of the original
structure by moving closer to neighboring As atoms. The assumption that this
might be the beginning formation of As dimers has been confirmed by the heating
simulation, which is shown in the sequence of MD snapshots in Figure 4.6 on the
right. At first, heating causes a continuous formation of As dimers and therefore
the top layer vanishes. Then, first As dimers detach directly from the surface and
hover in the lower bound state above the surface. And finally — like in the case of
the {10-10}_Asl — a number of As dimers desorb entirely from the surface.

The MnAs nanocluster investigated in this study are grown with metal-organic
vapour phase epitaxy (MOVPE), not with MBE. Hence, Asy and also Mn are
not introduced directly into the growth chamber (reactor). Instead, a manganese
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Table 4.1. Bond length (do in A) and binding energy (Eg in €V) of Asy and As,: Comparison
between the EAM model, ab initio data, and experiment.

As molecule EAM B3PW91% Experiment?©
Asy (dimer)

do 1.97 2.12 2.10

Fp 4.90 4.05 3.96

Asy (tetrahedron)

do 2.45 2.46 2.44

Fp 8.54 10.73 10.21

@ ab initio values for both Asy and Asy from [78]
b experimental values for Asy from [75]
¢ experimental values for As, from [76]

organometallic precursor — (CH3C5Hy)2Mn — and arsine — AsHg — is transferred to
the reactor. During the high temperatures of the growth process (around 850 °C),
the precursors are decomposed in gas phase reactions [2-4]. Thus, at this stage As
dimers will play a role in the crystallization. Nonetheless, MBE growth of MnAs
has also been done [83-86]. However, with such low temperature MBE, only thin
film MnAs structures are possible. In both cases a high arsenic pressure is required,
since As is volatile and desorbs easily into the gas phase. Again, this proves the
consistency with the results of the surface simulations.

In Table 4.1 bond length and binding energy of Asy and Asy are given, calculated
with the EAM potential and compared to ab initio> and experimental values. This
explicit comparison reveals a very good structural agreement to experiment. The
bond length for Ass has a relative deviation of 6.2%. With 0.4% the one for As, is
even significantly smaller. The trend in binding energies? is well reproduced, relative
deviations being 23.7% and 16.4%. This qualitative trend is to be rated even higher
when considering the fact that the reference configurations have never been intended
for describing As dimers or tetrahedrons. In the reference configurations the As
dimer distance has not been taken into account, because in there the minimal As-As
interaction is only 2.53 A. Also, a specific structure of elemental As has not been
considered; particularly the explicit structure of an arsenic dimer or tetrahedron
is not included. Therefore, it is clearly an extrapolation as the potential predicts
properties which are not represented in the reference data. It shows the transferability
of the potential in this regard. Consequently, the overall conclusion is that the
predicted As dimers on MnAs surfaces are a reasonable result of the simulations.

Note: the ab initio calculations use a different functional (PW91) than the ab initio calculation of
this work (PBE).

The potential energy of the present effective potential does not represent a binding or cohesive energy,
since no energies of free atoms were considered during the setup of the reference configurations.
That was only done for this calculation by subtracting the energy of isolated atoms for each element
from the total potential energy of the corresponding molecule.
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Figure 4.7. Diffusion of one Mn atom (green) from the top layer to an interstitial site in
the third layer of the {10-11}_Mn surface: The MD snapshots represent a small section of the
simulated structure from the previous stability analysis, with smaller atom radii for better
visualization. At the top, the snapshots show the cross section of the surface in direction of
the a-axis [1210], before (left) and after (right) the diffusion. The same is displayed at the
bottom with the exception that the structure is rotated in the surface plane by 90°.

