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Abbreviations

ANOVA analysis of variance

BLUP best linear unbiased prediction

cM centimorgan

CMS cytoplasmic male sterility

GBS genotyping-by-sequencing

GWP genome-wide prediction

HEM heteroscedastic effects model

LD linkage disequilibrium

MAS marker-assisted selection

Mb megabases

QTL quantitative trait loci

REML restricted maximum likelihood

RIR ridge regression employing preliminary estimates of the heri-

tability

RMLV modification of the restricted maximum likelihood procedure

that yields heteroscedastic variances

RMLA estimation of the error and genetic variance components with

restricted maximum likelihood and partitioning according to

analysis of variance components

RR-BLUP ridge regression BLUP

RRWA ridge regression with weighing factors according to analysis

of variance components

SNP single nucleotide polymorphism
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General introduction

Chapter 1

General introduction

Plant breeding aims at improving crop cultivars for particular traits in or-

der to fulfill human needs and to meet environmental requirements. Every

breeding program consists of the three main stages: (1) Generate genetic

variability; (2) select potential parents for cultivars; and (3) test the experi-

mental cultivars. My work mainly focused on selection of the best performing

individuals from the created genetic variation in the second stage. With the

invention of molecular markers, marker-assisted selection (MAS) for improv-

ing quantitative traits emerged in the 1990s (cf. Xu and Crouch 2008) and

facilitated the effective selection of breeding candidates based on their geno-

type. In a first step, quantitative trait loci (QTL) are mapped with molecular

markers and in a second step, marker effects are estimated (cf. Lande and

Thompson 1990; Collard and Mackill 2008). MAS has successfully been im-

plemented in various crops for monogenic and oligogenic traits like resistances

(Collard and Mackill 2008). The main drawback of MAS is that only mark-

ers with significant effects are considered and therefore it fails to capture

the complete genetic variance (Goddard and Hayes 2007). This results in an

overestimation of QTL effects and has been referred to as the Beavis effect

(cf. Utz and Melchinger 1994; Xu 2003). By avoiding the selection of markers

with significant effects, Meuwissen et al. (2001) introduced genome-wide pre-

diction (GWP) to the animal breeding community. The focus of GWP lies

on improving complex traits, for which MAS was not successful (Heffner et

al. 2009). With GWP, breeding candidates are selected based on molecular
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General introduction

markers covering the whole genome. This avoids the critical step of select-

ing significant markers and is expected to improve quantitative traits, which

are influenced by many genes with small effects on the trait. Widely used

synonymous terms for GWP are genomic selection, genomic prediction and

genome-based prediction.

Implementation of GWP in plant breeding

programs

High-throughput marker systems enabled cheap genotyping and triggered the

increasing research of GWP in animal and plant breeding. A commonly used

marker type for genotyping of plants are single nucleotide polymorphisms

(SNPs), which are highly abundant (cf. Gupta et al. 2001). Due to varia-

tions of single nucleotide bases in the genome, SNPs are able to differentiate

between individuals on the molecular level. As phenotyping is still cost- and

time-intensive, one potential of GWP lies in shifting the focus from field test-

ing of parental lines to the prediction of their performance from molecular

data (cf. Nakaya and Isobe 2012; Heffner et al. 2010). Much research has

been done in the field of GWP, its practical implementation in applied plant

breeding programs is, however, still progressing rather slowly.

The process of GWP is illustrated in Figure 1.1. In a first step, genetic effects

of markers are estimated with a statistical method for a set of individuals

named “estimation set”. Individuals in the estimation set are genotyped

and phenotyped for the traits of interest. The genetic effects can be used

in order to predict genotypic values of individuals in the “prediction set”.

Individuals in the prediction set are only genotyped with molecular markers

across the whole genome. Estimated genetic effects from the estimation

set and genotypic data from the individuals in the prediction set are both

required for the prediction of genotypic values.
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Figure 1.1. Illustration of GWP in applied plant breeding programs. In-

dividuals in the estimation set are genotyped and phenotyped, whereas

individuals in the prediction set are only genotyped. Genetic effects of

markers are estimated with a statistical method for GWP. Three exem-

plary SNP markers are indicated by black arrows. The genetic effects can

be used to identify genes, predict crosses or predict genotypic values for

individuals in the prediction set.
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The obtained genetic effects can also be used to identify functional genes,

which can further be used for marker-assisted introgression programs (Fig-

ure 1.1). However, accurate localization and effect size estimation of markers

controlling the traits of interest are prerequisites for this application. Besides

the identification of functional genes, plant breeders have high expectations

for the prediction of crosses. The process of selecting favorable parental

combinations for crosses has a very high impact on the success of a breeding

program. Crosses can be predicted by estimating expectation and variance

of the performance of a population derived from crossing two parental geno-

types. The success of cross prediction with GWP strongly depends on accu-

rate marker effect estimates in order to model the recombination of parental

alleles.

