LAURA OBERLIN

BEHANDLUNG VON PANKREASKARZINOMZELLLINIEN IN VITRO UND IN VIVO MIT EINEM MONOKLONALEN ANTIKÖRPER GEGEN DEN TRANSFERRINREZEPTOR

INAUGURAL-DISSERTATION

zur Erlangung des Grades eines Dr. med. vet. beim Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen

Das Werk ist in allen seinen Teilen urheberrechtlich geschützt.

Jede Verwertung ist ohne schriftliche Zustimmung des Autors oder des Verlages unzulässig. Das gilt insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung in und Verarbeitung durch elektronische Systeme.

1. Auflage 2010

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the Author or the Publishers.

1st Edition 2010

© 2010 by VVB LAUFERSWEILER VERLAG, Giessen Printed in Germany

STAUFENBERGRING 15, D-35396 GIESSEN Tel: 0641-5599888 Fax: 0641-5599890 email: redaktion@doktorverlag.de

www.doktorverlag.de

Aus dem Institut für Veterinär-Pathologie der Justus-Liebig-Universität Gießen

Betreuer: Prof. Dr. M. Reinacher

und

aus dem Institut für Experimentelle Chirurgie der Ruprecht-Karls-Universität Heidelberg Betreuer: Prof. Dr. J. Schmidt

Behandlung von Pankreaskarzinomzelllinien in vitro und in vivo mit einem monoklonalen Antikörper gegen den Transferrinrezeptor

INAUGURALDISSERTATION

zur Erlangung des Grades eines Dr. med. vet. beim Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen

eingereicht von

Laura Oberlin

Tierärztin aus Heidelberg

Gießen 2009

Mit Genehmigung des Fachbereichs Veterinärmedizin der Justus-Liebig-Universität Gießen

Dekan:

Prof. Dr. Dr. habil. G. Baljer

Gutachter:

Prof. Dr. M. Reinacher

Prof. Dr. J. Schmidt

Tag der Disputation:

8.12.2009

Erklärung gem. §10 (5) der Promotionsordnung

"Ich erkläre: Ich habe die vorgelegte Dissertation selbständig und ohne unerlaubte fremde Hilfe und nur mit den Hilfen angefertigt, die ich in der Dissertation angegeben habe. Alle Textstellen, die wörtlich oder sinngemäß aus veröffentlichten oder nicht veröffentlichten Schriften entnommen sind, und alle Angaben, die auf mündlichen Auskünften beruhen, sind als solche kenntlich gemacht. Bei den von mir durchgeführten und in der Dissertation erwähnten Untersuchungen habe ich die Grundsätze guter wissenschaftlicher Praxis, wie sie in der "Satzung der Justus-Liebig-Universität Gießen zur Sicherung guter wissenschaftlicher Praxis" niedergelegt sind, eingehalten."

Heidelberg, 20.08.2009

Wenn man eine Arbeit mag, dann ist es keine Arbeit.

Anders Jonas Ångström schwed. Astronom und Physiker

Inhaltsverzeichnis

Abkürzungen	IV
1. Einleitung	1
2. Literaturübersicht	2
2.1 Das Pankreaskarzinom	2
2.2 Heterogenität des Pankreaskarzinoms	4
2.2.1 Tumorsuppressorgen p53	5
2.2.2 Die retroviralen Onkogene ras	6
2.2.3 Tumormarker CEA	7
2.2.4 Tumormarker CA 19-9	
2.3 Tumorwachstum	
2.4 Rolle des Eisens	
2.5 Eisenhomöostase im menschlichen Körper	10
2.6 Eisentransportwege	
2.7 Schematische Darstellung der Eisentransportwege	
2.8 Der Transferrinrezeptor	
2.9 Rolle des Eisens für maligne Zellen	18
2.10 Transferrinrezeptor beim humanen Pankreaskarzinom	
2.11 TFRC-basierende Therapien	20
2.11.1 Anti-TFRC-mAb	20
2.11.2 SiRNA/Antisense	22
2.11.3 Andere Modalitäten: Chelatoren	
2.11.4 Andere Modalitäten: Galliumnitrat	
3. Materialien und Methoden	
3.1 Materialien	
3.1.1 Chemikalien	
3.1.2 Geräte	
3.1.3 Zelllinien	
3.1.4 Zellkulturmaterial	31
3.1.5 Antikörper	
3.1.6 In vivo-Versuche	33
3.1.7 In vitro-Testkits	33

3.1.8 PC-Programme	33
3.1.9 Histologie	34
3.1.10 Sonstiges	34
3.2 In vitro-Methoden	34
3.2.1 Kultivierung der Zellen	34
3.2.2 Ablösen der Zellen	35
3.2.3 Einzelzellsuspension	35
3.2.4 Zellzahlbestimmung	35
3.2.5 Einfrieren und Auftauen von Zellen	35
3.2.6 Durchflusszytometrie (FACS-Analyse)	
3.2.7 Einteilung der Tumoren	
3.2.8 Antikörper-Dialyse	
3.2.9 In vitro-Therapie	
3.2.9.1 Reaktion auf Inkubation mit Anti-TFRC-mAb	
3.2.9.2 Neue Konzentration des Anti-TFRC-mAb	
3.2.9.3 Behandlung in der Proliferationsphase	
3.2.9.4 Zellzahloptimierung, fünftägige Inkubationszeit	40
3.2.9.5 Verwendung von konservierungsstofffreien Antikörpern	40
3.2.9.6 Study Design mit Zelllinienauswahl	41
3.2.10 Calcein-Assay	41
3.3 In vivo-Methoden	
3.3.1 Tumorzellinokulation in die SCID-Mäuse	42
3.3.2 Therapie	42
3.3.2.1 Vorversuch zur Bestimmung der maximal tolerierten	
Antikörperkonzentration	42
3.3.2.2 Hauptversuch	
3.3.3 Tumorentnahme aus den SCID-Mäusen	43
3.4 Histologie	43
3.5 Statistik	44
	45
4.1 Expression des TEDC in Denkrosskarning man	
4.1 Expression des TEDC (EACC Erscheises)	+0 17
4.2 III VIIIO-EXPRESSION des TERC (FACS-Ergebnisse)	
	55 56
4.4 HISTOlOgie	

4.5 Tumorwachstum in vivo und in vitro	64
4.6 In vitro-Therapie	_65
4.6.1 Inkubation mit anti-TFRC-mAb, IgG₁als Negativkontrolle	_65
4.6.2 Neue Konzentration des anti-TFRC-mAb, sowie weitere KontrollAK	72
4.6.3 Behandlung in der Proliferationsphase, gleiche Konz. der AK	77
4.6.4 Zellzahloptimierung, Inkubation standardisiert auf fünf Tage	81
4.6.5 Antikörperdialyse, Versuche mit und ohne Konservans	83
4.6.6 Zelllinien mit stark positiver TFRC-Expression	90
4.6.7 Zelllinien mit mäßig positiver TFRC-Expression	92
4.6.8 Zelllinien mit schwach positiver TFRC-Expression	94
4.7 In vivo-Therapie	95
5. Diskussion	99
5.1 Expression des TFRC beim Pankreaskarzinom	99
5.2 Heterogenität des Tumorwachstums	102
5.3 Histologie	104
5.4 Korrelation des Wachstums in vivo und in vitro	105
5.5 In vitro-Therapie	106
5.6 In vivo-Therapie	108
6. Zusammenfassung	111
7. Summary	113
8. Literaturverzeichnis	115
9. Anhang	132

Danksagung

Abkürzungen

°C Grad Celsius µg Mikrogramm

µl Mikroliter

µM Mikromol

µU Mikrounit

5-FU 5-Fluorouracil

Ab antibody

AK Antikörper

Anti-CD71 = Anti-TFRC

CA Karzinom

CCP clathrin coated pits

CD71 Cluster of differentiation 71 = TFRC

CEA carcinoembryonic antigen

CK Cytokeratin

DDT Dichlordiphenyltrichlorethan

DFO Deferoxamin

DMEM Dulbecco's Modified Eagle Medium

DMSO Dimethylsulfoxid

DMT divalent metal transporter

ES-BP eisensensorisches bindendes Protein

FACS fluorescent activated cell sorting

Fe Eisen

FITC fluorescein isothiocyanate-conjugated antibody

FKS fetales Kälberserum

FN Ferroportin

G grade

HFE Protein des Gens für hereditäre Hämochromatose

IBD inflammatory bowel disease

Ig Immunglobulin

IgG Immunglobulin G

IRE iron responsive element

IRP iron regulatory protein

kDa Kilodalton

kg Kilogramm

KGW Körpergewicht

LSAB-Kit kommerziell erhältliche Antikörperfärbung

mAb monoclonal antibody

mg Milligramm

MHC major histocompatibility complex

mm² Quadratmillimeter

ml Milliliter

n Anzahl

ng Nanogramm

part. partiell

PBS phosphate buffered saline

PCB Polychlorierte Biphenyle

Ras Rat sarcoma

RHS Reticulohistiozytäres System

RISC RNA-induced silencing complex

RNA ribonucleic acid

SCID severe combined immunodeficiency disease

SD Standardabweichung

siRNA small interfering RNA

TFRC Transferrinrezeptor

TFRC FL LOG logarithmische Fluoreszenz der TFRC-exprimierenden Zellen

Z. Zellen

1. Einleitung

Das Pankreaskarzinom

Die Menschen werden älter. Durch die gestiegene Lebenserwartung rücken Erkrankungen wie Krebs in den Vordergrund. Eine besonders aggressive und als maligne anzusehende Form ist das Pankreaskarzinom, an dem in den Industriestaaten jedes Jahr trotz intensivster Behandlung Zehntausende von Menschen versterben. Gängige Tumortherapien wie Resektion, Bestrahlung, Chemotherapie und Kombinationen daraus schlagen nicht oder nur sehr begrenzt an. Die mittlere Überlebensrate für das erste Jahr beträgt 20 % und nur 1 % der Patienten überlebt das 5. Jahr nach Diagnosestellung. Ohne Behandlung tritt der Tod im Schnitt 3-6 Monate nach der Diagnose ein. Gerade die nahezu infauste Prognose und die schlechte Behandelbarkeit lässt weltweit Onkologen nach neuen Therapieansätzen forschen.

Ein Ansatz hierzu ist das 'Aushungern' der Krebszellen. Durch den enormen Eisenbedarf proliferierender Zellen liegt die Vermutung nahe, dass man durch die Verminderung der Eisenaufnahme in die Zelle diese zum Schrumpfen bringen kann. Genau dieser Ansatz wird in vorliegender Arbeit beschrieben: Sowohl in vitro als auch in vivo wurde getestet, ob man durch eine Antikörpertherapie gegen den Transferrinrezeptor, welcher Eisen in die Zelle einschleust, einen positiven Effekt erzielen kann.

2. Literaturübersicht

2.1 Das Pankreaskarzinom

Das Pankreaskarzinom stellt in den Ländern der Europäischen Union den sechsthäufigsten (76), in den USA (48, 62, 114, 132) und Japan (62) den fünfthäufigsten Grund dar, an Krebs zu sterben (67). Die Prognose ist nahezu infaust. Jedes Jahr werden ca. 30.000 Fälle in den USA diagnostiziert und etwa die gleiche Anzahl an Erkrankten stirbt daran (37, 48, 132). Das sind ca. 5 % aller Krebstoten (83). Die Mortalität liegt bei 10/100.000 (88). Die meisten Fälle (>80 %) werden im fortgeschrittenen Stadium (stage III-IV) diagnostiziert (95, 114, 132). Daher können nur ca. 5 % aller Tumoren komplett reseziert werden.

Die mittlere Überlebensrate nach Diagnosestellung beträgt 3-6 Monate (5, 63, 87, 88, 114). Der Tod tritt nach schwerer Kachexie, Anorexie und extremem Schmerz ein (88). Die Fünfjahresüberlebensrate liegt bei <5 % (5, 29, 62, 67, 78, 83, 87, 114). Auch in speziellen Tumorzentren mit chirurgischer Intervention, Radio- und Chemo-therapie werden mithilfe intensivster Therapie weniger als 20 % Remission erreicht (62, 87, 132). Die meisten Patienten sterben innerhalb eines Jahres nach der Tumorresektion (48).

Das höchst aggressive (29, 132) Pankreaskarzinom wächst rapide (60) und metastasiert rasch in umliegende Gewebe (3, 29, 67) (Duodenum, Peritoneum, Bauchhöhle und Lymphknoten) und auf hämatogenem Wege in die Leber (auch Lunge, Pleura, Skelett und Nebennieren) (45). Ca. 40 % aller Patienten haben Metastasen in Leber und/oder Bauchhöhle (63). Mehr als 80 % aller Betroffenen zeigen zumindest Nahmetastasen, was das hohe Maß an Invasivität widerspiegelt (88). Leider zeigt sich vor allem bei den Metastasen (67) eine hohe Resistenz

gegenüber gängigen Chemotherapeutika (Gemcitabin, 5-Fluorouracil, Etoposid) (36, 63, 83, 95, 109), was die Prognose sehr verschlechtert (62). Auch die Bestrahlung ist nicht effektiv (37, 62, 83, 132).

Man weiß wenig über die genaue Ätiologie des Pankreaskarzinoms (5). Bekannte Risikofaktoren sind Zigarettenkonsum (43, 78) und eine chronische Pankreatitis (5). Die Entzündung treibt die Tumorigenese voran (5). Als weitere Negativfaktoren vermutet man Übergewicht (speziell die abdominale Adipositas), Coffeinabusus (43, 123) und metabolische Abnormitäten wie Insulinresistenz, Hyperinsulinämie und Diabetes mellitus (120, 123) (78).

Diskutiert werden ein hoher Fleischkonsum (43) vergesellschaftet mit geringer Obstund Gemüsezufuhr (123), Erkrankungen der Gallenblase, chronisch-kalzifizierende Pankreatitis, Magen-Darm-Ulzera (120) und eine DDT- bzw. PCB- Exposition (123). Alkoholgenuss scheint gegenüber früherer Ansicht keinen nennenswerten Effekt zu haben (43). 25-50 % der Erkrankten sind Zigarettenraucher (120, 123).

Protektive Effekte werden einer Obst- und Gemüseernährung (43) sowie Asthma und anderen Allergien zugeschrieben (120).

Nach Angaben einer Statistik aus den USA (45) kommt es bei älteren, schwarzen Männern zu einer Häufung des Pankreaskarzinoms. Die höchste Inzidenz findet sich bei der schwarzen Bevölkerung der USA, auf Hawai, Maori, Polynesien und Neuseeland (45). Es konnte jedoch kein Zusammenhang zu sozioökonomischem Status oder geographischem Standort festgestellt werden (43). Noch vor ungefähr 10 Jahren galt das Pankreaskarzinom als reine "Männererkrankung", mittlerweile kommen auf 1,3-1,5 Männer je eine Frau (45).

Ab einem Alter von 40 Jahren steigt die Inzidenz an einem Pankreaskarzinom zu erkranken (5, 132). Das Durchschnittsalter bei Diagnosestellung liegt bei 60 Jahren.

Man findet in 5-10 % aller Fälle eine familiäre Häufung (32). Patienten mit einer Verwandtschaft ersten Grades zu einem Betroffenen zählen zur Hochrisikogruppe (32).

Histologisch handelt es sich am häufigsten (>90 %) um ein duktales Pankreaskarzinom (5, 45, 83). Die nähere Einteilung erfolgt über den Differenzierungsgrad (G I-IV). Die Stadiengruppierung (stage I-IV) erfolgt nach der TNM-Klassifikation (54, 55, 71, 133).

Neben dem Tumor findet man häufig eine chronisch-fibrosierende Pankreatitis (45). Der Pankreaskrebs wird charakterisiert durch die abnorme Ausschüttung von verschiedenen Wachstumsfaktoren, eine stimulierte Angiogenese, Desmoplasie und eine Resistenz gegenüber Apoptose (88). Damit ist er ein höchst aggressiver und maligner Tumor (58, 95)

2.2 Heterogenität des Pankreaskarzinoms

Die Heterogenität des Pankreaskarzinoms erschwert eine Klassifizierung und auch eine einheitliche Therapie. Das Vorkommen von einzelnen Tumormarkern, Tumorsuppressorgenen und Onkogenen ist sehr unterschiedlich. Die Morphologie bei den einzelnen Zelllinien ist sehr abweichend. Um der hohen Heterogenität in der vorliegenden Arbeit besser gerecht zu werden, kamen bei den Versuchen eine Vielzahl unterschiedlicher Zelllinien zum Einsatz (5, 17, 48, 122, 123, 124).

In den Kapiteln 2.2.1 bis 2.2.4 werden Unterschiede in der Genetik und dem Vorkommen von Tumormarkern als Beispiel für die Vielfalt des Pankreaskarzinoms beschrieben.

2.2.1 Tumorsuppressorgen p53

Das Tumorsuppressorgen p53 (28, 123) ist für den kontrollierten Zelltod (Apoptose) (100) und die Stabilisierung des Zellgenoms zuständig (123).

Weiterhin reguliert p53 den Zellzyklus: Sobald die Kaskade zum kontrollierten Zelltod durch p53 induziert wird, kommt es zum Stillstand des Zyklus am G₁/S-Kontrollpunkt und zur Apoptose. Bei einer p53-Genmutation wird die Kontrolle an diesem Punkt unterbrochen, was zu abnormem Zellwachstum führen kann (63).

Es besteht ein Zusammenhang zwischen p53-Mutationen und Aneuploidie sowie schlechter Ausdifferenzierung der Zellen. Man vermutet, dass die Genomintegrität nachlässt. Chromosomale Abnormitäten nehmen zu und betreffen auch den Genlocus für p53 (123).

So scheint die Mutation im p53-Gen ein wichtiger Schritt der humanen Karzinogenese zu sein (6, 111, 117). DNA-zerstörende Agentien können besser wirken und die Apoptose wird ausgeschaltet (111). Ohne ein funktionierendes p53 fehlt zudem der Initiator der DNA-Reparation (100, 111).

Bei vielen Krebsarten (Dickdarm (60), Lunge (63), Ösophagus, Brust, Leber (60), Gehirn (63), hämatopoetisches System (60) und Prostata (63)) ist das p53-Gen durch Punktmutationen (6) verändert und kann so die Tumorigenese nicht aufhalten. In 50 % bis 70 % (111, 123, 142) aller Fälle des Pankreaskarzinoms werden solche Genmutationen gefunden, welche p53 inaktivieren (93).

Ein möglicher Therapieansatz ist die Einschleusung eines Wildtyp-p53-Gens via retroviralem Vektor. Man erhofft sich die Kontrolle über den Zellzyklus und damit ein Aufhalten der Tumorentstehung. Eine potentielle Anwendung ist die intraperitoneale Gentherapie bei Pankreaskarzinommetastasen in der Bauchhöhle (63).

2.2.2 Die retroviralen Onkogene ras

Ras ist ein Akronym und steht für rat sarcoma, da diese Gene durch Harvey und Kirsten bei Sarcomaviren der Ratte entdeckt wurden (4). Die erstmals entdeckten Gene zählen zu den v-ras, den retroviralen Onkogenen. Später kamen die c-ras, die zellulären Gene, hinzu (86). Ras-Gene sind eine ubiquitär vorhandene, eu-karyotische Genfamilie, die bei Säugern, Vögeln, Insekten, Mollusken, Pflanzen, Pilzen und Hefen identifiziert werden konnte (4).

Man unterscheidet drei Allele: H-, K- und N-ras (86), die unter normalen Bedingungen eine fundamentale Rolle in zellulären Grundfunktionen spielen (4). Sie sind innerhalb der Zelle in die Wachstumssignalkette involviert und die durch sie kodierten Proteine agieren ähnlich den second-messenger G-Proteinen (123), dabei binden diese u.a. GTP und GDP. Sie besitzen eine intrinsische GTPase-Aktivität (86), befinden sich innen an der Plasmamembran und geben von dort ihre primär produzierten Proteine ins Zytosol ab (123).

Kommt es allerdings zu Punktmutationen, so können Onkogene entstehen (86). Im Vergleich zu normalen Geweben ist die Expression von ras-Genen in Tumoren oft erhöht (4, 19). Durch Mutation in den Kodons 12, 13 oder 61 von einem der drei cras-Gene werden diese zu aktiven Onkogenen. Die höchste Prävalenz für solche Mutationen findet sich mit 90 % beim Adenokarzinom der Bauchspeicheldrüse. Auch Kolon, Lunge, Schilddrüse und Knochenmark sind betroffen (9). In 75-100 % aller Pankreaskarzinomfälle findet man eine Punktmutation des K-ras auf Kodon 12 (93, 123, 142).

Der Nachweis einer solchen Mutation könnte als Diagnostikum beim Screening auf das Pankreaskarzinom dienen und wurde experimentell im Pankreassaft untersucht (142).

2.2.3 Tumormarker CEA

CEA steht für carcinoembryogenes Antigen. Erstmals wurde CEA im Jahr 1965 von Gold et al. beschrieben als "tumorassoziiertes Antigen von gastrointestinalem Krebs" (90). CEA wird als Tumormarker (49) genutzt, da es meist tumorassoziiert vorliegt (Colon, Rectum, andere gastrointestinale Tumoren) (49, 119). Jedoch kommen auch milde Erhöhungen des CEA-Levels (90) bei starken Rauchern (53, 90), fortgeschrittenem Alter, Gallensteinen oder anders verursachten Cholestasen (49), Leberfehlfunktionen (Leberzirrhose etc.) und Pankreatitis, IBD sowie Dickdarmpolypen (90) vor. Dadurch zählt CEA zu den nichtspezifischen Tumormarkern (90). Bei 51 % aller Pankreaskarzinome liegen erhöhte Werte vor (49). Da jedoch erhöhte Werte bei 22 % aller Fälle von chronischer Pankreatitis und in 31 % der extrapankreatischen Erkrankungen gefunden werden, ist CEA kein sinnvoller Indikator einer bösartigen Erkrankung am Pankreas. Man findet höhere CEA-Konzentrationen bei Patienten mit metastasierendem Pankreaskarzinom als bei soliden Tumoren (106).

Beim Kolon- und RektumCA wird CEA präoperativ zur Einschätzung der Prognose (49, 56) und postoperativ zur Detektion von Rezidiven (49, 56, 90, 119) genutzt. CEA-Werte >20ng/ml entsprechen einer nahezu infausten Prognose. Auch wenn der Wert postoperativ nicht abfällt, ist die Prognose schlecht (90).

Es dient bei Tumorpatienten zum Monitoring (Rezidivindikator, Therapieüberwachung) (49, 56, 90). Verglichen mit dem pathohistologischen Staging der resezierten Tumoren stellt die präoperative CEA-Bestimmung ein gutes prognostisches Werkzeug dar.

Leider mangelt es CEA an Spezifität und Sensitivität (106), so dass es häufig zu falsch positiven Ergebnissen kommt (49).

2.2.4 Tumormarker CA19-9

Der Tumormarker CA19-9 ("colon cancer cell surface antigen") wird wie CEA auch in nicht-malignen Erkrankungen vorgefunden. CA19-9 ist nicht spezifisch für gastrointestinale Tumoren, da es z.B. auch bei Brustkrebs vorgefunden wird.

CA19-9 hat eine höhere Sensitivität als CEA beim Pankreaskarzinom, allerdings eine niedrigere bei Kolon-, Magen- und Brustkrebs (49).

CA19-9 wird bei Patienten mit malignen und nicht-malignen Erkrankungen gefunden, wobei nur quantitative Unterschiede zum Gesunden bestehen. Allerdings sind die Werte bei einer nichtmalignen Krankheit niedriger als bei einer metastasierenden Krebserkrankung (49).

CA19-9 wird nicht von allen Pankreaskrebszelllinien gleichermaßen exprimiert (17, 124), was ein weiterer Ausdruck der hohen Heterogenität ist.

2.3 Tumorwachstum

Das pankreatische duktale Adenokarzinom wird durch eine starke desmoplastische Gewebsreaktion gekennzeichnet. Dadurch sind die Zellen in der Lage, ihrerseits extrazelluläre Matrixproteine wie spezielle Stromakomponenten zu synthetisieren. Dieser Prozess erfolgt sowohl in vitro als auch in vivo (85). So wachsen nach Inokulation der betreffenden Tumorzelllinie teilweise massive Anhäufungen menschlichen Stromas auf SCID-Mäusen.

2.4 Rolle des Eisens

In der vorliegenden Arbeit wird das Verhalten der Tumorzellen gegenüber Eisenmangel gezeigt, deshalb wird an dieser Stelle ein kurzer Überblick über den Eisenstoffwechsel im gesunden Körper und im kranken Gewebe gegeben. Maligne Zellen haben einen erhöhten Eisenbedarf, was an späterer Stelle beschrieben wird.

Jeder Organismus benötigt Eisen (113).

Alle eukaryotischen Zellen benötigen Eisen für die Proliferation und zum Überleben. Ein intrazellulärer Mangel inhibiert das Zellwachstum und führt zum Zelltod (52). Sowohl Häm- als auch Nichthämproteine und Enzyme benötigen Eisen (134). Eisen ist ein wichtiger Cofaktor für Enzyme wie die Ribonukleotidreduktase (104, 112) und -aconitase (104) sowie für die Eisen- und Schwefelcluster (52, 112) der mitochondrialen Atmungskette (112). Eisen stabilisiert dreidimensionale Strukturen und aktiviert transkriptionale sowie posttranskriptionale Vorgänge (143). Als Bestandteil von Häm (52, 112) wird Eisen im Hämoglobin zum Sauerstofftransport benötigt. In der Cytochromoxidase reduziert es als katalytisches Zentrum Sauerstoff zu Wasser (104). Eisenhaltige Enzyme sind essentiell für den Sauerstofftransport, die ATP-Produktion, die DNA-Synthese und andere physiologische Prozesse (17). Somit werden viele Schlüsselreaktionen in Energiemetabolismus und DNA-Synthese von eisenhaltigen Enzymen katalysiert (135, 143). Die verschiedenen möglichen Oxidationsstufen machen Eisen so wichtig als Cofaktor in Enzymen für Redoxreaktionen (104). Jedoch liegt hier auch die Problematik: Im Zytoplasma kommt eine signifikante Menge an reduziertem Eisen vor, welches an einer Fentonreaktion teilnehmen kann. Reduziertes Eisen kann freie Radikale (17) generieren und ist somit höchst toxisch (104). Durch die Oxidation können Proteine, Nukleinsäuren und Fette zerstört werden (52, 112). Ein weiteres Problem für die biologische Verfügbarkeit ist die schlechte Löslichkeit von Eisen (17).

2.5 Eisenhomöostase im menschlichen Körper

Die Eisenhomöostase unterliegt einer strengen physiologischen Kontrolle. Das Verstehen der Stellmechanismen der Eisenhomöostase ist sehr wichtig, um die möglichen Komplikationen einer eisenblockierenden Therapie voraussagen zu können.

Das essentielle Spurenelement Eisen kommt in einer Menge von 45-60 mg/kg (Plasmaspiegel von 13-32 µmol/l bzw. ca. 3-5 g Eisen, 70 % in erythroiden Zellen (103)) im Menschen vor. Man unterscheidet Funktionseisen (Hämoglobin 66,1 %, Myoglobin 4,7 %, Cytochrome, Katalasen, Peroxidasen 0,2 %, Nichthämenzymeisen 10,0 %), Transporteisen (transferringebunden 0,2 %) und Depoteisen (Ferritin, Hämosiderin 18,8 %). Von dem durch die Nahrung zugeführten Eisen werden ca. 10 % (in Zeiten höchster Beanspruchung bis zu 40 %) über das Duodenum aufgenommen (84, 113).

Das saure Magenmilieu spaltet dreiwertiges Eisen (Eisenhydroxid, organische Verbindungen) in freie Ionen und locker gebundenes organisches Eisen. Cystein und Vitamin C wirken reduzierend und verwandeln dreiwertiges in zweiwertiges Eisen (84). Dessen Absorption von normalerweise ca. 1 mg/Tag (47, 113) erfolgt an der apikalen Membran des reifen Enterozyten. Hier gibt es drei Wege:

a) divalenter Metalltransporter DMT-1 (Protonensymporter)

b) Hämeisenaufnahme über den sogenannten Hämrezeptor (113)

c) Mucin-Integrin-Mobilferrin-Weg

Die Eisenspeicherung erfolgt über Ferritin, ein Eisenspeicherprotein, welches bei erhöhtem Eisengehalt der Zelle vermehrt synthetisiert wird und somit eine oxidative Schädigung verhindert. Falls die Eisenionen nicht mit Hilfe des Ferritin gespeichert werden, erfolgt eine Abgabe ins Blut über den iron regulated transporter-1 (entspricht Ferroportin). Weitere Transportwege durch die basolaterale Membran sind der Transferrin-receptor-hereditary-hemochromatosis-Proteinkomplex und Hephästin (Homolog zu Ceruloplasmin, ein Kupfertransportprotein (113)).

