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SUMMARY

Dynamical behavior of a parametrized family of one-dimensional maps

Erkan MUSTU

Justus Liebig University
Institute of Mathematics
2018

We investigate the dynamics of the maps f,,, (v) := z*sin(wln(x)) with x4 > 1 (and
odd continuation). The first chapter describes how a family of one-dimensional maps
fu. appears in the context of return maps associated to homoclinic orbits for ODEs.
Corresponding to the shape of graph of f, ., we introduce so-called ‘flat’ intervals con-
taining exactly one maximum or minimum. We shall also use the expression ‘steep’
for intervals containing exactly one zero point of f, .. Then we construct an open set
of points with orbits staying entirely in the ‘flat’ intervals in chapter three. In the
fourth chapter, it is proved that there exist some points whose orbits stay totally within
the ‘steep’ intervals. Then, to orbits (f7 (z)) of f,. we associate a symbol sequence
(s;) = (signf? (z)) = (+1,—1,—1,+1,...), and we show that the measure of the set of
points which follow such symbol sequences is zero. In the last chapter, it is shown that
there exist some points whose orbits travel regularly from ‘flat’ intervals to ‘steep’ inter-
vals, then from ‘steep’ to ‘flat’ intervals and so on. To such orbits of f, . we associate a
symbol sequence (L, R, R, L, ...) , indicating whether the iterates of points are to the left
or to the right of corresponding maxima of f,,, and finally the Lebesgue measure of the
set of these points is shown to be zero.

KEY WORDS: Dynamical systems, one-dimensional maps, symbolic dynamics,
measure



1. Introduction

In dynamical systems theory one-dimensional dynamical systems play an important
role. Although they may seem very simple at the first glance, they can have very compli-
cated dynamics. For instance, the problems in smooth dynamical systems, especially
in low dimensions, can sometimes be reduced to the study of one-dimensional maps
f I — I, where f is a smooth function and I is a circle or an interval. We try to
understand the behavior of the orbits of given points in I. The orbit of a point x is the
sequence

v, (), f (F (@) F ()

Our aim in this paper is to analyze the dynamics of certain parametrized families
fuw of one-dimensional maps. These arise in the dynamics of flows in three dimensions
of saddle-focus homoclinic connections which were studied by P. Holmes [2]. Holmes
considered maps f similar to f,. : ¢ — z*sin(wln(z)) for 4 > 1, w > 0 (and odd
continuation). The property x> 1 implies that all points 0 < = < 1 approach 0 under f"
as n — 0o . Holmes claimed that the set Z of points x for which there exists an n, € N
such that f"* (z) = 0 can be a dense subset of [0, 1], but it seems that this proof is not
conclusive. In chapter four, we are interested in the orbit =, f (z), f (f (x)).... We first
assign to x a symbolic trajectory sp, s1, 2,... where s, is —1 or +1 according as f, is
in (—1,0) or (0,1) respectively. Then we construct sets Q¢ (depending on a parameter
c and n € N) of points with the first n iterates contained in certain ‘steep’ intervals and
following arbitrary symbol sequences. We show that ()¢ is contained in the closure of the
set Z, but QS = ﬂ 2¢ has measure zero. The remark on the bottom of the page 395 of

neN
[2] conjectures, that open sets of points with orbit only in the ‘flat’ intervals can exist for

certain parameters. (These ‘flat’ intervals are disjoint to Z.) We prove this in chapter 3.

In the last chapter, we focus on constructing another type of orbit whose points travel
regularly from a ‘flat’ interval to a ‘steep’ interval, then again from the ‘steep’ interval to
a ‘flat” interval. These points form a Cantor type set and are described by sequences of
the type (L, R, R, L, ...), indicating whether iterates of the initial points are to the left or
to the right of corresponding maxima of f, . Taking counter images f~' (J) of intervals
J with =1 (J) close to a quadratic maximum of f involves inversion of the second order
Taylor expansion and thus taking square roots. We also show that, despite the expanding
effect of the square root, the measure of the points with such orbits (and thus the measure
of the Cantor set) is also zero.

1.1. Motivation of the map
In this section we briefly define the class of three-dimensional differential equations
where the maps that we will study arrise. We consider the differential equation

r = sr—wy+ F(x,y,2)
y = wr—sy+ Fy(r,y,2) or X:F(X), (1.1.1)
= Az + F3(2,y,2)



Figure 1: Cross sections ¥y, 1, and homoclinic orbit A

with smooth functions Fi, F5, F3 which vanish at the origin together with their derivatives.
We assume that there exists a doubly homoclinic connection associated to a saddle-focus
singularity at the origin (0,0,0) with eigenvalues s +iw, s < 0, w # 0, A > 0. We also
assume that the saddle value s+ < 0 and F' possesses symmetry under the change of sign,
F (X)=—F(—X). Here, note that while the stable manifold W?* (0) is two-dimensional,
the unstable manifold W* (0) is one-dimensional. The global unstable manifold W*" (0)
consists of the homoclinic loops and is contained in W* (0) (see Figure 1). Note also that
in case s + A < 0 stable periodic orbits bifurcate from the homoclinic loop as described
by L. P. Sil'nikov in reference [4].

Furthermore, we derive expressions for a Poincaré first return map defined by the
tracjectories close to the homoclinic loop A. For the sake of simplicity, we assume that
the vector field is linear (i.e. F} = F» = F3 = 0) in a neighborhood of (0,0,0). First, in
a neighborhood of (0,0,0) we introduce a cross section ¥ that is transversal to A and
has a nonzero projection to the unstable direction. The second property is an automatic
consequence of the first in three dimensions. The stable manifold W’ . splits ¥ into the
upper and lower components ¥§ and X, respectively, and the homoclinic loop intersects
Yo at some point p = (£,0,0) € ANy on WS .. We next introduce two cross-sections
Y7 transversal to W}",. Using the trajectories which travel from ¥J to 37 we aim at
computing local maps Gy : 3¢ — X7 and G : ; — X7 . These local maps assosiate to
each point p € ¥ the first intersection with 3; of the trajectory which starts at p. Thus,



a local map G is defined by the flow on subsets ¥ of 3. Note that since the upper and
lower homoclinic orbit of the system have analogous behavior, we shall continue with one
(the upper homoclinic loop) of them. For simplification we assume that there exist £ > 0,
¢ > 0 such that 2 € {(§,9,2) : (y,2) € R?} and Xf C {(z,v,¢) : (z,y) € R?}.

The solution (z (t),y (t), z (t)) of (1.1.1), which starts from a point (z¢ = &, 0, z9) € I
close to the origin at the time ¢t = 0 and ends up at the point (z1,y1,21 = () € X7 at the
time ¢ = 7, is written (taking into account only the linear terms in (1.1.1)) as follows:

(@ 0),y1) = e (“’S“’t - Sm‘*”f) ("””) (112)

sinwt coswt Yo

z(t) = zeM.

1
The flight time 7 that the trajectory takes from :j to X7 is given by 7 = —In (S)

A 20
Substituting 7 and £ into formula (1.1.2), we get the following expression for the local
map G, in complex notation:

xy + iy = eI (g 4dgyg) = elEHITR0) (€ 4y (1.1.3)

On the other hand, due to the existence of the homoclinic connection and its transversal
intersection with ¢ and ¥, we also have a Poincaré type map

sz;r—)z)()

Hence, for (z1,y1,21 =¢) € X7 we have Gf (v1,91,21 =¢) = (£, 92, 22) € Xp. With
DG (0,0, ) represented by the matrix

2 Oy

«Q

<’Y §>: % % (070);Wehave
dry Oy

( Y2 ) = ( a p ) ( 11 ) + h.o.t. (higher order terms).
2 v 0 Y1

In this approximation, we obtain for the composite map

(GTOGS—) : (€7y07zo) - (5,92,22)7
(y2>:(a 5)(%):(0@14‘5@1)
22 v 90 Y1 vy + 0y )

Zo = YI1 + (5y1. (114)

and finally we get

Substituting the value of 7 (z0) , 1 and y; in (1.1.4), in particular for yo = 0, one obtains

2y = £e57%) [y cos 40 sin] (wT (%)) (1.1.5)

3



: : : gl . 0 :
Setting ¢ := £1/~2 4 62 and choosing ¢ with ———— = sinp, ——— = cosy in
V2 + 6 V2 + 6

(1.1.5), we finally have

z = £ /42 4§52 [sin () cos (wT (20)) + cos (@) sin (wT (20))]

S

(P BGE )

Hence, the z—component after one return is approximately given by

S
29— 2y =¢C <£> A [sin <O—J <1n£> —i—go)] .
20 A 20
S S . 20 . .
Note that 3 < —1sop:= DY > 1, and with x := — we can rewrite the last equation as

29 = ca [sin (_§ (Inx) + go)} .

