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Abstract 
Accelerometers capture rapid changes in animal motion, and the analysis of large quantities of such data using machine 
learning algorithms enables the inference of broad animal behaviour categories such as foraging, flying, and resting over 
long periods of time. We deployed GPS-GSM/GPRS trackers with tri-axial acceleration sensors on common woodpigeons 
(Columba palumbus) from Hesse, Germany (forest and urban birds) and from Lisbon, Portugal (urban park). We used three 
machine learning algorithms, Random Forest, Support Vector Machine, and Extreme Gradient Boosting, to classify the main 
behaviours of the birds, namely foraging, flying, and resting and calculated time budgets over the breeding and winter season. 
Woodpigeon time budgets varied between seasons, with more foraging time during the breeding season than in winter. Also, 
woodpigeons from different sites showed differences in the time invested in foraging. The proportion of time woodpigeons 
spent foraging was lowest in the forest habitat from Hesse, higher in the urban habitat of Hesse, and highest in the urban 
park in Lisbon. The time budgets we recorded contrast to previous findings in woodpigeons and reaffirm the importance 
of considering different populations to fully understand the behaviour and adaptation of a particular species to a particular 
environment. Furthermore, the differences in the time budgets of Woodpigeons from this study and previous ones might be 
related to environmental change and merit further attention and the future investigation of energy budgets.

Significance statement
In this study we took advantage of accelerometer technology and machine learning methods to investigate year-round behav-
ioural time budgets of wild common woodpigeons (Columba palumbus). Our analysis focuses on identifying coarse-scale 
behaviours (foraging, flying, resting) using various machine learning algorithms. Woodpigeon time budgets varied between 
seasons and among sites. Particularly interesting is the result showing that urban woodpigeons spend more time foraging 
than forest conspecifics. Our study opens an opportunity to further investigate and understand how a successful bird species 
such as the woodpigeon copes with increasing environmental change and urbanisation. The increase in the proportion of time 
devoted to foraging might be one of the behavioural mechanisms involved but opens questions about the costs associated to 
such increase in terms of other important behaviours.

Keywords  Acceleration · Biologging · Extreme Gradient Boosting · Machine learning · Random Forest · Support Vector 
Machine

Introduction

Understanding the behaviour of wild organisms in their natu-
ral environment, without biases introduced by the presence 
of observers, is essential to the advancement of ecological 
research (Cooke et al. 2004; Brown et al. 2013). Such knowl-
edge can offer a unique opportunity to explore fundamental 
questions in ecology. For instance, it could allow investi-
gating how an individual’s current behaviour affects future 
performance over the annual cycle (carry-over effects), the 
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degree of flexibility or consistency in individual behaviour 
over different life-history stages (behavioural flexibility), or 
the effects of external conditions on behaviour among many 
other ecological and evolutionary questions (López-López 
2016; Katzner and Arlettaz 2020; Williams et al. 2020). In 
the last 2 decades, we witnessed an unprecedented increase 
in studies using remote monitoring of animal behaviour, 
favoured by the development of innovative biologging tech-
nologies (Whitford and Klimley 2019; Katzner and Arlettaz 
2020; Williams et al. 2020). The extraordinary amount of data 
gathered in this way allows novel insights in the behaviour of 
the tracked animals, features of the environments they move 
in, and provide information that can be used to identify bio-
diversity hotspots of conservation concern (Baylis et al. 2019; 
Williams et al. 2020).

Among biologging technologies, the use of accelerom-
eters facilitates the investigation of animal behaviour, with-
out the limitations imposed by animal visibility, rough ter-
rain, remote locations, weather conditions, the geographical 
scales of space use, and the disturbance introduced by the 
presence of an observer (Shepard et al. 2008; Brown et al. 
2013). The shape of accelerometer waveforms can be used to 
deduce specific animal behaviours, such as walking, resting, 
diving or flying, which are reflected in unique combinations 
of the accelerometer axes over time (Nathan et al. 2012; 
Shamoun-Baranes et al. 2012; Yeap et al. 2022). However, 
three-dimensional accelerometers can generate millions of 
data points in short periods of time. To analyse such large 
data sets, researchers started to employ machine learning 
methods. Machine learning algorithms are ideally suited to 
the task of extracting information from complex data and 
have been successfully used to distinguish among multiple 
classes of behaviours in wild mammals, birds, fish, and rep-
tiles (e.g., Nathan et al. 2012; Valletta et al. 2017; Jeantet 
et al. 2018; Clarke et al. 2021; Clermont et al. 2021; Yu et al. 
2021). However, studies conducted on birds concentrated 
on large species, mostly seabirds, with smaller species still 
underrepresented (Valletta et al. 2017; Wang 2019; but see 
Brown et al. 2022; Eisenring et al. 2022).

