ARNDTSTR. 2, D-35392 GIESSEN, GERMANY

A\
ﬂ ARBEITSGRUPPE INFORMATIK
Ab UNIVERSITAT GIESSEN

On time computability of functions
in one-way cellular automata

Thomas Buchholz Martin Kutrib
Report 9502 September 1995
JUSTUS-LIEBIG-

UNIVERSITAT
GIESSEN

On time computability of functions in

one-way cellular automata

Thomas Buchholz and Martin Kutrib

AG Informatik, University of Giessen
Arndtstr. 2, D-35392 Giessen, Germany

{buchholz,kutrib}@informatik.uni-giessen.de

September 1995

Abstract

The capability of one-way (space-bounded) cellular automata (OCA)
to time-compute functions is investigated. That means given an constant
input of length n a distinguished cell has to enter a distinguished state
exactly after f(n) time steps. The family of such functions (¢ (OCA)) is
characterized in terms of formal language recognition. Several functions
are proved to be time-computable and properties of €(OCA) are given.
The time-computation at some points is concerned with the concept of
signals and their realization which is quite formally defined for the first
time.

1 Introduction

The computational complexity theory can be said to begin in the early sixties.
Since these days there is a particular interest in Turing machine complexity
hierarchies. To obtain infinite dense hierarchies of complexity classes defined
by bounding some resources by a function f, one has to show that only a
slight increase in the growth rate of f yields to a new complexity class. Most
of the corresponding proofs require “well-behaved” complexity functions. The
notion “well-behaved” is usually concretized in terms of the constructibility of
functions with respect to the device investigated.

If we investigate the constructibility of functions in parallel polyautomata we
are strongly concerned with the concept of signals. In a lot of works specific

pulses (or signals) are an useful tool to construct algorithms, for example prime
number generators [5] or a solution to the famous firing squad synchronization
problem [1, 15]. A general investigation of signals of its own in polyautomata
was started by Mazoyer and Terrier [12, 10]. They considered signals and the
constructibility of functions in two-way unbounded cellular automata (cellular
spaces).

Since signals can encode and propagate information through the automaton
their realizability can show us the computation power and the limitations of
the model. Moreover, we can regard signals as a higher programming concept
which allows modularization techniques at algorithm design.

In the field of polyautomata theory a problem arises with the end of a compu-
tation. From the usual definition it follows that the machines will never halt. A
common way of defining final configurations is to define a predicate these con-
figurations have to fulfill. In case of language recognition this predicate mostly
requires a border cell to be in a designated final state. But what afterwards a
final configuration is reached? One can additionally require that final configu-
rations are stable in some sense, i.e. a final configuration leads always to a final
configuration. If this property is not required and a certain complexity class
is under consideration, i.e. the resulting configuration is taken by the outside
world at a time step f(n), then the ability of recognizing time step f(n) is an
ability of the outside world and not necessarily of the model. But both cases
coincide if the time step f(n) is recognizable by the automaton itself.

Let us consider an example: An one-way real-time cellular automata language
can be recognized by an one-way cellular automaton in n—1 time steps if we do
not require stable final configurations [3]. Otherwise we need n time steps since
the time step n — 1 cannot be identified by any one-way cellular automaton.

The paper is organized as follows:

In section 2 we define the basic notions as well as give a quite formal definition of
the concept of signals and its realization by one-way cellular automata. Section
3 is devoted to some examples of OCA-time-computable functions which will
be used in later sections and shed some first light on the range of € (OCA).
In section 4 the family €(OCA) is fully characterized in terms of a sub-family
of the real-time OCA languages, whereas in section 5 the range of ¥(OCA)
is characterized by some of its properties. Especially, closure properties are
considered in section 6.

2 OCAs and time computability

We denote the integers by Z, the positive natural numbers {1,2,...} by N, the
set N U {0} by Np.

A cellular automaton is a linear array of deterministic finite automata, some-
times called cells, each of them is connected to its nearest neighbor(s). For our
convenience we identify the cells by natural numbers. The state transition de-
pends on the actual state of each cell and the actual state(s) of its neighbor(s).
The transition function is applied to all cells synchronously at discrete time
steps. More formally:

Definition 1 A cellular automaton (CA) is a system (S, o, #), where

a) S is the finite, nonempty set of states,
b) # € S is the boundary state,
c) 0:8% — S is the local transition function satisfying V s1,s2,s3 € S :

o(81,82,83) =# <= so=#
The local transition function induces a length preserving mapping 7 : ST —
St according to the following:
Let n € N be an arbitrary natural number and s1,...,s, € S

o(#,s1,#) ifn=1
o(#,81,82)0(81,92,83) - 0(Spn—1,8n,#) otherwise

T (s 8p) ::{

S1 59 53 S4 S5

Figure 1: A cellular automaton.

We often refer to configurations ¢; of CAs at time steps i > 0. Let ¢y be defined
by the initial sequence of states in a CA, then we define ¢;11 := T (¢;) and
¢i(j) == (). mi(s1+++ sp) 1= s; selects the ith component of sq---s,. If the
state set is a Cartesian product of some smaller sets S = Sp X Sy X -+ X S,
we will use the notion “register” for the single parts of a state. Accordingly we
define cf(j) := mi(m;(cs)).

If the flow of information is restricted to one-way (e.g. from right to left), the
resulting device is an one-way cellular automaton (OCA). Le. the next state of

S1 59 S3 S4 S5 #

Figure 2: An one-way cellular automaton.

each cell depends on the state of the cell itself and the state of its right neighbor
only.

In the rest of the paper we are strongly concerned with functions mapping the
natural numbers to N or sometimes to Z.

Definition 2 A function f : N — N or f: N — Z is said to be
a) ultimately periodic with period length p <= 3dng € N : Vn > ng :

f(n) = f(n+p),
) periodic with period length p <= VYn>1: f(n)= f(n+p),
) increasing <= Vn e N: f(n) < f(n+1),
) strictly increasing <= Vn € N: f(n) < f(n+1),
)
)

o o

o

e
f

ultimately constant <= Ing,k E N:Vn >ngy: f(n) =k,
constant <= Ik eN:Vn>1: f(n)=k.

Now we are going to formalize the concept of signals. Intuitively during its
existence a signal resides in exactly one cell at every time step and can propagate
to it neighbors only.

Definition 3 A signal is a partial function £ : Ny — Z which satisfies the
properties £(0) = 0 and £(i) undefined = Vj € N : £(i 4+ j) undefined . We
denote the greatest natural number on which £ is defined by l¢. In case of a
total function the value of I¢ is 0o, otherwise { is said to be finite.