This motivates the study of the one-dimensional map f, , : [-1,1] — [—1, 1] given by the
following simpler expression

tsin(win(z)), = >0
ft={" "0 2 20
“f-a)  w<0

where we use x instead of z from now on. Here, note that odd continuation in the
definition of f, ., is motivated by the corresponding symmetry of vector field. The above
process shows how to arrive at this map starting from homoclinic orbits, which is studied
by P. Holmes [2, p. 388], or J. Guckenheimer/P. Holmes [1, p. 320]. The maps of this kind
(see Figure 2) were also studied by M.J. Pasifico, A. Rovella and M. Vianna [3], but for
i < 1 which has expansion properties of f, ., as a consequence. Briefly, they proved that a
family of one dimensional maps with infinitely many critical points exhibit global chaotic
behavior in a persistent way: For a positive Lebesgue measure set of values u, the map f
has positive Lyapunov exponent at every critical value and at Lebesgue almost all points
in its domain; morover, f is topologically transitive, i.e. has dense orbits [3].

After giving some preparatory calculations for the following chapters, we are going to
study the orbit f  (z) = f"(z); n =1,2,3, ... of a typical point z € (0,1). If f*(z) =0
for some n < 0o, then it is clear that all (f7(z)) j>n Will equal to 0. To orbits of f we can
associate symbol sequences

(s7) = (signf? (2));50 = (+1,+1,=1,...). f*(2) = 0 implies that s, = 0, then s = 0
for all £ > n. Here +1, —1 and 0 correspond to the upper, to the lower homoclinic branch
or to the stable manifold W (0) in terms of the original motivation. Consequently, the
following questions arise:
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Figure 2: Graph of f for p =2, w =10

1. Are all symbol sequences possible or not?

2. Does the symbol sequence change in every interval? (Is there chaotic motion?)

3. Is it possible to construct open intervals where the symbol sequence does not
change?

In the fifth chapter, we shall also consider symbol sequences different from (signf” (z)),
describing whether f™(z) is to the left or to the right hand side of maximum points of f.



2. Formulas for the derivatives of f, ., for p > 2, w > 0.

w s
L 2.1. A € (2,00), w > 0. Set o, = arctan [ — e(o,—)
emma ssume p € (2,00), w et p; 1= arctan (,LL+ . _j) 5
and
G pt1—j 1= \/(M +1- j>2 + w?
for j € {1,2,3}. Consider the map
¥ sin(wln(x)), >0
ft={" 0 0
fma)  @<0
Then, the following formulas hold for x € R:
(1)- |
Fro(®) = G Fum1w,, (2), (2.1.1)
u 1
cos () = = , 2.1.2
(1) T g (2.1.2)
w w
sin () = = . 2.1.3
(1) TR o (2.1.3)
(2). )
fu,w(x> = Gugi * Gup—1 " fu—2.0,01+¢5 (). (2.1.4)
(3). "
f,u,w(x) = Guw,u " Ju,p—1 " Ju,u—2 fy—3,w,gpl+<p2+<p3 (ZL’) (215)

Proof.
(1). From the definiton of ¢, we have ¢, = arctan (f) , and also from the definition
I

of gy 11—, we have g, , = \/p? + w?. It follows that

cos () = H and sin () = iy

w,p G,

This proves (2.1.2) and (2.1.3). Now, it is convenient to define a class of functions

fuwe(x) == a"sin (wln (z) + ¢)

which is slightly more general than f, ,(z) = 2#sin (wln (z)) . For x > 0, we have

fl’hw,w(x) = atcos(wln (z) + ) (iw) + 2y sin (win (z) + @)

= 2" (usin (wln (z) + @) + weos (wln (x) + ¢)).



By multiplying and dividing the last equation with g, ,, we have

f;t,w,(p(x) = G- [ (gL sin (wln (z) + ¢) + gi cos (wln (z) + go)) ) (2.1.6)
W, w,

Putting (2.1.2) and (2.1.3) in (2.1.6), we finally obtain

Friwio(®) = Gup a7 (cos (py) - sin (wln () + @) +sin (;) - cos (wn () + )
= oy " sin(wln (z) + o + )
= Guu- fufl,w,go+<p1 (l’) (217)

(2). Further, using (2.1.7) with ¢ + ¢, instead of ¢, and u — 1 instead of u, we see
that

f;/:w(x) = fl,w,o(x) = (gw,u ) fﬂ717w790+‘701)l (z)

G * Geop—1 * fu—2,0,01 10, (T),

which proves (2.1.4).
(3). Using (2.1.7) we obtain (2.1.5) analogously. ®

Lemma 2.2. Let ;1 > 2 and w > 0 be given. Define ¢ := e~ and ¢; as in Lemma
2.1. Then, the following properties are satisfied in (0, 1]:

(1). f.. has the zero points

¢ =e % (2.2.1)
(k € N) and
(@) = (=1)" wgk®=. (2.2.2)
(2). f. has the extremal points
& —¥1

my, = q"e (2.2.3)

and )
fu ) = (1) exp (ALY in), (2.2.4)

(3). If p is an even integer, and 5 € N is odd and [ (k) := ku + 5, then f,, has a

maximum at
—¥1

My = ¢ We v . (2.2.5)
Proof.
(1). We first find the zeros of f, . For x € (0,1) one has
sin(wln(z)) =0« Jk e Nwln(z) = —kr < Ik € N In(z) = —_k:7r7
w



and hence 7 = e=»~. With q = e~ &, the zeros of fuw in (0, g] are given by x = et = q~.

Therefore, by inserting ¢* in (2.1.1), we have
fo(@) = ¢V gy, sin(w (Ing") +¢y)
— qk(//'*]-) . gw7u . Sln(w <1n e%h) _|_ 901)
= <_1>k qk(#il) ot Sin(@l)
Using (2.1.3) we obtain
flo(@d) = (=1 g,,

w
Yu,u

Hence, assertion (1) is proved.
(2). Let k € N. We find the extremum points of f,, in the interval I, = [¢"*!, ¢*]
by solving f/, () = 0 for # € Ij. Since z > 0, 2#~! # 0. So, we have

sin(w (Inx) + ¢,) =0,

—kT =) —f
and hence z = e~ « . The last expression equals to ¢*¢ w = my, which proves (2.2.3).

Furthermore, for the extremum point my, of f, ., in the interval (¢*™, ¢*) we have

fuw (mg) = mhsin(wln(myg))
= (qke*%)usin(wln (qk *%))

e
kr e \# kn _¢1
= (e we w | sinfwln (e we w )
5 7 'Il(

k
= e (I i,

(3). Substituting [ (k) instead of k in (2.2.4), we have

Fow (mugy) = (=1)'®* exp <_M) sin(y;)

w

= exp <_M) (_1)kﬂ+6+1 Sin(wl)
w

Therefore, it is clear that f, ., (ml(k)) > 0 (and hence f, ., has a maximum at myy)), if 4
is even and [ is odd. &

We shall frequently use the simple lemma below.

Lemma 2.3. Assume f : [a,b] — R is continuous on [a, b] and differentiable on (a, b).
If |f'| > ¢, or |f'| <d (c and d are constant), then we have

clb—al <|f(b) = fla)] <d|b—al . (2.3.1)
Proof. (Follows from the mean value theorem.)

8



3. The behavior of orbits remaining in some ‘flat’ intervals

In this part we find some parameters ;@ and w such that f,, maps some extremal
points my, to some other extremal points myq (see Figure 3). Then, we construct some
open intervals Uy, around my, and orbits of f,,, = f which are entirely contained in U Us.

keN

Theorem 3.1. For k£ € N, w > 0, and even integer p > 2, define

4 1 _¥
. q e w —(q — €6 w

= 3.1.1
n min {gw,u : gw,u—1’ 5 ) 5 } ) ( )

and set ¢ (k) := ku + 1 (which corresponds to f = 1 in assertion (3) of Lemma 2.2),
Ok = ng" , duay == ng"®. Then, for every large even integer enough 1 there exists a

corresponding w such that the following properties are satisfied:
(1). With the intervals Uy = (my, — 0k, my + x) one has f (Uy) C Uyry and
VkeN: f1{o) U, = 0.
(2). If k is odd, then for z € Uy, the orbits (f7 (2));cy all have the symbol sequence
(s;) = (signf’ () ;e = (+1,4+1,+1, ).

(3). The set
Z={z|3IneN: f"(z) =0} (3.1.2)

is disjoint to U U, and, in particular, is not dense in [—1, 1].

k
The proof is divided into several lemmas.

Lemma 3.2. Let £ € N and define ¢; as in Lemma 2.1. Define n and J; as in
f1 1
_ . e w —ql—e w
= min .
7 2 7 2
Then we have

(Mg, — S5y M, + O1) C [mu — Sy e + 0k) C [ — 1g*, my, — 1g"] C (g

Theorem 3.1, and

k+l’qk).

Proof. From (3.1.1) we have n < 7. Multiplying both sides with ¢*, and using (2.2.3)

we have

k
5k < 7q° =min{ 5 : 5

o o
A A A }:min{mk—q’““ q’“—mk}
2 2 [

it follows that (my, — 0k, mg + 0x) C [my — Ok, my + 0] C [mk — g~ my, — ﬁqk} C (qk“, qk)



Figure 3: f (my) = mu

Lemma 3.3. Define ¢, as in Lemma 2.1, and define ¢ (k) as in Theorem 3.1. Then
the following statements are true.

(a) For every even integer p > 32, there exists w € (0, 1) such that for all k£ € N f has
the property
f (mk) = My(k)-

(b) For any choice of w as in assertion (a), one has w — 0 as yu — 0.

