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1 Introduction 

1.1 Anatomy and physiology of the lung 

The lung is a large organ in the human body, responsible for gas exchange and providing oxygen in 

the circulating blood for metabolic reactions. It was as early as in the Devonian Period (416 million to 

359 million years ago) when, for the first time, spongy ventricle forms started appearing in Rhipidistian 

fishes, the ancestors of tetrapods. Moving from the aquatic environment to land, many changes took 

place in the respiratory system. Most essential for survival in the atmosphere of the Earth atmosphere 

was the loss of gills and the development of lungs, when  lung formations became the dominant organs 

of respiration (30).  

 

Figure 1 Anatomical compartments of the mouse lung. 

 Mouse lungs consist of right and left wings and five lobes; the superior, the middle, the inferior, the post-caval at the right 
wing and the left lobe being the only lobe of the left wing. Image of a wild type mouse (C57Bl/6) lung, at post-natal day 14, 
adapted from (23). 

 
The particular structure of the lung is variable among vertebrates, and the position  of the lung, which 

is along the anterior limb, ventral to the esophagus and between the thyroid gland and the stomach, is 

conserved (59). Mammalian lungs are embedded in the thoracic cavity as a sac-like organ, and are 

located above the diaphragm. The lung is separated from the thorax by the pleura and the pleural cavity 

(76). A pair of typical mammalian lungs consists of a right and a left lung wing (pulmo dexter and pulmo 

sinister) that are further divided into asymmetrically-arranged lung lobes (59, 116). Despite that both 

human and mouse lungs have five lobes in total, the arrangement at the left and the right lungs are not 
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the same. Human right lung wings consist of three lobes, the superior, the medius, and the inferior; and 

the left lung wings consist of the lobus superior and lobus inferior. The mouse lung, however, has four 

right wing lobes (superior, middle, inferior and post-caval) and the left wing has a single lobe (23) 

(Figure 1).  

The respiratory structures can be separated into two general zones; the conducting zone that includes 

structures such as the nose, pharynx, larynx, trachea and bronchial tree and the respiratory zone that 

includes tissues contributing directly to gas exchange. The terminal bronchioles mark the beginning of 

the respiratory zone, followed by alveolar ducts that end in alveolar sacs (Figure 2A).   

Alveolar ducts are the pipes formed by connective tissue, airway epithelial cells (peripheral squamous 

cells and proximal cuboidal cells), smooth muscle cells and extracellular matrix (ECM) leading to an 

alveoli cluster, the alveolar sac (23, 112). The smallest unit of respiration is the alveolus, which is where 

gas exchange takes place (112).  The principal cells of the alveolar wall are type I cells that are highly 

permeable to gases, type II cells that secrete pulmonary surfactant (phospholipid rich substance that 

minimizes surface tension) and alveolar macrophages that remove pathogens in the alveoli (Figure 2B). 
 

Figure 2 Respiratory structures. 

(A) Structural compartments of the lung in histological section. Image of a wild type mouse (C57Bl/6), at post-natal day 
14, indications as adapted from adapted from (114). (B) The principal structure of respiration, the alveolus, consists of type 
I and type II cells, fibroblasts, epithelial cells, as well as macrophages, adapted from (8).  
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1.2 Lung development in the pre-and post-natal periods 

In human embryos, the lung starts developing with the tracheal bud, around the first 5-7 weeks after 

the zygote has formed and is completed in late childhood. The developmental stages are divided as 

pre- or postnatal and are defined by the structural changes occurring at each time-point (63). As depicted 

in Figure 3, the first steps of lung development are prenatal both in human and mouse, but alveolarization 

starts only postnatally in mice, suggesting that mice are ideal candidates for studies on the alveolar 

formation and associated diseases (63).  

 
  Figure 3 Lung development stages in human and mouse. 

 Developmental correspondence between human and mouse lung, adapted from (49, 77).  
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The different stages of prenatal lung development are named and defined by structural changes that 

take place during this period. The embryonic stage of lung development (1-7 weeks human, 1-14 days 

in mouse) is when most of the organs are formed, and  in human, the lung becomes more evident around 

the fourth week, when five saccular structures that will later form the five lobes can be observed (23). 

Early lung development requires epithelial-mesenchymal interactions. When the endodermal epithelium 

forms the gut, it produces the diverticula, which, after interactions with the subtending mesenchyme, 

will form the thyroid, liver, pancreas, and lung. It has been already shown 80 years ago in birds and 

shortly after that in mammals, that the mesenchyme is crucial for lung branching morphogenesis (90, 

97).  

At week 5-17 (14-16 days in the mouse) the lung enters the pseudoglanular stage, when subdivision of 

the lung into segments and lobules occurs. In this stage, the formation of the premature gas exchange 

regions occurs, with alveolar type I and type II cells, that are now differentiated, constituting the 

epithelial component of the alveoli (48, 93, 112, 113). Type I cells, covering most of the peripheral lung 

surface (roughly 95%), are very thin cells that connect with pulmonary capillaries and serve as the site 

of gas exchange (115). The canalicular stage starts at 16-26 weeks in human (16-20 days in the mouse), 

when many canals are formed in the developing lung parenchyma. The differentiation of type I and type 

II cells takes place during this time, and pulmonary fibroblasts that interact with the epithelium drive 

the differentiation of the type II cells (62, 96). The importance of type II cells is underlined by an ability 

to synthesize, store, release, and recycle the pulmonary surfactant lipoprotein (51, 117) that allows the 

low surface tension at the air-liquid interface. The physiological importance of pulmonary surfactant’s 

surface tension-lowering properties is shown by the lethality of neonatal respiratory distress syndrome, 

which is caused by a lack of surfactant in premature human newborns (7).  

The saccular or terminal sac stage is defined by widening and lengthening of air spaces called saccules 

and takes place from week 24 until birth. From the terminal sacs, the alveolar ducts and later the alveoli 

will arise (23). 

 The postnatal period is when 85% of alveoli are formed in human lungs (16). In mice, this process 

happens entirely postnatally, since neonatal mice are in the saccular stage at the time of birth (16). 

Parenchyma, composed of a double layer of capillaries, forms the primary septa between the sacculi. 

Small elevations of the saccular wall divide the luminal area. Alveoli are now formed, and the inter-

alveolar walls are the secondary septa, with two characteristic regions, the base and the tip of the septum 

where elastin deposition occurs (108). Alveolarization is closely linked to the deposition of elastin in 
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the saccular walls meanwhile connective tissue is the central part of the septum. Lung septation is not 

well understood but there is evidence for several factors that orchestrate lung development. Hepatocyte 

growth factor (HGF) (79), fibroblast growth factor (FGF) (27, 78, 80), vascular endothelial growth factor 

(VEGF) (13) and platelet derived growth factor (PDGF) (5, 15) play a role in lung development. 

Fibroblasts are key players during alveolar septation, since they are the source of ECM and fibroblast 

malfunction could lead to several diseases that impact lung structure (105).  

Microvascular maturation is the final stage of lung development, and occurs over the first 2-3 years in 

humans, and from postnatal day (P)14 until P30 in mice (19). The double-layered capillary network 

transforms into the single-layer network, which is the final form found in adult lungs (3, 73).  

1.3 Pulmonary fibroblasts 

For more than thirty years, fibroblasts have been under continual study in the lung, and their role in 

pulmonary development, differentiation and diseases has been a constant area of interest for scientists 

and clinicians (20, 66-68, 85, 87). There have been described three distinguishable fibroblast subsets in 

lung; platelet derived growth factor receptor-α+ (PDGFRα+) fibroblasts, lipofibroblasts and 

myofibroblasts (81).  

 
Figure 4 Fibroblast subtypes 

Alveolar septum with the three fibroblast subtypes, adapted from (81). All three different fibroblast subtypes express 

PDGFRα; lipofibroblasts, myofibroblasts and PDGFRα+ fibroblasts.  
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1.3.1 PDGFRα+ fibroblasts 

PDGFs are a group of dimeric ligands that bind to tyrosine kinase receptors, and after dimerization, 

they transmit intracellular signals. Four ligands form homo-  and hetero-dimers; A, B, C, D and are 

recognized by two different receptors; PDGFRα and PDGFRβ (5). In vivo there is functional evidence 

for  interactions of PDGFAA and PDGFCC via PDGFRα, and PDGFBB via PDGFRβ (38, 100). 

Activation of the receptors stimulates cell growth, but also causes changes in the form and mobility of 

cells (6). There are some general expression patterns, such as expression of PDGFB principally in 

vascular endothelial cells, megakaryocytes, and neurons, and of PDGFA and PDGFC in epithelial cells, 

muscle, and neuronal progenitors, while  PDGFD has been observed in fibroblasts (5). Mesenchymal 

cells express PDGFRα and PDGFRβ, but PDGFRα is expressed strongly in subtypes of mesenchymal 

progenitors in lung, skin, and intestine and oligodendrocyte progenitors (5).  Meanwhile  PDGFRβ is 

mostly expressed in vascular smooth muscle cells (SMCs) and pericytes (5). 

Knock-out studies have revealed that PDGFA is important for the correct differentiation of 

myofibroblasts and secondary septation (12, 15).  The correct interaction between receptor and ligand 

is essential for the proliferation and the survival of PDGFRα+ cells that will differentiate to alveolar 

myofibroblasts (15). Disruption of the differentiation signaling at early stages leads to structural 

disorders of the lung (1, 5, 14, 15). In mice lipid laden PDGFRα+ cells are found at the base of the 

septum between P4 and P8 and some PDGFRα+ cells expressing α smooth muscle actin (SMA) at the 

alveolar entrance before deposition of elastic fibers (56). From P12 and on there is a decrease in the size 

of PDGFRα+ cells population underlined by an increase in apoptosis and a decrease in proliferation of 

PDGFRα+ cells resulting in thinner alveoli and single layered capillaries that mark the end of 

alveolarization (64). 

1.3.2 Pulmonary Lipofibroblasts 

Pulmonary lipofibroblasts represent an interstitial mesenchymal cell population first described in the 

1970s by O’Hare (76) and later called interstitial lipid cells (or lipid droplet–laden cells) due to 

characteristic intracellular lipid droplets (66). Lipofibroblasts are mostly found at the base of the septum. 

The difference between lipofibroblasts and other interstitial cells containing contractile filaments is the 

positivity for Thy-1 or CD90 (69). CD90 belongs to a set of markers for mesenchymal stem cells (MSCs) 

including CD44, CD105, CD73 and CD146 (107). CD90 has been demonstrated to be involved in 
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lipofibroblast differentiation and to control esterification via peroxisome proliferator-activated 

receptor-γ (PPAR-γ) (109). In vitro studies have revealed two fibroblast groups depending on the CD90 

expression. Fibroblasts lacking CD90 have a round, spread phenotype. After stimulation with PPAR-γ 

agonists, these CD90+ fibroblasts can turn into lipofibroblasts. It was later shown in rats that this is due 

to transforming growth factor (TGF)-β signaling (119). On the other hand, CD90- cells with a spindle 

shape and filopodia did not have this capacity (50, 66, 109) and as shown by Sander et al., these cells 

differentiate into myofibroblasts (91). The importance of Thy-I has been later shown in in vivo studies, 

where its reduction inhibits normal alveolar development (74). 

The abundance of lipofibroblasts has been studied in rodents, and reaches a peak around P7 but 

declines towards the end of alveolarization (61, 108). Lipofibroblasts contribute to the differentiation of 

the epithelial cells to type II cells, and provide triglycerides for the production of surfactant, and, 

therefore, are crucial contributors to early lung development and adult lung repair (66, 88, 101, 102). 

The mesenchymal-epithelial crosstalk takes place due to type II cells and lipofibroblasts. Type II cells 

secrete parathyroid hormone-related protein (PTHrP) that is recognized by PTHrP-receptors in 

lipofibroblasts, which in turn secrete leptin, which is recognized by type II cells (103). This interaction 

up-regulates the gene product of the Perilipin2 (Plin2) gene, adipose differentiation-related protein 

(ADRP), an amphiphilic protein coating lipid storage droplets. The ADRP is a lipid storage droplet 

coating protein that allows triglyceride uptake by lipofibroblast and alveolar type II cells 

(28, 57, 88, 92, 109). Another molecule produced by lipofibroblasts, retinoic acid (RA), which is 

generated before the maximal level of elastin production during alveolarization, suggesting an important 

role for these fibroblast subtypes in development (65).  

1.3.3 Myofibroblasts 

The last fibroblast subtype described here, the myofibroblast, has taken its name due to the expression 

of contractile filaments such as αSMA thus myofibroblasts are often called αSMA+ fibroblasts (24, 95). 

Myofibroblasts are also characterized by the expression of intermediate filaments, such as vimentin, 

non-muscle myosin (NNM) and smooth muscle myosin heavy chain isoform 1 (SM-MHC or SM1) (40). 

Myofibroblasts are related to extracellular matrix (ECM) synthesis, for fiber-related tension in the lung 

(33, 53) and are crucially involved in the secondary septation during development (15). Myofibroblast 

differentiation and activation can be induced by signaling from inflammatory cells, mechanical stress or 

TGF-β (25, 39-41). Being the principal cell for ECM production, where the ECM consists largely of 
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elastin and collagen, myofibroblasts give the elastic properties to the lung and preserve the alveoli during 

normal respiration. During development, elastin and collagen fibers contribute to primary and secondary 

septation, by contributing to the elongation of terminal air sacs (18).  

Myofibroblasts are most abundant in early life stages and are almost absent in the healthy adult lung 

(41, 118) but proliferate in interstitial pulmonary fibrosis (IPF), producing  excessive amounts of ECM 

resulting in thicker alveolar walls and subsequently decreased epithelial-endothelial gas exchange and 

lung compliance (52). 

1.4 Diseases that impact the lung structure 

The main role of the lung is a proper gas exchange that is facilitated by a large number of alveoli and 

a thin blood-air barrier. Destruction or blockade of these two structural features leads to currently 

untreatable diseases such as chronic obstructive pulmonary disease (COPD) in adults (22) and 

bronchopulmonary dysplasia (BPD) in neonates (58, 94), as well as lung fibrosis (47). These 

malformations lead to compromised breathing and respiratory failure in affected patients. 

Lung fibrosis occurs with alveolar epithelium damage, alveolar inflammatory reactions and a dramatic 

proliferation of fibroblasts. Therefore, the vessels and capillaries are lost, and the lung structure is 

damaged. Gas exchange is restricted by increased deposition of connective tissue between the alveoli 

and the blood vessels, and lung transplantation was the only treatment option available (11) until 

recently, when pirfenidone application was introduced (9, 11, 42). 

An arrest of alveolarization, simplified alveolar structures, and a dysmorphic pulmonary circulation 

are the hallmarks of BPD, which has a high morbidity and mortality in neonates, and survivors face 

long-term respiration problems to adulthood (58). No adequate treatment and management options are 

currently available for the management of BPD patients (76).  

The major problem in the treatment of the diseases mentioned above arises from the fact that the 

mechanisms of alveolar generation and damage are not understood. Revealing the pathways involved in 

pathological conditions, and enabling lung tissue to regenerate or repair by pinpointing key players in 

these processes is a desirable strategy for treatment. Lung fibroblasts represent a  prominent group of 

mediators in alveolarization and repair (28). 
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1.5 Mouse models 

To investigate pulmonary diseases, transgenic animals and particularly mice are used as model 

organisms, since the 1980s (2). The mouse genome is highly similar to the human genome and mice 

have a short generation time, two features that make mice good experimental animals (98). Genetically 

modified organisms have genomic modifications such as the introduction of a foreign gene (knock-in) 

or gene replacement (knock-out). These changes affect the animal phenotype in a manner that allows 

the investigator to conclude about the properties and function of the locus of interest in the tissue/cell of 

interest.  

In the Cre/loxP recombination system, the enzyme Cre-recombinase originates from the bacteriophage 

P1 (2) and can excise DNA sections flanked by loxP sequences and reconnect the remaining DNA. The 

exact orientation and localization of the loxP sites determine whether Cre-recombinase will delete, invert 

or translocate the gene of interest. Usually mice lines are created separately carrying either Cre or loxP 

sites and are crossed for experimentation resulting in a Cre/loxP line (72).  

Recombination can be additionally controlled in a time- or site-specific manner, where Cre is placed 

under the control of a cell-type-specific promoter and introduced into the mouse genome. When this 

mouse line is crossed with another line carrying loxP sites, a conditional knockout is obtained in the 

particular tissue/cell-type. Even though constitutive Cre expression is a useful tool, there is the chance 

that the recombination leads to a lethal phenotype if the promoter regulating Cre is already active from 

the embryonic stages, and this could prevent experimentation at postnatal time-points. Since 2001, a 

transgenic mouse tool has been available, in which Cre-recombinase is fused with a modified 

ligand-binding domain of the estrogen receptor (ER). This tool allows temporal-regulation of the 

recombination, when synthetic tamoxifen binds to ER to induce Cre-recombinase translocation into the 

nucleus and further DNA recombination. (31, 70).  

In this study the Cre/stop loxP system has been used. In the stop loxp system two transgenic lines are 

crossed; one, carrying the Cre-recombinase gene (either inducible or constitutive) after the cell specific 

promoter and one carrying a stop codon before a reporter gene. In the offspring of these crossed lines, 

Cre-recombinase that was expressed in the specific cell type, can excise the stop codon, allowing the 

reporter gene that follows to be expressed (Figure 5A). In the case of inducible Cre-recombinase lines, 

this is accomplished in a temporally-controlled manner after tamoxifen administration. A similar system 

that has been used as well here is the diphtheria toxin fragment A (DTA) activation system (Figure 5B). 
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In this, the stop codon is found before a DTA gene, thus after the expression of diphtheria toxin, cell 

specific depletion can be achieved.  

For reporter gene activation, a fluorochrome expressing gene is inserted (knock-in) after the gene of 

interest and cells are labeled with that color allowing visualization of specific cell types (Figure 5C).  

 

Figure 5 Schematic modeling of the genetic modifications used to label and deplete cell-types. 

A. In the stoplox system, a stop codon is located upstream of a fluorochrome. To better control the system there is 
sometimes another fluorochrome that is constantly expressed in all cell types. When Cre-recombinase is expressed in a 
specific cell type, it excites the constantly expressed fluorochrome gene and the stop codon, and the other fluorochrome is 
expressed in the cell type of interest. B. The diphtheria toxin A (DTA) system is similar to the stoplox, but instead of a 
fluorochrome, DTA is expressed and is depleting the cell type of interest. C. In the simple reporter system, a fluorochrome 
is expressed under the same promoter of the gene of interest. 
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1.6 Aims 

Induction of alveolarization in the diseased lung represents a desirable new therapeutic approach for 

structural lung diseases such as COPD, Fibrosis, and BPD. Fibroblast subtypes such as PDGFRα+ 

fibroblasts and lipofibroblasts critically impact on lung development and particularly on the new 

formation of alveoli, the process of alveolarization. Understanding fibroblast differentiation (lineage 

specification) and cell type specific function during lung development will provide cellular candidates 

driving alveolarization and possible target candidates for the development of new therapeutic concepts 

for pulmonary diseases. 

