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Abstract

Lipids play very important roles in lung biology, mainly reducing the alveolar surface tension

at the air-liquid interface thereby preventing end-expiratory collapse of the alveoli. In the

present study we performed an extensive quantitative lipidomic analysis of mouse lung to

provide the i) total lipid quantity, ii) distribution pattern of the major lipid classes, iii) composi-

tion of individual lipid species and iv) glycerophospholipid distribution pattern according to

carbon chain length (total number of carbon atoms) and degree of unsaturation (total num-

ber of double bonds). We analysed and quantified 160 glycerophospholipid species, 24

sphingolipid species, 18 cholesteryl esters and cholesterol from lungs of a) newborn (P1), b)

15-day-old (P15) and c) 12-week-old adult mice (P84) to understand the changes occurring

during postnatal pulmonary development. Our results revealed an increase in total lipid

quantity, correlation of lipid class distribution in lung tissue and significant changes in the

individual lipid species composition during postnatal lung development. Interestingly, we

observed significant stage-specific alterations during this process. Especially, P1 lungs

showed high content of monounsaturated lipid species; P15 lungs exhibited myristic and

palmitic acid containing lipid species, whereas adult lungs were enriched with polyunsatu-

rated lipid species. Taken together, our study provides an extensive quantitative lipidome of

the postnatal mouse lung development, which may serve as a reference for a better under-

standing of lipid alterations and their functions in lung development and respiratory diseases

associated with lipids.
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Introduction

The lung is composed of more than 40 different pulmonary cell types, whose cellular mem-

branes are enriched with lipids that perform a variety of functions including maintenance of

the lung architecture [1–3]. In addition, alveolar epithelial type II cells of the pulmonary epi-

thelium that are lining the alveolar surface synthesize and secrete surfactant into the alveolar

space. Pulmonary surfactant is a complex mixture of lipids (phospholipids, triglycerides, fatty

acids and cholesterol, etc.), surfactant proteins (A-D) and a small amount of carbohydrates.

The majority of the pulmonary lipids comprise glycerophospholipids (GP) in which phospha-

tidylcholine (PC) is a predominant lipid class making up to 50% of the phospholipids.

Phosphatidylethanolamine (PE) makes up to 20% of the lipids and phosphatidylserine (PS),

phosphatidylinositol (PI) and phosphatidylglycerol (PG) constitute 12%-15% of the total phos-

pholipid pool [4, 5].

Pulmonary lipids are important and diverse biomolecules that are involved in many biolog-

ical processes. The thus far known functions of the major lung lipids include 1) prevention of

alveolar collapse and preservation of bronchiolar patency [6], 2) improvement of mucociliary

transport [7], 3) involvement in innate immunity and viral protection [8, 9], 4) action as potent

intracellular signalling molecules in lung inflammation [10], 5) involvement of lipid mediators

like leukotrienes, lipoxins and prostaglandins in specific reactions of inflammation and immu-

nity [11, 12], 6) suppression of the proliferation, immunoglobulin production and cytotoxicity

of lymphocytes [6]. In fact, alterations in whole lung lipid composition and/or deficiency of

pulmonary surfactant lipids are closely associated with a) respiratory distress syndrome (RDS)

[13], b) bronchopulmonary dysplasia (BPD) [13, 14], c) asthma [15], d) chronic obstructive

pulmonary disease (COPD) [15, 16], e) cystic fibrosis [17], f) pneumonia [17, 18], g) lung

injury [19], h) cancer [20] and in other lung diseases [6, 21].

High heterogeneity of lung tissue (e.g., bronchial versus alveolar regions) and differences in

the lipid composition of individual pulmonary cell types create a complex mixture of lipid clas-

ses and molecular species associated with a set of potential complications. Despite these difficul-

ties, several studies analyzed the lipid composition of lung tissue in different mammalian

species such as in pig [22], rat [23], rabbit [24], monkey [24], dog [25], bovine [26], mice [27]

and human [28] and also compared the lung lipid composition among different mammalian

species [28, 29]. Actually, the major lipid classes were similar among different mammalian spe-

cies and minor differences were observed only in the class of phospholipids. Interestingly, sur-

factant has proven to be highly diverse across species in its molecular design, especially in the

concentration of individual surfactant proteins and its GP profile [30, 31]. Further, most of

these studies focused on the analysis of PC, which are the prominent class of lipids in whole

lung tissue and pulmonary surfactant. Furthermore, among the analyzed PC, dipalmitoylpho-

sphatidylcholine (DPPC; PC 32:0), a species with two saturated acyl chains, is believed to be a

major compound of the pulmonary surfactant [32]. However, recent studies on homeothermic/

heterothermic mammalian species surfactant showed that DPPC is not the only major surfac-

tant phospholipid component. In addition to major PC lipid molecular species, there are minor

lipid classes such as PG and PI, which also play an important role in lung biology [33, 34].

Lung development in the majority of mammalian species (e.g., rat, mice and humans) con-

tinues postnatally. One important aspect of postnatal lung development is alveolarization, a

process, in which the total number of terminal gas exchange units increase total size and sur-

face area of the lung [35–37]. To address the lipidomic changes in the fetal and postnatal lung

development, various studies were conducted in several mammalian species (e.g., rat, rabbit,

lamb, pig and human) and in birds (e.g., duck and chicken) by using morphometric and bio-

chemical approaches [35–41]. However, the existing lipidomic studies of postnatal lung

Quantitative lipidomic analysis of mouse lung during postnatal development

PLOS ONE | https://doi.org/10.1371/journal.pone.0203464 September 7, 2018 2 / 25

performance related resource allocation-funds of

the Medical Faculty of the Justus Liebig University

Giessen, Germany. Financial support by the

Deutsche Forschungsgemeinschaft (DFG, Sp 314/

13-1) is gratefully acknowledged. The research

leading to these results also received funding from

the European Community’s Seventh Framework

Programme (FP7/2007-2013) under grant

agreement n˚ 202272, IP-Project LipidomicNet.

Competing interests: The authors declare that they

have no conflict of interests in relation to the work

described.

Abbreviations: PC, phosphatidylcholine; LPC,

lysophosphatidylcholine; PC O, ether-

phosphatidylcholine; PG, phosphatidylglycerol; PE,

phosphatidylethanolamine; PE P, PE based

plasmalogen; PI, phosphatidylinositol; PS,

phosphatidylserine; SM, sphingomyelin; Cer,

ceramide; HexCer, hexosylceramide; GP,

glycerophospholipids; SP, sphingolipids; SL, sterol

lipids; CE, cholesteryl esters; ESI, electrospray

ionization; MS/MS, tandem mass spectrometry;

P1, newborn mice; P15, 15-day-old mice; P84, 12-

week-old adult mice.

https://doi.org/10.1371/journal.pone.0203464


development primarily focused on the composition of surfactant PC and very few PG lipid spe-

cies [31, 40, 41]. Dautel et al., recently reported postnatal developmental changes of mouse lung

using a multi-omics approach [27]. These data are consistent with our results, but in compari-

son to their study (day7, day14 and 6–8 week old animals), we have used a wider time frame

between birth (new born) and the 12th week of life. Furthermore, the highly abundant choles-

terol, as well as cholesteryl ester species were not analysed in the Dautel et al., study during post-

natal development. Moreover, we performed direct infusion lipidomics using triple-quadrupole

MS analytical setup and provided the quantitative information (nmol/mg wet weight) of indi-

vidual lipid species of possible major lipid classes during postnatal development.

In our study, we employed electrospray ionization tandem mass spectrometry (ESI-MS/

MS) to 1) investigate total lipid quantity and 2) to perform a detailed analysis of lipid classes

(PC, LPC, PG, PS, PE, PE P, PI, SM, Cer, HexCer, CE, and cholesterol), and 3) the composition

of individual lipid species (e.g. PC 32:0, PC 32:1 etc.), and 4) to analyse their distribution pat-

tern based on the carbon chain length (total number of carbon atoms). Additionally, we ana-

lysed the degree of unsaturation (total number of double bonds) of whole lung homogenates

in newborn, 15-day-old and 12-week-old adult mice in order to provide a detailed lipidomic

information during the postnatal development. Our current study provides an extensive quan-

titative lipidome of mouse whole lung, which may serve as a reference for a better understand-

ing of the development of lung and molecular mechanisms underlying various pulmonary

diseases associated with the lipid alterations.

Materials and methods

Materials

Unless otherwise mentioned, all chemicals were procured from Sigma-Aldrich (Deisenhofen,

Germany). Phospholipid standards were obtained from Avanti Polar Lipids (Alabaster, AL,

USA). Cholesterol and cholesteryl ester standards of purity greater than 95% were obtained

from Sigma (Taufkirchen, Germany). High purity cholesterol-(25, 26, 26, 26, 27, 27, 27-d7)

was purchased from Cambridge Isotope Laboratories (Andover, MA, USA). HPLC grade sol-

vents methanol and chloroform were obtained from Merck (Darmstadt, Germany). Analytical

grade ammonium acetate and acetyl chloride were obtained from Sigma-Aldrich (Buchs, Swit-

zerland). All other reagents used were of high purity and analytical grade.

Animal experiments

Twelve-week-old adult male mice, 15-day-old males and pregnant females of C57BL/6J genetic

background were obtained from Charles River, Sulzfeld, Germany. Mice were kept on a nor-

mal laboratory diet and water ad libitum and housed in cages under standardized environmen-

tal conditions (12 hours light/dark cycle, 23˚C ± 1˚C and 55% ± 1% relative humidity) at the

central animal facility of the Justus Liebig University Giessen, Germany. After delivery of the

newborn pups in the morning, they were taken directly out of the animal facility. 15-day-old

and 12-week-old adult mice were killed by cervical dislocation and the newborn pups were

killed by decapitation. All experiments with laboratory mice were approved by the governmen-

tal ethics committee for animal welfare (Regierungspräsidium Giessen, Germany, permit

number: V 54–19 C 20/15 c GI 20/23).

Lipid extraction and sample preparation

The newborn (P1), 15-day-old (P15) and 12-week-old adult (P84) male mice fur was vertically

incised from the pelvis to the mandibles and removed to both sides. The abdomen was opened
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and a bilateral pneumothorax was produced by puncturing the abdominal surface of the dia-

phragm. The sternum was cut in the middle and the thorax was opened with a thorax spanner.

The lungs were isolated carefully and snap-frozen immediately.