The way in which animals allocate resources among vari-
ous conflicting needs is a central topic in ecology. Time is 
a limited resource leading to trade-offs, and its allocation to 
different behaviours (activity or time budget) may impact 
survival and reproduction (Pianka 1994; Christiansen et al. 
2013; Quillfeldt et al. 2020). For instance, an increase in the 
time an animal invests in foraging will increase its access 
to energy. However, and consequently, it will reduce the 
time available for other activities such as breeding. Moreo-
ver, time budgets will reflect how the organism copes with 
factors like climate, seasonal changes in food availability, 
resource density, environmental heterogeneity, competition, 
predation risks, among others (Pianka 1994; Ropert-Coud-
ert et al. 2004; Zhou et al. 2007). Time budgets will also 

manifest the necessities of phases like breeding, migration 
or wintering (Zhou et al. 2007; Brown et al. 2013; Bäckman 
et al. 2017a, b), and disclose the influence of factors like age, 
sex, or even anthropogenic disturbances (Fuchs and Caudill 
2019; Colwill and Suchak 2021). In such a way, varying time 
budgets are a potent way of coping with a changing environ-
ment while retaining some degree of adaptation to it (Pianka 
1994). Furthermore, as the time budget will be influenced 
by circadian and seasonal rhythms, as well as those from 
predators and potential prey, the time allocated to differ-
ent activities may vary throughout the annual cycle (Pianka 
1994; Bäckman et al. 2017a, b; Quillfeldt et al. 2020). A 
number of accelerometry studies examined time budgets in 
wild mammals, birds, fish, and reptiles (Brown et al. 2013; 
Shuert et al. 2019; Zhang et al. 2019; Cade et al. 2020; Fluhr 
et al. 2021), including some that used machine learning to 
classify behaviours (Valletta et al. 2017, e.g., Clermont et al. 
2021; Lameris et al. 2021). Time budget studies conducted 
on birds also concentrated on large species, mostly seabirds, 
with smaller species (i.e. less than 1000 g) restricted to red-
backed shrike (Lanius collurio) (Bäckman et al. 2017a, b), 
European nightjars (Caprimulgus europaeus) (Eisenring 
et al. 2022), dovekies (or little auks) (Alle alle) (Ste-Marie 
et al. 2022), streaked shearwaters (Calonectris leucomelas) 
(Garrod et al. 2021), and lesser black-backed gulls (Larus 
fuscus) (Brown et al. 2022) (species mentioned from lighter 
to heavier). Among them, only Brown et al. (2022) and 
Eisenring et al. (2022) used machine learning methods for 
behaviour classification, and only Bäckman et al. (2017a, b) 
investigated the activity patterns and their variability dur-
ing the annual cycle in two red-backed shrike individuals 
monitored for over a year.

The common woodpigeon Columba palumbus (hereafter 
woodpigeon) is a medium-sized abundant Paleartic native 
bird (Columbiformes). Over the last decades, its popula-
tion size and range have increased, and woodpigeons have 
increasingly moved into urban environments (Tomiałojć 
1976; Bea et al. 2011; Schuster 2017). The species is resident 
in Southern Europe, while Western and Central European 
populations are short-distance partial migrants, and Eastern 
and Fennoscandian populations are strictly migratory (But-
kauskas et al. 2019; Schumm et al. 2022). However, Western 
and Central European woodpigeons show a high degree of 
migration behaviour plasticity. In a previous study (Schumm 
et al. 2022), we showed that individuals may switch migra-
tory strategies (resident vs. migrant) between years (i.e. fac-
ultative partial migrants). Woodpigeons forage in a number 
of vegetation types (Kułakowska et al. 2014), where they 
consume seeds, green plant material, fruits, and invertebrates 
(Gutiérrez-Galán et al. 2017; Dunn et al. 2018; Negrier et al. 
2021). High-ingestion rates have been reported in woodpi-
geons, allowing individuals to fulfil their daily food needs in 
2 h (Murton et al. 1963), and to spend, in particular habitats, 
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up to 68% of their time resting (Murton and Isaacson 1962; 
Murton et al. 1964; Kenward and Sibly 1977).

In this study, we take advantage of accelerometers and 
machine learning methods to investigate year-round behav-
ioural time budgets of wild woodpigeons. Our analysis 
focuses on identifying coarse-scale behaviours (foraging, 
flying, resting) using various machine learning algorithms. 
We aim to find patterns in behaviour that may differ between 
the breeding and wintering sites, both for short-distance 
migrant (all Central European) and resident individuals 
(Central and Southern European). Moreover, we seek to 
investigate differences in activity budgets between the sexes 
and among individuals. Our goal is to create a detailed basis 
for research into the behavioural adaptions, which may con-
tribute to make woodpigeons a successful bird species (Brlík 
et al. 2021).