What we have not yet defined is the realization of signals in CAs. Due to the
finiteness of the state set one single cell can only carry a finite number of signals
at the same time. If the initial configuration is long enough then we can realize
each signal arbitrary times as long as the instances are not intersect.

Definition 4 Let £y,&1...,&m,- .- be a (possibly infinite) numbering of signals
and let the set of its indexes be denoted by I. A CA (S = Sy xS x---XS,, 0, #)
realizes for all ¢ € I the signal &; in register r; at time ¢; in cell &; if the following
is true
a) VielI:VmeN:
(&(m +1) undefined V &(m +1) € {€(m) — 1,&(m), &(m) +1})

4

b)vz',jeI:(z':jvn;érjv

v max{ti,tj} <t< min{ti—i—l&.,t]’—l-lgj} : fi(t—ti) +k; # fj(t—tj) +I€j)
c) VieI:(1§ri§rAElDricSri:Dmn{L}:@)
d) Vi<m<r: gy €

{ {1} ifVieT: (r#mV &t —t:) undefined V &(t —t:) + ki #)
D,, otherwise

Observe that we have simply to change the condition Vi € T : Vm € N :
(&(m + 1) undefined V & (m + 1) € {&(m) — 1,&(m), &(m) +1}) to

Viel:VmeN: ({,(m + 1) undefined V &(m + 1) € {&(m) — 1,§Z(m)})

to obtain a definition for a signal realizing OCA.

The previous definition gives insight in whether a set of signals is realized by
a specific (O)CA or not; but it gives no insight in how the realization can be
done.

Mazoyer and Terrier [10] have investigated realizations of signals in unbounded
two-way so-called impulse cellular automata. They call a signal basic if its
sequence of elementary moves {{(t + 1) — £(t) }+en is ultimately periodic.

A signal € is leftward resp. rightward if for all 0 < ¢ < I : £(t) > &(t + 1)
resp. £(t) < &(t+1).

A realization in bounded (O)CAs requires that the signal does not get out of
the borders of the automaton. To avoid an overloading with signal definitions
one can imagine that signals are dropped while crossing the border cells.

Under these assumptions if a single cell n is able to recognize the appropriate
time step t, finite or basic signals can be realized at time ¢ in cell n by CAs
independently of any other computation. If it is additionally leftward it is
realizable by OCAs, too. For the converse it can easily be shown that signals
which are realizable in (O)CAs independently of any other computation must
be finite or basic. On the other hand there are realizable signals which are
neither finite nor basic. In general it will be necessary to use some auxiliary
signals for their realization.

Let us consider two examples.

The signal { : No — Z, n ~ —|3] is basic since the sequence of its ele-
mentary moves 0,0, —1,0,0,—1, ... is periodic. It moves with speed % leftwards
(cf. figure 3).

12345 - 10
0
i)
2
3
4
19

Figure 3: OCA-realization of ¢ at time 4 in cell 5. At time 19 £ is dropped.

Obviously, the signal £ : Ng — Z,

1 3
5(0) = 07 f(n) = Z . 2|—10g2 n-| — | n— Z . 2|—10g2 n-| + 1
is not basic. We use the auxiliary signal n + [%] for its realization in a CA

(cf. figure 4). ¢ is not OCA-realizable.

The main interest in the present paper is focussed on the time computability
of functions. That is what we really want:

Definition 5 A function f : N — N is (O)CA-time-computable iff there exist
a(n) (O)CA M = (S, 0,#), a distinguished state sg € S and a set of final states
F C S such that f(n) is the smallest natural number for which 7 (77 (s2)) €
F.

We denote the family of OCA-time-computable resp. CA-time-computable func-
tions by €(OCA) resp. €(CA).

The concepts of time computability and signals are basically different. For
OCAs there is the following relationship. Every strictly increasing time-compu-
table function describes a realizable signal. For the converse consider the real-
izable constant signal n +— 1 which leads not to a function in €(OCA). On the

12345 - 10

W~ O

4

16

20 |

Figure 4: CA-realization of £ at time 0 in cell 1.
other hand we have to require strictly increasing functions since it will be seen
n if n is even {n+1 if n is even
K and n — . are
2n otherwise n otherwise

OCA-time-computable but do not describe realizable signals.

that, for example, n — {

3 Examples for OCA time computability

In the sequel f always denotes a mapping from N to N and the mapping n — n
is denoted by id. For all £ € N we will use the notion k for the constant function
k(n) = k.

In the present section we give some examples of OCA-time-computable func-
tions. Besides the results are interesting of its own they will be used in later
sections to prove further properties. Rather than giving it in a formal way,
which would be tedious and hard to read, our constructions are somewhat in-
formal.

At first we investigate the world below id. As we will later see in theorem 19
all OCA-time-computable functions below id are ultimately constant.

Lemma 6 Vk € N:k € ¥(OCA)

Proof. For a given k we can construct an OCA which does the job:

S = {s0,...,sc} U{#} and Vs;,5; € S\ {#} : 0(54,5j) = 5(i11) mod (k+1)- LThe
set of final states is {s;}. Obviously for all n € N : 71(7*(s3)) = s from which
the lemma follows. O

The next question is concerned with the function id itself or, more general, the
functions k - id for k € N.

Lemma 7 Vk € N: k-id € ¥(0OCA)

Proof. Since in an OCA the right border cell n can identify itself the leftward
basic signal m — —| 7] for all £ € N can be realized at time 1 in cell n. Now
simply each cell passed through enters a final state. O

The following two lemmas have previously been shown in terms of signals by
Mazoyer and Terrier [10] for two-way unbounded CAs. Their constructions use
only leftward signals such that the proofs can easily be adapted.

Lemma 8 Yk >2:k-id + |Vid] € €(OCA)

For the investigation of general properties of OCA-time-computable functions
the function id+ |log| becomes important. With an eye towards later extensions
we adapt and recall the proof that it belongs to ¥ (OCA) from [10].

Lemma 9 Vb > 2:id + |log,| € €(OCA)

Proof. In order to proof the lemma we give a construction of a corresponding
OCA for b = 2 (cf. figure 5). The construction for another basis is straightfor-
ward.