Fresh snap-frozen lungs from P1, P15 and P84 male mice were homogenized with a Pre-

cellys homogenator (peQlab Biotech GmbH, Erlangen, Germany) at a concentration of 50 μg

wet weight per μL. Homogenate corresponding to 2 mg wet weight was used for extraction,

and lipids were extracted according to the procedure described by Bligh and Dyer [42]. Upon

phase separation, the chloroform phase was transferred to a fresh tube and dried under a

stream of nitrogen gas. For each lipid class (except for SM and PE P), two naturally not occur-

ring lipid species were added as internal standards, to compensate for variations in sample

preparation and ionization efficiency. PC 14:0/14:0 (28:0), PC 22:0/22:0 (44:0) for PC and SM,

PE 14:0/14:0 (28:0), PE 20:0/20:0 (40:0) for PE and PE based plasmalogens (PE P), PS 14:0/14:0

(28:0), PS 20:0/20:0 (40:0), PG 14:0/14:0 (28:0), PG 20:0/20:0 (40:0), PI 16:0/16:0 (32:0), LPC

13:0, LPC 19:0, Cer 14:0, Cer 17:0 (d18:1/17:0), cholesterol-d7, CE 17:0 and CE 22:0 internal

standards were added for the analysed lipid classes.

Mass spectrometric analysis of lipids

Lung homogenates were subjected to lipidome analysis by electrospray ionization-tandem

mass spectrometry (ESI-MS/MS) in positive-ion mode as described [43–46]. Briefly, the sam-

ples were analyzed on a triple-quadrupole mass spectrometer (Quattro Ultima, Micromass,

Manchester, UK) by direct flow injection analysis using an autosampler (HTS PAL, Zwingen,

Switzerland) and a binary pump (Model 1100, Agilent, Waldbronn, Germany) with a solvent

mixture of methanol containing 10 mM ammonium acetate and chloroform (3:1, v/v). A flow

gradient was performed starting with a flow of 55 μL/min for 6 seconds followed by 30 μL/min

for 1 minute and an increase to 250 μL/min for another 12 seconds. The mass spectrometer

was equipped with electrospray ionization and operated in positive-ion mode using following

tune parameters as capillary voltage, 3.5 kV; cone voltage, 110 V; collision energy, 30 V; colli-

sion gas, argon at a pressure of 0.13 Pa.

A precursor ion of m/z 184, which is specific for phosphocholine-containing lipids, was

used for the analysis of phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and sphin-

gomyelin (SM) lipid species [43, 44]. Neutral loss scans of 141 and 185 were used for the

phosphatidylethanolamine (PE) and phosphatidylserine (PS) respectively [47]. Fragment ions

of m/z 364, 390, and 392 were used for the quantification of PE P-16:0, PE P-18:1 and PE P-

18:0 plasmalogens according to Zemski et al. [48]. Neutral loss scans of 189 and 277 were used

for the ammonium adducts of phosphatidylglycerol (PG) and phosphatidylinositol (PI) respec-

tively [49]. Sphingosine (d18:1) based ceramides (Cer) were analysed using a fragment ion of

m/z 264 [45]. Cholesterol and cholesteryl esters (CE) were quantified using a fragment ion of

m/z 369 after selective derivatization of cholesterol using acetyl chloride [46].

After identification of relevant lipid species, selective ion monitoring analysis was per-

formed to increase precision of the analysis of lipids. Quantification of different classes of lipid

species was achieved by plotting the standard calibration curves of naturally occurring lipid

species of PC 34:1, 36:2, 38:4, 40:0 and PC O-16:0/20:4; SM d18:1/16:0, 18:1, 18:0; LPC 16:0,

18:1, 18:0; PE 34:1, 36:2, 38:4, 40:6 and PE P-16:0/20:4; PS 34:1, 36:2, 38:4, 40:6; Cer d18:1/16:0,

18:0, 20:0, 24:1, 24:0; cholesterol, CE 16:0, 18:2, 18:1, 18:0. Correction of isotopic overlap of

lipid species as well as data analysis were performed using self-programmed Excel Macros for

all lipid classes according to principles described previously [43]. In brief, data analysis was

performed with MassLynx software, which included the NeoLynx tool (Micromass) for aver-

aging the scans at half peak height of the total ion count. NeoLynx generates centroid peak
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data from the continuum spectra and allows selection of the intensities of certain peaks. Neolynx

includes background subtraction and smoothing according to Savitzky Golay of the combined

spectra. These NeoLynx results were exported to Excel spreadsheets and further processed by self-

programmed Excel macros, which sort the results, correct for isotopic overlap, calculate the ratios

to the internal standards, generate calibration curves, and calculate quantitative values [43].

Lipid species were annotated according to the proposal for shorthand notation of lipid

structures derived from mass spectrometry [50]. Glycerophospholipid species annotation was

based on the assumption of even numbered carbon chains only and presented as the sum of

carbon chain length and degree of unsaturation, without specifying fatty acid location at the

sn-1 or sn-2 position. SM species annotation was based on the assumption that sphingosine

d18:1 is present [50]. Final quantities of lipid species and total lipid (sum of analysed lipid spe-

cies) were calculated and expressed in nanomoles per milligram wet weight of tissue.

Statistics

All data are expressed as mean ± standard deviation (SD) with at least three mice (n = 3) for

each group. Two-way analysis of variance (ANOVA) was calculated using GraphPad Prism

Version 5.4 (GraphPad Software, San Diego, CA). Statistical comparisons among the groups

were performed by Bonferroni post-test using the same software. A p-value of 0.05 or lower

was considered as significant. Significance is indicated as ���� P < 0.0001, ��� P< 0.001, ��

P< 0.01, �P< 0.05.

Results

Overview and analysis of the pulmonary lipidome

The current study presents an extensive quantitative lipidome analysis of the total mouse lung

homogenates during the postnatal development performed with the help of ESI-MS/MS. In

total, we performed quantitative analysis of 160 GP, 24 SP, 18 CE species and cholesterol in dif-

ferent stages of the postnatal lung development (lungs of newborn, 15-day-old and 12-week-

old adult mice). The glycerophospholipids consist of 35 PC, 15 LPC, 16 PG, 23 PE, 33 PE P, 15

PI and 23 PS lipid species. Sphingolipids consist of 15 SM, 7 Cer and 2 cerebroside (HexCer)

lipid species. The overview of total lipid analyses from mouse lung homogenates during devel-

opment is depicted in Fig 1A and 1B.

Total lipid quantitation during postnatal lung development

To evaluate the total lipid content in mouse lungs during the postnatal development, lipid

quantity of phospholipids (sum of all analyzed GP classes), cholesteryl esters and cholesterol

was calculated and expressed as nmol/mg wet weight (Fig 2). Total phospholipid content sig-

nificantly increased during the development from P1 (28.26 ± 3.08 nmol/mg) to P84 (35.20 ±
1.42 nmol/mg) and from P15 (30.68 ± 0.85 nmol/mg) to P84 (35.20 ± 1.42 nmol/mg). How-

ever, we did not observe a statistically significant increase between P1 (28.26 ± 3.08 nmol/mg)

and P15 (30.68 ± 0.85 nmol/mg). In contrast, cholesterol was significantly increased during

progressing from P1 (7.9 ± 0.83 nmol/mg) to P15 (13.16 ± 0.70 nmol/mg) and a significant

increase of the values was observed during the development from P1 (7.9 ± 0.83 nmol/mg) to

adult lung (12.81 ± 0.55 nmol/mg). However, while developing from P15 to P84, cholesterol

remained constant in P84 (12.81 ± 0.55 nmol/mg). The esterified cholesterol species remained

at the level of<0.5 nmol/mg wet weight.

Individual lipid class (sum of the analysed lipid species) quantities are presented in S1

Table. For instance, the PC species gradually increased from the stage of P1 (16.47 ± 2.23

Quantitative lipidomic analysis of mouse lung during postnatal development

PLOS ONE | https://doi.org/10.1371/journal.pone.0203464 September 7, 2018 5 / 25

https://doi.org/10.1371/journal.pone.0203464


nmol/mg) to P84 (18.03 ± 0.70 nmol/mg), but in P15 lung the PC species were lower

(14.80 ± 0.57 nmol/mg) as compared to P1 and adult. In contrast, we observed a gradual

increase in the total amount of PS, PI, PE, PE P, LPC and SM lipid classes during the postnatal

development of the mouse lung. Among these, only PS (3.05 ± 0.19 to 5.35 ± 0.22 nmol/mg)

and PE P (2.55 ± 0.23 to 3.82 ± 0.12 nmol/mg) showed statistical significance during the

change from P1 to P84.

Individual lipid species analysis during postnatal lung development

To gain deeper insights into the postnatal developmental alterations, we evaluated the individ-

ual lipid species profile of respective lipid classes from mouse lung. The diacylglycerophospho-

lipids were denoted with total number of carbon atoms and double bonds (C:D). LPC and CE

species containing single fatty acids were denoted according to lipid species nomenclature.

Phosphatidylcholine species. In total, 35 different PC (24 PC, 11 PC O) species with dif-

ferent chain length and degree of unsaturation were documented in the lung extracts and their

composition is depicted in Fig 3A and 3B. As expected, PC 32:0, PC 32:1, PC 30:0, PC 34:1 and

PC 34:2 were the most abundant phosphatidylcholine species in the tested stages in the mouse

lung. The predominant PC 32:0 increased significantly while progressing from P1 (4.11 ± 0.6

nmol/mg) to P84 (6.27 ± 0.2 nmol/mg). Similarly, PC 34:2, PC 36:4, PC 38:6, PC 38:4 and PC

40:6 lipid species were significantly elevated in P84 as compared to P1 (Fig 3A & 3B).

In contrast, monounsaturated lipid species (total number of double bonds = 1) PC 34:1

showed a significant reduction during the development from P1 (2.23 ± 0.23 nmol/mg) to P15

(1.73 ± 0.06 nmol/mg) and remained constant in P84 (1.79 ± 0.09 nmol/mg). Similarly, the val-

ues of PC 32:1 also significantly dropped during the maturation from P1 (4.08 ± 0.6 nmol/mg)

to P15 (2.21 ± 0.19 nmol/mg) and thereafter slightly increased from the stage P15 to P84

(2.74 ± 0.11 nmol/mg). The monounsaturated lipid species (PC 30:1, 32:1, 34:1) were elevated

in P1 lungs (Fig 3A).

Fig 1. Overview of the quantitative lipidomic analyses of mouse lung homogenates during postnatal development

by mass spectrometry. The numbers represent number of lipid species quantified for particular lipid class.

https://doi.org/10.1371/journal.pone.0203464.g001

Quantitative lipidomic analysis of mouse lung during postnatal development

PLOS ONE | https://doi.org/10.1371/journal.pone.0203464 September 7, 2018 6 / 25

https://doi.org/10.1371/journal.pone.0203464.g001
https://doi.org/10.1371/journal.pone.0203464


The PC 30:0 gradually increased from the stage of P1 (1.3 ± 0.1 nmol/mg) to P15 (1.8 ± 0.07

nmol/mg) and then significantly decreased in P84 (0.91 ± 0.01 nmol/mg). Interestingly, higher

levels of PC 30:0 were detected in P15 lungs in comparison to P1 and P84.

The analyzed ether-phosphatidylcholine (PC O) lipid species were present at low concen-

trations and their quantitative information during postnatal pulmonary development is

showed in Fig 3B.