Aims 

The present study aimed: 

1) To provide new insights into the role of fibroblast subtypes such as PDGFRα+ fibroblasts and 

lipofibroblasts during lung development with special emphasis on alveolarization. Using transgenic 

mice and knock in mice containing reporter genes (GFP, mCherry) or tools of the CreERT2 loxP system, 

lineage tracing and cell type specific depletion analysis will provide knowledge of localization, 

differentiation (lineage specification) and function of fibroblast subtypes during lung development.  

2) Against this background, a recently generated mouse Cre-driver line to target lipofibroblasts (the 

Plin2tm1.1(Cre/ERT2)Mort line) will be characterized and validated if the line represents a valuable tool to 

target lipofibroblasts. 



 

 Page 16  
  

2 Materials and Methods 

2.1 Materials 

2.1.1 Devices 

100-, 40-μm thick-cell strainers; BD Biosciences, USA 

Autoclave; Systec, Germany 

BD LSRII flow cytometers with DIVA software, BD Biosciences, USA  

BD FACSAriaIII with DIVA Software, BD Biosciences, USA  

Cell culture sterile working bench; Thermo Scientific, USA 

Centrifuge; Thermo Scientific, USA 

Coloring chamber; Roth, Germany 

Confocal microscope; Zeiss, Germany 

Counting chamber; Marienfeld, Germany 

Cytospin™ 4 Cytocentrifuge, Thermo Scientific, USA 

Dako Pen Fat Pen; Dako, Denmark 

gentleMACS™ Dissociator; MiltenyiBiotec, Germany 

InoLab® pH meter; WTW, Germany  

Leica automated microtome RM2255; Leica, Germany  

Leica tissue embedding center EG1160; Leica, Germany 

Leica tissue embedding system EG1150C; Leica, Germany 

Leica microscope DM4000B; Leica, Germany  

Leica tissue processor ASP200S; Leica, Germany 

MicroAmp® FAST 96-well reaction plate; Applied Biosystems, USA  

Microcentrifuge tubes: 0.5, 1.5, 2 ml; Eppendorf, Germany  

Minispin® centrifuge; Eppendorf, Germany  

Multifuge 3 S-R centrifuge; heraeus, Germany  

NanoZoomer XR C12000 Digital slide scanner; Hamamatsu, Japan  

NanoDrop® ND 1000; PeqLab, Germany  

Photometer; Biorad, USA 
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Pipetboy; Eppendorf, Germany  

Pipetmans: P10, P20, P100, P200, P1000; Gilson, France  

Pipetman filter tips: 10, 20, 100, 200 and 1000 μl; Greiner Bio-One, Germany  

Precellys 24 homogenizer; Peqlab, USA 

Precision balance; Denver Instruments, USA 

Scales; A&D, USA 

Shakers; Heidolph, Germany 

StepOnePlus™ Real-Time PCR system; Applied Biosystems, USA  

Surgery instruments, F.S.T. Fine Science Tools, Germany 

Test tubes: 15, 50 ml; Greiner Bio-One, Germany 

Thermocycler; Biometra/Eppendorf, Germany 

Vortex mixer; VWR, USA  

Microtome LEICA SM 2500; Leica, Germany 

2.1.2 Chemicals/Consumables 

0.2 ml polypropylene 8-tube strips; GBO, Germany 

1.4 mm Precellys ceramic beads kit; Peqlab, USA 

1.5 ml and 2 ml reaction tubes; Eppendorf, Germany 

2-Propanol; Merck, Germany 

15 ml and 50 ml Falcon tubes; Greiner bio-one, Austria 

Acetic acid; Roth, Germany 

Aceton; Roth, Germany 

Bovine serum albumin; PAA Laboratories GmbH, Austria 

Collagenase-B; Roche, Switzerland 

Goat serum; PAA Laboratories GmbH, Austria 

DAPI; Sigma-Aldrich, Germany 

Dispase; BD Biosciences, USA 

DNase I; SERVA, Germany 

dNTP mix; Promega, USA 

Dulbecco’s Modified Eagle Medium (DMEM); PAA Laboratories GmbH, Austria 

EDTA-Solution; Thermo Scientific, USA 
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Eosin; Sigma-Aldrich, Germany 

Eppendorf Mastercycler ep Gradient S thermal cycler; Eppendorf, Germany 

Ethanol; Roth, Germany 

Ethidium bromide solution 1% (v/v); Roth, Germany 

Ethylene diamine tetraacetic acid (EDTA); Roth, Germany 

Fuchsin; PanreacQuímica SLU, AppliChem GmbH, USA 

FACS-Buffer; Affymetrix ebioscience, USA 

Fetal calf serum; PAA Laboratories, Austria 

Hematoxylin; Waldeck GmbH & Co. KG, Germany 

HEPES; PAA Laboratories, Austria 

High capacity reverse transcription Kit; Applied Biosystems, USA 

Hydrochloric acid; Sigma-Aldrich, Germany 

Isoflurane; CP-Pharma, Germany 

Magnesium chloride; Sigma-Aldrich, Germany 

Methanol; Fluka, Germany  

Methylbutane; Roth, Germany 

Microscope slides; Thermo Scientific, USA 

Miglyol; Caesar & Loretz GmbH, Germany 

Mowiol; Sigma-Aldrich, Germany 

Natrim chloride; Roth, Germany 

Nuclease-free water; Ambion, USA  

Paraformaldehyde; Sigma-Aldrich, Germany 

Paraplast, 39601006; Leica, Germany 

Penicillin-streptomycin; PAA, Austria 

Petri dishes; Greiner bio-one, Austria 

Picric acid solution; Sigma-Aldrich, Germany 

Platinum® SYBR® Green qPCR SuperMix UDG kit; Invitrogen, USA 

Precellys® Lysing Kits; Krackeler Scientific, USA 

Proteinase K; Promega, USA  

RNeasy Mini Kit; Qiagen, Netherlands 

Random hexamers; Applied Biosystems, USA 
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Resorcin-Fuchsin, Weigert; Waldeck GmbH & Co. KG, Germany 

RNase inhibitor; Applied Biosystems, USA 

Roti-Histol; Roth, Germany 

Saponin; Sigma Aldrich, Germany 

SensiMix SYBR No-ROX kit; Bioline, Germany 

Sodium chloride; Merck, Germany  

Sodium dodecyl sulfate; Roth, Germany 

Tamoxifen; Sigma-Aldrich, Germany 

Tissue Tek O.C.T. Compound; Sakura, Germany 

Triton X-100; Roth, Germany 

Tris; Roth, Germany 

Trypsin; Sigma-Aldrich, Germany 
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2.1.3 Buffers & Solutions 

Table 1 Buffers and solutions used 1 

1% (w/v) agarose gel 1.5 g agarose, 150 ml TAE-Buffer, 3 μl ethidium bromide 1% (v/v) 

10× PBS potassium hydrogen phosphate, sodium hydrogen phosphate, sodium 
chloride 

10× TAE 0.4 M Tris, 0.01 M EDTA, 0.2 M acetic acid 
Cytospin digestion 

buffer 17.3 ml DMEM, 1.5 ml 10× trypsin, 1 ml Collagenase B, 200 μl DNase I 

FACS blocking buffer FACS buffer, 0.1% (v/v) Triton X-100 

FACS staining buffer FACS buffer, 0.2% (w/v) saponin, 1% (v/v) primary antibody or 0.5% 
(v/v)  secondary antibody 

Fe-Hematoxylin 1:1 (v/v) solution A: solution B Weigert hematoxylin 
Histobuffer 3% (w/v) BSA/PBS, 0.2% (v/v) Triton X-100 
Lysis buffer 50 mM Tris-HCl, 100 mM EDTA, 100 mM NaCl, 1% (v/v) SDS 

Resorcin-Fuchsin 10 ml Weigert Resorcin-Fuchsin, 190 ml 1% (v/v) hydrochloric acid in 
70% (v/v) ethanol. Total volume 200 ml 

T10E1 10 mM Tris, 0.1 mM EDTA 

Van Giesson 240 ml Picric acid, 8 ml 2% (w/v) fuchsin, 2 ml 1% (v/v) acetic acid. 
Total volume 250 ml. 

 

2.1.4 Polymerase chain reaction reagents 

Immomix red; Roche, Switzerland 

GeneRuler 100 bp DNA Ruler; Thermo Scientific, USA 

KAPA Taq DNA polymerase ready mix; Kapa Biosystems, USA 

                                                 
1BSA: Bovine serum albumin 

DMEM: Dulbecco's modified Eagle's medium 

EDTA: Ethylenediaminetetraacetic acid 

FACS: Fluorescence-activated cell sorting 

PBS: Phosphate buffered saline 

SDS: Sodium dodecyl sulfate 

TAE: Tris-acetate-EDTA 

Tris: Tris(hydroxymethyl)aminomethane 

Triton X-100: 4-(1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol 

T10E1: Tris-HCl ten EDTA one  
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2.2 Experimental animals and animal husbandry 

2.2.1 Approval for animal experiments  

The animal experiments in this work were carried out under the approval of the Regierungspräsidium 

Darmstadt (approval number: B2/304). Mice were kept under standard conditions of purified air and 

water, supplied with food ad libitum and exposed equal cycles of 12 h light-darkness prior to 

experiments. 

2.2.2 Transgenic lines 

2.2.2.1 Tamoxifen-inducable Cre-mouse lines 

PDGFRαCreERT2: This mouse line expresses the Cre-recombinase specifically in cells where the 

promoter of PDGFRα is active, and is activated upon tamoxifen administration, when is translocated to 

the nucleus with the ERT2 protein. This mouse line was provided exclusively for this research by 

Prof. Dr. William Richardson (University College London). 

Plin2tm1.1(Cre/ERT2)Mort: This knock in mouse  line has been generated by Dr. Marten Szibor, Dr, Robert 

Voswinckel, Isabelle Salwig and Prof. Dr. T. Braun (Max Planck Institute, Bad Nauheim). Into exon 8 

of the Plin2 locus the CreERT2 and a monomeric cherry fluorescent protein (mCherry) have been 

integrated using homologous recombination. These components were inserted at the end of the 

endogenous gene and joined by "reading bridges" (T2A segments). Thus, the original gene was not 

destroyed and remained fully functional even in homozygous mice. The neomycin cassette needed to 

select the embryonic stem cell clones, was later removed by mating with a flip-deleter mouse strain.  
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2.2.2.2 Reporter mouse lines 

Gt(ROSA)26Sortm4(ACTB-tdTomato,-EGFP)Luo/J (mTmG): This mouse line expresses a red fluorochome 

membrane tandemTomato (mtdTomato) in all cell membranes from the Rosa26 gene locus. A stop 

codon and second reporter gene for green fluorescent protein (GFP) are in line with mtdTomato. Parts 

of the tomato sequence and the stop codon are flanked by loxP sequences. After Cre-mediated 

recombination the stop codon is removed, tomato expression will be silenced and GFP will be expressed 

instead of mtdTomato. Thus after crossing the mTmG reporter line with a Cre-recombinase expressing 

mouse line, the mT cassette is deleted in the double transgenic offspring in Cre-recombinase expressing 

tissues, enabling expression of the downstream "membrane-terminated GFP" (mG) cassette. The actin 

beta (ACTB) promoter of this line ensures stronger and prolonged expression of the fluorescent protein 

(especially in adult cells) compared to the endogenous Gt (Rosa) locus alone. This double-fluorescence 

system allows visualization of recombined as well as non-recombined cells. It is suitable for internal 

control in phenotypic analyzes of Cre-recombinase-induced mosaic mutants and offers two possibilities 

for labeling in cell differentiation studies. By locating the fluorescent protein in the cell membrane, 

conclusions can be drawn about cell morphology. This mouse line was obtained from the company The 

Jackson Laboratory (Stock ID: 007576) (71). 

B6.129S4-PDGFRαtm1.1(EGFP)Sor/J (PDGFRαGFP): These mice express the h2B-eGFP fusion protein 

(knock-in) under the endogenous PDGFRα promoter. This allows the precise expression pattern of the 

gene to be visualized at the respective development time-point. This mouse line was obtained from the 

company The Jackson Laboratory (Stock ID: 007669) (37). 

C57Bl/6-Tg(PDGFRα-Cre)1Clc/J (PDGFRαCre): This mouse line expresses the Cre-recombinase 

constitutively only in cells expressing the PDGFRα. These mice were kindly provided by Dr. Botond 

Roska (Friedrich Miescher Institute for Biomedical Research, Basel) (89). 

2.2.2.3 Depletion mouse line 

B6.129P2-Gt(ROSA)26Sortm1(DTA)Lky/J (DTA): This mouse strain contains a floxed-STOP cassette 

prior to a diphtheria toxin open reading frame. When DTA mice are crossed with a Cre-recombinase 

line and Cre is active, the floxed-STOP cassette is deleted and the Gt(ROSA)26Sor promoter drives 

expression of diptheria toxin in the Cre-expressing cells. These DTA mice allow selective ablation in a 

cell-specific manner. This mouse line was obtained from the company The Jackson Laboratory, USA 

(STOCK ID: 009669)  (110). 
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2.2.3 Tamoxifen administration 

Stock tamoxifen solutions were prepared at a concentration 20 mg/ml (for adult mice in the embryonic 

experiments), and 16 mg/ml (for postnatal mice) in Miglyol. The injections were performed 

intraperitoneally at a volume of 50 μl for the mothers (1 mg/animal) and 25 μl (0.2mg/g Tam per animal) 

for the postnatal mice at one time-point. After injection, the animals were maintained under regular 

observation. 

2.3 PCR 

2.3.1 DNA isolation from tail biopsies 

In order to determine the genotype of the transgenic mice, the DNA was isolated from a small sample 

of tail tissue. The biopsies were first lysed over night (o.n.) in 500 μl of lysis buffer with 5 μl of 

proteinase K at 55 °C. The next day, the lysates were centrifuged for 10 min at 13,000 rpm at 4 °C and 

the supernatants were transferred into new eppendorfs. Subsequently, the supernatants were mixed with 

500 μl isopropanol to precipitate the DNA and centrifuged for 10 min at 13,000 rpm at 4 °C. The 

supernatants were then discarded and the pellets were washed with 70% (v/v) ethanol. The pellets were 

then allowed to dry for about 30 min at RT and afterwards dissolved in 50 μl of T10/1 E buffer. 
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2.3.2 PCR Primers 

Table 2 Primer sequences for genotyping PCR 

Transgene Sequence (5′ 3′) 
1Plin2tm1.1(Cre/ERT2)Mort Adrp_taa_ki_s: AGCGCCTTCGGATCCACCTCT 

Adrp_taa_wt_as: TGCTCTGGTGACAAGGAGGGGT 

Adrp_taa_mCh_as: CTCGTGGCCGTTCACGGAGC 

Adrp_taa_hERLB_s: TGCCCCTCTATGACCTGCTGCT 
2mT/ mG 

 

WT_for: CTCTGCTGCCTCCTGGCTTCT 

WT_rev: CGAGGCGGATCACAAGCAATA 

Mut_rev: TCAATGGGCGGGGGTCGTT 
2PDGFRαGFP 

 

WT_for: CCCTTGTGGTCATGCCAAAC 

WT_rev: GCTTTTGCCTCCATTACACTGG 

Mut_rev: ACGAAGTTATTAGGTCCCTCGAC 

PDGFRαCreERT2 

 

Cre up: CAGGTCTCAGGAGCTATGTCCAATTTACTGACC 

Cre low: GGTGTTATAACGAATCCCCAGAA 

DTA  

 

Mut_for: CGA CCT GCA GGT CCT CG 

Mut_rev: CTC GAG TTT GTC CAA TTA TGT CAC 

 

                                                 
1 For Plin2tm1.1(Cre/ERT2)Mort  mice genotyping, a combination of  those primers was used for three products; Adrp_taa_ki_s and 

Adrp_taa_mCh_as for the mCherry gene, Adrp_taa_wt_as and Adrp_taa_hERLB_for the Cre-recombinase gene, and 

Adrp_taa_ki_s and Adrp_taa_wt_as for the wild type gene 
2 Multiplex PCRs for PDGFRαGFP and mT/ mG lines 
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2.3.3 Programs 

The PCR was carried out for the respective transgene by the following steps: 

 

Plin2tm1.1(Cre/ERT2)Mort: 

Step    Time 

1. Denaturation 95 °C  10 min 

2. Denaturation 95 °C   20 s 

3. Primer annealing 56 °C   30 s 

4. Elongation 72 °C   35 s 

5. Final Elongation 72 °C   7 min 

6. End 4 °C 

Cycles: Step 2-4, 40 repetitions 

Product size: Wild type: 441 base pairs (bp), mutant for Cre: 315 bp; mutant for mCherry: 584 bp; 

Polymerase: Immomix red 

 
mTmG: 

Step    Time 

1. Denaturation 95 °C  15 min 

2. Denaturation 94 °C   30 s 

3. Primer annealing 61 °C   1 min 

4. Elongation 72 °C   1 min 

5. Final Elongation 72 °C   2 min 

6. End 4 °C 

Cycles: Step 2-4, 35 repetitions 

Product size: Wild type: 330 bp, mutant: 250 bp; Polymerase: Immomix red 
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PDGFRαGFP: 

Step    Time 

1. Denaturation 94 °C  10 min 

2. Denaturation 94 °C   30 s 

3. Primer annealing 65 °C   1 min 

4. Elongation 72 °C   1 min 

5. Final Elongation 72 °C   2 min 

6. End 4 °C 

Cycles: Step 2-4, 35 repetitions 

Product size: Wild type: 451 bp, mutant: 242 bp; Polymerase: Immomix red 

 

PDGFRαCreERT2: 

Step    Time 

1. Denaturation 94 °C  10 min 

2. Denaturation 94 °C   30 s 

3. Primer annealing 61 °C   45 s 

4. Elongation 72 °C   1 min 

5. Final Elongation 72 °C   10 min 

6. End 4 °C 

Cycles: Step 2-4, 40 repetitions 

Product size: 500 bp; Polymerase: Immomix red 
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DTA: 

Step    Time 

1. Denaturation 95 °C  3 min 

2. Denaturation 95 °C   15 s 

3. Primer annealing 58 °C   15 s 

4. Elongation 72 °C   8 s 

5. Final Elongation 72 °C   30 s 

6. End 4 °C 

Cycles: Step 2-4, 40 repetitions 

Product size: 500 bp; Polymerase: Kapa Taq 

2.3.4 Electrophoresis  

Gel electrophoresis is used for the separation and identification of DNA fragments according to their 

size and charge. An electric field is applied on a gel matrix to move the negatively charged molecules 

of nucleic acid. For the matrix 1% (w/v) agarose gels (in 1×TAE buffer) containing 0.002% (v/v) 

ethidium bromide were created. Since ethidium bromide is intercalated into DNA, PCR products are 

visible under UV light. For all gels a 100 bp marker was employed. 