Die Aufnahme, Speicherung und intrazelluläre Verwertung von Eisen wird durch die Biosynthese von TFRC, Ferritin und δ -ALA-Synthase bestimmt. Die Translation der mRNA wird durch das eisensensorische Protein (ES-BP) reguliert. Sobald der Abbau der TFRC-mRNA verhütet wird, steigert sich die Translation. Der Transferrinrezeptor wird vermehrt synthetisiert und so kann mehr Eisen aufgenommen werden. ES-BP verliert bei hohen intrazellulären Eisenspiegeln seine RNA-Bindungsaktivität, wodurch die Translation von Ferritin und δ -ALA-Synthase erhöht wird. So kann das aufgenommene Eisen intrazellulären Speichern und der Hämsynthese zugeführt werden (84).

Die Eisenhomöostase hängt ab von Iron Responsive Elements (IRE) und Iron Regulatory Proteins (IRP). IREs sind Strukturen gewisser Schlüssel-mRNAs, welche Proteine des Eisenmetabolismus kodieren. IRPs arbeiten mit den IREs zusammen und erkennen Änderungen des Eisengehalts im intrazellulären Milieu ("labiler Eisenpool"). Erst durch die Interaktion von IRP mit IRE kann eine Transferrinaufnahme durch mRNA-Stabilisierung den TFRC vermehrt exprimieren lassen. Depotferritin blockiert seine eigene mRNA (113). Die Expression von TFRC und Ferritin unterliegt auf molekularer Ebene (40) einer reziproken Kontrolle (96) durch den Eisenbedarf. Die Regulation von Im- und Export sind synchronisiert (96). Dies geschieht auf posttranskriptionalem Level (35).

TFRC und Ferritin besitzen strukturelle Einheiten auf den nicht translatierten Regionen ihrer mRNA ("Iron Responsive Elements") (35). In eisenmangelnden Zellen binden mit hoher Affinität zwei im Zytoplasma vorhandene Proteine (IRP1 und 2) an die IREs. Dadurch wird die mRNA des TFRC stabilisiert (40, 113), die mRNA für Ferritin jedoch inhibiert (113). Als Resultat wird die Eisenaufnahme von transferringebundenem Eisen gesteigert und die Abgabe in die Ferritinspeicher gebremst (35). In Zellen mit hohem Eisengehalt bleiben die IREs frei, was der TFRC-mRNA erlaubt, instabil zu bleiben. Gleichzeitig erfolgt die Translation der Ferritin-mRNA, wodurch die Eisenspeicherung bedient wird und evtl. toxische Überschüsse abgefangen werden.

IRP1 und 2 sind homologe Polypeptide aus 889 und 964 Aminosäuren, die im Zytoplasma vorliegen. Sie gehören zur Familie der Eisen- und Schwefelcluster-Isomerasen.

Die Kontrolle von IRP1 unterliegt einem unüblichen Eisen- und Schwefelcluster-Switch. Bei Eisenüberschuss behindert ein kubischer 4Fe-4S-Cluster (96) die IRE-Bindungsaktivität. Der Cluster konvertiert IRP1 zu einer zytosolischen Aconitase. Bei Eisenmangel verschwindet der Cluster durch einen langsamen Mechanismus und apoIRP1 bekommt Bindungsaktivität.

IRP2 hingegen reagiert auf Eisen- und Sauerstoffzufuhr. Es wird bei Eisenmangel neu synthetisiert, bleibt bei Eisenmangel oder Hypoxie erhalten und erfährt in normoxischen Zellen mit ausreichend Eisen einen protosomalen Untergang (103).

2.6 Eisentransportwege

Abb. 1: Schematische Zusammenfassung der Eisen verwendenden Zellmechanismen incl. Im- und Export

In Abb. 1 werden die Transportwege des Eisens in die Zelle, die Lagerung und der Export schematisch beschrieben.

Für ein allgemeines Verständnis der Bedeutung des Transferrinrezeptors und einer eventuellen Blockade sei hier der Eisentransport durch den Körper näher erläutert.

Man gliedert die Transportwege in Aufnahme, Verteilung und Abgabe.

Die Aufnahme geschieht am differenzierten Enterozyten von Duodenum und Jejunum. An dessen apikaler Membran (Bürstensaum) befindet sich der DMT-1 (96, 115), das Mucin-Integrin-Mobilferrin-Shuttle und der noch nicht näher geklärte Hämeisenaufnahmeweg (113). Der Enterozyt gibt das aufgenommene und in Form von Ferritin gespeicherte Eisen an seiner basolateralen Seite über Ferroportin-1 (11, 96, 115), Hephaestin (115) und den TFRC-HFE-Komplex ins Blut ab (113). Dort wird Eisen an Transferrin gebunden (115).

Der 1. Schritt bei der Eisenaufnahme vom Darmlumen in den reifen Enterozyten besteht in der Reduktion von Fe³⁺ zu Fe²⁺ durch die duodenale Cytochromreduktase b. Fe²⁺ wird apikal über den DMT-1 (Abb. 1) aufgenommen. Der Export in den Blutkreislauf geschieht über Ferroportin-1 (Abb. 1), direkt danach erfolgt eine Oxidation durch die Ferrioxidase Ceruloplasmin (113) oder ihr membrangebundenes Homolog Hephaestin (Abb. 1). Fe³⁺ wird von apoTransferrin aufgenommen und zum Knochenmark (108) sowie anderen Geweben abtransportiert. Die Verteilung in den Körperkreislauf erfolgt transferringebunden über das Blut. Das Glykoprotein (39, 121, 127) Transferrin ist das wichtigste Eisentransportsystem der Vertebraten (35, 98, 99, 102, 135). Nur diejenigen Zellen, welche den TFRC besitzen, können Eisen erhalten. Das eisenbeladene (ein oder zwei Ionen (42)) Transferrin bindet an der Zelloberfläche an TFRC (Abb. 1). Es kommt zur rezeptorvermittelten Endozvtose (143). Für die Eisenfreisetzung intrazellulär wird das Endosom azidifiziert bis zu einem pH von 5,5 (Abb. 1). Über den DMT-1 wird Eisen freigesetzt und für die Synthese von eisenhaltigen Proteinen genutzt (Abb. 1). Bei Eisenüberschuss kommt es zur Speicherung in Form von Ferritin (Abb. 1) (7, 40). In der Zelle existiert zudem eine Fraktion zytosolischen Eisens, der sog. "labile Eisenpool".

Es gibt weiterhin die Möglichkeit, nicht-transferringebundenes Eisen aufzunehmen (z.B. der asialo-Glykoproteinrezeptor (134)), jedoch sind diese Mechanismen noch nicht geklärt. (103)

Der Eisenabtransport aus dem Körper geschieht über Abschilferung der Epithelien, Galle, Urin, Schweiß, bei Frauen auch durch die Menstruation (47, 113).

2.7 Schematische Darstellung der Eisentransportwege

Über die Nahrung aufgenommenes dreiwertiges Eisen kommt mit dem Nahrungsbrei an einen reifen Enterozyten des Duodenums. Dort wird Fe³⁺ über das membrangebundene Cytochrom b reduziert und als Fe²⁺ über DMT-1 über den apikalen Bürstensaum in die Zelle aufgenommen (Abb. 2).

Ferroportin exportiert das zweiwertige Eisen ins Blut (11, 15, 96), wo es beim Durchtritt durch die basolaterale Membran durch das dort befindliche Hephaestin in Fe³⁺ umgewandelt wird (115, 137) (Abb. 2). Je zwei Moleküle werden vom unbeladenen apoTransferrin aufgenommen und zirkulieren als Transferrin durchs Blut. In Phasen hoher Eisenaufnahme durch den Enterozyten kommt es intrazellulär zur Speicherung als Lagerprotein Ferritin (7, 103) (Abb. 2).

Abb. 2: Eisentransportwege am Enterozyten

2.8 Transferrinrezeptor

Im menschlichen Körper gibt es zwei TFRC-Typen: TFRC-1 und TFRC-2 (14). TFRC-1 ist ubiquitär (14) vorhanden, wie z.B. in der basalen Epidermis, dem endokrinen Pankreas, den Hepatozyten (2), in Hoden und Nebenhoden (39). TFRC-2 kommt nur in Leber und Duodenum vor (14). Erythroblasten zeigen eine hohe Expression von TFRC-1, Hepatozyten von TFRC-2. TFRC-1 hat eine hohe Affinität zu Transferrin, TFRC-2 nur eine niedrige und hat zudem keine IREs (14). Jedoch auch Karzinome, Sarkome und Hodgkin-Lymphome exprimieren TFRC (13). TFRC wird in größeren Mengen von proliferierenden Zellen (114) und malignen Geweben (127) produziert als von normalen, nicht-proliferierenden Zellen (13, 39, 108).

TFRC-1 sitzt membrangebunden (114) sowohl in der apikalen als auch in der basalen Membran und transportiert eisenbeladenes Transferrin in die Zelle (1, 25) (Abb. 3). Hierfür ist er das Schlüsselmolekül und damit essentiell für die Eisenaufnahme aus dem Blut (14). TRFC-1 ist ein dimeres, transmembranäres Glykoprotein, das sich zwischen Zelloberfläche und sauren intrazellulären Bereichen bewegt (42). Das homodimere Protein (24) hat ein Molekulargewicht von 180 kDa (24), die beiden Untereinheiten zu je 760 Aminosäuren sind durch zwei Disulfidbrücken (24) verknüpft. Die transmembranäre und die zytoplasmatische Domäne bewegen sich bei ca. 15 kDa. Die vier Domänen teilen sich ein in: die helikale, die apikale, die proteaseartige und die Endodomäne (42, 51). TFRC besitzt eine Kolokalisation zu HFE (1, 7), das als Regulator der Eisenabsorption (47) mit Transferrin kompetitiv um den TFRC konkurriert (44). Für die Eisenaufnahme aus dem Blut bindet eisenbeladenes Transferrin an den Transferrinrezeptor, wird internalisiert und durch rezeptorvermittelte Endozytose (40) in ein Endosom verpackt. Durch die Säuerung des reifen Endosoms wird dreiwertiges Eisen vom Transferrin-TFRC-Produkt abgespatten (Abb. 3). Das eisenlose Transferrin ("apo-Transferrin") wird mit Hilfe des TFRC an die Zelloberfläche gebracht (40), wo es seine Affinität zum Rezeptor verliert und sich wieder frei im Extrazellularraum bewegt (51, 108, 138). Die Internalisation des TFRC wird über endozytotische Proteine (Clathrin, Dynamin, Clathrin Coated Pits) gesteuert (131, 138) (Abb. 3). Die Expression des TFRC wird reguliert durch das IRE/IRP-System (138). Des weiteren beeinflussen Interleukin-2, -6, Kalziumkanäle, zyklische Nukleotide, Phorbolester und auch Viren diese Vorgänge (97).

Abb. 3: Internalisation von eisenbeladenem Transferrin via TFRC

2.9 Rolle des Eisens für maligne Zellen

Eisen ist essentiell für die normale Entwicklung (39), die Proliferation und den Metabolismus der Zellen (114, 146). Wachsende Zellen benötigen eine gleichmäßige Eisenzufuhr (13, 114, 127) u.a. für Enzyme der Atmungskette (146) und die Ribonukleotid-Reduktase (127), die als Cofaktor Eisen hat (24).

Maligne Zellen sind charakterisiert durch ein hohes Proliferationspotential. Entartete Zellen besitzen im Mikromilieu mehr Strategien Eisen aufzunehmen als gesunde und steigern so ihre Wachstumsrate noch mehr (114).

Um ihre erhöhtes Proliferationspotential und die rasche Teilungsrate unterstützen zu können, benötigen maligne Zellen einen höheren Eisengehalt. Daher gilt Eisen bei neoplastischen Erkrankungen als wichtiger Faktor für Prävention und Therapie.

2.10 Transferrinrezeptor beim humanen Pankreaskarzinom

Krebszellen zeigen höhere Level der TFRC-Expression, vergleicht man sie mit ihren "gesunden Gegenspielern" (24). Diese Tumorzellen überexprimieren den Transferrinrezeptor (46), um die Eisenaufnahme zu steigern (27). Durch die höhere Eisenaufnahme kann die Ribonukleotid-Reduktase besser arbeiten. Diese ist in die DNA-Synthese von sich schnell teilenden Zellen involviert (24). Die Überexpression wird durch das Mikromilieu im Tumor bestimmt, wo Eisen nur in begrenzter Menge vorkommt (114). Das Vorkommen des TFRC ist abhängig von der lokalen Hypoxie im Tumorgewebe (114).

Der TFRC kommt vermehrt in den meisten Karzinomen, in allen Sarkomen und in manchen Lymphomen vor (13, 39, 114). Dazu zählen Brustkrebs (39, 46, 99), Tumoren von Magen (99), Ovar (46), Dickdarm (46, 99), Lunge (99), Blase (39, 107) und Leber (107), Melanome (46, 107), Glioblastome (46), alle Fälle des Hodgkin Lymphoms (13, 39, 107) und Leukämien (46, 107).

In Pankreastumoren lassen sich erhöhte Spiegel von TFRC nachweisen (24, 39, 114). Der TFRC tritt häufig (90 %) beim primären Pankreaskarzinom, seinen Metastasen und neuroendokrinen Karzinomen auf (114). Dahingehen lässt sich der TFRC im normalen Pankreasgewebe sowie in den meisten gutartigen Tumoren nicht nachweisen (114). Der Gehalt an TFRC im entarteten Gewebe übersteigt den des gesunden Gewebes und ist damit ein Hinweis auf Malignität (13, 107, 114). Mit einer erhöhten TFRC-Expression sinkt die Prognose quoad vitam (13).

Fazit: Der Transferrinrezeptor (Abb. 4) ist ein spezifischer Marker für die Malignität im Pankreasgewebe und könnte daher ein großes Potential für Diagnostik und Therapie darstellen (114).

Abb. 4: Immunhistochemische Darstellung des TFRC (114)A zeigt normales Pankreasgewebe, TFRC ist schwach bzw. nicht exprimiert.B zeigt pankreatischen Krebs mit erhöhtem TFRC-Gehalt.

2.11 TFRC-basierende Therapien

2.11.1 Anti-TFRC-mAb

Die Reduktion der Eisenzufuhr ist ein wichtiger Bestandteil der Therapie mancher Krebsarten (70), da wachsende Zellen eine kontinuierliche Eisenzufuhr benötigen (13) und in malignen Zellen der TFRC im Überschuss vorliegt (46). Die Blockade des TFRC durch einen monoklonalen Antikörper stellt einen wichtigen Weg der Eisendeprivation dar (70, 141). Dadurch ist es möglich, den Eisengehalt in den entarteten Zellen ziemlich selektiv zu senken (13, 114). Jedoch sind die antitumoralen Effekte der Antikörpertherapie von gewissen Nebenwirkungen begleitet (70).

Der TFRC bewegt sich in wachsenden Zellen kontinuierlich zwischen Zelloberfläche und intrazellulären Bereichen (z.B. Endosomen), um für eine für das Zellwachstum ausreichende Eisenmenge zu sorgen (80). An dieser Stelle kann man monoklonale Antikörper einschleusen, die mit einer höheren Affinität als Transferrin am TFRC binden (135) und so die Eisenaufnahme über den Rezeptor in die Zelle blockieren (108). Diese bleibt in der S-Phase des Zellzyklus stehen, wird am Weiterwachsen gehindert und durch den relativen Eisenmangel sozusagen ausgehungert (135). Jedoch nicht alle anti-TFRC-mAb behindern das Zellwachstum (80):

Lesley et al. konnten schon 1985 zeigen, dass anti-TFRC-IgM das Wachstum des Tumors komplett unterdrückt, wohingegen IgG nur eine dezente Verlangsamung bewirkt und die Zellen weiterwachsen lässt (80).

Frühere Studien zeigten eine zytotoxische Wirkung von anti-TFRC-mAb gegenüber Eierstocks- und Brustkrebs, Leukämien, Melanomen und Glioblastomen (24, 46). Damit wirken monoklonale Antikörper als Immunotoxine (13, 46, 141).

Die Einschränkung des Zellwachstums ist dosisabhängig (135). Ein sichtbarer Effekt wird durch den mAb 42/6 bei einer T-Zelleukose ab 2,5 µg Antikörper pro ml erreicht (135). Als unerwünschte Wirkung tritt auf, dass auch physiologisch vorkommende Granulozyten- und Makrophagenvorläuferzellen im Wachstum eingeschränkt werden (24, 127).

Vermutlich interagieren Kombinationen von zwei oder mehr monoklonalen Antikörpern gegen TFRC synergistisch. Dadurch wird das Zellwachstum in vitro und das Tumorwachstum in vivo besser gehemmt (140).

Die antikörperbasierende Therapie wird gerne in der Kombinationstherapie mit Eisenchelatoren eingesetzt (68, 76), die allerdings von dem Risiko bakterieller Infektionen begleitet wird (24).

2.11.2 SiRNA/antisense

SiRNA ist die Abkürzung für ,small interfering ribonucleotid acid⁴. Es sind 21-28 Nukleotide lange, einzelsträngige RNAs, die aus doppelsträngigen, langen RNAs herausgeschnitten werden. Dies geschieht durch ein Enzym mit Namen RNAse III Dicer (105). In der Zelle spielt sich dieser Prozess im Zytoplasma ab, wo die siRNA in den sogenannten Proteinkomplex RISC (RNA-induced silencing complex) eingebaut wird. Dieser Komplex bindet an die DNA und schaltet ausgesuchte Bereiche der DNA ab. Durch die selektive Bindung an die Ziel-mRNA wird die Translation in das korrespondierende Protein verhindert (129).

Man kann molekularbiologisch siRNAs in Zielzellen einschleusen (Transfektion) und somit das Genom verändern. Die mRNA des Zielgens wird abgebaut und somit die Expression des dazugehörigen Rezeptors (in unserem Fall der TFRC) verhindert. Der TFRC wird auf Basis eines Gene-Knockdowns gehemmt (136).

Man beobachtet eine Abnahme des TFRC an der Zelloberfläche. Daraus resultiert eine verringerte Aufnahme von Transferrin und somit von Eisen in die Zelle (134).

Leider treten von technologischer Seite immer wieder Probleme bei der Internalisation in das Zellinnere auf. Besagte Oligonukleotide werden über rezeptormediierte Endozytose (129) aufgenommen. Bei einer Konzentration <1 µM erfolgt die Aufnahme über einen rezeptorähnlichen Mechanismus, in höheren Konzentrationen spricht man von einer "fluid-phase"-Endozytose.

Für eine hohe Effektivität sollte die siRNA zum Zellkern verbracht werden. Dazu gibt es mehrere Strategien:

- Streptolysin O
- Chemische Veränderungen an den Oligonukleotiden
- Anhängen von Cholesterol
- Nanoisierte kationische Hydrogels
- Kationische Lipide (Lipofektion).

Die intrazelluläre Anreicherung beginnt innerhalb der ersten beiden Stunden und erreicht ihr Maximum nach ca. 16 Stunden. Der intrazelluläre Gehalt ist abhängig von der extrazellulären Konzentration (130).

Man hat festgestellt, dass einige transfizierte Zellen die antisense-Oligonukleotide nicht in Zytoplasma und Zellkern beherbergen sondern unerwarteterweise nahe des Golgiapparates. Vermutlich beruht darauf der Mangel an spezifischem Effekt (136). Andere Versuche haben gezeigt, dass sich die Oligonukleotide auf Zellkern(e) und Mitochondrien aufteilen (65).

Um erfolgreich siRNA einsetzen zu können, muss das zu verwendende Oligonukleotid folgende sechs Kriterien erfüllen:

- leichte Synthese (auch in größeren Mengen)
- Haltbarkeit in vivo
- Fähigkeit, in die Zielzelle einzudringen
- Aufnahme durch die Zielzelle
- Möglichkeit zur Interaktion mit dem zellulären Ziel
- Keine unspezifische Interaktion mit anderen Makromolekülen (125).

Sasaki et al. erreichten das Absinken des TFRC-Gehaltes auf 50 % bei einer menschlichen Leberkrebszellinie durch die Antisenseinteraktion auf Ebene der Translation (116).

Diese Form der Therapie zeigt einen völlig neuen Ansatz auf: Es wird nicht mehr das potentiell schädliche Produkt bekämpft, sondern, nachdem man die für die Erkrankung relevanten Gene identifiziert hat, werden diese Ziel des ,zur-Ruhe-Bringens' (41).

2.11.3 Andere Modalitäten: Chelatoren

Deferoxamin zählt zu den Eisenchelatoren (70) wie auch Deferipron (73) und Tachpyridin (147). Sie alle binden in gewissem Maße Eisen im Blut und haben so u.a. ein Potential zur Krebsbekämpfung (70). Eisenchelatoren gelten als antiproliferative Agentien und zeigen eine selektive Antitumoraktivität (110).

Durch die Verringerung des Bluteisengehaltes werden Zellzyklen kontrolliert, die Angiogenese beeinflusst und die Metastasierung gehemmt (110).

Deferoxamin beeinflusst in starkem Maße den Nukleotidmetabolismus. Daraus ergibt sich die stark antiproliferative Aktivität des Deferoxamin (3).

2.11.4 Andere Modalitäten: Galliumnitrat

Gallium ist ein Halbmetall (8, 26, 70, 126) der Gruppe III a (22, 126), das antineoplastische Eigenschaften besitzt (22, 66, 81, 126). Es wird als hydratisiertes Nitrat (81) angewendet. Gallium hat ähnliche Eigenschaften (26, 66) wie Eisen (u.a. Trivalenz) (21) und besitzt eine hohe Bindungsaffinität zu Transferrin (21, 26). Hier konkurriert es kompetitiv mit Eisen um die Bindung an das Eisenmolekül (31, 66). Ca. 1/3 des Transferrinpools ist mit Eisen besetzt, der Rest kann Gallium aufnehmen. Durch die Aufnahme von Transferrin-Gallium anstelle Transferrin-Eisen via TFRC (21, 26, 66) kommt es zur Eisendeprivation (66). Gallium behindert damit

die Zellproliferation (26).

Galliumnitrat wirkt höchst effektiv gegen Blasenkrebs (21, 26, 31) und das Non-Hodgkin-Lymphom (20, 21, 22, 26, 126).

24

Ein weiterer Nutzen von Gallium ist seine selektive Anreicherung in bösartigen Tumorgeweben. Die Gabe eines Radioisotops ist daher von großem diagnostischen Wert (26).

Leider besteht eine Tumorzellresistenz einiger Zelllinien gegenüber Gallium, die auf ihrer molekularen Basis noch nicht geklärt ist (21).

- 3. Materialien und Methoden
- 3.1 Materialien

3.1.1 Chemikalien

- Iscove's modified DMEM (c.c.pro GmbH, Neustadt/Weinstr., Deutschland)
- Dulbecco's PBS (c.c.pro GmbH, Neustadt/Weinstr., Deutschland)
- Accutase (paa Laboratories GmbH, Pasching, Österreich)
- Trypan blue solution 0,4 % (sigma-Aldrich Chemie GmbH, Steinheim, Deutschland)
- Fetales Kälberserum (c.c.pro GmbH, Neustadt/Weinstr., Deutschland)
- Glutamin-Penicillin-Streptomycin (c.c.pro GmbH, Neustadt/Weinstr, Deutschland)
- DMSO (Mallinckrodt Baker B.V., Deventer, Holland)
- Stickstoff, flüssig (Messer, Krefeld, Deutschland)

3.1.2 Geräte

- Pipetus "standard" (Hirschmann Laborgeräte, Eberstadt, Deutschland)
- Neubauer-Zählkammer "improved" (Assistent Germany, Sondheim, Deutschland)
- CO₂-Brutschrank (Binder, Tuttlingen, Deutschland)
- Mikroskop:

Wilovert S (Hund, Wetzlar, Deutschland)

Leica KL 1500 electronic (Leica, Sohns, Deutschland)

Leitz Type 307-948.002 514687 (Leitz, Wetzlar, Deutschland)

• Kühlschrank:

A+ super (Liebherr, Nussbaumen, Schweiz)

VIP series -86° ultra low (Sanyo Fisher Sales GmbH, München, Deutschland)

• Stickstofftank:

Chronos (Messer, Kirchen, Deutschland)

Apollo (Messer, Kirchen, Deutschland)

- Eismaschine: Scotsman AF 100 (Scotsman Group Inc., Vernon Hills, USA)
- Zentrifugen:

Napco 2028R (National Appliance Company, Portland/Oregon, USA))

Biofuge Fresco (Heraeus, Hanau, Deutschland)

- Durchflusszytometer: FACS Calibur EPICS XL-MCL (Becton Dickinson, New York, USA)
- Sterilbank:

Hera-safe (Heraeus, Hanau, Deutschland)

Sterilguard (The Baker Company, Maine, USA)

- Schüttler Vortex-2 Genie (Scientific Industries, Bohemia, USA)
- Wallac Viktor² 1420 Multilabel Counter (Perkin Elmer life sciences, Waltham, USA)

Alle Zelllinien wurden von der AG Immuntherapie der Chirurgischen Klinik der Universität Heidelberg unter Leitung von Prof. Dr. Angela Märten zur Verfügung gestellt.

Fampac (Erstbeschreibung 32)

Fampac ist eine gering differenzierte Zelllinie. Sie stammt aus einem Adenokarzinom des Pankreas einer 43 Jahre alten Frau mit genetischer Prädisposition. Sowohl ihr Vater als auch ihre Schwester verstarben an einem Pankreaskarzinom. Fampac wächst rasch als Monolayer (Verdopplungszeit 24-48 h) in einem Kulturmedium mit fetalem Kälberserum als einzigem Wachstumsfaktor. Bereits nach vier Wochen wachsen solide Tumoren in Nacktmäusen (32). Fampac ist CK-negativ (32, 114). Die Zelllinie wurde in der Abteilung für Experimentelle Chirurgie durch Dr. Ryschich isoliert, passagiert und für die vorliegende Doktorarbeit zur Verfügung gestellt.

PatScl 52

Bei PatScl 52 handelt es sich um eine menschliche Tumorzelllinie, die aus einem soliden Pankreaskarzinom gewonnen wurde und u.a. 2005 in einer Studie von Ma et al. Verwendung fand (87).

AsPC-1 (Erstbeschreibung 18)

AsPC-1 ist eine gering differenzierte (62) Zelllinie eines primären duktalen Adenokarzinoms (48) des menschlichen Pankreas. AsPC-1 wächst in vitro als Monolayer in epitheloiden Kolonien (18) und bildet in vivo Grad II-Tumoren, in athymischen Nacktmäusen G II-III, fokal auch G I (122). Etabliert wurde die Zelllinie aus dem Aszites eines Patienten, der ein Pankreaskopfkarzinom hatte (18). AsPC-1 exprimiert CEA (18).

PaTu 8988t (Erstbeschreibung 33)

Bei PaTu 8988t handelt es sich um eine Adenokarzinomzelllinie (109), die aus einer Lebermetastase isoliert wurde (33,59).

PaTu 8902 (Erstbeschreibung 34)

Die Zelllinie PaTu 8902 stammt von einem primären Adenokarzinom der Pankreas. Sie hat einen hoch metastasierenden Charakter und ist duktalen Ursprungs (Grad II) (33). Die Zelllinie zeigt einen hohen Grad an Heterogenität in Bezug auf Morphologie und Chromosomenzahl. Die Tumorzellen wachsen in Nacktmäusen mit gleichem Aussehen und Differenzierungsgrad wie im Primärtumor und haben auch dort ein hohes Metastasierungspotential (34, 59). In späten Passagen nimmt die Differenzierung weiter ab (G III) (34).

Capan-1 (Erstbeschreibung 77)

Hierbei handelt es sich um eine gut differenzierte (77, 122) Zelllinie duktalen Ursprungs (48). Der Primärtumor wurde histologisch in Grad I eingestuft, ebenso die in Nacktmäusen gewachsenen Tumoren. Aus der Transplantation der neoplastischen Zellen resultiert eine äußerst invasiv agierende und Fernmetastasen bildende Tumormasse (77). Capan-1 wurde aus einer Lebermetastase eines 40 Jahre alten Kaukasiers isoliert (122). Capan-1 ist resistent gegenüber einer Behandlung mit 5-FU (77).

Capan-2 (Erstbeschreibung 77)

Capan-2 ist eine gut differenzierte (30, 122) Zelllinie duktalen Ursprungs (29, 48). Es handelt sich um den Primärtumor aus einem Pankreaskarzinom, der histologisch in G I eingestuft wurde. Er wirkt auch in SCID-Mäusen tumorigen und lässt sich auch dort als G I klassifizieren (122).

Panc 1 (Erstbeschreibung 82)

Panc 1 stammt aus einem malignen Pankreaskarzinom (59, 82). Die epitheloide Zelllinie (82) duktalen Ursprungs ist gering differenziert und erhält histologisch die Einstufung Grad III sowohl im Primärtumor (50) als auch im Tiermodell (122), wo ein progressiv-wachsendes anaplastisches Karzinom (82) entsteht. Die Verdopplungsrate liegt bei 52 h (82).