Lysophosphatidylcholine species. In total, 15 different lysophosphatidylcholine lipid

species were analyzed and their composition pattern is depicted in Fig 4. The major LPC

species detected were LPC 16:0 followed by 18:0, 18:1, 16:1, 18:2 and 20:4. The values of LPC

16:0 significantly increased during the maturation from P1 (0.103 ± 0.02 nmol/mg) to P15

(0.210 ± 0.01 nmol/mg) and P1 to P84 (0.212 ± 0.03 nmol/mg). Similarly, during development

process from newborn to adult the amounts of all other LPC species including LPC 18:0, poly-

unsaturated LPC species 18:2 and 20:4 increased. Remaining LPC species occurred at lower

concentrations and did not show any significant differences.

Phosphatidylglycerol species. We analyzed 16 individual lipid species of phosphatidyl-

glycerol and their composition during the postnatal lung development is represented in Fig 5.

As expected, PG 34:1, PG 34:2, PG 32:0 and PG 32:1 constituted highly abundant lipid species

that were detected in all three groups. Interestingly, in contrast to PC 32:0, disaturated PG 32:0

Fig 2. Total lipid quantity of phospholipids, cholesteryl esters and cholesterol in mouse lung during postnatal development. Displayed are nmol/mg wet

weight of the lipid class of all analyzed lipid species. Values are represented as mean ± SD, p-value summary: ���� P< 0.0001, ��� P< 0.001, �� P< 0.01.

Where significance is not mentioned, values are considered as being not significant. Phospholipids represents the sum of PC, LPC, PE, PE P, PG, PI, PS, and

SM.

https://doi.org/10.1371/journal.pone.0203464.g002
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decreased while progressing from P1 to P15. Notably, monounsaturated PG 32:1 significantly

dropped in P84 (0.075 ± 0.002 nmol/mg) as compared to P1 (0.205 ± 0.04 nmol/mg). Similarly,

the values of PG 34:1 dropped in P15 as compared to P1 and slightly increased while maturing

from P15 to P84.

In contrast, diunsaturated (total number of double bonds = 2) PG 34:2 shows a significant

increase during the development from P1 (0.117 ± 0.023 nmol/mg)) to P15 (0.173 ± 0.020

nmol/mg) and from P15 to P84 (0.367 ± 0.016 nmol/mg).

Similar to PC 30:0, the PG 30:0 was higher in P15 in comparison to P1 and P84. Interest-

ingly, we detected higher levels of PG 36:4 in P15 lungs. Remaining PG lipid species did not

show any statistically significant differences during development.

Fig 3. Composition of individual phosphatidylcholine (PC) and ether-phosphatidylcholine (PC O) lipid species during postnatal

development of mouse lung. Values are represented as nmol/mg wet weight. A) PC B) PC and PC O. Values are mean ± SD, p-value

summary: ���� P< 0.0001, ��� P< 0.001, �� P< 0.01, �P< 0.05. Where significance is not mentioned, values are considered as being

not significant.

https://doi.org/10.1371/journal.pone.0203464.g003

Fig 4. Composition of individual lysophosphatidylcholine (LPC) lipid species during postnatal development of mouse lung. Values are represented as nmol/mg

wet weight. Values are mean ± SD, p-value summary: ���� P< 0.0001, ��� P< 0.001, �� P< 0.01, �P< 0.05. Where significance is not mentioned, values are

considered as being not significant.

https://doi.org/10.1371/journal.pone.0203464.g004
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Phosphatidylethanolamine species. Total 23 individual phosphatidylethanolamine lipid

species were quantified and their composition is depicted in Fig 6. Interestingly, in comparison

to the other lipid classes, PE lipids exhibited higher abundance of long chain polyunsaturated

species. Strikingly, PE 38:4 showed higher abundance in all three groups in comparison to

other PE species. Further, PE 38.4 significantly increased during maturation from P1 (0.50 ±
0.038 nmol/mg) to P15 (0.712 ± 0.046 nmol/mg) and remained constant in P84 (0.726 ± 0.066

nmol/mg). Similarly, PE 40:4, PE 40:5, PE 40:6 and PE 38:6 were relatively abundant in P84

and significantly increased during the development of the lung. In contrast, less abundant PE

34:1, 36:2 and 38:5 exhibited higher concentrations in P1 but then significantly decreased in

P84. The concentration of other lipid species were low abundance and it did not show any sig-

nificant differences in all three groups.

PE based plasmalogens. PE P-16:0, PE P-18:0 and PE P-18:1 (sn-1) individual plasmalo-

gen compositions were calculated and their values have been displayed in Fig 7. Interestingly,

PE P-16:0 (sn-1 substituent) plasmalogens are present in higher amounts in all three groups.

Regardless of the alkenyl chain in sn-1, the plasmalogens containing PUFAs in sn-2 position

Fig 5. Composition of individual phosphatidylglycerol (PG) lipid species during postnatal development of mouse lung. Values are represented as nmol/mg wet

weight. Values are mean ± SD, p-value summary: ���� P< 0.0001, ��� P< 0.001, �� P< 0.01, �P< 0.05. Where significance is not mentioned, values are considered as

being not significant.

https://doi.org/10.1371/journal.pone.0203464.g005
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were the most abundant, represented mainly by 20:4 followed by 22:6, 22:4 and 22:5 in all

tested groups.

The PE P-16:0/22:4 and PE P-16:0/22:6 significantly rose during the postnatal lung develop-

ment (from P1 to P15 and P1 to P84). In contrast, the predominant PE P-16:0/20:4 and PE P-

16:0/22:5 also rose during development from P1 to P15, however, a slight decrease from P15 to

P84 was noted. Similarly, PE P-18:0 based 20:4, 22:4, 22:6 and PE P-16:0/18:1 lipid species

increased significantly during the development process (P1 to P84). However, the values of

low abundant PE P-16:0/16:1 were significantly lower in P84 as compared to P1. Other indi-

vidual ethanolamine based plasmalogens were not significant during the postnatal lung

development.

Phosphatidylinositol and phosphatidylserine species. The individual composition of 15

species of phosphatidylinositol and 23 species of phosphatidylserine is depicted in Fig 8A and

8B respectively. Similarly, to PE and PE based plasmalogens, both PI and PS were found to be

highly enriched with polyunsaturated species. PI 38:4 was the most abundant during all devel-

opmental stages. PI 38:4 (0.806 ± 0.065 nmol/mg to 1.173 ± 0.027 nmol/mg), PI 36:4 were

Fig 6. Composition of individual phosphatidylethanolamine (PE) lipid species during postnatal development of mouse lung. Values are represented as nmol/mg

wet weight. Values are mean ± SD, p-value summary: ���� P< 0.0001, ��� P< 0.001, �� P< 0.01, �P< 0.05. Where significance is not mentioned, values are

considered as being not significant.

https://doi.org/10.1371/journal.pone.0203464.g006
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significantly increasing while progressing from P1 to P84, whereas less abundant PI 36:2 and

PI 38:5 species were higher in newborn and significantly gradually decreasing during the post-

natal lung development (Fig 8A).

Among PS, polyunsaturated species (total number of double bonds >2) 40:4, 40:5, 40:6,

38:4 and the PS 36:1 were highly abundant in all stages of lung development. PS 40:4 was sig-

nificantly gradually increasing from the phase of P1 (0.566 ± 0.04 nmol/mg) to P15 (1.218 ±
0.09) and from P15 to P84 (1.381 ± 0.06 nmol/mg). PS 38:4 and 36:1 species followed the same

pattern (rise from P1 to P15 and P15 to P84). In addition, PS 36:2, 38:3 and 40:6 was detected

in P1 and their increase was observed in P84. Among the PS species, PS 40:5 exhibited higher

levels in P15 (0.827 ± 0.039 nmol/mg) as compared to P1 (0.335 ± 0.021 nmol/mg) and P84

(0.662 ± 0.031nmol/mg). The other analyzed PS species did not reach significance during lung

development (Fig 8B).

Sphingomyelin and ceramide species. Within sphingolipids, individual 15 sphingomye-

lin, 7 ceramide and 2 cerebroside species compositions are depicted in Fig 9A and 9B respec-

tively. SM 34:1 was the most dominant SM species in all developmental stages and gradually,

Fig 7. Composition of individual PE based plasmalogen (PE P) lipid species during postnatal development of mouse lung. Values are represented as nmol/mg wet

weight. Values are mean ± SD, p-value summary: ���� P< 0.0001, ��� P< 0.001, �� P< 0.01, �P< 0.05. Where significance is not mentioned, values are considered as

being not significant.

https://doi.org/10.1371/journal.pone.0203464.g007
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but significantly increasing from the phase of P1 (0.46 ± 0.052 nmol/mg) to P15 (0.716 ± 0.05

nmol/mg), and thereafter slightly increasing from P15 to P84 (0.821 ± 0.057 nmol/mg). Simi-

larly, SM 42:2 followed the same pattern during development.

The very long chain SM lipid species 40:1, 42:1and 42:3 were significantly rising during the

postnatal lung development and their elevated levels were detected in P84 (Fig 9A).

Cer d18:1/16:0 was present in higher amounts in P15 lungs in comparison to P1 and P84.

The very long chain fatty acid containing ceramide lipid species Cer d18:1/24:0 exhibited

higher levels in P84. Interestingly, both of the analyzed HexCer d18:1/16:0 and HexCer d18:1/

24:1 was present at higher levels in P1 and a significant gradual decrease was observed during

the postnatal lung development up to the stage of P84 (Fig 9B).

Cholesteryl esters. Eighteen esterified forms of cholesterol were analysed and their com-

position is depicted in Fig 10. Similar to LPC, the myristic acid (14:0) and palmitic acid (16:0)

containing CE species were significantly elevated in the phase of P15 in comparison to P1 and

P84. Oleic (18:1), palmitoleic (16:1) containing CE species were more elevated in P1 and sig-

nificantly lowered during development. In contrast, linoleic (18:2) and arachidonic (20:4) acid

containing CE species were significantly gradually increasing from the stage of P1 and reached

higher levels in P84.

Furthermore, the distribution pattern of GP according to their carbon chain length (total

number of carbon atoms), degree of unsaturation (total number of double bonds) was elabo-

rated and the results are shown in S2 Table, S1 Fig. Overall, the PC and PG comprised higher

amounts of lipid species with carbon chain length�36. Whereas PE, PS and PI contained

higher amount of lipid species with carbon chain length>36.

Discussion

Lipids constitute a diverse group of biomolecules, playing many roles in lung biology, espe-

cially in reducing the surface tension of alveoli to prevent the alveolar collapse and thereby sta-

bilizing the lung parenchyma. The lung major lipid classes originating either from the

pulmonary surfactant or from the bronchoalveolar lavage fluid (BALF) were already partly

characterized, but a detailed distribution of total lipid classes and of their individual lipid

molecular species composition in mouse lung during its postnatal development however, are

not fully understood. In our current study, we used direct flow injection electrospray ioniza-

tion tandem mass spectrometry to provide the total lipid quantity, and significant stage specific

alterations of individual lipid species during the process of mouse postnatal pulmonary devel-

opment. Furthermore, we showed the distribution pattern of lipid classes according to their

carbon chain length and degree of unsaturation during development process.