At initial time the OCA generates at the right border cell (which can identify
itself) a leftward signal. The signal moves with speed 1 and strikes out each
other cell passed through. Moreover, in the first cell which is not struck out
it generates a new signal. This one is one time step delayed and behaves as
the first one. It proceeds with speed 1 to the left and strikes out each other
non struck out cell. If it passes through a cell which will not be struck out it
generates again a new signal which behaves identical. Since the number of cells
left decreases with each signal the algorithm terminates.

1234 20

WO

20

24

Figure 5: Example computation to lemma 9. n = 20, f(n) = 24.

As long as the signals have not struck out any cell on its way to the left they
cause the cells passed through to enter a final state. Consequently, the unique
signal which does not find any cell to strike out sets the left border cell into a
final state for the first time.

Let s(n) be the number of signals on input length n. Obviously, s(n) = |1 +
log, n|. Since the first signal arrives at the left border at time n and every new
signal is delayed by one time step, the total computation time and, hence, f(n)
is n+ |logy 1. O

Lemma 10 Vb, > 2,60 > 2:

fn) == {2 -n 4+ [log,, logy, n] ifn> 1?2 € #(0CA).
2.n otherwise

Proof. The construction bases on that of the previous lemma. For each

b1 > 2,by > 2 there is an ng € N such that Vn > ng : 2n + [logb1 log;, n| >
n+ [logp,n|. Because the number of concerned cells (< ng) depends on b; and
by only and is finite, details to handle it especially are omitted.

An OCA for 2 -id + |logy, logy, | simulates one for id + |log,,] as shown in
lemma 9. Additionally it initiates at time step 0 a leftward signal with speed
1/2 that operates as a corresponding leftward signal for id + [log,, | would do
with the exceptions that only the [log,, | cells not struck out by the first task
are considered and all further generated signals are propagating with speed
1/2. Altogether that leftward signal would need 2n time steps to reach the left
border, but is delayed by |log,, [log,, n|| = [log,, logy, n] time steps. O

The polynomials form a wide class of important and interesting functions. Un-
fortunately, we do not know whether e.g. id? is OCA-time-computable. But we
have a result for its order of magnitude.

Theorem 11 Yk e N:3 f € ¥(OCA) : f € O(id*)

Proof. At first we will give the construction of an appropriate OCA and
afterwards we are going to analyze its behavior.

Let m :=2F and S := {sq,...,Sm_1} U {#}.
S(; if s; € {sm_1,#}
v ;) S S ::{ (i+1) mod m J m—1,
5% o(si55) S; otherwise
The set of final states is {s;,—1}-

Let for each cell i the value g(i) be defined as g(i) := |logs(i)] + 1. Observe,
that the cells are grouped together by their corresponding value g, and that
the number of members of each group is exactly the sum of the members of
all former groups plus one. In the following we will identify each group by its
value of g.

We claim that the behavior of a cell i is periodic with period length m¢(®) and
that it runs through the final state at time t; = m9(®) — m9()-1 4 t;_9qi)—1 for
the first time. Moreover, if i is one less than a power of 2 (i.e. the last member
in a group) it runs through the final state exactly once at the end of every
period.

In the following table the period length, the group number, the number of final
state occurrence during one period and the time step the final state will be
entered firstly for the first 15 cells are depicted.

10

.

g(7) period length # s,,—1 in period firstly final at time

1 1 m 1 m—1

2 2 m? m m?—m

3 2 m? 1 m>—m+m-—1

4 3 m? m? m® —m?

5 3 m? m m2—m?+m—1

6 3 m? m m?—m?+m? —m
7 3 m? 1 m®—m?4+m?—1
8 4 m? m? m* —m?

9 4 m? m? m*—md4+m—1
10 4 m* m? m*—m? +m? —m
11 4 m? m m*—m3+m?—1
12 4 m? m? m* —m3 +m? —m?
13 4 m* m m—md+mP—m24+m—1
14 4 m* m m*—m? +m® —m
15 4 m* 1 mt—m3+md—1

To our convenience we assume tg = 0. We will conclude inductively.

In the first group ¢ = 1 we have just cell 1. Clearly, since its one and only
neighbor is in the border state, from the definition of the local transformation
it follows that its behavior is the repeated sequence sgsi ---sm,_1. Hence, its
period length is m and it firstly changes to the final state at time m! —m%+1t; =
m — 1. Moreover, cell 1 is the last cell of group 1 and it passes through the final
state exactly at the end of every period.

Up to now we have shown that all the cells of the first group meet the claim.

Let us assume now that all cells of a group g meet the claim. We have to show
that all the cells of group g + 1 meet the claim as well.

From the known behavior of the last cell of group g we derive the behavior of
the first cell of group g + 1. It is the repeated sequence

m9 m9 m9
—N——— —N—
80 PEEEEY SO 81 DY Sl DY Sm—l . e e Sm—l

since the last cell passes through the state s, 1 every mY time steps which
leads to a state change of the first cell. Consequently the claim holds.

The second cell of group g+ 1 remains in state sq for the first m9T! —m9 time
steps. From that time on it passes during m9 time steps through the sequence

11

50+ Sm—1 exactly m9~! times. Afterwards its behavior repeats. Consequently,
its period length is m9*! and it is final at time m9t? —m9 +m — 1 at the first,
from which the claim follows.

In other words the behavior of the second cell consists of m9t! —m9 time steps
s and afterwards m9~! times the behavior of the very first cell. Thus, all other
cells of the group behavior starts with m9t! — m9 times sy and subsequently
it is for mY time steps identical to the behavior of a corresponding earlier cell.
Le. the second cell corresponds to the very first cell, the third cell to the very
second cell and so on. Therefore, the last cell of the group corresponds to the
last cell of the predecessor group, from which immediately follows that all cells
of the group g + 1 have period length m9*! and that the last cell of that group
passes through the final state exactly at the end of every period. Furthermore,
each cell i € {29,.-.,29%1 — 1} of the group will firstly be final after m9+! —m?9
time steps plus the final time ¢;_os of the corresponding cell, which proves the
claim.

In order to prove the theorem we have to consider the function f which maps
i > t;. From ¢ty = 0 we derive f(0) = 0 and, clearly, f(i+1) > f(i) holds for all
i > 0. Let [be defined as [log, n], then the value n’ := 218271 = 2! is bounded
by n <n' < 2n.

fn) < f(n)
m|_log2 n/|+1 _ m|_log2 n'| + f(nl _ 2_10g2 n'J)

T —ml+ £(0)
I+1 — (Qk)l—i—l

(2l)k . 2k:
(nl)k . 2k:
(2n)* - 2F

ok+1 ok

IN

IA

mlloganl+1 _ plogan) | p(, _ gllogsnl)

[y
2
I

mlogsn]+1 _ - [logy n]

Y

2k:) logam|+1 (2k) |logy

gllogznl+1)k _ (gllogyn]yk

(
(
(2llog2n] . 9yk _ (gllogz]k
(

ok _) (2 |logy |)k:

12

n 2k —1
= (2F—1). (=) = .nk
1
= (1—5) -n*
It follows f € O(id*) and f € Q(id*) and, consequently f € ©(id*). O

Beyond the polynomials there are exponential functions.