Mn Interstitials. At the Mn terminated {10-11} surface, Mn atoms of the first
layer start diffusing into the substrate and occupy interstitial sites in the third layer.
When heating the structure — like it was done for the {10-10}_As2 and {0001} _As
termination — the diffusion process is accelerated until all Mn atoms of the first
layer diffuse into the substrate. Figure 4.7 conveys this process by displaying start
and end configuration of the diffusion. The explicit position of the interstitial site is
visible as well. Like for the MnAs surface facets and terminations in general, this has
not been experimentally investigated yet. However, a similar behavior is described
in the literature [2]. Wakatsuki et al. report that Mn adatoms on semiconductor
surfaces (GaAs) diffuse into underlying layers. This statement suggests that the Mn
diffusion at the {10-11}_Mn surface is a reasonable prediction of this study.
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4.2 Deposition Simulations of Au on MnAs

Now, after preparing the different surfaces in MD simulations, the main objective
of this work — finding out the structure of gold on MnAs — is analyzed. However,
considering the surfaces in Figure 4.1, only the {10-10}_Asl surface termination is
chosen for the following deposition simulation as a first test. The particular surface
has the lowest surface energy and proved to be one of the stablest surfaces during
the previous simulations.

4.2.1 Deposition on the {10-10} Asl Surface Termination

Simulation Settings. From the preceding surface simulations, the surface struc-
ture with Asl termination — as seen in the previous paragraph, Figure 4.5 — was used
for the deposition simulation. The basic setup for the deposition simulation was the
same as those for the surface simulations. Again, the substrate had to be cooled with
a thermostat, otherwise the transferred kinetic energy of the gold adatoms would
have continuously heated up the substrate. Also, a total shift of the substrate due
to the transferred momenta of the adatoms is avoided by fixing the lowest layers of
the substrate.*

The gold atoms were created 6nm (60 A) above the substrate surface with -
and y-positions randomly chosen. Each gold atom has been assigned a velocity value
perpendicular to the surface, a value chosen close to the mean thermal velocity®
of the melting temperature of gold (Tinex = 1330K). The number of time steps
was 6.16 million with a time step size of one femtosecond. Every 200th time step a
new gold atom was generated. The last 160 000 steps were used just for relaxation,
leading to 30000 deposited gold atoms in summary. All of this was simulated at
room temperature. With an overall computation time of 42 hours, the simulation
was performed on 72 cpu cores on a high-performance computing cluster.

When doing deposition simulations in MD, one has to consider the intrinsic lim-
itation concerning the timescale of MD simulations. Because of that limitation, the
deposition rates are orders of magnitudes higher than in experiment. The typical
time needed for one monolayer to grow in simulations is in the range of nanoseconds.
This differs significantly from experiment, where typical growth durations for mono-
layers are in the range of seconds. Hence, it is important to keep in mind the time
limitation when analyzing the results. The best way to approach this problem is to
ask how such a high deposition rate influences the simulation results. Or, conversely,
does a higher deposition rate in experiment lead to the same results?

Further rule for deposition simulations: the total mass of the substrate should be larger than the
total mass of incoming atoms to avoid a bounce back effect.
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This cannot be answered in general, but several things can be checked. Are the
basic simulation results consistent with the experimental context or do the results
contradict basic physical rules and mechanisms? When increasing the deposition
cycle or increasing the substrate area, does the simulation result change signific-
antly? In the end of next paragraph those questions will be addressed again, when
discussing the growth mode of the observed deposition simulation.

Growth Mode. The deposition simulation revealed a specific growth mode of the
gold atoms, as it can be seen on the numbered snapshots at the bottom of Figure 4.8.
In the beginning the gold atoms form one layer by depositing on the sites where the
atoms of the second As layer would have been (1. snapshot). A few gold atoms even
replace an As atom of the first layer (substitutional impurity atom)®. Then, instead
of building a second layer, islands start to grow (2. snapshot), move and coalesce
to bigger islands (3. snapshot), until a closed surface structure appears when grain
and crystal growths begins (4. snapshot).

This behavior is a well-known growth mode from experiment, first described by
Stranski and Krastanov in 1938 [87]. For that reason it is named Stranski-Krastanov
growth”. The mode consists of two steps. In the beginning the surface adhesive force
is stronger than the adatom cohesive force and wetting layers are formed. At some
critical layer thickness this relation changes and the adatom-adatom interaction is
stronger, which then leads to the island growth in a second step. This critical layer
thickness depends on the mismatch of lattice parameters between deposited film and
substrate. A greater lattice mismatch triggers a smaller critical layer thickness [88].
Also, the misfit strain at the surface increases significantly with each deposited layer,
making it necessary for the system to stop the layer growth at this critical thickness
in order to reduce the strain. Typical critical thicknesses range from sub-monolayer
coverage to several monolayers [89).