In the present study, we analyzed and quantified total 202 lipid species (GP, SP, and CE)

and cholesterol of the pulmonary lipidome from the mouse lung homogenates of the P1, P15

and adult lungs (Fig 1A & 1B and Fig 2 & S1 Table). In general, an increase in the total lipid

quantity (nmol/mg wet weight) of pulmonary tissue is a characteristic change during the lung

development process. Our results revealed increased levels of the total phospholipid and cho-

lesterol content during development. Indeed, these results are in consistence with the findings

of Williams and colleagues as well as of Hahn, et al. in which rat lung and other organ lipids

were studied during maturation [51, 52].

Fig 8. Composition of individual phosphatidylinositol (PI) and phosphatidylserine (PS) lipid species during postnatal development

of mouse lung. Values are represented as nmol/mg wet weight. A) PI B) PS. Values are mean ± SD, p-value summary: ���� P< 0.0001, ���

P< 0.001, �� P< 0.01, �P< 0.05. Where significance is not mentioned, values are considered as being not significant.

https://doi.org/10.1371/journal.pone.0203464.g008
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Furthermore, pulmonary lipid distribution patterns of the whole lung tissue in comparison

to the pulmonary surfactant lipid composition in different mammalian species were studied

(see book chapters in ref) [3, 53]. In this context, it is important to mention that the distribu-

tion pattern of the lipids in the lung tissue is heterogeneous between distinct species. In gen-

eral, PC’s were the most predominant class of lipids of all tested species [32]. The second most

abundant lipid class of the surfactant GP was PG, however, this lipid class was detected in

lower amounts in the whole lung tissue. In contrast, PE represented the minor class of lipids in

the surfactant but constituted second major lipid class following PC in the whole lung tissue.

Similarly, SM and PS lipid classes were detected in lower amounts in the pulmonary surfactant,

however, they also were described as being abundant in the whole lung tissue. In fact, our

results of the lipid class distribution of the mouse lung homogenates are in agreement with

these findings [3, 53]. Our data clearly indicate that PC and cholesterol occupy major parts of

Fig 9. Composition of individual sphingomyelin (SM) and ceramide (Cer) lipid species during postnatal development of mouse

lung. Data are represented as nmol/mg wet weight. A) SM B) Cer. Values are mean ± SD, p-value summary: ���� P< 0.0001, ���

P< 0.001, �� P< 0.01, �P< 0.05. Where significance is not mentioned, values are considered as being not significant.

https://doi.org/10.1371/journal.pone.0203464.g009

Fig 10. Composition of individual cholesteryl ester (CE) lipid species during postnatal development of mouse lung. Data are represented as nmol/mg wet weight.

Values are mean ± SD, p-value summary: ���� P< 0.0001, ��� P< 0.001, �� P< 0.01, �P< 0.05. Where significance is not mentioned, values are considered as being

not significant.

https://doi.org/10.1371/journal.pone.0203464.g010
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the whole lung lipidome (Panel A in S2 Fig). Among the phospholipids, PC is the most domi-

nant lipid class followed by PE (PE+PE P), PS, SM, PI and PG present during the postnatal

mouse lung development (Panel B in S2 Fig). Based on these composition values, we calculated

the molar ratios of lipid classes (S3 Table). For instance, the PC/LPC ratio is decreased from

P1 to P15, and from P15 to P84. In contrast, SM/Cer molar ratio significantly increased from

P1 to P15 and from P15 to P84.

Interestingly, we observed a significant increase in the concentration of cholesterol from

the phase of newborn to P15 (Fig 2, S1 Table & Panel A in S2 Fig), suggesting that cholesterol

may play an important role in the process of alveolarization. Cholesterol is an integral compo-

nent of various cell membranes, involved in the maintenance of membrane fluidity, membrane

functions and signal transduction. In fact, cholesterol is the major neutral lipid component of

the lung and up to 80% of the cholesterol present in the lung is in surfactant [54], and it is con-

sidered as a protosurfactant in immature lungs, lungs with lack of septation and in saccular

lungs [55]. Moreover, cholesterol enhances the adsorption of DPPC by increasing membrane

fluidity and control the surface viscosity of the surfactant [56, 57].

In our study, we focused on the alterations of individual lipid species of mouse lungs during

the postnatal development. Our results showed a significant increase in the abundance of PC

30:0 during the alveolarization (P1 to P15) (Fig 3A) process. These results are supported by

previous observations on the postnatal development of the lung tissue and surfactant lipid

analyses from 8-day-old mice and adult animals [41]. Bernhard and co-workers reported

about significant alterations in the abundance of major PC lipid molecular species in the pul-

monary surfactant of different mammalian species during lung development [31, 40, 41].

In contrast to PC findings of surfactant lipidome, we showed a significant gradual increase

of PC 32:0 (most likely to be DPPC) during the postnatal lung development. DPPC is the pri-

mary surface-active material found in majority of the mammalian species pulmonary surfac-

tant. Maintenance of adequate DPPC within air space is essential for normal lung function

[58]. RDS is the major cause of mortality and morbidity in premature infants diagnosed with

mainly DPPC deficiency in quantity and quality of pulmonary surfactant [59]. Currently, sur-

factant replacement therapy with added products of DPPC is an effective therapeutic strategy

available for RDS management [60]. Interestingly, high contents of monounsaturated lipids of

PC 32:1 and PC 34:1 was detected in P1 mice in comparison to P15 and adult lungs, suggesting

that PC 32:1 might be involved in the establishment of the air-liquid interface in newborn ani-

mals. Furthermore, PC 34:1 is known to be crucial and plays an important role in the adsorp-

tion of DPPC immediately after birth [61, 62]. In contrast to mice, PC 30:0 is completely

absent and PC 32:1 is minimal in nonalveolar species (birds), in which the lung contains

capillaries instead of alveoli, suggesting that, PC 30:0 and PC 32:1 species are important and

play an active dynamic role in the alveolarization process [30]. In this context, it is important

to mention the recent findings that PC 30:0 inhibited macrophage-triggered proliferation of

T-lymphocytes and decreased the production of reactive oxygen species (ROS) during alveo-

larization [63, 64]. Moreover, PC 30:0 was significantly reduced in the emphysema patients

and infants with BPD as well as in the neonatal rat models of reduced alveolarization suggest-

ing that PC 30:0 may serve as a diagnostic marker for alveolar size during diseases [65]. Simi-

larly to these observations, in the pig model, PC 30:0 was found high in abundance in

newborns and gradually decreased with age in adolescent pigs [31], whereas in humans and

guinea pigs, PC 30:0 was increased during the lung development [41]. The specific functions

of PC 30:0, PC 32:1 and PC 34:1 lipid species during postnatal lung development are not clear

yet. Also, the molecular mechanism and alterations of lipid species during the lung develop-

ment are not clear yet. These alterations may be specific for individual mammalian species, a

supposition that requires further investigation.
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Phosphatidylglycerol lipid concentrations are highly concentrated in the lung compared to

other mammalian tissues [66]. It is well documented that PG lipids are involved in the adsorp-

tion and, spreading of surfactant over the epithelial surface, as well as influence innate immu-

nity and protect against viral infections [9, 67, 68]. Interestingly, surfactant deficiency in

premature infants and also in mouse models of BPD showed the complete absence of PG lipids

[69]. Indeed, the presence of PG lipids in amniotic fluid is an indicator for the fetal lung matu-

rity and PG lipids are known to be vital in the management of neonatal RDS and other obstet-

ric conditions [70]. It is known that PG lipid species are crucial for the lung function. There

are, however, no reports on the composition of PG 30:0 during the postnatal lung develop-

ment. In fact, Bernhard and colleagues were not able to measure PG 30:0 from rat surfactant

during the postnatal lung development [40]. Remarkably, in our study, we observed a signifi-

cant increase in PG 30:0 abundance during alveolarization (P1 to P15), similar to PC 30:0,

probably because of the high content of myristic acid during the postnatal lung development.

In contrast to DPPC, we observed a significant decrease of abundance of DPPG during postna-

tal lung development. Recent findings suggest that DPPG interacts with vaccinia and variola

virus strains and reduces the infection of pneumocytes in respiratory poxvirus infection [68].

Moreover, several reports demonstrated that PG 34:1 (palmitoyl-oleoyl-phosphatidylglycerol,

POPG) acts as a potent antiviral lipid against influenza A and respiratory syncytial virus [9,

67]. Interestingly, we observed a high content of this antiviral lipid PG 34:1 (POPG) in the

newborn mouse lungs in comparison to P15 and P84 (Fig 5), suggesting that they might

improve the innate immunity against viruses during the perinatal period.

In addition to PC and PG, we measured other lipid species in the lung tissue such as PE, PI

and PS (Figs 6, 8A & 8B). In contrast to PC and PG, we found that these lipid classes were

found to be mostly enriched with long chain polyunsaturated species. Monounsaturated lipid

species (PE 32:1) were found in high abundance in P1 in comparison to P15 and P84. In fact,

long chain polyunsaturated species serve as substrates for the pro-inflammatory (leukotrienes,

prostaglandins, etc.), as well as anti-inflammatory and pro-resolution (lipoxins, etc.) lipid

mediators [71]. Furthermore, mass spectrometry imaging of adult mouse lungs showed that

these long chain polyunsaturated lipids are highly abundant at the epithelial lining of airways

[72]. We observed that 38:4 lipids were abundant in case of PE and PI lipid classes in all three

age groups, which may serve as a source for arachidonic acid (AA) for the generation of lipid

mediators. Proteomics data of a recent study revealed that proteins (cyclooxygenases, lipoxy-

genases, etc.) responsible for the generation of bioactive lipid mediators, are significantly upre-

gulated in the adult mouse lungs, suggesting that these long chain polyunsaturated lipid

species serve as a source for AA [27].

Quantitative information of less abundant species of these lipid classes would help to

understand postnatal developmental alterations in detail. However, the mechanism of alter-

ations of individual lipid species of these lipid classes during lung development needs to be fur-

ther explored.

Plasmalogens are glycerophospholipids characterized by a vinyl ether linkage in sn-1 and

an ester linkage in sn-2 position of the glycerol backbone. Plasmalogens are involved in the

membrane dynamics, serve as an endogenous antioxidants, protect against ROS and prevent

lipoprotein oxidation [73]. Plasmalogen biosynthesis starts in the peroxisomes and deficiency

of plasmalogens is associated with various peroxisomal disorders [74] and other respiratory

diseases like BPD [75], asthma and COPD [76]. We observed that PE-based plasmalogens are

much higher abundant compared to ether-phosphatidylcholines (PC O) during the postnatal

mouse lung development. In ethanolamine plasmalogens, PE P-16:0 plasmalogens comprised

the highest amount, whereas, PE P-18:0 and PE P-18:1 made up a smaller amount (Fig 7).