Proof.
(a) From (2.2.4) we have for all k € N

kmp 4+ op
w

|f (mg)| = exp <— sin(¢p;). (3.3.1)

On the other hand, from the third assertion of Lemma 2.2 we know that for even pu, f
has a maximum at the point

(k) +
My() = €XP (—%) . (3.3.2)

Using (2.1.3), (3.3.1) and (3.3.2), we obtain the following equivalences:

10



Figure 4: Graph of F (w, ), for pn = 32

megy = f (mu)
C(k k
& exp <_M> — exp <_M) - sin(p,)
w w
C(k k 1
& exp <_m> ~ oxp <_ A+ W) .
w w 2
1+ 5
w
_ 1_ 2
& exp (—W [k — £ (k)] + M) — 1+ £ (3.3.3)
w w w
Substituting ¢ (k) = kp + 1 in (3.3.3), we have
1— 2
exp<7r+s01u§ M)): 1+%
or, using the definition of ¢,
m — (p — 1) arctan (f) 5
exp - a =4/1+ % . (3.3.4)
In view of (3.3.4), we define
m— (p — 1) arctan (E) 2
0
F = 1+ —. 3.3.5
(w.1) = exp - + 2 (335

11



We try to find (w, p) with F' (w, u) = 0 (see Figure 4). Noting that for fixed p,
lim,, o F' (w, ) = 400, it is enough to find at least one pair (w, u) with F' (w, ) < 0. For
w = 1, we have

Fly) — exp (ﬁ ~ (31— 1) arctan (%)) 14

1 1
= exp (7? — parctan (—) + arctan (—)) — 1+ p2 (3.3.6)
7 m

1
Si t =
ince arctan 1($) Tt

arctan (z) > —x for z € [0,1]. It follows that for u > 1,

1
we have arctan’ (z) > 5 for |x| < 1. Hence, (2.3.1) shows

\)

1 1
parctan (;) > 5 (3.3.7)

1
Using (3.3.7) and arctan (—

) < % for 4 > 1 in (3.3.6), we have
I

2

1 5) 1
F(l,u)gexp<w—§+%)—\/1+u2:exp<z7r——)— 1+ p?.

) 1
From the fact that exp (Zﬂ — 5) < 32, we have F' (w, 1) < 0, if we set w = 1 and p > 32.

With the intermediate value theorem, it is trivial that F' (w, 1) has at least one zero point
€ (0,1). It follows that (3.3.5) is satisfied with this w depending on the even integer

i > 32. Hence, the proof of assertion (a) is completed.
(b) Consider a sequence i, j;, — oo with corresponding wy, € (0,1) such that

F (py,wr) = 0. Then 4/1 + & — 00. Further, (p;, — 1) arctan (w

wi Hr,
exponential term in (3.3.5) must go to +00, so wy — 0 necessarily. This completes the
proof of (b) and the proof of Lemma 3.3. ®

) is bounded. The

1—
Remark. Consider the equality (3.3.3). Because p > 1, so M < 0, and
w
2
1 —i— K 5 > 1, the term — [ku ¢ (k)] must be positive, if we have a solution. Accord-

ingly, ¢ (k:) > kp must be Satlsﬁed It means (3.3.4) has no solution for ¢ (k) < ku. Thus
¢ (k) > kp+ 1 necessarily; we made the choice ¢ (k) = ku + 1.

Numerical observations. In order to find a numerical solution we use two starting
points where F' (-, 1) has opposite signs and at the 9 th step of a bisection method we
obtained w = 0.69895 and p = 24 as an appropriate F' (w,u) = 0. Although one can
obtain some other solution points w, for some other the parameters p, we numerically
found out that there is no solution for y < 3.1.

12



Lemma 3.4. Choose an even integer u > 32 and w € (0,1) with the properties as
in Lemma 3.3. Define ¢ (k), 1, 65 and 04 as in Theorem 3.1. Then with the intervals
U, = (mk — 0, my, + 5k;)7 we have f (Uk) C Ug(k).

Proof. Let p and w be as in the assumption of the lemma, and = € U,. With
¢ (k) = kp+ 1 we claim that

| £ (2) = may| < Sey = g™ . (3.4.1)

From the second order Taylor expansion, we have

F@) = f lme) + F (m) (e —mi) + L2 (@ m? (342)

with £ € (my, — 0, my + d5). Since p > 2, note that we also have
gF =2 < ‘§|M—2 < ¢F=2), (3.4.3)

Substituting the equality (3.4.2) in the left hand side of (3.4.1), we get

(x — mk)2

5 - mg(k) .

| f () = megy| = |f (my) + f (mie) (= mie) + £ (€)
From the fact that we now have fixed parameters i, w with the property f (my) = meu,
as in Lemma 3.3 and using f’'(my) = 0 and (z — my) < 0, the last equality gives

%
2

f// (5)

[ (x) — myy| <
Using (2.1.4) in the last equality, we obtain

. 5 0}
17() = )] = [ G - 5in (I (2) + 01 + i) 6172 2E (3.4.4)

Using the upper estimate of (3.4.3) and substituting the value of d; in (3.4.4), we get

|f (SC) - mf(k)‘ < G, * Go,u—1

kb2 77261%
e

m
Ju,p - Jo,u—1° qk“7‘ . (345)

Finally, using the definiton of 7 from (3.1.1) in (3.4.5), we have

n q
F @) = mag] < |G g gL
‘ ( )‘ : g 2 Go,p * Juw,u—1
n
_ qku+1§ < nqku—l—l — an(k) _ 5Z(k) m

13



Proof of Theorem 3.1. Choose p, w as in Lemma 3.3, and let ¢ (k) be as in Theorem
3.1.

(1). Lemma 3.4 shows f (Uy) C Uy and the definition of Uy, implies 0 ¢ Uy, so
0N N UL =0, |

(2). If k is odd and p is as above (therefore even), then all # (k) (j > 0) are odd and
all Uy are intervals around maxima of f, where f is positive. Hence the assertion is
proved.

(3). For kg € N, z € Uy, and n € Ny, f"(z) € U Uk, in particular f" (z) # 0, which

keN
proves assertion 3. W

Note that the possible existence of the orbits which remain close to critical points, i.e
implying non-density has been mentioned as a remark by Holmes P. J. in the bottom of
the page 395 of [2] with only a vague indication of proof. With this section we gave a
rigorous proof of that idea.

14



4. Behavior of the map f, . in some ‘steep’ intervals

In this section we first construct some orbits whose points stay entirely in so-called
‘steep’ intervals, and then analyze the measure of the set of points which have such
orbits. In contrast to chapters 3 and 5, where the parameters ; and w are connected by
the conditions given in assertion (a) of Lemma 3.3 and in (5.2.1), in this chapter both of
them can be varied independently.

Consider the interval (—my, —myg11) or (mgi1, mg). From Lemma 2.2 we have

‘flfw(qk+1)| —w (qk+1)(u—l) ‘

Since f), , (Fmx) = [l (Fmr1) = 0, continuity of f; , implies that we can choose a
‘steep’ interval Sy, either as a subset of (my41, my) or as a subset of (—my, —myy1), on
which ‘ f/’w‘ satisfies a lower estimate. We begin by specifying the boundaries of the
‘steep’ interval Sy and by giving some new notations.

We use the notation |I| for the length of an interval /.

Definition 4.1. Let £ € N and ¢ € (0,1). Define

aj = min {55 € (M1, ¢ 1 [fu(@)] = cw (qkﬂ)(#ﬂ) on [x’qkﬂ]}

and
b, = max {x € [qk“,mk) : ‘f;w(x)| > cw (qu)(Wl) on [qk“,x] } )

Note that ¢"™2? < ap < ¢"! < b, < ¢* (see Figure 5). Given a symbol sequence of the
form
(Sj) = (+1> L +1,+1,+1, -1, ) )

where symbols represent the signs of fi}w (x) for some starting value z, we construct
corresponding orbits of f, ,,. Note that in terms of the motivation by the three dimensional
vector field, such orbits correspond to solutions converging to the doubly homoclinic loop,
and taking turns along the upper and lower homoclinic orbit according to the symbol
sequence. For 0 < a < b, define

and define ‘steep’ intervals by

c . _ [ag, br] ,if s =+1
Sk;,s — [ak‘ybk]s - { [_b/ﬁ _Cbk] , if s = _1
So, we have
‘f;w(x)| > cw (q“l)(“fl) forz € S;,, s {£1}, ke N. (4.1.1)

15



My +18K
—t

j

Figure 5: The interval (¢*™2, ¢")

We also define S 11 := 5§ ;; US; _; and define the union of all ‘steep’ intervals by

U= | Ska1-

keN
Note that for s € {+1}, Sf, C (mp41,mz), , and hence

¥1

|Sis] < = =q"e v (1-q) (4.1.2)

Setting f" := f,, we define sets of points with forward orbits which are contained in

these ‘steep’ intervals (see Figure 6). Namely,

Q= ()7 (05 Q=) (1)
|

Theorem 4.2. Let ¢ € (0,1). Assume p > 1 and define Si ,, and Q5 as above. Then
for kg € N the following statements are true:

(1). For every symbol sequence s = (s, 51, 52, -..) there exists a point yo € (5§, ,,
with the property that signf’ (yo) is given by s; € {1}, where j € Ny.
1
(2). Let w> = + 7 (pu+1). Then with the set Z from (3.1.2) we have
c
nQg) C Z.

nQg,)

(5120750

2
(3). Let ¢ € (—71) and w >
T

measure zero.

cm? (21 + 3)

. Then Q¢ C Z, but Q, has Lebesgue
2(cm—1)

16
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Figure 6: Graphical observations of orbits whose points stay in ‘steep’ intervals

Remark. A similar argument is sketched in the page 395 of [2], with the purpose to
show that Z can be dense, but it seems that the method gives density only in a set of
measure zero.