In the present case the lattice mismatch between the MnAs {10-10}_Asl sub-
strate — including the first deposited gold wetting layer — and a crystalline thin film
structure of fcc gold on top of this wetting layer is significant. The lateral symmetry
of the one gold wetting layer is governed by the hexagonal lattice parameters a and
¢, resulting in a rectangular layer pattern with the dimensions of a and c¢. Such a
pattern does not fit to any possible symmetry direction of an fcc gold lattice. The
closest, possible direction is the one of the {110} fcc surface, as it has a rectangular
pattern. But the in-plane dimensions exhibit a mismatch and the induced strain
prevents the continuous growth of a suitable, next gold layer. For that reason, the
critical thickness is just one monolayer or even in the sub-monolayer range, when
the nucleation of islands starts to relieve the mismatch strain.

Coming back to the earlier mentioned aspect of the high deposition rate, the
simulation results show great consistency within the experimental context. As stated
in the beginning, the Stranski-Krastanov growth is well-known from experiment.

> The remaining As atoms of such an exchange are considerably free and diffuse always to the top of
the current deposited surface structure.
It is also known by ‘layer-plus-island growth’.
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t =0.71ns

Figure 4.8. Snapshots of the deposition simulation at various time steps: The two pictures
at top are side views of the substrate during the deposition process (left) and at the end
of the whole simulation run (right). The four pictures at the bottom are top views of the
substrate and convey the different steps of the observed Stranski-Krastanov growth, which
is 1. formation of the wetting layer, 2. island growth, 3. coalescence of islands, and 4. grain
and crystal growth.

There are several studies which show the different stages — as seen in Figure 4.8 —
with the help of atomic force microscopy (AFM). For example, in one of the earlier
mentioned works on MnAs thin film growth, the surface morpholgy of the MnAs
films was studied ez situ with an AFM [84]. There is even an in situ study of gold
on gold growth, where the deposition is continuously scanned with an AFM during
the process and visualized with a video of AFM images later [90, 91]. Next to this
general consistency concerning the growth mode, test runs with lower deposition
rates and substrate dimensions did not hint to a different growth mode of the de-
position. One could raise the question that the islands are growing, because the Au
atoms have no time to relax. But long simulation runs of only the grown islands
show that the island do not dissolve into a second layer. Hence, the adatoms have
enough time to relax. Furthermore, the following analysis of the crystal structure
reveals no contradiction to basic physical rules and mechanisms as well, supporting
the conclusion that the presented deposition simulation produces meaningful results,
despite high deposition rates.
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Figure 4.9. Bond-angle analysis of the grown gold structure: The percentage values at the
bottom give the fractions of each crystal phase the deposited structure consists of, determined
with the software tool ovito [73]. By considering also the fraction of 9.5% hexagonal closed
packed phase (hep) — representing fce stacking faults and twin boundaries — nearly 80% of
the analyzed structure belongs to the fcc phase. The surface atoms and the atoms of the
interface region make for the 20.4% of unassigned atoms. The left snapshot is the same from
Figure 4.8 (top right), but now with the bond-angle analysis. The right snapshot is a cross
section parallel to the substrate. There, the stacking faults and different grains are visible.