Interestingly, we observed a high content of 20:4, 22:6, 22:5 and 22:4 (most likely to be
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arachidonic acid AA, docosahexaenoic acid DHA, docosapentaenoic acid DPA and adrenic

acid)-rich plasmalogens (Fig 7). Further, the total quantities of plasmalogens (sum of all ana-

lyzed PE P species) were gradually increased from P1 to P84 during the postnatal lung develop-

ment (S1 Table). These results are in consistent with the previous study, in which high

abundance of PE P species were noted in adult mouse lungs during postnatal pulmonary

developmental processes [27]. Arachidonic acid enriched plasmalogens seem to play an impor-

tant role in immune defence and normal lung physiology [73]. Plasmalogens are reported to

serve as a reservoir for the precursor molecules (e.g., AA, EPA, DHA, and DPA etc.) of eicosa-

noids, which are biologically active secondary lipid signalling messengers or for maresin and

resolvins, lipid derivatives involved in the regulation of inflammation [77, 78]. Rüdiger and

colleagues showed that addition of plasmalogens to surfactant-like phospholipid mixtures

reduces surface tension [79] and high content of plasmalogens in tracheal aspirate of preterm

infants reduces the risk of respiratory diseases [80]. Likewise, another study reported that high

contents of plasmalogens protects the endothelial cells from hypoxia and ROS mediated stress

[81].

Sphingolipids are primarily found in cell membranes and are involved in diverse biologic

processes such as migration, proliferation, differentiation, senescence, cell death, autophagy,

and efferocytosis [82]. In the lungs, sphingolipids are associated with cystic fibrosis, asthma,

pulmonary edema, BPD, inflammation, lung injury and various types of lung cancers [83].

Ceramides show both proliferative and apoptotic effects depending on their concentration and

chain length [84]. In analyzed SM lipid species, we detected that SM 34:1 lipid species as being

predominant in all stages (Fig 9A). Both sphingomyelin 34:1 and ceramide species (Cer d18:1/

16:0) showed high contents during alveolarization, especially in P15 (Fig 9A & 9B) mouse

lungs, suggesting that, these lipid species are involved in the remodelling of tissue, also

observed in the rat lung development [85]. In contrast to our findings (P1 to P15), a recent

study on mouse lungs using LC-MS/MS approach showed no significant alterations in the Cer

d18:1/16:0 levels from P7 to P14 [27]. The total content of sphingomyelin gradually increased

with the age and the necessary transfer of biochemical substances across the semipermeable

membranes (S1 Table).

So far, no reports are available about the developmental changes of less abundant choles-

teryl ester species in the mouse lung. Saturated fatty acids such as myristic acid (14:0)- and,

palmitic acid (16:0)-containing lysophosphatidylcholines (Fig 4) and cholesteryl esters (Fig 10)

were found highly abundant during P15 in comparison to P1 and P84. Monounsaturated fatty

acid (MUFA) containing CE species were elevated in the newborn, whereas polyunsaturated

fatty acid (PUFA) containing CE species were elevated in adult lungs. Physicochemical proper-

ties of lipids depend on their chain length and their degree of unsaturation. In this aspect, we

calculated the distribution patterns of glycerophospholipids according to their carbon chain

length (number of carbon atoms). We observed that, PC and PG glycerophospholipids are

highly abundant of lipid species with carbon chain length C�36, whereas PE, PS and PI glycer-

ophospholipids are highly abundant with long chain lipid species (C>36). The majority of the

monounsaturated glycerophospholipids were found to be highly abundant in newborns,

whereas polyunsaturated lipid species were highly abundant in adult lungs (S1 Fig). In con-

trary, P15 lungs exhibited high contents of myristic (14:0)- and palmitic (16:0)-acid containing

lipid species.

Limitations and weaknesses of the study

In the current study, we performed an extensive quantitative lipidomic analysis of P1, P15 and

P84 mouse whole lung tissue homogenates to understand the changes occurring during
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postnatal development. The data provides lipidomic alterations in mouse lung during develop-

mental process. However, at this stage we are not able to discriminate the lipidomic changes

occurring specifically at cellular (membrane or intracellular) and extracellular (alveolar) level.

Comprehensive comparative (quantitative) lipidomic analysis of bronchoalveolar lavage fluid

(BALF) and whole lung tissue homogenates in mice and other mammalian species in which

alveolarization continues beyond extra-uterine life (e.g. rats) needs to be investigated in the

near future, which can provide deeper insights for a better understanding of pulmonary devel-

opmental process at molecular and cellular level.

Conclusion

In our study, we have provided the total lipid quantity and given a detailed overview of lipid

classes as well as absolute quantitative information on the individual lipid species and their dis-

tribution pattern according to carbon chain length and degree of unsaturation during postna-

tal mouse lung development using high-throughput tandem mass spectrometry. Our study

provides an extensive quantitative lipidome of whole mouse lung tissue (including less abun-

dant lipid species, neutral lipid components such as cholesterol and their esters), which may

serve as reference for understanding the occurring lipid alterations, which in turn affect lung

function during development or in pulmonary diseases.
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S1 Table. Quantitative analyses of individual lipid classes in mouse lung during postnatal
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(DOC)
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number of carbon atoms) and alkenyl chain (PE P) during postnatal development of
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(DOC)

S1 Fig. Distribution of glycerophospholipids according to degree of unsaturation (total

number of double bonds) during postnatal development of mouse lung. Saturated (total

number of double bonds = 0), Monounsaturated (total number of double bonds = 1), Polyun-

saturated (total number of double bonds�2) lipids.

(TIF)

S2 Fig. Total lipid composition of mouse lung during postnatal development. The dis-

played values are mol% of the respective lipid class of all analyzed lipids. Panel A) Glyceropho-

spholipids (GP), sphingolipids (SP), cholesteryl esters (CE) and cholesterol. Panel B) only GP,

SP without CE and cholesterol. Values are represented as mean ± SD, p-value summary: ����

P< 0.0001, ��� P < 0.001, �� P< 0.01, �P < 0.05.
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S1 File. Lipid profiling of mouse lung during postnatal development used in this study.

The list of identified and quantified lipid molecules, experimental protocol, abbreviations and

statistics.

(XLS)

Quantitative lipidomic analysis of mouse lung during postnatal development

PLOS ONE | https://doi.org/10.1371/journal.pone.0203464 September 7, 2018 20 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0203464.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0203464.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0203464.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0203464.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0203464.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0203464.s006
https://doi.org/10.1371/journal.pone.0203464


Author Contributions

Formal analysis: Vannuruswamy Garikapati, Gerd Schmitz.

Investigation: Gerhard Liebisch.

Methodology: Gerhard Liebisch, Paul P. Van Veldhoven.

Supervision: Srikanth Karnati.

Validation: Bernhard Spengler, Eveline Baumgart-Vogt.

Visualization: Paul P. Van Veldhoven, Bernhard Spengler, Eveline Baumgart-Vogt.

Writing – review & editing: Srikanth Karnati, Vannuruswamy Garikapati.

References
1. Karnati S, Baumgart-Vogt E. Peroxisomes in mouse and human lung: their involvement in pulmonary

lipid metabolism. Histochemistry and cell biology. 2008; 130(4):719–40. https://doi.org/10.1007/

s00418-008-0462-3 PMID: 18665385.

2. Karnati S, Graulich T, Oruqaj G, Pfreimer S, Seimetz M, Stamme C, et al. Postnatal development of the

bronchiolar club cells of distal airways in the mouse lung: stereological and molecular biological studies.

Cell and tissue research. 2016; 364(3):543–57. https://doi.org/10.1007/s00441-015-2354-x PMID:

26796206.

3. Fisher AB. Chapter 22—Lung Lipid Composition and Surfactant Biology A2—Parent, Richard A. Com-

parative Biology of the Normal Lung ( Second Edition). San Diego: Academic Press; 2015. p. 423–66.

4. Bernhard W, Haagsman HP, Tschernig T, Poets CF, Postle AD, van Eijk ME, et al. Conductive airway

surfactant: surface-tension function, biochemical composition, and possible alveolar origin. American

journal of respiratory cell and molecular biology. 1997; 17(1):41–50. https://doi.org/10.1165/ajrcmb.17.

1.2594 PMID: 9224208.

5. Batenburg JJ. Surfactant phospholipids: synthesis and storage. The American journal of physiology.

1992; 262(4 Pt 1):L367–85. https://doi.org/10.1152/ajplung.1992.262.4.L367 PMID: 1566854.

6. Griese M. Pulmonary surfactant in health and human lung diseases: state of the art. Eur Respir J. 1999;

13(6):1455–76. https://doi.org/10.1183/09031936.99.13614779 PubMed PMID:

WOS:000081775800036. PMID: 10445627

7. Blanco O, Perez-Gil J. Biochemical and pharmacological differences between preparations of exoge-

nous natural surfactant used to treat Respiratory Distress Syndrome: Role of the different components

in an efficient pulmonary surfactant. Eur J Pharmacol. 2007; 568(1–3):1–15. https://doi.org/10.1016/j.

ejphar.2007.04.035 PubMed PMID: WOS:000248154800001. PMID: 17543939

8. Hallman M, Enhorning G, Possmayer F. Composition and Surface-Activity of Normal and Phosphatidyl-

glycerol-Deficient Lung Surfactant. Pediatr Res. 1985; 19(3):286–92. https://doi.org/10.1203/

00006450-198503000-00006 PubMed PMID: WOS:A1985ACJ2600006. PMID: 3838583

9. Numata M, Chu HW, Dakhama A, Voelker DR. Pulmonary surfactant phosphatidylglycerol inhibits

respiratory syncytial virus-induced inflammation and infection. P Natl Acad Sci USA. 2010; 107(1):320–

5. https://doi.org/10.1073/pnas.0909361107 PubMed PMID: WOS:000273559200056. PMID:

20080799

10. Stables MJ, Gilroy DW. Old and new generation lipid mediators in acute inflammation and resolution.

Prog Lipid Res. 2011; 50(1):35–51. https://doi.org/10.1016/j.plipres.2010.07.005 PubMed PMID:

WOS:000287059800004. PMID: 20655950

11. Samuelsson B, Dahlen SE, Lindgren JA, Rouzer CA, Serhan CN. Leukotrienes and Lipoxins—Struc-

tures, Biosynthesis, and Biological Effects. Science. 1987; 237(4819):1171–6. https://doi.org/10.1126/

science.2820055 PubMed PMID: WOS:A1987J838900034. PMID: 2820055

12. Lewis RA, Austen KF, Soberman RJ. Leukotrienes and Other Products of the 5-Lipoxygenase Pathway

—Biochemistry and Relation to Pathobiology in Human-Diseases. New Engl J Med. 1990; 323

(10):645–55. PubMed PMID: WOS:A1990DW78700006. https://doi.org/10.1056/

NEJM199009063231006 PMID: 2166915

13. Hallman M, Merritt TA, Pohjavuori M, Gluck L. Effect of surfactant substitution on lung effluent phospho-

lipids in respiratory distress syndrome: evaluation of surfactant phospholipid turnover, pool size, and

the relationship to severity of respiratory failure. Pediatr Res. 1986; 20(12):1228–35. https://doi.org/10.