DaNG

DaNG ist eine gut differenzierte Zelllinie aus einem humanen Pankreaskarzinom (32).

KciMoh-1

Es handelt sich um eine humane Pankreaskarzinomzelllinie (87).

MIAPaCa-2 (Erstbeschreibung 145)

Die undifferenzierte (145) Zelllinie MIAPaCa-2 stammt aus einem duktalen Pankreaskarzinom (59) mit Differenzierungsgrad G III. Die Zelllinie bildet in Nacktmäusen ebensolche Tumoren (122). Die Verdopplungszeit liegt bei 40 h. Die Zellen zeigen einen hohen Grad an Aneuploidie und wachsen bevorzugt auf der Oberfläche anderer Zellen (145).

Pk 9 (Erstbeschreibung 72)

Die humane Pankreaszelllinie (87) Pk 9 wurde aus einem Primärtumor (83) isoliert. Das gut differenzierte duktale Pankreaskarzinom wächst in athymischen Nacktmäusen und ist CEA-positiv. In vitro beträgt die Verdopplungsrate 41,3 bis 82 h. Die Zellen zeigen ein hohes Maß an Aneuploidie. Pk9 ist resistent gegenüber 5-FU (72).

BxPC 3 (Erstbeschreibung 128)

Die Zelllinie BxPC 3 stammt aus einem Primärtumor des duktalen (48) Pankreasgewebes (59), der mäßig differenziert ist (G II) (122). In Nacktmäusen wächst ein Tumor mit Klassifizierungsgrad II-III heran (122).

PaCa 44 (Erstbeschreibung 93)

Aus einem primären humanen Adenokarzinom des Pankreas wurde die Zelllinie PaCa 44 isoliert. Sie wirkt auf SCID-Mäuse tumorigen (50).

PancTu 1 (Erstbeschreibung 93)

PancTu 1 stammt aus einem Pankreaskarzinom (95) (Primärtumor duktalen Ursprungs (122)). Die Zelllinie ist wenig differenziert (G II-III) und wirkt tumorigen in Nacktmäusen, wo – subkutan injiziert – Tumoren mit dem Differenzierungsgrad G III wachsen (122).

3.1.4 Zellkulturmaterial

- Zellkulturflaschen (Greiner bio-one GmbH, Frickenhausen, Deutschland)
- Pipettenspitzen (2-200 µl, 50-1000 µl) (Eppendorf Biopur, Hamburg, Deutschland)
- Pipettenspitzen (10/25 ml) (Falcon, Becton Dickinson, New Jersey, USA)

- Zellschaber steril (Greiner bio-one GmbH, Frickenhausen, Deutschland)
- Zellfilter steril, 40 µm Nylonnetz (Falcon, Becton Dickinson, New Jersey, USA)
- Pipetten (20, 100, 200, 1000 µl) (Gilson, Middelton, USA)
- Mehrfachpipette 8fach (50-200 µl) (Dynatech, Chantilly, USA)
- Kryoröhrchen "cryo. s" (Cellstar, Greiner bio-one, Frickenhausen, Deutschland)
- 96-Lochplatten mit flachem Boden (Falcon, Becton Dickinson, New Jersey, USA)
- Tubes (15/50 ml) (Falcon, Becton Dickinson Labware, New Jersey, USA)
- Tubes (0,5 ml) (Eppendorf Biopur, Hamburg, Deutschland)
- Nalgene Cryo 1°C Freezing Container (Nalgene, Waltham, USA)

3.1.5 Antikörper

- Anti-TFRC:
 - TFRC Clone Ber-T9 mouse/anti-human 10 mg/l (Dako Cytomation, Glostrup, Dänemark)
 - IgG rabbit anti-rat-IRP, polyclonal
 (Alpha Diagnostic, San Antonio, USA)
- IgG₁:

Negative Control, Mouse IgG₁ 100 mg/I

(Dako Cytomation, Glostrup, Dänemark)

• Anti-mouse FITC:

FITC labeled goat anti-mouse Ig 0,5 mg/ml

(BD Biosciences, Pharmingen, Deutschland)

• Anti Pancytokeratin:

Clone AE1/AE3

(Dako Cytomation, Glostrup, Dänemark)

3.1.6 In vivo-Versuche

- SCID-Mäuse, männlich, zu Versuchsbeginn 10-15 Wochen alt (Charles River, Deutschland)
- Spritzen: 1, 2 und 5 ml (Braun, Melsungen, Deutschland)
- Kanülen: 30G x 1/2", (BD Microlance, Drogheda, Irland)
- Skalpell: disposable scalpel Nr.11 (Feather, Tonawonda, USA)
- Schere
- Pinzette
- Mullkompressen 10x10 cm (Noba Verbandmittel Danz GmbH, Wetter, Deutschland)
- Alkohol 70 %ig, unvergällt (Chemikalienausgabe Uni Heidelberg)
- Dako Pen, schwarz (Dako Cytomation, Glostrup, Dänemark)
- Isoliergefäß für flüssigen Stickstoff

3.1.7 In vitro-Testkits

• Fluo Cell Counting Kit

"Calcein AM 125ul" (MoBiTec GmbH, Göttingen, Deutschland)

3.1.8 PC-Programme

- MS Office '97 (word, exel, powerpoint, paint)
- adobe reader
- Openoffice
- SPSS 14.0

3.1.9 Histologie

- LSAB-Kit (Dako Cytomation, Glostrup, Dänemark)
- Mayers acid hemalum (Hämatoxylin) (sigma-aldrich, Steinheim, Deutschland)
- Aceton (Chemikalienausgabe Uni Heidelberg)

3.1.10 Sonstiges

- Dialysekammer
- Becherglas 1000 ml (Schott, Mainz, Deutschland)
- Alufolie: Universal-Alufolie 15 (0,015 mm x 300 mm x 150 m)
- Parafilm: laboratory film 4 in x 125 ft roll (Pechiney plastic packaging, Menasha, USA)
- Einmalhandschuhe: Latex powder free AQL 1,5 Gr. S (Technomed, Duisburg, Deutschland)

3.2 In vitro-Methoden

3.2.1 Kultivierung der Zellen

Zur Kultivierung der Tumorzellen wurden die jeweiligen Kryoröhrchen aus dem Stickstofftank entnommen, aufgetaut und danach zweimal mit PBS gewaschen. Dazu wurde die Zellsuspension unter der Sterilbank in ein 15 ml-Tube verbracht, mit PBS aufgefüllt und abzentrifugiert.

Nach dem 2. Waschen wurde der Zellkuchen mit Medium resuspendiert und in eine Zellkulturflasche mit Medium verbracht. Die Inkubation erfolgte waagerecht in einem

 CO_2 -Brutschrank bei 37 °C und 5 % CO_2 und dauerte bis zum Erreichen eines dichten Monolayers an.

Regelmäßig wurde ein Wechsel des Mediums vorgenommen, wobei die Hälfte des Mediums durch frisches ersetzt wurde.

3.2.2 Ablösen der Zellen

Unter Zuhilfenahme des Enzyms Accutase wurde der Monolayer aus der Zellkulturflasche gelöst und mit PBS gewaschen.

3.2.3 Einzelzellsuspension

Um die Verklumpung mancher Zellen zu verhindern, wurde nach dem letzten Waschen die Zellsuspension gefiltert. Dazu ließ man die in PBS resuspendierten Zellen durch einen 40 µm-Zellfilter fließen und spülte mit reichlich PBS nach.

3.2.4 Zellzahlbestimmung

Dies erfolgte mit einer Leukozytenzählkammer nach Neubauer. Eine Trypanblau-Lösung wurde zur lebend-tot-Differenzierung verwendet.

3.2.5 Einfrieren und Auftauen von Zellen

Zum Einfrieren der Tumorzellen gab man 1 ml Zellsuspension (Zellen in Medium) – auf 10^5 - 10^6 Zellen/ml eingestellt – in ein Kryoröhrchen, pipettierte noch 15 µl steriles DMSO hinzu und stellte das Röhrchen im Gefriercontainer in den -80 °C-

Gefrierschrank. Dort kühlte es mit einer Kühlungsrate von 1 °C/min ab. Nach 24 h stellte man die so vorgekühlten Zellen in flüssigen Stickstoff.

Das Auftauen erfolgte möglichst rasch bei ca. 37 °C (z.B. in der Handinnenfläche).

3.2.6 Durchflusszytometrie (FACS-Analyse)

FACS ist die Abkürzung für "fluorescence activated cell sorting". Für die FACS-Markierung benötigte man drei Ansätze à 300 000 bis 1 Mio Zellen/100 µl, die sich in je einem 2 ml-Eppendorfgefäß befanden. Davon blieb eines unmarkiert, zum 2. wurden 2 µl anti-TFRC-mAb (100 µg/ml) und zum 3. 2 µl eines MausIgG gleichen Isotyps (1000 µg/ml MausIgG₁) zugegeben. Nach 15 min Inkubation bei Raumtemperatur wurden die 3 Ansätze zweimal gewaschen. Hierfür gab man 1 ml PBS zu den Zellen, resuspendierte und zentrifugierte sie.

Danach wurden 100 µl PBS in jedes Eppendorfgefäß pipettiert und mit den gewaschenen Tumorzellen resuspendiert.

Die Ansätze 2 und 3 erhielten noch je 2 μ l anti-mouse FITC (50 μ g/ml), Ansatz 1 blieb nach wie vor unmarkiert.

Nach erneuter Inkubation von 15 min bei Raumtemperatur wurde einmal mit PBS gewaschen und jeder Ansatz in 500 µl PBS resuspendiert.

Die Auswertung erfolgte mithilfe eines Durchflusszytometers.

Das Prinzip der Untersuchung beruht auf der Emission optischer Signale der Zelle, während diese einen Laserstrahl passiert. Die Zellen werden in Lösung befindlich durch eine Kapillare gesaugt und passieren mehrere Laserstrahlen, die sich im Sensormodul befinden. Dabei emittiert die Zelle Streulicht bzw. Fluoreszenz, wenn markierte Antikörper (wie in diesem Versuchsaufbau) an ihr gebunden sind. Die optischen Signale werden durch Zellgröße, Zellmembran und Granularität (intrazelluläre Bestandteile) beeinflusst. Als Parameter dienen dazu das Vorwärts-

36

und das Seitwärtsstreulicht. Dadurch können die Zellen in unterschiedliche Fraktionen sortiert und gezählt werden.

3.2.7 Einteilung der Tumoren

Man unterscheidet eine stark positive (>80 % der Zellen positiv), eine mäßig positive (20-80 %) und eine schwach positive (<20 %) Expression des TFRC (112).

3.2.8 Antikörper-Dialyse

Zum Entfernen der potentiell toxischen Substanzen aus dem Antikörperpuffer (wie z.B. Nettzid) wurde je 1 ml des betreffenden Antikörpers unter sterilen Kautelen mittels Spritze und Kanüle in die Dialysekammer verbracht und für 24-48 h in ein mit sterilem PBS gefülltes Becherglas gelegt. Das Becherglas wurde mit Parafilm abgedeckt und in den Kühlschrank gestellt.

Nach Ablauf der Zeit nahm man unter der Sterilbank die Kammer aus dem PBS und zog mit Spritze und aufgesetzter Kanüle den nun konservierungsmittelfreien Antikörper heraus.

Zur weiteren Verarbeitung wurde anti-TFRC-mAb 1:10 und IgG₁ 1:100 mit sterilem PBS verdünnt, in 100 µl-Portionen vereinzelt und bei -18° eingefroren.

3.2.9 In vitro-Therapie

Der Versuchsaufbau wurde verschiedentlich optimiert. Die Veränderungen werden nachfolgend in ihrer chronologischen Reihenfolge beschrieben:

3.2.9.1 Reaktion auf Inkubation mit Anti-TFRC-mAb, IgG₁ als Negativkontrolle

Von einer Zelllinie wurden 500 000 Zellen in 10 ml Medium gut gemischt und auf 7 Eppendorfgefäße à 1,5 ml verteilt. Dann wurde eine 96-Lochplatte mit flachem Boden befüllt:

Die erste Reihe erhielt je Vertiefung 100 µl pure Zellsuspension als Kontrolle. Für die zweite Reihe wurden in die 1,5 ml Zellsuspension 7,5 µl unverdünnter, konservanshaltiger anti-TFRC-mAb (5 µg/ml) gegeben. Danach befüllte man die Reihe mit 100 µl/well. Für Reihe drei gab man 30 µl mAb (20 µg/ml) hinzu, für Reihe vier 75 µl (50 µg/ml). Reihe fünf erhielt zusätzlich zur Zellsuspension 7,5 µl unverdünntes und konservanshaltiges IgG_1 (50 µg/ml), Reihe sechs 30 µl (200 µg/ml) und Reihe sieben 75 µl (500 µg/ml). Die 8. Reihe blieb leer.

Nach zwei Tagen Inkubieren im Brutschrank erfolgt die Auswertung per Calcein-Assay (Beschreibung unter 3.2.10).

3.2.9.2 Neue Konzentration des Anti-TFRC-mAb, sowie weitere Kontrollantikörper

Man befüllte 9 Spalten einer 96-Lochplatte mit 100 µl Zellsuspension (im Medium) je Vertiefung. Nach einem Tag Inkubation im Brutschrank erfolgte die Antikörperbehandlung in der Proliferationsphase der Zellen. Dazu wurde das Medium ausgetauscht. Die oberste Reihe erhielt links beginnend 160 µl, 170 µl, 130 µl und 100 µl Medium, wobei jeweils ein doppelter Ansatz verwendet wurde. Alle anderen Reihen wurden mit 100 µl Medium je Vertiefung gefüllt. Dann gab man in der obersten Reihe (wieder links beginnend, den doppelten Ansatz beachtend) 40 µl anti-TFRC-mAb (20 µg/ml), 30 µl anti-IRP (15 µg/ml), 70 µl Kombination aus 40 µl anti-TFRC-mAb und 30 µl anti-IRP (20 µg/ml anti-TFRC-mAb und 15 µg/ml anti-IRP), zur Kontrolle 2 µl lgG₁ (20 µg/ml) zu.

Daraus wurde je Spalte eine Verdünnungsreihe angelegt, wobei die oberste Vertiefung gut durchmischt wurde, 100 µl entnommen, in die darunter liegende überführt (Verdünnung 1:2). Danach wurde die Platte in den Brutschrank gestellt und nach zwei Tagen per Calcein-Assay ausgewertet.

Auch bei diesem Versuchsaufbau befand sich Konservans in den verwendeten Antikörpern.

3.2.9.3 Behandlung in der Proliferationsphase, gleiche Konzentration Anti-TFRCmAb und IgG₁ (konservanshaltig)

Je Versuch wurden 20 Vertiefungen der Platte benötigt. Man säte max. 3000 Zellen je well aus und behandelte nach einem Tag Bebrüten nach folgendem Schema: In die oberste Vertiefung wurden 180 µl Medium und 20 µl anti-TFRC-mAb (30 µg/ml) gegeben, und es wurde eine Verdünnungsreihe (Verdünnung 1:2) angelegt (doppelter Ansatz). Die 3. und 4. Spalte erhielten eine Behandlung mit IgG₁. Dieser Antikörper wurde zuvor auf die Konzentration des anti-TFRC-mAb eingestellt und dazu 1:10 mit Medium verdünnt.

An der 5. Spalte, die als Kontrolle diente, wurde ein Mediumwechsel vorgenommen. So waren die Zellen einem ähnlichen Trauma ausgesetzt wie diejenigen in den anderen Spalten.

39

Die Platte wurde in der Brutschrank gelegt und an den darauf folgenden Tagen unter dem Mikroskop kontrolliert. Sobald in der niedrigsten Antikörperkonzentration max. 80 % der Konfluenz erreicht waren, wurde ein Calcein-Assay durchgeführt, spätestens jedoch nach fünf Tagen. Die Konfluenz wurde geschätzt.

3.2.9.4 Zellzahloptimierung, Inkubation standardisiert auf fünf Tage

Zur Zellzahloptimierung werden je Zelllinie vier Versuche auf einer Platte gestartet. In Versuch a) kamen 2000 Zellen/well zum Einsatz, in Versuch b) 1000 Z./well, in Versuch c) 500 Z./well und in Versuch d) 250 Z./well. Nach einem Tag erfolgte der Mediumwechsel mit Antikörperbehandlung.

Nach fünf Tagen im Brutschrank wurde ein Calcein-Assay durchgeführt.

3.2.9.5 Verwendung von konservierungsstofffreien Antikörpern

Nach Dialyse der Antikörper wurde eine Platte mit PatScl 52 (Negativkontrolle ohne TFRC-Expression) beimpft mit je zwei Ansätzen à 250 Zellen/well und zwei à 500 Z./well. Nach einem Tag wurde die linke Seite nach Schema behandelt allerdings ohne Konservans. Die beiden Ansätze auf der rechten Plattenhälfte erhielten Antikörper mit Konservierungsmitteln.

Die Auswertung erfolgte wiederum an Tag 5.

3.2.9.6 Study Design mit Zelllinienauswahl

Der endgültige Versuchsaufbau umfasste die Zelllinien PatScl 52, DaNG und Fampac mit je 250 und 500 Zellen/well. Von den Zelllinien Capan-1 und PaTu 8988t wurden je 100 und 200 Z./well ausgesät.

Die Behandlung erfolgte nach einem Tag Inkubation wie unter 3.2.9.3 beschrieben, der Calcein-Assay an Tag 5.

3.2.10 Calcein-Assay

Das Vorkultivieren der Zellen erfolgte wie in den in vitro-Versuchen 3.2.9.1 bis 3.2.9.6 beschrieben. Für die Vorbereitung des Assays entfernte man mittels Multihandpipette das Medium aus den 96 Vertiefungen der Platte, wusch zweimal mit je 100 µl PBS und gab in jede Vertiefung am Ende nochmals 100 µl PBS. Dazu pipettierte man jeweils noch 10 µl Calcein-Lösung (5 mM).

Der grünfluoreszierende Zellmarker CalceinAM permeiert die Zellmembran durch Inkubation und hält sich im Zytoplasma lebender Zellen auf. Es wird genutzt für Studien der Zellmembranintegrität und Zellvitalität.

Nach einer halbstündigen Inkubationsdauer im Brutschrank bei 37 °C wurde die Platte im Multilabel Counter Wallac Victor² gemessen. Dabei wurde die Fluoreszenz erfasst, die proportional zur Anzahl der vitalen Tumorzellen ist.

3.3 In vivo-Methoden

3.3.1 Tumorzellinokulation in die SCID-Mäuse

Hierfür wurden die Zellen abgelöst, zweimal in PBS gewaschen, die Zellzahl bestimmt und auf 1 Mio/ml eingestellt. Je Maus wurden an zwei Stellen je $1,5 \times 10^5$ Tumorzellen in einem Volumen von 25 µl injiziert, und zwar jeweils links und rechts subkutan an der rippengestützten Thorakalwand.

3.3.2 Therapie

3.3.2.1 Vorversuch zur Bestimmung der maximal tolerierten Antikörperkonzentration

Untersucht wurden folgende Antikörperkonzentrationen:

0,6 μg (0,3 mg/kg KGW), 1,5 μg (0,75 mg/kg KGW)und 4 μg (2mg/kg KGW) je Maus. Dazu wurden pro Konzentration je zwei gesunde Tiere intraperitoneal behandelt. Dies erfolgte dreimal wöchentlich (MO, MI, FR) über eine Dauer von zwei Wochen. Der Allgemeinzustand wurde täglich kontrolliert.

3.3.2.2 Hauptversuch

Je Zelllinie (PaTu8988t, DaNG, Capan-1) wurden gleichgroße Tiergruppen gebildet. Den SCID-Mäusen (insgesamt 39 Tiere) spritzte man links und rechts jeweils 1,5 x 10⁵ Tumorzellen subkutan. Die Therapiegruppe wurde dreimal wöchentlich über zwei Wochen intraperitoneal mit einem anti-TFRC-mAb behandelt. Die Kontroll-

42

gruppe erhielt an den gleichen Tagen in der gleichen Konzentration IgG₁ intraperitoneal.

Es schloss sich eine sechswöchige Nachbeobachtungsphase an. Jeden 2. Tag wurde die Größe des jeweiligen Tumors mittels digitaler Schieblehre in drei Dimensionen gemessen. Am Ende wurden die Tiere euthanasiert und die Tumoren untersucht. Sobald Kachexie, Apathie, Inappetenz und/oder Ulzeration der Tumoren auftraten, wurden die Mäuse vorzeitig euthanasiert.

Die Antikörperkonzentration betrug 1,5 µg/Maus (ca. 0,75 mg/kg KGW).

3.3.3 Tumorentnahme aus den SCID-Mäusen

Nach Erreichen einer Größe von ca. 5-8 mm der Tumoren wurden die SCID-Mäuse per Zervikaldislokation euthanasiert und die Tumoren in toto extirpiert, in Kryoröhrchen verbracht und in flüssigem Stickstoff eingefroren.

3.4 Histologie

Die in flüssigem Stickstoff gelagerten Tumoren wurden mittels Histiotom in 5 µm dicke Stücke geschnitten, auf Objektträger aufgezogen, luftgetrocknet und in Aceton fixiert. Die Schnitte wurden bis zum weiteren Gebrauch bei -18 °C aufbewahrt.

Die Färbung erfolgte über indirekte Immunohistochemie, wozu das LSAB-Kit genutzt wurde. Als Gegenfärbung kam Hämatoxylin zum Einsatz.

Anti-Pancytokeratin- und Anti-TFRC-Antikörper wurden als monoklonale Antikörper genutzt.

3.5 Statistik

Die Daten der in vitro-Versuche wurden als Mittelwert +/- SD berechnet und dargestellt. Die Gruppen wurden mithilfe des Mann-Withney-Tests verglichen (Ausgangszellen zu behandelten Zellen in unterschiedlichen Konzentrationen). Ein p-Wert von <0,05 wurde als statistisch signifikant angesehen.

4. Ergebnisse

4.1 Expression des TFRC in den Pankreaskarzinomzelllinien

Wie bereits beschrieben wurde in vitro die Expression des TFRC über eine FACS-Analyse aller Zelllinien nachgewiesen. Dazu wurde die jeweilige Zelllinie mit den Antikörpern zusammen inkubiert und kurz vor der Auswertung mit einem anti-mouse FITC markiert. Dadurch war eine quantitative Erfassung des TFRC möglich (Tab. 1). In vivo wurde die Expression durch Histologie nachgewiesen. Die dafür angefertigten histologischen Schnitte wurden unter dem Mikroskop visuell begutachtet und qualitativ in die jeweilige Gruppe eingeteilt (Tab. 2).

Zelllinien	In vitro (n/Gesamtzahl)	In vivo (n/Gesamtzahl)
Stark positiv	7/15	9/14
Mäßig positiv	7/15	2/14
Schwach positiv	1/15	3/14

Tab. 1: Expression von TFRC in vitro und in vivo

Alle Zelllinien wurden erfasst, nur in vivo fehlt BxPC3, da kein Wachstum bei SCID-Mäusen erfolgte.

Man erkennt, dass es in vivo mehr stark positive Zelllinien gibt als in vitro, in vitro hingegen mehr mäßig positive, und dass es in vivo mehr schwach positive Zelllinien gibt als in vitro.

Zelllinie	Expression in vitro	Expression in vitro	Expression in vivo
	quantitativ	qualitativ	qualitativ
Fampac	99 % (TFRC)	Stark positiv	Stark positiv
PaTu 8988t	87 %	Stark positiv	Stark positiv
PatScl 52	0 %	Schwach positiv	Schwach positiv
PaTu 8902	90 %	Stark positiv	Stark positiv
AsPC-1	65 %	Mäßig positiv	Stark positiv
Capan-1	70 %	Mäßig positiv	Schwach positiv
Capan-2	32 %	Mäßig positiv	Schwach positiv
Panc 1	92 %	Stark positiv	Mäßig positiv
DaNG	40 %	Mäßig positiv	Stark positiv
KciMoh-1	38 %	Mäßig positiv	Stark positiv
MIAPaCa-2	63 %	Mäßig positiv	Stark positiv
Pk 9	87 %	Stark positiv	Stark positiv
BxPC 3	94 %	Stark positiv	kein Wachstum
PaCa 44	62 %	Mäßig positiv	Stark positiv
PancTu 1	83 %	Stark positiv	Mäßig positiv

Tab. 2: Expression des TFRC in den einzelnen Zelllinien in vitro und in vivo

In vitro wurde die TFRC-Expression quantitativ und qualitativ bestimmt, in vivo nur qualitativ.

Panc 1 und PancTu 1 zeigten in vivo eine mäßig positive, in vitro jedoch eine stark positive TFRC-Expression. PaCa 44, MIAPaCa-2, KciMoh-1, DaNG und AsPC-1 waren in vivo stark positiv, in vitro hingegen nur mäßig positiv. Capan-1 und -2 waren in vivo schwach positiv, in vitro mäßig positiv.

PaTu 8902, Pk 9, Fampac und PaTu 8988t zeigten in vivo und in vitro eine stark positive TFRC-Expression. Der TFRC wurde bei PatScl 52 in vivo und in vitro nicht exprimiert.

Die Zelllinie BxPC 3 wuchs in SCID-Mäusen nicht.

4.2 In vitro-Expression des TFRC (FACS-Ergebnisse)

Die erste Kurve zeigt die Reaktion der Zellen, die mit IgG₁ markiert wurden. Die zweite (schattierte) Kurve stellt die mit anti-TFRC-mAb-inkubierten Zellen dar.

Fampac

Anteil der TFRC-exprimierenden Zellen: 99%

Abb. 5: FACS-Kurve der TFRC-exprimierenden Zellen der Zelllinie Fampac

PaTu 8988t

Anteil der TFRC-exprimierenden Zellen: 87%

Abb. 6: FACS-Kurve der TFRC-exprimierenden Zellen der Zelllinie PaTu 8988t

PatScl 52

Anteil der TFRC-exprimierenden Zellen: 0%

PaTu 8902

Anteil der TFRC-exprimierenden Zellen: 83%

Abb. 8: FACS-Kurve der TFRC-exprimierenden Zellen der Zelllinie PaTu 8902

AsPC-1

Anteil der TFRC-exprimierenden Zellen: 65%

Capan-1

Anteil der TFRC-exprimierenden Zellen: 70%

Capan-2

Anteil der TFRC-exprimierenden Zellen: 34%

Panc 1

Anteil der TFRC-exprimierenden Zellen: 92%

Abb. 12: FACS-Kurve der TFRC-exprimierenden Zellen der Zelllinie Panc 1

DaNG

Anteil der TFRC-exprimierenden Zellen: 40%

KciMoh-1

Anteil der TFRC-exprimierenden Zellen: 38%

Abb. 14: FACS-Kurve der TFRC-exprimierenden Zellen der Zelllinie KciMoh-1

MIAPaCa-2

Anteil der TFRC-exprimierenden Zellen: 63%

Pk 9

Anteil der TFRC-exprimierenden Zellen: 87%

Abb. 16: FACS-Kurve der TFRC-exprimierenden Zellen der Zelllinie Pk 9

BxPC 3

Anteil der TFRC-exprimierenden Zellen: 94%

PaCa 44

Anteil der TFRC-exprimierenden Zellen: 62%

Abb. 18: FACS-Kurve der TFRC-exprimierenden Zellen der Zelllinie PaCa 44

PancTu 1

Anteil der TFRC-exprimierenden Zellen: 83%

4.3 Heterogenität des Tumorwachstums

bis zu einer Größe von 5-8mm

Zelllinie	Wachstumsphase in Tagen	
Fampac	17-29	
DaNG	18-25	
KciMoh-1	20	
PaTu 8902	20	
PatScl 52	22	
Capan-1	23	
PaCa 44	24	
PancTu 1	28-47	
AsPC-1	29	
MIAPaCa-2	36	
Capan-2	55-62	
PaTu 8988t	75	
Pk 9	82	
Panc 1	84	
BxPC 3	Kein Wachstum	

Tab. 3: Wachstumsdauer der einzelnen Zelllinien

Die Wachstumsphase wurde gerechnet vom Tag der Inokulation bis zum Erreichen einer Größe von 5-8 mm. Gemessen wurden die Tumore dreidimensional mit Haut mittels einer Schieblehre. Dabei wurde als ausreichend angesehen, wenn ein Tumor der jeweiligen Maus in allen drei Dimensionen minimal 5 mm bis maximal 8 mm erreichte. Die in vivo-Wachstumsphasen der einzelnen Zelllinien differierten stark. Man unterschied schnell, mittel und langsam wachsende Zellen. Zu den schnell wachsenden Zelllinien (<1 Monat) zählten Fampac, DaNG, KciMoh-1, PaTu 8902, PatScl 52, Capan-1, PaCa 44 und AsPC-1. <2 Monate benötigten PancTu 1 und MIAPaCa-2. Am längsten (2-3 Monate) brauchten Capan-2, PaTu 8988t, Pk 9 und Panc 1. BxPC 3 zeigte in SCID-Mäusen kein Wachstum.