4.2.2 Analysis of the Grown Gold Structure

Crystal Structure. After the deposition simulation the grown gold structure has
been analyzed with a bond-angle analysis (see Figure 4.9). A bond-angle analysis
assigns every atom of the structure to a crystal phase by comparing the local environ-
ment to the known structures of the cubic crystal systems. The analysis shows that
the gold grows as an fcc crystal. Nearly 80% of the analyzed structure belongs to the
fcc phase. The 9.5% hexagonal closed packed phase (hcp) phase can be misleading,
since this percentage stems from the stacking faults and twin boundaries of the fcc
crystal. Hence, the hep fraction is included in those 80%. The 1.2% body centered
cubic phase (bcc) is only assigned for local atoms, pointing to some possible local
defects in the fcc structure. The surface atoms and the atoms of the interface region
do not belong to any phase, resulting in a fraction of 20% for that group (other).
Historically, a stacking fault produced by vacancy agglomeration (one layer miss-
ing in the stacking sequence) is called intrinsic stacking fault. On the other hand,
a stacking fault produced by interstitial agglomeration (one layer additional to the
stacking sequence) is called extrinsic stacking fault [92]. Both types of stacking
faults occur in the grown gold structure and are displayed in Figure 4.10, next to a
combination of those stacking faults as well as a twin boundary. Twin boundaries do
not count as stacking faults. On the contrary, due to the mirroring at the boundary
they avoid stacking faults and the structure keeps the bond lengths and angles. By
looking at the labelling of stacked layers in Figure 4.10, it is also evident why the
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Figure 4.10. Stacking faults and twin boundaries seen from the <110> cubic direction of
the grown fcc gold: The snapshot in the top left corner shows an intrinsic stacking fault.
One B-layer is missing, changing the stacking sequence from standard fcc ABCABCABC to
ABCACABC (bold letters highlight the faulty part of the stacking sequence). On the upper
right snapshot, one B-layer is additional to the original stacking, leading to the sequence
of an extrinsic stacking fault, ABCBABC. At the lower left corner, a combination of both
type is present, since a B-layer is removed and added at the same time. This is basically a
swapping of the C- and B-layer in the middle, resulting in the sequence ABCACBABC. It
could be also viewed as two successive twin boundaries. Such a twin boundary is shown at
the lower right, as the sequence ACBABCA is mirrored at the middle A-layer, avoiding the
stacking fault and therefore keeping the bond lengths and angles of the fcc structure.

bond-angle analysis assigns certain atom layers to an hcp phase. Since those layers
are surrounded by identical layers due to stacking faults or twin boundaries, they
appear as locally hep layers (local stacking sequence ABA instead of ABC).

One of the reasons for the building of such defects is clearly the strain mentioned
earlier in the context of the growth mode. As there is a considerable high strain in
the structure because of the lattice mismatch, the stacking faults reduce this strain.
Temporarily “undesired” growth conditions like the local thermodynamic situation
may also prevent perfect fcc growth, but in this case stacking faults and twin bound-
aries result mainly from the way how the gold grows on the surface, developing
a certain crystal orientation towards the surface. In the following paragraph this
crystal orientation will be discussed in detail.

Crystal Orientation. Looking at the exact orientation of the gold structure leads
to a more quantitative description of the grown fcc crystal. In Figure 4.11 the
orientation is implied by drawing the <110> projection of the fcc unit cell and
the corresponding lattice directions. Two basic orientations of the unit cell can be
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<110> projection
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Figure 4.11. Crystal orientation of the grown gold: At the top, the cross-section view of
the substrate in the <110> direction of the fcc crystal. At the bottom, the same snapshot,
but this time the results of the bond-angle analysis are included. It can be seen from the
indicated fcc cubic cells in <110> projection that the unit cells are tilted upright, standing
with one corner of the cube on the MnAs substrate. There are two principle types of
orientation. The cube of the unit cell can have a relative low angle towards the surface
(left) or a quite steep angle (right). The transition between those orientations takes place
at a twin boundary, which is most evident in the the lower snapshot with the bond-angle
analysis.

determined. Both of them are tilted upright and stay on one corner of the cube
with respect to the substrate. Additionally, Figure 4.11 shows that the stacking
faults and twin boundaries originate at the interface of the MnAs substrate and the
grown gold. From there, they continue to spread out through the grown structure.
This relationship between the crystal defects and the interface is closely connected
to the question of which specific orientation will be formed during the growth. To
overcome the lattice mismatch at the interface, defects like edge dislocations are
created, which lead to the stacking faults. But also the fact that the islands grow
initially separately from each other results in different crystal orientations, since
the orientation of the islands is independent from each other. And when the islands
coalesce there is a higher probability for stacking faults or twin boundaries to occur
at the boundary of those islands.