2.4 Fluorescent-activated cell sorting  

Sacrifice of the mice was conducted by decapitation with sharp scissors for mice up to P5, while older 

animals were killed after receiving an overdose of >5% isoflurane by inhalation, and subsequent 

exsanguination. The lungs were washed by perfusion though the right heart ventricle with 1×PBS. The 

lungs were then inflated though the trachea with dispase at 20-cm H2O hydrostatic pressure, isolated, 

and placed in a Petri dish covered with 1 ml dispase and incubated for 10 min at RT. The reaction was 

stopped by the addition of 1 ml FCS and 1 ml DMEM with 2.5% (v/v) HEPES, 1% (v/v) 

penicillin-streptomycin and 2.1% (v/v) DNase and the lungs were then homogenized by a dissociator. 

The cell suspension was filtered first though a 100 μm and then though a 40 μm filters before 

centrifugation at 4 °C at 213 g for 10 min. The supernatant was removed and the cell pellets were 

re-suspended in FACS buffer and permeabilized with 0.2% (w/v) saponin in FACS buffer for 15 min 

on ice. After centrifugation at 156 g for 3 min at 4 °C the cells were re-suspended in 10-μl blocking 
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solution and 20 μl of the antibody solution afterwards and let for incubation for 20 min at 4 °C in the 

dark. The antibodies that were used are shown in Table 3. 

Cells were washed in 100 μl FACS buffer and centrifuged at 156 g for 3 min at 4 °C. The secondary 

antibodies were then added and incubated for 15 min at 4 °C in the dark. After washing and 

centrifugation at 156 g for 3 min at 4 °C pellets were re-suspended in FACS buffer containing 0.15% 

(v/v) paraformaldehyde (PFA) in PBS and kept on ice for 15 min. Cells were filtered through a 100 μm 

filter and centrifuged at 156 g for 3 min at 4 °C before being re-suspended in 200 μl FACS buffer for 

the FACS analysis.  
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Table 3 Overview of primary and secondary antibodies used1 

Antibody Type Host Catalog 
number 

Company Application 

ADRP primary rabbit Ab52356 Abcam IHC, FACS, cytospin 
PDGFRα primary mouse Sc-21789 Santa Cruz IHC 
PDGFRα primary rat Ab 90967 Abcam IHC, cytospin 

αSMA primary mouse A 5228 Sigma IHC, cytospin 
αSMA primary rabbit Pa5-19465 Thermo Scientific IHC, FACS 
CD45 primary rat 553076 BD IHC 
CD44 primary rabbit Ab 41478 Abcam IHC 
CD105 primary rat Ab81456 Abcam IHC 
CD73 primary rabbit 13160 Cell Signalling IHC 
CD146 primary rabbit 04-1147 Millipore IHC 
CD90 primary rat Sc-73161 Santa Cruz IHC 

Vimentin primary rabbit Sc- 7558 Santa Cruz IHC 
Collagen I primary mouse C2456 Sigma IHC 

IgG primary mouse 10400c Invitrogen IHC 
IgG primary rat Sc-2026 Santa Cruz IHC, FACS 
IgG primary rabbit 2729 Cell Signaling IHC 

CD140α APC primary rat 135907 Biolegend FACS 
APC IgG2α primary rat 400511 Biolegend FACS 

IgG primary rabbit Pa5-23090 Thermo Scientific FACS 
CD45 primary rat 103104 Biolegend FACS 

CD326 (EpCAM) primary rat 118204 Biolegend FACS 
CD31 (PECAM) primary rat 102404 Biolegend FACS 

A555 anti-rabbit IgG secondary goat A21428 Invitrogen IHC 
A555 anti-rat IgG secondary goat A21434 Invitrogen IHC 

A647 anti-mouse IgG secondary goat A21240 Thermo Scientific IHC 
A647 anti-rat IgG secondary goat A21247 Invitrogen IHC 

A647 anti-rabbit IgG secondary goat A21244 Invitrogen IHC, FACS 
A680 anti-mouse IgG secondary goat A21057 Invitrogen IHC 
Brilliant Violet 510 secondary rat 405233 Biolegend FACS 

APC secondary rat 405207 Biolegend FACS 

                                                 
1 APC: Allophycocyanin 

  EpCAM: Epithelial cell adhesion molecule 

  FACS: Fluorescence-activated cell sorting 

  IgG: Immunoglobulin G 

  IHC: Immunohistochemistry 

  PECAM: Platelet endothelial cell adhesion molecule 

 



 

 Page 30  
  

 

2.5 Immunofluorescence 

2.5.1 Tissue isolation for immunohistochemistry 

Mice were sacrificed as described in Section 2.4. After intratracheal intubation lungs were inflated 

with 1:1 Tissue Tek 4% (v/v) PFA at 20 cm H2O hydrostatic pressure. Lungs were kept o.n. in 4% (w/v) 

PFA at 4°C. Tissues were then fast frozen in a methyl butane bath over dry ice and stored as cryo-blocks 

at -80 °C. Prior to staining lungs were cut in microtome sections of 10 μm and placed on slides to dry o.n. 

and stored at -20 °C. 

2.5.2 Preparation of mouse lung homogenates for cytospins 

Mice were sacrificed as in section 2.4. Lungs were removed and manually homogenized using a 

scalpel, and then were digested in 3-4 ml cytospin digestion buffer, for a total period of 50 min at 37 °C, 

with one re-suspension interval after the first 25 min. The enzyme reaction was blocked with FCS and 

the cells were filtered through a 40 μm mesh. Subsecuently, the cells were re-suspended in 2-3 ml 

1×PBS. For the cytospin, an aliquot (2×100 μl) of the cell suspension was spun down on a glass slide 

by centrifugation for 5 min at 500 rpm at 4 °C, and allowed to dry at RT.  

2.5.3 Antibody staining 

Tissue sections or cells underwent fixation in a mixture of 1:1 (v/v) methanol/acetone at -20 °C for 20 

min. Then the area of interest was circled with a fat pen and was blocked in goat serum for 1 h. The 

primary antibodies were incubated for 3 h o.n. and the slides were washed in PBS (3×5 min) before 

incubation with the secondary antibodies for 1 h. After washing in the same manner, nuclei were stained 

with 4´,6-diamidino-2-phenylindole dihydrochloride (DAPI) for 20 min, the slides were mounted with 

Mowiol and allowed to dry at RT. The antibodies used are listed in Table 3.  

2.5.4 Confocal microscopy imaging 

All tissue sections were analyzed using a confocal microscope. For the analysis of cytospins cells of 

each animal were distributed to three slides. Four optical fields per slide were assessed randomly at the 
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microscope resulting in twelve optical fields for every mouse for a total of 3-5 animals and data were 

analyzed with the STEPanizer © stereology tool. 

2.6 Histological staining- elastin staining 

Mice were sacrificed as in Section 2.4. After intratracheal intubation, lungs were inflated with 4% PFA 

at 20 cm H2O hydrostatic pressure. Removed lungs were kept o.n. in 4% PFA at 4 °C. Tissues were then 

dehydrated with Leica ASP200S tissue processor, and embedded in paraffin blocks with Leica EG1160 

and Leica EG1150C. The tissues were then sectioned using Leica RM2255 microtome into 3-μm thick 

sections and allowed to dry at RT. Deparaffinization of the slides occurred by heating at 59 °C for 60 

min. The slides were then placed in Roti-Histol (3×5 min), followed by 5 min steps of embedding in 

progressively reduced ethanol concentration as follows: 99.6% (v/v), 99.6% (v/v), 96% (v/v), and 

70% (v/v) ethanol and let o.n. in Resorsin-Fuchsin solution. The next day, the lung tissues were washed 

for 15 min in tap water and in for 10 s in dd H2O, before counter-staining with Weigert hematoxylin. 

The same washing step was repeated but the tissues were stained with van Gieson solution.  Then, the 

tissues were progressively dehydrated as follows: 2×2 min 96% (v/v) ethanol, 5 min 99.6% (v/v) ethanol, 

5 min 2-propanol 99.8% (v/v) ethanol, 3×5 min Roti-Histol and mounted with Pertex. The pictures were 

generated by nanozoomer at bright field.  

2.7 Total RNA isolation and real-time PCR 

Total RNA was purified with a Precellys® Lysing Kit according to the manufacturer’s instructions. 

For each sample 100 ng of total RNA was used to synthesize cDNA. Using high capacity cDNA Reverse 

Transcription KitcDNA, cDNA was synthesized according to the manufacturer’s instructions in 

Eppendorf Mastercycler ep Gradient S thermal cycler. The program for cDNA synthesis was as follows 

(reaction volume 20 µl):  

1: 25 °C for 10 min 

2: 37 °C for 120 min  

3: 85 °C for 5 min 

4: 4 °C hold 
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Real-time PCR was performed using 2 µl of cDNA and a SensiMix SYBR No-ROX kit according to 

the manufacturer’s instructions. The primers used for the amplifications are listed in Table 4. All the 

primer pairs were separated by at least one intron to exclude genomic DNA contamination and checked 

for primer efficiency.  

Real-time PCR took place in Bio-Rad C1000 thermal cycler with CFX96 system with the following 

protocol (reaction volume 15 µl): 

1: 95 °C 6 min 

2: 95 °C 10 s 

3: 59 °C 10 s 

4: 72 °C 15 s  

Plate Read 

5: GO TO 2; 44 more times 

6: 95 °C for 10 s 

7: Melt Curve 65 °C to 95 °C: Increment 0.5 °C for 3 s  

Plate Read 

 
Table 4 Primer sequences for qPCR 

Locus Sequence (5′ 3′) 
GFP1 Forward: GAAGCCAACGCCTGCAAAATC 

Reverse: CCAACGGGTATGAGCTATTCC 
Cre Forward: GACATGTTCAGGGACAGGCA 

Reverse: GTTGTTCAGCTTGCACCAGG 
mCherry Forward: AAGGGCGAGATCAAGCAGAG 

Reverse: CCTCGTTGTGGGAGGTGATG 
ADRP2 Forward: CGACGACACC GATGAGTCCCAC 

Reverse: TCAGGTTGCGGGCGATAGCC 
GAPDH3 Forward: TCACCACCATGGAGAAGGC 

Reverse: GCTAAGCAGTTGGTGGTGCA 

                                                 
1 GFP: Green fluorescent protein 
2 ADRP: Adipose differentiation related protein 
3 GAPDH: Glyceraldehyde-3-phosphate dehydrogenase 
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3 Results 

3.1 Characterization of PDGFRα+ fibroblasts during lung development 

3.1.1 Localization of PDGFRα expressing cells during early lung development  

The starting point of this study was to analyze the localization of PDGFRα+ cells in early lung 

development using transgenic PDGFRαGFP reporter mice. Lung sections from embryos were stained 

with antibodies against ADRP, as a marker for lipofibroblasts and against αSMA as a marker for 

myofibroblasts (Figure 6 B, C, E, F, isotype controls in Figure 34). Nuclei were stained using DAPI. 

Expression of bright GFP was observed at E14.5 in interstitial cells around the large bronchi and was 

co-localized with, αSMA in cells in close proximity to the epithelial tubes of the bronchi (Figure 6 A-C). 

The expression of ADRP was detected in some cells of the more distal mesenchyme (Figure 6 B, C). 

The distal mesenchyme also contained cells with dim GFP expression which lo-localized with ADRP in 

some cells (Figure 6 A-C).  Later, at E16.5, the canaliculi were formed and the GFP signal still co-

localized with αSMA in peribronchial cells (figure 6 E, F). The signal of ADRP was detected in more 

cells of the distal mesnchyme at E16.5 compared to E14.5 (Figure 6 B, C, E, F). These findings 

demonstrated co-localization of PDGFRα with αSMA in peribronchial myofibroblasts at E14.5 and 

E16.5, and co-localization with ADRP in some lipofibroblasts of the distal mesenchyme at E14.5 and 

E16.5. 
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Figure 6 Localization of platelet-derived growth factor receptor α expression at two time-points during embryonic mouse 

lung development. 
(A-F) Lung tissue from PDGFRαGFP mice was stained for adipose differentiation related protein (ADRP) (orange) and 

α-smooth muscle actin (αSMA) (red), followed by a 4', 6-diamidino-2-phenylindole dihydrochloride nuclear stain (blue). 
Green fluorescent protein (GFP) (green). (A-C) At embryonic day (E)14.5 bright platelet-derived growth factor receptor α 
(PDGFRα) expression was restricted to large bronchi which already expressed αSMA, dim expression of PDGFRα was 
detected in the distal mesenchyme, few cells of the distal mesenchyme expressed ADRP. (D-F) At E16.5 PDGFRα expression 
was still detected in αSMA-expressing peribronchial cells, more cells of the distal mesenchyme expressed ADRP. 
Scale bar = 50 μm. 

 

3.1.2 Expression of mesenchymal stem cell markers in PDGFRα+ cells during pre- and 

postnatal lung development 

Since PDGFRα+ cells have been demonstrated to serve as progenitor cells, the expression of markers 

typical for MSCs was analyzed using PDGFRαGFP mice. Lung tissue from the embryonic stages E14.5, 

E16.5 and E18.5 and the postnatal stages P3 and P5 was stained for MSC markers CD44 and CD105 

with DAPI as nuclear counter stain.  At E14.5 and E16.5 CD44 and CD105were not expressed in 

PDGFRα+ cells (Figure 7 A, B, isotype controls in Figure 34 and in Figure 35). Later in the canalicular 
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stage at E18.5 some PDGFRα+ cells expressed CD44 and CD105 (Figure 7 C). As growth continued, 

some PDGFRα+ cells revealed CD105 expression at P3 but the CD44 signal was not detected in 

PDGFRα+ cells. In early stages of alveolarization, PDGFRα+ cells exhibited expression of CD44 within 

the primary septa at P5, and some tip cells of the secondary crests expressed CD105 (Figure 7 D, E). 

 

 
Figure 7 At certain time-points during lung development platelet-derived growth factor receptor α+ cells expressed the 

mesenchymal stem cell markers CD44 and CD105. 

(A-E) Lung tissue of prenatal and postnatal PDGFRαGFP mice was stained for the mesenchymal stem cell markers CD44 
(orange) and CD105 (red), followed by a 4', 6-diamidino-2-phenylindole dihydrochloride nuclear stain (blue). Green 
fluorescent protein (GFP) (green). (A-B) At embryonic day (E)14.5 and E16.5 the PDGFRα  signal did not co-localize with 
CD44 and CD105. (C) At E18.5 some platelet-derived growth factor receptor α+ (PDGFRα+) cells exhibited CD44 and 
CD105 expression (arrows). (D) At postnatal day (P)3 some PDGFRα+ cells revealed CD105 expression (arrows) but did 
not exhibit a signal for CD44. (E) At P5 PDGFRα+ cells within the primary septa revealed expression of CD44 (arrows). 
Some tip cells of the secondary crests revealed CD105 expression (arrows with asterisk). Scale bar = 50 μm. 

 
Expression of the MSC marker CD73 was analyzed at the pre- and postnatal stages E14.5, E16.5, 

E18.5, P3 and P5 in PDGFRGFP mice (Figure 8, isotype controls in Figure 34 and in Figure 35).  At 

E14.5, E16.5 and E18.5 co-localization of PDGFRα and CD73 was not detected (Figure 8 A-C). 

Conversely, postnatally, PDGFRα+ cells were also CD73+ at P3 (Figure 8 D). At P5 PDGFRα+ cells at 
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the base of the primary septum and at the tip of the secondary crests expressed CD73 (Figure 8 E). In 

adult lung tissue the CD73 signal was restricted to some scattered PDGFRα-expressing cells 

(Figure 8 F). 

 

 
Figure 8 The mesenchymal stem cell marker CD73 was expressed at platelet-derived growth factor receptor α+ cells at 

distinct time-points during lung development.  

(A-F) Lung tissue of PDGFRαGFP mice was stained for CD73 (red), followed by a 4', 6-diamidino-2-phenylindole 
dihydrochloride nuclear stain (blue). Green fluorescent protein (GFP) (green). (A-C) At embryonic day (E)14.5, E16.5 and 
E18.5 the platelet-derived growth factor receptor α PDGFRα signal did not co-localize with CD73. (D) At postnatal day (P)3 
some PDGFRα+ cells exhibited expression of CD73 (arrows). (E) At P5, CD73 expression was detected in PDGFRα+ cells 
at the base of the primary septum (arrows) and at the tip of the secondary crests (arrows with asterisk). (F) In the adult lung 
CD73 expression is restricted to scattered PDGFRα+ cells (arrows). Scale bar = 50 μm. 

 
The expression of a further MSC marker CD146 was analyzed in PDGFRαGFP mice at pre- and 

postnatal time-points of the lung development (Figure 9, isotype controls in Figure 34 and Figure 35). 

At E14.5, E16.5 and E18.5 PDGFRα and CD146did not co-localize (Figure 9 A, B, C). At P3, 

co-localization of PDGFRα and CD146 was evident in some mesenchymal cells but peribronchial 
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PDGFRα+ cells did not express CD146 (Figure 9 D). Later in development, at P5, PDGFRα+ cells in the 

primary septum and in the tip of the secondary septum expressed CD146 (Figure 9 E). In adult lungs 

distinct GFP+ cells expressed CD146 Figure 9 F). 

Expression of the lipofibroblast marker ADRP and the MSC marker CD90 were analyzed in pre- and 

post-natal lungs of PDGFRαGFP mice (Figure 10, isotype controls in Figure 34 and Figure 35).  In early 

stages during embryonic development (E14.5) PDGFRα+ cells were located in peribronchial regions and 

did not express CD90 nor ADRP (Figure 10 A). In the distal mesenchyme cells did not express PDGFRα 

and were ADRP+, some of which expressed CD90 (Figure 10 A). At E16.5 there were no PDGFRα+ 

cells that appeared CD90+ and ADRP+ (Figure 10 B). At E18.5 most of ADRP+ cells were also stained 

for CD90 and some of PDGFRα+ cells were also CD90+ and ADRP+ (Figure 10 C). When lungs were 

stained at P3 there were PDGFRα+ cells also positive for ADRP but not for CD90 (Figure 10 D). Cells 

positive only for CD90 were abundant in primary septa (Figure 10 D). At P5 cells of the primary septa 

exhibited co-localization of PDGFRα, ADRP and CD90 (Figure 10 E). Co-expression of CD90 and 

ADRP appeared at the base of the secondary crests, tip cells expressed PDGFRα and CD90 but not 

ADRP (Figure 10 E). In adult lung some PDGFRα+ cells expressed ADRP and CD90 while other 

PDGFRα+ cells expressed ADRP alone (Figure 10 F). Some cells only expressing CD90 were present 

in the alveolar walls (Figure 10 F). 