GWP and sugar beet hybrid breeding

Throughout my work, the main focus was on the prediction of test cross

performance of sugar beet (Beta vulgaris L.) inbred lines in an applied hy-

brid breeding program. The discovery of cytoplasmic male sterility (CMS)

by Owen (1945) enabled the commercial hybrid production of sugar beet.

Historically, the crop has faced an extreme genetic bottleneck in the 1960s

when the system of CMS was developed with the simultaneous introduction

of the highly desired monogermic seed character (Biancardi et al. 2010). Ever

since, hybrid sugar beet seed is produced by crossing monogermic, cytoplas-

mic male-sterile plants with multigermic, fertile pollinators. In sugar beet

hybrid breeding programs, the number of subpopulations of each heterotic

pool equals the number of years required for a recurrent selection cycle. This

ensures one completed breeding cycle each year and therefore the permanent

availability of improved breeding material. The progeny of each breeding

cycle is evaluated in field trials for its test cross performance.

After the invention of molecular markers, the introgression of the major gene

RZ1 into pollinator lines for resistance against rhizomania became a popular
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example for an effective application of MAS in plant breeding (De Biaggi

et al. 2010). Recently, we demonstrated the successful application of GWP

in sugar beet breeding (Hofheinz et al. 2012) and thereafter, concordant

results were presented by Würschum et al. (2013). The genome sequence

of sugar beet has been published most recently by Dohm et al. (2014) and

will facilitate the availability of cheap genome-wide dense molecular marker

maps.

Statistical methods for GWP

Genome-wide dense marker maps lead to an overparameterization of GWP

methods by fitting more marker data (p) than individuals (n). In order to

overcome this problem, ridge regression or variable selection methods can be

employed. The latter is utilized by the broad variety of Bayesian methods

(cf. Meuwissen et al. 2001; Kärkkäinen and Sillanpää 2012). Here, specified

prior distributions result in heteroscedastic marker variances. These marker-

specific variances are expected to meet genetic requirements of monogenic

and oligogenic traits, for example resistance traits, which are only influenced

by one or a small number of genes. The main drawbacks of the Bayesian

methods are their tremendous computational demand and difficulties con-

cerning the definition of prior distributions and hyperparameters.

Throughout my work, I focused on methods employing shrinkage factors us-

ing ridge regression. Here, all markers are included in the model, but each

estimated genetic effect is shrunk with a shrinkage factor λ. If the degree

of shrinkage is determined by dividing the error variance (σe) by the genetic

variance (σg), the estimates are equivalent to best linear unbiased predic-

tions (BLUP) of genetic effects (cf. Piepho 2009). The required restricted

maximum likelihood (REML) estimates of the variance components can be

obtained by using an expectation-maximization algorithm. BLUP estimates

of genetic effects are obtained by shrinking each genetic effect to the same ex-

tent, no matter how much influence the marker has on the trait. A constant
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shrinkage factor results in homoscedastic genetic variances for all markers.

Homogeneous shrinkage proved to work well for the prediction of quantitative

traits, for example yield-related traits, which are influenced by many genes,

each having a small effect on the trait (cf. Crossa et al. 2010; Hofheinz et al.

2012).

The assumption of homogeneous shrinkage will, however, circumvent the ap-

plications of GWP methods in which accurate marker effect estimates are

needed. Therefore, heteroscedastic marker variances are a prerequisite for

applications like prediction of the performance of crosses or identification

of genes in applied plant breeding programs. Due to the rapidly growing

dimension of data sets, solutions which address the computational obsta-

cles that arise with the Bayesian methods are required. Our goal was to

develop novel, computationally efficient ridge regression methods employing

heteroscedastic marker variances (Hofheinz and Frisch 2014). Here, each ge-

netic effect is shrunk with a marker-specific shrinkage factor. Simultaneously,

Shen et al. (2013) introduced the heteroscedastic effects model (HEM) as a

generalized ridge regression approach employing marker-specific shrinkage in

a non-Bayesian framework.