1203/00006450-198612000-00008 PMID: 3797115.

Quantitative lipidomic analysis of mouse lung during postnatal development

PLOS ONE | https://doi.org/10.1371/journal.pone.0203464 September 7, 2018 21 / 25

https://doi.org/10.1007/s00418-008-0462-3
https://doi.org/10.1007/s00418-008-0462-3
http://www.ncbi.nlm.nih.gov/pubmed/18665385
https://doi.org/10.1007/s00441-015-2354-x
http://www.ncbi.nlm.nih.gov/pubmed/26796206
https://doi.org/10.1165/ajrcmb.17.1.2594
https://doi.org/10.1165/ajrcmb.17.1.2594
http://www.ncbi.nlm.nih.gov/pubmed/9224208
https://doi.org/10.1152/ajplung.1992.262.4.L367
http://www.ncbi.nlm.nih.gov/pubmed/1566854
https://doi.org/10.1183/09031936.99.13614779
http://www.ncbi.nlm.nih.gov/pubmed/10445627
https://doi.org/10.1016/j.ejphar.2007.04.035
https://doi.org/10.1016/j.ejphar.2007.04.035
http://www.ncbi.nlm.nih.gov/pubmed/17543939
https://doi.org/10.1203/00006450-198503000-00006
https://doi.org/10.1203/00006450-198503000-00006
http://www.ncbi.nlm.nih.gov/pubmed/3838583
https://doi.org/10.1073/pnas.0909361107
http://www.ncbi.nlm.nih.gov/pubmed/20080799
https://doi.org/10.1016/j.plipres.2010.07.005
http://www.ncbi.nlm.nih.gov/pubmed/20655950
https://doi.org/10.1126/science.2820055
https://doi.org/10.1126/science.2820055
http://www.ncbi.nlm.nih.gov/pubmed/2820055
https://doi.org/10.1056/NEJM199009063231006
https://doi.org/10.1056/NEJM199009063231006
http://www.ncbi.nlm.nih.gov/pubmed/2166915
https://doi.org/10.1203/00006450-198612000-00008
https://doi.org/10.1203/00006450-198612000-00008
http://www.ncbi.nlm.nih.gov/pubmed/3797115
https://doi.org/10.1371/journal.pone.0203464


14. Clement A, Masliah J, Housset B, Just J, Garcia J, Grimfeld A, et al. Decreased phosphatidyl choline

content in bronchoalveolar lavage fluids of children with bronchopulmonary dysplasia: a preliminary

investigation. Pediatric pulmonology. 1987; 3(2):67–70. PMID: 3588058.

15. Yoder M, Zhuge Y, Yuan Y, Holian O, Kuo S, van Breemen R, et al. Bioactive lysophosphatidylcholine

16:0 and 18:0 are elevated in lungs of asthmatic subjects. Allergy, asthma & immunology research.

2014; 6(1):61–5. https://doi.org/10.4168/aair.2014.6.1.61 PMID: 24404395; PubMed Central PMCID:

PMC3881403.

16. Hallman M, Spragg R, Harrell JH, Moser KM, Gluck L. Evidence of lung surfactant abnormality in respi-

ratory failure. Study of bronchoalveolar lavage phospholipids, surface activity, phospholipase activity,

and plasma myoinositol. The Journal of clinical investigation. 1982; 70(3):673–83. https://doi.org/10.

1172/JCI110662 PMID: 6896715; PubMed Central PMCID: PMC370271.

17. Freedman SD, Katz MH, Parker EM, Laposata M, Urman MY, Alvarez JG. A membrane lipid imbalance

plays a role in the phenotypic expression of cystic fibrosis in cftr(-/-) mice. Proc Natl Acad Sci U S A.

1999; 96(24):13995–4000. PMID: 10570187; PubMed Central PMCID: PMC24179.

18. Gunther A, Siebert C, Schmidt R, Ziegler S, Grimminger F, Yabut M, et al. Surfactant alterations in

severe pneumonia, acute respiratory distress syndrome, and cardiogenic lung edema. American journal

of respiratory and critical care medicine. 1996; 153(1):176–84. https://doi.org/10.1164/ajrccm.153.1.

8542113 PMID: 8542113.

19. Lewis JF, Ikegami M, Jobe AH. Altered surfactant function and metabolism in rabbits with acute lung

injury. Journal of applied physiology. 1990; 69(6):2303–10. https://doi.org/10.1152/jappl.1990.69.6.

2303 PMID: 2077029.

20. Hakomori S. Tumor malignancy defined by aberrant glycosylation and sphingo(glyco)lipid metabolism.

Cancer research. 1996; 56(23):5309–18. PMID: 8968075.

21. Griese M, Kirmeier HG, Liebisch G, Rauch D, Stuckler F, Schmitz G, et al. Surfactant lipidomics in

healthy children and childhood interstitial lung disease. PloS one. 2015; 10(2):e0117985. https://doi.

org/10.1371/journal.pone.0117985 PMID: 25692779; PubMed Central PMCID: PMC4333572.

22. Body DR. The phospholipid composition of pig lung surfactant. Lipids. 1971; 6(9):625–9. PMID:

4334827.

23. Godinez RI, Sanders RL, Longmore WJ. Phosphatidylglycerol in rat lung. I. Identification as a metaboli-

cally active phospholipid in isolated perfused rat lung. Biochemistry. 1975; 14(4):830–4. PMID:

1115773.

24. Rooney SA, Canavan PM, Motoyama EK. The identification of phosphatidylglycerol in the rat, rabbit,

monkey and human lung. Biochimica et biophysica acta. 1974; 360(1):56–67. PMID: 4369311.

25. Pfleger RC, Thomas HG. Beagle Dog Pulmonary Surfactant Lipids—Lipid Composition of Pulmonary

Tissue, Exfoliated Lining Cells, and Surfactant. Arch Intern Med. 1971; 127(5):863–&. https://doi.org/

10.1001/archinte.127.5.863 PubMed PMID: WOS:A1971J354500006. PMID: 5109219

26. Yu S, Harding PGR, Smith N, Possmayer F. Bovine Pulmonary Surfactant—Chemical-Composition

and Physical-Properties. Lipids. 1983; 18(8):522–9. https://doi.org/10.1007/Bf02535391 PubMed

PMID: WOS:A1983RE05700004. PMID: 6688646

27. Dautel SE, Kyle JE, Clair G, Sontag RL, Weitz KK, Shukla AK, et al. Lipidomics reveals dramatic lipid

compositional changes in the maturing postnatal lung. Scientific reports. 2017; 7:40555. https://doi.org/

10.1038/srep40555 PMID: 28145528; PubMed Central PMCID: PMC5286405.

28. Clements JA, Nellenbogen J, Trahan HJ. Pulmonary surfactant and evolution of the lungs. Science.

1970; 169(3945):603–4. PMID: 5426782.

29. Postle AD, Heeley EL, Wilton DC. A comparison of the molecular species compositions of mammalian

lung surfactant phospholipids. Comparative biochemistry and physiology Part A, Molecular & integrative

physiology. 2001; 129(1):65–73. PMID: 11369534.

30. Bernhard W, Gebert A, Vieten G, Rau GA, Hohlfeld JM, Postle AD, et al. Pulmonary surfactant in birds:

coping with surface tension in a tubular lung. American journal of physiology Regulatory, integrative and

comparative physiology. 2001; 281(1):R327–37. https://doi.org/10.1152/ajpregu.2001.281.1.R327

PMID: 11404309.

31. Rau GA, Vieten G, Haitsma JJ, Freihorst J, Poets C, Ure BM, et al. Surfactant in newborn compared

with adolescent pigs: adaptation to neonatal respiration. American journal of respiratory cell and molec-

ular biology. 2004; 30(5):694–701. https://doi.org/10.1165/rcmb.2003-0351OC PMID: 14578213.

32. Veldhuizen R, Nag K, Orgeig S, Possmayer F. The role of lipids in pulmonary surfactant. Bba-Mol Basis

Dis. 1998; 1408(2–3):90–108. https://doi.org/10.1016/S0925-4439(98)00061-1 PubMed PMID:

WOS:000077203900003.

33. Lang CJ, Postle AD, Orgeig S, Possmayer F, Bernhard W, Panda AK, et al. Dipalmitoylphosphatidyl-

choline is not the major surfactant phospholipid species in all mammals. American journal of physiology

Quantitative lipidomic analysis of mouse lung during postnatal development

PLOS ONE | https://doi.org/10.1371/journal.pone.0203464 September 7, 2018 22 / 25

http://www.ncbi.nlm.nih.gov/pubmed/3588058
https://doi.org/10.4168/aair.2014.6.1.61
http://www.ncbi.nlm.nih.gov/pubmed/24404395
https://doi.org/10.1172/JCI110662
https://doi.org/10.1172/JCI110662
http://www.ncbi.nlm.nih.gov/pubmed/6896715
http://www.ncbi.nlm.nih.gov/pubmed/10570187
https://doi.org/10.1164/ajrccm.153.1.8542113
https://doi.org/10.1164/ajrccm.153.1.8542113
http://www.ncbi.nlm.nih.gov/pubmed/8542113
https://doi.org/10.1152/jappl.1990.69.6.2303
https://doi.org/10.1152/jappl.1990.69.6.2303
http://www.ncbi.nlm.nih.gov/pubmed/2077029
http://www.ncbi.nlm.nih.gov/pubmed/8968075
https://doi.org/10.1371/journal.pone.0117985
https://doi.org/10.1371/journal.pone.0117985
http://www.ncbi.nlm.nih.gov/pubmed/25692779
http://www.ncbi.nlm.nih.gov/pubmed/4334827
http://www.ncbi.nlm.nih.gov/pubmed/1115773
http://www.ncbi.nlm.nih.gov/pubmed/4369311
https://doi.org/10.1001/archinte.127.5.863
https://doi.org/10.1001/archinte.127.5.863
http://www.ncbi.nlm.nih.gov/pubmed/5109219
https://doi.org/10.1007/Bf02535391
http://www.ncbi.nlm.nih.gov/pubmed/6688646
https://doi.org/10.1038/srep40555
https://doi.org/10.1038/srep40555
http://www.ncbi.nlm.nih.gov/pubmed/28145528
http://www.ncbi.nlm.nih.gov/pubmed/5426782
http://www.ncbi.nlm.nih.gov/pubmed/11369534
https://doi.org/10.1152/ajpregu.2001.281.1.R327
http://www.ncbi.nlm.nih.gov/pubmed/11404309
https://doi.org/10.1165/rcmb.2003-0351OC
http://www.ncbi.nlm.nih.gov/pubmed/14578213
https://doi.org/10.1016/S0925-4439(98)00061-1
https://doi.org/10.1371/journal.pone.0203464


Regulatory, integrative and comparative physiology. 2005; 289(5):R1426–39. https://doi.org/10.1152/

ajpregu.00496.2004 PMID: 16037124.