The proof starts with the following lemma.

Lemma 4.3. Let ky € N, ¢ € (0,1) and s = (s, 51, 82,...) € {+1,—1}"° be given.
Define Sy - as in the passage given before Theorem 4.2. Then the following statements
are true:

(a) There exists a point yp € Sho.so and a sequence ko < ki < ky < ... such that
Vj e Ny f7(y) € ng’sj, in particular, y, € 2.

(b) Let yo € (S5,.,, N Q%) be given and define the sequence ko < k1 < ky < ... by
() =y, € Sh;.s; (J € No). Then there exists a sequence (3;) of intervals in S with
Ej D) Ej+1 > Yo, (fj), 7é 0 on Ej and

kj+1 R
j N kj+1 ) _ [q J ;yj} ) if Sj = +1 c .
(&)= [q 7y]]5j = { [yj, _qijrl] L ifs; =1 C Skj,sj for j € Ny, (4.3.1)

in particular, Z N %; # 0 for all j € N.

(c) For yo € (5§, ., N Q%) and ko, ki, ks,... as in assertion (b) and all j € N we have

() ()| = () (H q) . (43.2)

n=0

17



(d) Let yo and the sequence kg < k1 < ka < ... be as in (b). Then

Vi€ N: gfin > ghint2, (4.3.3)

1
(e) Let w > - +7 (4 1). Let yo and the associated X; be as in assertion (b) and ¢,

goe % (1—q)

be as in Lemma 2.1. Then |¥;| < :
(cwgrtt)’

and cwg"*! > 1; in particular, |;| — 0,

as j — oo.

Proof.
a) Let ky € N and s = (sg, s1, So, ...) be given. For Sy _ = |ag,,by,|. it is clear that
g ko,s0 0 0lsg
f( 20750) is an interval which contains 0 in its interior, and since ar — 0, by — 0 as
k — oo, there exists ky > ko with g, C f(Sf, ,,)- Further f
set

se is injective, and we
kQ,s0

Jp = (f s;;o’so>_l (Stis1) -

(f maps J; bijectively onto S¢ . .) Similarly, there exists ky > ki with S, . C f(SF .,),
and a closed subinterval J, C J; such that f2 |;,: Jo — 522752 is bijective. Thus, we obtain
a nested sequence

JIDJDJ3D...

of closed intervals and sequence of numbers
ko < ki <ky<..

with the property that f7 (.J;) = ke J = 1,2,3,.... Furthermore, the intersection of
nested closed intervals ﬂ J; is not empty. It means that there exists a point yy € ﬂ J;
jEN jEN
which follows the symbol sequence s, and this result completes the proof of assertion (a).
(b) For the proof of this assertion we use a recursive construction. Define

%o = [+ 5], = { [0 o], if 5o = +1
) s0

[y07 _qki()—l-l] 5 if So = —1 - SEO,SO'

Then yo € Yo, and the definition of Si . implies f # 0 on X, so (4.3.1) holds for
j = 0. Assume X; with the properties in (4.3.1) is constructed and we want to construct
Y41 C X; such that (4.3.1) is also satisfied for j+1. We have, observing that sign(y;) = s,

(I m),,) = 0. W, = 0yl

and f7 |5, as well as f |[qkj+17yj] are invertible. Hence, we can define
¥

-1
Zj+1 = (fij |Ej)71 (f ‘[qk‘j+17yj]s.) ([qkj“Jrlaijrl]SHl) .

18



Then yy € %41 C ¥, the chain rule shows (f7+!)" # 0 on %;,;, and

y . k c . . .
(]1”:2 (Bj41) = [gherrt, yj+1:|sj+l C S,.15,.,- Hence, the recursive construction is com-
pleted.

Note also that for j € N, ¥, contains a point z; with f7 (z;) = ¢*™1, so
7 (z5) = f (¢%™) =0, hence z; € £; N Z.

(c) By the chain rule the derivative (f7) at y, € m Y; can be calculated as the

jEN

product of the derivatives of f along the orbit

‘(fj)' (yo)) =1 (o) - f' () - oo f' (i2) - £ (i) = [ [ 1 ()] -

Using (4.1.1) for each derivative in the last equality, we have

j—1

<
|

(7Y )| = ﬁu’ ()] = (ew)

= (w) <1:I qk”“)

(anﬂ)#—l

—

0

3
Il

—_

This gives the proof of (4.3.2).
(d) Let now yo € S5, ,, and sequence ky < k1 < ky < ... as in (b) be given. With ¥;

ko,s0

from (4.3.1) we have f7 (X;) C S, and so
o) € Sk, NFPTHE) CF(F(2)) C f (51§j,sj> , for j € No

which implies f (ng7sj> NnSE.

. ku c .
S # (). Morover, since |f| < ¢"* on Skwsj, we obviously

have
¢ > max {|f (x)]:x € S,gj,sj } Together with

max{|f(a:)| (T € S,‘;j’sj} > min {|y| RS ngﬂ’sﬁl} :
we conclude
¢"" > max {|f ()] :z € Slij,s]} > min {|y| Ty € S,ﬁHhSHI} = ay,,, > ¢t

Hence, the proof of (d) is also completed.
(e) Finally, from (2.3.1) we know that on 3, we have

|55] < 1 @) (4.3.4)

minEj |(fj),| '

From (4.3.1) we have [(f7) (3;)| < |},
Combining both inequalities, we get

, and from (4.1.2) we have | S¢.
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[(F) (S| < |85, .| < e (1—q). (4.3.5)
Using (4.3.5) and (4.3.2) in (4.3.4), we obtain
k. —¥L1
ge” = (1—q)
|55] < - T (4.3.6)
(cw)’ (H q’“”“)
n=0

By using (4.3.3) we can estimate the denominator of (4.3.6) as follows:

wr(TTe) = e () (T1)

j—1 Jj—1
q.j(lu'fl) H qkn# H qkn+1+2
j n=0

_ J J . j(p—1)  n=0
- (CCO) j—1 > (C(,L)) q] K j—1
14 11
n=0 n=0
7—1
q2j H qkn+1
k
— n=0 i g
i
n=0

Substituting this estimate in (4.3.6), we finally have

1

e D (1—q) g™ ¢ (1-¢)

=) <2 ~ :
(cwgrtt)’ gk (cwgrtt)?

To show that |X;] — 0 as j — oo, it is enough to show (cwg”™) > 1. Note that the first
order Taylor expansion of g™ = exp (—z (1 + 1)> is
w

(n+1)

exp(—g(u+1)>:1—7r - + Ry (§),

" 2
where 1) (f) = =P (5) <7T('u+ 1)> >0, and £ € (—M,O). The assumption

2 w w

of (e) gives us — + 7 (1 + 1) < w, and hence
c

1<cw—cw(u+1):cw<1—7T(MT+1)).

Since R; (§) > 0, we obtain
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1< cw (1—M) < cw (1—M+R1 (5)) = cwexp (—g(ﬂ+1)> = cwg"t,

w w
and this completes the proof of (e). B

The next lemma estimates the measure of the points in the ‘steep’ interval Sp ,, which
have the first n iterates in the union of all ‘steep’ intervals.

1
Lemma 4.4. Let kg € N, c € <—, 1>. Let U¢ and Sy, ., be as in the passage before
ﬂ- bl
Theorem 4.2. Define ¢, as in Lemma 2.1. Then for ky € N we have

ge % (1—q)
(cwgitt (I —q)"

Spo N[ )7 (¥9)] < (4.4.1)

i=1
(The same estimate holds for ng_l)

1
Proof. Let ky € N and ¢ € <—, 1) be given. It is clear that f (S,go +1) contains
7-" K

infinitely many ‘steep’ intervals. Assume /, ¢ € N are such that S; ;N fi (Sg ﬂ) # ().