An analysis of the first gold layer — the wetting layer — is crucial to understand
the beginning growth process and the reasons for the resulting crystal orientations
of the grown structure. Figure 4.12 displays the first layer at the beginning and at
the end of the simulation. It is also viewed from two different directions. The figure
shows how the original form of the layer — the gold atoms taking the positions of the
next As layer — changes over the course of the simulation. The rows of gold atoms
in the [0001] direction are distorted, since further gold atoms are added to the first
layer.
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Figure 4.12. The first layer of gold at the beginning and at the end of the simulation: The
first layer is viewed alongside the [0001] and [1120] directions (c- and a-axis) of the MnAs
cell, shown in the upper and lower snapshots respectively. Other deposited gold atoms above
the first layers are not visible. From the snapshots on the left (first layer at the beginning), it
is evident that the gold atoms deposit at the atom sites of the next As layer. The structure
seems to be same at the end of the simulation, when looking at the first layer only in the
[1120] direction. However, the perspective in the [0001] direction reveals that the structure
significantly changed.

1\

‘ [0001]

The background is now that the observed fcc structure would not have been
possible if the first layer kept its original form. The gold atoms take the position of
the next As layer. Hence, they build a rectangular pattern at first. This is highlighted
by the green rectangles in the upper right snapshot of Figure 4.13. The rectangles
have the dimensions of the MnAs hexagonal lattice — a and ¢ — but since the lattice
mismatch between gold and those MnAs lattice dimensions is significant, islands
start to grow instead of a second layer. The islands grow in fcc, and with that,
imprinting the fcc structure on the wetting layer. The original positions of the
gold atoms are changed and — most importantly — gold atoms are added to the
first layer. From the four gold rows seen in the lower right snapshot of Figure 4.13,
there are two rows where the number of gold atoms doubles. This leads to the
indicated triangle pattern, where the small side of the triangle has the length of the
smallest distance in the gold fcc structure, as,/v/2. Such a pattern is necessary for
the observed structure of tilted fcc cubes, since the corner points of the cubes sit
diagonally shifted behind one another.

The additional gold atoms in the first layer are possible, because the energy
landscape of the particular MnAs surface has a convenient shape. On the left side of
Figure 4.13, the potential energy of one gold atom above the MnAs surface is shown.
The potential minima — elongated in the [1120] direction of the substrate — make

69
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it possible for two gold atoms to fit in the same minima. However, as this is not
the ideal pattern, the whole structure is under a lot of strain. Consequently, this
results in the mentioned stacking faults and different orientations of the fcc structure.
Furthermore, the triangle pattern is not perfectly formed throughout the layer. For
example, there is the gold atom which is labeled in Figure 4.13 as a substitutional
impurity atom. The gold atom took the place of an As atom of the first layer of the
substrate. Those kind of defects and dislocations break the pattern and, therefore,
avoid also the perfect fcc growth of the gold on the {10-10}_Asl MnAs surface.

substitutional
impurity atom

M (0001]

,_“AA,,“

potential energy [eV] “H~296A

L
-1.85 =075 1229 1.7x10% 2.x10% 24x10*2.9%x10°3.4x10° ‘ . ‘ . . ‘.

[1120]

Figure 4.13. Further analysis of the first layer in top view: On the left, the energy landscape
of one gold atom being 0.35 A above the MnAs substrate is shown, which is the situation
at the start of the simulation. The labels drawn in the landscape are the first three layers
of the {10-10}_Asl surface. It is evident from the energy landscape that the gold atoms
deposit at the energy minima positioned in the middle of the four Mn atoms of the second
MnAs layer. This is visible in the upper right snapshot. Like mentioned before, the gold
atoms take the dimensions of the MnAs substrate and form a rectangular pattern for the
first layer. However, the pattern changes to a sort of triangular pattern at the end of the
simulation, as seen in the lower right snapshot. Since the energy minima are elongated in
the [1120] direction of the substrate, two gold atoms fit in those minima, leading to the
triangle patterns.

70



5 Conclusions

Summary. Within the framework of this thesis, an EAM potential for the MnAs/Au
interface system has been generated and successfully applied to investigate the main
objective of the thesis at hand: performing a Molecular Dynamics simulation of
gold growth on MnAs and analyzing the grown gold structure. Further, this work
provides a new effective potential — not only for MD simulations of MnAs/Au in-
terface systems — but also for MnAs bulk systems. Both systems have never been
described with MD simulations and, consequently, no effective potential has been
developed for those systems until now.