Implementation of GWP in different crops

In the beginning of the 21st century, the pioneering publication of Meuwissen

et al. (2001) rapidly revolutionized the field of animal breeding. A few years

later, many simulation studies which focused on plant breeding followed (e.g.,

Bernardo and Yu 2007; Wong and Bernardo 2008; Bernardo 2009; Zhong et

al. 2009). The main goal of these studies was to show the theoretical potential

of GWP to overcome the shortcomings of MAS and QTL mapping. Recently,

GWP studies employing experimental data sets from different crops such as

maize (cf. Piepho 2009; Crossa et al. 2010; Albrecht et al. 2011), wheat (cf.

Heffner et al. 2011; Zhao et al. 2013), barley (cf. Lorenz et al. 2012), sugar
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beet (Hofheinz et al. 2012; Würschum et al. 2013), rapeseed (Würschum et al.

2014) and trees such as apple (Kumar et al. 2012) or loblolly pine (Resende

et al. 2012) were published.

The focus of the above-mentioned studies was on the validation of GWP

methods for their prediction accuracy. All individuals in the data sets of

these studies were genotyped and phenotyped and cross validation was used

to assess the prediction accuracy. Cross validation randomly divides the data

set into two parts: The estimation set is used for estimating the marker ef-

fects and the prediction set is used for validating the predicted genotypic

values. As a measure of prediction accuracy from repeated cross validations,

the Pearson correlation coefficient between observed phenotypic values and

predicted genotypic values is usually calculated. Additionally, the estimated

correlation can be divided by the square root of the heritability (cf. Daetwyler

et al. 2013). This measure is useful when the investigated data sets basically

consist of individuals belonging to the same breeding cycle, as it is the case in

the above-mentioned GWP studies. However, plant breeders desire the pre-

diction of lines with marker effects estimated in a previous breeding cycle.

For such cases, cross validation might not be sufficient for assessing the accu-

racy of prediction and therefore, independent validation is required. Further

research about the transferability of marker effect estimates to subsequent

breeding cycles needs to be investigated.

The common conclusion from most empirical studies comparing GWP meth-

ods employing homo- and heteroscedastic marker variances was that differ-

ences in prediction accuracies were negligible regardless of the trait archi-

tecture (cf. Heslot et al. 2012; Wimmer et al. 2013). However, less effort

has been invested so far in the comparison of GWP methods with respect

to their accuracy of marker effect estimation. Sizes of marker effect esti-

mates obtained with different GWP methods have been compared in few

studies (Lorenz et al. 2012; Kumar et al. 2012; Shen et al. 2013) and re-

markable differences were demonstrated. Kumar et al. (2012) described a

strong shrinkage of small effect markers and little shrinkage of markers with
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greater effects for a Bayesian GWP method. In the simulation study of

Wimmer et al. (2013), accuracies of estimated marker effects were compared

for ridge regression BLUP (RR-BLUP) and several variable selection meth-

ods. It was shown that variable selection outperformed RR-BLUP for certain

combinations of model complexity and determinedness level. These results

highlight the importance of further investigations for accuracy of marker ef-

fect estimates from GWP methods. High accuracies are a prerequisite for

applications of GWP like the identification and functional analysis of genes

for introgression or for the prediction of cross performance. Moreover, be-

sides accuracy of marker effect estimates, other criteria like computational

efficiency, user-friendliness, etc. will become important for the evaluation of

GWP methods in prospective studies.

Objectives

The main goal of my thesis research was to investigate GWP with newly

developed ridge regression methods in applied plant breeding programs with

a focus on sugar beet. Specifically, my objectives were to:

(1) Compare cross validation with independent validation using sugar beet

lines from a subsequent breeding cycle. High and low heritable traits

were investigated to analyze whether marker effects estimated in one

breeding cycle can be used for the prediction of test cross performance

in the subsequent breeding cycle.

(2) Propose a ridge regression approach that approximates BLUP esti-

mates of genetic effects (RIR) to reduce the required computing time.