4.4 Histologie

Wichtig ist die Histologie vor allem für die qualitative Auswertung der TFRC-Expression der einzelnen Zelllinien (Abb. 20). Des weiteren kann man unterschiedliche Ausprägungen von Stromaentwicklung erkennen.

Die Positivkontrolle mit Pancytokeratin (Clone AE1/AE3) befindet sich immer links neben der Darstellung mit Anti-TFRC-mAb.

Abb. 20: Legende zur Histologie Bei diesem Pankreaskarzinom erkennt man gut den hohen Gehalt an TFRC. Dieser färbt sich rot.

Fampac

Die Wachstumsphase (Zeitdauer Tumorzellinokulation bis Erreichen eines erbsgroßen Tumors) in vivo betrug 17-29 Tage und die TFRC-Expression war stark positiv. Es wurde nur wenig disseminiert verteiltes Stroma nachgewiesen (Abb. 21b). Fampac ist CK-negativ (Abb. 21a), laut Eisold et al. epithelialen Ursprungs (32).

Abb. 21a: CK-Färbung Fampac

Abb. 21b: TFRC-Färbung Fampac

PaTu 8988t

Um einen 5-8 mm großen Tumor mit geringgradigem Stromaanteil (Abb. 22a+b) zu erzeugen brauchte PaTu 8988t 75 Tage. Die TFRC-Expression war stark positiv.

Abb.22a: CK-Färbung PaTu 8988t

Abb. 22b: TFRC-Färbung PaTu 8988t

PaTu 8902

PaTu 8902 benötigte 20 Tage zum Wachsen und zeigte eine stark positive TFRC-Expression. Die Tumoren bildeten mittelgradig Stroma aus (Abb. 23a+b).

Abb. 23a: CK-Färbung PaTu 8902

Abb. 23b: TFRC-Färbung PaTu 8902

AsPC-1

Die Zelllinie AsPC-1 benötigte für die Bildung eines mittelgradig Stroma enthaltenden Tumors 29 Tage (Abb. 24 a+b). Die TFRC-Expression war stark positiv.

Abb. 24a: CK-Färbung AsPC-1

Abb. 24b: TFRC-Färbung AsPC-1
Capan-1

Die Zelllinie Capan-1 wuchs innerhalb von 23 Tagen zu einem mittelgradig Stroma enthaltendem Tumor (Abb. 25a+b) mit schwacher TFRC-Expression heran (Abb. 25b). Der Stromaanteil war disseminiert verteilt.

Abb. 25a: CK-Färbung Capan-1

Capan-2

Die Zelllinie Capan-2 zeigte in vivo eine schwach positive TFRC-Expression (Abb. 26b). Um einen Tumor (mittel- bis hochgradiger, disseminierte Stromaanteil (Abb. 26a+b)) von Erbsengröße zu erhalten dauerte es 55-67 Tage.

Abb. 26a: CK-Färbung Capan-2

Abb. 26b: TFRC-Färbung Capan-2

Panc 1

Panc 1 wuchs innerhalb von 84 Tagen zu einem Tumor heran, der mäßig positiv TFRC exprimierte (Abb. 27b) und mittel- bis hochgradig Stroma enthielt (Abb. 27a+b).

Abb. 27a: CK-Färbung Panc 1 Abb. 27b: TFRC-Färbung Panc 1

DaNG

Die Zelllinie DaNG wuchs innerhalb von 18-25 Tagen. Der Tumor mit mittel- bis hochgradigem Stromaanteil (Abb. 28a+b) zeigte eine stark positive TFRC-Expression (Abb. 28b).

Abb. 28a: CK-Färbung DaNG

Abb. 28b: TFRC-Färbung DaNG

KciMoh-1

Die Zelllinie KciMoh-1 wuchs in 20 Tagen zu einem Tumor mit mittelgradigem Stromaanteil heran (Abb. 29a+b). Die TFRC-Expression war stark positiv (Abb. 29b).

Abb. 29a: CK-Färbung KciMoh-1 Abb. 29b: TFRC-Färbung KciMoh-1

MIAPaCa-2

MIAPaCa-2 zeigte in vivo eine stark positive TFRC-Expression (Abb. 30b) und benötigte für das Wachstum mit geringem Stromaanteil (Abb. 30a+b) 36 Tage.

Abb. 30a: CK-Färbung MIAPaCa-2

Abb. 30b: TFRC-Färbung MIAPaCa-2

Pk 9

Die Zelllinie Pk 9 wuchs in 82 Tagen zu einem Tumor mit viel Stroma heran (Abb. 31a+b). Die TFRC-Expression war stark positiv (Abb. 31b).

Abb. 31a: CK-Färbung Pk 9

Abb. 31b: TFRC-Färbung Pk 9

PaCa 44

PaCa 44 bildete innerhalb von 24 Tagen einen Tumor mit viel Stroma aus (Abb. 32a+b). Die TFRC-Expression war stark positiv (Abb. 32b).

Abb. 32a: CK-Färbung PaCa44

Abb. 32b: TFRC-Färbung PaCa44

PancTu 1

Die Zelllinie PancTu 1 wuchs in 28-47 Tagen. Der Tumor enthielt hochgradig Stroma (Abb. 33a+b). Die TFRC-Expression war mäßig positiv (Abb. 33b).

Abb. 33a: CK-Färbung PancTu 1

Abb. 33b: TFRC-Färbung PancTu 1

PatScl 52

Diese Zelllinie war als Einzige TFRC-negativ (Abb. 34b). Sie benötigte 22 Tage für ihr Wachstum mit sehr wenig, disseminiert verteiltem Stroma (Abb. 34a+b). PatScl 52 war auch CK-negativ (Abb. 34a). Es liegt die Vermutung nahe, dass es sich hierbei um eine nichtepitheliale bzw. entdifferenzierte Zelllinie handelte, die sich in dem Karzinom befunden hat.

Abb. 34a: CK-Färbung PatScl 52

Abb. 34b: TFRC-Färbung PatScl 52

BxPC 3

BxPC 3 zeigte auch bei mehrfachem Versuch kein Wachstum in SCID-Mäusen.

4.5 Zusammenfassung des Wachstums in vivo/ in vitro

Die Daten des Tumorwachstums sind in der folgenden Tabelle (Tab. 4) zusammengefasst. Es bestand keine Korrelation zwischen der Geschwindigkeit des Wachstums in vivo und der in vitro:

Zelllinie	In vitro-Wachstum (Tage bis 80 % Konfluenz)	In vivo-Wachstum (Tage bis 5-8 mm Durchmesser)
Fampac	1-2	17-29
PaTu 8988t	1	75
PatScl52	10	22
PaTu 8902	21	20
AsPC-1	7	29
Capan-1	14-21	23
Capan-2	28	55-67
Panc1	10	84
DaNG	14	18-25
KciMoh-1	14	20
MIAPaCa-2	7	36
Pk9	10	82
BxPC 3	5	Kein Wachstum
PaCa44	5	24
PancTu1	7	28-47

Tab. 4: Zusammenfassung Wachstum in vivo/ in vitro aller Zelllinien

In vitro wurde die Wachstumsdauer an dem Tag gemessen, an dem eine große Zellkulturflasche (anfänglich 1 Mio Zellen ausgesät) zu 75-80 % Konfluenz zeigte (Schätzung). In vivo wurde die Zeit zwischen Zellinokulation und dem Erreichen von erbsgroßem Volumen genommen.

4.6 In vitro-Therapie

Bevor mit der in vitro-Therapie begonnen werden konnte, wurde ein Versuchsprotokoll erarbeitet. Dafür wurde das Protokoll mehrfach optimiert:

4.6.1 Inkubation mit Anti-TFRC-mAb, IgG1 als Negativkontrolle

Ca. 2-3h nach dem Aussähen der Zellen in anti-TFRC-mAb-haltiges Milieu konnte man unter dem Mikroskop eine erhöhte Bildung von intrazellulärer Granula sowie apoptotische Zellen erkennen. Schon 24 h später war kein Unterschied mehr im Zellwachstum zu den Gruppen mit dem KontrollAK zu erkennen. Auch im Calcein-Assay war keine Zellzahlreduktion feststellbar. Alle 15 Zelllinien zeigten eine identische Reaktion.

Die einzelnen Zelllinien reagierten folgendermaßen:

Darstellungsform: Box-and-Whisker-Plot

PaTu 8902

Abb. 35: 1. Versuchsaufbau mit der Tumorzelllinie PaTu 8902

Abb. 36: 1. Versuchsaufbau mit der Tumorzelllinie Panc 1

Capan-2

Abb.: 37: 1. Versuchsaufbau mit der Tumorzelllinie Capan-2

Abb. 38: 1. Versuchsaufbau mit der Tumorzelllinie PaTu 8988t

MIAPaCa-2

Abb. 39: 1. Versuchsaufbau mit der Tumorzelllinie MIAPaCa-2

Abb. 40: 1. Versuchsaufbau mit der Tumorzelllinie BxPC 3

Abb. 41: 1. Versuchsaufbau mit der Tumorzelllinie PaCa 44

PancTu 1

Abb. 42: 1. Versuchsaufbau mit der Tumorzelllinie PancTu 1

PatScl 52

Abb. 43: 1. Versuchsaufbau mit der Tumorzelllinie PatScl 52

Abb. 44: 1. Versuchsaufbau mit der Tumorzelllinie KciMoh-1

Abb.: 45: 1. Versuchsaufbau mit der Tumorzelllinie AsPC-1

Abb. 46: 1. Versuchsaufbau mit der Tumorzelllinie DaNG

Capan-1

Abb. 47: 1. Versuchsaufbau mit der Tumorzelllinie Capan-1

4.6.2 Neue Konzentration des Anti-TFRC-mAb, sowie weitere KontrollAK

Bei Vorversuch Nr. 2 hat man sich entschlossen, die Zellen der Zelllinien Capan-1, Fampac, Panc 1 und PaTu 8988t erst in ihrer Proliferationsphase zu behandeln, also 24h nach Aussähen in die 96-Lochplatte. Bei der Behandlung wurde in allen Vertiefungen ein Wechsel des Mediums vorgenommen, um alle Zellen den gleichen Stimuli auszusetzen. Als Antikörper dienten anti-TFRC-mAb, anti-IRP, anti-TFRCmAb in Kombination mit anti-IRP und als Kontrolle ein Mäuse-IgG₁. Es wurde zusätzlich eine Verdünnungsreihe angelegt. Die Wirkung wurde im Calcein-Assay sichtbar.

Darstellungsform: Einzelwerte

Capan-1

Abb. 48.1: 2. Versuchsaufbau mit der Zelllinie Capan-1

Abb. 48.2: 2. Versuchsaufbau mit der Zelllinie Capan-1

Fampac

Abb. 49.1: 2. Versuchsaufbau mit der Zelllinie Fampac

Abb. 49.2: 2. Versuchsaufbau mit der Zelllinie Fampac

Abb. 50.1: 2. Versuchsaufbau mit der Zelllinie Panc 1

Abb. 50.2: 2. Versuchsaufbau mit der Zelllinie Panc 1

PaTu 8988t

Abb. 51.1: 2. Vorversuch mit der Zelllinie PaTu 8988t

Abb. 51.2: 2. Vorversuch mit der Zelllinie PaTu 8988t

4.6.3 Behandlung in der Proliferationsphase, gleiche Konzentration anti-TFRC-mAb und IgG₁ (konservanshaltig)

Im 3. Vorversuch wurden je Vertiefung maximal 3000 Tumorzellen ausgesät. An Tag 2 wurde ein Mediumwechsel vorgenommen. Als Antikörper dienten anti-TFRC-mAb und Mäuse-IgG₁ (gleiche Konzentration), eine Spalte blieb als Negativkontrolle mAbfrei. Ab Tag 3 wurde jeden Tag visuell kontrolliert, wie viel Bodenfläche je Vertiefung durch den Zellmonolayer bedeckt war. Sobald in der niedrigsten Antikörperkonzentration max. 80 % Konfluenz erreicht war (visuelle Kontrolle), wurde ein Calcein-Assay angeschlossen. Dieser sollte standardisiert nach fünf Tagen erfolgen. Durch die unterschiedliche Wachstumsgeschwindigkeit war dies jedoch in diesem Versuchsstadium nicht möglich. Es wurden folgende Zelllinien verwendet: BxPC 3, PaCa 44, Capan-1, DaNG, MIAPaCa-2, KciMoh-1, PaTu 8902 und Fampac.

Darstellungsform: Box-and-Whisker-Plot

BxPC 3

Abb. 52: 3. Vorversuch mit der Zelllinie BxPC 3

Abb. 53: 3. Vorversuch mit der Zelllinie PaCa 44

Abb. 54: 3. Vorversuch mit der Zelllinie Capan-1

DaNG

Abb. 55: 3. Vorversuch mit der Zelllinie DaNG

MIAPaCa-2

Abb. 56: 3. Vorversuch mit der Zelllinie MIAPaCa-2

KciMOH-1

Abb. 57: 3. Vorversuch mit der Zelllinie KciMoh-1

PaTu 8902

Abb. 58: 3. Vorversuch mit der Zelllinie PaTu 8902

Fampac

Abb. 59: 3. Vorversuch mit der Zelllinie Fampac

4.6.4 Zellzahloptimierung, Inkubation standardisiert auf fünf Tage

Daher wurden Versuche zur Zellzahloptimierung angeschlossen. Hierbei wurde ausgetestet, ob 2000, 1000, 500, 250 oder noch weniger Zellen das Optimum darstellen. Dazu wurden die Zelllinien Pk 9, PaTu 8988t, DaNG, Fampac, BxPC 3, Capan-1 und PatScl 52 getestet.

Pk 9

Bei der Zelllinie Pk 9 waren die Versuche mit 2000 und 1000 Zellen je Vertiefung nach fünf Tagen Inkubation überwuchert, die Zellen großenteils abgestorben und konnten im Calcein-Assay nicht mehr erfasst werden. Für Pk 9 kam daher nur ein Versuchsaufbau mit 250 bzw. 500 anfänglich ausgesäten Zellen in Betracht.

PaTu 8988t

Bei der Zelllinie PaTu 8988t waren nach fünf Tagen Inkubation die Versuche mit 2000, 1000 und 500 Zellen abgestorben, so dass man sich entschieden hat, für den endgültigen Versuchsaufbau die Zellzahl noch mehr zu dezimieren. Es wurden ab diesem Zeitpunkt 100 bzw. 200 Zellen je Vertiefung ausgesät.

DaNG

Bei DaNG waren die Versuche mit 250 bzw. 500 anfänglich ausgesäten Zellen interpretierbar.

Fampac

Die Versuche der Zelllinie Fampac mit 2000 und 1000 Zellen waren nach fünf Tagen überwuchert und nicht auswertbar, so dass man sich bei dieser Zelllinie für eine Anfangszellzahl von 250 bzw. 500 Zellen je Vertiefung entschieden hat.

BxPC 3

Die Zellen der Versuche 2000 bzw. 1000 ursprünglich in die Vertiefungen eingebrachten Zellen waren nach fünf Tagen abgestorben, so dass hier die Versuche mit 250 bzw. 500 Zellen durchgeführt wurden.

Capan-1

Bei der Zelllinie Capan-1 war nur der Versuch mit 250 anfänglich ausgesäten Zellen auswertbar, so dass man sich hier – wie auch bei der Zelllinie PaTu 8988t – entschieden hat, die Zellzahl noch weiter zu verkleinern und im endgültigen Versuchsaufbau 100 bzw. 200 Zellen verwendet hat.

PatScl 52

Die Kontrollzelllinie PatScl 52 hat sich in den Versuchen zur Zellzahloptimierung wie Fampac verhalten.

4.6.5 Antikörperdialyse, Versuche mit und ohne Konservans

Bei Vorversuch Nr. 4 fiel auf, dass die TFRC-negative Zelllinie PatScl 52, die als Negativkontrolle dienen sollte, auch eine Reaktion auf die Behandlung mit dem anti-TFRC-mAb zeigte. Diese war nämlich eine stärkere als auf das Mäuse-IgG₁. Als Erklärung muss man hinzufügen, dass das Mäuse-IgG₁ vor Anwendung an den Tumorzellen 1:10 mit PBS verdünnt worden war, um die Antikörperkonzentration auf die der anti-TFRC-mAb-Lösung einzustellen. Diese Beobachtung legte den Verdacht nahe, dass die teilweise recht eindeutigen Ergebnisse auf das Vorhandensein des Lagerungspuffers zurückzuführen waren. So wurden mithilfe einer speziellen Dialysekammer die Antikörper von ihrem Konservans befreit. Es wurde die Reaktion der Zelllinien PatScl 52, Fampac, Capan-1, PaTu 8988t und DaNG sowohl mit als auch ohne Konservans untersucht.

Darstellungsform: Einzelwerte

PatScl 52

Abb. 60: 5. Vorversuch der Zelllinie PatScl 52, Vergleich mit und ohne Konservans

Abb. 61: 5. Vorversuch der Zelllinie PatScl 52, Vergleich mit und ohne Konservans

Fampac

Abb. 62: 5. Vorversuch der Zelllinie Fampac, Vergleich mit und ohne Konservans

Abb. 63: 5. Vorversuch der Zelllinie Fampac, Vergleich mit und ohne Konservans

Abb. 64: 5. Vorversuch der Zelllinie Capan-1, Vergleich mit und ohne Konservans

Abb. 65: 5. Vorversuch der Zelllinie Capan-1, Vergleich mit und ohne Konservans

PaTu 8988t

Abb. 66: 5. Vorversuch der Zelllinie PaTu 8988t, Vergleich mit und ohne Konservans

Abb. 67: 5. Vorversuch der Zelllinie DaNG, Vergleich mit und ohne Konservans

Abb. 68: 5. Vorversuch der Zelllinie DaNG, Vergleich mit und ohne Konservans

Danach wurde der endgültige Versuchsaufbau festgelegt:

Es wurden nur vorab dialysierte Antikörper verwendet. So entfielen unerwünschte Einflüsse durch die Konservierungsmittel. Folgende Zelllinien kamen zum Einsatz: PatScl 52 diente durch seine 0 %-Expression als Negativkontrolle des Versuchs. Je Vertiefung wurden 250 und in einem weiteren Versuch 500 Zellen ausgesät. DaNG war eine Zelllinie mit mäßig positiver TFRC-Expression, deren optimale Zellzahl bei 250 und 500 Zellen/well lag. Capan-1 zählte auch zu den mäßig positiven Zelllinien. Hiervon wurden 100 und 200 Zellen ausgesät. Fampac war eine stark positive Zelllinie, die optimale Zellzahl lag bei 250 und 500 Tumorzellen je Vertiefung. PaTu 8988t zeigte auch eine stark positive TFRC-Expression. Es wurden 100 und 200 Zellen/well ausgesät.

Aufgrund der Ergebnisse aus den Optimierungsexperimenten wurde folgendes Behandlungsschema festgelegt:

Beginn der Behandlung in der Proliferationsphase (24h nach dem Aussähen)		
Einheitliche Konzentration anti-TFRC-mAb und IgG1 von 100 mg/ml (konservierungsstofffrei)		
Verdünnungsreihe 30; 15; 7,5 und 3,8 µg/ml		
Einmalige Behandlung (Dauer: 4 Tage)		
Zellzahloptimierung		
Calcein-Assay nach 5 Tagen		
Zelllinienauswahl: 2x stark, 2x mäßig, 1x schwach positive TFRC-Expression		

Tab. 5: Optimierter, endgültiger Versuchsaufbau

4. Zelllinien mit stark positiver TFRC-Expression

PaTu 8988t

Die Kurve veranschaulicht die Verdünnungsreihe des Versuchs. Die mit * gekennzeichneten Kurvenpunkte zeigen einen signifikanten Unterschied zum Ausgangswert. Man ging davon aus, dass bei einer Antikörperkonzentration von 0 µg/ml der proportionale Anteil lebender Tumorzellen bei 100 % liegt. Die restlichen Punkte auf der Kurve zeigen den Tumorzellanteil bei 3,8; 7,5; 15 und 30 µg/ml.

Durch die Behandlung mit der niedrigsten Konzentration an AK (3,8 µg/ml) kam es bei der 100 Zellen/well-Platte zu einem signifikanten Anstieg der Zellzahl, durch eine höhere Konzentration wurde das Zellwachstum gehemmt. Man beobachtete, dass eine Erhöhung der Konzentration ab 7,5 µg/ml allerdings keinen größeren Effekt auf das Zellwachstum hatte.

Bei der Zellzahl von 200 anfänglich ausgesäten Zellen je Vertiefung zeigte sich ein ähnliches Bild, jedoch war die Standardabweichung deutlich geringer, und die Abweichung vom Ausgangswert war statistisch nicht als signifikant zu belegen.

Fampac

Abb. 70: In vitro-Behandlung 250 Z./well

Die Kurve veranschaulicht die Verdünnungsreihe des Versuchs. Die mit * gekennzeichneten Kurvenpunkte zeigen einen signifikanten Unterschied zum Ausgangswert. Man ging davon aus, dass bei einer Antikörperkonzentration von 0 µg/ml der proportionale Anteil lebender Tumorzellen bei 100 % liegt. Die restlichen Punkte auf der Kurve zeigen den Tumorzellanteil bei 3,8; 7,5; 15 und 30 µg/ml.

Bei der Zelllinie Fampac kam es durch den Einsatz einer minimalen Antikörperkonzentration zu einer Erhöhung der Zellzahl. Nur die höchste Konzentration zeigte eine signifikante Inhibierung der Zellen. Des weiteren fiel auf, dass die Standardabweichung bei den mittleren Antikörperkonzentrationen sehr hoch war.

4.6.7 Zelllinien mit mäßig positiver TFRC-Expression

Abb. 71a: In vitro-Behandlung 250 Z./well Abb. 71b: In vitro-Behandlung 500 Z./well

Die Kurve veranschaulicht die Verdünnungsreihe des Versuchs. Die mit * gekennzeichneten Kurvenpunkte zeigen einen signifikanten Unterschied zum Ausgangswert. Man ging davon aus, dass bei einer Antikörperkonzentration von 0 µg/ml der proportionale Anteil lebender Tumorzellen bei 100 % liegt. Die restlichen Punkte auf der Kurve zeigen den Tumorzellanteil bei 3,8; 7,5; 15 und 30 µg/ml. Bei der Zelllinie DaNG fiel die Zellzahl schon bei minimaler mAb-Konzentration ab

und erst bei 15 µg/ml kam es zu einem Plateau. Im Gegensatz zu PaTu 8988t hatte die niedrigste Konzentration keinen proliferationsfördernden Einfluss. Bei 7,5 µg/ml war die Standardabweichung am höchsten. Die Unterschiede der Zellzahlen zwischen der Ausgangszahl und den Werten der beiden höchsten Konzentrationen waren signifikant.

Bei 500 Zellen je Vertiefung war die Standardabweichung bei einer Antikörperkonzentration von 3,8 µg/ml am höchsten. Signifikante Unterschiede erkannte man bei 7,5 und 30 µg/ml zum Ausgangswert.

92

Capan-1

Abb. 72a: In vitro-Behandlung 100 Z./well Abb. 72b: 200 Z./well

Die Kurve veranschaulicht die Verdünnungsreihe des Versuchs. Die mit * gekennzeichneten Kurvenpunkte zeigen einen signifikanten Unterschied zum Ausgangswert. Man ging davon aus, dass bei einer Antikörperkonzentration von 0 µg/ml der proportionale Anteil lebender Tumorzellen bei 100 % liegt. Die restlichen Punkte auf der Kurve zeigen den Tumorzellanteil bei 3,8; 7,5; 15 und 30 µg/ml. Interessanterweise konnte bei der mäßig positiven Zelllinie Capan-1 die größte Reduktion beobachtet werden. Auch hier kam es bei 3,8 µg/ml zu einem Anstieg der Zellzahl, danach fiel die Proliferationsrate, und die Zellzahl bildete ab 7,5 µg/ml ein Plateau. Bei 0 und 15 µg/ml mAb-Konzentration war die Standardabweichung relativ gering. Das Plateau zeigte eine signifikante Abweichung vom Ausgangswert. Bei 200 anfänglich ausgesäten Zellen bewirkte die Gabe des Antikörpers ein Abfallen der Zellzahl ab 3,8 µg/ml. Ab 15 µg/ml kam es zu einem Stillstand des Effektes. Bei allen mAb-Behandlungen ist es zu statistischen Ausreißern gekommen, die die Standardabweichung erhöhten. Auch hier war das Plateau im Bezug zum Ausgangswert statistisch signifikant.

93

4.6.8 Zelllinie mit schwach positiver TFRC-Expression

PatScl 52

Abb. 73a: In vitro-Behandlung 250 Z./well Abb. 73b: 500 Z./well

Die Kurve veranschaulicht die Verdünnungsreihe des Versuchs. Man ging davon aus, dass bei einer Antikörperkonzentration von 0 µg/ml der proportionale Anteil lebendiger Tumorzellen bei 100 % liegt. Die restlichen Punkte auf der Kurve zeigen den Tumorzellanteil bei 3,8; 7,5; 15 und 30 µg/ml.

PatScl 52 diente durch ihre negative TFRC-Expression als Negativkontrolle im Versuch. Im Calcein-Assay konnte keinerlei Veränderung der Wachstumsrate beobachtet werden. Weder bei hohen noch bei niedrigen Konzentrationen des Antikörpers. Der p-Wert lag im asymptotischen Mann-Whitney-Test >0,05. Es bestand kein signifikanter Unterschied zwischen den einzelnen Werten.

Bei 500 Zellen/well zeigte sich – außer beim 3,8 µg-Wert – ein ähnliches Bild.
4.7 In vivo-Therapie

Für den Tierversuch wurden drei Zelllinien ausgewählt, die sowohl in vitro als auch in vivo ein stabiles Wachstum zeigten: die Zelllinien PaTu 8988t und DaNG als Vertreter der stark positiven TFRC-Expression (>80 %) und Capan-1 als schwach positive Zelllinie (TFRC-Expression <20 %).

PaTu 8988t

Abb. 74: In vivo-Behandlungen bei der Zelllinie PaTu 8988t incl. Nachbeobachtung

Bei der vorliegenden Graphik wurden die Werte der Kontrollgruppe und die der Behandlungsgruppe mithilfe von Medianen angegeben, da die Werte nicht normal verteilt waren.

Woche	Tiere (n)	Tumor- volumen (mm³)	Zuwachs (%)	Tiere (n)	Tumor- volumen (mm³)	Zuwachs (%)
0	6	92	-	7	59	-
1	6	154	166	7	105	330
2	6	373	478	7	169	530
3	6	380	557	7	255	346
4	6	508	743	5	316	465
5	6	425	206	5	353	525
6	4	576	544	3	871	1162
7	1	1800	1758	0	-	-
8	1	2059	2010	0	-	-

anti-TFRC-mAb-Gruppe

Kontrollgruppe

Tab. 6: Tumorvolumina, prozentualer Zuwachs der Tumorvolumina der anti-TFRCmAb-Gruppe im Vergleich mit der IgG₁-behandelten Kontrollgruppe bei der Zelllinie PaTu 8988t

Ein großes Problem stellten die Abgänge der Versuchsgruppen dar. Es kam zu Inappetenz, Apathie, Kachexie und schlussendlich zu Ulzerationen an den Tumoren, was eine Euthanasie erforderte.

DaNG

Anti-TFRC-mAb-Gruppe

Abb. 75: In vivo-Behandlungen bei der Zelllinie DaNG incl. Nachbeobachtung

			5 - 11 -			
Woche	Tiere (n)	Tumor- volumen (mm³)	Zuwachs (%)	Tiere (n)	Tumor- volumen (mm³)	Zuwachs (%)
0	9	234	-	7	179	-
1	8	552	312	5	768	740
2	2	1061	553	2	1711	538
3	1	746	661	1	2265	1264
4	1	1760	1567	0	-	-
5	1	1742	1544	0	-	-
6	1	10415	9228	0	-	-

Kontrollaruppe

Tab. 7: Tumorvolumina, prozentualer Zuwachs der Tumorvolumina der anti-TFRCmAb-Gruppe im Vergleich mit der IgG₁-behandelten Kontrollgruppe bei der Zelllinie DaNG

Bei der schnell wachsenden Zelllinie DaNG waren die systemischen Effekte auf die SCID-Mäuse sehr groß. Auch hier kam es zu Inappetenz, Apathie, Kachexie und Ulzeration der Tumoren.