Since | (@) < |2 on Sf, 1, one must have %' > min {Jy| 1y € S5} > ¢ It
follows that ¢ > kou' — 2 > kou — 2. Hence, the intersection in (4.4.1) equals

Shos1 N m [ ( U S§ 1 |- We now prove (4.4.1) by induction over n. For n =1,

i=1 >kop—2

Sk N1 =

5130,+1ﬂf_1< U Sgﬂa)

0>kopu—2
= > ISt N (SE)] (4.4.2)
0>kopu—2
From (4.1.2) we have
c _f1
|[Seaa| <d'e™= (1-q). (4.4.3)

Using (2.3.1), (4.1.1) and (4.4.3) in (4.4.2), we have

1
c -1 c c -1 c c
Erral (S N A N T | R P (Y ) E
£>k0p, 2 {>kopu—2 q
(1-q)
cwq(k0+1 p—1) Z q. (4.4.4)
0>kop—2
Here, note that
_ 1
Z qe = Z qe = q[kou 2] —1 — q’ (445)
>kop—2 0> [kopu—2]
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where [...] denotes the ceiling function. Setting € (ko) := [kop — 2] — (ko — 1) € [-1,0)
and using (4.4.5) in (4.4.4), we obtain

_¥1

ko [kop—21 1
c 1 e e kou—2] _ 4°€¢ © 4 L
}Skoﬂrl N f (\I[ >‘ < Cwq(ko-l—l)(u—l) q o cw koN_l q+
_¥1 _ _¥1 _¥1
00 o= _qlgves g s (1-q)
cwght cwgt cwght (1 - C])

which proves the case n = 1.
Assume the assertion is true for n, i.e, for all kg € N we have

L1

<ghe P (1—g) (Cwquﬂl(l _ q)> , (4.4.6)

and now we show that it is true for n + 1.

Sg(),—‘rl N ﬂ f_i (\I[C)
=1

n+1

SN )7 )

=1

= St NS )N (8
= |Sha NS (ﬂ f (‘I’c)> ‘
=0
= [Skpe1 N = << U Sg,:tl) A ﬂ 7 (‘I’C>> ' :

0>kopu—2

Note that S§,; C ¥° implies

Sea N[ fH(®) =Siy N f7 (2.
=0 =1

So, we obtain

n+1

S/io,-‘rl N m f_i (\IJC)
i=1

Skort1 N ! ( U <S§,:I:l N ﬂ f (‘I’C))> ‘ (4.4.7)

0>kopu—2
Using (2.3.1), (4.1.1), (4.4.3), (4.4.5) and (4.4.6) in (4.4.7), we have

n+1

S N () £ ()
=1

1 1 " ¢ —f1
< (cw) g D=1 Z <cwq“+1(1—q)) ge = (1-q)

0>kopu—2
goe S 1 \""! ’
= (Cw)n+l (qu+1)" grghon—1 <1 — q> £>%_2q
_ ¢oe= ( 1 )n—l glkon=21" 1
(cw)™ (g qr \1—¢q ghor=1 1 —¢
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With e (k) as above, we obtain

qkoef%qe(ko) 1 n
()™ (ght1)" g (1 - Q>
- qkoe—% -1 ( 1 >n
T ()" ()" \ 1 — g
_ o 1 "
- wu_@>Qw¢*W1—®> ’

so the assertion is true for n + 1 and hence, the proof of Lemma 4.4 is completed. B

n+1

SI(C:(),—FI N ﬂ f_i (\ch)
i=1

2 1 2(2 3
Remark 4.5. Let c€ | —,1) and x> 1. Then — + 7 (p+1) < M
T c 2(emr—1)

Proof. Let c € <z, 1>. Then
T

1 l4emu+cer  m+cem?u+cen® | 2emu+ 2en? + 2w
Cmp )= e s T < S .
c c cm 2(cm—1)

Since cm > 2, we have 27 < cm? and hence

2cm?p 4 3em® em® (24 + 3)
2(cr—1)  2(er—1)

1
E—l—w(,u—i—l)ﬁ

4.6. Proof of Theorem 4.2

(1). From assertion (a) in Lemma 4.3 we see that there exists a point yo € (Sf, ,
with signf’ (yo) = s;, because f/ (yo) € S, ..
(2). Assume yo € (S5, ,, N Q%) Assertion (b) of Lemma 4.3 shows that X; 3 yo and
ZNY; # 0. Further, assertion (e) of Lemma 4.3 shows that |X;| — 0 as j — oo. This
means that there exists a sequence (z;) C Z with z; — o, and this completes the proof.
em? (21 + 3)

2(cr —1)

NQg)

2
3). Let c€ | —, 1) be given. Remark 4.5 shows that the condition w >
g
T

from assertion (3) of Theorem 4.2 implies the condition w > — + 7 (u + 1) of assertion
— c
(2). Hence, (Sg, 11 NQS) C Z for all ko € N. It follows that

Q5 = U (Slio,il NQS) C Z, so Q% C Z. To prove that QS has measure zero, we show
koeN

lim,, o0 }Qg NSk, i1| = 0 for every ky € N. For this purpose it is enough to show that

under the conditions of assertion (3) of Theorem 4.2, cwg”™ (1 —q) > 1 in (4.4.1). We

use the second order Taylor expansion of e™¥ around 0 for y > 0,

312
efy = 1—y+5+R3,
exp”’ (§)

with R3 = 31

(—y)* < 0 for some & € (—y,0). Hence, since
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x () T m  (n)?
B TR 0 s DO A

w  2w? w o 2w?’
we have ) )
- T T T T T
l-¢g=1-€¢"w=————R (—>>———. 4.6.1
9 ¢ w  2w? S\w w  2w? ( )

On the other hand, with appropriate &,

2
R m(p+1) N exp;(f) (_W(M-i- 1)) -1 M (4.6.2)
w !

Using (4.6.1) and (4.6.2), we get

awg"™t(1—q) > cw(l—@) (g_%):m(l_w;w)(l_%)

2 2(p+1
= oen (1o Brt2my) i (pt1)
2w 2w?

> cm (1 - ”(32—4;2“)) . (4.6.3)

In view of Remark 4.5, and using the assumption which is given in the assertion (3) of
Theorem 4.2 in (4.6.3), we finally obtain

3+ 2u) er—1
ptl 1 _ 1— 7T< — 1— =1.1
g (1—q) > e cm? (2p + 3) r cm

2(cm—1)
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Figure 7: Graphical representation of Ul and U}[t

5. The behavior of the points whose orbits follow ‘flat-steep-flat’ intervals

In chapter three we analyzed the behavior of the points which are mapped from ‘flat’
intervals to some other ‘flat’ intervals, and in chapter four we studied the behavior of the
points which are mapped from ‘steep’ intervals to some other ‘steep’ intervals. Finally
in this chapter, as we briefly mentioned in the summary of this thesis, we first construct
a specific type of orbit whose points travel from ‘flat’ intervals to ‘steep’ intervals, then
from ‘steep’ intervals again to ‘flat’ intervals under the iteration (see Figure 7). Besides, to
avoid repeating the same expression, we shall use ¢, ,+1—; as in Lemma 2.1 and ¢ € (0,1)
for the rest of the paper. For a specific choice of i, w > 0, maxima m;, get mapped to zeros
¢ ®) of f, .. We shall first introduce “flat’ intervals of the form Uy, = [my — g, my + 6]
for odd k and use the notations U = [my,, my + 6;] and UF = [my, — 6y, my| for the right

and left part of U, respectively, and we define U = U Uy, S = U Sik. Then, we

keN keN
k odd k odd

construct the orbit (f7 (z)) jen » With the properties

; U, j is even
j )
f(x)E{S,jisodd '

Furthermore, for k, 1 € N, w > 0 define 4, (k) = kp+ 1 and with ¢, as in Lemma 2.1, we
define 1 3
(5 (k) := min {E eN: ¢ < ghm. QW M} .

49007# : gc%,u—l

We denote by E% (k) the j th iterate of the function /5 applied to k. Then, given a symbol
sequence of the form (L, R, R, L, R, ..., R), where symbols represent the left ‘L’ or right
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‘R’ hand part of Uy, (that is UL, U[), we construct corresponding orbits of f. Given a
finite sequence
s = (S0, 51,52, ..., $n) € {L, RY"™

and £ € N, we first construct the subset of points x in U, which follow this symbol
sequence in the sense that f% () € U;(k) or f¥ (z) € Ue]}(k)’ j=0,1,2,...,n depending
2 2

on whether s; = L or s; = R. Hence, we construct the set I,’;S = | | f2 <U;f(k)> and
2
7=0

the set I'} = U I} ; which is the set of points following symbol sequences in the
se{L,R}"*!

set {L, R}{O’l’z"”’”}. Finally, we analyze the Lebesgue measure of the set I'}, and consider

the limit as n — oo.

Note that the ‘steep’ intervals S; that we use in our calculations in this chapter are
some subintervals of (mk, qk}, whereas the ‘steep’ intervals which were used in the fourth
chapter are some subintervals of (mg.1,mg). In the theorem below we restrict ourselves
to p € N for simplicity.

Theorem 5.1. Let k be a positive odd integer number. Let ¢ € (0,1), and p € N,

30e\? (1 -
[ > max { (7—€> < 5 C) : 15} be given. Then there exist an w > 0 (depending on 1)
s c

and a set I'* C U}, with the following properties:

(1). Let a sequence of the form s = (L,R,R,R,L,R,L,R,...) € {L,R}NO be given.
Then, there exists exactly one point x; ; € U, with the property:

For all n € Ny, f*" () € U, and f>" (z,) is to the left of mgm ) or to the right of
My (k) depending on whether s,, = L or s, = R.

(2). The measure of I'} as defined above goes to zero, as n — oo.

The proof requires several lemmas and propositions. The proof of the following lemma
is analogous to the proof of Lemma 3.3, but is included for completeness.

Lemma 5.2. Define ¢, as in Lemma 2.1. Then the following statements are true.