(3) Suggest novel heteroscedastic ridge regression approaches, where

shrinkage factors are obtained by estimating single-marker variance

components (RMLA, RRWA) or by modifying the restricted maximum
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likelihood procedure with fixed residual variances in variance compo-

nent estimation (RMLV) as alternatives to the Bayesian GWP meth-

ods.

(4) Investigate the properties of the novel ridge regression approaches with

respect to prediction accuracy, computational efficiency and accuracy of

effect estimates by analyzing simulated data and data sets from applied

breeding programs of maize, wheat and sugar beet.
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Chapter 2

Genome-based prediction of
test cross performance in two
subsequent breeding cycles 1

1Hofheinz, N., D. Borchardt, K. Weissleder and M. Frisch (2012) Genome-based predic-
tion of test cross performance in two subsequent breeding cycles. Theoretical and Applied
Genetics 125: 1639-1645.
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Abstract Genome-based prediction of genetic values is

expected to overcome shortcomings that limit the appli-

cation of QTL mapping and marker-assisted selection in

plant breeding. Our goal was to study the genome-based

prediction of test cross performance with genetic effects

that were estimated using genotypes from the preceding

breeding cycle. In particular, our objectives were to employ

a ridge regression approach that approximates best linear

unbiased prediction of genetic effects, compare cross val-

idation with validation using genetic material of the sub-

sequent breeding cycle, and investigate the prospects of

genome-based prediction in sugar beet breeding. We

focused on the traits sugar content and standard molasses

loss (ML) and used a set of 310 sugar beet lines to estimate

genetic effects at 384 SNP markers. In cross validation,

correlations [0.8 between observed and predicted test

cross performance were observed for both traits. However,

in validation with 56 lines from the next breeding cycle, a

correlation of 0.8 could only be observed for sugar content,

for standard ML the correlation reduced to 0.4. We found

that ridge regression based on preliminary estimates of the

heritability provided a very good approximation of best

linear unbiased prediction and was not accompanied with a

loss in prediction accuracy. We conclude that prediction

accuracy assessed with cross validation within one cycle of

a breeding program can not be used as an indicator for the

accuracy of predicting lines of the next cycle. Prediction of

lines of the next cycle seems promising for traits with high

heritabilities.

Introduction

Prediction of genetic values with genome-wide dense

marker maps was proposed in an animal breeding context

by Meuwissen et al. (2001). Simulation studies (Bernardo

and Yu 2007; Bernardo 2009; Wong and Bernardo 2008;

Xu 2003; Zhong et al. 2009) suggested that it can over-

come shortcomings limiting the application of QTL map-

ping and marker assisted selection in plant breeding.

In a study with maize, test cross performance for kernel

dry weight of 208 doubled haploid lines was assessed in

five locations (Piepho 2009). The lines were genotyped

with 136 SNP and SSR markers and the model fit of var-

ious ridge regression models was assessed. It was sug-

gested that genotype 9 environment interactions and

genetic effects not captured by markers should be included

in genome-based prediction models. Parametric and semi-

parametric models for genome-based prediction were

compared in a study using phenotypic data of 599 wheat

lines grown in four environments and 300 maize lines

grown under two different conditions (Crossa et al. 2010).

1,447 markers were used for the genotyping of the wheat

lines and 1,148 markers for the maize lines. In cross vali-

dation, correlations between observed and predicted per-

formance in the range of 0.4–0.5 were observed for grain

yield and up to 0.79 for flowering time. Genome-based

prediction with mixed linear models was investigated in a

study with 1,380 doubled haploid maize lines grown in

seven environments and phenotyped for the traits grain dry
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matter yield and grain dry matter content (Albrecht et al.

2011). The lines were genotyped with 1,152 SNP markers.

In cross validation, correlations between predicted and

observed test cross performance up to 0.74 were observed.

While Piepho (2009) used the model fit in the estimation

set as a measure to compare alternative models, Crossa

et al. (2010) and Albrecht et al. (2011) used cross valida-

tion in the estimation set to assess prediction accuracy.

However, no results are available investigating the accu-

racy of genome-based prediction when the set of lines to be

predicted belongs to the breeding cycle that follows the

breeding cycle to which the estimation set belongs.