34. Egberts J, Beintema-Dubbeldam A, de Boers A. Phosphatidylinositol and not phosphatidylglycerol is

the important minor phospholipid in rhesus-monkey surfactant. Biochimica et biophysica acta. 1987;

919(1):90–2. PMID: 3567218.

35. Burri PH, Dbaly J, Weibel ER. The postnatal growth of the rat lung. I. Morphometry. The Anatomical

record. 1974; 178(4):711–30. https://doi.org/10.1002/ar.1091780405 PMID: 4592625.

36. Amy RW, Bowes D, Burri PH, Haines J, Thurlbeck WM. Postnatal growth of the mouse lung. Journal of

anatomy. 1977; 124(Pt 1):131–51. PMID: 914698; PubMed Central PMCID: PMC1235518.

37. Zeltner TB, Burri PH. The postnatal development and growth of the human lung. II. Morphology. Respi-

ration physiology. 1987; 67(3):269–82. PMID: 3575906.

38. Ricardo MJ Jr., Small GW, Myrvik QN, Kucera LS. Lipid composition of alveolar macrophage plasma

membrane during postnatal development. Journal of immunology. 1986; 136(3):1054–60. PMID:

3001185.

39. Benson BJ, Kitterman JA, Clements JA, Mescher EJ, Tooley WH. Changes in phospholipid composition

of lung surfactant during development in the fetal lamb. Biochimica et biophysica acta. 1983; 753

(1):83–8. PMID: 6688364.

40. Bernhard W, Schmiedl A, Koster G, Orgeig S, Acevedo C, Poets CF, et al. Developmental changes in

rat surfactant lipidomics in the context of species variability. Pediatric pulmonology. 2007; 42(9):794–

804. https://doi.org/10.1002/ppul.20657 PMID: 17659602.

41. Bernhard W, Hoffmann S, Dombrowsky H, Rau GA, Kamlage A, Kappler M, et al. Phosphatidylcholine

molecular species in lung surfactant: composition in relation to respiratory rate and lung development.

American journal of respiratory cell and molecular biology. 2001; 25(6):725–31. https://doi.org/10.1165/

ajrcmb.25.6.4616 PMID: 11726398.

42. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Canadian journal of bio-

chemistry and physiology. 1959; 37(8):911–7. https://doi.org/10.1139/o59-099 PMID: 13671378.

43. Liebisch G, Lieser B, Rathenberg J, Drobnik W, Schmitz G. High-throughput quantification of phosphati-

dylcholine and sphingomyelin by electrospray ionization tandem mass spectrometry coupled with iso-

tope correction algorithm. Biochimica et biophysica acta. 2004; 1686(1–2):108–17. https://doi.org/10.

1016/j.bbalip.2004.09.003 PMID: 15522827.

44. Liebisch G, Drobnik W, Lieser B, Schmitz G. High-throughput quantification of lysophosphatidylcholine

by electrospray ionization tandem mass spectrometry. Clinical chemistry. 2002; 48(12):2217–24.

PMID: 12446479.

45. Liebisch G, Drobnik W, Reil M, Trumbach B, Arnecke R, Olgemoller B, et al. Quantitative measurement

of different ceramide species from crude cellular extracts by electrospray ionization tandem mass spec-

trometry (ESI-MS/MS). Journal of lipid research. 1999; 40(8):1539–46. PMID: 10428992.

46. Liebisch G, Binder M, Schifferer R, Langmann T, Schulz B, Schmitz G. High throughput quantification

of cholesterol and cholesteryl ester by electrospray ionization tandem mass spectrometry (ESI-MS/

MS). Biochimica et biophysica acta. 2006; 1761(1):121–8. https://doi.org/10.1016/j.bbalip.2005.12.007

PMID: 16458590.

47. Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. Quantitative analysis of biological mem-

brane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc

Natl Acad Sci U S A. 1997; 94(6):2339–44. PMID: 9122196; PubMed Central PMCID: PMC20089.

48. Zemski Berry KA, Murphy RC. Electrospray ionization tandem mass spectrometry of glyceropho-

sphoethanolamine plasmalogen phospholipids. Journal of the American Society for Mass Spectrome-

try. 2004; 15(10):1499–508. https://doi.org/10.1016/j.jasms.2004.07.009 PubMed PMID: 15465363.

PMID: 15465363

49. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-

butyl ether for high-throughput lipidomics. Journal of lipid research. 2008; 49(5):1137–46. https://doi.

org/10.1194/jlr.D700041-JLR200 PMID: 18281723; PubMed Central PMCID: PMC2311442.

50. Liebisch G, Vizcaino JA, Kofeler H, Trotzmuller M, Griffiths WJ, Schmitz G, et al. Shorthand notation for

lipid structures derived from mass spectrometry. Journal of lipid research. 2013; 54(6):1523–30. https://

doi.org/10.1194/jlr.M033506 PMID: 23549332; PubMed Central PMCID: PMC3646453.

51. Williams HH, Galbraith H, et al. The effect of growth on the lipid composition of rat tissues. The Journal

of biological chemistry. 1945; 161:475–84. PMID: 21006930.

52. Hahn P. Lipid Synthesis in Various Organs of the Rat during Postnatal Development. Neonatology.

1986; 50(4):205–13.

53. King RJ, Clements JA. Lipid Synthesis and Surfactant Turnover in the Lungs. Comprehensive Physiol-

ogy: John Wiley & Sons, Inc.; 2011.

Quantitative lipidomic analysis of mouse lung during postnatal development

PLOS ONE | https://doi.org/10.1371/journal.pone.0203464 September 7, 2018 23 / 25

https://doi.org/10.1152/ajpregu.00496.2004
https://doi.org/10.1152/ajpregu.00496.2004
http://www.ncbi.nlm.nih.gov/pubmed/16037124
http://www.ncbi.nlm.nih.gov/pubmed/3567218
https://doi.org/10.1002/ar.1091780405
http://www.ncbi.nlm.nih.gov/pubmed/4592625
http://www.ncbi.nlm.nih.gov/pubmed/914698
http://www.ncbi.nlm.nih.gov/pubmed/3575906
http://www.ncbi.nlm.nih.gov/pubmed/3001185
http://www.ncbi.nlm.nih.gov/pubmed/6688364
https://doi.org/10.1002/ppul.20657
http://www.ncbi.nlm.nih.gov/pubmed/17659602
https://doi.org/10.1165/ajrcmb.25.6.4616
https://doi.org/10.1165/ajrcmb.25.6.4616
http://www.ncbi.nlm.nih.gov/pubmed/11726398
https://doi.org/10.1139/o59-099
http://www.ncbi.nlm.nih.gov/pubmed/13671378
https://doi.org/10.1016/j.bbalip.2004.09.003
https://doi.org/10.1016/j.bbalip.2004.09.003
http://www.ncbi.nlm.nih.gov/pubmed/15522827
http://www.ncbi.nlm.nih.gov/pubmed/12446479
http://www.ncbi.nlm.nih.gov/pubmed/10428992
https://doi.org/10.1016/j.bbalip.2005.12.007
http://www.ncbi.nlm.nih.gov/pubmed/16458590
http://www.ncbi.nlm.nih.gov/pubmed/9122196
https://doi.org/10.1016/j.jasms.2004.07.009
http://www.ncbi.nlm.nih.gov/pubmed/15465363
https://doi.org/10.1194/jlr.D700041-JLR200
https://doi.org/10.1194/jlr.D700041-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/18281723
https://doi.org/10.1194/jlr.M033506
https://doi.org/10.1194/jlr.M033506
http://www.ncbi.nlm.nih.gov/pubmed/23549332
http://www.ncbi.nlm.nih.gov/pubmed/21006930
https://doi.org/10.1371/journal.pone.0203464


54. Meaney S, Bonfield TL, Hansson M, Babiker A, Kavuru MS, Thomassen MJ. Serum cholestenoic acid

as a potential marker of pulmonary cholesterol homeostasis: increased levels in patients with pulmo-

nary alveolar proteinosis. Journal of lipid research. 2004; 45(12):2354–60. https://doi.org/10.1194/jlr.

M400302-JLR200 PMID: 15466366.

55. Orgeig S, Daniels CB. The roles of cholesterol in pulmonary surfactant: insights from comparative and

evolutionary studies. Comparative biochemistry and physiology Part A, Molecular & integrative physiol-

ogy. 2001; 129(1):75–89. PMID: 11369535.

56. Notter RH, Tabak SA, Mavis RD. Surface properties of binary mixtures of some pulmonary surfactant

components. Journal of lipid research. 1980; 21(1):10–22. PMID: 6892572.

57. Fleming BD, Keough KM. Surface respreading after collapse of monolayers containing major lipids of

pulmonary surfactant. Chemistry and physics of lipids. 1988; 49(1–2):81–6. PMID: 3233714.

58. Nkadi PO, Merritt TA, Pillers DA. An overview of pulmonary surfactant in the neonate: genetics, metabo-

lism, and the role of surfactant in health and disease. Molecular genetics and metabolism. 2009; 97

(2):95–101. https://doi.org/10.1016/j.ymgme.2009.01.015 PMID: 19299177; PubMed Central PMCID:

PMC2880575.

59. Ma CC, Ma S. The role of surfactant in respiratory distress syndrome. The open respiratory medicine

journal. 2012; 6:44–53. https://doi.org/10.2174/1874306401206010044 PMID: 22859930; PubMed

Central PMCID: PMC3409350.

60. Polin RA, Carlo WA, Committee on F, Newborn, American Academy of P. Surfactant replacement ther-

apy for preterm and term neonates with respiratory distress. Pediatrics. 2014; 133(1):156–63. https://

doi.org/10.1542/peds.2013-3443 PMID: 24379227.

61. Yu SH, Possmayer F. Effect of pulmonary surfactant protein B (SP-B) and calcium on phospholipid

adsorption and squeeze-out of phosphatidylglycerol from binary phospholipid monolayers containing

dipalmitoylphosphatidylcholine. Biochimica et biophysica acta. 1992; 1126(1):26–34. PMID: 1606172.

62. Holm BA, Wang Z, Egan EA, Notter RH. Content of dipalmitoyl phosphatidylcholine in lung surfactant:

ramifications for surface activity. Pediatr Res. 1996; 39(5):805–11. https://doi.org/10.1203/00006450-

199605000-00010 PMID: 8726232.

63. Gille C, Spring B, Bernhard W, Gebhard C, Basile D, Lauber K, et al. Differential effect of surfactant and

its saturated phosphatidylcholines on human blood macrophages. Journal of lipid research. 2007; 48

(2):307–17. https://doi.org/10.1194/jlr.M600451-JLR200 PMID: 17099186.

64. Bernhard W, Raith M, Pynn CJ, Gille C, Stichtenoth G, Stoll D, et al. Increased palmitoyl-myristoyl-

phosphatidylcholine in neonatal rat surfactant is lung specific and correlates with oral myristic acid sup-

ply. Journal of applied physiology. 2011; 111(2):449–57. https://doi.org/10.1152/japplphysiol.00766.