To investigate the myogenic character of PDGFRα-expressing cells with regard to CD90 expression, 

pre- and postnatal lungs of PDGFRαGFP mice were analyzed for αSMA and CD90 expression 

(Figure 11, isotype controls in Figure 34 and in Figure 35). At prenatal stages there were no 

triple-positive cells, for PDGFRα, αSMA and CD90 (Figure 11 A, B, C). At E14.5 and E16.5 

peribronchial PDGFRα+ cells expressed αSMA (figure 11 A, B). Some mesenchymal cells located in 

the alveolar ducts at E18.5 where double-positive for PDGFRα and αSMA (Figure 11 C) At P3, 

PDGFRα+ cells did not express CD90 but there were some mesenchymal CD90+ cells (Figure 11 D).  In 

some cells of the primary septa at P5, PDGFRα and CD90 co-expression was observed, in contrast, cells 

positive for αSMA and CD90 did not express PDGFRα (Figure 11 E). Expression of αSMA, PDGFRα 

and CD90 but not ADRP and CD90 was exhibited at the tip cells of secondary crests (Figure 11 E). 

Only double-positive cells either for PDGFRα and CD90 or for PDGFRα and αSMA were observed in 

adult lung (Figure 11 F).  

In summary PDGFRα+ cells exhibited a spatiotemporal expression of MSC markers, lipofibroblast and 

myofibroblast markers in pre- and postnatal stages. During alveolarization PDGFRα+ cells in the 
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primary septum and at the base of the secondary septum mainly expressed ADRP and tip cells expressed 

PDGFRα and CD90 but not ADRP. In contrast, PDGFRα+ cells in the tip of the secondary crests 

expressed αSMA. The expression of MSC markers was evident in PDGFRα+ cells of the primary and 

secondary septum. 

3.1.3 Quantification of fibroblast subtypes during alveolarization 

To investigate the contribution of PDGFRα+  cell to the process of alveolarization, lungs of 

PDGFRαCremTmG mice were analyzed at the peak of secondary septation (P7) (Figure 12, isotype 

controls in Figure 35). Constitutive active Cre expression led to permanent labeling of 

PDGFRα-expressing cells and their progeny due to constant GFP expression. GFP expression was 

observed within the primary septa and co-localized with ADRP in cells at the base of secondary septa 

(Figure 12 A). Co-localization of GFP and αSMA was evident in cells of the primary septa and in cells 

at the tip of the secondary septa (Figure 12 B). The quantification of the relative numbers of fibroblast 

subtypes  at P7 from total lung cell suspension using cytospins revealed the abundance of the different 

fibroblast populations such as myofibroblasts (detected as αSMA+), lipofibroblasts (detected as ADRP+) 

and PDGFRα+ cells (detected as GFP+ ): 7.9±0.6%, ADRP+ cells: 5.4±0.2%, αSMA+ cells: 4.9±0.4%, 

Figure 12 C). Furthermore quantification of cells positive for dual marker expression revealed that 

3.3±0.6% of all ADRP+ cells also expressed GFP and 2.0±0.1% of all αSMA+ cells expressed GFP 

(GFP+ and ADRP+ cells: 3.3±0.6%, and GFP+ and αSMA+ cells: 2.0±0.1%, Figure 12 C).  
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Figure 9 The mesenchymal stem cell marker CD146 was expressed at platelet-derived growth factor receptor α+ cells at 

distinct time-points during lung development. 

(A-F) Lung tissue of PDGFRαGFP mice was stained for CD146 (red), followed by a 4', 6-diamidino-2-phenylindole 
dihydrochloride nuclear stain (blue). Green fluorescent protein (GFP) (green). (A-C) At embryonic days (E)14.5, E16.5 and 
E18.5 the platelet-derived growth factor receptor α (PDGFRα) signal did not co-localize with CD146. (D) Co-localization of 
PDGFRα and CD146 (arrows) appeared in some mesenchymal cells at postnatal day (P)3. Peribronchial PDGFRα+ cells did 
not express CD146 (arrows with asterisk) at P3. (E) At P5 PDGFRα+ cells of the primary septum (arrows) and at the tip of 
the secondary crests (arrows with asterisk) exhibit CD146 expression. (F) Some PDGFRα+ cells of the adult lung demonstrate 
CD146 expression (arrows). Scale bar = 50 μm. 
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Figure 10 Co-expression of the mesenchymal stem cell marker CD90 and adipose differentiation related protein exhibited 

by platelet-derived growth factor receptor α+ cells at particular time-points although this was not the case in tip cells of the 

secondary crests. 

(A-F) Lung tissue of PDGFRαGFP mice was stained for CD90 (red) and adipose related protein (ADRP) (orange), followed 
by a 4', 6-diamidino-2-phenylindole dihydrochloride nuclear stain (blue). Green fluorescent protein (GFP) (green). (A) At 
embryonic day (E)14.5 the platelet derived growth factor receptor α (PDGFRα) signal (green) in peribronchial cells did not 
co-localize with the signals for CD90 and ADRP. Most of the distal mesenchymal cells expressed ADRP. Some ADRP+ cells 
expressed CD90 without PDGFRα expression. (B) At E16.5 PDGFRα+ cells did not express CD90 and ADRP. (C) The 
expression of ADRP and CD90 mostly overlapped at E18.5. Some of the PDGFRα+ cells revealed co-expression of ADRP 
and CD90 (arrows). (D) At postnatal day (P)3 some PDGFRα+ cells co-expressed ADRP without CD90 expression (arrows). 
Solely CD90+ cells were present in the primary septa (arrows with asterisk). (E) At P5 triple-positive cells for PDGFRα, 
ADRP and CD90 appeared in the primary septa (arrows). Tip cells of the secondary crests did express CD90 and PDGFRα 
but not ADRP (arrow with asterisk). Co-expression of CD90 and ADRP appeared at the base of the secondary crests 
(arrowhead). (F) In the adult lung, some PDGFRα+ cells expressed ADRP and CD90 (arrows) while other cells expressed 
ADRP alone (arrows with asterisk). Solely CD90-expressing cells are present in the alveolar walls (arrowheads). 
Scale bar = 50 μm. 
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Figure 11 Co-expression of the mesenchymal stem cell marker CD90 and α-smooth muscle actin exhibited by platelet 

derived growth factor receptor α+ cells at particular time-points although this was not the case in tip cells of the secondary 

crests. 

(A-F) Lung tissue of PDGFRαGFP mice was stained for CD90 (red) and α-smooth muscle actin (αSMA) (orange), followed 
by a 4', 6-diamidino-2-phenylindole dihydrochloride nuclear stain (blue). Green fluorescent protein (GFP) (green). (A) At 
embryonic day (E)14.5 platelet derived growth factor receptor α+ (PDGFRα+) cells of the peribronchial region co-expressed 
αSMA and lack CD90 expression. (B) At E16.5 PDGFRα+ cells did not express CD90 but peribronchial PDGFRα+ cells did 
express αSMA. (C) Some PDGFRα+ cells reveal expression of αSMA and CD90 in the mesenchyme between the alveolar 
ducts (arrows) at E18.5. Around the alveolar ducts, some PDGFRα+ cells expressed αSMA (arrows with asterisk). (D) At 
postnatal day (P)3 PDGFRα+ cells did not express CD90. Single cells within the mesenchyme expressed only CD90 (arrows). 
(E) At P5, PDGFRα+ cells within the primary septa express CD90 (arrowheads). In some cells within the primary septum 
(arrows) which did not express PDGFRα (PDGFRα-), CD90 co-localized with αSMA. Tip cells of the secondary crests 
expressed αSMA and PDGFRα and CD90 (arrows with asterisk). (F) In the adult lung, some PDGFRα+ cells expressed CD90 
(arrows). Co-expression of αSMA and CD90 appeared also to be present in some PDGFRα- cells (arrows with asterisk). 
Scale bar = 50 μm. 
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Figure 12 Localization and quantification of platelet-derived growth factor receptor α+ cells and fibroblast subtypes at the 

peak of secondary septation at postnatal day 7, using constitutively active PDGFRαCremTmG mice.  

Cells which underwent Cre-recombination expressed green fluorescent protein (GFP) (green), non-recombined cells kept 
the tomato signal (red). A 4', 6-diamidino-2-phenylindole nuclear stain (blue) was used for all the tissues. (A) Platelet-derived 
growth factor receptor α+ (PDGFRα+) cells (green) were located in the primary septa (arrows) and expressed adipose 
differentiation related protein (ADRP orange) in cells at the base of the secondary septum. Cells at the tip of the secondary 
crests expressed GFP but not ADRP (arrows with asterisk). (B) In the primary septa (arrows) and at the tip cells of the 
secondary crests (arrows with asterisk and insert) PDGFRα+ cells (green) expressed α-smooth muscle actin (αSMA, yellow). 
Scale bar = 50 μm, scale bar of the insert = 20 μm. (C) Relative numbers of fibroblast subtypes from total lung cell suspension 
(n=6). Bar graphs show mean values ± SEM.   
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3.1.4 Lineage tracing of early postnatal PDGFRα expressing cells 

Using lineage tracing the mode of differentiation of early postnatal PDGFRα-expressing cells was 

analyzed. Inducible PDGFRαCreERT2mTmG were injected with tamoxifen at P1 to induce in vivo 

Cre-recombination resulting in permanent labeling (due to GFP expression) of PDGFRα-expressing 

cells at P1 and all progeny (Figure 13, isotype controls in Figure 36). The time-points P7 and P9 were 

chosen for analysis to cover the peak of secondary septation (P7, Figure 13 A, B, C) and one time-point 

after the peak (P9, Figure 13 D, E, F). Early postnatal (at P1) PDGFRα+ gave rise to ADRP-expressing 

cells in the primary septa at P7 and to cells at the tip of the secondary septa which did not express ADRP 

(Figure 13 A). Lineage labeled cells at the tip of the secondary crests expressed αSMA (Figure 13 B). 

Furthermore, PDGFRα+ cells at P1 gave rise so αSMA+ cells at P7 in the primary septa (Figure 13 B).  

Quantification of lineage labeled cells (PDGFRα+ cells at P1) using cytospins at the peak of secondary 

septation (P7) revealed that 5.6±0.5% of all lung cells expressed the lineage label GFP, 9.2±0.5% 

expressed ADRP and 4.8±0.7% expressed αSMA (Figure 13 C). Quantification of cells expressing GFP 

and contributing to the lipofibroblast or myofibroblast populations revealed that 4.1±1.0% of all lung 

cells expressed ADRP and GFP, 1.9±0.3% of all lung cells expressed αSMA and GFP (Figure 13 C). 

Analysis of lineage traced cells (PDGFRα+ cells at P1) after the peak of secondary septation at P9 

revealed that cells at the tip of the secondary crests expressed GFP but not ADRP (Figure 13 D). Cells 

at the base of the secondary septa and in the primary septa expressed GFP and ADRP (Figure 13D). 

Expression of αSMA was detected in GFP+ cells in the primary septa and in GFP+ cells at the tip of the 

secondary septa (Figure 13 E). Quantification of the relative numbers of lineage labeled cells and 

different fibroblast subtypes was performed using cytospins at P9 (Figure 13 F). After the peak of 

secondary septation at P9 the lineage label GFP was expressed in 6.2±0.7% of all lung cells, ADRP-

expressing cells represented 4.0±0.4% of all lung cell cells, αSMA was expressed in 3.2±0.4% of all 

lung cells (Figure 13 F). To reveal the contribution of early postnatal PDGFRα+ cells (positive at P1) to 

late alveolar lipofibroblast and myofibroblast populations, double-positive cells were quantified. The 

GFP+ cell population which also expressed ADRP represented 3.2±0.5% of all lung cells, the GFP+ cell 

population which also expressed αSMA represented 2.8±0.6% of all lung cells (Figure 13 F).  
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Figure 13 Lineage tracing of early postnatal platelet-derived growth factor receptor α+ cells at the peak of alveolarization 

and after the peak of secondary septation using PDGFRαCreERT2mTmG mice. 

Using tamoxifen (Tam) injection in PDGFRαCreERT2mTmG mice at postnatal day (P)1, platelet-derived growth factor 
receptor α+ (PDGFRα+) cells were permanently labeled due to constant expression of green fluorescent protein (GFP) (green). 
Non recombined cells kept the tomato signal (red). A 4', 6-diamidino-2-phenylindole nuclear stain (blue) was used for all the 
tissues. (A) At P7, PDGFRα expression (here GFP expression, green) co-localized with adipose differentiation related protein 
(ADRP) (orange) in the primary septa (arrows). Tip cells of the secondary crests expressed PDGFRα but not ADRP (arrow 
with asterisk). (B) At P7, PDGFRα co-localized with α-smooth muscle actin (αSMA) (yellow) in the tip cells of the secondary 
crests (arrows) and within the primary septa (arrowheads). Scale bar = 50 μm. (C) Bar graphs show mean values ± SEM of 
the relative numbers of lineage labeled cells (GFP+) and of different fibroblast subtypes at P7 (n=7). (D) At P9 tip cells of 
the secondary crests (arrows) expressed GFP (green) but not ADRP (orange). The GFP signal co-localized with ADRP in 
cells of the primary septa and at the base of some secondary crests (arrowheads). (E) At P9 αSMA (yellow) co-localized with 
GFP (green) in tip cells of the secondary crests (arrows) and in cells of the primary septa (arrowheads). Scale bar = 50 μm. 
(F)  Bar graphs show mean values ± SEM of the relative numbers of lineage labeled cells (GFP+) and of different fibroblast 
subtypes at P9 (n=6).  

3.2 Depletion of PDGFRα-expressing cells during early alveolarization 

To analyze the functional impact of PDGFRα-expressing cells in alveolarization, PDGFRα-expressing 

cells were depleted using tamoxifen injection at P3 or P1 in PDGFRαCreERT2DTA mice.  Cre-mediated 
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recombination led to constant expression of diphtheria toxin in PDGFRα-expressing cells. Lungs were 

analyzed using after the completion of secondary septation at P14 to quantify the amount of lineage cell 

depletion and the provoked impact on lung structure (Figure 14 and Figure 15). Single transgenic mice 

(DTA, PDGFRαCreERT2) as well as double transgenic mice (PDGFRαCreERT2DTA) were analyzed using 

FACS for the relative numbers of PDGFRα+cells in total lung cell suspension (Figure 14 A, B, C). 

Representative FACS zebra-plot analysis demonstrated a clear distribution of PDGFRα+ and PDGFRα- 

cells compared to IgG control staining (Figure 14 A, B, C). The population of PDGFRα+ cells at P14 

was reduced from 2.6±0.22% in control (non-depleted) PDGFRαCreERT2 mice, to 1.48±0.36% in 

PDGFRαCreERT2DTA mice (n=3) after tamoxifen injection at P3 (Figure 14 D). This represents a 

reduction of 43.07% of PDGFRα+ cells. Histochemical staining of lung sections for elastin fibers was 

used to visualize lung structure (Figure 14 E and D). At first view, strong changes in lung structure were 

not observed in PDGFRα+cell depleted (PDGFRαCreERT2DTA mice, Figure 14 F) versus control lungs 

(PDGFRαCreERT2, Figure 14 E). Airspaces and alveolar wall thickness appeared not to be different. 

However, secondary septum formation with elastin deposition at the tip cell was less evident in 

PDGFRα+cell depleted (Figure 14 F) versus control lungs (Figure 14 E)  Since the previous findings 

suggested a mild impact on lung structure was observed when PDGFRα+ cells were depleted at P3, an 

earlier time-point (P1) was chosen to deplete PDGFRα+ cells (Figure 15). Control pubs demonstrated a 

normal growth and maturation, PDGFRα+ cell depleted mice appeared weak and less active. Therefore 

all mice were analyzed at P5 (Figure 15) Representative FACS zebra-plot analysis demonstrated a clear 

distribution of PDGFRα+ and PDGFRα- cells compared to IgG control staining (Figure 15 A,B,C). 

Again, the evidence for the depletion of PDGFRα+ cells was clearly demonstrated. The population of 

PDGFRα+ cells was reduced from 5.47±0.48% to 2.03±0.2% of all lung cells when measured at P5 in 

PDGFRαCreERT2DTA mice comparing to PDGFRαCreERT2 mice (Figure 15 D). This represents a reduction 

of 62.89% of PDGFRα+ cells. This time, histochemical staining of lung sections for elastin fibers 

revealed a change in lung structure in PDGFRα+ cell depleted (PDGFRαCreERT2DTA mice, Figure 15 F) 

versus control lungs (PDGFRαCreERT2 mice, Figure 15 E). Lungs from three PDGFRα+ cell depleted mice 

demonstrated a moderate emphysema-like phenotype with thinner alveolar septal walls, broader alveolar 

airspaces and again secondary septa with elastin deposition at the tip cells were less evident compared 

to control lungs (Figure 15 E, F). Elastin fibers were abundant in PDGFRα+ cell depleted lungs and 

control lungs, however, the distribution of elastin fibers was changed in PDGFRα+ cell depleted lungs 
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since secondary septa were less abundant (Figure 15 E, F) Taken together depletion of PDGFRα+ cells 

during early postnatal days affected the process of alveolarization. Depletion at P3 caused a mild lung 

phenotype with lungs demonstrating less prominent secondary septa at P14 (Figure 14 E, F). Depletion 

at P1 caused an emphysema-like lung phenotype which seemed to affect the activity of postnatal pups 

(Figure 14 E, F). 
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Figure 14 Depletion of platelet-derived growth factor receptor α+ cells at postnatal day 3 using PDGFRαCreERT2DTA mice. 

Using tamoxifen (Tam) injection, platelet-derived growth factor receptor α+ (PDGFRα+) cells were depleted by diphtheria 
toxin A (DTA) expression at postnatal day (P)3 lungs were analyzed at P14. (A-C) Representative fluorescence-activated 
cell sorting (FACS) plot analysis for PDGFRα+ and PDGFRα cells. FCS: forward scatter. (D) Quantification of PDGFRα+ 
cells showed evidence of depletion of PDGFRα+ cell by  43.07% in PDGFRαCreERT2DTA mice comparing to PDGFRαCreERT2 
mice (n=3). Bar graphs show mean values ± SEM of PDGFRα+ cells in PDGFRαCreERT2DTA mice. Statistical significance 
between the groups of PDGFRαCreERT2DTA and PDGFRαCreERT2 mice was estimated using the unpaired Student’s t test 
(n=3 per group). (E-F) Histochemical stainings for elastin fibers of tissue sections of PDGFRαCreERT2 (E) and 
PDGFRαCreERT2DTA (F) mice at P14 demonstrated a mild lung phenotype upon depletion of PDGFRα+cells at P3. Secondary 
septa with elastin deposition at the tip (arrow in E) were less evident in PDGFRαCreERT2DTA mice (F) comparing to 
PDGFRαCreERT2mice (E). Scale bar = 100 μm. 
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Figure 15 Depletion of platelet-derived growth factor receptor α+ cells at postnatal day 1 using PDGFRαCreERT2DTA mice. 