The goal of our study was to assess the accuracy of

genome-based prediction of test cross performance for

sugar content (SC) and standard molasses loss (ML) in

sugar beet (Beta vulgaris L.) by using data from two sub-

sequent cycles of a breeding program. In particular our

objectives were to (1) compare ridge regression employing

preliminary estimates of the heritability (RIR) with best

linear unbiased prediction (BLUP) for predicting marker

effects, (2) compare cross validation for assessing predic-

tion accuracy of genome-based prediction with validation

using data from a subsequent breeding cycle, (3) draw

conclusions on the potential of genome-based prediction in

sugar beet breeding.

Methods

Plant material

The estimation set consisted of 310 inbred lines randomly

derived from 34 crosses among 9 diploid sugar beet lines.

The number of progenies from each cross ranged from two

to seven. The 56 lines of the validation set were derived

from 8 crosses among 6 lines of the estimation set. The

number of progenies from each cross ranged from 3 to 11.

The line development included selection between crossing

parents as well as selection between lines. The lines were

selected for high performance and to maintain the genetic

diversity within the breeding pool.

Field data

Test cross performance of the lines of the estimation set was

evaluated for SC (%) and ML (%) in field trials at six

European locations with one tester. The lines were a subset

of a larger trial that was set up in 10 9 10 lattices with two

replications. The lines of the validation set were evaluated

as part of a larger trial that employed alpha lattices with

block size 10 at six European locations. A two-replicate

design was employed. The first replicate was assigned to the

first of two testers and the second replicate to the second.

Four standard genotypes were included. The field trials

were analysed with a two-stage analysis. In the first stage

the adjusted entry means were calculated for each envi-

ronment. These were combined in an analysis of series of

experiments. The error variance for the analysis of the series

was obtained by pooling the individual error variances.

Following the practice of commercial sugar beet breeding,

relative values were calculated that refer to the average of

the standard lines. The relative values were calculated from

the means across environments. The use of relative values

might not be totally consistent with assumptions implicitly

made by our further analyses; however, in the present study,

our focus is on practical applicability.

Marker data

Genotyping was carried out with the same marker set of

384 SNPs in the estimation set and in the validation set.

The nine chromosomes of sugar beet had lengths of about

1 M and the total map length was 10.25 M. Hence, the

average map distance between two adjacent markers was

3.6 cM. Markers with more than two alleles, more than

20 % missing values, or a low degree of polymorphism

(1 -
P

fi
2 \ 0.1, where f1, f2 are the allele frequencies at a

marker) were discarded. This resulted in 300 SNPs for the

estimation set and 198 SNPs for the validation set that were

used for the calculations.

The marker data were used to investigate the relatedness

of the material (Fig. 1) and the decay of linkage disequi-

librium depending between pairs of loci depending on their

map distance (Fig. 2).

Linear model

For estimating the genetic effects of the SNPs we used the

linear model

y ¼ 1b0 þ Zuþ e ð1Þ

where y is the vector of N phenotypic values, b0 a fixed

intercept, Z the design matrix relating the marker data to

genotypes, u the vector of genetic effects, and e the vector

of residuals. The genetic effects ulðl ¼ 1. . .mÞ at the

m SNPs were assumed to follow a normal distribution with

expectation 0 and variance ru
2. The residuals were assumed

to follow a normal distribution with expectation 0 and

variance re
2. It was assumed that cov(ui,uj) = 0 (i = j) and

cov(ek,el) = 0 (k = l).

We assume that the possible allele effects at each locus

follow a distribution with a common variance. An alter-

native model takes the allele frequencies at the individual

loci into account and assumes that in the estimation set

each locus contributes equally to the genetic variance

(Crossa et al. 2010). For predicting the genetic values in a

1640 Theor Appl Genet (2012) 125:1639–1645
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new validation set, our approach seems more suitable,

because allele frequencies in the estimation and validation

sets are most likely different.

The assumption of independent residuals in Eq. 1 is

simplifying, because adjusted means are neither uncorre-

lated nor necessarily homoscedastic. It remains open to

further research, whether more advanced linear models,

that combine the analysis of the field design and the

modeling of marker effects are able to increase the accu-

racy of prediction of genetic values.

Best linear unbiased prediction

We used an expectation-maximization (EM) algorithm to

obtain restricted maximum likelihood (REML) estimates of

the variance components ru
2 and re

2 (Searle et al. 1992,

p. 303). The EM algorithm is known to be slow in con-

vergence and commercial software implements more

sophisticated numerical approaches. However, it showed

good performance for our data set. Convergence was

reached with less than 10 iterations and computing times

less than one second were required when using starting

values determined on basis of Eq. 7. The algorithm showed

high numerical stability and similar performance for other

data sets from sugar beet and maize breeding programs.