Force Matching (FM) — the method of fitting a potential model to ab initio data —
offers the possibility to create effective potentials for MD simulations and keep the
predictive power of ab initio calculations. However, generating the needed MnAs/Au
potential showed that FM is by far no simple black box producing potentials at
the push of a button. For this reason detailed descriptions of the explicit steps and
fitting strategies have been given in this work. The fitting process is an iterative
optimization cycle with a various number of parameters, which are very different in
nature. The present work summarizes those parameters and discusses their different
nature and roles during the optimization. There is no general systematic strategy to
optimize the parameters, but the potential generation revealed some guidelines and
rules. One of the important lessons is the fact that there is some sort of hierarchy
within the parameters, meaning some parameters are more important than others at
certain stages of the optimization. Another helpful advice concerns the early use of
the potential validation, which happens after the actual optimization run. Including
validation results as soon as possible helps steering the fitting process from the
start.

Validating the potential is an important step in creating effective potentials. The
comparison of potential properties to data not included in the fitting database proves
the reliability of the potential. Comparing lattice constants and potential energy of
the unit cells — derived from the MnAs/Au potential — to the corresponding ab initio
values reveals an excellent structural agreement, with relative deviations being lower
than at least 0.2%. The corresponding experimental lattice constants show a typical
relative deviation to ab initio lattice constants of a few percent. The comparison
of the elastic constants to the ab initio counterparts reveals a mean relative devi-
ation of 5%. For the experimental counterparts, the trend — meaning the relative
ordering — is reproduced. However, the comparison is problematic in case of MnAs,
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since the experimental measurements were performed in the paramagnetic state and
not in the ferromagnetic state. The relative deviations of the surface energies to ab
initio values are at least lower than 12%, two even less than 1%. For some surface
terminations, the surface energies are predictions, as the corresponding reference
bulk structures — needed for calculating the surface energies — cannot be represen-
ted by periodic cells. Hence, it was not possible to perform ab initio calculations
for comparisons in these cases. Experimental values of surface energies were not
available.

With the developed potential, MD simulations of different surface facets and
terminations were performed to find the most stable surface structures for the
deposition simulations. The exact surface terminations are also not known from
experiment. In the course of stability tests, two interesting effects occurred. At two
surface terminations As dimers are formed at the surface and desorbing occasionally
from the latter. At a Mn terminated surface Mn atoms diffuse into the substrate,
occupying interstitial sites of the substrate. Both effects — As dimers on surfaces
and Mn diffusion into substrates — are observed in other research studies as well,
including experimental studies. In case of As dimers, bond length and energy have
been compared to ab initio calculations and experimental measurements.

The surface which proved to be the stablest during the surface simulation was
picked for the final deposition simulations of gold on MnAs. The deposition simula-
tions on the specific surface reveal a growth mode known as the Stranski-Krastanov
growth or ‘layer-plus-island growth’. After forming a wetting layer of one monolayer
thickness, the deposited gold atoms grow mainly in an fcc structure with several
stacking faults and twin boundaries. Those crystal defects stem primarily from the
lattice mismatch between the gold and the MnAs surface, which is also the reason
for the beginning of island growth after the formation of one monolayer. The par-
ticular form of the wetting layer has been investigated in depth, since it plays an
important role for the specific structure and orientation of the grown fcc gold. The
investigation shows that the fcc cubic unit cells are tilted upright and stay on one
corner of the cube with respect to the substrate.

Outlook. In conclusion, with this work and the resulting effective potential the
crucial groundwork for future calculations has been done. Besides the generation of
the potential, the thesis also shows the reliability of the latter. The simulation of any
physical situation dealing with bulk structures of MnAs or Au as well as MnAs/Au
interface systems should be possible as long as the physical situation is close to
the used reference data of the created potential. The potential may perform well in
other situations, but care must be taken. In such cases validation tests concerning
the new situation is advisable.

In the explicit case of the deposition of gold on MnAs, further investigations
can be pursued. The deposition simulation of gold on the {10-10}_Asl MnAs sur-
face was a first test. Like mentioned in the introduction, determining the exact
structure of gold on MnAs is a necessary step for transport calculations through
a MnAs/Au/MnAs layer. With further analysis it should be possible to deduce a
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suitable structure for such calculations. Investigating different parameters of the de-
position simulations — like the substrate temperature — or the strain and dislocations
via Burger vectors [92] should offer a deeper understanding of the gold structure
and growth mechanism. Gold deposition on the other MnAs surfaces has yet to be
analyzed. Also, applying the potential within the so-called adaptive kinetic Monte
Carlo (akMC) [93, 94] method is an option to extend the time scale of the deposition
simulation. By using this method the simulation is split into two parts. MD is used
to simulate the adsorption process while akMC handles the time evolution between
those adsorptions.