Capan-1

Anti-TFRC-mAb-Gruppe

Kontrollgruppe

Woche	Tiere (n)	Tumor- volumen (mm³)	Zuwachs (%)	Tiere (n)	Tumor- volumen (mm³)	Zuwachs (%)
0	5	197	-	5	319	-
1	5	797	979	5	749	273
2	0	-	-	1	5985	1306

Tab. 8: Tumorvolumina, prozentualer Zuwachs der Tumorvolumina der anti-TFRC-

mAb-Gruppe im Vergleich mit der IgG₁-behandelten Kontrollgruppe bei der Zelllinie Capan-1

5. Diskussion

5.1 Expression des TFRC beim PankreasCA

Als erstes konnte eine Forschungsgruppe um Gatter und Kollegen 1983 nachweisen, wie TFRC in normalem und malignem Gewebe verteilt ist. Dafür wurden vier monoklonale Antikörper (Bk 19.9, B 3/25, T 56/14 und T 58/1) verwendet. Es wurde nachgewiesen, dass sich der TFRC nur in wenigen gesunden Geweben findet (basale Epidermis, Hepatozyten, Kupfferzellen, Hoden und Hypophyse). Dahingehen fand man ein deutliches Vorkommen in Karzinomen, Sarkomen und bei der Hodgkinschen Krankheit. Gatter verwies auf eine Studie von Sutherland et al. (1981), wobei Pankreaskarzinomzelllinien den mAb Ok T9 gebunden hatten und TFRC nachgewiesen werden konnte. Gatter et al. haben mithilfe der Antikörper B 3/25, T 56/14 und T 58/1 nachgewiesen, dass auch in den Langerhansschen Inseln TFRC exprimiert wird. (24, 39)

Man unterscheidet eine stark positive (>80 % der Zellen), eine mäßig positive (20-80 %) und eine schwach positive (<20 %) Expression des Transferrinrezeptors (114).

In vitro wurde diese über eine FACS-Analyse der jeweiligen Zelllinie nachgewiesen. Dabei waren 7/15 Zelllinien stark positiv, 7/15 mäßig positiv und 1/15 schwach positiv.

2004 konnten Ryschich et al. anhand von 9 pankreatischen Krebszelllinien (AsPC-1, Capan-1, MIAPaCa-2, KciMoh-1, Panc 1, Fampac, PatScl 52, PaTu 8902 und PaTu 8988t) nachweisen, dass alle Tumorzelllinien eine TFRC-Expression von <19 % zeigten. Dies steht im Gegensatz zu den hier gemachten Ergebnissen (Tab. 9):

Zelllinie	TFRC-Expression (in %)	TFRC-Expression (in %)	
	Ryschich et al. (114)	Vorliegende Dissertation	
AsPC-1	3	65	
Capan-1	2	70	
MIAPaCa-2	13	63	
KciMoh-1	19	38	
Panc 1	5	92	
FAMPAC	7	99	
PatScl 52	3	0	
PaTu 8902	8	90	
PaTu 8988t	11	87	

Tab. 9: Vergleich der Ergebnisse der TFRC-Expression 2004 (114) und heute

In vitro wurden 2004 bei Ryschich et al. andere Prozentzahlen (Tab. 6) erreicht als bei der vorliegenden Arbeit. Die Analyse erfolgte mit dem gleichen Medium, den gleichen Zusätzen, und es kamen seitens der Zelllinien vergleichbare Passagen zum Einsatz. Ryschich et al. (2004) verwendeten allerdings einen anderen anti-TFRCmAb-Klon. In der vorliegenden Arbeit wurde ein anscheinend sensiblerer mAb verwendet, da die restlichen Versuchsbedingungen identisch waren.

Von Ryschich et al. (2004) wurde dabei noch zwischen der Expression des Primärtumors und der dazugehörigen Metastase unterschieden (114, Tab. 10):

TFRC-Expression	Primärtumor	Metastase	
Stark positiv	32/39	9/12	
Mäßig positiv	4/39	1/12	
Schwach positiv	3/39	2/12	

Tab. 10: TFRC-Expression Primärtumor vs. Metastasen

Diese Aufteilung entfiel in der vorliegenden Doktorarbeit, da nur mit etablierten Zelllinien gearbeitet wurde und nicht mit direkt dem Kranken entnommenen Geweben. Ryschich et al. (2004) untersuchten 39 Tumoren. Normale Stroma- und Endothelzellen wurden durch anti-TFRC-mAb nicht gebunden. Primärtumoren und Metastasen zeigten eine ähnliche Verteilung der Expression (Tab. 10).

In vivo (histologische Auswertung) waren im vorliegenden Versuchsaufbau 9/14 Zelllinien stark positiv, 2/14 mäßig positiv und 3/14 schwach positiv. Dazu wurden 14 Zelllinien transplantiert, wobei je Maus die Zellen an zwei verschiedene Stellen implantiert wurden, so dass zwei Tumoren wuchsen und eine Gesamtzahl von 28 Tumoren entnommen werden konnte.

Ryschich et al. (2004) haben in ihrer Studie nachgewiesen, dass der TFRC vor allem von malignen epithelialen Zellen exprimiert wurde. Dies konnte hier anhand der PankreasCA-Zelllinien bestätigt werden. Des weiteren fiel noch Folgendes auf:

Man erkannte, dass es bezüglich der TFRC-Expression in vivo mehr stark positive Zelllinien gab als in vitro, in vitro hingegen mehr mäßig positive, und dass es in vivo mehr schwach positive Zelllinien gab als in vitro.

Es besteht eine deutliche Diskrepanz zwischen der Ausprägung in vivo und in vitro.

5.2 Heterogenität des Tumorwachstums

Das Pankreaskarzinom verfügt über eine außerordentliche Heterogenität und Vielfalt. Schon die Zelllinien zeigten deutliche Unterschiede in ihrer Morphologie (Tab. 11).

Schwach polarisiert	AsPC-1, Capan-2, DaNG, MIAPaCa-2, Pk 9, BxPC 3, PancTu 1
Mittelgradig polarisiert	Fampac, PaTu 8988t, PatScl 52, Capan-1, Panc 1, KciMoh-1, PaCa 44
Stark polarisiert	PaTu 8902
Dendritoförmige Kolonien	Fampac, PatScl 52, MIAPaCa-2, Pk 9
Inselförmige Kolonien	PaTu 8902, AsPC-1, Capan-2, DaNG, KciMoh-1, Pk 9, PaCa 44, PancTu 1
Partieller Adhäsionsverlust	PaTu 8902, BxPC 3

Tab. 11: Morphologie der verwendeten PankreasCA-Zelllinien

Ein weiterer großer Faktor, der die Heterogenität ausmacht, ist die unterschiedliche Expression verschiedener Tumormarker:

In 50 bis 70 % aller Fälle wurde eine Genmutation gefunden, welche das Tumorsuppressorgen p53 inaktiviert (93, 111, 123, 142). Diese Punktmutation findet sich demnach nicht bei allen Pankreaskarzinomen (6).

Die c-ras-Gene werden bei Mutation in den Kodonen 12, 13 oder 61 zu aktiven Onkogene geändert. Eine hohe Prävalenz von 90% findet sich im pankreatischen Adenokarzinom (9). Außerdem weisen 75-100% aller Fälle Punktmutationen des kras bei Kodon 12 auf (93, 123, 142).

Ein erhöhter CEA-Wert kommt nur in 51 % aller PankreasCA-Fälle vor (49).

Eine höhere Sensitivität als CEA hat der Tumormarker CA19-9, der allerdings auch nicht in allen Fällen vorliegt (49).

AsPC-1 besitzt Mutationen der Gene k-ras und p53, ebenso MIAPaCa-2, PaCa 44 und PancTu 1 (93).

82 % aller pankreatischen Primärtumoren sind TFRC-positiv, hingegen nur 75 % der Metastasen (114).

Es ist daher nicht verwunderlich, dass auch das Wachstum der einzelnen Zelllinien in vitro sowie in vivo sehr unterschiedlich ausfällt:

Man erkennt, dass das Wachstum in vitro nicht unbedingt mit dem in vivo korreliert. Des weiteren gab es keinen Zusammenhang zwischen Wachstumsgeschwindigkeit und TFRC-Expression.

In vitro herrschen andere Wachstumsbedingungen und -faktoren als in vivo.

Der Unterschied zwischen den stark positiven und den mäßig positiven Zelllinien ist nur marginal und damit statistisch nicht erfassbar.

Auch die Stromaausprägung erfolgte sehr unterschiedlich:

- 1. ggr. Stroma, gleichmäßig verteilt
- 2. ggr. Stroma, unregelmäßige Anhäufungen
- 3. mgr. Stroma, unregelmäßige Anhäufungen
- 4. mgr. Stroma, gleichmäßig verteilt
- 5. hgr. Stroma, unregelmäßige Anhäufungen
- 6. hgr. Stroma, gleichmäßig verteilt.

Gruppe 1	Fampac, PaTu 8988t, PatScl 52
Gruppe 2	PaTu 8902, AsPC-1, MIAPaCa-2
Gruppe 3	Capan-1, Capan-2, Panc 1, KciMoh-1
Gruppe 4	DaNG
Gruppe 5	Pk 9, PancTu 1
Gruppe 6	PaCa 44

Tab. 12: Einteilung der Zelllinien in Gruppen nach ihrem Stromagehalt

Man kann keinen klaren Zusammenhang zwischen Stromagehalt und TFRC-Expression erkennen. Die beiden Gruppen mit geringgradigem Stromagehalt bestehen aus fünf Zelllinien mit stark positiver TFRC-Expression und der einzigen negativen Zelllinie. Es handelt sich hierbei um PatScl 52. PatScl 52 ist allerdings entdifferenziert, es gibt keinen Hinweis darauf, dass diese Zelllinie epithelial ist. Sie wurde damals aus einem Pankreaskarzinom isoliert und wurde daher in die Versuchsreihe mit aufgenommen. Die beiden Gruppen mit mittelgradigem Stromagehalt beinhalten zwei schwach positive, eine mäßig positive und zwei stark positive Zelllinien. Die Gruppen mit hochgradigem Stromagehalt bestehen aus zwei stark positiven und einer mäßig positiven Zelllinie.

5.3 Histologie

Gesundes Pankreasgewebe zeigt geringe Mengen TFRC, wohingegen maligne Pankreastumoren in 82 % aller Fälle TFRC-positiv sind. Tumoren des endokrinen Pankreas wie Insulinome, Gastrinome und Glucagonome sind in der Regel TFRC-negativ (114).

In einer älteren Studie waren alle vorliegenden Pankreastumoren (Lebermetastasen) TFRC-positiv. Der Nachweis erfolgte hier durch eine Immunoperoxidase-Färbung (39).

Im vorliegenden Versuch wurden 28 Tumoren, die durch insgesamt 14 Zelllinien hervorgerufen wurden, getestet, ob und wie der TFRC exprimiert wird. Dabei stellte sich heraus, dass 64 % der Tumoren stark positiv, 14 % mäßig positiv und 21 % schwach positiv auf den anti-TFRC-mAb reagieren. Die Zelllinie PatScl 52 zeigte keine Reaktion auf den verwendeten Antikörper. Sie war die einzige negative Zelllinie und wurde daher in allen Versuchen als Negativkontrolle verwendet.

Durch die Färbung mit Pancytokeratin wurde der Nachweis geführt, dass die 14 Zelllinien tatsächlich epithelialen Ursprungs sind. Dabei fiel auf, dass PatScl 52 und Fampac kein Cytokeratin exprimieren. Die TFRC- und cytokeratinnegative Zelllinie PatScl 52 wurde im Institut für Experimentelle Chirurgie der Universität Heidelberg aus einem Adenokarzinom isoliert. Es liegt der Verdacht nahe, dass es sich um Zellen aus dem das Karzinom umgebenden Gewebe handelt. Fampac exprimiert stark positiv TFRC, ist aber cytokeratinnegativ. Da auch Vimentin und andere mesenchymale Marker negativ waren (32), ist die Zelllinie entweder nicht epithelial oder völlig entdifferenziert. Das Wachstumsmuster in vitro deutet nicht auf eine epitheliale Zelllinie hin, man weiß also nicht, um was für eine Zelllinie es sich eigentlich handelt. Es (Ryschich, persönliche Mitteilung) wurde damals bei der Isolierung aus dem Pankreaskarzinom die Definition "Zelllinie aus undifferenziertem Pankreastumor" übernommen.

5.4 Korrelation des Wachstums in vivo und in vitro

Es besteht keine Korrelation zwischen der Geschwindigkeit des Wachstums in vivo und in vitro.

Die Wachstumsfaktoren der einzelnen Zelllinien haben abhängig von der jeweiligen Umgebung (in vitro-Medium oder Unterhautgewebe SCID-Maus) unterschiedliche Bedeutung. Die desmoplastische Reaktion ist eine Bindegewebszunahme im Tumor, wobei viel Stroma nicht bedeutet, dass der Tumor langsam wächst. 1995 wurde durch Brooks et al. erforscht, dass der monoklonale anti-TFRC-Ab 42/6 die Eisenaufnahme über Transferrin blockiert. Eine Antitumoraktivität konnte in vitro nachgewiesen werden (13).

In der vorliegenden Arbeit konnte bewiesen werden, dass der angewandte Antikörper nur eine partielle Hemmung des Zellwachstums bei den stark positiven und den mäßig positiven Zelllinien bewirkte. Der Unterschied betrug je nach Konzentration bis zu 50 % vom Kontrollwert. Die TFRC-negative Zelllinie PatScl 52 hat nicht reagiert. Der Unterschied zwischen der Behandlung mit dem anti-TFRC-mAb und dem IgG₁ war oftmals nicht signifikant. Durch die einmalige Behandlung mit dem Antikörper über die Dauer von vier Tagen konnte keine Hemmung und damit auch keine Remission der Zellen erreicht werden.

1988 testeten Griffin et al. ein rekombinantes RicinA-Ketten-anti-TFRC-Immunotoxin u.a. bei der Pankreaskarzinom-Zelllinie Hs766T und kamen zu folgendem Ergebnis: Bei alleiniger Gabe des anti-TFRC-mAb 454A12 sprach die zytotoxische Aktivität des Antikörpers nach 6 h an. In Kombination mit einer Ricin-A-Kette kam die Reaktion deutlich schneller und zwar nach 2,5 h. Als toxische Komponente wurde hierbei die Ricin-A-Kette propagiert. Im Gegensatz zu den kolorektalen Krebszelllinien, die auch untersucht wurden, konnte keine Effektpotenzierung durch Monensin beobachtet werden (46).

In der vorliegenden Arbeit wurden keine Kombinationstherapien durchgeführt. Die Toxizität des verwendeten Antikörpers war nicht ausreichend, um einen großen Effekt zu erzielen. Da die Versuche erst nach fünf Tagen ausgewertet wurden, kann

keine Aussage darüber getroffen werden, in welchem Umfang eine Zytotoxizität stattgefunden haben könnte.

Schon 1997 wurde in einer Studie von Kemp et al. unerwarteter weise entdeckt, dass ein monoklonaler Antikörper gegen den Nager-Transferrinrezeptor die T-Lymphozyten-Aktivierung hemmt, nicht so die B-Zellen. Daher ging man davon aus, dass ein anti-TFRC-mAb eine Einschränkung des Tumorwachstums bewirken könnte. Im weiteren Verlauf der Studie konnte dargestellt werden, dass ein solcher Antikörper die Eisenaufnahme in hämatopoietische Tumoren um bis zu 80% reduzieren konnte. Die Reduktion bewirkte jedoch keinen Kollaps der DNA-Synthese, so dass die behandelten Zellen nicht abgestorben sind. Bessere Resultate wurden bei einer Kombinationstherapie mit Deferoxamin bzw. Galliumnitrat erzielt (70).

Auch bei der vorliegenden Doktorarbeit starben die behandelten Zellen nicht ab. Ob und wieviel die Eisenaufnahme in die Pankreaskarzinomzellen reduziert werden konnte, sollte in einer Nachfolgestudie geklärt werden.

Der anti-TFRC-mAb zeigte in der vorliegenden Arbeit einen partiellen antitumoralen Effekt, daher könnte er in einer Kombinationstherapie (nicht jedoch als Monotherapeutikum) verwendet werden. Eine mögliche Erklärung für die beobachteten Phänomene ist, dass die Zellen dazu in der Lage sind, TFRC nachzuexprimieren, so dass eine einmalige Behandlung keinen nennenswerten Erfolg erzielen kann. Eventuell würde eine konstante Konzentration des anti-TFRC-mAb andere Ergebnisse erzielen.

1997 konnten Kemp et al. in ihren Versuchen zur Eisendeprivation im Zusammenhang mit Krebserkrankungen anhand eines murinen Tumormodells zeigen, dass die Kombination des anti-TFRC-mAb (IgG ATRA) und Deferoxamin in vivo das Wachstum eines lymphoiden Tumors hemmt. Bei alleinigem Einsatz von DFO bzw. IgG ATRA konnte kein inhibitorischer Effekt produziert werden. Kemp et al. haben erforscht, dass eine Kombinationsbehandlung von DFO mit IgG ATRA einen dramatischen Effekt auf das initiale Tumorwachstum hat, jedoch keine Heilung erzielt werden konnte und auch kein Effekt nachgewiesen werden konnte, sobald sich die Tumoren 6-7 Tage etablieren durften. Kemp verwies auf eine vorangegangene Studie von White et al. (1990), bei der gezeigt werden konnte, dass manche antihumanen IgG ATRAs synergistische Antitumoreffekte produzieren. Kemp et al. (1997) fanden eine solche synergistische Inhibition bei 38C13 in vitro. Auch in vivo kam es zur beinahe kompletten Tumorregression in Kombination mit DFO.

Die kombinierte Eisentherapie bewirkte bei Kemp et al. (1997) jedoch als unerwünschte Wirkung bakterielle Infektionen nach ca. 10 Tagen. Des weiteren konnten auch Stresssymptome (nachlassende Aktivität, gesträubtes Fell) beobachtet werden, denen nach 24-48 h der Tod folgte. (70)

Auch bei der vorliegenden Studie wurden Unverträglichkeiten der Mäuse schon bei der Monotherapie beobachtet. Wir haben beobachtet, dass dosisabhängig Inappetenz, Apathie, Anorexie, blasse Schleimhäute und der Tod eintraten. Die vorliegende Toxizität des Antikörpers gegen die Mäuse konnte letztlich nicht geklärt werden. Vermutet wurde eine Kumulation des Antikörpers, die zu toxischen Reaktionen führte. Zu häufige Gaben von zu hoher mAb-Konzentration wirkten toxisch, da der Antikörper nicht selektiv am Pankreaskarzinom angriff. Durch die

Blockade sämtlicher Transferrinrezeptoren im tierischen Körper wurde die Hämatopoese nachhaltig beeinflusst, in Folge dessen es zur Knochenmarksdepression kam. Überdies gilt es zu Bedenken, dass Mäuse, verglichen mit dem Menschen, deutlich höhere Antikörperkonzentrationen vertragen.

Die Therapie der mit Tumorzellen inokulierten Tiere erwies sich als schwierig, da die Tumoren exponentiell gewachsen sind und dadurch hohe Verluste bei den Tieren zu beklagen waren.

Angestrebt wurde eine zweiwöchige Behandlungs- und eine sechswöchige Nachbeobachtungszeit. Nur bei der am langsamsten wachsenden Zelllinie PaTu 8988t haben so viele Tiere überlebt, dass überhaupt eine Statistik angefertigt werden konnte. Anhand derer wurde auch sichtbar, dass das Tumorwachstum beim Einsatz sechsmaliger Injektion von 1,5 µg anti-TFRC-mAb im Gegensatz zur Kontrollgruppe gehemmt wurde. Eine statistische Signifikanz konnte nicht bewiesen werden, jedoch konnten bei den Tieren klinische Unterschiede aufgezeichnet werden. Die Behandlungsgruppe war deutlich agiler, hatte glatt anliegendes, teilweise sogar glänzendes Fell, wohingegen die Kontrollgruppe mit gesträubtem Fell apathisch im Käfig vegetierte, oftmals separierten sich einzelne Tiere. Die Bewegungsaktivität hatte stark nachgelassen.

Der Versuch war bei den Zelllinien Capan-1 und DaNG leider nicht auswertbar, weil die Tumoren zu schnell gewachsen sind und die Tier verstarben bzw. euthanasiert werden mussten.

1995 haben Brooks et al. in einer ersten präklinischen Studie den Einsatz des anti-TFRC-mAb 42/6 an 27 Patienten untersucht. Dabei blockierten mAbs gegen den TFRC die Eisenaufnahme aus dem Transferrin und zeigten antitumorale Aktivität. Verschiedene Krebsarten mit Metastasen waren Grund für die Behandlung. Die

Erkrankten erhielten den mAb in einem Liter Kochsalzlösung über eine 24stündige Infusion. Je drei Patienten wurden zu einer Kohorte zusammengefasst und bekamen jeweils eine Dosierung von 2,5; 5,0; 12,0; 25,0; 50,0; 100,0; 150,0 oder 200,0 mg/m². Zwei Patienten erhielten 300 mg/m². Der AK 42/6 wurde im allgemeinen gut vertragen. Nur ein Patient musste wegen einer allergischen Reaktion auf den MausAK behandelt werden. Bei mehreren Patienten wurde eine signifikante Abnahme der Tumormassen beobachtet. Diese war bei stark metastasierenden Krebserkrankungen v.a. in den Lymphknoten zu erkennen (13).

Da es sich dabei um eine Monotherapie handelte, die in vivo Erfolg zeigte, gilt es zu Bedenken, ob man die vorliegende Arbeit in einer weiteren Studie ausbauen und dabei eventuell verschiedene Antikörper vergleichen sollte.

Im Jahr 2006 haben Quing et al. einen in vivo-Versuchsaufbau etabliert, bei dem mit humanem Leberkrebs transplantierte Nacktmäuse mit einem anti-TFRC-mAb (Mensch-Maus-Chimäre D2C) intraperitoneal bzw. intratumoral behandelt wurden. Durch eine radioaktive Markierung des Antikörpers konnte kenntlich gemacht werden, dass am 7. Tag nach der Injektion der Antikörper eine tumorspezifische Lokalisation aufwies. Quing et al. (2006) konnten beweisen, dass neben einer tumorassoziierten Verteilung der Antikörper D2C einen stark antitumoralen Effekt aufwies. Daher wurde in der Veröffentlichung eine potentielle therapeutische Signifikanz postuliert (108).

Auch diese Studie weist darauf hin, dass man in Folgeuntersuchungen verschiedene Antikörper und verschiedene Behandlungsschemata vergleichen sollte.

6. Zusammenfassung

- Der Transferrinrezeptor bildet im Pankreaskarzinom einen Ansatzpunkt f
 ür die Therapie, weil der Rezeptor im Pankreaskarzinom in großen Mengen exprimiert wird und selektiv blockiert werden kann. Des weiteren benötigt die Tumorzelle viel Eisen zur Proliferation und durch die Blockade des TFRC sinken die intrazellulären Eisenpegel. Dadurch erhofft man sich ein Sistieren des Tumorwachstums bis hin zur Regression.
- Ziel der Untersuchung war zu zeigen, ob man mittels einer Antikörpertherapie gegen den Transferrinrezeptor Pankreaskarzinome, die durch bestimmte Zelllinien verursacht werden, zur Regression bringen kann.
- 3. Um den Einfluss der Antikörper auf das Zellwachstum zu zeigen, wurden sowohl Behandlungen an einzelnen Zelllinien als auch an soliden Tumoren durchgeführt. Hierfür wurde die Rezeptorexpression in vitro und in vivo sowie das Verhalten in vivo und in vitro auf eine Antikörpertherapie mit anti-TFRC-mAb untersucht. Zuvor wurde eine histologische Färbung an in vivo gezüchteten Tumoren durchgeführt.
- 4. Für die Rezeptorausprägung in vitro wurden FACS-Analysen durchgeführt. Für die Behandlung der Zelllinien wurde ein in vitro-Versuchsaufbau etabliert, bei dem einzelne Zelllinien mit Antikörpern in unterschiedlichen Konzentrationen behandelt wurden. Eine quantitative Auswertung erfolgte mit Hilfe eines Calcein-Assays.
- 5. Für den Tierversuch wurden SCID-Mäuse genutzt, welchen 1,5 x 10⁵ Tumorzellen subkutan inokuliert wurden. Bei Erreichen von ca. Erbsengröße wurden die Tumoren entnommen und histopathologisch untersucht. Mittels anti-TFRC-Färbung konnte die Expression dargestellt werden. Für den Therapieversuch wurden weiteren Tieren Tumorzellen injiziert. Nach Erreichen einer definierten

Größe wurde mit der Therapie begonnen. Gruppe 1 erhielt dreimal wöchentlich über die Dauer von zwei Wochen den anti-TFRC-mAb intraperitoneal, Gruppe 2 erhielt an den gleichen Tagen die gleiche Menge irrelevantes IgG₁ in der gleichen Konzentration intraperitoneal als Kontrolle. Die Konzentration betrug 1,5 µg je Maus und Injektion. Danach schloss sich eine sechswöchige Nachbeobachtungsphase an.

- 6. Die TFRC-Expression korrelierte in vitro nicht in allen Fällen mit der in vivo. Es gab in vivo mehr stark positive und schwach positive Zelllinien als in vitro, wohingegen in vitro die Anzahl der mäßig positiven Zelllinien dominierte. Das Mikromilieu scheint von großer Bedeutung zu sein. Man stellte fest, dass es in vitro nach Behandlung mit der geringsten Konzentration an mAb zu gering-gradiger Proliferation kam, bei nächsthöherer Konzentration zu einem Abfall der Zellzahl. Danach entstand ein Plateau, d.h. auch bei noch höherer Konzentration des mAb konnte in vitro kein besserer Effekt erzielt werden. Einige Effekte waren statistisch signifikant. Dies zeigte sich bei niedriger AK-Konzentration. In vivo entstand die Problematik, dass bei schnell wachsenden Zelllinien die Nachbeobachtungszeit von sechs Wochen aus Tierschutzgründen nicht eingehalten werden konnte. Eine weitere Eskalation der mAb-Dosis war aufgrund der hohen systemischen Toxizität nicht möglich (114).
- 7. Die in vivo-Ergebnisse der Arbeit lassen die Schlussfolgerung zu, dass der Therapieansatz durch die hohe Toxizität und geringe Selektivität des benutzten Antikörpers nicht sehr erfolgreich ist. Allerdings zeigen die Ergebnisse in vitro, dass eine Antikörper-Therapie ein hohes therapeutisches Potential haben könnte. Eventuell gibt es brauchbarere Antikörper. Ob die Auswahl eines anderen anti-TFRC-mAb zu einer geringeren Toxizität führen kann, soll in weiteren Untersuchungen ermittelt werden.

7. Summary

- The transferrin receptor is a potential therapeutical target in pancreatic carcinoma as it is expressed in large quantities and can be blocked selectively. Moreover, tumor cells require large amounts of iron to proliferate; blocking TFRC decreases the iron level within the cell. It is expected, that this leads to a suspension of tumor growth or even regression.
- 2. The aim of the study was to show, whether pancreatic cancer, which is caused by certain cells, can be lead into regression by an antibody based therapy against the transferrin receptor.
- 3. To show the influence of the antibodies on tumor growth both different cell lines as well as solid tumors induced in SCID mice by these cell lines were studied. Therefore, the expression of the receptor and the response to treatment with an anti-TFRC-mAb was measured in vitro and in vivo. Prior, histological staining was performed on tumors grown in vivo.
- 4. Using FACS analysis the expression of the receptor was determined in vitro. An in vitro method for the treatment of the cell lines was established, in which they were treated with antibodies in the following concentrations: 3.8, 7.3, 15, and 30 μg/ml. Quantitative analysis was performed using a calcein assay.
- 5. SCID mice were used for the animal study. They were inoculated subcutaneously with 1.5x10⁵ tumor cells. When the tumors were of about pea size, they were removed and analyzed histopathologically. Using anti-TFRC staining, the expression of TFRC could be visualized. For the therapy study, more mice were inoculated with tumor cells. The treatment was started when the tumors reached pea size. Group 1 received an intraperitoneal injection of the anti-TFRC-mAb three times a week for two weeks, while

group 2 was treated as control the same way with mouse IgG_1 in the same concentration. 1.5 µg were used per mouse and injection. The treatment was followed by a six week observation period.

- 6. TFRC expression in vitro did not in all cases correlate with the expression in vivo. In vivo more cell lines were either positive or negative, while heterogeneous cell lines dominated in vitro. The micro environment seems to be of high importance. In vitro, treatment with the lowest concentration of the antibody lead to a small proliferation. However, with the next higher concentration a decrease in cell count was observed. Using higher amounts of the antibody, a plateau was reached, i.e. a further increase in the concentration did not lead to a better effect. Some of these effects are statistically significant. This was shown at the low mAb-concentration. A problem for the experiments in vivo was the fact that due to animal protection regulations the observation period of six weeks could not be kept with fast proliferating cell lines. A further increase of the mAb dosage was not possible due to the high systemic toxicity.
- 7. The in vivo results of this investigation could lead to the conclusion that the therapy approach was not successful due to the high toxicity and limited selectivity of the antibody used. On the other hand, the in vitro results show that an antibody treatment could have a high therapeutic potential, which may be even increased with a different antibody. Whether the selection of a different anti-TFRC-mAb could lead to a reduced toxicity shall be confirmed by further investigations.