To obtain best linear unbiased predictions (BLUP) of the

genetic effects we solved (Searle 1987, p. 509)

101 10Z
Z01 Z0Zþ k2I

� �
b0

u

� �

¼ 10y
Z0y

� �

ð2Þ

for u where

k2 ¼ r2
e=r

2
u ð3Þ

An LU decomposition with back substitution (Press et al.

1992, p. 44) was used for solving Eq. 2.

With respect to terminology, we follow the literature on

linear models (Searle 1987, Searle et al. 1992) and Meu-

wissen et al. (2001), and use the abbreviation BLUP for the

best linear unbiased prediction of the elements of the

u vector. Albrecht et al. (2011) employed the term random

regression (Model RR) for a similar model.

Prediction with ridge regression

RIR was carried out by solving the mixed model equations

(Eq. 2) with a fixed shrinkage parameter k2. As a starting

point, we used the convenient but incorrect assumption

(Bernardo and Yu 2007), that the variance due to each
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marker can be approximated by dividing an estimate of the

genotypic variance by the number of markers. As pointed

out by Piepho (2009), estimates of the genotypic variance

are usually obtained from models assuming independent

genotype effects. This is in contrast with the marker-based

ridge regression model that implies correlation among

genotypic effects. Due to this fundamental difference in the

models, we do not claim mathematical rigour for the RIR

approach suggested in the following.

To determine k2 we used preliminary estimates of the

heritability hp
2 that are typically available for the traits

under selection in a breeding program. In a simplified

model, these can be interpreted as

h2 ¼
r2

g

r2
g þ r2

e

ð4Þ

where ru
2 is the genetic variance and re

2 the residual

variance. This approximation is a second point where we

do not claim mathematical rigour for our approach: The

masking variance used to obtain the heritability estimate

typically includes not only the residual variance but further

variance components. These are totally ignored in our

interpretation of the heritability. This is expected to result

in an inflated value for the error variance, resulting in a

stronger shrinkage of the genotypic effects. However, if we

make this simplification, we can write

r2
e

r2
g

¼ 1

h2
� 1; ð5Þ

and together with the assumption of equal variances of the

marker effects, we can use the approximation

r2
u �

1

m
r2

g ð6Þ

to define

k2 ¼ r2
e

r2
u

¼ m
1

h2
p

� 1

 !

: ð7Þ

Using a shrinkage factor as defined in Eq. 7 can be

regarded as an approximation of the BLUP approach. The

difference between RIR and BLUP is that with RIR the

shrinkage factor is determined from genetic and residual

variances that were approximated from results on

preliminary estimates of heritability, while in the BLUP

approach these variances are estimated from the data.

Hence, if the variance components correspond to the marker

data, as is the case in the simulation example of Shepherd

et al. (2010), then Eq. 7 results in BLUP. If preliminary

estimates for the heritability are used, then it approximates

BLUP. To determine k2 for our experimental data, we used

preliminary estimates of the heritabilities of hp
2 = 0.9 and

0.4 for the traits SC and ML. These values are not estimated

for the particular set of material under consideration, nor

approaches were employed to obtain the most precise

heritability estimates possible for unbalanced data (Piepho

and Möhring 2007). The appeal of the method lies in the

fact that it employees rule-of-thumb estimates of the

heritability that are easily available in breeding programs.

Validation

For assessing the prediction accuracy we carried out

(a) cross validation within one breeding cycle and (b) val-

idation with lines of the next breeding cycle. In each of 100

cross validation runs, the lines of the first breeding cycle

were divided randomly to two parts, 254 lines were used to

estimate marker effects and 56 lines to validate the effects.

The correlations between observed and predicted test cross

performance for RIR and BLUP were averaged over the

100 runs. For validation with lines from the next breeding

cycle, we estimated the marker effects with the lines from

the first breeding cycle and predicted the test cross per-

formance of the lines of the subsequent breeding cycle.

Then we assessed the correlation between the predicted and

observed test cross performance.