Lemma 12 Vb >2¢c N: b4 +id € ¥(OCA)

Proof. For the construction we can simply setup a bary counter where the
rightmost cell hosts the least significant bit. A cell is in a final state at the
first time iff its behavior becomes periodic, i.e. if it changes its state in such a
manner that a carry over occurs at its position.

Observe, that a carry over from the rightmost cell to the leftmost cell needs
exactly n time steps to travel through the counter. Therefore, the leftmost cell
enters a final state at time ™ 4+ n for the first time (not at time step ™). O

4 Formal language characterization of ¥(OCA)

Now we are going to characterize the family ¥(OCA) in terms of a sub-family
of the real-time OCA languages. The main result of this section becomes im-
portant in so far as it can not be adapted to two-way cellular automata [2].

Definition 13

a) A wordw € AT is accepted by an OCA M = (S, 0,#) in ng € N time steps
<= A C S and there exists a set of final states F' C S with the property
(VteN:V1<i<n:c¢(i) € F = cy1(i) € F) and m1(T™(w)) € F.

b) A formal language L C A" is accepted by an OCA M with time complex-
ityt:N— N <= L={w|wis accepted by M in t(|w|) time steps}.

The family of all languages which can be accepted by an OCA in real-time
(i.e. t = id) is denoted by Z,(OCA). The real-time OCA languages are well
investigated. E.g. it is known that they are properly contained in the real-time
CA languages, that they are closed under boolean operations [4] and reversal

13

[3] but are not closed under concatenation [13]. All real-time OCA languages
over an one-letter alphabet are known to be regular [11].

Let w = wy - - - w, be a word over an arbitrary alphabet, then
n
P(w) = U wi Wy
i=1

is the set of prefixes of w.

Let K C N be a subset of the natural numbers such that the language {a* | k €
K} is regular. For a given formal language L we define the K-prefix language
of L as

Lg :={w||Pw)NnL|le K}

Let for an arbitrary natural number k£ € Ng the set K be {k} resp. {k,k +
1,k +2,...}. For convenience we denote the corresponding languages Lx by
L} resp. L,%. (e.g. Ly is a subset of the complement of L, LIZ is a superset of L
and LT N L consists of words from L where all other prefixes are not belonging
to L).

On a first glance it seems to be harder to recognize Lx than L but for real-time
OCA languages it is not.

Lemma 14 Every K-prefix language Lg of a real-time OCA language L be-
longs to Z,+(OCA).

Proof. Let w = wy---w, be a word from an L € %(OCA). We are
considering the computation of a real-time OCA-recognizer M = (S, o,#) for L
on all prefixes of w and denote the configurations at time ¢ on input wy - - - wy,
j <n, by d.

At first we give the following construction of an OCA: M' = (S x S,d’, (#, #)),
where c¢§ (i) := (w;, #)

and ¢, (3) = (o (m(ch0), m (el + 1)) 0 (ma (0. malcii + 1))).

We claim that for all time steps 1 <t <nandallcells1 <i<n+4+1-—t:
(@) = (e} (D), ¢ (3)-

From the definition of ¢j and ¢’ it follows ¢} (i) = (c?(i), ¢t (7)) for i < n, which

meets the claim.

Now, to prove the claim we have to show o(c?(i), T (i + 1)) = céiﬁ (7).

14

Since the only difference in two computations, say on wr ---w; and wr - - - w41,
is due to the influence of the right border state on the diagonal, one can observe
that (i) = ¢?(i) for j <nmand 1 <i < j—t.

Especially, the observation holds for ¢« + ¢ < j such that we can conclude
a(c (1), cfﬂ't(i +1)) = o(cfﬁ't(i), cf;+t(i +1)) = Céitl(l) and, hence ¢ (i) =
(C?H(i), cfffi (z)) which proves the claim.

From the claim it follows that the second components of the sequence of the
states the first cell passed through are {cf(1)}1<i<n. These are the states in
which the first cell would be after real-time on input of prefix wy « -+ w;. To prove
the lemma the OCA can easily be extended in such a manner that the first cell
simulates one step of a finite-state acceptor for the language {a* | k € K} every
time it recognizes an accepted prefix. O

Lemma 15 Let f : N — Ng be a function, ¥ € N and L := {a"b/ | n €
N} € Z,;(OCA). Then I/ := {a"b/("*+*) | n € N} belongs to .%,;(OCA), too.

Proof. From a real-time acceptor for L we derive one for L' as follows:

The rightmost a-cell can identify itself. It simply simulates besides its own
work another k virtual a-cells which would be located to its right. Altogether
L' simulates the computation of L on input a”t*b/("+%) To achieve real-time
on input a”b/ (%) L' must be faster for k time steps. E.g. the speed-up is done
by a maximum speed leftward signal, which is generated at the right border at
time step 1. When this signal arrives at the rightmost a-cell the cell simulates
k+ 1 steps of its own work (with help of the virtual cells) at once and stores the
results in k additional registers. Afterwards its left neighbor recognizes that
fact and simulates also k£ + 1 steps to get synchronized again and so on to the
first cell. O

Lemma 16 Let f : N — Ny be a function, ¥ € N and L := {a”bf(”) | n €
N} € Z,;(OCA). Then I/ := {a"+*b/(™) | n € N} belongs to .%,;(OCA), too.

Proof. The proof is similar to the previous one, except that the k rightmost
a-cells of L’ do not simulate anything but transmit the state of their right
neighbor to their left neighbor respectively. O

Now we shed light on the relationship between OCA time computability and
OCA real-time recognizability.

15

Theorem 17 Let f : N — N be a function with f > id.
Then f € ¥(0CA) < {a"b/"~" | n € N} € %+(OCA) holds.

Proof. Let L denote the language {a"b/(™)=" | n € N} for a function f > id
and f € €(0OCA).

“=" On an input w of the form a*b™ a corresponding real-time acceptor for
L works as follows.

The a-cells simply simulate the time-computation of f.