Materials and methods

Study sites, fieldwork procedures, tracker 
deployment, and data recording

We captured woodpigeons at three sites: the natural sci-
ences campus of the University of Giessen and surrounding 
areas in Giessen (50° 35′ N, 8° 40′ E; hereafter Giessen; 
12 females, 5 males), the Marburg Open Forest (50° 50′ N, 
8° 39′ E; 1 female) both in Hesse, Germany, and the park 
Parque Florestal de Monsanto in Lisbon, Portugal (38° 43′ 
N, 9° 10′ W; hereafter Lisbon; 4 females, 3 males). We cap-
tured most birds with mist nets (mesh size 30 × 30 mm) with 
the exception of three birds captured in the vicinity of their 
nest with the help of a handheld net. We kept the time from 
capture to release mostly below 15 min and always below 20 
min. We took extreme care to minimize stress to the captured 
birds, covering the head during handling. We determined the 
age of each bird by plumage examination. From the birds in 
Giessen and in the Marburg Open Forest, we collected blood 
samples (≤ 200 μl) from the brachial vein. We detected no 
adverse effects related to blood sampling. From the birds in 
Lisbon, we sampled a few body feathers. We used blood and 
feather samples for molecular sexing with standard methods 
(Griffiths et al. 1998).

We deployed OrniTrack-15 solar-powered GPS (Global 
Positioning System)-GSM (Global System for Mobile Com-
munication)/GPRS (General Packet Radio Service) trackers 
(Ornitela, Lithuania) on the back of the birds using a 4-mm 
wide Teflon ribbon harness (Fig. S1, Supplementary Infor-
mation). The trackers used (17 g, 58 × 25 × 14 mm) repre-
sented between 2.7 and 4.5% of the woodpigeon’s body mass 
(range for the deployed birds: 380 to 635 g) in agreement 
with the maximum recommended tracker masses for pigeons 
(Tian et al. 2020). From June 2019 to July 2021, the trackers 

recorded time of day and detailed location (longitude, lati-
tude) at sampling intervals dependent on battery charge: 5 
min, when the battery was > 75% full, 30 min, for a battery 
charge of 50–75%, 4 h, for a battery charge of 25–50%, or 8 
h, when the charge was < 25%. We set the trackers to sleep 
from civil dusk to civil dawn when the centre of the Sun’s 
disc goes 6° below the horizon. This allowed us to maximize 
battery charge but no data were recorded during the night. In 
this way, we recorded 23,821 GPS locations corresponding 
to the bird from the Marburg Open Forest, 477,589 locations 
corresponding to the birds from Giessen, and 138,263 cor-
responding to those from Lisbon.

The trackers also recorded tri-axial acceleration (three 
axes perpendicular to each other: x, y, z, i.e. surge, sway, 
heave; units, g/1000) during 10 s after each GPS fix, at a 
sampling rate of 20 Hz. This resulted in 201 acceleration 
measurements taken for each axis in each measurement 
interval i.e. one measurement during the GPS fix and 200 
after that. Hereafter, we refer to a 10-s measurement interval 
as a burst.

It was not possible to record data blind because our study 
involved focal animals in the field.

Ground‑truthed acceleration data

We inferred classes of behaviour from acceleration data 
using an adaptation of the method described in detail by Rast 
et al. (2020). To train algorithms for pattern recognition and 
data classification, we selected bursts of acceleration data 
for which the context of the bird was in (e.g. speed, loca-
tion) allowed delimiting likely behaviours e.g. flying. We 
opted for this method, as direct observation of the tracked 
individuals was not a feasible option. Woodpigeons, in the 
forest and environments with large trees we investigated, 
are elusive and cryptic. In open fields, they were easily dis-
turbed and interrupted their natural behaviour, even when we 
attempted observations at a distance of 150 m or more. Thus, 
following the methodology from previous studies (Yoda 
et al. 2001; Tsuda et al. 2006; Zimmer et al. 2011; Williams 
et al. 2014), we used GPS locations and speed data to iden-
tify the burst containing potential training data for particular 
behaviours. We used QGIS 3.4 (QGIS Development Team) 
and detailed base maps (topographic charts 1:25000, Hes-
sische Verwaltung für Bodenmanagement und Geoinforma-
tion, http://​www.​gds-​srv.​hessen.​de/​cgi-​bin/​lika-​servi​ces/​de-​
viewer/​access/​ogc-​free-​maps.​ows) to plot GPS locations e.g. 
Fig. S2 (Supplementary Information). We selected a burst as 
a candidate for: (1) flying behaviour, when the speed meas-
ured during the GPS fix was 10 m s−1 to 24 m s−1, values 
previously recorded in free-flying homing pigeons Columba 
livia (Sankey et al. 2019), (2) foraging behaviour, when the 
GPS fixes were located on parcels with cereal stubbles, pre-
viously found to be woodpigeon preferred foraging-sites 