Results

For SC the correlation between observed and predicted test

cross values in the estimation set was r = 0.94 with RIR

(employing a hp
2 = 0.9) and r = 0.93 for BLUP. In cross

validation, correlations of on average 0.82 were observed

for both prediction models. Prediction of the test cross

values of lines of the next breeding cycle resulted in cor-

relations r = 0.79 (RIR) and 0.80 (BLUP, Fig. 3).

For ML the correlation between predicted and observed

test cross values in the estimation set was slightly greater

for BLUP (r = 0.94) than for RIR (r = 0.90). However, in

cross validation similar average correlations of r = 0.85

(RIR) and 0.86 (BLUP) were observed for both prediction

models. Despite these high correlations in cross validation,

that were even greater than those observed for SC, the

transferability of the effect estimates to the next breeding

cycle was low. A correlation of r = 0.41 was observed for

RIR (employing a hp
2 = 0.4) and r = 0.39 was observed

for BLUP.

Discussion

Accuracy of prediction methods

Bayesian methods provided better prediction accuracy than

BLUP in the study that initially suggested genome-based
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prediction of genetic values (Meuwissen et al. 2001). Since

then much effort was invested in Bayesian estimation

methods (Gianola and van Kaam 2008; Park and Casella

2008; Gianola et al. 2006) that allow for distributions of

the genetic effects with unequal variances, because it was

expected that they provide improved prediction accuracy.

However, as pointed out by Piepho (2009) and Bernardo

and Yu (2007), the fact that all genetic effects are modelled

as realizations of random variables with the same variance

does not imply that all loci contribute equally to the genetic

value. It was suggested by Piepho (2009) and Goddard and

Hayes (2007) that the advantage of Bayesian estimation

over BLUP observed by Meuwissen et al. (2001) might be

a consequence of the effect distributions in the employed

simulation model. Bernardo and Yu (2007) concluded that

for plant models, Bayesian methods would provide little, if

any, advantage and Zhong et al. (2009) found BLUP to

outperform Bayesian estimation. For grain yield in maize

Albrecht et al. (2011) and Crossa et al. (2010) found that

prediction accuracy of BLUP was similar to that of

Bayesian estimation with varying variances. However,

for flowering time superiority of Bayesian estimation

was observed (Crossa et al. 2010). In accordance with

Daetwyler et al. (2010), a possible conclusion from these

studies is that approaches with variable variances might be

superior for traits that are controlled by a few major genes.

In contrast, for polygenic traits that follow closely the

infinitesimal model of quantitative genetics, models with

constant variances might be more appropriate. Schneider

et al. (2002) detected five QTLs for SC on five chromo-

somes. They also found several QTLs for potassium,

sodium, and alpha-amino nitrogen, which account for the

trait ML. These results suggest that, due to the polygenic

inheritance of SC and ML, BLUP is an appropriate method

for genome-wide prediction in our data set.

Average correlations between predicted and observed

test cross performance from the cross validation of BLUP

were 0.82 for SC and 0.86 for ML (Fig. 3). These values

confirm the results of Albrecht et al. (2011) and Piepho

(2009) that BLUP can provide precise predictions, and
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Fig. 3 Prediction of test cross

performance for SC and ML.
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cross performance in the

validation set for prediction
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support the hypothesis that for polygenic traits BLUP with

constant variances is a suitable prediction method. RIR

based on preliminary estimates of the heritability provided

the same prediction accuracy as BLUP for both traits. With

the present data set consisting of roughly 300 lines and 300

markers, obtaining BLUPs was not technically challenging.

However, with large data sets convergence problems could

occur. For such data sets an RIR approach might prove

useful. In conclusion, BLUP provided genome-based pre-

dictions of high accuracy, and approximating BLUP on

basis of preliminary estimates of heritabilities with RIR is a

computationally simple alternative that was not accompa-

nied with losses in prediction accuracy.

Cross validation and validation with the subsequent

breeding cycle

The average correlations between predicted and observed

test cross performance in cross validation were 0.82 (SC)

and 0.86 (ML). Compared with results from maize and

wheat (Crossa et al. 2010; Albrecht et al. 2011) these

values are high. An explanation for the high correlations

might be the homogeneity of the material in the investi-

gated breeding pool. With an average distance between two

adjacent markers of &3 cM, prediction of genetic values

still relies on gametic disequilibrium between marker and

QTL alleles. If the breeding material in a pool is homo-

geneous, then the linkage phase of marker and QTL alleles

is expected to be the same for large parts of the material,

resulting in high prediction accuracy. In more diverse

breeding material, however, more dense marker maps,

ideally to the point that each gene underlying a trait can be

directly traced by a SNP, are expected to improve predic-

tion accuracy.