At time step 1 the rightmost b-cell (which can identify itself) sends a maximum
speed signal to the left. The input is accepted iff that signal arrives in the
leftmost cell exactly at the time step the time-computation in that cell becomes
final.

Since the running time of the signal is n 4+ m time steps, the input would be
accepted if n +m = f(n) = m = f(n) —n holds.

The leftward signal can easily be extended such that it recognizes whether the
input meets the form a*b™. Otherwise an error signal is propagated to the left.

“<=" Let us assume that there is a real-time acceptor for L. Due to lemma
14 then there exists a real-time acceptor for the 1-prefix-language le of L, say
M, from which we construct an OCA M’ which time-computes f.

All the cells of M’ simulate the a-cells of M.

Suppose the rightmost cell additionally to its own work simulates another (vir-
tual) cell which would be located to its right. Since the rightmost cell can
identify itself this behavior can be achieved in another register.

That (virtual) cell simulates the behavior of the leftmost b-cell of M under
the assumption there are infinitely many b-cells. To achieve that behavior we
can simply define ¢ (v) = b and o’(c;(v), #) to be o(c}(v), ¢;(v)), where v is the
virtual cell. M’ becomes final exactly at the time step M would have recognized
the first prefix.

Obviously, a"b™ is in L iff m = f(n) — n holds. This means that M’ will

be final after n +m = n + f(n) —n = f(n) time steps, from which the time
computability follows. O

Corollary 18 Let L € .%,,(OCA) be a language with the property that for all
n € N there exists an m € Ny such that a”b™ € L holds. Then the function
F +id belongs to € (OCA), where F' : N — Ny with F(n) := min{m € Ny |
a"b™ € L}.

16

Proof. The required property ensures that F, and hence F' + id, is totally
defined. Since L € %,(OCA) and L' := {a"b™ | n,m € N} € £,(OCA) and
Z+(OCA) is closed under intersection it follows that L” := (L N L') belongs
to £+(OCA). From lemma 14 it follows that LY~ belongs to .£,.,(OCA) and
L= N L does, too. This implies that for the words a"b™ from L{= N L the
number m is minimal with respect to n. Otherwise there would be another

prefix of the form a*b™ belonging to L and, hence, the word could not belong
to L= N L.

Then the proof follows with theorem 17. O

5 The range of OCA-time-computable functions

In the present section we give some results that characterize the range of the
family ¥ (OCA).

Due to the following theorem all OCA-time-computable functions below id are
ultimately constant. The converse, namely all constant functions are OCA-
time-computable, has been shown in lemma 6.

Theorem 19 Let f € ¥(OCA) and suppose there is an m € N for which
f(m) < m holds. Then there exist £k € N and ng € N such that for all n > ny
it holds f(n) = k.

Proof. Let f be an OCA-time-computable function for which f(m) < m and
let M = (S, 0,#) be a corresponding OCA. Define k := f(m) and ng := m. To
prove the theorem it suffices to show that ¥ n > m : w1 (T*(s3)) € F.

Consider the space-time-diagram {7°(s") }sen of the computation of M on sj"
which is depicted in figure 6.

Due to our assumptions s must be a final state. Since the OCA is a determ-

inistic device for all n > m the space-time-diagram is as depicted in figure
7.

Because sy is final we can conclude f(n) = k and, hence, the theorem follows.
a

As we have seen in lemma 7 the function id is OCA-time-computable. Con-
sequently we have a gap below id. For example neither [log| nor | /7| are
belonging to ¥ (OCA). Now the question arises whether there is a similar gap
beyond id.

17

—_—>
1 2 3 m
0 So S0
t ’
1 $1 S1 |81,
! !
2 S2 S2 |8, |81,
U 7
k Sk Sk | Sk, Sk
’ U
m (S, 51,

Figure 6: Space-time-diagram to theorem 19. The computation of M on sj'.

n
-
1 2 3 n>m
0 So So
t !
1 $1 S1 |81,
! !
2 S2 82 |8y, |51,
U !
k Sk Sk | Sk, 81,
m |sm Sm |Sh, s
!
oS 51

Figure 7: Space-time-diagrams to theorem 19. The computation of M on
55,1 > m.
18

Lemma 20 Let f > id be an OCA-time-computable function which satisfies
VbeN: f#id+ |log,]. Then there exists a k € Ng such that f(n) =n+k
for infinitely many n € N.

Proof. Suppose f > id is OCA-time-computable by M = (S, o, #) and satisfies
Vb e N: f2#id+ |log,]. Then especially there exists an ng € N such that
no < f(no) < no + [log(g4+1)2(no)]. We conclude that |log g;1)2(n0)] > 1

1
and, therefore, ng > |S|? and nZ > |S| holds.
Assume for the rest of the proof that the cells are numbered from right to left
in ascending order. Considering the computation of M we denote the evolution

cn-1(n)en(n)ent1(n) -« Cn+|log g2 no | ~1 (n)

of a single cell n from time n — 1 to n + |log|g2 o] — 1 by €,. Observe, that
the lengths of all the evolutions are identical (i.e.: |log|gj2 19| +1).

In total there are
|S||_10glsl2 n0J+1 S |S|1+10g|5|2 nQ

|S|1+%-log|s| no _ |S|%-log‘s| no | |S|

= 19| (|5|1°g\5\"0)%
1
= |S]'ni < no
different evolutions of M. Hence at least two evolutions from ey, ..., ey,, say e;
and e; (¢ < j) are identical. Since M is a deterministic device and the initial
input consists of identical states sg the evolution e, determines the evolution

en+1 uniquely. Therefore e; = e; implies e = ey, and inductively V[>

no—(j—i)
—1 ¢ €ngti(j—i) = €no- Define k := f(ng) — ng. Since e, qij—i) = €no cell
ng+1(j — 1) enters a final state at time ng+1(j —4) + k for the first time which
marks f(ng +1(j —¢)). It follows f(ng+1(j —i)) — (ng + 1(j — i)) = k which

proves the lemma. O

The following theorem which follows immediately from the previous lemma
shows that there is a gap beyond id, but it is in some sense smaller than that
one below id. Consider for example id + |log]| which is OCA-time-computable
and id + [loglog| which is not.

Theorem 21 Let f > id be a function. If f belongs to €(OCA) then either
f >id + |log,] for some b € N or there exists a k € Ny such that f(n) =n+k
for infinitely many n € N.