http://www.gds-srv.hessen.de/cgi-bin/lika-services/de-viewer/access/ogc-free-maps.ows
http://www.gds-srv.hessen.de/cgi-bin/lika-services/de-viewer/access/ogc-free-maps.ows
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(Murton et al. 1964), and (3) resting behaviour, when fixes 
were located on bare ploughed land, where woodpigeon rest 
and do not search for food (Murton et al. 1964). Addition-
ally, we visited the locations corresponding to the training 
data candidates to check for their potential suitability for the 
corresponding behaviour and to distinguish between cereal 
stubbles and bare ploughed land. After selecting a candi-
date burst, we plotted the acceleration data (x, y, z) against 
time and compared the graph with similar ones previously 
published (Hedrick et al. 2004; Ropert-Coudert et al. 2004; 
Gómez Laich et al. 2008; Shepard et al. 2008; Wilson et al. 
2008; Halsey et al. 2009; Holland et al. 2009; Sakamoto 
et al. 2009; Nathan et al. 2012; Shamoun-Baranes et al. 
2012; Sommerfeld et al. 2013; Bom et al. 2014; Resheff 
et al. 2014; Collins et al. 2015; Garrod et al. 2021; Yeap 
et al. 2022). Finally, we selected bursts (51 for foraging, 
55 for flying, and 49 for resting) as the input for the model 
training, whose plots showed a clear signal of a particular 
behaviour. We provide examples of the selected bursts in 
Fig. 1. All these behaviour classifications may include other 
related behaviours that could not be separated from the main 
ones e.g. some degree of walking during foraging, take-off, 
and landing during flights.

Data preparation and algorithms used

Using the sum_data function in the R package acceler-
ateR (Rast et al. 2020), we calculated summary statistics 
(mean, standard deviation, inverse coefficient of variation, 
variance, skewness, and kurtosis) from the raw acceleration 
data, separately for each burst and axis, to use as predictors 
for the algorithms. We performed all data transformations in 
R (R Core Team 2021) and RStudio (RStudio Team 2021).

We used three machine learning algorithms to classify the 
acceleration data: Random Forest, Support Vector Machines, 
and Extreme Gradient Boosting. Random Forest selects a 
random subset of predictors to fit a tree, a procedure that is 
repeated a number of times, and the final prediction is the 
result of all trees combined by a majority rule (Breiman 
2001). We implemented Random Forest in the R package 
randomForest (Liaw and Wiener 2002) using the default 
number of trees (500). Support Vector Machines is a method 
for two-group classification problems in which input vec-
tors are non-linearly mapped to a hyperplane. Classifica-
tion of new groups is subsequently based on their relative 
position to the hyperplane. To account for multiple classes, 
Support Vector Machines constructs additional hyperplanes 
between the classes (Cortes and Vapnik 1995; Wang 2019). 
We implemented Support Vector Machines in the R package 
e1071 (Meyer et al. 2017) setting the kernel type to “radial”. 
Extreme Gradient Boosting (Chen and Guestrin 2016) is a 
scalable implementation of the gradient boosting concept 
(Friedman 2001) used for regression and classification 

problems. Extreme Gradient Boosting produces in a stage-
wise fashion a prediction model, typically in the form of an 
ensemble of decision trees, which are generalized by allow-
ing optimization of an arbitrary differentiable loss function 
(Chen and Guestrin 2016). We implemented Extreme Gra-
dient Boosting in the R package xgboost (Chen et al. 2015) 
setting the number of iterations (nrounds) to 20.

Training data and model evaluation

Previous studies showed an algorithm-improved perfor-
mance with larger sample sizes (Zhang et al. 1998; Rast 
et al. 2020). For this reason, and following the procedure 
detailed described in Rast et al. (2020), we applied a mov-
ing window to every acceleration burst to increase the 
sample size of our training data. We used a window that 
reduced the amount of data of a burst from the original 

Fig. 1   Representative bursts corresponding to dynamic acceleration 
during foraging (A), flying (B), and resting (C) by common woodpi-
geon (Columba palumbus). We represented acceleration (in g/1000, 
as received from the sensor) using coloured continues lines: blue in 
for the surge (X) axis, black for sway (Y), and grey for heave (Z). The 
graph x-axis corresponds to the 201 measurements recorded during 
the burst i.e. 1 measurement during the GPS fix and 200 after that
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201 acceleration measurements down to a subset of 40 (i.e. 
covering 2 s). Then, we calculated the summary statistics 
for the subset. As the next step, we slid the window one 
position and calculated the summary statistics for the new 
subset. We repeated this procedure, sliding the window 
until it included the last measurement of the burst. Con-
sequently, we were able to calculate a larger number of 
predictor-set representatives of the same burst, and, at the 
same time, preserve the order of the acceleration measure-
ments for a specific behaviour (Rast et al. 2020).

We first trained the models using a randomly selected 
70% of the ground-truthed data (training data set). Then, 
we inferred the behaviour of the remaining 30% of the 
ground-truthed data (validation data set), assigning a spe-
cific behaviour (foraging, flying, resting). We accepted 
only behaviour assignments with a probability ≥ 0.7, 
classifying all assignments below this threshold as “non-
annotated”. By introducing the category “non-annotated”, 
we account for a limitation in our training data that may 
not include the full range of behaviours present in wood-
pigeons e.g. fighting or walking. Individuals displaying 
behaviours not included in our model could cause an 
incorrect classification. However, we expect that in such 
cases, classifications would be assigned a low probability 
and consequently avoid these errors by implementing the 
threshold. Likewise, this method allows that when an indi-
vidual changed its behaviour during a burst, the behaviour 
assignments also had a probability below the threshold and 
thus, was classified as “non-annotated”. The three algo-
rithms showed a high consistency among them (Table S1 
in the Supplementary Information).