Besides this continuing research of gold deposition simulations, there are other
interesting questions for which the developed potential can be applied. For example,
in regard of MnAs surface facets and their formation, the simulation of MnAs growth
might give some helpful insight. Drautz et al. [21, 81] simulated the growth of GaAs
with MD by inserting Ga atoms and As dimers at different ratios. Such a growth
simulation should be also possible for MnAs. Another example are surface recon-
structions at epitaxial MnAs films grown in the <0001> direction, which have been
observed in [83]. Such surface reconstructions can be investigated with the potential
as well. The last example concerns the arsenic dimers and their adsorption behavior.
Murdick et al. analyzed quantitatively the sticking rates and different binding states
of the dimers on GaAs [80]. This can also be done with the As dimers on MnAs.

Those examples give an idea of the variety of different applications the potential
can be used for. Again, since effective potentials provide in general the interaction
in MD simulations, the availability of such potentials for new material systems — like
it is the case for the MnAs/Au system — opens up possibilities to a wide range of
future research.
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Appendix
MnAs/Au EAM potential

Table 1. Fitted spline knots: the pair functions — part I

Mn-Mn Mn-As Mn-Au
r $11(r) r P12() r P13(1)

i A eV eV A eV
1 2.2000000 0.1909667  2.1000000  0.2230760 1.8219600  5.2972670
2 2.4526316 —0.1562470 2.3578947 —0.2586972 2.2300000 0.3610386
3 2.7052632 —0.2630174 2.6157895 —0.2772406 24811765 —0.2149425
4 29578947 —0.2497912 2.8736842 —0.1695126 2.7323529 —0.2954656
5 3.2105263 —0.2043759 3.1315789 —0.0587907 2.9835294 —0.2564881
6 3.4631579 —-0.1611091 3.3894737  0.0134258 3.2347059 —0.2168010
7 3.7157895 —0.1297717 3.6473684 0.0198989 3.4858824 —0.1858822
8 3.9684211 —-0.1095001 3.9052632  0.0019406  3.7370588 —0.1481191
9 4.2210526 —0.0955310 4.1631579 —0.0098992 3.9882353 —0.1005256
10 4.4736842 —0.0808108  4.4210526 —0.0123951 4.2394118 —0.0643107
11 4.7263158 —0.0622304 4.6789474 —0.0092053 4.4905882 —0.0399483
12 4.9789474 —0.0428311 4.9368421 —0.0063731 4.7417647 —0.0185665
13 5.2315789 —0.0283612 5.1947368 —0.0051965 4.9929412 —0.0047006
14 5.4842105 —0.0212414 5.4526316 —0.0054328 5.2441176 0.0000000
15 5.7368421 —0.0144647 5.7105263 —0.0064467
16 5.9894737 —0.0079313 5.9684211 —0.0077240
17 6.2421053 —0.0042519 6.2263158 —0.0074236
18 6.4947368 —0.0027209 6.4842105 —0.0064168
19 6.7473684 —0.0014654  6.7421053 —0.0027790
20 7.0000000 0.0000000 7.0000000 0.0000000

P(r)= #(ro)=  @a(r)=  Palro)=  di3(r)= #3(ra)=

—2.0897755  0.0000000 —3.6269510  0.0000000 —22.3509534 0.0000000
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Table 2. Fitted spline knots: the pair functions — part II