19

In the previous theorem our assumptions on f are weak. If we require additional
properties we can prove stronger results:

Theorem 22 Let f > id be an increasing function. If f belongs to €(OCA)
then either f > id + |log,| for some b € N or {f(n) — n}pen is ultimately
periodic.

Proof. In the proof of lemma 20 it has been shown that VI > —1: f(no+I1(j—
i)) = ng+Il(j—i)+k. Since f is increasing all the values f(no—(j—1)),..., f(no)
are between nyg—(j—i)+k and ng+k. Thus, all the cells m € {ng—(j—1i),...,no}
are final at times ng — (j — i) + k < ¢y, < mg + k. Since ng + k = f(ng) <
no + |log|g2(no)] all the cells m enter a final state during their evolution ep,.

The evolutions VI > —1 : ep 4y are identical to e,,. On the other hand

j—1)
ent1 is totally determined by e,. Therefore the evolution e, of an arbitrary
j—i)- 1t follows that

the series of evolutions {ep},en is periodic with period length j — ¢ — 1. Since

cell p > j is identical to the evolutions VI > —1 : e,y

every evolution e, contains a final state the series { f(p) —p}pen is periodic with
period length j —¢ — 1, too. O

The difference between the both previous results is illustrated by the following
example.

Example 23 Let f: N — N be defined as

2" +n if n is even
f(n):= L
n otherwise

Since an OCA can recognize in real-time whether its input is of even length or
not (see theorem 28, too) in combining lemma 7 and lemma 12 it can easily be
seen that f is OCA-time-computable. Of course, f is not increasing. Therefore
one can find a k € Ny (i.e. & = 0) such that f(n) —n = k for infinitely
many n € N (i.e. for all odd n € N) but {f(n) — n}pen is not periodic since
{f(2n) — 2n}nen = {22} e is unbounded.

If we require f to be strictly increasing the theorem can be strengthen further-
more. In the context of signals a similar result was found in [10].

Theorem 24 Let f > id be an strictly increasing function. If f belongs to
¢ (OCA) then either f > id + |log,| for some b € N or {f(n) — n}luen is
ultimately constant.

20

Proof. From theorem 22 we know that {f(n) — n},en is ultimately periodic,
say with period length p. Suppose the periodicity starts at cell ng € N and
f(ng) —ng = k. For an arbitrary cell n > ny we have f(n) —n = f(n+p) —
(n+p) = f(n+p) — f(n) = p. Thus there are exactly p values from f(n)
to f(n+p—1) for the p cells n to n+ p — 1. Since f is strictly increasing it
follows Vn > ng : f(n) = f(n—1)+ 1. Thus f(n) = f(no) +n—no =k +n
from which Vn > ng : f(n) —n = k follows. O

Again, to illustrate the difference between the two previous results we give an

example:

Example 25 Let k € N be a constant and f : N — N be defined as
f(n)::{n-l_k 1fnls(?dd .
n+1+4+k otherwise
f belongs to €(OCA). Since f is increasing but not strictly increasing the
series {f(n) — n}lpen (i-e. k,k+ 1,k k+1,...) is periodic but not constant.

As we have seen the constant functions form a lower bound of the range of
OCA-time-computable functions. As we will see in the following theorem the
exponential functions form an upper bound.

Theorem 26 If f belongs to €(OCA) then there exists a £k € N such that
limn_)oo ﬂkgl — O.
Proof. It suffices to show that there exists a k such that the series {f_kLZl}neN
is bounded by a constant k', because 2k fulfills the requirements:

f) _ 1 g 1,

(2k)» ~ 27 kn — 2n

and lim, oo Z%k' =0.

Now we conclude indirectly. Suppose there is a function f which is OCA-time-
computable by an OCA M = (S,o,#) and for all £k € N the series {f(ff) Fnen
is unbounded. Then especially there exists an ng € N such that f(ng) > |S|™.

On input s;° the computation of M will be cyclically at most after |S|" time
steps at the latest (there are at most |S|™ different configurations of length
ng). But because f(ng) > |S|™ the leftmost cell can never enter a final state,
which leads to a contradiction to the OCA time computability of f. O

Example 27 f(n) = 22" is not OCA-time-computable since the series {2;:—:}neN
is unbounded for all £ € N.

21

6 Closure properties

Besides closure properties are interesting of its own they are a powerful tool for
proving time computability and properties concerned with.

Our first result in the present section is a little bit unusual closure property: It
is the closure under regular selection. Theorem 28 ensures the OCA time com-
putability of the functions in example 23 and 25 and generalizes their structure.

Theorem 28 Let {i;};en be an ultimately periodic sequence of natural num-
bers and let max{i; | j € N} = ng. If for 1 <1 < ng there are OCA-time-
computable functions f; > id, then f : N — N, n — f; (n) is OCA-time-
computable.

Proof. Due to the fact that the sequence {i;};cn is ultimately periodic it
must be bounded. Therefore the maximum always exists.

An OCA which time-computes f is constructed as follows:

At time step 1 a leftward signal with speed 1 is generated in the rightmost
cell. Tt is realized with states {1,2,...,n¢} such that on its way it runs exactly
through the sequence {i;};en. Therefore each cell n knows in real-time to which
value i,, it corresponds.

In parallel each cell time-computes all of the finite number of functions fj,
1 <1 < ng in separate registers. Since all functions are greater or equal to the
identity the cells are able to select the required computation after receipt of the
leftward signal. O

Speeding up or slowing down the time-computation by a certain well specified
amount of time may be expressed in terms of closure of €(OCA) under the
operations addition/multiplication and subtraction/division.

The following theorems show that % (OCA) is in some sense closed under
subtraction resp. division by a constant but not by arbitrary functions (from
% (OCA)), respectively.

Theorem 29 Let f + id be OCA-time-computable then V& € N : max{f —
k,0} 4+ id € €(OCA).

Proof. An OCA M’ for max{f —k,0} +id is constructed from an OCA M
for f + id as follows:

22

The rightmost cell of M’ knows the state of its right neighbor in advance (i.e. the
boundary state #). Therefore, it can simulate the first k 4+ 1 time steps of the
rightmost cell of M at the first time step and store the results in k+ 1 registers.
Subsequently it simulates one transition of M at every time step and stores that
result and the previous k results in its registers. At the second time step cell 2
behaves as cell 1 and so on. Thus, at the nth time step cell n has completed
the (n + k)th time step of M and will subsequently complete the (n + &k + 1)th
time step and so on. O

Because of theorem 19 we have to ensure that the function in the previous
theorem is at least the identity. On the other hand, we know that the constants
are the only OCA-time-computable functions below id and, of course, we can
speed up a constant by a lower constant.