Application to all individuals

After training all three classification models, we applied 
the trained models to classify the acceleration data of 
every deployed bird (Table S2 in the Supplementary 
Information). In this case, the acceleration data of each 
individual was analysed using a non-overlapping window 
of 40 measurements of acceleration data (x, y, z) start-
ing on a GPS fix. This resulted in five acceleration meas-
urements subsets per burst, each of which resulted in a 
behaviour classification output (foraging, flying, resting, 
or non-annotated) per model. Next, we generated a con-
sensus behaviour summarising the outputs of the three 
models. If all models agreed on one particular behaviour, 
then that was considered the consensus behaviour, which 
was used in further statistical analyses. Otherwise, the 
consensus behaviour for that particular window was set 
as “non-annotated”, and used in that way in further statis-
tical analyses.

Data summarising and generalized additive models

After classification, we summarised the consensus behav-
iours by month and by stages of the annual cycle. For this, 
we used contingency tables in the R programming language 
to calculate the proportion of time spent in each behaviour 
(foraging, flying, resting, or non-annotated) during each 
month or stage. We considered two stages: (1) breeding, 
including the behaviours carried out during the breeding 
season, i.e. April to August (Bezzel 1985) and (2) winter, 
for those behaviours carried out from November to Febru-
ary. When summarising by stages, in order to be conserva-
tive, we excluded the data from transitional months, as some 
individuals can start breeding earlier than April, while oth-
ers continue to breed until quite late in the season i.e. after 
August. Due to incomplete records related to battery charge, 
we excluded some data from the summaries. We excluded 
the data of a particular individual during a specific month if 
(1) the number of occurrences of one of the behaviours was 
less than five (18 cases) or (2) the sum of all behaviours was 
< 500 (20 cases). In those cases, we considered the data not 
representative of the month investigated.

To account for the non-linear relationship between the 
proportion of each behaviour classification (foraging, fly-
ing, resting, or non-annotated) and time (Fig. 2), we ran 
generalized additive models in the R package mgcv (Wood 
et al. 2016). We modelled the proportion of time spent 
in each behaviour as a smooth function of the independ-
ent variable time, including the site where the birds were 

Fig. 2   Generalized additive model fits for the proportion of time (%) 
spent by common woodpigeon (Columba palumbus) in each behav-
iour along the year. Lines correspond to the estimated smoothing 
curves. Grey shadings show the generalized additive model 95% con-
fidence interval for the mean shape of the effect. n-a, non-annotated
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captured (Marburg Open Forest, Giessen, Lisbon; hereaf-
ter, site), their age (adult, juvenile; juvenile: all first-year 
individuum), and sex, and whether they were migrant or 
resident birds (hereafter, migratory status or migrant/resi-
dent, depending on the context) as factors (gam(foraging/
flying/resting_prop ~ s(month) + site + age + sex + migra-
tory_status). We checked all generalized additive models for 
model convergence and random distribution of residuals. We 
reported statistics (effective degrees of freedom, edf, and p 
values) for the generalized additive models run separately 
for each parameter. In the dredge function in the R package 
MuMIn (Barton 2022), all possible candidate models were 
tested using each unique linear combination of factors. The 
best models are then selected based on delta Akaike infor-
mation criteria scores less than or equal to two. We classified 
individual woodpigeons in this study as migrant or resident 
following the results of our previous study investigating indi-
vidual-specific migration decision and phenology (Schumm 
et al. 2022). See Table S2 in the Supplementary Information 
for individual classification. Please note that sample sizes 
differ between Schumm et al. (2022) and this study, as our 
previous work also included ring recovery data and tracking 
data from woodpigeons for which no acceleration data was 
available.

To compare the proportion of time spent in each behav-
iour during the breeding season and winter (hereafter, sea-
son), we performed 3-way ANOVAs in the aov function in 
the base R package (R Development Core Team 2022). We 
included site, sex, and migratory status as factors. In this 
case, age was not included, as only data from one juvenile 
was available for winter, due to low battery charge in the sec-
ond juvenile individual. We first included interaction effects 
in the models but removed them if they were not significant.

Due to incomplete records for some of the individuals, 
related to low battery charge or death, the sample sizes differ 
for the different tests, month, sites, ages, sexes, migratory 
status, or their combination. For this, we provide detailed 
samples sizes in Tables S2 to S9 in the Supplementary 
Information.