(a) Assume p € N, g > 15 and define ¢; (k) as in the passage before Theorem 5.1.
Then there exists an w € (0, 1) such that for all £ € N, f has the property

[f (mx)| = ¢, (5.2.1)
which is eqivalent to
T — parctan (E) 2
exp - K =4/1+ % . (5.2.2)

26



(b) For any choice of w as in assertion (a), we have w — 0 as u — oo.

Proof.
(a) Let k € N be given. With my, from (2.2.3), we have from (2.2.4)

o)l = exp (~TEEAL) sing)

Using (2.1.3) we obtain

kmp + 1
1 ()| = exp (— - W) - _ (5.2.3)
I
L+
On the other hand, from (2.2.1) we have
¢"*®) = exp <—7T€1 (k)> . (5.2.4)
w

With (5.2.3) and (5.2.4) together, we see that (5.2.1) is equivalent to

exp (_m (k)) ~ oxp (_ kmp + swt) 1 :
w w
i

exp (7r (6 (%) —w]fﬂ) — @1#) =4/1+ H—2 (5.2.5)

and hence to

So, if we substitute ¢; (k) = ku+ 1 and the value of ¢, given by Lemma 2.1 in (5.2.5), we
finally get that (5.2.1) is equivalent to

w
T — parctan <—)
"

2
exp = 1+M—27
w w

which proves the equivalence of (5.2.1) and (5.2.2). Now, we want to find w and p such
that
|f (my,)| = ¢"™). Define

w
T — parctan <—) 3
7
F (w,p) = exp - K —\/1—1-?

and try to find F' (w, ) = 0 at least for a special pair of (w, ) (See Figure 8). On the

one hand, for a fixed p > 2, arctan bl IR 0 as w — 0. Hence, due to the exponential
1
growth, F'(w, 1) — oo as w — 0. On the other hand, for w =1 we have

1
F(1,u) = exp <7r — g arctan (—)) — 1+ p?. (5.2.6)
L
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Figure 8: Graph of F' (-, u) for p =15

1 1
From (3.3.7) we have p arctan <—) > 5 for p > 2, and using this estimate in (5.2.6), we
0

finally have F'(1,u) < e 2 — /1+ p?. From the fact that e < 15, we finally have
F(1,u) < 0, if we choose > 15. With the intermediate value theorem, it is clear that
there exists at least one w € (0,1) which satisfies F' (w, 1) = 0 for fixed p. This gives the
proof of assertion (a).

(b) The proof is analogous to the proof of the assertion (b) of Lemma 3.3. B

In order to find a numerical solution, one can use the bisection method, and we found
numerically that there is no solution for p < 2.3.

The next three propositions (5.3, 5.4, 5.5 ) give some preparatory calculations.

) P ((# _23)%) \/1 i

Goopi—1 2cw

Proposition 5.3. Let ¢, be asin Lemma 2.1. Set o (w, p, ¢

If p e N,
30e\% /1 —c
> i 15
“—max{(wr) (2c ) }

and w is a corresponding value obtained as in Lemma 5.2, then we have «a (w, i, ¢) <

DO | —

2

3
Proof. Let p and w € (0,1) be as in the assumption. Then, it is clear that Lz >1,
w

and in view of (5.2.2) we have

T — parctan | —
wo_ 3 p
——l—— 14+ — =exp
w

w
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: w w
Since arctan (—) < —, we get
n) =

w
24 1 s
—2>exp| ———— :exp(——l),
w w

and hence we have 2ue > wes. Using the second order Taylor expansion of e& in the last
inequality, we obtain

5 S 1+7r+17r >17T
e —— ——, or
pe = 2w?2) T 2w’

7.‘.2
w

dep > (5.3.1)

1 [T—¢ 30e2 11
implies — > e? € 7 Since e > e flt, it follows that
2 2 14m /1

1 1 1 1-—- 15v4 1—c 15y/4
—>exp|-——)- ¢, lovide = exp L(M—Z) 4/ <. iy (5.3.2)
2 2 2¢c l4m\/p 2w 2c 14mp

1—c

50 which

1 15
On the other hand, since p > 15, we have 1 < i and with the fact that
= 1t
W w
arctan (—) < — we can conclude from (5.3.2)
nw) = p
] (1 — 2) arctan ( > — \/ﬂ
5 > exp %0

Finally, using (5.3.1) and the definition of ¢,, we obtain

(g Fﬁ

> expi( 3\/7 S

= . = W, ,C
o o0 (w, 1, ¢)

and this completes the proof. B
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Proposition 5.4. Let ¢, be as in Lemma 2.1 and ¢ € (0,1) be given. Set

_e1(p=2) _e1 _e1

~ we w ~ e v —q - 1—e%
w, @) = , w, @) = , w, i) ;== —— and
M (w, 1) o s My (w, 1) 5 s (w: 1) 5
~ (1—c)qu
Ny (W, 1) == 7 Then for small enough w > 0 and large enough u € N, > 3,
w,i " Yw,u—1
we have
ﬁ ‘= min {ﬁl (w7 HJ) ) ’ﬁ2 (wv ILL) ) /7\7/3 (w> H’) ) ’ﬁ4 (wa :u)} - ’7\7/4 (w7 :u) . (541)

Proof. We prove that 7, (w,p) < 7y (w, 1) < min{n, (w,pn),n5 (w, 1)} for p large

enough, w small enough. For w > 0, we have g, ,—1 > /(¢ — 1)2, Gou—2 > A/ (1 — 2)2
and using these simplifications, we obtain

_e1(n=2) _e1(e=2)

~ we we
(W, p) < = : (5.4.2)

NIRRT

We have already defined

. € w —q 1 o p1-m
772(“7;“):—256 « (1_6 “’ >7

2
. . e i 1
and for w small, p; — 7 < 0 implies (1 —e @ ) > 3 Hence, we have
~ 1 &
Ny (w, 1) > 7€ 7 (5.4.3)

From (5.4.2) and (5.4.3) it is obvious that 7, (w, ) < 7y (w,p) for p > 3 and small
enough w. The proof of 7, (w, p) < 75 (w, 1) for small w and large u is analogous; observe

N5 (w, 1) — g BW = 0. There exist ¢1,c0 > 0, and pg > 0 for g > puy such that

_e1(p=2) —
Ny (W p) 2 ¢ e u; and 74 (w, Hy) < ¢ u/); " . Hence, we have for 1 > Lo
T
74 (W, 1) < coVwe o co 1 . $1 (N—Q)_§
= — — X
M (w, 1) ~ clwefw c1/w P w

Substituting the explicit form of ¢; as in Lemma 2.1, the last equality turns to

- (1 — 2) arctan (E) .
Na(w,p) _ o 1 p) 2
- < 2 exp

M (w,p) ~ aVw w

(5.4.4)
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Using the fact that

/‘L;’OO:W*)O W /J"’OOWJ*)O w

1 _
lim,, .o — exp (—W> =01in (5.4.4), we finally have

Vw 2w

n 1
lim (M> < lim @—exp (1 — 1) =0

p—00,w—0 ’771 (w7 M) T p—oo,w—0 ] /W 2w
and that shows for large enough p and small enough w one has 7, (w, 1) <7y (w, ). W

Now, we aim at finding an interval Uy, := [my, — dx, my, + 0] as indicated in the passage
before Theorem 5.1, which gets mapped to a ‘steep’ interval Sy, (), but we first provide
upper and lower estimates for the second derivative f;’;w of f.

Proposition 5.5. Let £ € N. Assume ;1 and w are as in Proposition 5.4. Define 7 as
in Proposition 5.4 and set &), := 7j¢", Ji, := [¢"", ¢*]. Then

Uy == [mx — 0, mi + 0k) C [, ¢"] = Jy

and the following estimates hold:

c W e gw,u

Vo € [my — O, M + 0k) ¢ G Gt - @772 > |7 (2)] > ( . (5.5.1)

Proof. Let k£ € N. With 77 from Lemma 3.2, the definition of 7 given in Proposition
5.4 shows 7 < min {7,, 73} = 7. Hence, in view of Lemma 3.2, we see that

Uy = [my — O, mu + 6] C [my, — 7", m +7¢"] C [, "] = Ji.

Further, inserting my, from (2.2.3) in (2.1.4) we have

()] = G Gt Il [sin ((wln (ma) + 1) + )]
= Gos G+ [ [sin (—k7 + )]

w

Using ¢, = arctan (Ll) from Lemma 2.1, we have sin (¢,) = and, inserting
w—= Gu,u—1

this value in the last equality, we have

w

" ()] = G G - [ = ma" " w - o (5.5.2)

Yw,p—1
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From (2.1.5) we have on [¢"*!, ¢*]

|f”/ ($)| = }gw,u " Jou—1 " Gou—2 - :L,,u—?: sin (w In (:E) + (901 + P2 + 903))|
S o Jop—1 ° Gu,p—2 ° qk(p—?,). (553)

From (2.3.1) for x € [my, — dy, my + 0] and with the definition of d;, we also have

P @F =z 1f7 i)l =0, max - [

[mp—8k,mp+0k

= 1m0l =7ig"max (7]

Mg —0k,Mp+0g

[f (m)l = mg* - max "] (5.5.4)

[mp—0g,mp+0]

v

With the definition of 7, using (2.2.3), (5.5.2) and (5.5.3) in (5.5.4), we finally have

qkwe_ p1(r=2)
92 d —
‘f,/ (I)| Z m’;: w - gUJ’/J' - gwuu‘ ’ gwnu_l ’ gwuu'_2 ’ qk(# 3)
2gw,u—1 . gw,u—Z
(1n—2)
_ () A
= q e w s W gw7u — 2 gw7u
_e\H—2
_e\H2 qke w W Guw
= <qk€ w) W Gu,pu ( ) 92 g
—2
(qke*f)“ ‘W G

This is the lower estimate for |f” (z)|; the upper estimate even on the interval [¢"*, ¢"]
follows with the formula for " in (2.1.4). &

For k € N, we specify the boundaries of an associated ‘steep’ interval Sy, () with the
next proposition.