8. Literaturverzeichnis

- 1. Aisen P. Transferrin receptor 1. Int J Biochem Cell Biol 2004; 36: 2137-2143
- Anderson GJ, Frazer DM. Hepatic iron metabolism. *Semin Liver Dis* 2005; 25: 420-432
- Barankiewicz J, Cohen A. Impairment of nucleotide metabolism by iron-chelating deferoxamine. *Biochem Pharm* 1987; 36: 2343-2347
- 4. Barbacid M. ras genes. Ann Rev Biochem 1987; 56: 779-827
- Bardeesy N, DePinho R. Pancreatic cancer biology and genetics. *Nature Rev* 2002; 2: 897-909
- Barton CM, Staddon SL, Hughes CM, Hall PA, O'Sullivan C, Kloppel G, Theis B, Russell RC, Neoptolemos J, Williamson RC. Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer. *Brit J Cancer* 1991; 64: 1076-1082
- Bastin J, Drakesmith H, Rees M, Sargent I, Townsend A. Localisation of proteins of iron metabolism in the human placenta and liver. *Brit J Haem* 2006; **134**: 532-543
- Bockman R. The effects of gallium nitrate on bone resorption. Sem Onc 2003; 30: 5-12
- Bos JL. ras oncogenes in human cancer: a review. *Cancer Res* 1989; 49: 4682-4689
- 10. Bradley III EL. A clinically based classification system for acute pancreatitis. *Arch Surg* 1993; **128**: 586-590
- 11. Bradley J, Leibold EA, Harris ZL, Wobken JD, Clarke S, Zumbrennen KB, Eisenstein RS, Georgieff MK. Influence of gestational age and fetal iron status an IRP activity and iron transporter protein expression in third-trimester human placenta. *Am J Physiol Regul Integr Comp Physiol* 2004; **287**: 894-901

- 12. Bredebusch I, Domschke W, Schnekenburger J. Die Auswirkung zytoskelettmodulierender Substanzen auf das Wachstumsverhalten und die Morphologie von Pankreaskarzinomzellen. *Z Gastroenterol* 2005; **43**
- Brooks D, Taylor C, Dos Santos B, Linden H, Houghton A, Hecht TT, Kornfeld S, Taetle R. Phase Ia trial of murine immunoglobulin A antitransferrin receptor Antibody 42/6. *Clin Cancer Res* 1995; **1**: 1259-1265
- 14. Camaschella C. Why do humans need two types of transferrin receptor? Lessons from a rare genetic disorder. *Haem* 2005; **90**: 296-298
- 15. Chen H, Su T, Attieh ZK, Fox TC, McKie AT, Anderson GJ, Vulpe CD. Systemic regulation of hephaestin and Ireg1 revealed in studies of genetic and nutritional iron deficiency. *Blood* 2003; **102**: 1893-1899
- 16. Chen L-M, Le H-Y, Qin R-Y, Kumar M, Du Z-Y, Xia R-J, Deng J. Reversal of the phenotype by K-ras silencing mediated by adenovirus-delivered siRNA in human pancreatic cancer cell line Panc-1. *World J Gastroenterol* 2005; **11**: 831-838
- 17. Chen OS, Blemings KP, Schalinske KL, Eisenstein RS. Dietary Iron Intake rapidly influences iron regulatory proteins, ferritin subunits and mitochondrial aconitase in rat liver. *J Nutrition* 1998; **128**: 525-535
- 18. Chen WH, Horoszewicz JS, Leong SS, Shimano T, Penetrante R, Sanders WH, Berjan R, Douglass HO, Martin EW, Chu TM. Human pancreatic adenocarcinoma: in vitro and in vivo morphology af a new tumor line established from ascites. *In vitro* 1982; **18**: 24-34
- Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, Shen Q, O'Hagan R, Pantginis J, Zhou H, Horner II JW, Cordon-Cardo C, Yancopoulos GD, DePinho RA. Essential role for oncogenic ras in tumour maintenance. *Nature* 1999; **400**: 468-472

- 20. Chitambar CR. Apoptotic mechanisms of gallium nitrate: basic and clinical investigations. *Onc (Williston Park)* 2004; **18**: 39-44
- 21. Chitambar CR. Gallium compounds as antineoplastic agents. *Curr Op Onc* 2004;16: 547-552
- 22. Chitambar CR. Gallium nitrate revisited. Sem Onc 2003; 30: 1-4
- 23. Cvitkovic F, Armand J-P, Tubiana-Hulin M, Rossi J-F, Warrell R. Randomized, double-blind, phase II trial of gallium nitrate compared with pamidronate for acute control of cancer-related hypercalcemia. *Cancer J* 2006; **12**: 47-53
- 24. Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML. The transferrin receptor part I: biology and targeting with cytotoxic antibodies for the treatment of cancer. *Clin Immun* 2006; **121**: 144-158
- 25. Daniels TR, Delgado T, Helguera G, Penichet ML. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. *Clin Immun* 2006; **121**: 159-176
- 26. Davies NP, Rahmanto YS, Chitambar CR, Richardson DR. Resistance to the antineoplastic agent gallium nitrate results in marked alterations in intracellular iron and gallium trafficking: identification of novel intermediates. *J Pharm Exp Ther* 2006; **317**: 153-162
- 27. Disbrow GL, Baege AC, Kierpiec KA, Yuan H, Centeno JA, Thibodeaux CA,
 Hartmann D, Schlegel R. Dihydroartemisinin is cytotoxic to papillomavirusexpressing epithelial cells in vitro and in vivo. *Cancer Res* 2005; 65: 10854-10861
- 28. Dong M, Nio Y, Sato Y, Tamura K, Song M-M, Tian Y-L, Dong Y-T. Comparative study of p53 expression in primary invasive ductal carcinoma of the pancreas between chinese and japanese. *Panc* 1998; **17**: 229-237

- 29. Duxbury MS, Ito H, Benoit E, Zinner MJ, Ashley SW, Whang EE. Retrovirally mediated RNA interference targeting the M2 subunit of ribonucleotide reductase: a novel therapeutic strategy in pancreatic cancer. *Surg* 2004; **136**: 261-269
- 30. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. Focal adhesion kinase gene silencing promotes anoikis and suppresses metastasis of human pancreatic adenocarcinoma cells. *Surg* 2004; **135**: 555-562
- 31. Einhorn L. Gallium nitrate in the treatment of bladder cancer. Sem Onc 2003; 30:34-41
- 32. Eisold S, Ryschich E, Linnebacher M, Giese T, Nauheimer D, Wild A, Bartsch DK, Büchler MW, Schmidt J. Characterization of Fampac, a newly identified human pancreatic carcinoma cell line with a hereditary background. *Cancer* 2004;**100**: 1978-1986
- 33. Elsasser HP, Lehr U, Agricola B, Kern HF. Establishment and characterisation of two cell lines with different grade of differentiation derived from one orimary human pancreatic adenocarcinoma. *Virchows Arch B Cell Pathol Incl Mol Pathol* 1992; **61**: 295-306
- 34. Elsasser HP, Lehr U, Agricola B, Kern HF. Strucutral analysis of a new highly metastatic cell line PaTu 8902 from a primary human pancreatic adenocarcinoma. *Virchows Arch B Cell Pathol Incl Mol Pathol* 1993; **64**: 201-207
- 35. Enns CA. Possible roles of the hereditary hemochromatosis protein, HFE, in regulating cellular iron homeostasis. *Biol Res* 2006; **39**: 105-111
- 36. Faissner R, Ringel J, Hummel FM, Jesenofsky R, Metzger T, Lang K. Chemoresistenz solider Tumore. *Forschungsbericht* DKFZ 2002-2003, Heidelberg 2004; 364-367

- 37. Farrow B, Rychahou P, Murillo C, O'Connor KL, Iwamura T, Evers BM. Inhibition of pancreatic cancer cell growth and induction of apoptosis with novel therapies directed against protein kinase A. *Surg* 2003; **134**: 1997-2005
- 38. Fukui R, Nishimori H, Hata F, Yasoshima T, Ohno K, Nomura H, Yanai Y, Tanaka H, Kamiguchi K, Denno R, Sato N, Hirata K. Metastases-related genes in the classification of liver and peritoneal metastasis in human gastric cancer. *J Surg Res* 2005; **129**: 94-100
- 39. Gatter KC, Brown G, Strowbridge J, Woolston RE, Mason DY. Transferrin receptors in human tissues: their distribution and possible clinical relevance. J *Clin Pathol* 1983; **36**: 539-545
- 40. Gelvan D, Fibach E, Meyron-Holtz EG, Konijin AM. Ferritin uptake by human erythroid precursors is a regulated iron uptake pathway. *Blood* 1996; **88**: 3200-3207
- 41. Gewirtz AM, Sokol DL, Ratajczak MZ. Nucleic acid therapeutics: state of the art and future prospects. *Blood* 1998; **92**: 712-736
- 42. Gianetti AM, Halbrooks PJ, Mason AB, Vogt TM, Enns CA, Björkman PJ. The molecular mechanism for receptor-stimulated iron release from the plasma iron transport protein transferrin. *Structure* 2005; **13**: 1613-1623
- 43. Gold EB. Epidemiology of and risk factors for pancreatic cancer. *Surg Clin North Am* 1995; **75**: 819-843
- 44. Goswami T, Andrews NC. Hereditary hemochromatosis protein, HFE, interaction with transferrin receptor 2 suggests a molecular mechanism for mammalian iron sensing. *J Biolog Chem* 2006; **281**: 28494-28498
- 45. Gregor JI, Heukamp I, Kilian M, Kiewert C, Schimke I, Kristiansen G, Walz MK, Jacobi CA, Wenger FA. Does enteral nutrition of dietary polyunsaturated fatty

acids promote oxidative stress and tumour growth in ductal pancreatic cancer? Experimental trial in Syrian Hamster. *Prost Leukot Ess Fatty Ac* 2006; **74**: 67-74

- 46. Griffin TW, Pagnini PG, McGrath JJ, McCann JC, Houston LL. In vitro cytotoxicity of recombinant ricin A chain-antitransferrin receptor immunotoxin against human adenocarcinomas of the colon and pancreas. *J Biolog Resp Mod* 1988; **7**: 559-567
- 47. Griffiths WJH, Kelly AL, Smith SJ, Cox TM. Localization of iron transport and regulatory proteins in human cells. *QJ med* 2000; **93**: 575-587
- 48. Grützmann R, Förder M, Alldinger I, Staub E, Brümmendorf T, Röpcke S, Li X, Kristiansen G, Jesnowski R, Sipos B, Löhr M, Lüttges J, Ockert D, Klöppel G, Saeger HD, Pilarsky C. Gene expression profiles of microdissected pancreatic ductal adenocarcinoma. *Virchows Arch* 2003; **443**: 508-517
- 49. Gupta MK, Arciaga R, Bocci L, Tubbs R, Bukowski R, Deodhar SD. Measurement of a monoclonal-antibody-defined antigen (CA19-9) in the sera of patients with malignant and nonmalignant diseases. *Cancer* 1985; **56**: 277-283
- 50. Hellwig D, Menges M, Schneider G, Moeller M-O, Romeike BF, Menger MD, Kirsch C-M, Samnick S. Radioiodinated phenylalanine derivatives to image pancreatic cancer: a comparative study with [18F]fluoro-2-deoxy-d-glucose in human pancreatic carcinoma xenografts and in inflammation modelsstar. *Nucl Med Biol* 2005; **32**: 137-145
- 51. Hémadi M, Ha-Duong N-T, El Hage Chahine J-M. The mechanism of iron release from the transferrinreceptor 1 adduct. *J Mol Biol* 2006; **358**: 1125-1136
- 52. Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. *Cell* 2004; **117**: 285-297
- 53. Herlyn M, Sears HF, Steplewski Z, Koprowski H. Monoclonal antibody detection of a circulating tumor-associated antigen. I. presence of antigen in sera of

patients with colorectal, gastric and pancreatic carcinoma. *J Clin Immun* 1982; **2**: 135-140

- 54. Hermanek P. Diagnostische Standards. Lungen-, Magen-, Pankreas- und kolorektales Karzinom. *W. Zuckschwerdt Verlag*, München 1995; 23-29
- 55. Hermanek P, Scheibe O, Spiessel B, Wagner G, Beahrs OH. TNM-Klassifikation maligner Tumoren. 4. Aufl., *Springer Verlag*, Berlin 1992; 148-154
- 56. Herrera MA, Chu TM, Holyoke ED. Carcinoembryonic antigen (CEA) as a prognostic and monitoring test in clinically complete resection of colorectal carcinoma. *Ann Surg* 1976; **183**: 5-9
- 57. Hoepken HH, Korten T, Robinson SR, Dringen R. Iron accumulation, ironmediated toxicity and altered levels of ferritin and transferrin receptor in cultured astrocytes during incubation with ferric ammonium citrate. *J Neurochem* 2004; 88: 1194-1202
- 58. Hofer MD, Menke A, Genze F, Gierschik P, Giehl K. Expression of MTA1 promotes motility and invasiveness of Panc-1 pancreatic carcinoma cells. *Brit J Cancer* 2004; **90**: 455-462
- 59. Hofer MD. Funktionelle Charakterisierung des metastasis associated protein 1 durch Überexpression in der humanen Pankreaskarzinomzelllinie Panc-1. *Dissertation* Universität Ulm 2002
- 60. Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. *Science* 1991; **253**: 49-53
- 61. Höpken H-H. Untersuchungen zum Eisenstoffwechsel neuronaler Zellen Dissertation Universität Tübingen 2005
- 62. Hotz HG, Jines OJ, Masood R, Hotz B, Foitzik T, Buhr HJ, Gill PS, Reber HA. VEGF antisense therapy inhibits tumor growth and improves survival in experimental pancreatic cancer. *Surg* 2005; **137**: 192-199

- 63. Hwang RF, Gordon EM, Anderson WF, Parekh D. Gene therapy for primary and metastatic pancreatic cancer with intraperitoneal retroviral vector bearing the wildtype p53 gene. *Surg* 1998; **124**: 143-151
- 64. Ito H, Duxbury MS, Zinner MJ, Ashley SW, Whang EE. Glucose transporter-1 gene expression is associated with pancreatic cancer invasiveness and MMP-2 activity. *Surg* 2004; **136**: 548-556
- 65. Iversen PL, Zhu S, Meyer A, Zon G. Cellular uptake and subcellular distribution of phosphorothioate oligonucleotides into cultured cells. *Antisense Res Dev* 1992; 2: 211-222
- 66. Jakupec MA, Keppler BK. Gallium and other main group metal compounds as antitumor agents. *Met Ions Biol Syst* 2004; **42**: 425-462
- 67. Keleg S, Büchler P, Ludwig R, Büchler MW, Friess H. Invasion and metastasis in pancreatic cancer. *Mol Cancer* 2003; **2**: 14-21
- Kemp JD, Smith KM, Mayer JM, Gomez F, Thorson JA, Naumann PW. Effects of anti-transferrinreceptor antibodies on the growth of neoplastic cells. *Pathobiol* 1992; 60: 27-32
- 69. Kemp JD, Thorson JA, Stewart BC, Naumann PW. Inhibition of hematopoietic tumor growth by combined treatment with deferoxamine and an IgG monoclonal antibody against the transferrin receptor: evidence for a threshold model of iron deprivation toxicity. *Cancer Res* 1992; **52**: 4144-4148
- 70. Kemp JD. Iron deprivation and cancer: a view beginning with studies of monoclonal antibodies against the transferrin receptor. *Histol Histopathol* 1997;
 12: 291-296
- 71. Klöppel G et al. (Hrsg) Tumours of the exocrine pancreas. WHO-international classification of tumours. *Springer-Verlag*, Heidelberg 1996; 7-11

- 72. Kobari M, Hisano H, Matsuno S, Sato T, Kann M, Tachibana T. Establishment of six human pancreatic cancer cell lines and their sensitivities to anti-tumor. *Tohoku J Exp Med* 1986; **150**: 231-248
- 73. Kontoghiorghes GJ. Iron mobilization from transferrin and non-transferrin-boundiron by deferiprone. *Hemoglobin* 2006; **30**: 183-200
- 74. Koprowski H, Herlyn M, Steplewski Z, Sears HF. Specific antigen in serum of patients with colon carcinoma. *Science* 1981; **212**: 53-55
- 75. Koprowski H, Steplewski Z, Mitchell K, Herlyn M, Fuhrer P. Colorectal carcinoma antigens detected by hybridoma antibodies. *Somat Cell Gen* 1979; **5**: 957-971
- 76. Kovar J, Naumann PW, Stewart BC, Kemp JD. Differing sensivity of nonhematopoietic human tumors to synergistic anti-transferrinreceptor monoclonal antibodies and deferoxamine in vitro. *Pathobiol* 1995; **63**: 65-70
- 77. Kyriazis AP, Kyriazis AA, Scarpelli DG, Fogh J, Rao MS, Lepera R. Human pancreatic adenocarcinoma line Capan-1 in tissue culture and the nude mouse: morphologic, biologic, and biochemical characteristics. *Am J Pathol* 1982; **106**: 250-260
- 78. Larsson SC, Permert J, Hakansson N, Näslund I, Bergkvist L, Wolk A. Overall obesity, abdominal adiposity, diabetes and cigarette smoking in relation to the risk of pancreatic cancer in two Swedish population-based cohorts. *Brit J Cancer* 2005; **93**: 1310-1315
- 79. Leder G, Stehle D, Muche R, Sträter J, Siech M, Beger HG, Henne-Bruns D, Prokopczyk B. Alkohol und Nikotin: Risikofaktoren für das Pankreaskarzinom – Epidemiologische Untersuchung 2005 Universität Ulm; 208-231
- 80. Lesley JF, Schulte RJ. Inhibition of cell growth by monoclonal anti-transferrin receptor antibodies. *Mol Cell Biol* 1985; **5**: 1814-1821

- Leyland-Jones B. Treatment of cancer-related hypercalcemia: the role of gallium nitrate. Sem Onc 2003; 30: 13-19
- 82. Lieber M, Mazzetta J, Nelson-Rees W, Kaplan M, Torado G. Establishment of a continous tumor-cell line (panc-1) from a human carcinoma of the exocrine pancreas. *Int J Cancer* 1975; **15**: 741-747
- 83. Liu N, Furukawa T, Kobari M, Tsao M-S. Comparative phenotypic studies of duct epithelial cell lines derived from normal human pancreas and pancreatic carcinoma. *Am J Pathol* 1998; **153**: 163-269
- 84. Löffler G, Petrides PE. Biochemie und Pathobiochemie. Springer, Heidelberg
 1998, 630ff und 916f
- 85. Lohr M, Trautmann B, Gottler M, Peters S, Zauner I, Maillet B, Kloppel G. Human ductal adenocarcinomas of the pancreas express extracellular matrix proteins. *Brit J Cancer* 1994; **69**: 144-151
- 86. Lowy DR, Willumsen BM. Function and regulation of ras. *Ann Rev Biochem* 1993;62: 851-891
- 87. Ma J-H, Patrut E, Schmidt J, Knaebel H-P, Büchler MW, Märten A. Synergistic effects of interferon-alpha in combination with chemoradiation on human pancreatic adenocarcinoma. *World J Gastroenterol* 2005; **11**: 1521-1528
- 88. Marchesi F, Monti P, Leone BE, Zerbi A, Vecchi A, Piemonti L, Montovani A, Allabena P. Increased survival, proliferation and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. *Cancer Res* 2004; **64**: 8420-8427
- 89. Marengo E, Robotti E, Cecconi D, Hamdan M, Scarpa A, Righetti PG. Identification of the regulatory proteins in human pancreatic cancers treated with Trichostatin A by 2D-PAGE maps and multivariate statistical analysis. *Anal Bioanal Chem* 2004; **379**: 992-1003

- 90. Martin Jr EW, James KK, Hurtubise PE, Catalano P, Minton JP. The use of CEA as an early indicator for gastrointestinal tumor recurrence and second-look procedures. *Cancer* 1977; **39**: 440-446
- 91. Meeker Jr WR. The use and abuse of CEA test in cinical practice. *Cancer* 1978;41: 854-862
- 92. Menke A, Philippi C, Vogelmann R, Seidel B, Lutz MP, Adler G, Wedlich D. Down-regulation of E-Cadherin gene expression by collagen type I and type III in pancreatic cancer cell lines. *Cancer Res* 2001; **61**: 3508-3517
- 93. Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR, Gress T, Bassi C, Klöppel G, Kalthoff H, Ungefroren H, Löhr M, Scarpa A. Genetic profile of 22 pancreatic carcinoma cell lines. *Virchows Arch* 2001; **439**: 798-802
- 94. Moura IC, Lepelletier Y, Arnulf B, England P, Baude C, Beuamont C, Bazarbachi A, Benhamou M, Monteiro RC, Hermine O. A neutralizing monoclonal antibody (mAb A24) directed against the transferrin receptor induces apoptosis of tumor T lymphocytes from ATLO patients. *Blood* 2004; **103**: 1838-1845
- 95. Müerköster S, Arlt A, Sipos B, Witt M, Großmann M, Klöppel G, Kalthoff H, Fölsch U, Schäfer H. Increased expression of the E3-ubiquitin ligase receptor subunit
 TRCP1 relates to constitutive nuclear factor
 B activation and chemoresistance in pancreatic carcinoma cells. *Cancer Res* 2005; 65: 1316-1324
- 96. Nanami M, Ookawara T, Otaki Y, Ito K, Moriguchi R, Miyagawa K, Kasuikke Y, Izumi M, Eguchi H, Suzuki K, Nakanishi T. Tumor necrosis factor-□-induced iron sequestration and oxidative stress in human endothelial cells. *Arterioscler Thromb Vasc Biol* 2005; **25**: 2495-2501
- 97. Neckers LM. Regulation of transferrin receptor expression and control of cell growth. *Pathobiol* 1991; **59**: 11-18

- 98. Ng PP, Dela Cruz JS, Sorour DN, Stinebaugh JM, Shin S-U, Shin DS, Morrison SL, Penichet ML. An anti-transferrin receptor-avidin fusion protein exhibits both strong apoptotic activity and the ability and the ability to deliver various molecules into cancer cells. *Proc Natl Acad Sci USA* 2002; **99**: 10706-10711
- 99. Niitsu Y, Kohgo Y, Nishisato T, Kondo H, Kato J, Urushizaki Y, Urushizaki I.
 Transferrin receptors in human cancerous tissues. *Tohoku J Exp Med* 1987; 153: 239-243
- 100.Nio Y, Dong M, Uegaki K, Hirahara N, Minari Y, Sasaki S, Takamura M. p53 expression affects the efficacy of adjucant chemotherapy after resection of invasive ductal carcinoma of the pancreas. *Anticancer Res* 1998; **18**: 3773-3779
- 101.Ozkan H, Kaya M, Cengiz A. Comparison of tumor marker CA 242 with CA 19-9 and carcinoembryonic antigen (CEA) in pancreatic cancer. *Hepatogastroenterol* 2003; 50: 1669-1674
- 102.Pakdaman R, El Hage Chahine J-M. A mechanism for iron uptake by transferrin. *Eur J Biochem* 1996; **236**: 922-931
- 103.Pantopoulos K. Iron metabolism and the IRE/ IRP regulatory system. *Ann NY Acad Sci* 2004; **1012**: 1-13
- 104.Patel BN, Dunn RJ, Jeong SY, Zhu Q, Julien JP, David S. Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. *J Neurosc* 2002;
 22: 6578-6586
- 105.Paul CP, Good PD, Winer I, Engelke DR. Effective expression of small interfering RNA in human cells. *Nature* 2002; **20**: 505-508
- 106.Plebani M, Fabris C, Basso D, Favero D, Angonese C, Leandro G, Di-Marion F, Burlina A, Naccarato R. Limits of CEA and ferritin in the diagnosis of pancreatic cancer. *Int J Pancreatol* 1988; **3**: 113-117

- 107.Prior R, Reifenberger G, Wechsler W. Transferrin receptor expression in tumors of the human nervous system: relation to tumour type, grading and tumor growth fraction. *Virchows Archiv A Pathol Anat* 1990; **416**: 491-496
- 108.Qing Y, Shuo w, Zhihua W, Huifen Z, Ping L, Lijiang L, Xiaorong Z, Limig C, Daiwen X, Yu H, Wie X, Min F, Zuohua F, Guanxin S. The in vitro antitumor effect and in vivo tumor-specificity distribution of human-mouse chimeric antibody against transferrin receptor. *Cancer Immunol Immunother* 2006; **55**: 1111-1121
- 109.Rennekamp W. Nachweis und Charakterisierung von RANK-Ligand und Osteoprotegerin in humanen Pankreaskarzinomzellen. *Dissertation* Universität Marburg 2005
- 110.Richardson DR. Molecular mechanisms of iron uptake by cells and the use of iron chelators for the treatment of cancer. *Curr Med Chem* 2005; **12**: 2711-2729
- 111.Rödicker F, Pützer BM. p53 is effective in p53-null pancreatic cancer cells resistant to wild-type TP53 gene replacement. *Cancer Res* 2003; **63**: 2737-2741
- 112.Rouault TA. The role of iron regulatory proteins in mammalian iron homeostasis and disease. *Nature Chem Biol* 2006; **2**: 406-414
- 113.Roy CN, Enns CA. Iron homeostasis: new tales from the crypt. *Blood* 2000; **96**: 4020-4027
- 114.Ryschich E, Huszty G, Knaebel HP, Hartel M, Büchler MW, Schmidt J.
 Transferrin receptor is a marker of malignant phenotype in human pancreatic cancer and in neuroendocrine carcinoma of the pancreas. *Eur J Cancer* 2004; 40: 1418-1422
- 115.Sargent PJ, Farnaud S, Evans RW. Structure/ function overview of proteins involved in iron storage and transport. *Curr Med Chem* 2005; **12**: 2683-2693

- 116.Sasaki K, Zak O, Aisen P. Antisense suppression of transferrin receptor gene expression in a human hepatoma cell (HuH-7) line. *Am J Hematol* 1993; **42**: 74-80
- 117.Sato Y, Nio Y, Song M-M, Sumi S, Hirahara N, Minari Y, Tamura K. p53 protein expression as prognostic factor in human pancreatic cancer. *Anticancer Res* 1997; **17**: 1779-1788
- 118.Schaefer KL, Wada K, Takahashi H, Matsuhashi N, Ohnishi S, Wolfe MM, Turnoer JR, Nakajima A, Borkan SC, Saubermann LJ. Peroxisome proliferatoractivated receptor
 inhibition prevents adhesion to the extracellular matrix and induces anoikis in hepatocellular carcinoma cells. *Cancer Res* 2005; **65**: 2251-2259
- 119.Sears HF, Herlyn M, Del Villano B, Steplewski Z, Koprowski H. Monoclonal
 Antibody detection of a circulating tumor-associated antigen. II. A longitudinal
 evaluation of patients with colorectal cancer. *J Clin Immun* 1982; **2**: 141-149
- 120.Silverman DT, Schiffman M, Everhart J, Goldstein A, Lillemoe KD, Swanson GM, Schwartz AG, Brown LM, Greenberg RS, Schoenberg JB, Pottern LM, Hoover RN, Fraumeni Jr JF. Diabetes mellitus, other medicinal conditions and familial history of cancer as risk factors for pancreatic cancer. *Brit J Cancer* 1990; **80**: 1830-1837
- 121.Singh M. Tranferrin as a targeting ligand for liposomes and anticancer drugs. *Curr Pharm Design* 1999; **5**: 443-451
- 122.Sipos B, Möser S, Kalthoff H, Török V, Löhr M, Klöppel G. A comprehensive characterization of pancreatic ductal carcinoma cell lines: towards the establishment of an in vitro research platform. *Virchows Arch* 2003; **442**: 444-452
- 123.Slebos RJC, Hoppin JA, Tolbert PE, Holly EA, Brock JW, Zhang RH, Bracci PM, Foley J, Stockton P, McGregor LM, Flake GP, Taylor JA. K-ras and p53 in

pancreatic cancer: association with medical history, histopathology, and environmental exposures in a population-based study. *Cancer Epidem, Biomarkers & Prev* 2000; **9**: 1223-1232