Results

Differences between the breeding season 
and winter

Woodpigeons spent more time foraging during the breed-
ing season than in winter (Figs. 3A and 4). Also, birds 
from different sites showed differences in the time invested 
in foraging (Table 1). During the breeding season, the time 
spent foraging was lowest in the bird from the Marburg 
Open Forest (14%), higher in those birds from Giessen 
(20 to 22%), and highest in those from Lisbon (28 to 29%; 

Fig. 3   Violin and boxplots describing the proportion of time spent by 
migrant and resident common woodpigeons (Columba palumbus) in 
each behaviour during the breeding season and winter. The propor-
tions of time foraging (A), flying (B), and resting (C) are expressed 
in percentages. Violin plots delineate the kernel probability densities, 
while boxplots illustrate medians and inter-quartile ranges (IQR) with 
whiskers denoting 1.5 × IQR
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Fig. 4A, Table S3 in the Supplementary Information). 
In winter, the bird from the Marburg Open Forest also 
invested the least time foraging (7%), followed again by 
birds from Giessen (9% to 14%) and Lisbon (8 to 16%; 
Fig. 4B, Table S4).

We did not find any differences in the proportion of 
time spent flying during the breeding season compared 
to winter (Figs. 3B and 4, Table 1). However, woodpi-
geons from Lisbon and the Marburg Open Forest spent 
less time flying (1 to 2.3%, 1.6 to 1.7%, respectively) than 
those from Giessen (2.1 to 3.3%; Fig. 4, Tables S3, S4). 
Particularly, males from Giessen spent significantly more 
time (3.3%) than females (2.4%) flying during the breeding 
season (Table 1, S3, Fig. 4A).

Woodpigeons spent more time resting during winter (67 
to 81%) than during the breeding season (54% to 70%; 
Figs. 3C and 4, Table 1).

Year‑round behavioural time budget

In January (winter), woodpigeons spent little time foraging 
(7%), resting for most of the time (80%). In May, during the 
breeding season, the opposite was true, when woodpigeons 
devoted the highest amount of time to foraging (26%) and 
the lowest to resting (56%). Woodpigeons flew 1–5% of the 
time (Fig. 2).

Generalized additive models revealed significant effects 
of site and age on the proportion of time foraging over the 
year (Table 2). Site was the strongest predictor, with the 
highest proportion of foraging observed in woodpigeons 
from Lisbon, followed by those from Giessen (Fig. 5, Table 
S7). During most months, adults spent more time forag-
ing than juveniles, however this result, as well as following 
ones involving juveniles, should be taken with caution as 
the juvenile sample sizes were low (Table S8). Model selec-
tion retained four models, in which month, site, and age 
always showed an effect on the proportion of time foraging, 
while sex and migratory status had an effect only in two of 
the models (Fig. S3). Males spent more time than females 
foraging in 7 months, with the highest differences observed 
in May and July (Fig. S4, Table S6). Resident woodpi-
geons spent more time foraging except during October and 

Fig. 4   Proportion of time (%) spent by each studied common woodpi-
geon (Columba palumbus) in each behaviour during the breeding sea-
son (A) and winter (B). M, Marburg Open Forest; n-a, non-annotated. 
Behaviours and sexes are colour coded. Sites are indicated by their 
name and by arrows

Table 1   Results corresponding to the 3-way ANOVA for the propor-
tion of time spent by migrant and resident, female and male com-
mon woodpigeon (Columba palumbus) in each behaviour during the 
breeding and winter seasons. Variables with a statistically significant 
effect are marked bold

Factor F df p

Proportion of time foraging
  Season 19.18 1 < 0.001
  Site 3.48 2 0.044
  Sex 0.38 1 0.540
  Migration status 1.42 1 0.243
Proportion of time flying
  Season 0.01 1 0.920
  Site 8.15 1 0.002
  Sex 0.04 1 0.836
  Migration status 0.30 1 0.587
  Season:migration status 0.04 1 0.850
  Season:sex 0.58 1 0.455
  Migration status:sex 0.01 1 0.928
  Season:site 1.32 2 0.288
  Sex:site 7.3 1 0.013
  Season:sex:site 3.03 1 0.096
Proportion of time resting
  Season 25.79 1 < 0.001
  Site 1.36 2 0.273
  Sex 1.56 1 0.223
  Migration status 2.38 1 0.134
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November, when migrants invested slightly more time in this 
behaviour (Fig. S5, Table S9).

Generalized additive models also revealed significant 
effects of site, age, and sex on the proportion of time flying 
over the year (Table 2). Site was the strongest predictor, with 

the highest proportion of time flying observed in woodpi-
geons from Giessen, followed by those from Lisbon, and 
with the lowest proportion observed in the Marburg Open 
Forest (Table S7). For the proportion of time flying, model 
selection retained two models, one of which included 
month, site, migratory status, and age, while the other model 
retained all the factors but migratory status (Fig. S3). In 
most months, males and juveniles spent the highest propor-
tion of time flying (Tables S6, S8). During March to May, 
and October to November, migratory birds spent more time 
flying than residents (Table S9).