Using tamoxifen (Tam) platelet-derived growth factor receptor α+ (PDGFRα+) cells were depleted by diphtheria toxin A 
(DTA) expression at postnatal day (P)1, lugs were analyzed at P5. (A-C) Representative fluorescence-activated cell sorting 
(FACS) plot analysis for PDGFRα+ and PDGFRα- cells. FCS: forward scatter. (D) Quantification of PDGFRα+ cells showed 
evidence of depletion of PDGFRα+ cell by  62.89% in PDGFRαCreERT2DTA mice comparing to PDGFRαCreERT2 mice (n=3). 
Bar graphs show mean values ± SEM of PDGFRα+ cells in PDGFRαCreERT2DTA mice. Statistical significance between the 
groups of PDGFRαCreERT2DTA and PDGFRαCreERT2 mice was estimated using the unpaired Student’s t test (n=3 per group). 
(E-F) Histochemical stainings for elastin fibers of tissue sections of PDGFRαCreERT2 (E) and PDGFRαCreERT2DTA (F) mice 
at P5 demonstrated an emphysema-like lung phenotype (F) upon depletion of PDGFRα+cells at P1. Secondary septa with 
elastin deposition at the tip were less evident in PDGFRαCreERT2DTA mice (F) comparing to PDGFRαCreERT2mice (E). 
Scale bar = 100 μm. 
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 3.3 Validation and characterization of a newly generated inducible Cre mouse line 

to target lipofibroblasts 

3.3.1 Validation of mRNA expression of CreERT2, mCherry and Cre-recombination 
driven GFP 

Since the role of lipofibroblasts in alveolarization is not well understood, a new Cre-driver mouse line 

to target lipofibroblasts (the Plin2tm1.1(Cre/ERT2)Mort mouse)  has been generated recently (2.2.2.1). Series 

of characterization experiments were performed using the Plin2tm1.1(Cre/ERT2)Mort mouse line. To evaluate 

the specificity of the knock in system, mRNA expression levels of four genes of interest were measured 

by qPCR (Figure 16). The different genes were ADRP as marker for lipofibroblasts, mCherry and 

Cre-recombinase that were parts of the transgenic insert after the ADRP promoter in 

Plin2tm1.1(Cre/ERT2)Mort mice and GFP as evidence of the recombination upon tamoxifen administration in 

Plin2tm1.1(Cre/ERT2)MortmTmG mice. All mice were analyzed at P14. Only Plin2tm1.1(Cre/ERT2)MortmTmG  

mice were injected at P1 using tamoxifen. All mice demonstrated expression of ADRP. The transgenes 

Cre-recombinase and mCherry were amplified in Plin2tm1.1(Cre/ERT2)MortmTmG and Plin2tm1.1(Cre/ERT2)Mort 

mice and not in wild type nor mTmG  mice. Expression of GFP was restricted in 

Plin2tm1.1(Cre/ERT2)MortmTmG mice. To calculate ΔCt values the amplification of glyceraldehyde 

3-phosphate dehydrogenase (GADPH) gene was measure at for every sample and Ct values higher than 

30 cycles were not taken into consideration. 
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Figure 16 Specific expression of transgenes after tamoxifen injection. 

After tamoxifen administration at postnatal day (P)10 mice from four different mouse lines were analyzed on P14. The 
transgenes Cre-recombinase (Cre) and mCherry were amplified in Plin2tm1.1(Cre/ERT2)MortmTmG and Plin2tm1.1(Cre/ERT2)Mort mice 
and not in wild type or mTmG. The endogenous locus for the adipose differentiation related protein (ADRP) was amplified 
in all the mice, meanwhile green fluorescent protein (GFP) expression was observed only in Plin2tm1.1(Cre/ERT2)MortmTmG 
mice. The estimation of ΔCt was performed using glyceraldehyde 3-phosphate dehydrogenase as a reference gene. Bar 
graphs show mean values ± SEM (n=3-5 per group). Ct values exceeding 30 were not considered in the analysis. 

 

3.3.2 Validation of inducible activation of Cre-recombination driven GFP reporter gene 
expression 

The confirmation of inducible Cre-recombinase activity was demonstrated analyzing 

Plin2tm1.1(Cre/ERT2)MortmTmG and mTmG  mice 24 h and 48 h after tamoxifen injection (Figure 17). Cells 

from the total lung homogenate were labeled for the non-mesenchymal populations using PECAM, 

CD45 and EpCAM as exclusion markers. The relative numbers of GFP+ cells were quantified by FACS. 

Expression of GFP was demonstrated in the mesenchymal and the non-mesenchymal populations 

already at 24 h after tamoxifen injection (Figure 17 C, E). The relative number of GFP+ cells increased 

from ≈1.5% 24 h after injection of tamoxifen to ≈6% 48 h after tamoxifen injection (Figure 17 E) and in 

the mesenchymal population of GFP+ cells from ≈2% to ≈6% accordingly (Figure 17 F). There was no 

GFP expression in control mTmG mice, neither 24 h nor 48 h after treatment. 

To demonstrate specific activation of Cre-recombination upon tamoxifen injection, 

Plin2tm1.1(Cre/ERT2)MortmTmG mice were analyzed at P14 with (Figure 18 A-C) and without 

(Figure 18 D-F) tamoxifen injection at P1 tamoxifen. There was evidence of Cre-mediated 

recombination (represented by GFP expression) in interstitial cells from Plin2tm1.1(Cre/ERT2)MortmTmG 
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mouse lungs upon tamoxifen injection (Figure 18A and C) and not without tamoxifen injection 

(Figure 18 D, F). Non recombined cells kept the tomato signal (Figure 18 B, C, E, F). 
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Figure 17 Relative number of green fluorescent protein-expressing cells due to Cre-mediated recombination 24 h and 48 h 

after tamoxifen injection. 

After 24 h and 48 h from tamoxifen injection at postnatal day (P)10, Plin2tm1.1(Cre/ERT2)MortmTmG and mTmG mice were 
analyzed and the number of green fluorescent protein+ (GFP+) cells  was quantified by fluorescence-activated cell sorting 
(FACS). (A-D) Representative dot plot images from total lung cell suspension of mTmG mice (A, B) and 
Plin2tm1.1(Cre/ERT2)MortmTmG mice (C, D) 24 h (A,C) and 48 h (B,D) after tamoxifen injection. (E, F) Relative numbers of 
GFP+ cells from total lung homogenate (E) or from the mesenchymal cell population (F) 24 h and 48 h after tamoxifen 
injection in Plin2tm1.1(Cre/ERT2)MortmTmG (grey) and mTmG (black) mice (n=3 per group). Bar graphs show mean 
values ± SEM. 
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Figure 18 Expression of green fluorescent protein with and without tamoxifen injection at postnatal day 1 in 

Plin2tm1.1(Cre/ERT2)MortmTmG mice at postnatal day 14.  

Cells expressing the Plin2 gene at P1, permanently expressed the reporter gene green fluorescent protein (GFP) due to 
Cre-mediated recombination. A 4', 6-diamidino-2-phenylindole nuclear stain (blue) was used for all the tissues. (A-C) 
Plin2tm1.1(Cre/ERT2)MortmTmG mice received tamoxifen (Tam) injection at P1, analysis was performed at P14. The 
lineage label GFP (green) was expressed in interstitial cells (A, C) non recombined cells kept the tomato signal 
(red, B, C). Plin2tm1.1(Cre/ERT2)MortmTmG mice without Tam injection did not express GFP (D-F). Scale bar = 50 μm.  

 
 

3.3.3 Characterization of lineage traced cells 

Since a specific labeling of ADRP-expressing cells at P14 was demonstrated after Tam injection at P1 

using the previously newly generated Plin2tm1.1(Cre/ERT2)Mort line, it was questioned whether the targeted 

cells represent lipofibroblasts. Therefore, GFP+ cells were analyzed for the expression of fibroblast 

makers such as ADRP, αSMA and PDGFRα (Figure 19, isotype controls in Figure 37). Cells of the 

ADRP lineage of P1 (GFP+ cells) were distributed in the interstitial alveolar and peribronchial regions 

of the lung at P14 (Figure 19 A, C, E). Most of the ADRP-expressing cells were lineage traced and 

expressed the lineage label GFP (Figure 19 A, B). Single GFP+ and ADRP- cells were also demonstrated 

(Figure 19 A, B). Peribronchial spindle shaped GFP+ cells were located in close proximity to 
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αSMA-expressing cells (Figure 19 C, D) Some alveolar GFP+ cells expressed PDGFRα, peribronchial 

GFP+ cells were in close proximity to peribronchial PDGFRα+ cells (Figure 19 E, F). To further 

investigate the fibroblast nature of GFP+ cells, immunostaining against collagen I and vimentin was 

performed (Figure 20 A, B, E, F, isotype controls in Figure 37). Both markers were expressed in GFP+ 

cells, however, cells expressing vimentin or collagen I without expressing GFP were also demonstrated 

(Figure 20 A, B, E, F). Since ADRP expression previously has been reported in macrophages, it was 

questioned, if GFP+ cells in the lung express a leucocyte marker such as CD45. Some GFP+ cells 

expressed CD45, CD45+ GFP- cells were located in close proximity to GFP+ cells (Figure 20 C, D). 

 

3.3.4 Expression of the lineage label in further organs 

Expression of ADRP is also found in other organs such as the heart, the liver and the spleen. To confirm 

the labeling and abundance of this cell population, postnatal tissues from heart, liver and spleen were 

stained for ADRP at P14 from Plin2tm1.1(Cre/ERT2)MortmTmG mice that had received tamoxifen at P1 

(Figure 21, isotype controls in  Figure 37).  There was evidence of lineage traced GFP+ cells in the heart, 

the liver and the spleen (Figure 21 A-F). Some GFP+ cells in all three organs expressed ADRP 

(Figure 20 A-F).  

 

3.3.5 Quantification of lineage labeled cells and fibrobast subtypes in the postnatal lung  

Proceeding with the quantification of lineage traced ADRP-expressing cells of P1 (day of tamoxifen 

injection), FACS analysis for from total lung homogenate of Plin2tm1.1(Cre/ERT2)MortmTmG mice and 

mTmG mice at P14 was performed (Figure 22). Representative FACS histograms demonstrated a clear 

GFP+ cell population in Plin2tm1.1(Cre/ERT2)MortmTmG mice (Figure 22 B) which was lacking in mTmG 

control mice (Figure 22 A). The lineage label GFP was expressed in 9.5±0.54% of total lung cells in 

Plin2tm1.1(Cre/ERT2)MortmTmG mice, n=3 (Figure 22 C). To reveal the amount of fibroblast subtypes such 

as lipofibroblasts and myofibroblasts which were targeted after lineage tracing, antibody staining against 

ADRP, PDGFRα and αSMA was performed (Figure 22 C). All ADRP+ cells represented 9±0.47% from 

total lung cells, PDGFRα+ cells 6%±0.51% and αSMA+ cells 3±0.08% (Figure 22 C). Double-positive 

cells which also expressed the lineage label GFP represented 7±0.42% ADRP+ and GFP+, 4±0.06%, 
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GFP+ and PDGFRα+ and 1.5±0.05% GFP+ and αSMA+ from total lung cells (Figure 22 C). The data 

demonstrated that ≈78% of all ADRP+ cells expressed the lineage label GFP and ≈74% of all GFP+ cells 

expressed ADRP. Representative FACS dot plats demonstrated a clear separation of lineage traced cells 

and fibroblast subtypes expressing ADRP, PDGFRα or αSMA (Figure 22 D-F). 

 

3.3.6 Validation of the Plin2 promoter-driven knock in reporter gene mCherry 

expression 

To investigate the expression of the reporter mCherry gene, driven by the Plin2 promoter, it was 

important to prove that the recently generated mouse strain could label lipofibroblasts as validated by 

ADRP antibody staining. Lung tissue sections from Plin2tm1.1(Cre/ERT2)Mort mice were analyzed at P14 

after immunostaining against fibroblast markers. Cells positive for mCherry (mCherry+ cells) were 

located in the alveolar walls and peribronchially (Figure 23 A-F, isotype controls in Figure 38). Most of 

mCherry+ cells expressed ADRP (Figure 23 A, B). A few mCherry+ cells of the alveolar regions 

expressed αSMA (Figure 23 C, D). Most of the mCherry-expressing cells expressed PDGFRα 

(Figure 23 E, F). To address the mesenchymal and fibroblast feature of mCherry+ cells, immunostaining 

against collagen I and vimentin was performed in lung tissue sections from Plin2tm1.1(Cre/ERT2)Mort mice 

at P14. Since ADRP expression previously has been reported in macrophages immunostaining against 

CD45 was accomplished (Figure 24 A-F). All mCherry+ cells expressed collagen I, however, collagen 

I+ but mCherry- cells were also observed (Figure 24 A, B, isotype controls in Figure 38). Vimentin was 

expressed in all mCherry+ cells, mCherry- but vimentin+ cells were also detected (Figure 24 E, F) The 

leucocyte marker CD45 was expressed in some mCherry+ cells, mCherry- but CD45+ cells were located 

in close proximity to mCherry+ cells (Figure 24 C,D). The expression of mCherry in the heart, the liver 

and the spleen was analyzed together with the expression of ADRP using immunostaining against ADRP 

(Figure 25, isotype controls in Figure 358). In the heart mCherry was expressed in a notably amount of 

cells, some mCherry+ cells expressed ADRP (Figure 25 A, B) In the liver, all cells expressed ADRP, 

some mCherry+ cells expressed ADRP (Figure 25 C, D) Few cells of the spleen expressed mCherry, the 

minority of mCherry+ cells expressed ADRP (Figure 25 E, F). 

Taken together, the Plin2 promoter-driven reporter gene mCherry was robustly expressed in 

pulmonary cells which were of mesenchymal and fibroblast nature, few mCherry+ cells demonstrated 
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immune cell character. All Cherry+ cells demonstrated lipofibroblast features, some expressed 

PDGFRα, few mCherry+ cells appeared to be of myofibroblast nature. Furthermore, mCherry was also 

expressed in the heart, liver and spleen. 

 

3.3.7 Quantification of the knock in reporter gene mCherry-expressing cells in the lung 

Relative numbers of pulmonary cells expressing the Plin2 promoter-driven reporter gene mCherry and 

cells of different fibroblast populations were obtained using FACS measurement of total lung cells of  

Plin2tm1.1(Cre/ERT2)Mort mice after immunostaining against ADRP, PDGFRα and αSMA at P14 (Figure 26)  

representative histograms demonstrated a clear population of mCherry-expressing cells which was 

lacking in wild type mice (Figure 26 A,B) The distribution of  analyzed cell type at P14 was 

11.84±1.17% mCherry+ cells, 12.02±0.96% ADRP+ cells, 6.13±0.35% PDGFRα+ cells and  0.61±0.08% 

αSMA+ cells (Figure 26 C). Double-positive cells, expressing mCherry and a further fibroblast marker 

were 10.73±0.38% mCherry+ and ADRP+ cells, 4.17±0.25% mCherry+ and PDGFRα+ cells and 

0.22±0.01% mCherry+ and αSMA+ cells (Figure 26C). Notably ≈89% of all ADRP+ cells expressed 

mCherry and ≈91% of all mCherry+ cells expressed ADRP. 
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Figure 19 Expression of fibroblast markers and green fluorescent protein in lungs of Plin2tm1.1(Cre/ERT2)MortmTmG mice at 

postnatal day 14, adipose differentiation related protein-expressing cells were labeled at postnatal day 1.   

Lineage traced cells and their progeny expressing green fluorescent protein (GFP) (green) after Cre-mediated 
recombination at postnatal day (P)1 in all adipose differentiation related protein (ADRP)-expressing cells were stained at 
P14 against the fibroblast subtypes markers ADRP (red), α-smooth muscle actin (αSMA) (red), platelet-derived growth factor 
receptor (PDGFR) α (red), followed by a 4', 6-diamidino-2-phenylindole nuclear stain (blue). (A-F) Cells expressing GFP 
were abundant in the interstitial regions of the alveoli, some GFP+ cells were located in the peribronchial regions. Most of 
the ADRP+ cells expressed the lineage label GFP, GFP+ but ADRP- cells were also demonstrated (A, B). Peribronchial GFP+ 
cells were located in close proximity to αSMA-expressing cells (C, D). Some alveolar GFP+ cells expressed PDGFRα, 
peribronchial GFP+ cells were located in close proximity to peribronchial PDGFRα+ cells (E, F). Tam = tamoxifen. (A, C, E) 
Scale bar = 50 μm. (B, D, F represent inserts of A, C, E). Scale bar = 20 μm. 



 

 Page 58  
  

 
Figure 20 Expression at postnatal day 14 of the lineage label green fluorescent protein and markers for connective tissue, 

leucocytes and mesenchymal markers in lungs of Plin2tm1.1(Cre/ERT2)MortmTmG mice, adipose differentiation related 

protein-expressing cells were labeled at postnatal day 1.  

(A, B) Cells expressing green fluorescent protein (GFP) (green) expressed collagen I (red), collagen I+ but GFP- cells were 
also demonstrated.  (C, D) The leucocyte marker CD45 (red) was expressed in alveolar GFP+ CD45+ but GFP- cells were 
located in close proximity to GFP+ cells. (E, F) The fibroblast marker vimentin was expressed in GFP+ cells, vimentin+ but 
GFP- cells were also demonstrated. A 4', 6-diamidino-2-phenylindole nuclear stain (blue) was used at all tissue sections. 
Tam = tamoxifen. (A, C, E) Scale bar = 50 μm. (B, D, F represent inserts of A, C, E). Scale bar = 20 μm. 
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Figure 21 Expression of green fluorescent protein in the heart, the liver and the spleen of Plin2tm1.1(Cre/ERT2)MortmTmG mice 

at postnatal day 14, adipose differentiation related protein-expressing cells were labeled at postnatal day 1.  

(A-F) Immunostaining against adipose differentiation related protein (ADRP) (red), lineage label green fluorescent protein 
(GFP) (green). A 4', 6-diamidino-2-phenylindole nuclear stain (blue). In the heart, GFP+ cells were demonstrated, some GFP+ 
cells expressed ADRP (A, B). In the liver, most of the cells expressed GFP, and some GFP+ cells expressed ADRP (C, D). 
In the spleen few cells expressed GFP, and some GFP+ cells expressed ADRP (E, F). Tam = tamoxifen. (A, C, E) 
Scale bar = 50 μm. (B, D, F represent inserts of A, C, E). Scale bar = 20 μm. 



 

 Page 60  
  

 
Figure 22 Quantification of lineage labeled cells at postnatal day 1 analyzing Plin2tm1.1(Cre/ERT2)MortmTmG mice at postnatal 

day 14.  

 Tamoxifen was injected at postnatal day (P)1, Plin2tm1.1(Cre/ERT2)MortmTmG mice were analyzed at P14. (A-B) 
Representative fluorescence-activated cell sorting (FACS) histograms demonstrating the percentage of green fluorescent 
protein+ (GFP+) cells from total cells of lung homogenate in mTmG (A) and Plin2tm1.1(Cre/ERT2)MortmTmG (B) mice. (C) Bar 
graphs show mean values ± SEM of the relative numbers of GFP+ cells, of different fibroblast subtypes and of fibroblast 
subtypes expressing the lineage label GFP, in Plin2tm1.1(Cre/ERT2)MortmTmG mice at P14 (n=3). (D-F) Representative dot plots 
of the different fibroblast subtypes in relation to GFP+ cells.  
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Figure 23 Expression of fibroblast markers and the Plin2 promoter-driven knock in reporter gene mCherry in lungs of 

Plin2tm1.1(Cre/ERT2)Mort mice at postnatal day 14.  