- 124.Sorio C, Baron A, Orlandini S, Zamboni S, Pederzoli P, Huebner K, Scarpa A. The FHIT gene is expressed in pancreatic ductular cells and is altered in pancreatic cancers. *Cancer Res* 1999; **59**: 1308-1314
- 125.Stein CA, Cheng YC. Antisense oligonucleotides as therapeutic agents is the bullet really magical? *Science* 1993; **261**: 1004-1012
- 126.Straus DJ. Gallium nitrate in the treatment of lymphoma. *Sem Onc* 2003; **30**: 25-33
- 127.Taetle R, Rhyner K, Castgnola J, To D, Mendelsohn J. Role of transferrin, Fe, and transferrin receptors in myeloid leukemia cell growth. *J Clin Investig* 1985; **75**: 1061-1067
- 128.Tan MH, Shimano T, Chu TM. Differential localization of pancreas cancerassociated antigen and carcinoembryonic antigen in homologous pancreatic tumoral xenograft. *J Nat Cancer Instit* 1981; **67**: 563-569
- 129.Tari AM, Lopez-Berestein G. Cellular uptake of antisense oligonucleotides. *Curr Opin Investig Drugs* 2001; **2**: 1450-1453
- 130.Temsamani J, Kubert M, Tang J, Padmapriya A, Agrawal S. Cellular uptake of oligodeoxynucleotide phosphorothioates and their analogs. *Antisense Res Dev* 1994; **4**: 35-42
- 131.Tosoni D, Puri C, Confalonieri S, Salcini AE, De Camilli P, Tacchetti C, Di Fiore
 PP. TTP specifically regulates the internalization of the transferrin receptor. *Cell*2005; **123**: 875-888
- 132.Trapasso F, Yendamuri S, Dumon KR, Iuliano R, Cesari R, Feig B, Seto R, Infante L, Ishii H, Vecchione A, During MJ, Croce CM, Fusco A. Restoration of

receptor-type protein tyrosine phosphatase □ function inhibits human pancreatic carcinoma cell growth in vitro and in vivo. *Carcinogen* 2004; **25**: 2107-2114

- 133.Trede M, Carter DC Surgery of the Pancreas. *Churchill Livingstone*, Edinburgh 1993; 11-83
- 134.Trinder D, Zak O, Aisen P. Transferrin receptor-independent uptake of differic transferrin by human hepatoma cells with antisense inhibition of receptor expression. *Hepatol* 1996; 23: 1512-1520
- 135. Trowbridge IS, Lopez F. Monoclonal antibody to transferrin receptor blocks transferrin binding and inhibits human tumor cell growth in vitro. *Proc Natl Acad Sci USA* 1982; **79**: 1175-1179
- 136.Vasconcelos MH, Maia LF, Sousa C, Beleza SS, Guimaraes JE. Evidence for a specific intracellular localization of an antisense oligonucleotide in K562 cells. J Pharmacol Sci 2005; 99: 105-108
- 137.Vulpe CD, Kuo Y-M, Murphy TL, Cowley L, Askwith C, Libina N, Gitschier J, Anderson GJ. Hephaestin, a cerulosplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. *Nature gen* 1999; **21**: 195-199
- 138.Wang J, Chen G, Pantopoulos K. Inhibition of transferrin receptor 1 transcriptionby a cell density response element. *Biochem J* 2005; **392**: 382-388
- 139.Weinberg ED. Roles of iron in neoplasia. Promotion, prevention, and therapy.*Biol Trace Elem Res* 1992; **34**: 123-140
- 140.White S, Taetle R, Seligman PA, Rutherford M, Trowbridge I-S. Combinations of anti-transferrin receptor monoclonal antibodies inhibit human tumor cell growth in vitro and in vivo: evidence for synergistic antiproliferative effects. *Cancer Res* 1990; **50**: 6295-6301
- 141.Woodward JE, Bayer AL, Chavin KD, Boleza KA, Baliga P. Anti-transferrin
 receptor monoclonal antibody: A Novel Immunosuppressant. *Transplant* 1998; 65:
 6-9
- 142.Yamaguchi Y, Watanabe H, Yrdiran S, Ohtsubo K, Motoo Y, Okai T, Sawabu N. Detection of mutations of p53 tumor suppressor gene in pancreatic juice and its application to diagnosis of patients with pancreatic cancer: comparison with K-ras mutation. *Clin Cancer Res* 1999; **5**: 1147-1153
- 143.Yang DC, Jiang XP, Elliott RL, Head JF. Inhibition of growth of human breast carcinoma cells by an antisense oligonucleotide targeted to the transferrin receptor gene. *Anticancer Res* 2001; **21**: 1777-1787
- 144.Yang J, Götz D, Li J-Y, Wang W, Mori K, Setlik D, Du T, Erdjument-Bromage H, Tempst P, Strong R, Barasch J. An iron delivery pathway mediated by a lipocalin. *Mol Cell* 2002; **10**: 1045-1056
- 145.Yunis AA, Arimura GK, Russin DJ: Human pancreatic carcinoma (MIA PaCa-2) in continous culture: sensitivity to asparaginase. *Int J Cancer* 1977; **1**: 218-235
- 146.Zarkovic N. Mechanismen der Tumorentstehung. *Pharmazeutische Zeitung*2000; 4
- 147.Zhao R, Planalp RP, Ma R, Greene BT, Jones BT, Brechbiel MW, Torti FM, Torti SV. Role of zinc and iron chelation in apoptosis mediated by tachpyridine, an anticancer iron chelator. *Biochem Pharmacol* 2004; **67**: 1677-1688

9. Anhang

Vorversuch 1

| 7,5 µl
antiCD71 |
|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|
| 30 µl
antiCD71 |
| 75 μl
antiCD71 |
| 7,5 lgG1 |
| 30 lgG1 |
| 75 lgG1 |
| Zell- |
| suspension |
| PBS |

Tab. 13: Behandlungsschema 1. Vorversuch, analog über 12 Spalten reichend

AsPC-1

180364	198894	234254	190191	166443	167635	197336	200544	192462	171193	191017	189950
	189538	217480	194721	263725	207746	200682	180890	160841	190295	218986	162038
110673	150421	160651	136906	122247	197474	164311	181329	176094	212897	183162	123117
193164	169592	168111	137189	171474	139800	165253	171196	172153	162350	151282	161675
174665	187742	84492	190936	188385	172264	173083	174249	232290	235196	199719	168997
123343	92028	144529	179823	169989	163968	194386	171125	159671	160583	182207	178700
103356	152681		131235	77319	89236	138476	139862	122932	142690		105406
2547	2467	2679	2578	2482	2720	2664	2494	2585	2579	2430	2300

Tab. 14: Originaldatenblatt der Zelllinie AsPC-1, 1. Vorversuch

BxPC 3

199922	139764		138945	150035	13927	15087	246790	188052	168054	180275	160008
150896	140748	196994	79880	130462	88987	75880	98045	179456	194573	199407	196392
177925		178301	133359	120656	189452	149083		145510	133390	190171	132790
141115	121687	128250	121449	111081		191993	189949	130894	120954	138809	119054
150733	153008	120016	172211	179442	188348	104418	129066		132416	131071	126404
142545	190698	131404	174920		129919	126448	131131	129677	128770	123203	120063
112707	180955	189455		78561	194864		129004	119985	106865	123042	
2260	2560	2389	2400	2323	2385	2458	2049	2196	2549	2283	2574

Tab. 15: Originaldatenblatt der Zelllinie BxPC 3, 1. Vorversuch

Capan-1

201922	141754	98468	145828	144269	114333	123832	54571	77933	153921	142010	157322
148896	130748	196234	61569	115462	76997	71889	141752	159961	145842	213172	150964
156925	139007	183301	133090	182156	160097	148683	140504	145512	152190	141174	132767
131195	121644	128240	121721	119471	125417	121913	81949	114894	97505	106809	85478
147733	135833	118416	114711	144244	142348	138962	127666	132250	129416	131974	130474
142545	120698	127444	154926	123177	132919	126241	111131	136677	128433	123873	72963
112707	118855	98655	130638	98561	94864	31570	72814	108185	106865	33042	68301
2460	2427	2306	2370	2301	2385	2418	2047	2446	2390	2413	2484

Tab. 16: Originaldatenblatt der Zelllinie Capan-1, 1. Vorversuch

Capan-2

33927	21524	22239	22972	10513	19120	18977	25386	18402	19828	30226	22051
38429	41791	30158	32093	30127	22231	29949	19590	22777	46120	35609	27128
35538	33960	37723	35081	32710	28167	25247	34367	42392	36689	35755	17384
55314	49314	46464	31592	32107	21810	21141	23310	27385	39146	23198	21874
42158	31714	34712	27874	50904	29089	31990	24453	33947	30780	21821	21595
34511	36411	37110	25081	30790	23912	23239	31147	29168	33547	35883	31819
38894	26405	24707	24916	18418	15434	24804	17798	48092	17255	18094	19725
1328	1425	1412	1530	1681	1508	1436	1473	1464	1629	1373	1505

Tab. 17: Originaldatenblatt der Zelllinie Capan-2, 1. Vorversuch

DaNG

	20977	28290	18992	29023		26910	20189	22138	38467	28290	17754	21880
	29129	31187	29330		23197	22567	19088	18567	28376	29380	35672	22098
	27015	33938	35699	29300	32991	10167	28176	22076	25617	22901	28901	17894
	29956	29011	32078	29063	33197	29978	21141	18799	26385	39190	24268	20074
		29714	29776	23334	28015	23109	28119	24453	26657	38911	31467	25890
	29001	37290	39010	29081	31080	19366	17209	29145	29238	32047	30381	38201
	26543	29325	25117	30890	27018	17804	15994	27817	38092	19257	20994	19703
Г	1490	1625	1483	1750	1300	1548	1668	1489	1541	1408	1483	1600

Tab. 18: Originaldatenblatt der Zelllinie DaNG, 1. Vorversuch

KciMoh-1

298922	149754	198808	125820	123269	129333	190832		177933	193921	142910	127322
144896	128748	196230		129462	176997	171889	91752	119961	190842		154564
156785	139433	190301	165090	112156	167097	118683	147874	115512	102198		133763
	125644	128453	121729	120471	122427	121883	121949	94804	132505	116849	185478
147793	85833	118675	114229	146844	128748	180762	77696		139416	131978	129174
140548	119998	127675	149926	144177	132663	124280	161131	130677	128430	113973	102963
119707	128655	145655	155938	121561	94880		138814	108985	126865		168401
2660	2527	2390	2550	2481	2375	2610	2447	2540	2400	2653	2414

Tab. 19: Originaldatenblatt der Zelllinie KciMoh-1, 1. Vorversuch

MIAPaCa-2

	10927	20524	29109	19272	10613			19468	20828	29269	14333	10927
	38529		17058	19093	30027	19983	17852	18567	11892	12190	11110	17228
	12038	13960	29723	19881	31710	13719	18918	11967	13554	16009	12556	12760
	25314	39319	28464	31022	31107	29766	14890	16297		19283	11131	10998
	28158	21714	14792	19284		10028	18275	20152	18276	11093	12045	14382
	24598	19311	19190	21770	21152	19304	13909	23924	19087	18008	25990	29089
	19022	26105	19701	21790	11018		16674	21599	18745	18406	26935	17446
1	1398	1425	1418	1570	1681	1538	1509	1449	1574	1519	1479	1527

Tab. 20: Originaldatenblatt der Zelllinie MIAPaCa-2, 1. Vorversuch

PaCa 44

181922	141798		142228	99869	114313	130832	189771	90933	137921	143900	169322
	131748	193104	161579	139462	120997	91889	98752	131901	150428	179441	219573
157025	187437		165090	120056	168997	192083	240514	189512	152330	116774	190767
130195	121667	188210	122721	117701	125907	138913	153949	132894		116809	185478
147733	135832	118411	99203	110244	142350		182066	119250	120216	111974	
141045	153698	190444	103926	123007	89771	120941	166231	136689	136233	120873	172063
	128855	108655	120638	111561	99874	131970	113814	148125	116895		108301
2560	2300	2348	2470	2399	2515	2468	2147	2556	2490	2400	2414

Tab. 21: Originaldatenblatt der Zelllinie PaCa 44, 1. Vorversuch

Panc 1

7100	16418	33312	20653	24933	29400	9047	13320	21383	34324	24522	30295
6639	20289	42420	26535	16218	38054	23900	20187	20632	23668	69338	29735
8584	23358	53993	28116	24844	41988	21990	21197	33199	25064	27132	10059
40217	15949	35421	32286	13622	35627	40233	32408	22326	18068	32768	31899
37351	17781	41134	25690	10592	35109	28112	32996	34333	25395	35401	34763
20980	19149	43680	32661	11036	35696	34824	36296	33282	33559	26818	39755
15833	30590	55615	28321	9091	27138	16318	28592	24352	31073	20089	15251
2298	2244	2320	2368	2166	2301	2358	2217	2292	2244	2242	2415

Tab. 22: Originaldatenblatt der Zelllinie Panc 1, 1. Vorversuch

PancTu 1

	16418	33312	20653	24933	29400	19047	13320	21383	34324	24522	
9639	20289	42420	26537	16218	38054	23900	20187	20632	23668	69338	29735
10884	23358	53993	28116	19844	41988	21990	21188	33199	25064	27132	10349
20217	15940	33421	32286	13622	35627	38733	32408	22326	18028	32768	31899
18951	17781	41134	38690	10592	35109	28112		34333	25395	35401	34763
29980	19149	43680	32661	11036	35696	34824	36296	33282	33559	26818	39755
16733	30590	15615	28321	9091	27138	16318	28592	24352	29103		15251
2398	2144	2520	2371	2536	2411	2658	2517	2392	2444	2288	2265

Tab. 23: Originaldatenblatt der Zelllinie PancTu 1, 1. Vorversuch

PatScl 52

	28290	18992	29023	49771	26910	20189	22138	32467	28290	26754	21033
29129	31187	29330	20330	23197	22567	19002	18567	28376	29380	35672	22098
27015	29938	34199	29300	32991	10167	28176	22076	25617	22901	28901	17894
29956	29911	32078	29063	33197	29978	21141	18799	26385	39190	24268	20074
49958	29714		23334	28015	23109	28119	24453	26177	38911	31467	25890
29001	37290	39010	29081	31080	19366	17209	29145	29238	32047	34881	38201
	29325	25117	22190	17018	11004	15804	27817	38092	19257	20994	19703
1398	1425	1493	1750	1189	1768	1278	1509	1591	1907	1503	1515

Tab. 24: Originaldatenblatt der Zelllinie PatScl 52, 1. Vorversuch

PaTu 8902

174364	197894	214154	200191	163343	189635	157336	200609	192362	174193	211017	186750
177247	185538	217483	224721	203725	200946	171682	190100	187841	178295	211586	182038
110353	158521	180651	136356	122247	191474	164311	181329	176094	212897	183162	123117
93164	169592	168111	137189	171474	139800	165253	171296	172153	162350	151282	161675
74665	187742	184492	190936	188385	172264	173083	174249	232290	215196	199719	168997
109343	182028	144529	179823	187989	163968	194386	171125	159671	160583	182207	178577
103356	152681	25723	131235	77319	89236	138476	121862	122932	130690	99773	105406
2257	2089	2204	2178	1982	2220	2164	2134	2235	2059	2131	2308

Tab. 25: Originaldatenblatt der Zelllinie PaTu 8902, 1. Vorversuch

PaTu 8988t

33901	18290	17792	19023	33910	28110	20789	22138	32467	18290	26754	21033
32129	29187	29178	27002	23197	22567	19002	18567	28376	22001	35672	22098
27015	29938	34199	29300	32991	25167	28176	22076	25617	22901	28901	17894
28056	29911	32078	29063	33197	29978	21141	18799	26385	39190	24268	20074
49958	29714	38902	23334	39015	29309	28119	24453	26177	38911		25890
34001	37290	39010	29081	31080	19366	17209	29145	29238	32047	34881	39009
37194	23325	25117	25190	17418	11004	15804	27909	49092	19257	19994	19703
1528	1625	1332	1350	1289	1438	1508	1479	1474	1619	1473	1515

Tab. 26: Originaldatenblatt der Zelllinie PaTu 8988t, 1. Vorversuch

Vorversuch 2

20 µg/ml	20 µg/ml	15 µg/ml	15 µg/ml	Kombi	20 µg/ml	20 µg/ml	Zell-	PBS
antiCD71	antiCD71	antilRP	antilRP	antiCD71,	lgG1	lgG1	suspension	
				antilRP				
10 µg/ml	10 µg/ml	7,5 µg/ml	7,5 µg/ml	Kombi	10 µg/ml	10 µg/ml	Zell-	PBS
antiCD71	antiCD71	antilRP	antilRP	antiCD71,	lgG1	lgG1	suspension	
				antilRP				
5 µg/ml	5 µg/ml	3,75 µg/ml	3,75 µg/ml	Kombi	5 µg/ml	5 µg/ml	Zell-	PBS
antiCD71	antiCD71	antilRP	antilRP	antiCD71,	lgG1	lgG1	suspension	
				antilRP				
2,5 µg/ml	2,5 µg/ml	1,86 µg/ml	1,86 µg/ml	Kombi	2,5	2,5	Zell-	PBS
antiCD71	antiCD71	antilRP	antilRP	antiCD71,	µg/ml	µg/ml	suspension	
				antilRP	lgG1	lgG1		
1,25 µg/ml	1,25 µg/ml	0,93 µg/ml	0,93 µg/ml	Kombi	1,25	1,25	Zell-	PBS
antiCD71	antiCD71	antilRP	antilRP	antiCD71,	µg/ml	µg/ml	suspension	
				antilRP	lgG1	lgG1		
0,75 µg/ml	0,75 µg/ml	0,47 µg/ml	0,47 µg/ml	Kombi	0,75	0,75	Zell-	PBS
antiCD71	antiCD71	antilRP	antilRP	antiCD71,	µg/ml	µg/ml	suspension	
				antilRP	lgG1	lgG1		
0,38 µg/ml	0,38 µg/ml	0,24 µg/ml	0,24 µg/ml	Kombi	0,38	0,38	Zell-	PBS
antiCD71	antiCD71	antilRP	antilRP	antiCD71,	µg/ml	µg/ml	suspension	
				antilRP	lgG1	lgG1		
0,19 µg/ml	0,19 µg/ml	0,12 µg/ml	0,12 µg/ml	Kombi	0,19	0,19	Zell-	PBS
antiCD71	antiCD71	antilRP	antilRP	antiCD71,	µg/ml	µg/ml	suspension	
				antilRP	lgG1	lgG1		

Tab. 27: Behandlungsschema des 2. Vorversuchs, die Kombinationsbehandlung reicht über zwei nebeneinander liegende Spalten mit 20 µg/ml antiCD71 und 15 µg/ml antiIRP, nach unten ist eine Verdünnungsreihe angelegt worden

Capan-1

71975	62978	44620	134043	171574	79869	43022	142674	144083	2314
113462	176859	133802	240512	204978	126548	133072	203085	72086	2326
130651	144199	158178	185291	187011	177845	176154	193809	186351	2335
177052	207321	195716	205667	201086	197705	175699	156578	172273	2313
184780	189204	114788	200026	188593	199021	180234	156148	218979	2115
192368	182379	175813	200227	200997	194121	189510	138011	161342	2173
206284	180052	140982	184156	171410	168546	168594	160268	127255	2346
128947	157551	157093	151401	229618	146139	151196	118802	98066	2289

Tab. 28: Originaldatenblatt der Zelllinie Capan-1, 2. Vorversuch

Fampac

85319	132101	52773	1 290842	149351	122578	90919	147298	2130
105222	171083	478542	463936	229879	182436	231974	238157	2392
249654	235371	39517	1 282800	272610	283610	264117	278085	1989
414600	256414	306394	4 342244	317818	326713	352603	330889	1965
250265	331416	43010	275709	301720	337691	395396	321503	1862
343343	489530	27431	1 361786	585024	386857	391632	367603	2407
370483	644142	27325	1 340718	448556	478435	390307	379434	2287
319113	320091	31597	7 345375	499503	276685	313047	386090	2551

Tab. 29: Originaldatenblatt der Zelllinie Fampac, 2. Vorversuch

Panc 1

349977	324767	3	84768	400926	479745	149937	470345	360836	2360
424977	468743	4	54021	560631	424692	545489	396321	499825	2280
534435	526154	5	62467	483763	574110	532488	567414	511272	1980
474539	509321	5	48930	614952	393527	533917	539416	540387	1960
521887	529614	4	81564	524818	466261	437984	474552	451922	1958
517101	602679	5	644299	543338	432702	506220	473110	534723	2185
522274	522985	5	519474	569311	571517	402791	459466	537370	2180
495488	525286	4	71066	541341	449637	477415	389556	456099	2155

Tab. 30: Originaldatenblatt der Zelllinie Panc 1, 2. Vorversuch

PaTu 8988t

176528		280536	207311	192220	177174	301323	350891	2133
140390	235169	 476648	394578	210330	210129	311958	351239	2292
205385	231393	306125	404567	433581	234421	387287	461237	1959
269353		312606	422509	353549	239132	284178	273780	1962
215390	321737	 429456	459925	498323	254620	261765	205299	1962
310797	307328	348392	351803	420390	393964	367273	264208	2207
280367	531411	356562	480110	471366	282774	184572	278907	2236
495310	551452	 516100	456077	462496	259130	258192	281764	2311

Tab. 31: Originaldatenblatt der Zelllinie PaTu 8988t, 2. Vorversuch

Vorversuch 3

30 µg/ml antiCD71	30 µg/ml antiCD71	30 µg/ml IaG1	30 µg/ml IaG1	Zell-	PBS	30 µg/ml antiCD71	30 µg/ml antiCD71	30 µg/ml IaG1	30 µg/ml IaG1
15 µg/ml	15 µg/ml	15 µg/ml	15 µg/ml	Zell-	PBS	15 µg/ml	15 µg/ml	15 µg/ml	15 µg/ml
antiCD71	antiCD71	IqG1	IqG1	susp.		antiCD71	antiCD71	IqG1	IgG1
7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	Zell-	PBS	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml
antiCD71	antiCD71	IgG1	IgG1	susp.		antiCD71	antiCD71	IgG1	IgG1
3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	Zell-	PBS	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml
antiCD71	antiCD71	IgG1	IgG1	susp.		antiCD71	antiCD71	IgG1	IgG1
30 µg/ml	30 µg/ml	30 µg/ml	30 µg/ml	Zell-	PBS	30 µg/ml	30 µg/ml	30 µg/ml	30 µg/ml
antiCD71	antiCD71	IgG1	IgG1	susp.		antiCD71	antiCD71	IgG1	IgG1
15 µg/ml	15 µg/ml	15 µg/ml	15 µg/ml	Zell-	PBS	15 µg/ml	15 µg/ml	15 µg/ml	15 µg/ml
antiCD71	antiCD71	IgG1	IgG1	susp.		antiCD71	antiCD71	IgG1	IgG1
7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	Zell-	PBS	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml
antiCD71	antiCD71	IgG1	IgG1	susp.		antiCD71	antiCD71	IgG1	IgG1
3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	Zell-	PBS	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml
antiCD71	antiCD71	IgG1	IgG1	susp.		antiCD71	antiCD71	IgG1	IgG1

Tab. 32: Behandlungsschema des 3. Vorversuchs, letzte Spalte: Zellsuspension

BxPC 3

305409	284402	287939	306259	327027	2779	199231	230805	417963	362312	344291
346174	391747	454897	488091	422178	2922	369053	387501	439101	462507	491885
384893	421520	414371	403097	472509	2682	368611	425578	454111	381636	476196
378959	432392	447189	282907	396783	2875	453356	405267	487809	401449	505898
215281	208133	438351	405289	454165	2641	250262	361662	422834	350373	520975
317524	382648	493939	435143	357075	2854	281030	393789	405455	368004	469248
395827	439301	430346	397524	398530	2864	315622	299361	407575	379367	525823
413961	451336	519627	370839	382310	2526	377296	368913	393483	374774	395281

Tab. 33: Originaldatenblatt der Zelllinie BxPC 3, 3. Vorversuch

Ca	pan	-1
----	-----	----

47648	56115	221508	327985	276786	2589	38427	23278	319856	505477	498116
96494	85376	425597	506210	497730	2543	41032	39355	271613	535487	609543
118027	154497	516113	467940	407540	2517	90825	110007	469456	443685	527221
216425	259240	520439	448023	501958	2565	149816	206624	419182	453858	496691
25070	27425	297949	302851	496264	2403	10501	12246	309643	364358	588119
66629	58674	230450	388564	416914	2523	80737	56487	416182	462129	472000
100453	71135	354572	358497	500111	2300		129051	451944	439010	429963
223214	308566	360503	306704	482383	2368	335574	347195	507686	601091	320787

Tab. 34: Originaldatenblatt der Zelllinie Capan-1, 3. Vorversuch

DaNG

46136	90085	145925	104601	97129	2611	195100	178521	259952	248948	307097
98776	129395	235781	158914	195759	2604	258965	309557	417392	378252	324900
91810	197948	205165	165960	137103	2558	251021	302320	396222	371722	290904
181082	169690	281115	203902	191391	2681	270609	287821	327539	298082	236588
60299	141200	183618	175247	181295	2525	152122	170518	310693	331958	202552
130375	196030	180984	181450	193442	2480	223413	250513	296466	254218	214299
134742	202136	217828	222802	169297	2485	227736	275842	254638	257660	241306
200342	251090	227267	161446	161303	2413	284007	192953	197888	292003	239730

Tab. 35: Originaldatenblatt der Zelllinie DaNG, 3. Vorversuch

Fampac

19751	48119	197385	173699	152513	3529	23819	62611	163538	157087	172823
111304	204075	324915	314401	243993	3471	160899	154001	216061	249763	170085
208388	288477	258776	364892	253448	3484	221195	216906	251817	243689	202068
246501	287607	367398	308036	259502	3575	286917	244088	436631	271700	217637
23593	47233	282526	234612	275464	3442	22038	52244	218130	207622	168258
183095	190888	300155	279382	280223	3364	113574	173921	251196	235535	140417
203442	304980	302218	378166	212552	3527	253227	332764	220947	281435	196941
145796	250143	210777	243646	195165	3766	236150	173901	208098	182869	103180

Tab. 36: Originaldatenblatt der Zelllinie Fampac, 3. Vorversuch

KciMOH-1

		2621	106192	172716	319651	368308	441344
		2661	212183	334341	320280	465721	431617
		2533	355552	330067	491734	461331	401970
		2178	400398	329920	412321	529439	478999
		2298	237954	245598	439134	477378	421185
		2018	312424	292298	475706	520586	539419
		2342	274759	478914	449240	433069	348019
		1758	375621	397471	369314	387552	291547

Tab. 37: Originaldatenblatt der Zelllinie KciMoh-1, 3. Vorversuch

MIAPaCa-2

112768	111939	19130	75121	138248	2621			
152742	178422	115031	194399	157626	2661			
187359	197814	142909	148472	204544	2533			
193744	176316	202887	201871	127561	2178			
114242	126052	127042	105325	150455	2298			
151344	143983	166607	163979	186339	2018			
163016	159827	203366	154125	205639	2342			
212465	105970	217433	223876	225895	1758			

Tab. 38: Originaldatenblatt der Zelllinie MIAPaCa-2, 3. Vorversuch

PaCa 44

368360	282744	674024	592004	777290	2793	313502	279548	663188	776774	711787
444152	523066	825539	730205	764615	2757	547256	457959	755674	696312	846015
481954	505978	749787	714013	645162	2791	553932	551413	732728	731491	726469
555149	614242	800322	823706	704113	2583	537510	470231	779564	752270	731134
324281	504718	724043	780427	668503	2468	356098	349818	678073	766124	766800
552412	401689	772647	770163	715224	2573	505461	461683	712845	699376	720011
562083	725440	781766	766036	736396	2393	529177	612202	758964	746158	615940
618037	384292	777803	702440	697830	2601	569100	597284	666512	633647	654359

Tab. 39: Originaldatenblatt der Zelllinie PaCa 44, 3. Vorversuch

PaTu 8902

231562	945140	1067373	950260	1102337	2896	361126	390352	675955	803978	714168
357834	763809	975120	782657	862163	2746	697893	557892	970367	812703	906471
647403	842479	1056779	784017	766585	2642	687251	810366	867582	950392	977398
888711	802875	803800	820828	840842	2731	754517	806392	1007132	1018057	799439
408995	497738	1060644	1004692	928391	2581	383790	440924	919490	930701	976025
545162	705590	848567	1124598	886438	2512	634829	578236	919393	938091	814860
964190	928009	1002531	969413	913440	2602	792526	782762	960023	911862	882324
953707	964778	963384	996729	900030	2670	631435	739941	851880	868228	740220