2010 PMID: 21636561.

65. Ridsdale R, Roth-Kleiner M, D’Ovidio F, Unger S, Yi M, Keshavjee S, et al. Surfactant palmitoylmyris-

toylphosphatidylcholine is a marker for alveolar size during disease. American journal of respiratory and

critical care medicine. 2005; 172(2):225–32. https://doi.org/10.1164/rccm.200501-109OC PMID:

15879423.

66. Hamm H, Fabel H, Bartsch W. The Surfactant System of the Adult Lung—Physiology and Clinical Per-

spectives. Clin Investigator. 1992; 70(8):637–57. PubMed PMID: WOS:A1992JJ38400003.

67. Numata M, Kandasamy P, Nagashima Y, Posey J, Hartshorn K, Woodland D, et al. Phosphatidylgly-

cerol suppresses influenza A virus infection. American journal of respiratory cell and molecular biology.

2012; 46(4):479–87. https://doi.org/10.1165/rcmb.2011-0194OC PMID: 22052877; PubMed Central

PMCID: PMC3359948.

68. Perino J, Crouzier D, Spehner D, Debouzy JC, Garin D, Crance JM, et al. Lung surfactant DPPG phos-

pholipid inhibits vaccinia virus infection. Antiviral research. 2011; 89(1):89–97. https://doi.org/10.1016/j.

antiviral.2010.11.009 PMID: 21095206.

69. Haumont D, Rossle C, Clercx A, Spehl M, Biver A, Richelle M, et al. Modifications of surfactant phos-

pholipid pattern in premature infants treated with curosurf: clinical and dietary correlations. Biology of

the neonate. 1992; 61 Suppl 1:37–43. https://doi.org/10.1159/000243842 PMID: 1391264.

70. Whittle MJ, Wilson AI, Whitfield CR. Amniotic fluid phosphatidylglycerol: an early indicator of fetal lung

maturity. British journal of obstetrics and gynaecology. 1983; 90(2):134–8. PMID: 6824613.

71. Serhan CN, Chiang N. Endogenous pro-resolving and anti-inflammatory lipid mediators: a new pharma-

cologic genus. British journal of pharmacology. 2008; 153 Suppl 1:S200–15. https://doi.org/10.1038/sj.

bjp.0707489 PMID: 17965751; PubMed Central PMCID: PMC2268040.

72. Berry KA, Li B, Reynolds SD, Barkley RM, Gijon MA, Hankin JA, et al. MALDI imaging MS of phospho-

lipids in the mouse lung. Journal of lipid research. 2011; 52(8):1551–60. https://doi.org/10.1194/jlr.

M015750 PMID: 21508254; PubMed Central PMCID: PMC3137021.

Quantitative lipidomic analysis of mouse lung during postnatal development

PLOS ONE | https://doi.org/10.1371/journal.pone.0203464 September 7, 2018 24 / 25

https://doi.org/10.1194/jlr.M400302-JLR200
https://doi.org/10.1194/jlr.M400302-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/15466366
http://www.ncbi.nlm.nih.gov/pubmed/11369535
http://www.ncbi.nlm.nih.gov/pubmed/6892572
http://www.ncbi.nlm.nih.gov/pubmed/3233714
https://doi.org/10.1016/j.ymgme.2009.01.015
http://www.ncbi.nlm.nih.gov/pubmed/19299177
https://doi.org/10.2174/1874306401206010044
http://www.ncbi.nlm.nih.gov/pubmed/22859930
https://doi.org/10.1542/peds.2013-3443
https://doi.org/10.1542/peds.2013-3443
http://www.ncbi.nlm.nih.gov/pubmed/24379227
http://www.ncbi.nlm.nih.gov/pubmed/1606172
https://doi.org/10.1203/00006450-199605000-00010
https://doi.org/10.1203/00006450-199605000-00010
http://www.ncbi.nlm.nih.gov/pubmed/8726232
https://doi.org/10.1194/jlr.M600451-JLR200
http://www.ncbi.nlm.nih.gov/pubmed/17099186
https://doi.org/10.1152/japplphysiol.00766.2010
https://doi.org/10.1152/japplphysiol.00766.2010
http://www.ncbi.nlm.nih.gov/pubmed/21636561
https://doi.org/10.1164/rccm.200501-109OC
http://www.ncbi.nlm.nih.gov/pubmed/15879423
https://doi.org/10.1165/rcmb.2011-0194OC
http://www.ncbi.nlm.nih.gov/pubmed/22052877
https://doi.org/10.1016/j.antiviral.2010.11.009
https://doi.org/10.1016/j.antiviral.2010.11.009
http://www.ncbi.nlm.nih.gov/pubmed/21095206
https://doi.org/10.1159/000243842
http://www.ncbi.nlm.nih.gov/pubmed/1391264
http://www.ncbi.nlm.nih.gov/pubmed/6824613
https://doi.org/10.1038/sj.bjp.0707489
https://doi.org/10.1038/sj.bjp.0707489
http://www.ncbi.nlm.nih.gov/pubmed/17965751
https://doi.org/10.1194/jlr.M015750
https://doi.org/10.1194/jlr.M015750
http://www.ncbi.nlm.nih.gov/pubmed/21508254
https://doi.org/10.1371/journal.pone.0203464


73. Brites P, Waterham HR, Wanders RJ. Functions and biosynthesis of plasmalogens in health and dis-

ease. Biochimica et biophysica acta. 2004; 1636(2–3):219–31. https://doi.org/10.1016/j.bbalip.2003.12.

010 PMID: 15164770.

74. Schrakamp G, Schutgens RB, Wanders RJ, Heymans HS, Tager JM, Van den Bosch H. The cerebro-

hepato-renal (Zellweger) syndrome. Impaired de novo biosynthesis of plasmalogens in cultured skin

fibroblasts. Biochimica et biophysica acta. 1985; 833(1):170–4. PMID: 3967038.

75. Rudiger M, von Baehr A, Haupt R, Wauer RR, Rustow B. Preterm infants with high polyunsaturated

fatty acid and plasmalogen content in tracheal aspirates develop bronchopulmonary dysplasia less

often. Crit Care Med. 2000; 28(5):1572–7. PubMed PMID: WOS:000087167800052. PMID: 10834714

76. Wang-Sattler R, Yu Y, Mittelstrass K, Lattka E, Altmaier E, Gieger C, et al. Metabolic Profiling Reveals

Distinct Variations Linked to Nicotine Consumption in Humans—First Results from the KORA Study.

PloS one. 2008; 3(12). doi: ARTN e3863 https://doi.org/10.1371/journal.pone.0003863 PubMed PMID:

WOS:000265452300005. PMID: 19057651

77. Braverman NE, Moser AB. Functions of plasmalogen lipids in health and disease. Biochimica et biophy-

sica acta. 2012; 1822(9):1442–52. https://doi.org/10.1016/j.bbadis.2012.05.008 PMID: 22627108.

78. Wallner S, Grandl M, Konovalova T, Sigruner A, Kopf T, Peer M, et al. Monocyte to Macrophage Differ-

entiation Goes along with Modulation of the Plasmalogen Pattern through Transcriptional Regulation.

PloS one. 2014; 9(4). doi: ARTN e94102 https://doi.org/10.1371/journal.pone.0094102 PubMed PMID:

WOS:000334160900083. PMID: 24714687

79. Rudiger M, Kolleck I, Putz G, Wauer RR, Stevens P, Rustow B. Plasmalogens effectively reduce the

surface tension of surfactant-like phospholipid mixtures. The American journal of physiology. 1998; 274

(1 Pt 1):L143–8. PMID: 9458812.

80. Rudiger M, Tolle A, Meier W, Rustow B. Naturally derived commercial surfactants differ in composition

of surfactant lipids and in surface viscosity. American journal of physiology Lung cellular and molecular

physiology. 2005; 288(2):L379–83. https://doi.org/10.1152/ajplung.00176.2004 PMID: 15501950.

81. Zoeller RA, Grazia TJ, LaCamera P, Park J, Gaposchkin DP, Farber HW. Increasing plasmalogen lev-

els protects human endothelial cells during hypoxia. American journal of physiology Heart and circula-

tory physiology. 2002; 283(2):H671–9. https://doi.org/10.1152/ajpheart.00524.2001 PMID: 12124215.

82. Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nature

reviews Molecular cell biology. 2008; 9(2):139–50. https://doi.org/10.1038/nrm2329 PMID: 18216770.

83. Uhlig S, Gulbins E. Sphingolipids in the lungs. American journal of respiratory and critical care medicine.

2008; 178(11):1100–14. https://doi.org/10.1164/rccm.200804-595SO PMID: 18755926.

84. Grosch S, Schiffmann S, Geisslinger G. Chain length-specific properties of ceramides. Prog Lipid Res.

2012; 51(1):50–62. https://doi.org/10.1016/j.plipres.2011.11.001 PMID: 22133871.

85. Longo CA, Tyler D, Mallampalli RK. Sphingomyelin metabolism is developmentally regulated in rat

lung. American journal of respiratory cell and molecular biology. 1997; 16(5):605–12. https://doi.org/10.

1165/ajrcmb.16.5.9160843 PMID: 9160843.

Quantitative lipidomic analysis of mouse lung during postnatal development

PLOS ONE | https://doi.org/10.1371/journal.pone.0203464 September 7, 2018 25 / 25

https://doi.org/10.1016/j.bbalip.2003.12.010
https://doi.org/10.1016/j.bbalip.2003.12.010
http://www.ncbi.nlm.nih.gov/pubmed/15164770
http://www.ncbi.nlm.nih.gov/pubmed/3967038
http://www.ncbi.nlm.nih.gov/pubmed/10834714
https://doi.org/10.1371/journal.pone.0003863
http://www.ncbi.nlm.nih.gov/pubmed/19057651
https://doi.org/10.1016/j.bbadis.2012.05.008
http://www.ncbi.nlm.nih.gov/pubmed/22627108
https://doi.org/10.1371/journal.pone.0094102
http://www.ncbi.nlm.nih.gov/pubmed/24714687
http://www.ncbi.nlm.nih.gov/pubmed/9458812
https://doi.org/10.1152/ajplung.00176.2004
http://www.ncbi.nlm.nih.gov/pubmed/15501950
https://doi.org/10.1152/ajpheart.00524.2001
http://www.ncbi.nlm.nih.gov/pubmed/12124215
https://doi.org/10.1038/nrm2329
http://www.ncbi.nlm.nih.gov/pubmed/18216770
https://doi.org/10.1164/rccm.200804-595SO
http://www.ncbi.nlm.nih.gov/pubmed/18755926
https://doi.org/10.1016/j.plipres.2011.11.001
http://www.ncbi.nlm.nih.gov/pubmed/22133871
https://doi.org/10.1165/ajrcmb.16.5.9160843
https://doi.org/10.1165/ajrcmb.16.5.9160843
http://www.ncbi.nlm.nih.gov/pubmed/9160843
https://doi.org/10.1371/journal.pone.0203464