Theorem 30 Let for a & € N the function f > k be constant, then f —k is
OCA-time-computable.

Proof. f—Xkisitself a constant function which belongs to €(OCA) (cf. lemma
6). O

Theorem 31 %(OCA) is not closed under (arbitrary) subtraction.

Proof. Due to lemma 7 f := id belongs to ¥(OCA) and due to lemma 10
g := 2-id + |loglog| does. But from theorem 22 we conclude that ¢ — f =
id + |log log| is not OCA-time-computable. O

The family ¥ (OCA) is not closed under subtraction even if we assume f =
f'+id € €(OCA) and g = ¢’ +id € ¥(OCA) and require that f' — ¢’ +id
belongs to ¥(OCA). This fact follows from the fact that 2 - id 4+ |loglog] + id
(cf. corollary 35) and 2 -id + id are OCA-time-computable but [loglog] +id is
not.

Theorem 32 Let f + id be OCA-time-computable then Vk € N : id + | {] €
€ (OCA).

Proof. Ibarra and Palis [7] have shown that for all f : N — Np the family
Zt5(n)(OCA) is identical to the families XnHMJ(OCA),k > 1. Since the
k

time-computation of a function f on sy may be regarded as recognizing the
word sg in f(n) time steps that proof can easily be adapted. O

23

After asking for closure under subtraction and division we are interested in
closure under addition and multiplication or in other words in slowing down
the computation.

Theorem 33 Let f be OCA-time-computable then Vk € N: k- f € €(OCA).

Proof. One can construct an OCA M’ which time computes k - f from an
OCA M for f.

Each cell of M’ has two registers. One of them is a counter which counts the
time steps modulo k. The other simply simulates one step of M at each time
step the counter has the value k — 1. O

The following result about closure under addition is stronger than that on
multiplication.

Theorem 34 Let d : N — 7Z be a ultimately periodic function such that
f(n):=>1,d(i) >0 for all n € N. Then it holds ¢ > id A g € ¥(OCA) =
g+ f € €(OCA).

Proof. Without loss of generality we may assume that d is periodic. In the
case it is ultimately periodic for all n > ng in the following construction the
finite first ng cells can specially be handled.

Assume now the period length of d is p. From the requirement f(n) > 0 it
follows that the sum over one period s := Y% | d(i) = f(p) is greater than or

equal to 0.

An OCA can easily be constructed in such a manner that it marks every pth
of its cells (i.e. marks the beginning of every period).

Let M be an OCA for g and let s~ be defined as Y2 ; d~ (i), where d~ (i) :=
{ |d(¢)] if d(i) <0

0 otherwise
An OCA M’ which time-computes f + g has to perform two main tasks:
Basically a simulation of M sped-up by s~ time steps and, in parallel, each cell
has to delay its final time by a certain amount of time.

The basically simulation of M is obtained by theorem 29 (Observe that g+ f >
id).

Additionally in the first task every pth cell (which can be marked as mentioned
before) has to delay the previous sped-up simulation by s time steps. (Observe,

24

s is a previously known fixed natural number.) Generally, delaying the com-
putation can be done by adding some r registers that are initially empty and
work as a queue in a first-in-first-out manner. The states leaving the queue are
r time steps old, but after the first r time steps one state is leaving at every
time step.

Up to now every cell j = k-p+ 1, where k > 0 and 1 <[< p time-computes
9(j) —s" +k-s.

The second task is to delay the final time by a certain amount of time. Con-
cretely every cell j = k- p + [has to wait another s~ + S3t_, d(i) time steps
before changing to a final state. Remember, d is periodic. Consequently the
requested behavior can be realized by letting the cells count up to the required
value. Moreover, from the periodicity of d it follows f(p) = s and f(k-p) = k-s,
kE>1,and f(k-p)+ f(I), 1 <1<p,isequal to f(k-p+1).

Altogether the single tasks can be combined such that the resulting time steps
are superimposed. Every cell j =k -p+1[, where k > 0 and 1 <[< p then will
be final at time g(j) — s~ + k-s4+ s~ + X', d(@) = g(j) + k-s+ Xt d(i) =
9g()+ fk-p)+ f(l) =g(j) + f(4), which proves the theorem. O
Unfortunately, the converse of the previous theorem does not hold. Otherwise
we would have had the closure under subtraction of id. Consider for example
d(n) := 1, such that f(n) is the identity. d is periodic and f > 0 holds. But

although id + |loglog| + f belongs to ¥(OCA) (cf. lemma 10) id + [loglog]
does not.

On the other hand the result implies the closure under addition of id.
Corollary 35 Let g be an OCA-time-computable function then g+id € €(OCA).
The theorem holds even if the function f itself is ultimately periodic.

Corollary 36 Let f : N — Ng be an ultimately periodic function. If ¢ > id
is OCA-time-computable then g + f € ¥(OCA).

Proof. Define d(1) := f(1) and Vi > 1:d(i) := f(i) — f(— 1). It can easily
be seen that f(n) := Y." ,d(i) for all n > 1. Since f is a function from N to
No it holds f > 0 and, hence, >~7; d(i) > 0. O

Example 37 Every constant function k is periodic. Therefore, €(OCA) is
closed under addition of constants: f € €(OCA) = Vk € N: f+k €
#(OCA).

25

Theorem 38 % (OCA) is not closed under composition.

Proof. 29 4 id belongs to ¥(OCA) and it holds 22 +d 4 2id 4 jq > 22,
Therefore the theorem follows with theorem 26 and example 27. O

The next theorem is related to the closure of .%,;(OCA) under union and inter-
section. Let for two functions f and g and all n € N max{f, g} be defined ac-

f(n) it f(n) > g(n)

g(n) otherwise . The definition of min{f, g} is straight-

cording to n — {

forward.

Theorem 39 Let f and g be OCA-time-computable functions then max{f, g} €
% (OCA) and min{f, g} € €(OCA).

Proof. An OCA for max{f, ¢} (min{f,g}) on two tracks separately simulates
the time-computation of f and g. The cells change to a final state when both
(the first) of the simulations are (is) final. O

The following theorems show in some sense the closure of ¥(OCA) against
inversion. They are a powerful tool for proving time computability.

Theorem 40 Let g : N — Ny be a function with the property that for all
m € N there exists an n € N such that g(n) = m holds. If g +id is OCA-time-
computable then F' +id € ¥(OCA), where F': N — N with F(m) := min{n €

N | g(n) =m}.