Proposition 5.6. Let k € N. Assume ; and w are as in Proposition 5.4 and define
1—
(1 (k) = kp+ 1 as in the passage before the Theorem 5.1. Set 7y, () := &qh(’“)
gw,u . gw,u—l

and Sy, 1) = [qél(k) — Tgl(k),qzl(k)}. Then, Sy, (1) C (mgl(k),qel(k)] and on Sy, () we have
'] > cwgt D), (5.6.1)
Proof. Let k € N. From the upper estimate of (5.5.1), on Sy, () we have

||f/,||OO,S¢1(k) S ngl»@ : gw,,u—l : qzl(k)(“_2)' (5.6.2)
From (2.3.1) we have

Yz € Sy 1f (@) > | (") - ||f"||oo,szl(k) “Toy(k) s (5.6.3)
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and from (2.2.2) we also have |f’ (¢"®)| = wg" ™= Using (5.6.2) and substituting
the explicit values of both ‘f’ (qzl(k))| and rg, () in (5.6.3), we get

VYr € Sél(k) : ’f/ ($)‘ Z ‘f/ <q£1(k))| - gw,u : gw,u—l . qh(k)(u_m . Tzl(k)
a2 _1—0w e

Gow,u—1 * Gu,u
— gD (1 ) gt B0 — )

= wqfl(k)(u—l) — Gu.u Guu—1 4

It follows now from f’ (mgl(k)) = 0 that my, ) < g k) — T, (k) W

From the graph of the map one can understand that the image of Sy, () under f,
includes many ‘steep‘ and ‘flat’ intervals, but we continue our calculations with a subin-
terval Sy, k) of Se, (x) which is contained in f (U). The next lemma gives an estimate for

the size of f (Uy) with a relation between % and Sy, (k)

Note that for the sake of simplicity we shall use k as a positive odd integer number
for the rest of the paper.

Lemma 5.7. Let k be a positive odd integer number. Let w and even integer i be
as in Proposition 5.4 and satisfying (5.2.2). Define 7 as in Propositon 5.4, §; and Uy as
in Proposition 5.5, and U kL \? as in the passage before Theorem 5.1.Then the following
statements are true.

(a) Define r¢,(xy and Sy, (x) as in Proposition 5.6. Then we have f (Ux) C Sy, k)
(b) Set
- aw w2 (1-c) - w?

Te(k) = ¢ W (5.7.1)
w, w p,fl
and % = [¢"® — 7 (), ¢ ™). Then we have f < L\R> D) %

Proof. Note that due to (5.2.1), and since k is odd (see (2.2.4)),
max {f (Uz)} = f (mz) = ¢"**®). For the interval U, we have

O 1f (m+ 61) — ¢}

min {|f (my — 6x) — ¢
< |/ (Ul
< maxﬂf (mg — 0g) — qél(k)} ,

(my + ) —q ‘}

It follows from second order Taylor expansion of f around the extremum m; and from
(5.2.1) that

2 52
min - [f"(¢ )| S SO < max (€] 5

E€[mp—0k,mp+0k] E€[mp—0k,mp+0k] 2

(5.7.2)
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Consequently, using (5.4.1) and inserting the upper estimate of |f”| given in (5.5.1) and
the value of ; in the upper estimate of (5.7.2), we finally get

62 52
U, < " _k<w,w_'k(u—2)_k
£ (U] < ge[mkggﬁmkﬂf O 5 < G G174 5
= gw,,u : gw,ufl : qk(H72)/ﬁ2q2k
S Gop * Juu—1 - qk(“_Z) (’ﬁ4)2 q2k:
<

2
o (VI —c)qw
Gy * G i1 - qk(u 2) (_ q2k

gw’l" ’ gwuufl

kp+1 l-cw  (Q-9w gL

- =T (k) = Sg )| -
gw7IJ/ . gw,ufl gwyu . gw”ufl 1( ) | 1( )|

From (5.2.1) we know that f(my) = ¢*®. So, f(Uy) = [min f (Uy),q"®] and the
estimate | f (Ux)| < r¢, k) shows f (Uy) C [qel(k) — 0y (k)> qél(k)} =S¢, (k) and this completes
the proof of assertion (a).

Note that, although there is no symmetry between the graph of f,, to the left and
right hand side of Uy, we can estimate the size of f (U kL) and f (U,f) in a similar way.
Substituting the lower bound of |f”| given by (5.5.1), the value of ¢ in the analogue of

the lower estimate of (5.7.2) for UkL\R, and using (5.4.1) we obtain

-2
52 (¢ 5w gy, 02
UL\R)‘ > e % < Ok
‘f< k z minl/7(O5 2 2 2
_e\p—2 _ _e1(n=2)
_ (qke “) "W o 2k_qk“ 2% o= W Gup ~ N2 9k
= : gt = y (1M4)"q

_ _e1(p=2) 2
qkﬂ 2k e 1 = w - gw“u (]_ _ C) quw q2k
4 gwuu ’ gwﬂu‘fl

PP e (1)

4 ngu '-g{,%,u—l
a2 (1—c¢)-w? ‘N
g '—:Tﬂkzsﬂk‘:
49w,u'gu2;,;h1 1(k) 1(k)

and this completes the proof of assertion (b) and the proof of the lemma. B
We continue analyzing the next ‘flat’ interval obtained by the second iteration of f.

41 (k)

= q q

Lemma 5.8. Let k be a positive odd integer number. Let w, y be as in Lemma 5.7.
Define ¢; (k) and /5 (k) as in the passage before Theorem 5.1. Then for S, () as in Lemma

5.7, we have
f (Saw) = 0.4,

Proof. Using (2.3.1) on %, we obtain

£ (Suw)| = - min_ |7 @) (5.8.1)
€S, (k)
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Using (5.6.1) and (5.7.1) in (5.8.1), and also the definition of /5 (k) at the beginning of
this section, we have

£ (Saw)| = w - min |f @)

:BESgl(k)

I (A=) cwg i BB

AGeopu - go%,;hl
_ 1— 3
T % > gl2(®)
4gw,u : gw”u,—l

Note also that ¢; (k) = ku + 1 is odd, since p is even. Hence, f > 0 on % and since
i <q£1(k)) =0, f (%) = [O,maxf (%)] The estimate | f <S/’gl\(;)>‘ > ") implies
that f (S ) > [0,¢¢)]. m

From Lemma 5.7 we know f (U ,f \R> D % In Proposition 5.8 we showed that
f (%) D [O,q@(’“)]. In particular, Up, ) C [qﬂz(k)“,qb(k)} Cf (%) Now, in the

next lemma we estimate the counterimage of subsets of Uy, ;) under ( f? ]UL\R>.
k

Lemma 5.9. Let k be a positive odd integer number. Assume p is an even integer,

30e\* (1 -
[ > max <7—€> < 5 C) ,15} and w € (0,1) is a corresponding value satisfying
i c

(5.2.2) and such that the assertion of Proposition 5.4 is true (this is possible due to asser-
tion (b) of Lemma 5.2). Define « (w, p, ¢) as in Proposition 5.3 and J; as in Proposition

5.5. Then, for p € (0, 1] and any subinterval Uy, of Uy, with ¢; (k) as in the passage
before Theorem 5.1, if

‘U/fz\(k)’ =p|Jeyy| » then (f )~ (U/ea\(k:)>
has two parts of the form
(}ZL = [my, — 5%}2,mk — 55}1} c Uk, and (7,? = [my, + 521,mk + 55”72} c UL,
where (5571,5572 € (O,m;c — qk“) and 5571,5&2 € ((),q"C — mk), and each of them has the

size

URN < ap- |y (5.9.1)

‘ —_—

— -1/ _—
Proof. Set Sy, (1) := (f |§;(;)) <Ug2(k)>. Note that injectivity of f [s, ,, and Lemma

5.8 imply that (f |521(k)> (UZQ(;C)> = <f |%)> <Ug2(k)>. Using (2.3.1) on S, k), we
have
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-1 — — )UKZ(]?)‘
Kﬂaﬁ @Mﬂﬁ%ﬂfazrwr

Sty (k)

On the other hand, from Proposition 5.6 we already know that on Sy, ( (k) If'| > cwgh® -1,
Because of Sy, ) C Sgl C S¢ (), this property also satisfied on Sgl(k Hence, inserting

both ’Ub(k)‘ =p |Jg2(k)| and the estimate of mlngel(k> | /| in the last expression, we have