The reporter gene mCherry (red) and the fibroblast subtypes markers adipose related protein (ADRP) (green), α smooth 
muscle actin (αSMA, green), platelet-derived growth factor receptor (PDGFR)α (green) were expressed in lungs of  
Plin2tm1.1(Cre/ERT2)Mort mice at P14.. (A-F) Abundance of mCherry+ cells was observed in alveolar walls and peribronchially. 
Most of the mCherry+ cells expressed ADRP (A, B). Few mCherry+ cells in the alveolar walls expressed αSMA (C, D). Most 
of the mCherry+ cells expressed PDGFRα (E, F). A 4', 6-diamidino-2-phenylindole nuclear stain (blue) was used at all tissue 
sections.  (A, C, E). Scale bar = 50 μm. (B, D, F inserts of A, C, E respectively). Scale bar = 20 μm.  
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Figure 24 Expression of the Plin2 promoter-driven reporter gene mCherry, collagen I, CD45 and vimentin in lungs of 

Plin2tm1.1(Cre/ERT2)Mort mice at postnatal day 14.   

The reporter gene mCherry (red), collagen I (green), CD45 (green) and vimentin (green) were expressed in lungs of 
Plin2tm1.1(Cre/ERT2)Mort mice at P14. (A-B) All cells expressing mCherry expressed collagen I, collagen I+ and mCherry- cells 
were also observed. (C, D) The leucocyte marker CD45 was expressed in some mCherry+ cells, CD45+ and mCherry- cells 
were located in close proximity to mCherry +cells (E, F) All mCherry+ cells expressed vimentin, vimentin+ but mCherry- cells 
were also observed. (F). A 4', 6-diamidino-2-phenylindole nuclear stain (blue) was used at all tissue sections. (A, C, E) Scale 
bar = 50 μm. (B, D, F inserts of A, C, E respectively). (B, D, F) Scale bar = 20 μm.  
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Figure 25 Expression of the Plin2 promoter-driven reporter gene mCherry, and adipose differentiation related protein in 

the heart, the liver and the spleen of Plin2tm1.1(Cre/ERT2)Mort mice at postnatal day 14. 

  (A-F) The reporter gene mCherry (red) and adipose differentiation related protein (ADRP) (green) were expressed in the 
heart, the liver and the spleen of Plin2tm1.1(Cre/ERT2)Mort mice at P14.  A 4', 6-diamidino-2-phenylindole nuclear stain (blue) was 
used at all tissue sections. (A-B) In the heart some cells expressed mCherry, some mCherry+ cells expressed ADRP. (C-D) 
In the liver most of the cells expressed mCherry, some mCherry+ cells expressed ADRP. (E, F) In the spleen few cells 
expressed mCherry, a minority of mCherry+ cells expressed ADRP. (A, C, E) Scale bar = 50 μm. (B, D, F inserts of A, C, E 
respectively). Scale bar = 20 μm.  



 

 Page 64  
  

 

 
 
Figure 26 Quantification of Plin2 promoter-driven reporter gene mCherry-expressing cells and fibroblast subtypes in lungs 

of Plin2tm1.1(Cre/ERT2)Mort mice at postnatal day 14.   

  (A-B) Representative histograms of flow cytometry quantification demonstrating the percentage of mCherry+ cells, from 

the total lung homogenate in wild type (A) and Plin2tm1.1(Cre/ERT2)Mort (B) mice, which were analyzed at P14. (C) Bar graphs 

show mean values ± SEM of the relative numbers of mCherry+ cells and of different fibroblast subtypes at P14 in lungs of 

Plin2tm1.1(Cre/ERT2)Mort mice (n=3). Notably ≈89% of all ADRP-expressing cells expressed mCherry and ≈91% of all 

mCherry-expressing cells expressed ADRP.  
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3.4 Lineage tracing and cell depletion of postnatal lipofibroblasts in the lung using 

Plin2tm1.1(Cre/ERT2)MortmTmG mice  

3.4.1 Lineage tracing of lipofibroblasts in the lung using Plin2tm1.1(Cre/ERT2)MortmTmG 

mice  

To analyze the fate and differentiation of lipofibroblasts (ADRP+ cells) which are present during the 

peak of secondary septation at P7, after the peak of secondary septation, at P10, and at the completion 

of secondary septation at P14, lineage tracing using Plin2tm1.1(Cre/ERT2)MortmTmG mice was performed 

(Figure 27-30). At P7, P10 and P14 respectively Plin2tm1.1(Cre/ERT2)MortmTmG mice were injected with 

tamoxifen to permanently label ADRP-expressing cells (lineage labeled cells, expressing the lineage 

label GFP). Lungs were immunostained against ADRP, αSMA and PDGFRα respectively and analyzed 

at P14 (tamoxifen injection at P7 and P10) or at P21 (tamoxifen injection at P14). When tamoxifen was 

given at P7 and P10 GFP+ cells were abundant in the alveolar walls and peribronchially (tamoxifen 

injection at P10) at P14 (Figure 27 A-D, isotype controls in Figure 39). Lineage traced cells from P10 

(Figure 27 C, D) seemed to be less abundant comparing with lineage traced cells from P7 

(Figure 27 A, B). Co-expression of GFP and ADRP was demonstrated in most of the GFP- labeled 

cells (Figure 27 A-F). When Plin2tm1.1(Cre/ERT2)MortmTmG mice were injected with tamoxifen at P14 there 

were still some cells labeled and even though the total ADRP+ population appeared low, some 

double-positive cells could still be detected (Figure 27 E, F).  

To address if cells of the indicated postnatal ADRP cell-lineages contribute to the myofibroblast pool 

of P14 or P21, αSMA expression was analyzed (Figure 28, isotype controls in Figure 38). At P14 αSMA 

expression was abundant in alveolar interstitial cells and peribronchial cells (Figure 28 A) After labeling 

at P7 some double-positive cells for GFP and αSMA could be detected in the alveolar walls but not 

peribronchially at P14 (Figure 28 A,B). After tamoxifen injection at P10 few cells were double-positive 

cells for GFP and αSMA (Figure 28 C, D). At P21 αSMA expression was less abundant in alveolar 

interstitial cells but prominent in peribronchial cells (Figure 28 E, F). Labeling of ADRP+ cells at P14, 

resulted in few peribronchial double-positive cells for GFP and αSMA at P21 (Figure 28 E, F).  

Since we and others previously demonstrated the expression of PDGFRα in lipofibroblasts it was 

questioned whether PDGFRα was expressed in the indicated postnatal ADRP cell-lineages. To address 

this question immunostaining against PDGFRα was performed at P14 and P21 (Figure 29, isotype 
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controls in Figure 38) At P14 and P21 PDGFRα+ cells were abundant in the alveolar walls 

(Figure 29 A-F). When tamoxifen was given at P7 most of the GFP+ cells expressed PDGFRα, few 

PDGFRα+ but GFP- cells were observed (Figure 29 A, B). When tamoxifen was given at P10, GFP+ 

cells seemed to be less abundant (comparing with lineage labeled cells from P7) however, most of the 

GFP+ cells expressed PDGFRα at P14  (Figure 29 C, D). At P21 the GFP+ cells, were less abundant 

after lineage tracing at P14 but still most of the GFP+ cells expressed PDGFRα (Figure 29 E, F). Since 

co-expression of ADRP and the leucocyte marker CD45 has been reported previously, the expression of 

CD45 in the postnatal ADRP cell-lineages of P7, P10 and P14 was analyzed at P14 and P21 respectively 

(Figure 30 isotype controls in Figure 38). All three postnatal ADRP cell-lineages (from P7, P10 and 

P14) labeled few round shaped CD45+ cells which were located in the alveolar walls at P14 and P21 

(Figure 30 A-F). The majority of GFP+ cells did not express CD45, round shaped and elongated CD45+ 

but GFP- cells were also observed in the alveolar walls at P14 and P21 (Figure 30). Lineage tracing of 

postnatal ADRP-expressing cells at P7, P10 and P14, revealed expression of ADRP and PDGFRα in 

most of the GFP+ cells at P14 and P21 respectively. The expression of αSMA was observed in a minority 

of GFP+ cells in the alveolar regions (when cells were labeled at P7 and P10 respectively) and restricted 

to peribronchial GFP+ cells at P21 of the ADRP cell-lineage of P14. 
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Figure 27 Lineage tracing of postnatal adipose differentiation related protein-expressing cells. Expression of green 

fluorescent protein and adipose differentiation related protein in lungs of Plin2tm1.1(Cre/ERT2)MortmTmG mice at postnatal day 

14 and 21, adipose differentiation related protein-expressing cells were labeled at postnatal day 7, 10 and 14. 
 Lineage traced adipose differentiation related protein (ADRP)-expressing cells from postnatal day (P)7, P10 and P14 

expressed the lineage label green fluorescent protein (GFP) (green) at P14 and P21, immunostaining against ADRP labeled 
lipofibroblasts (red) at P14 and P21. (A, B) At P14 cells expressing the lineage label GFP which was induced at P7 were 
abundant in the alveolar walls, some GFP+ cells expressed ADRP. (C, D) At P14 cells expressing the lineage label GFP 
which was induced at P10 were abundant in the alveolar walls and peribronchial regions, some GFP + cells expressed ADRP. 
(E, F) At P21 cells expressing the lineage label GFP which was induced at P14 seemed to be less prominent but present in 
the alveolar walls, few GFP+ cells expressed ADRP. Cells expressing ADRP also appeared to be less abundant. 
A 4', 6-diamidino-2-phenylindole nuclear stain (blue) was used at all tissue sections. Tam = tamoxifen. (A, C, E) 
Scale bar = 50 μm. (B, D, F inserts of A, C, E respectively) Scale bar = 20 μm. 
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Figure 28 Lineage tracing of adipose differentiation related protein-expressing cells and α smooth muscle actin expression. 

Expression of green fluorescent protein and α smooth muscle actin in lungs of Plin2tm1.1(Cre/ERT2)MortmTmG mice at postnatal 

day 14 and 21, adipose differentiation related protein-expressing cells were labeled at postnatal day 7, 10 and 14. 

 Lineage traced postnatal adipose differentiation related protein (ADRP)-expressing cells from postnatal day (P)7, P10 and 
P14 expressed the lineage label green fluorescent protein (GFP) (green) at P14 and P21, immunostaining against α smooth 
muscle actin (αSMA)- labeled myofibroblasts (red) at P14 and P21. (A, B) At P14 cells expressing the lineage label GFP 
which was induced at P7 were abundant in the alveolar walls, few GFP+ cells expressed αSMA. (C, D) At P14 GFP+ cells 
which were labeled at P10 were abundant in the alveolar walls, few GFP+ cells expressed αSMA. (E, F) At P21 GFP+ cells 
which were induced at P14 seemed to be less prominent but present in the alveolar walls, few GFP+ cells expressed αSMA. 
Cells expressing αSMA also appeared to be less abundant. A 4', 6-diamidino-2-phenylindole nuclear stain (blue) was used 
at all tissue sections. Tam = tamoxifen. (A, C, E) Scale bar = 50 μm. (B, D, F inserts of A, C, E respectively) 
Scale bar = 20 μm. 
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Figure 29 Lineage tracing of postnatal adipose differentiation related protein-expressing cells and platelet-derived growth 

factor receptor α expression. Expression of green fluorescent protein and platelet-derived growth factor receptor α in lungs 

of Plin2tm1.1(Cre/ERT2)MortmTmG mice at postnatal day 14 and 21, adipose differentiation related protein-expressing cells were 

labeled at postnatal day 7, 10 and 14. 

 Lineage traced adipose differentiation related protein (ADRP)-expressing cells from P7, P10 and P14 expressed the lineage 
label green fluorescent protein (GFP) (green) at postnatal day (P)14 and P21, immunostaining against platelet-derived growth 
factor receptor α (PDGFRα) (red) was performed at P14 and P21. (A, B) At P14 GFP+ cells which were labeled at P7 were 
abundant in the alveolar walls, most of the GFP+ cells expressed PDGFRα. (C,D) At P14 GFP+ cells which were labeled at 
P10 were abundant in the alveolar walls, most of the GFP + cells expressed PDGFRα. (E,F) At P21 GFP+ cells which were 
induced at P14 seemed to be less prominent but present in the alveolar walls, most of the GFP+ cells expressed PDGFRα. 
Cells expressing PDGFRα appeared to be more abundant comparing with GFP+ cells. A 4', 6-diamidino-2-phenylindole 
nuclear stain (blue) was used at all tissue sections. Tam = tamoxifen. (A, C, E) Scale bar = 50 μm. (B, D, F inserts of A, C, E 
respectively) Scale bar = 20 μm. 
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Figure 30 Lineage tracing of postnatal adipose differentiation related protein-expressing cells and CD45 expression. 

Expression of green fluorescent protein and CD45 in lungs of Plin2tm1.1(Cre/ERT2)MortmTmG mice at postnatal day 14 and 21, 

adipose differentiation related protein-expressing cells were labeled at postnatal day 7, 10 and 14. 

 Lineage traced adipose differentiation related protein (ADRP)-expressing cells from postnatal day (P)7, P10 and P14 
expressed the lineage label green fluorescent protein (GFP) (green) at P14 and P21, immunostaining against CD45 was 
performed at P14 and P21. (A, B) At P14 GFP+ cells which were labeled at P7 were abundant in the alveolar walls, few GFP+ 

cells expressed CD45 and exhibited a round cell shape. (C, D) At P14 GFP+ cells which were labeled at P10 were located in 
the alveolar walls, few GFP+ cells expressed CD45 and exhibited a round cell shape. (E, F) At P21 GFP+ cells which were 
induced at P14 seemed to be less prominent but present in the alveolar walls, few GFP+ cells expressed CD45. Cells 
expressing CD45 without expressing GFP appeared to be more abundant comparing with GFP+ cells. A 
4', 6-diamidino-2-phenylindole nuclear stain (blue) was used at all tissue sections. Tam = tamoxifen. (A, C, E) 
Scale bar = 50 μm. (B, D, F inserts of A, C, E respectively) Scale bar = 20 μm. 
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3.4.2 Depletion of lipofibroblasts using Plin2tm1.1(Cre/ERT2)MortDTA mice  

Specific depletion of early postnatal ADRP+ cells using diphtheria toxin revealed the importance of 

lipofibroblast function for proper alveolarization and provided important aspects of putative functions 

of lipofibroblasts during alveolar septum formation. Using the DTA approach, ≈50% of all 

lipofibroblasts (here mCherry+ cells) were depleted when Plin2tm1.1(Cre/ERT2)MortDTA mice received 

tamoxifen at P1 and lungs were analyzed at using FACS at P8 (Figure 31). Representative FACS plot 

analysis demonstrated a clear mCherry+ population in Plin2tm1.1(Cre/ERT2)Mort Mice which was lacking in 

DTA mice and reduced in Plin2tm1.1(Cre/ERT2)MortDTA (Figure 31 A, B, C). The mCherry+ cell population 

was reduced from 4.58±0.93% in Plin2tm1.1(Cre/ERT2)Mort to 2.268±0.66% in Plin2tm1.1(Cre/ERT2)MortDTA 

mice, n=3  (Figure 31 D).  

The amount of cell depletion was also estimated later at P14 after tamoxifen injection at P1 (Figure 32) 

Representative FACS plot analysis demonstrated a clear mCherry+ population in Plin2tm1.1(Cre/ERT2)Mort 

Mice which was lacking in DTA mice and reduced in Plin2tm1.1(Cre/ERT2)MortDTA (Figure 32 A, B, C).  

The mCherry+ cell population was reduced from 10.57±1.4% in Plin2tm1.1(Cre/ERT2)Mort to 4.38±0.09% in 

Plin2tm1.1(Cre/ERT2)MortDTA mice, representing a reduction by ≈59% (Figure 32 D). Histochemical staining 

against Elastin fibers and nuclei revealed a strong impact on lung structure at P14 upon depletion of the 

ADRP cell-lineage of P1 (Figure 32 E, F). A strong disruption of alveolarization let to condensed tissue 

areas and emphysema-like enlargements of the premature air-sacs (Figure 32 F). Control lungs of 

Plin2tm1.1(Cre/ERT2)Mort mice demonstrated a normal lung structure (Figure 32 E).  
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Figure 31 Depletion of adipose differentiation related protein+ cells at postnatal day 1 using Plin2tm1.1(Cre/ERT2)MortDTA mice. 

Using tamoxifen (Tam) injection, adipose differentiation related protein+ (ADRP+) cells were depleted at postnatal day 
(P)1, Plin2tm1.1(Cre/ERT2)MortDTA mice were analyzed at P8 for the relative number of Cherry+ cells to total lung cells using 
fluorescence-activated cell sorting (FACS). (A-C) Representative FACS plot analysis demonstrate a mCherry+ population in 
Plin2tm1.1(Cre/ERT2)Mort mice (B) which was reduced in DTA mice (A) and reduced in Plin2tm1.1(Cre/ERT2)MortDTA mice (C). FSC: 
forward scatter.  (D) Quantification of the relative number of mCherry+ cells from total lung cells at P8 showed clear depletion 
of mCherry+ cells by ≈50% in Plin2tm1.1(Cre/ERT2)MortDTA mice comparing to Plin2tm1.1(Cre/ERT2)Mort mice after Tam injection at 
P1.  Bar graphs show mean values ± SEM. Statistical significance was estimated using the unpaired Student’s t test (n=3 per 
group). 

 
 
 



 

 Page 73  
  

 
Figure 32 Depletion of adipose differentiation related protein+ cells at postnatal day 1 using Plin2tm1.1(Cre/ERT2)MortDTA mice. 

Using tamoxifen (Tam) injection, adipose differentiation related protein+ (ADRP+) cells were depleted at postnatal day 
(P)1, Plin2tm1.1(Cre/ERT2)MortDTA mice were analyzed at P14 for the relative number of Cherry+ cells to total lung cells using 
fluorescence-activated cell sorting (FACS). (A-C) Representative FACS plot analysis demonstrate a mCherry+ population in 
Plin2tm1.1(Cre/ERT2)Mort mice (C) which was missing in DTA mice (A) and reduced in Plin2tm1.1(Cre/ERT2)MortDTA mice (B).  (D) 
Quantification of the relative number of mCherry+ cells from total lung cells at P14 showed clear depletion of mCherry+ cells 
by ≈59% in Plin2tm1.1(Cre/ERT2)MortDTA mice comparing with Plin2tm1.1(Cre/ERT2)Mort mice after Tam injection at P1.  Bar graphs 
show mean values ± SEM. Statistical significance was estimated using the unpaired Student’s t test (n=3 per group). (E-F) 
Representative images demonstrating histochemical staining against elastin fibers from lungs of Plin2tm1.1(Cre/ERT2)Mort mice 
(E) and Plin2tm1.1(Cre/ERT2)MortDTA mice (F) at P14, Scale bar 100 μm. Depletion of mCherry+ cells led to severe disruption of 
alveolarization resulting in an abnormal lung structure with condensed tissue areas and emphysema like enlargements of the 
immature airsacs (F) Lungs of Plin2tm1.1(Cre/ERT2)Mort mice demonstrated a normal lung structure with secondary septa and 
proper elastin deposition at the tips of the secondary septa (E).   