Proof. Due to theorem 17 from the time computability of g + id it follows
L:= {a"b!™ | n € N} € Z;(OCA). In [3] it has been shown that .%,;,(OCA) is
closed under reversal. Therefore L? belongs to .%,;(OCA). Due to the required
property there exists for all m € N an n € N such that b™a” € LE. From
corollary 18 it follows the time computability of F'+id, where F' : N — N with
F(m) := min{n € N | b™a" € LE}. FromVn € N:b™a" € L <= m = g(n)
we conclude F(m) = min{n € N | g(n) = m}. O

The following example is an improvement of lemma 12.

Example 41 |[log, | +id belongs to €(OCA). Therefore b'¢ + id is OCA-time-
computable, too.

26

In the previous theorem it was required that the function g is surjective (ex-
cept for the value 0). Since, generally, the resulting function F' has not to be
surjective the theorem cannot be applied to its results again. Instead we have
the following theorems for the inversion of the inverse.

Theorem 42 Let f : N — Ny be a strictly increasing function. If f + id is
OCA-time-computable then F' +id € €(OCA), where F' : N — N with

F(m) = {max{n EN|f(n)<m} ifm> f(1)
. 0 otherwise

Proof. Since f + id is OCA-time-computable the language L := {a"b/(") |
n € N} belongs to .Z,+(OCA). From lemma 14 it follows that LT € .Z.(OCA).
Due to lemma 15 L' := {a"b/"*1) | n € N} belongs to .%,,(OCA) and with
lemma 14 L'l2 does. The family .%,,(OCA) is closed under set difference thus
L" .= L7\ L'lZ is a real-time OCA language. Because f is strictly increasing
we have in other words L” = {a"0™ | n € N A f(n) < m < f(n+1)}. Since
%,+(OCA) is closed under reversal the language L"® = {b™a" | n € N A
f(n) <m < f(n+ 1)} is real-time OCA-acceptable. To express the number
of a’s in terms of a function depending on m we have to be prepared to the
cases where m < f(1) since a function would not be defined on such arguments.
But fortunately the corresponding set of words is finite and therefore is L' :=
{p™af (™) | m € N} where

F(m) i= { DX €N T i 2 (1)
‘ 0 otherwise

real-time OCA-acceptable.
From lemma 14 it follows that F' + id is OCA-time-computable. O

The following example additionally gives insight in one of the problems con-
cerned with the inversion of discrete functions. In most cases there are more
than one inverse function depending on rounding or truncating the results.
From lemma 12 and theorem 42 the lemma 9 can be improved.

Example 43 b4 + id belongs to (OCA). Therefore |log,| + id is OCA-time-
computable, too.

In the following theorem a dual result yields to “rounded up” results.

27

Theorem 44 Let f : N — Ng be a strictly increasing function. If f + id
is OCA-time-computable then F' +id € €(OCA), where F' : N — N with
F(m) :==min{n € N | f(n) > m}.

Proof. Let f : Ny — Ng, where f(0) := 0 and f(n) := f(n), n > 1 be
an extension of f. Taking the denotations of the previous proof set L' :=
{1/ | n € N} (cf. lemma 16) and L" := ((L'IZ \ L) \Lf) U L. In other
words L" = {a"®™ | n > 2 A f(n—1) < m < f(n)} from which follows
that L"® := {p™a" | n > 2 A f(n —1) < m < f(n)} belongs to Z;(OCA)
and, hence, (observe that F' is totally defined since f is strictly increasing)
L" := {p™af ™ | m € N} where F(m) = min{n € N | f(n) > m} belongs to
% (OCA).]

Example 45 b9 +id belongs to €(OCA). Therefore [log,] + id is OCA-time-
computable, too.

Example 46 From theorem 11 (and its proof) it follows that there exists an
OCA-time-computable function f € ©(id?), which is strictly increasing. From
theorem 34 one can obtain f + id € ¥(OCA) and therefore there exists an
OCA-time-computable function in id + ©(1/id).

Thus theorem 40 and on the other side theorem 42 and theorem 44 are inverting
each other in some sense. The question after the fix-points is easily answered:
One can show that the identity meets all the requirements and is a fix-point
under the considered operations. On the other hand the identity can be shown
to be the only fix-point.

References

[1] Balzer, R. M. An 8-state minimal time solution to the firing squad syn-
chronization problem. Information and Control 10 (1967), 22-42.

[2] Buchholz, Th. and Kutrib, M. Some relations between massively parallel
models. To appear.

[3] Choffrut, C. and Culik II, K. On real-time cellular automata and trellis
automata. Acta Informatica 21 (1984), 393-407.

28

[4]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

Dyer, C. R. One-way bounded cellular automata. Information and Control
44 (1980), 261-281.

Fischer, P. C. Generation of primes by a one-dimensional real-time itera-
tive array. Journal of the ACM 12 (1965), 388-394.

Ibarra, O. H. and Jiang, T. On one-way cellular arrays. STAM Journal on
Computing 16 (1987), 1135-1154.

Ibarra, O. H. and Palis, M. A. Some results concerning linear iterative
(systolic) arrays. Journal of Parallel and Distributed Computing 2 (1985),
182-218.

Kutrib, M. On stack-augmented polyautomata. Report 9501, Arbeits-
gruppe Informatik, Universitdt Gielen, Gieflen, 1995.

Kutrib, M. and Richstein, J. Real-time one-way pushdown cellular auto-
mata languages. In Dassow, J., Rozenberg, G. and Salomaa, A. (eds.),
Developments in Language Theory II. At the Crossroads of Mathematics,
Computer Science and Biology. World Scientific Publishing, Singapore,
1996.

Mazoyer, J. and Terrier, V. Signals in one dimensional cellular automata.
Research Report RR 94-50, Ecole Normale Supérieure de Lyon, Lyon, 1994.

Seidel, S. R. Language recognition and the synchronization of cellular auto-
mata. Technical Report 79-02, Department of Computer Science, Uni-
versity of lowa, lowa City, 1979.

Terrier, V. Signals in linear cellular automata. Proc. Workshop on Cellular
Automata, Centre of Scientific Computing, Espoo Finland, 1991.

Terrier, V. On real time one-way cellular array. Theoretical Computer
Science 141 (1995), 331-335.

Vollmar, R. Algorithmen in Zellularautomaten. Teubner, Stuttgart, 1979.

Waksman, A. An optimum solution to the firing squad synchronization
problem. Information and Control 9 (1966), 66—78.

29