}S/\ U@(’”‘ plJow| _ pog®®(1-q) (5.9.2)
SO g 7] = ming,  1F] = cugn®0 D) o

Now, we calculate subintervals of (my — 5k,mk + d)) which get mapped bljectlvely to
S/gl(\k). Note that the counterimage of Sgl(k has two parts in the form U; L C UE, and
@ C UE. Tt follows from strict monotonicty of f on [my, — oy, ms] and [my, my, + ;] and
from the fact that f (UkL \R> D % that there exist (557\1]?’, (55’\21% with

‘f(UA;f)‘ = |f ([ + 030, mi + 0155] )| (5.9.3)
- |f([mk 5527”% 551} ‘—)f( >‘ ‘Sél(k;‘

We continue our calculations by using the boundaries of (}E. Note that for the interval
[mk, my + 5?1] we know that f (mk + 521) = max Sy, ) and f (my,) = ¢""®) . Again from
the monotonicity of the map it follows that f ([mk,mk + 5,?1]) = [max%,qel(k)].
Consequently, since f (¢"*)) = 0 and f (max S/gl(\k)> € [¢"=2®* ¢2®] | from (2.3.1) we
have

o o (k qé2(k?)+1
00,5, (k)
From (2.1.1) we also have that ||/l .5, , < G- q""® =1 Inserting this estimate in
ey
(5.9.4), we obtain
o (k) q€2(k)+1
meS — o) 2 o=y 595
In addition, from (2.1.4) we know that
1o, < G Guo1 - 72 (5.9.6)
Now, using the second order Taylor expansion of f (mk + 521), we have
R " (551)2
|f (me + 051) — f (ma)| < |7 (&) 5 |’ (5.9.7)
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where & € (my,, my, + 5,51). Substituting the values of f (my, + 5,?1) and f (my) in (5.9.7),
we have

_ oE)?
‘f (m;c + 5571) — f (mk)| = ‘max St (k) — qfl(k)‘ < ||f”||oo’Uk %, which implies
max % — qel(k)‘

O ‘ (5.9.8)

’ 170,17,
Using both estimates (5.9.5) and (5.9.6) in (5.9.8), we finally get
qu(k)—‘rl

o >4 [2 : 5.9.9

k1 = \/ gg7u “ Qo1 qk(/»‘72) . qzl(k)(ﬂfl) ( )

On the other hand, from Taylor’s formula with the integral remainder term we have

mg+0
f(mk+5) = f(mk)+/ (mk—i-é—t)f”(t)dt

my
5
= f(myg) +/ (6 —t) f" (my + t) dt. (5.9.10)
0
Consequently, applying (5.9.10) for the boundaries of (jk}‘, we have

S| = |7 (T8 = 11 e 682 — 7 e+ 5

A 55y
— ' / (670 — t) f" (my, + ) dt — / (67 = t) f" (my, + t) dt
0 0

E(u—2 p1(p—2)
(p )q p= W - gw“u In

2
particular, f” has constant sign on Uy. Using the fact that 621 < 5572 in the last equality,

we obtain

q

From (5.5.1) we already know that M := min,cy, |f" (x)] >

— 511571 (SkR,2
So| = | 68 o) o e [ G 0) £ et )
k,1
5]}5’1 R R " R R R
> (O = 0i20) f" (m + ) dt| > |67, — 61| - M- 63y,
0
SO —_—
Sél(k)‘
opy — 0| < —t. 5.9.11

Substituting the estimate of M and the estimate d; given by (5.9.9) in (5.9.11), we obtain

‘Sfl(k)’

_ P1(n—2)
qk(u z)q 1 = W G . ) qéz(k)—i-l
2 qk(#—Q) . gw,,u,fl . go%,,u

050 — 03| < (5.9.12)

. qzl (k) (p—1)
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Combining the estimate of S/gl(\k) given by (5.9.2) with (5.9.12), we finally have

OE| = ok - o]

Vap- g0 (1 — o) \/qk(H) ot B (O
cwqel(k)(ﬂfl)

IN

=g g g

5 qu(k) (1—q) ' \/qk(u*Z)gw’ufl . \/qfl(k)(ufl)

_ e, LD VIt ¢ D /gh @D
p ol - q@ q@ qk(u—2)+% ghr (k) (n=1)
25 (k)
V(1 —q) T Gop
T a®eD g ey 2
¢ g g T

Here, using the estimate of ¢2(*) given in the passage before Theorem 5.1 and
| Jx| = ¢" (1 — q), we obtain

3
Vap- il - \/61 M. qm(i—n. c(l-—cw

2
67% < AGes * Goop1 vV Jw,p—1
k| = GEE=D) gt «pl(u 2) T w2
¢ T g
/ 2
\/5 |J | ’—qfl(k)u 501(# ) 1 _ c
= P Jel " —mmn—ax 2
2 q 1( )M2 1(k) ) qku2+1 591(# ) CW Gy * Geo i 1

Inserting ¢4 (k) = ku + 1 one gets

( -2)
NG VG (1— o)
Ui 0 |kl -

IN

2 (kptDp=(hptl)  kptl “’1(“ 2) CWYGw,p * Guw,u—1

g g

_p1(p—2) 1—r¢c
Qngw,u *Ju,p—1

Since g, -1 < gu,pu, We can simplify the last inequality as follows:

—~ _v1(p—2) 1—c
‘Ulf‘ < pe|Jil g 2(—2)
WYy -1
_e1(p—2) 1
q 27 —c
= p- |Jk| . . 5 .
w,pu—1 CwW
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Inserting ¢ = e~ we have

exXp\ —- o

Guo,pu—1 V2w
(1 —2) ¢
exp ( 2w \/1 —cC
gw,u—l 2cw '

Finally, using the definition of « (i, w, ¢), we get

m (u—2)<p1> —

‘U,f) < pe |kl

= p'|Jk|'

and this completes the proof for UR. The proof for U} is analogous.l

Corollary 5.10. If the set U/gz(\k) in Lemma 5.9 is not only one interval, but a disjoint

union of subintervals of Uy, ), and ‘(J/gz(\k)‘ (the measure of U/g2(\k)) satisfies

)U/zg\(k)‘ =p |J¢2(k)|, then (f |p,) " (%) has two parts (one in U} and the other in UJ)
and each of them has measure less or equal ap |Jg|.

Proof. (By summation over the subintervals.) B

Now, we consider symbol sequences of the form (L, R, R, L, R, ..., R) and construct
corresponding orbits of f. For given a finite sequence

s = (S0, 81, 82, -+, Sn) € {L,R}"+1

and odd k € N, we now construct the subset of points x in U which follow this symbol

sequence. Recall the set I}', = ﬂ f~¥ (U;f (k)> defined in the passage before Theorem
’ 2
j=0
5.1. We estimate the size of ‘Iﬁs}.

Corollary 5.11. Let s = (sg, 1, S2,-..,5,) and an odd k € N be given. Then, with
w, i as in Lemma 5.9 and « (w, i, ¢) as in Proposition 5.3 we have () # Ii's and

[Iis| < ™|kl

Proof. We prove the corollary by induction over n. For n =0, I ; = U # 0, and

|Tes| = U1 < |kl

Now, we assume the result is true for n, and we verify it for n+1. Let s = (sq, 51, S2, -, Sn+1)
be given. Define s = (s1, S2, ..., Sp11). From the induction hypothesis we have IZ(k) < ,
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owsl =

—25 ( SJ+1 )

< |Jeg(k)| .
Note that I;7! = f=2 <[Z(,€)’§> NU;°. Hence, we have
13 = |72 (Twz) NUZ (5.11.1)

Applying Corollary 5.10 with p := o™ and I}} ;) + instead of Ug2 in (5.11.1), and using
this p together with (5.9.1), we finally obtain

|[n+1‘_‘f Iﬁz k‘)s U]jo| Sap|r]k|:an+l’¢]k|
This completes the induction and the proof of corollary 5.11. B

Proof of Theorem 5.1. Assume k, ¢ and p are as in the assumptions of the Theorem

1
5.1 and, @ = a(w, i, ¢) be as in Proposition 5.3, so that o < 3" Choose w € (0,1) as in

Lemma 5.2.
(1). Let a symbol sequence s = (sq, 51, 52,...) € {L, R}"® be given. From Corollary
5.11 one can see that for n € Ny the the closed interval I} consists of the points z € U,

which follow the finite symbol sequence s = (sq, $1, S2, ..., Sp) € {L, R}nH. Further we
1
have I,?;l C I} ,. Tt follows that m It # (). Since, in view of Corollary 5.11 and o < >
n€Ng

we have |I},| — 0 for n — oo, the intersection ﬂ I}, contains exactly one point xy ;.

n€eNp
This point xj s has the asserted properties. Any point in U, with these properties would

also be contained in this intersection and thus equal j, ;.

(2). The set {L, R} has 27t clements and from Corollary 5.11 we know that
each set corresponding to one s € {L, R}{O’l’Q"""} satisfies the estimate ‘I,’;S| < a”|Jg|. It
follows that || < 2""1a™|Jy|, and it turns out that the measure

. n| __ 1 n
lim [T}| = lim U I
n—oo n—oo

<2 lim 2"a" |Jg| =0
n—oo
SE{L,R}{O’l’z’“’n}

and this completes the proof. B
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