With respect to the proportion of time resting, generalized 
additive models indicated significant effects of site, age, and 
sex (Table 2). Site was the strongest predictor, with the high-
est proportion of resting observed in the woodpigeon from 
the Marburg Open Forest, followed by those from Giessen 
and Lisbon (Table S7). During most months, juveniles spent 
more time resting than adults (Table S8). Model selection 
retained only one model for the proportion of resting, includ-
ing all factors except the migration status (Fig. S3).

Discussion

We took advantage of biologging technologies, particularly 
tri-axial acceleration, and machine learning to classify and 
quantify coarse-scale behaviours of wild woodpigeons year-
round. This approach allowed us to examine how woodpigeons 
allocated time to foraging, flying, and resting over the year.

Woodpigeons in our study spent more time foraging during 
the breeding season (14 to 29 % of daytime hours) than in win-
ter (7 to 16 %; Figs. 3A and 4). The higher proportion of time 
allocated to foraging during the breeding season (Fig. 5) is an 
expected pattern. In general, breeding birds face an increase in 
energy demands particularly when adults provision the young 
(e.g. Ettinger and King 1980; Green et al. 2009). Thus, the peak 
observed in Fig. 5 reflects an increase in food search related to 
breeding effort. Even more, our results show two peaks (Fig. 5), 
which coincide with the peaks of breeding activity previously 
reported for woodpigeons (early and late or first and second 
broods; Cramp 1958, 1972; Murton 1958; Wittenberg 1980; 
Herkenrath 1989; Tomiałojć 1999; Slater 2001). Our results 
also show the peaks when considering the sexes separately (Fig. 
S8), with males having higher peaks of foraging activity than 
females during the breeding season. The higher peaks in males 
(in May and July) could be explained by the incubation pattern 
of this species. Males incubate for about 7 h, while females 
incubate around 9 h per day. Consequently, males have 2 h more 
for foraging daily (Murton and Isaacson 1962; Bezzel 1985).

Our results contrast to previous findings in Carlton, an 
area devoted to arable farming in Suffolk, UK (Murton and 
Isaacson 1962; Murton et al. 1963, 1964, 1971). In Carlton, 

Table 2   Generalized additive model results for the proportion of time 
spent by common woodpigeon (Columba palumbus) in each behav-
iour along the year. Variables with a statistically significant effect are 
marked bold

Factor Smoother edf Effect size Estimate

Proportion of time foraging
  (month) 6.62, p < 0.001 0.233
  Site 0.373 21.64, p < 0.001
  Age 0.308 11.06, p = 0.001
  Sex 0.242 1.52, p = 0.219
  Migration status 0.249 3.30, p = 0.071
Proportion of time flying
  (month) 7.66, p < 0.001 0.215
  Site 0.309 17.47, p < 0.001
  Age 0.208 5.28, p = 0.023
  Sex 0.194 4.92, p = 0.028
  Migration status 0.177 0.44, p = 0.507
Proportion of time resting
  (month) 3.51, p < 0.001 0.185
  Site 0.262 9.16, p < 0.001
  Age 0.236 6.06, p = 0.015
  Sex 0.220 6.51, p = 0.012
  Migration status 0.187 0.17, p = 0.685

Fig. 5   Proportion of time (%) spent foraging by common woodpigeon 
(Columba palumbus) in each of the study sites. Grey shadings show 
the generalized additive model 95% confidence interval for the mean 
shape of the effect
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woodpigeons allocated more time to foraging than in our 
study sites, with the highest proportion of foraging reported 
for January (94 to 98 %) and the lowest for May (32 to 57 
%; Murton et al. 1964). The difference between our results 
and those from Murton et al. (1963, 1964) could originate in 
the different methods and sampling rates used. Murton and 
colleagues conducted fortnightly daytime standard walks 
and counts (Murton et al. 1964), while we recorded data 
of tracked birds every day, for 2 years, at sampling rates 
ranging from 5 min (mostly) to 8 h, dependent on battery 
charge. The higher sampling rate in our study may have 
revealed patterns not captured by the fortnightly walks in 
Carlton. The difference could also be due to an assump-
tion made by Murton et al. (1963); if a flock of 100 wood-
pigeons was observed where 98 % were foraging and 2 % 
were resting, then each individual on average was supposed 
to spent 2 % of its time on the foraging ground in activities 
other than foraging. However, as Kenward and Sibly (1977) 
found, activities carried out by woodpigeons vary along 
the day, and thus, the assumption made by Murton et al. 
(1963) could be flawed. A third possible explanation is that 
the discrepancies are actually related to the different study 
sites. Already, Murton et al. (1963) and Kenward and Sibly 
(1977) mentioned that the proportion of resting behaviour, 
and consequently to other behaviours, varies among sites. In 
our study, we found that woodpigeons from different sites 
showed significant variation in the time allocated to forag-
ing during the breeding and winter seasons (Table 1). Also, 
the generalized additive models in our study revealed that 
site was the strongest predictor of the proportion of time 
that woodpigeons spent foraging over the year (Table 2). 
Thus, variation in time budgets might be expected among 
sites. The reason for this may possibly be a variation among 
sites in food availability, accessibility, or both, and thus the 
energy the birds can obtain during foraging. This variation 
merits further investigation and will be part of our next 
research on woodpigeons.