 

 Page 74  
  

4 Discussion 

Insights into the localization, differentiation and function of fibroblast subtypes during alveolar septum 

formation can reveal cellular and molecular target candidates for the development of new therapeutic 

strategies for structural diseases of the lung such as COPD or fibrosis in adults, and BPD in preterm 

neonates. Understanding the process of alveolarization to gain the potential to induce alveolarization in 

the diseased lung (neo-alveolarization) represents a desirable approach to regenerative medicine. The 

aim of the present study was to characterize the populations of PDGFRα+ fibroblasts in terms of 

localization and plasticity during lung development and to develop an in vivo tool to target 

lipofibroblasts in the lung. 

4.1 Characterization of PDGFRα+ fibroblasts 

The PDGFRα+ cell population was studied during the pseudoglandular, canalicular, saccular and the 

alveolar stages of lung development until adulthood in mice. The importance of PDGFRα+ cells  has 

been previously highlighted as a fibroblast population that is critically involved in the process of septum 

formation, plausibly by influencing myofibroblast differentiation and elastin production (14, 15, 56). 

More specifically, using the PDGFRαGFP knock-in mice it was demonstrated that PDGFRα+ fibroblasts 

accumulate at the alveolar entry ring during the process of secondary septation during the period P4-P12 

(64). A spatiotemporal variation of PDGFRα+ cells was also observed. One group of PDGFRα+ cells 

expressed αSMA and elastin at the alveolar entry ring, and another exhibited lipofibroblast features at 

the alveolar base during secondary septation (P2-P8) (64). What was observed in this study matched the 

pattern demonstrated in the current work, since it was demonstrated that αSMA+ PDGFRα+ cells are 

located at the tips of the secondary crests and ADRP+ PDGFRα+ cells in the primary septa and at the 

base of the secondary crests at P5. Furthermore, there was evidence for PDGFRα+ cells located around 

the developing airways, the epithelial tubes of the pseudoglandular phase, and later in the canalicular 

stage, there was a decrease in the peribronchial abundance and increased appearance of PDGFRα+ cells 

in the more distal walls of the developing air sacs. Regarding secondary septation, these data 

demonstrate that PDGFRα+ cells appeared in the primary septa and in the tip cells of the secondary 

crests. These findings were in line with previous studies demonstrating that PDGFRα expression and 

myofibroblast appearance during the peak of secondary septation coincided (16, 29, 34, 64, 68). Those 
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shifts in localization throughout development might be caused by cytokinesis and chemotaxis, as also 

suggested by McGowan and co-workers (67). The idea that PDGFRα+ fibroblasts operate as progenitor 

cells has been questioned, therefore  the present study aimed to analyze the  expression of markers 

characterizing MSCs such as CD44, CD105, CD73, CD146 and CD90 (107) in PDGFRα+ cells during 

lung development to confirm the progenitor cell character. Data presented in the current study 

demonstrated that MSC markers were indeed differentially expressed in PDGFRα+ cells over the course 

of late lung development. Despite that in the early stages pseudoglandular and canalicular stages, no 

co-expression of PDGFRα and MSC markers was detected until the saccular stage, when CD44, CD105 

and CD90 were expressed in some PDGFRα+ cells. During the alveolar stage at P5, all five markers for 

MSCs were expressed in PDGFRα+ cells in primary septa. At secondary crest formation, at P5, CD73 

and CD90 were expressed in PDGFRα+ cells at the base of the secondary septa when tip cells 

demonstrated co-expression of CD105, CD73, CD146 and CD90. The differential expression of MSC 

markers in PDGFRα+ cells suggests a high differentiation capacity and progenitor cell characteristics of 

PDGFRα+ cells. Among those markers, the impact of CD90 on lipofibroblasts is well established, since 

the lipogenic phenotype is driven by CD90 involving PPAR-γ (86, 109). These findings support the data 

presented in the current study since CD90 expression was demonstrated to be mostly evident in 

ADRP+ cells. Specifically, at P5, CD90 and ADRP were co-localized in line with previous descriptions 

about lipofibroblasts (17). In contrast, the current study demonstrated CD90 expression in αSMA+ and 

PDGFRα+ tip cells of the secondary septa. This might reflect a transient fibroblast subtype, still 

expressing CD90 but in the process of differentiation towards myofibroblast. It is known that loss of 

CD90 in vivo impaired alveolarization and increased fibroblast proliferation, TGF-β signaling, as well 

as increased collagen and elastin production (74, 111). Fibroblasts negative for CD90 exhibited higher 

levels of PDGFRα expression and showed increased proliferation in response to PDGF-A, compared to 

CD90+ fibroblasts (36). Data presented here further support the suggestion that CD90 impacts on the 

differentiation of PDGFRα+ progenitor cells into lipo- or myo-fibroblasts respectively (75). Using a 

model of compensatory lung growth after pneumonectomy, the phenomenon that PDGFRα+ cells might 

serve as progenitor cells for myofibroblasts has also been studied in re-alveolarization, where the 

PDGFRα+ cell population abundance was briefly increased after the operation (21). In the same study, 

blockage of FGF signaling and PPARγ activation (by Rosiglitazone) inhibited the differentiation of 

PDGFRα+ cells into myofibroblasts, and led to alveolar simplification after pneumonectomy (21). This 

finding again supports the idea that PDGFRα+ cells might serve as progenitor cells for myofibroblasts 
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and is consistent with the quantitative data generated in the present study on the different fibroblasts 

subtype populations. The quantitative data presented here exhibit presence of single PDGFRα+ cells, as 

well as double-positive ADRP+ and PDGFRα+ cells during alveolarization. It was also possible to 

demonstrate the presence of PDGFRα+ cells in adulthood. Taken together, the data of this study add to 

the growing body of evidence that PDGFRα+ cells might serve as progenitor cells for myofibroblasts 

and lipofibroblasts (29, 34, 68).  

4.2 Lineage tracing and depletion of PDGFRα + fibroblasts during alveolarization  

Using lineage tracing to prove the differentiation of PDGFRα+ cells during alveolarization it was 

demonstrated in the current study that early postnatal PDGFRα+ cells at P1 can give rise to both 

myo- and lipo-fibroblasts during the peak of secondary septation, at P7, and thereafter, until P9.  

However, previous studies demonstrated that the time-points of determination of both cell types were 

different. Myofibroblasts appeared to be derived from PDGFRα+ cells before P2, since induction at P2 

or P5 did not give rise to double-positive cells for GFP and αSMA (75). In contrast lipofibroblasts were 

already generated through the induction at P2 but also not at P5 (75). On the other hand, after induction 

at P1 and the usage of the constitutively-recombining model the PDGFRα+ lineage gave rise to 

myofibroblasts and lipofibroblasts. Due to the presence of single αSMA+ cells at P7, P9 and P14 which 

were not traced by the PDGFRα lineage, it can be suggested that αSMA+ but PDGFRα- cells at this 

stage may rise from a different progenitor cell-type, and contribute largely to the emergence of 

peribronchial and perivascular smooth muscle cells. This pool could be derived from the FGF10+ 

cell-lineage as it has been previously found to give rise to parabronchial and vascular smooth muscle 

cells (28) and FGF signaling is known to be required for the induction of αSMA in PDGFRα+ 

myofibroblasts (81). Furthermore the Gli-1 cell-lineage has been demonstrated to give rise to alveolar 

myofibroblasts (54). Concerning the lipofibroblast pool the current study demonstrated that also not the 

entire population was traced by the PDGFRα+ cell-lineage. Again it is also probable that there might be 

further precursors, besides the PDGFRα+ cells, for lipofibroblasts (21). However, due to the partial 

labeling of lipofibroblasts or myofibroblasts using this model, it is also possible that the precursor 

characteristic of PDGFRα+ cells was not properly demonstrated, due to incomplete recombination that 

might have led to labeling of less lipofibroblasts or myofibroblasts. The data presented here 

demonstrated double-positive cells for GFP and ADRP located in the alveolar regions in the primary 
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septa and at the base of the secondary crests, proposing their participation in secondary septation. Indeed 

lipofibroblasts have been reported to play a crucial role in lung development in rodents (46, 61). But 

lipofibroblasts also have been detected in human lung biopsies (86). A further study questioned the 

presence of lipofibroblasts in the human lung analyzing different mammalian species including humans 

using light and electron microscopic stereology (99). Different reasons may underlie these contradictory 

results (4). In BPD hyperoxia models it has been demonstrated, that a transition from a lipofibroblast, 

of unknown origin, to a myofibroblast, was prevented by Rosiglitazone treatment (86), supporting the 

link between these fibroblasts and PDGFRα+ cells. Furthermore, defects in PDGFR signaling have been 

demonstrated to be involved in the development of human BPD (82). 

The current study demonstrated that the early postnatal PDGFRα+ cell-lineage contributed to the 

myo- and lipofibroblast pool which participates in secondary septation. However, further progenitor cell 

types might exist. To address the relevance of this targeted early postnatal PDGFRα+ cell pool, cell type 

specific depletion experiments were performed. The depletion approach presented here highlighted the 

time-specific differentiation, since induction of depletion at P3 caused different effects on lung structure 

than earlier induction of depletion at P1. Both approaches disrupted the normal elastin deposition and 

distribution, most likely leading to a reduction of secondary septation evident from the reduced 

abundance of secondary septa in PDGFRα+ cell depleted lungs. Early induction of depletion of 

PDGFRα+ cells (at P1) caused a more severe phenotype compared to later induction at P3. The 

emphysema- like lung structure was even evident when lungs were analyzed at P5 (before the peak of 

secondary septation). This might be caused since both cell types, lipofibroblasts and myofibrobalsts 

were affected by the loss of the distinct PDGFRα+ cell-lineage. The study presented here clearly 

demonstrated a crucial role of early postnatal PDGFRα+  cells in secondary septation. Future studies are 

needed to explore the cellular hierarchy of this effect. Future studies will reveal if fibroblast subtypes 

and ECM production directly cause this effect or if the function of epithelial cell types also might be 

affected by the loss of PDGFRα+ cells. Recent studies point out a supportive role of PDGFRα+ cells in 

alveolar type II cells (10). This report revealed that type II cells form alveolospheres when placed into 

3D culture (10). Growth and differentiation of these alveolospheres were stimulated in co-cultures with 

PDGFRα+ fibroblasts (10). 

   Taken together it has been previously clearly demonstrated the importance of PDGFRα+ 

mesenchymal cells in septum formation, the generation of αSMA+ myofibroblasts and elastin fibers 
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(15, 56). Nevertheless, the precursor function of PDGFRα+ cells for myofibroblasts and lipofibrobalsts 

has not been demonstrated. The present study demonstrated the generation of myofibroblasts and 

lipofibroblasts from PDGFRα+ cells. Furthermore, it was demonstrated, that this specific cell-lineage is 

necessary to drive proper septum formation and growth since depletion of the early postnatal 

PDGFRα+ cells led to a disruption of secondary septation.  

A distinct and balanced regulation of the differentiation of PDGFRα+ cells towards the lipogenic or 

myogenic phenotype seems to be essential for alveolarization. The present study demonstrated both 

ways of differentiation and characterized the presence of PDGFRα+ cells in a spatiotemporal manner 

during lung development. Further studies are needed to discover the factors regulating the differentiation 

of PDGFRα+ cells in alveolarization and regeneration to be exploited for the development of new 

therapeutic strategies for structural lung diseases of the neonatal and adult lung. 
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4.3 Validation and characterization of a newly generated inducible Cre mouse line 

to target lipofibroblasts 

Recently, a new Cre-driver mouse line, the Plin2tm1.1(Cre/ERT2)Mort mouse line had been generated to 

target lipofibroblasts in vivo. The present study aimed to validate and characterize this generated Cre 

driver line before studying lipofibroblasts using this new tool to genetically target and manipulate 

pulmonary fibroblasts of the ADRP cell-lineage in vivo. The mRNA of the integrated mCherry and 

CreERT2 sequence were robustly and specifically expressed in lungs of Plin2tm1.1(Cre/ERT2)Mort mice. 

Furthermore the successful inducible activation of Cre was demonstrated 24 h and 48 h after Tamoxifen 

treatment resulting in a robust expression of the reporter gene GFP of Plin2tm1.1(Cre/ERT2)Mort mTmG mice.  

One single injection of tamoxifen at P1 led to efficient Cre-mediated recombination, in the lung resulting 

in the expression of the lineage label GFP after the completion of secondary septation at P14 in 

pulmonary mesenchymal cells and some leucocytes. The quantification of the lineage-labeled 

GFP-expressing cells using FACS revealed approximately 5% of GFP-expressing cells from total lung 

cell suspension and by exclusion labeling with endothelial, epithelial and leukocyte markers, the 

mesenchymal character of the ADRP cell-lineage was confirmed. After lineage tracing, the numbers of 

GFP+ cells were lower than those of ADRP+ cells, supporting the specific labeling of the 

Plin2tm1.1(Cre/ERT2)Mort mouse. Quantification of the mCherry+ cells at P14 using FACS, revealed 10% of 

mCherry-expressing cells at P14, and confirmed the co-expression of ADRP and to a lesser extent, 

CD45, in these cells. That, was similar to what was shown in the PDGFRα study about the abundance 

of ADRP-expressing cells during alveolarization. However, mCherry-expressing cells which were 

negative for the ADRP signal were also detected.  

Lungs were analyzed during postnatal stages, emphasizing alveolarization during the postnatal period 

of lung development (106). As expected, in tissue staining, the GFP signal co-localized with the signal 

of the antibody staining against ADRP, but there was a lack of a complete overlap of the ADRP and 

GFP signal, which might result from the Cre-mediated recombination comparing to the antibody 

staining. The GFP signal exclusively reflected the cells which expressed ADRP at P1 (day of tamoxifen 

injection) and all progeny until P14. The ADRP signal, based on antibody staining, demonstrated all 

ADRP-expressing cells at P14. Cells expressing the lineage label GFP, which were constantly labeled 

at P1 might have lost ADRP expression due to differentiation at P14. This explains the presence of GFP+ 

but ADRP- cells. Furthermore, ADRP-expressing cells from an earlier or later time-point of lung 
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development might also contribute to the ADRP-expressing lipofibroblast pool at P14, which were not 

labeled in the present setting. This explains the presence of ADRP+ but GFP- cells. Finally further 

lineages such as the FGF10 lineage might also serve as progenitor cells for lipofibroblasts as recently 

demonstrated  (27, 28). The present study identified PDGFRα expression in GFP-expressing cells, which 

is in line with data on PDGFRα characterization, demonstrating that PDGFRα+ cells can give rise to 

lipofibroblasts during lung development and regeneration after pneumonectomy (35, 75). Since the 

generation of αSMA+ myofibroblasts from PDGFRα-expressing fibroblasts (15, 64, 75) has been further 

demonstrated in this and other studies, the heterogeneity of pulmonary fibroblasts might explain the co-

expression of αSMA and GFP as presented in this ADRP lineage tracing study. Furthermore, the 

expression of ADRP has been reported in macrophages (32) and explains the expression of CD45 in 

some of the GFP-expressing cells. This Plin2tm1.1(Cre/ERT2)Mor mouse Cre driver line lineage-labeled a 

pulmonary mesenchymal fibroblast population which has been assigned as lipofibroblasts and 

participates in alveolarization (43, 68, 75, 109). Moreover, the expression of the knock-in reporter gene 

mCherry in the postnatal lung reflected expression patterns of ADRP and also co-localized with further 

mesenchymal markers and with CD45. The expression of ADRP has been previously reported in 

adipocytes, muscle tissue, hepatocytes and macrophages (32, 44, 45, 55, 60) leading to the conclusion 

that the expression of GFP in CD45+ cells of the lung and the expression of GFP in the postnatal heart, 

liver and spleen, as demonstrated in the present study, can be regarded as specific lineage label. The 

lipofibroblast character of labeled cells in the heart, the liver and the spleen could be confirmed by 

co-labeling of the ADRP signal by antibody staining in GFP-expressing cells. Similar to the pattern 

shown in the lung, there was only partial co-expression of the lineage label GFP and ADRP staining in 

the heart, the liver and the spleen, suggesting that in these organs the major population of cells labeled 

at P1, are not lipofibroblasts by P14. The expression of mCherry in the postnatal organs the heart, the 

liver and the spleen demonstrated a pattern as expected since mCherry also co-localized with ADRP 

only in some cells. However, in the spleen, co-localization of ADRP and mCherry appeared the least 

evident. This might be due to the accumulation of immune system cells in the spleen which internalize 

parts of lipid droplets from degraded cells. When lineage tracing of ADRP+ cells was performed 

throughout development, a decrease in their population over time was revealed. Especially, when mice 

were injected with tamoxifen in the late stages of alveolarization or later, there were less labeled 

double-positive cells for GFP and ADRP.  
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4.4 Depletion of lipofibroblasts using Plin2tm1.1(Cre/ERT2)MortDTA mice  

Since the present study demonstrated that the previously generated Cre driver line indeed targeted 

lipofibroblasts, the Plin2tm1.1(Cre/ERT2)Mort mouse line was used in combination with DTA mice to induce 

depletion of ADRP+ cells during early postnatal  alveolarization at P1. Sufficient depletion of 

lipofibroblasts was successfully accomplished. The amount of lipofibroblasts (mCherry+ cells) 

decreased by ≈50% upon DTA expression in Plin2tm1.1(Cre/ERT2)MortDTA mice comparing with the amount 

of lipofibroblasts in control lungs when the analysis took place at P8. Also at P14 lipofibroblasts were 

successfully depleted by ≈59% comparing with non-depleted lungs. The effects of lipofibroblast 

depletion on lung structure were evaluated with histochemical staining against elastin fibers and nuclei. 

Dramatic changes in the pulmonary phenotype were observed. At P14 there was observed a complete 

disruption of alveolarization, resulting in condensed tissue areas next to emphysema-like immature air 

sacs.  Even though in previous studies and data from the PDGFRα characterization (21, 75) it was found 

that PDGFRα+ and αSMA+ cells drive secondary septation, it was here evident that lipofibroblasts play 

a crucial role in lung development. Perhaps a pool of lipofibroblasts as early as in P1, that is not deriving 

from PDGFRα+ (27) cells, might be responsible for the proper function of some further αSMA+ cells or 

is contributing to pathways related to their differentiation and proper localization (Figure 33). 