As-As As-Au Au-Au
r P22(r) r P23(r) r P33(7)

i A eV A eV eV
1 2.5300000 0.7451029 1.7048000 9.4147916 1.6700000 17.3441935
2 2.7652632 0.5688803 1.9600000  3.1861000 1.9189474  7.7548944
3 3.0005263 0.4109402 2.2270588 1.0146358 2.1678947 2.7004053
4  3.2357895 0.2831523 2.4941176 0.3634111 2.4168421 0.8145668
5  3.4710526 0.1809801 2.7611765 0.1946045 2.6657895 0.1917274
6 3.7063158 0.1057746 3.0282353 0.1367242 2.9147368 —0.0133208
7 3.9415789  0.0576829  3.2952941 0.0901886  3.1636842 —0.0716446
8 4.1768421 0.0348080 3.5623529 0.0454760 3.4126316 —0.0820686
9 4.4121053  0.0255996  3.8294118  0.0105528  3.6615789 —0.0911388
10 4.6473684 0.0109333 4.0964706 0.0000000 3.9105263 —0.0952499
11 4.8826316 —0.0099149 4.1594737 —0.0868812
12 5.1178947 —0.0186470 4.4084211 —0.0676554
13 5.3531579 —0.0151856 4.6573684 —0.0417379
14 5.5884211 —-0.0141592 4.9063158 —0.0226049
15 5.8236842 —0.0159378 5.1552632 —0.0104941
16 6.0589474 —0.0167367 5.4042105 —0.0028562
17 6.2942105 —0.0147992 5.6531579 0.0031786
18 6.5294737 —0.0097173 5.9021053 0.0032866
19 6.7647368 —0.0031646 6.1510526 0.0005293
20 7.0000000  0.0000000 6.4000000  0.0000000

Pro(r)= dn(ran)=  ¢hs(r)=  ¢hs(ro)=  ¢d53(r)=  ds3(r20)=

—0.9027886 0.0000000 —37.0869443 (0.0000000 0.0000000 0.0000000
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Table 3. Fitted spline knots: the transfer functions

r PMn(T) r PAs (T) r PAu (T)
i A arb.unit. A arb.unit. A arb.unit.
1 2.1000000 0.1140399  2.1000000  0.2380951  1.6700000  0.4629435
2 23578947  0.0798480  2.3578947  0.1355340  1.9189474  0.1922209
3 2.6157895  0.0588453  2.6157895  0.0699135  2.1678947  0.1213196
4 28736842  0.0426584  2.8736842  0.0364299  2.4168421  0.0935327
5 3.1315789  0.0252335  3.1315789  0.0172917  2.6657895  0.0637170
6 3.3804737  0.0088171  3.3894737  0.0082482  2.9147368  0.0363665
7 3.6473684  0.0022950  3.6473684  0.0039220  3.1636842  0.0188351
8 3.9052632 —0.0017430  3.9052632  0.0023127  3.4126316  0.0122440
9 4.1631579 —0.0025544  4.1631579  0.0025354  3.6615789  0.0090895
10 4.4210526 —0.0021374  4.4210526 —0.0000494  3.9105263  0.0019440
11 4.6789474 —0.0006423  4.6789474  0.0000000  4.1594737  0.0000000
12 4.9368421  0.0000000
()= An(re)= A= Py ()= phu(r)= ph(r)=
—0.1689742  0.0000000 —0.5651179  0.0000000  0.0000000  0.0000000
Table 4. Fitted spline knots: the embedding functions
n Unin(n) n Uas(n) n Uau(n)
1 arb.unit. eV arb.unit. eV arb.unit. eV
1 0.1082540 —5.8004128  0.0837536 —3.9210478  0.0975431 —1.8580498
2 0.2356463 —5.7385859  0.1685326 —5.0671553  0.2103502 —2.2818910
3 0.3630385 —5.6617462  0.2533117 —5.6749254  0.3231574 —2.5523032
4 0.4904308 —5.6195953  0.3380907 —5.9229799  0.4359645 —2.7135417
5 0.6178231 —5.6212328  0.4228698 —5.9293174  0.5487716 —2.7668005
6 0.7452154 —5.6867491  0.5076489 —5.8077803  0.6615787 —2.7150242
7 0.8726077 —5.8121850  0.5924279 —5.5481988  0.7743858 —2.5516436
8 1.0000000 —6.0144097  0.6772070 —5.1542209  0.8871929 —2.2552997
9 1.0000000 —1.8473042
Unin(n1)= Uyn(ns)= Upg(m)=  Ujslns)=  Ux,(n)=  Uf,(ng)=
0.1781385 —1.7838855 —15.8409234 5.3750200  0.0000000  0.0000000
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