The proportion of time woodpigeons spent foraging was 
lowest in the forest habitat from the Marburg Open Forest, 
higher in the urban habitats of Giessen, where birds foraged 
on nearby arable fields during the day (Schumm et al. 2022), 
and highest in the urban park in Lisbon (see Fig. S6 for an 
overview of the habitats used by the woodpigeons of the dif-
ferent sites). We observed this pattern both during the breed-
ing season and in winter (Fig. 4). This result could reflect 
both variation in food availability and accessibility among 
sites and the cost of adaptation to urban environments (syn-
urbanisation) in woodpigeons. Originally, a forest species, 
woodpigeons have adapted to urban and suburban habitats 
in Western and Central Europe since the early nineteenth 
century, and more recently, in Eastern Europe (Tomiałojć 
1976; Witt et al. 2005; Bea et al. 2011; Fey et al. 2015; 
Schuster 2017). Increasing urbanisation is advantageous 

for some bird species, shows no effect for others, or can be 
detrimental (reviewed in Chace and Walsh 2006; Chamber-
lain et al. 2009; Seress and Liker 2015; Isaksson 2018). As 
a result, activity budgets can be affected in birds foraging 
in urban areas (Chace and Walsh 2006). A number of fac-
tors may play a role in the response of a particular species 
to urban food resources: (1) the presence and patch size of 
remnant native vegetation, (2) competition with other spe-
cies with longer cohabitation histories with humans, (3) the 
presence and density of non-native predators, (4) the struc-
ture and floristic characteristics of planted vegetation, and 
(5) the amount of supplementary feeding by humans, among 
others (reviewed in Chace and Walsh 2006). Differences in 
small-scale habitat and climate, variation in food availability, 
and accessibility among sites, the actual diet of the tracked 
birds, or the physiological consequences of the types of food 
available may also influence time budgets. However, we did 
not investigate these factors in our study, rendering our inter-
pretation as only a possible one. Also, we tracked only one 
forest individual, but this bird showed interesting differences 
to the birds breeding in Giessen (Fig. 5). Therefore, future 
studies should include more forest woodpigeons to confirm 
these differences. Future work on the energy budgets of 
tracked woodpigeons and their habitat use may shed more 
light on the causes of the altered activity budgets observed 
in our urban individuals.

Conclusions and outlook

Tri-axial acceleration and machine learning allowed us to 
investigate year-round behavioural time budgets of wild 
woodpigeons. The long-term and detailed information 
gathered, together with the knowledge gained about time 
allocation to the different behaviours, constitute the basis 
for future research into the behavioural adaptions of wood-
pigeons to the environment. The time budgets we recorded 
contrast to previous findings in woodpigeons (Murton and 
Isaacson 1962; Murton et al. 1963, 1964, 1971) and reaf-
firm the importance of considering different populations to 
fully understand the behaviour and adaptation of a particular 
species to a particular environment. Furthermore, the differ-
ences in the time budgets of woodpigeons from this study 
and those from the 1950s and 1960s might be related to envi-
ronmental change and merit further attention and the future 
investigation of energy budgets. The latter will also allow 
to fully understand the cost of adaptation to urban environ-
ments, suggested by the differences we recorded among 
urban and forest woodpigeons. Furthermore, our results 
open an opportunity to further investigate how a successful 
bird species such as the woodpigeon copes with increas-
ing environmental change and urbanisation. The increase in 
the proportion of time devoted to foraging might be one of 



	 Behavioral Ecology and Sociobiology (2023) 77:40

1 3

40  Page 10 of 12

the behavioural mechanisms involved but opens questions 
about the costs associated to such increase in terms of other 
important behaviours.

Our present study was restricted to the classification and 
quantification of coarse-scale behaviours of wild woodpi-
geons. However, Murton et al. (1964) showed that for the 
woodpigeons from Carlton drinking accounted for up to 
9% of the proportion of time in summer. Unfortunately, we 
only identified four confirmed bursts for drinking behaviour 
(Fig. S7), which were not enough to train the algorithms. 
Territorial calls, bowing and aerial displays, actual intra- 
and inter-specific (with Stock Doves Columba oenas) fight-
ing following aggressive posturing to intruders, courtship 
feeding, copulation, caressing, nest building and mainte-
nance, incubation, brooding, and care of the young are also 
important behaviours during the breeding season (Murton 
and Isaacson 1962). The future use of animal-borne video 
cameras at the same time of tri-axial acceleration record-
ings, recently used in larger birds (Del Caño et al. 2021), 
may provide an opportunity to peer in greater detail into 
the activity budgets of medium-sized birds as the woodpi-
geons. However, further miniaturization of the necessary 
instruments (32 g in Del Caño et al. 2021) is still required 
for them to be suitable for deployment on woodpigeons.
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