Furthermore, lipofibroblasts have been demonstrated to support alveolar epithelial type 2 cell function 

metabolically in vitro and in vivo (10, 103, 104). Loss of lipofibroblasts at P1 might cause disruption of 

a proper function of the epithelial system leading to reduced growth and less secretion of growth factors 

from the epithelial to the mesenchymal compartment. Furthermore a protective role of lipofibroblasts 

has been demonstrated in the BPD model, supporting the idea of lipofibroblasts being crucial players 

during alveolarization (61, 66, 83, 84, 86). Lipofibroblasts further have been demonstrated to participate 

in alveolarization (87) and to transdifferentiate into myofibroblasts during nicotine exposure in vitro 

(85). Furthermore, lipofibroblasts have been demonstrated to be involved in the development and 

resolution of pulmonary fibrosis (28). These data again support the idea that lipofibroblasts serve as a 

crucial component of the cellular system driving development and remodeling of the pulmonary 

structure. Despite previous evidence (26, 28, 86) of the lipofibroblast existence in the human lung, there 

is still controversial discussion about it (4, 99). The data presented in this study add value to this 

underrated fibroblast population, as an important cell-type in neonate lung development and prove that 

lipofibroblasts are necessary for a proper development of lung structure during alveolarization. 
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4.5 Considerations and outlook 

Despite the clear evidence of MSC markers in PDGFRα+ cells demonstrated here, there is still a lot 

to investigate about fibroblasts in the terms of their plasticity and differentiation. In a study by McGowan 

et al., lung fibroblasts with different levels of Pdgfrα gene expression, also expressed different levels of 

MSC markers (60). A technical issue that might have influenced the results in this study is that the 

nuclear expression of the reporter gene GFP in the PDGFRαGFP knock-in mice combined with the mostly 

extracellular expression of markers for MSC might prevent the recognition of a co-expression within 

the same cell. Future FACS analyses might validate the findings of the immunohistochemistry results 

presented here. Another important limitation was that, using reporter genes, the reporter proteins might 

have a different half life time than the endogenous proteins. Thus the spatiotemporal appearance of the 

reporter gene might not fully reflect the features of the endogenous protein (endogenous PDGFRα 

expression compared to GFP expression in PDGFRαGFP mice and endogenous ADRP expression 

compared to mCherry expression in Plin2tm1.1(Cre/ERT2)Mort mice). When using the CreERT2 stop loxP 

system, recombination might not be completed, and the tamoxifen availability and half-life might have 

caused a prolonged recombination period compared to the chosen time-points of induction as shown 

from the Cre activity study in Plin2tm1.1(Cre/ERT2)MortmTmG mice. Finally, the promoter system of the stop 

loxP reporter mice might have a different expression than the endogenous promoter and thus might 

change the abundance of the labeled cells. Further studies are needed to elucidate possible differentiation 

of myofibroblasts and lipofibroblasts back to PDGFRα+ progenitor cells during regeneration. In vivo 

targeting of these changes might reveal new cellular and molecular target candidates for the development 

of new therapeutic concepts for pulmonary diseases.  Since a proper function of the previously generated 

Plin2tm1.1(Cre/ERT2)Mort mice has been demonstrated by the present study, this line now is available for 

future studies, targeting and modulating lipofibroblast in animal disease models or to isolate 

lipofibroblasts during lungdevelopment, disease and regeneration to uncover the molecular signatures 

underlying lipofibroblast function using molecular screening approaches such as miRNome, 

transcriptome, metabolom or epigenome.  
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Figure 33 Differentiation of platelet-derived growth factor receptor α+ fibroblasts and lipofibroblasts during 

alveolarization. 

(A) The cell-lineage of platelet-derived growth factor receptor α+ (PDGFRα+) cells (green) can give rise to a part of 
myofibroblasts and lipofibroblasts during alveolarization (green arrows). Cells deriving from PDGFRα+ fibroblasts are 
expressing the mesenchymal stem cell markers CD73, CD146, CD90, CD105 and CD44. (B) Cells of the adipose 
differentiation related protein+ (ADRP)+ cell-lineage can give rise to PDGFRα+ cells, CD45+ cells and peribronchial αSMA+ 
cells (yellow arrows). Type I cell (type I epithelial cell). Type II cell (type II epithelial cell). ECM: extracellular matrix. 
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5 Summary 

The aim of the present study was to characterize pulmonary fibroblast subtypes regarding 

differentiation and localization during alveolarization and to reveal the impact of fibroblast function on 

alveolarization. A further aim was to validate and characterize a previously generated Cre driver mouse 

line to target lipofibroblasts and the further usage of this mouse line to target lipofibroblasts in vivo. To 

address these aims, using in vivo tools of the CreERT2 stop loxP system and reporter genes, the present 

study demonstrated that platelet-derived growth factor receptor α+ (PDGFRα+) cells of the early 

postnatal period could give rise to myofibroblasts and lipofibroblasts during alveolarization. 

Furthermore, markers of mesenchymal stem cells were detected in generated myo- and lipo-fibroblasts, 

supporting the progenitor cell character of PDGFRα+ cells. Consequently, the depletion of early 

postnatal PDGFRα+ cells caused a disruption of alveolarization resulting in an abnormal lung structure. 

This proves the need of PDGFRα+ cells for proper alveolarization. The present study further validated 

and characterized the inducible function to target lipofibroblasts of a recently generated 

Plin2tm1.1(Cre/ERT2)Mort mouse line. Using this functional validated mouse line the present study revealed 

the spatiotemporal mode of differentiation of lipofibroblasts during alveolarization by labeling and 

characterizing cells of the ADRP cell-lineage. Finally using the Plin2tm1.1(Cre/ERT2)Mort mouse line it was 

demonstrated for the first time, that the early postnatal ADRP cell-lineage (lipofibroblast lineage) is 

essential for appropriate  alveolarization. Data of the present study give new insights into the 

differentiation and function of fibroblast subtypes during alveolarization and provide a new tool to target 

and manipulate lipofibroblasts in vivo by validating the previously generated Cre driver line. The study 

makes a new contribution to the identification of cellular and molecular targets for the development of 

new therapeutic strategies for pulmonary structural diseases since the induction of alveolarization in the 

diseased lung represents a desirable therapeutic approach.  
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6 Zusammenfassung 

Ziel der vorliegenden Arbeit war die Charakterisierung pulmonaler Fibroblasten Subtypen in Bezug 

auf Differenzierung und Lokalisation während der Alveolarisierung sowie die Aufdeckung des 

Einflusses der Fibroblastenfunktion auf die Alveolarisierung. Ein weiteres Ziel stellte die Validierung 

und Charakterisierung einer kürzlich generierten Cre Treiber Mauslinie zur Manipulation von 

Lipofibroblasten und deren weiterer Gebrauch zur Manipulation von Lipofibroblasten in vivo dar. Um 

diese Ziele zu erreichen wurde mittels in vivo Methoden des CreERT2 stop loxP Systems und Reporter 

Genen gezeigt, dass platelet-derived growth factor receptor α+ (PDGFRα+) Zellen der frühen postnatalen 

Phase Myofibroblasten und Lipofibroblasten in der Alveolarisierung generieren können. Desweitern 

wurde gezeigt, dass so generierte Myofibroblasten und Lipofibroblasten Marker für mesenchymale 

Stammzellen exprimieren, als weiteren Hinweis für einen Vorläuferzellcharakter der PDGFRα+ Zellen. 

Folgerichtig führte die Depletion früh postnataler PDGFRα+ Zellen zu einem Abbruch der 

Alveolarisierung und abnormaler Lungenstruktur. Dieser Effekt beweist die Notwendigkeit PDGFRα+ 

Zellen für eine regelrechte Alveolarisierung. Des Weiteren wurde in der vorliegenden Arbeit die 

induzierbare Funktion einer kürzlich generierten Mauslinie, der Plin2tm1.1(Cre/ERT2)Mort Mauslinie, 

Lipofibroblasten zu modulieren validiert und charakterisiert.  Mit Hilfe dieser funktionell validierten 

Mauslinie zeigte die vorliegende Arbeit die zeitlich und räumlich abhängige Art der Differenzierung 

von Lipofibroblasten in der Alveolarisierung durch Markieren und Charakterisieren von Zellen der 

ADRP Zellabstammungslinie.  Schließlich wurde mittels der Plin2tm1.1(Cre/ERT2)Mort Maus Linie erstmalig 

gezeigt, dass die früh postnatale ADRP Zellabstammunglinie (Lipofibrobalstenabstammungslinie) 

essentiell für eine adäquate Alveolarisierung ist. Die Daten der vorliegenden Arbeit geben neue 

Einsichten in die Differenzierung und Funktion von Fibroblasten Subtypen während der 

Alveolarisierung und liefert durch die Validierung der kürzlich generierten Cre Treiber Mauslinie ein 

neues Werkzeug, um Lipofibroblasten in vivo zu manipulieren.  Die vorliegende Arbeit leistet einen 

neuen Beitrag zur Identifizierung zellulärer und molekularer Zielkandidaten für die Entwicklung neuer 

therapeutischer Konzepte für strukturelle Lungenerkrankungen, da das Anregen der Alveolarisierung in 

der erkrankten Lunge einen wünschenswerten therapeutischen Ansatz darstellt.    
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7 Appendix 

7.1 Appendix I: Abbreviations 

A555: Alexa 555 

A647: Alexa 647 

A680: Alexa 680 

ADRP: Adipose differentiation related protein 

B: Bronchus 

bp: Base pair 

BSA: Bovine serum albumin 

CD: Cluster of Differentiation 

cDNA: Complementary DNA 

COPD: Chronic obstructive pulmonary disease 

ΔCt: Delta (threshold cycle) 

°C: Degrees Celsius 

DAPI: 4', 6-Diamidino-2-phenylindole dihydrochloride 

ddH2O: Double distilled water 

DMEM: Dulbecco’s modified Eagle medium 

DNA: Deoxyribonucleic acid 

dNTP: Deoxyribonucleoside triphosphates 

E: Embryonic day  

EDTA: Ethylenediaminetetraacetic acid 

EMT: epithelial to mesenchymal transition  

EpCAM: Epithelial cell adhesion molecule 

ER: Estrogen receptor 

FACS: Fluorescence-activated cell sorting 

FCS: Fetal calf serum 

For: Forward  

g: Grams 

g: Acceleration caused by gravity 
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GAPDH: Glyceraldehyde 3-phosphate dehydrogenase 

GFP: Green fluorescent protein 

h: Hour 

HEPES: 2-[4-(2-Hydroxyethyl) piperazin-1-yl] ethanesulfonic acid 

i.p.: Intraperitoneal 

IPF: Idiopathic pulmonary fibrosis 

IgG: Immunglobulin G 

M: Molar 

mCherry: Membrane Cherry 

mg: Milligram 

min: Minute 

ml: Milliliter 

mM: Milimolar 

mm: Millimeter 

mRNA: Messenger RNA 

ms: Mouse 

MSC: Mesenchymal stem cell 

mT: membraneTomato 

μg: Microgram 

μl: Microliter 

μm: Micrometer 

NaCl: Sodium chloride 

NGS: Normal goat serum 

nm: Nanometer 

o.n.: Over night 

P: Postnatal 

PBS: Phosphate-buffered saline 

PCR: Polymerase chain reaction 

PDGFα: Platelet-derived growth factor α  

PDGFRα: Platelet derived growth factor receptor α 

PECAM: Platelet endothelial cell adhesion molecule 
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PFA: Paraformaldehyde 

pH: Potential hydrogen  

PPARγ: Peroxisome proliferator-activated receptor γ 

PTHrP: Parathyroid hormone-related protein 

qPCR: Quantitative polymerase chain reaction 

rb: Rabbit 

Rev: Reverse  

RNA: Ribonucleic acid 

rpm: Revolutions per minute 

RT: Room temperature 

rt: Rat 

SDS: Sodium dodecyl sulfate 

s: second 

SPC: Surfactant protein C 

αSMA: α-smooth muscle actin 

TAE: Tris-Acetate-EDTA-Puffer 

TEMED: N, N, N’, N’-tetramethylethylenediamine 

v/v: Volume by volume 

VEGF: Vascular endothelial growth factor 

w/v: Mass by volume 

WT: Wild type 
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7.3 Appendix III: Controls 

 
Figure 34 Isotype controls for PDGFRGFP mice for embryonic day 14.5 and 16.5. 

 (A-H) Lung tissue of PDGFRαGFP mice was stained for IgG control antibodies against rabbit (rb), rat (rt), and mouse (ms) 
at embryonic day (E) 14.5 and E16.5, followed by secondary antibody staining (A-C and E-G) A555 anti-rabbit (red). 
(A, D, E, H) A647 anti-mouse (orange). (C, G) A647 anti-rat (orange). (D, H) A555 anti-rat (red). 
A 4',-6-diamidino-2-phenylindole dihydrochloride nuclear stain (blue) was used. Green fluorescent protein+ (GFP+) cells 
were detected at all stages but no signal was detected for the isotype staining. Scale bar = 50 μm. 
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Figure 35 Isotype controls for PDGFRGFP mice for embryonic day 18.5, postnatal day 3 and 5, and adult stage. 

 (A-L) Lung tissue of PDGFRαGFP mice was stained for IgG control antibodies against rabbit (rb), rat (rt), and mouse (ms) 
at embryonic day (E) 18.5 and postnatal day (P) 3, P5 and adult stage, followed by secondary antibody staining (B, C, E, F, 
H, I, K, L) A555-anti-rabbit (red). (A, D, G, J) A647 anti-mouse (orange). (C, F, I, L) A647 anti-rat (orange). (A, D, G, J) 
A555 anti-rat (red). A 4', 6-diamidino-2-phenylindole dihydrochloride nuclear stain (blue) was used. Green fluorescent 
protein+ (GFP+) cells (green) were detected at all stages but no signal was detected for the isotype staining. Scale bar = 50 
μm. 
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Figure 36 Isotype controls for PDGFRαCremTmG and PDGFRαCreERmTmG mice for postnatal day 7 and 9. 

 (A-B) Lung tissue of PDGFRαCremTmG was stained for IgG control antibodies against rabbit (rb), and mouse (ms) at 
postnatal day (P) 7.  (C-F) Lung tissue of PDGFRαCreERmTmG was stained for the same IgG control antibodies at P7 and P9 
after tamoxifen (Tam) injection at P1. Tissues were subsequently stained with A647 anti-rabbit or A647 anti-mouse (orange) 
antibodies. A 4', 6-diamidino-2-phenylindole dihydrochloride nuclear stain (blue) was used. Green fluorescent protein+ 
(GFP+) cells (green) as well as tomato+ (magenda) were detected at all stages but no signal was detected for the isotype 
staining. Scale bar = 50 μm. 
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Figure 37 Isotype controls for Plin2tm1.1(Cre/ERT2)MortmTmG for postnatal day 14. 

 (A-F) Tissues of Plin2tm1.1(Cre/ERT2)MortmTmG was stained for IgG control antibody against rat (rt), rabbit (rb), and , mouse 
(ms) at postnatal day (P) 14, after tamoxifen (Tam) injection at P1. Tissues were subsequently stained with A647 anti-rat, 
A647 anti-rabbit, or A647 anti-mouse (red) antibodies. A 4', 6-diamidino-2-phenylindole dihydrochloride nuclear stain (blue) 
was used. Green fluorescent protein+ (GFP+) cells (green) were detected at all tissues, marking adipose differentiation related 
protein (ADRP) expression but no signal was detected for the isotype staining. Scale bar = 50 μm.  
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Figure 38 Isotype controls for Plin2tm1.1(Cre/ERT2)Mort for postnatal day 14. 

 (A-F) Tissues of Plin2tm1.1(Cre/ERT2)Mort mice was stained for IgG control antibody against rat (rt), rabbit (rb), and , mouse 
(ms) at postnatal day (P) 14. Tissues were subsequently stained with A647 anti-rat, A647 anti-rabbit, or A647 anti-mouse 
(green) antibodies. A 4', 6-diamidino-2-phenylindole dihydrochloride nuclear stain (blue) was used. Membrane Cherry+ 
(mCherry+) cells (red) were detected at all tissues, marking adipose differentiation related protein (ADRP) expression but no 
signal was detected for the isotype staining. Scale bar = 50 μm.  

 



 

 Page 

102 

 
  

 
 

Figure 39 Isotype controls for Plin2tm1.1(Cre/ERT2)MortmTmG for lineage tracing at postnatal day 7, 10 and 14. 

 (A-F) Tissues of Plin2tm1.1(Cre/ERT2)MortmTmG mice was stained for IgG control antibody against mouse (ms), rabbit (rb), 
and, rat (rt) at postnatal day (P) 17, P10 and P14. Tissues were subsequently stained with A647 anti-mouse, A647 anti-rabbit, 
or A647 anti-rat (orange) antibodies. A 4', 6-diamidino-2-phenylindole dihydrochloride nuclear stain (blue) was used. Green 
fluorescent protein+ (GFP+) cells (green) were detected at all tissues, marking adipose differentiation related protein (ADRP) 
expression but no signal was detected for the isotype staining. Scale bar = 50 μm.  
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7.4 Appendix IV: Figures 
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Figure 14 Depletion of platelet-derived growth factor receptor α+ cells at postnatal day 3 using 

PDGFRαCreERT2DTA mice. 47 
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Figure 15 Depletion of platelet-derived growth factor receptor α+ cells at postnatal day 1 using 

PDGFRαCreERT2DTA mice. 48 

Figure 16 Specific expression of transgenes after tamoxifen injection. 50 

Figure 17 Relative number of green fluorescent protein-expressing cells due to Cre-mediated 

recombination 24 h and 48 h after tamoxifen injection. 52 

Figure 18 Expression of green fluorescent protein with and without tamoxifen injection at 

postnatal day 1 in Plin2tm1.1(Cre/ERT2)MortmTmG mice at postnatal day 14. 53 

Figure 19 Expression of fibroblast markers and green fluorescent protein in lungs of 

Plin2tm1.1(Cre/ERT2)MortmTmG mice at postnatal day 14, adipose differentiation related protein-

expressing cells were labeled at postnatal day 1. 57 

Figure 20 Expression at postnatal day 14 of the lineage label green fluorescent protein and 

markers for connective tissue, leucocytes and mesenchymal markers in lungs of 

Plin2tm1.1(Cre/ERT2)MortmTmG mice, adipose differentiation related protein-expressing cells were 
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Figure 21 Expression of green fluorescent protein in the heart, the liver and the spleen of 
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Figure 22 Quantification of lineage labeled cells at postnatal day 1 analyzing 
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Figure 27 Lineage tracing of postnatal adipose differentiation related protein-expressing cells. 

Expression of green fluorescent protein and adipose differentiation related protein in lungs of 
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Plin2tm1.1(Cre/ERT2)MortmTmG mice at postnatal day 14 and 21, adipose differentiation related 

protein-expressing cells were labeled at postnatal day 7, 10 and 14. 67 

Figure 28 Lineage tracing of adipose differentiation related protein-expressing cells and αSMA 

expression. Expression of green fluorescent protein and α-smooth muscle actin in lungs of 

Plin2tm1.1(Cre/ERT2)MortmTmG mice at postnatal day 14 and 21, adipose differentiation related 
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