Tab. 40: Originaldatenblatt der Zelllinie PaTu 8902, 3. Vorversuch

5. Vorversuch

30 µg/ml antiCD71	30 µg/ml antiCD71	30 µg/ml IaG1	30 µg/ml IaG1	Zell-	PBS	30 µg/ml antiCD71	30 µg/ml antiCD71	30 µg/ml IaG1	30 µg/ml IaG1
anaobri		iger	iger	ouop.			anaobri	iger	igoi
15 µg/ml	15 µg/ml	15 µg/ml	15 µg/ml	Zell-	PBS	15 µg/ml	15 µg/ml	15 µg/ml	15 µg/ml
antiCD71	antiCD71	lgG1	lgG1	susp.		antiCD71	antiCD71	lgG1	lgG1
7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	Zell-	PBS	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml
antiCD71	antiCD71	lgG1	lgG1	susp.		antiCD71	antiCD71	lgG1	lgG1
3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	Zell-	PBS	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml
antiCD71	antiCD71	lgG1	lgG1	susp.		antiCD71	antiCD71	lgG1	lgG1
30 µg/ml	30 µg/ml	30 µg/ml	30 µg/ml	Zell-	PBS	30 µg/ml	30 µg/ml	30 µg/ml	30 µg/ml
antiCD71	antiCD71	lgG1	lgG1	susp.		antiCD71	antiCD71	lgG1	lgG1
15 µg/ml	15 µg/ml	15 µg/ml	15 µg/ml	Zell-	PBS	15 µg/ml	15 µg/ml	15 µg/ml	15 µg/ml
antiCD71	antiCD71	lgG1	lgG1	susp.		antiCD71	antiCD71	lgG1	lgG1
7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	Zell-	PBS	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml
antiCD71	antiCD71	lgG1	lgG1	susp.		antiCD71	antiCD71	lgG1	lgG1
3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	Zell-	PBS	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml
antiCD71	antiCD71	lgG1	lgG1	susp.		antiCD71	antiCD71	lgG1	lgG1

Tab. 41: Behandlungsschema des 5. Vorversuchs, letzte Spalte Zellsuspension, linke Hälfte der 96-Lochplatte dialysierter AK, rechte Hälfte mit Konservans

Capan-1

120813	126268	142681	160722	111999	5072	6899	6737	23273	23804	79697
33659	90651	113480	154437	201334	5086	6628	7208	24773	56288	77943
168371	134569	140313	152972	119739	4873	6441	7036	56476	116824	92067
237208	169361	151750	110152	98691	4821	10663	7295	56828	71061	116806
318264	299732	256977	297666	313396	4808	4982	6847	42423	90218	144156
335008	373930	299671	312881	249548	4550	8019	6325	55511	126543	314766
330734	324588	291228	330384	335305	4654	8891	7281	116118	214307	187968
246601	302884	220721	206486	256121	4680	12028	13882	98841	249299	195188

Tab. 42: Originaldatenblatt der Zelllinie Capan-1, 5. Vorversuch

DaNG

83322	85519	126194	125808	107230	4783	14879	7612	118285	109065	65464
59340	160894	185584	179655	122803	4689	46172	18174	139836	223538	101554
115579	123583	164364	178372	128673	4441	78937	43546	179673	128534	131419
114451	145524	175604	164879	177303	4321	53082	59112	206675	115846	76928
193881	179073	267022	190905	260911	4181	67046	35724	288933	277733	208441
179275	231636	264557	292508	254446	4070	177417	141089	278258	288565	161867
214804	265820	269836	250307	271973	4115	241839	125875	254175	271380	251556
160178	178645	210512	245787	205311	4132	178918	239820	229800	267362	145232

Tab. 43: Originaldatenblatt der Zelllinie DaNG, 5. Vorversuch

Fampac

229729	855042	445309	1941480	1617990	4192	12449	7617	171199	1175166	298024
319464	215414	1064320	519245	701226	4190	151464	156795	840950	1029473	1122623
595298	1055161	1152429	1197777	882566	3943	311760	104377	1128655	626371	618979
371143	700958	1007764	1055031	825190	3976	657049	539554	805585	897942	890873
243614	507121	373619	769917	280388	3843	9216	23794	692158	328559	999356
193517	519928	209904	809003	285272	3806	234165	162661	676285	388881	359477
31458	261496	314540	810275	484211	4078	673642	736251	592739	732209	1122846
1196861	225081	893858	1003805	297926	3713	237581	259744	269125	323503	253018

Tab. 44: Originaldatenblatt der Zelllinie Fampac, 5. Vorversuch

PatScl 52

271281	223259	203240	185767	217375	5800	92320	146133	212778	238285	258370
217525	224552	239038	215405	207678	5606	153818	130508	193838	293307	230858
193949	210853	264562	263155	227445	5609	151108	169022	260739	348874	220136
206206	239358	180197	257825	180745	5644	143801	274644	234849	216331	239870
301113	200283	212970	218483	125285	5516	150312	178602	121449	209027	267024
294004	310133	245322	264504	76132	5336	167566	183601	225845	288362	272157
272830	312168	268700	241585	136526	5550	166510	214850	179945	319628	261038
225811	136700	224949	314186	138120	5725	258830	208040	216763	319209	465436

Tab. 45: Originaldatenblatt der Zelllinie PatScl 52, 5. Vorversuch

PaTu 8988t

686997	821739	629953	20586	33438	5425	134284	148962	230983	72706	12278
590368	645675	533605	137217	129717	5365	127035	174748	183364	216219	14628
587269	614292	541994	189758	60753	5218	151066	194566	232673	53621	12411
558071	603622	449290	334531	84898	5198	144637	183114	168288	46970	9535
616730	607025	670152	26360	13637	5391	14247	15153	10500	10354	16282
647130	703261	670544	32436	10155	5230	13106	16909	10265	21014	20740
701156	696817	960609	61174	9686	5421	10696	10196	11640	21966	15032
684208	661946	796767	163171	161398	5503	9379	17840	9734	59448	39794

Tab. 46: Originaldatenblatt der Zelllinie PaTu 8988t, 5. Vorversuch

Hauptversuch Calcein-Assay

30 µg/ml antiCD71	30 µg/ml antiCD71	30 µg/ml IaG1	30 µg/ml IaG1	Zell- susp.	PBS	30 µg/ml antiCD71	30 µg/ml antiCD71	30 µg/ml IaG1	30 µg/ml IaG1
		.go.						.go.	.go:
15 µg/ml	15 µg/ml	15 µg/ml	15 µg/ml	Zell-	PBS	15 µg/ml	15 µg/ml	15 µg/ml	15 µg/ml
antiCD71	antiCD71	lgG1	lgG1	susp.		antiCD71	antiCD71	lgG1	lgG1
7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	Zell-	PBS	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml
antiCD71	antiCD71	lgG1	lgG1	susp.		antiCD71	antiCD71	lgG1	lgG1
3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	Zell-	PBS	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml
antiCD71	antiCD71	lgG1	lgG1	susp.		antiCD71	antiCD71	lgG1	lgG1
30 µg/ml	30 µg/ml	30 µg/ml	30 µg/ml	Zell-	PBS	30 µg/ml	30 µg/ml	30 µg/ml	30 µg/ml
antiCD71	antiCD71	lgG1	lgG1	susp.		antiCD71	antiCD71	lgG1	lgG1
15 µg/ml	15 µg/ml	15 µg/ml	15 µg/ml	Zell-	PBS	15 µg/ml	15 µg/ml	15 µg/ml	15 µg/ml
antiCD71	antiCD71	lgG1	lgG1	susp.		antiCD71	antiCD71	lgG1	lgG1
7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	Zell-	PBS	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml	7,5 µg/ml
antiCD71	antiCD71	lgG1	lgG1	susp.		antiCD71	antiCD71	lgG1	lgG1
3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	Zell-	PBS	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml	3,8 µg/ml
antiCD71	antiCD71	lgG1	lgG1	susp.		antiCD71	antiCD71	lgG1	lgG1

Tab. 47: Behandlungsschema des Hauptversuchs, Spalte rechts daneben mit purer Zellsuspension, Antikörper alle dialysiert (ohne Konservierungsmittel)

Zelllinie Capan-1 Originaldatenblätter

100 Zellen/	well			back-	4818	200 Zellen/	well			
				ground						
120813	126268	142681	160722	111999	5072	318264	299732	256977	297666	313396
	90651	113480	154437	201334	5086	335008	373930	299671	312881	249548
168371	134569	140313	152972	119739	4873	330734	324588	291228	330384	335305
237208	169361	151750	110152	98691	4821	246601	302884	220721	206486	256121
					4808					
					4550					
					4654					
					4680					

Tab. 48: Hauptversuch Capan-1

Fluoresceir	n (1.0s) (Cou	unts)								
100 Zellen/	well			back-	6510 200 Zellen/well					
				ground						
93608	68027	100449	101850	75991	6664	73527	77207	120682	137442	252012
87971	124069	162890	139607	123117	6493	98274	140003	184781	145967	185541
81367	128586	120704	156545	87799	6483	173624	197532	153865	243842	167327
117725	114320	105823	120090	167392	6330	155775	149138	177268	164893	138197
58905	111395	134066	120361	132942	6298	139758	127422	149891	161182	142513
113514	105159	165173	151242	94958	6443	151866	121306	252863	258145	90059
125436	134527	152999	190243	199601	6781	146803	138342	202739	199043	118359
117589	123847	129822	143713	135427	6586	140924	97162	175320	159435	154529

Tab. 49: Hauptversuch Capan-1

Fluoresceir	n (1.0s) (Cou	unts)								
100 Zellen/	well			back- ground	2242	200 Zellen/	well			
7230	9344	5953	11105	4497	2337	5632	11273	9098	15888	17262
4215	5300	6054	7008	8203	2365	8742	19681	12772	15856	15134
5359	5352	5404	13418	8437	2228	9305	13013	13052	12069	10104
3790	8860	10006	7702	8061	2262	9124	9747	21688	9288	21380
3993	3484	3845	7623	8167	2254	5296	8830	14619	14372	6715
3603	3876	3938	6111	12747	2117	5126	9838	9119	12070	16670
13962	4670	4372	6169	12419	2185	6215	11413	12415	20027	12197
4822	5797	4181	4591	3570	2186	5116	8059	10651	11661	9565

Tab. 50: Hauptversuch Capan-1

Fluoresceir	n (1.0s) (Cou	unts)								
100 Zellen/	well			back-	2476	200 Zellen/	well			
				ground						
20645	22836	47145	47887	48491	2456	17885	57087	45447	41059	60671
35167	42641	59909	39033	69239	2551	47849	70539	65708	67872	39393
31719	29370	60099	49322	62479	2418	52340	41680	90392	88813	85184
20877	39618	46901	52183	65342	2417	33669	59564	49245	57277	90664
17708	21701	50839	34955	38823	2359	20221	89712	74738	62409	72389
10507	27771	28765	38698	55493	2529	18644	46080	62579	41050	36611
25590	55747	68897	68098	49345	2497	47526	68935	74023	48098	77010
22292	30196	17652	25926	65027	2580	51759	42294	42064	30811	23624

Tab. 51: Hauptversuch Capan-1

Zelllinie DaNG Originaldatenblätter

Fluoresceir	ι (1.0s) (Coι	ints)								
250 Zellen/	well			back- ground	4342 500 Zellen/well					
83322	85519	126194	125808	107230	4783	193881	179073	267022	190905	260911
59340	160894	185584	179655	122803	4689	179275	231636	264557	292508	254446
115579	123583	164364	178372	128673	4441	214804	265820	269836	250307	271973
114451	145524	175604	164879	177303	4321	160178	178645	210512	245787	205311
					4181					
					4070					
					4115					
					4132					

Tab. 52: Hauptversuch DaNG

Fluoresceir	ι (1.0s) (Coι	unts)								
250 Zellen/	well			back- ground	6420	500 Zellen/	well			
89643	69382	150796	68162	28307	6609	132648	129419	118775	155317	149066
81153	70307	112915	122403	58815	6379	184290	213997	155459	219275	223488
73764	112517	156500	109156	118207	6564	167911	173813	153755	157865	215735
69819	140839	75691	133825	150934	6470	156884	169471	169890	246187	145185
64683	116751	134618	88572	116204	6278	91827	154799	147645	180158	167630
72827	131404	133651	126575	124034	6129	155297	177975	169164	197993	199344
118852	191225	181415	121051	147329	6461	136223	187717	183400	223018	213437
181318	180306	168629	161494	141718	6470	166816	172650	129883	96450	216595

Tab. 53: Hauptversuch DaNG

Fluorescein	ı (1.0s) (Cou	unts)								
250 Zellen/	well			back-	5113	500 Zellen/	well			
				ground						
236003	352263	487624	494388	453758	5140	433524	418886	523147	523078	532317
432564	474566	523759	528126	492561	4936	494147	487591	519370	538753	553081
453621	441707	523746	529478	500031	4907	470307	491065	510252	526340	527277
484123	480168	509423	478716	451467	5058	475646	485118	528464	490960	530698
341186	388251	471686	498740	449052	5103	405741	398353	506482	507608	542140
418385	423073	500481	508441	498014	4848	474389	480026	506848	526606	552122
455992	508693	561711	556917	545595	5323	506376	524164	550638	559503	581927
444520	522658	536248	562384	527992	5586	547406	536272	579076	542254	591523

Tab. 54: Hauptversuch DaNG

Fluorescein	n (1.0s) (Cou	unts)								
250 Zellen/	well			back-	2482	500 Zellen/	well			
				ground					-	
78744	99659	122876	51398	38778	2485	116180	110615	120561	77375	96425
46705	110273	60779	55952	70266	2341	113215	94424	120194	75097	96530
61182	107145	69240	68364	73020	2425	106973	85280	123425	74034	107589
57880	58572	58755	46686	56494	2414	115771	94429	128006	75607	47879
					2516					
					2608					
					2565					
					2500					

Tab. 55: Hauptversuch DaNG

Zelllinie Fampac Originaldatenblätter

Fluoresceir	n (1.0s) (Cou	ints)								
250 Zellen/	well			back- ground	pack- 3968 500 Zellen/well ground					
229729	855042	445309	1941480	1617990	4192	243614	507121	373619	769917	280388
319464	215414	1064320	519245	701226	4190	193517	519928	209904	809003	285272
595298	1055161	1152429	1197777	882566	3943	31458	261496	314540	810275	484211
371143	700958	1007764	1055031	825190	3976	1196861	225081	893858	1003805	297926
					3843					
					3806					
					4078					
					3713					

Tab. 56: Hauptversuch Fampac

Fluorescein	(1.0s) (Cou	ints)								
250 Zellen/	well			back- ground	4870	500 Zellen/) Zellen/well			
54857	56481	524294	130015	44255	5224	21504	11416	37626	423099	18778
707717	484499	23970	16858	110102	4767	556080	523715	100456	157583	1318281
328264	11306	294029	511445	277426	4651	8451	592214	192590	289042	20998
1452629	303507	1368815	466206	634477	4885	221928	1290824	336248	1313543	797747
322348	575738	478644	1211188	1403788	4720	269948	120133	908914	860618	516875
15487	1306585	63079	438274	108261	4736	35511	203702	1207473	320309	1155337
418385	10897	19825	418194	1282241	5000	1868349	1122984	264083	184106	1111895
233709	1137810	1143218	1111172	802149	4977	1042505	1394973	597580	516016	19774

Tab. 57: Hauptversuch Fampac

Fluorescein	ı (1.0s) (Cou	unts)								
250 Zellen/	well			back- ground	5337	500 Zellen/	Zellen/well			
129830	69357	995593	341126	176737	5773	109320	11186	27430	36670	458242
84607	94153	250250	353252	788432	5610	362967	37744	20622	435363	1160867
289479	708767	696905	655125	133222	5351	471708	989061	140073	789468	142274
1019785	484260	301643	517250	1026345	5345	1064813	288275	92151	1014434	102099
10760	15789	1145268	363015	484961	5202	740460	385353	570859	80598	790867
811606	161290	405973	397459	429731	4984	405352	369280	279462	390917	668698
627275	474605	714640	56226	808296	5176	862333	659954	104166	452544	396239
933873	536097	292030	227059	795808	5258	722314	1149115	863656	175511	933814

Tab. 58: Hauptversuch Fampac

Fluoresceir	ι (1.0s) (Coι	unts)								
250 Zellen/	well			back-	2228	500 Zellen/	well			
				ground						
15498	44609	35252	31225	25753	2283	51518	45267	40804	24270	50266
31336	38267	42370	41546	26725	2243	65868	39922	39546	40559	37992
24309	35106	31333	49543	35169	2250	47172	35282	68053	61235	21017
25014	34987	28408	26899	26241	2204	45870	50849	42175	44053	22415
25764	27531	20657	29126	34103	2292	41129	29126	34891	39184	46464
13990	20603	27161	19961	17487	2081	55264	37218	29504	29846	42351
32794	32079	35871	34572	27038	2144	46874	38915	52668	41896	28640
15164	37331	31096	24080	30786	2327	34012	45972	36441	38722	38801

Tab. 59: Hauptversuch Fampac

Zelllinie PatScl 52 Originaldatenblätter

Fluoresceir	n (1.0s) (Cou	ints)								
250 Zellen/	well			back- ground	5598	500 Zellen/	well			
271281	223259	203240	185767	217375	5800	301113	200283	212970	218483	125285
217525	224552	239038	215405	207678	5606	294004	310133	245322	264504	76132
193949	210853	264562	263155	227445	5609	272830	312168	268700	241585	136526
206206	239358	180197	257825	180745	5644	225811	136700	224949	314186	138120
					5516					
					5336					
					5550					
					5725					

Tab. 60: Hauptversuch PatScl 52

Fluorescein	ι (1.0s) (Coι	unts)								
250 Zellen/	well			back- ground	ack- 3118 500 Zellen/well round					
115140	135297	163065	150914	193657	3045	113083	65938	138434	171684	117776
167113	103907	155740	127251	68585	3083	52046	128671	146441	143544	63276
124496	144345	163681	115364	110916	3235	131926	98186	138968	169060	116367
243936	168297	135095	122976	120166	2865	106569	107254	126397	150940	56978
67203	141028	90313	117560	128521	3576	118853	113057	111858	148379	146571
264313	118148	99409	171283	108050	2891	124991	139720	152586	213956	176624
162935	130004	118915	141326	107468	3274	113193	136692	183494	159782	284748
145019	184075	110693	161084	145491	2977	121511	97700	150796	147358	276069

Tab. 61: Hauptversuch PatScl 52

Fluorescein	(1.0s) (Cou	ints)								
250 Zellen/	well			back- 3087 500 Zellen/well ground						
84988	157447	176874	160971	208022	2875	131380	148912	113509	142260	55610
131421	87308	128638	145668	191155	2980	124452	87437	146072	211280	89792
256623	104621	142851	162797	188797	3039	103415	102212	157411	195157	86019
215782	152161	166753	131635	148198	3170	139340	126456	195144	142230	144662
312833	81097	163634	151391	117768	3468	154955	79536	116430	149414	140134
189219	129821	151719	122706	160276	2960	62916	94315	151229	115557	90924
209361	138905	136401	138487	144664	2958	106409	178472	119726	135089	40677
208528	161277	147465	160991	130640	3248	165469	131493	178528	237027	133266

Tab. 62: Hauptversuch PatScl 52

Fluoresceir	n (1.0s) (Cou	unts)								
250 Zellen/	well			back-	2459	500 Zellen/	well			
				ground	ground					
91847	79341	77484	119283	84420	2426	77562	87548	93438	68466	54457
108492	39080	92501	125619	96364	2446	81135	90698	90706	94997	91575
88312	75237	87429	87210	93118	2379	105950	96426	94975	97581	106134
80575	89643	90796	102307	84123	2494	93562	80758	100649	99955	111850
74273	89330	77560	85797	72740	2449	88355	103905	84570	116731	95891
70256	37340	76887	82099	81747	2460	111514	118394	100958	106762	97348
84595	55563	100428	66527	57642	2509	93165	109754	123350	111291	103680
32201	33568	89231	76554	49719	2505	84286	102150	129867	107231	103380

Tab. 63: Hauptversuch PatScl 52

Zelllinie PaTu 8988t Originaldatenblätter

Fluoresceir	n (1.0s) (Cou	ints)								
100 Zellen/	well			back- ground	6555	5 200 Zellen/well				
114515	60727	168366	105318	183729	6800	289118	203043	219417	256591	191705
134145	64439	164487	145177	148202	6528	276764	235156	296356	284373	183658
117938	163250	128760	197178	136228	6556	232850	199769	303548	211843	304762
113379	104797	272994	250796	126888	6496	282440	272183	209266	272043	259876
91827	110624	136592	121057	125332	6514	210119	238666	261805	266116	329163
139049	103329	125530	170239	76810	6326	266581	304851	289842	276065	322887
149225	145152	185404	223248	178836	6559	290418	323998	370460	304828	223728
275364	161477	241807	175708	119935	6657	485233	477767	400479	372276	346426

Tab. 64: Hauptversuch PaTu 8988t

Fluoresceir	ι (1.0s) (Coι	unts)								
100 Zellen/	00 Zellen/well			back- ground	5250	200 Zellen/well				
65456	156790	25879	184735	343665	5258	437740	390933	443756	394678	467454
155016	286875	31243	262260	240708	5067	542130	572748	368653	422850	542776
366787	214420	272559	286642	345649	5059	463951	419508	495514	496412	517625
344010	233553	303441	290055	260768	5179	494753	446472	523651	528772	553879
283349	508510	234918	282403	288951	5413	455241	446362	384993	383314	442044
384600	387051	410932	303897	294246	5123	338209	385816	481750	343070	342197
477513	333052	303431	314781	281124	5383	242129	546353	560516	504515	586501
306955	318776	280600	283448	188706	5514	552222	532231	561400	386033	485378

Tab. 65: Hauptversuch PaTu 8988t

Fluorescein	ı (1.0s) (Cou	unts)								
100 Zellen/well				back- ground	5633	200 Zellen/	well			
574766	390311	251469	265504	415875	5909	438875	369512	484656	554957	552362
461310	251078	234956	335660	247293	5611	731800	755375	645319	632483	859972
354696	468262	344113	353096	389988	5638	572775	715955	691401	632449	695045
388231	436717	451698	313024	327151	5635	640756	579305	653357	460101	308305
521100	312896	273831	323021	477562	5486	468010	442745	498000	493746	457567
530650	384226	451148	347595	339782	5275	564553	314055	539525	551607	302431
453629	283332	343936	329837	348996	5682	410999	655323	349447	645025	594025
460568	401942	347554	343685	407223	5824	520150	773806	590000	455948	599102

Tab. 66: Hauptversuch PaTu 8988t

Fluorescein	n (1.0s) (Cou	ints)								
100 Zellen/	well			back-	2688	200 Zellen/	well			
				ground						
153973	123084	137946	163099	140801	2773	106774	91197	84154	142668	204695
152131	140694	174109	187085	173770	2720	109224	132242	126948	136553	92232
140473	128060	190896	224516	153878	2759	119607	127542	163563	171630	127938
144505	174046	141936	161497	170562	2696	108582	113782	117236	129216	144525
59607	75646	97573	108156	128792	2609	74624	72146	90770	110680	120984
84143	91793	105048	81724	140634	2449	111270	113321	100076	122849	154938
109640	113629	103316	127607	126406	2736	116396	118783	140082	162858	123652
164715	149725	114129	165825	106926	2759	155984	84941	138742	141547	167503

Tab. 67: Hauptversuch PaTu 8988t

Tier Nr.	Gruppe		Woche 0	Woche 1	Woche 2	Woche 3
1	antiCD71	Volumen (mm ³)	712	1321		
		Wachstum (%)	100	185		
2	lgG1	Volumen (mm ³)	319	749		
		Wachstum (%)	100	234		
3	lgG1	Volumen (mm ³)	220	705		
		Wachstum (%)	100	320		
4	lgG1	Volumen (mm ³)	458	1575	5985	
		Wachstum (%)	100	344	1306	
5		Volumen (mm ³)	976			
		Wachstum (%)	100			
6	antiCD71	Volumen (mm ³)	330	417		
		Wachstum (%)	100	127		
7	antiCD71	Volumen (mm ³)	194	3057		
		Wachstum (%)	100	1575		
8	lgG1	Volumen (mm ³)	208	675		
		Wachstum (%)	100	325		
9	lgG1	Volumen (mm ³)	587	832		
		Wachstum (%)	100	142		
10	antiCD71	Volumen (mm ³)	197	615		
		Wachstum (%)	100	313		
11	antiCD71	Volumen (mm ³)	30	797		
		Wachstum (%)	100	2695		

Capan-1 in vivo-Originaldaten der Tumorvermessung

Tab. 68: Vermessung des Tumorvolumens bei der Zelllinie Capan-1

Tier	Gruppe		Woche						
Nr.			0	1	2	3	4	5	6
1	antiCD71	Volumen (mm ³)	316	695					
		Wachstum (%)	100	220					
2	antiCD71	Volumen (mm ³)	113	309	432	746	1768	1742	10415
		Wachstum (%)	100	274	383	661	1567	1544	9228
3	antiCD71	Volumen (mm ³)	470	1229					
		Wachstum (%)	100	261					
4	antiCD71	Volumen (mm ³)	234	564	1690				
		Wachstum (%)	100	241	722				
5	lgG1	Volumen (mm ³)	94	768					
		Wachstum (%)	100	817					
6	lgG1	Volumen (mm ³)	179	695	1148	2265			
		Wachstum (%)	100	388	641	1264			
7	lgG1	Volumen (mm ³)	523	1148	2274				
		Wachstum (%)	100	220	435				
8	antiCD71	Volumen (mm ³)	470	470					
		Wachstum (%)	100	100					
9	antiCD71	Volumen (mm ³)	113						
		Wachstum (%)	100						
10	antiCD71	Volumen (mm ³)	334	334					
		Wachstum (%)	100	100					
11	antiCD71	Volumen (mm ³)	71	540					
		Wachstum (%)	100	760					
12	antiCD71	Volumen (mm ³)	79	586					
		Wachstum (%)	100	738					
13	lgG1	Volumen (mm ³)	84	881					
		Wachstum (%)	100	1045					
14	lgG1	Volumen (mm ³)	261						
		Wachstum (%)	100						
15	lgG1	Volumen (mm ³)	96	1178					
		Wachstum (%)	100	1229					
16	lgG1	Volumen (mm ³)	299						
		Wachstum (%)	100						

DaNG in vivo-Originaldaten der Tumorvermessung

Tab. 69: Vermessung des Tumorvolumens bei der Zelllinie DaNG

Tier	Gruppe		Woche								
Nr.			0	1	2	3	4	5	6	7	8
1	antiCD71	Volumen (mm ³)	102	154	296	264	266	296	231		
		Wachstum (%)	100	150	289	258	260	289	226		
2	antiCD71	Volumen (mm ³)	102	154	491	182	357	482	576		
		Wachstum (%)	100	150	480	177	348	470	562		
3	antiCD71	Volumen (mm ³)	102	154	822	819	1160	715	863	1800	2059
		Wachstum (%)	100	150	802	800	1133	698	843	1758	2010
4	lgG1	Volumen (mm ³)	102	154	489						
		Wachstum (%)	100	150	478						
5	lgG1	Volumen (mm ³)	79	147	180	204	327	353	1506		
		Wachstum (%)	100	187	228	258	415	448	1909		
6	lgG1	Volumen (mm ³)	57	92	155	189	216	236	237		
		Wachstum (%)	100	161	271	330	377	413	414		
7	lgG1	Volumen (mm ³)	20	47	60	66	73				
		Wachstum (%)	100	238	304	335	370				
8	lgG1	Volumen (mm ³)	63	105	158	255	395	448			
		Wachstum (%)	100	168	252	406	629	713			
9	antiCD71	Volumen (mm ³)	56	171	409	495	660				
		Wachstum (%)	100	306	733	887	1182				
10	antiCD71	Volumen (mm ³)	45	55	66	77	97	368			
		Wachstum (%)	100	124	147	173	218	824			
11	lgG1	Volumen (mm ³)	20	249	365						
		Wachstum (%)	100	1236	1812						
12	lgG1	Volumen (mm ³)	59	103	216	237	316				
		Wachstum (%)	100	173	364	400	532				
13	antiCD71	Volumen (mm ³)	81	93	337	848	1063				
		Wachstum (%)	100	115	417	1049	1315				

PaTu 8988t in vivo-Originaldaten der Tumorvermessung

Tab. 70: Vermessung des Tumorvolumens bei der Zelllinie PaTu 8988t

Danksagung

Mein Dank gilt allen, die zu dem Entstehen dieser Arbeit beigetragen haben: Profs. Reinacher und Schmidt für die Bereitstellung dieses interessanten Themas, Dr. Ryschich für seine große Hilfsbereitschaft und sein allzeit offenes Ohr, meinen Laborkollegen für ein tolles Teamwork,

V. Kerkadze für das Kümmern um die Tiere während meiner OP-bedingten Abwesenheit,

meinen Arbeitgebern Dres. Bach für die vielen freien Tage,

meiner Schwester und meinem Schwager für die Elimination der Fehlerteufelchen und selbstverständlich meinen Eltern und meinem Freund für ihre unermüdliche Motivation.

In memoriam Arabeske et Mirandola.