The correlation between observed and predicted values

in cross validation was smaller for SC (hp
2 = 0.9) than for

ML (hp
2 = 0.4). This result indicates that even for traits with

low heritabilities, good correlations between observed and

predicted performance can be obtained in cross validation.

The relatedness of the genotypes within a breeding pool can

be a reason for such high correlations. The following

example illustrates the problem. Assume several full sib

lines that share common marker alleles at several loci not

underlying the trait under consideration. In addition, they

share a high performance. Some lines are part of the esti-

mation set in a cross validation run and others are part of the

validation set. As a consequence, high effect estimates are

assigned to the common marker alleles, and these effects

are validated by the sister lines in the validation set.

An important conclusion from these results is that cross

validation in breeding pools of related material does not

necessarily correct prediction models for over-fitting. In

consequence, high correlations between predicted and

observed performance in cross validation do not guarantee a

good transferability of the estimated effects to a different set

of breeding material.

In contrast to cross validation, where the correlations

between predicted and observed performance were high for

both traits traits, in independent validation large differ-

ences were observed. While for SC correlations amounted

to 0.8, only correlations of 0.4 were observed for ML.

These correlations correspond well to the preliminary

estimates of the heritability hp
2 = 0.9 (SC) and 0.4 (ML).

This indicates that cross validation can only provide lim-

ited information on the accuracy of predicting line per-

formance with effects estimated from a previous breeding

cycle. In particular it remains open to further research

whether results comparing the accuracy of different pre-

diction models are robust with respect to the difference

between cross validation and independent validation.

Application in breeding programs

Test cross performance of lines in hybrid breeding can be

predicted either with effects estimated from related lines of

the same breeding cycle or with effects estimated in a

previous breeding cycle. Prediction of untested lines with

an estimation set from the same breeding cycle can be

implemented by generating more candidate lines than will

be evaluated in field trials. After having evaluated a portion

of the lines in field trials, the performance of the second

portion of lines is predicted, and the lines with the best

predictions were included in the second stage of line test-

ing. Employing genome-based selection in such a scenario

is conceptually similar to the assessment of prediction

accuracy with cross validation. Due to the relatedness of

the breeding material, even random associations between

markers and phenotypes can be exploited by genome-based

prediction. The high correlations in cross validation sug-

gest that a considerable gain in response to selection can be

realized with such applications.

Prediction of lines with an estimation set from the pre-

vious breeding cycle can be implemented as follows. More

candidate lines are generated than will be evaluated in the

field trials. All of these are genotyped and those with the

best predicted test cross values were evaluated in the field.

This can be regarded as indirect selection where the cor-

relation q between the trait under selection and the trait to

be improved is the correlation between the gene effects in

the estimation set and the gene effects in the validation set

(which could be called in this context more appropriately

prediction set). The upper bound of this correlation is lim-

ited by a measure for the heritability, that takes into account

not only the variance components of the field trial, but in

addition the genetic change through recombination. We

conclude that for assessing the accuracy of genome-based
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prediction with effects estimated in previous breeding

cycles, cross validation within one cycle is not sufficient,

but independent validation is required. Our results suggest

that such predictions are only promising for traits with high

heritabilities.
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Effect Estimation
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ABSTRACT Ridge regression with heteroscedastic marker variances provides an alternative to Bayesian
genome-wide prediction methods. Our objectives were to suggest new methods to determine marker-
specific shrinkage factors for heteroscedastic ridge regression and to investigate their properties with
respect to computational efficiency and accuracy of estimated effects. We analyzed published data sets of
maize, wheat, and sugar beet as well as simulated data with the new methods. Ridge regression with
shrinkage factors that were proportional to single-marker analysis of variance estimates of variance
components (i.e., RRWA) was the fastest method. It required computation times of less than 1 sec for
medium-sized data sets, which have dimensions that are common in plant breeding. A modification of
the expectation-maximization algorithm that yields heteroscedastic marker variances (i.e., RMLV) resulted in
the most accurate marker effect estimates. It outperformed the homoscedastic ridge regression approach
for best linear unbiased prediction in particular for situations with high marker density and strong linkage
disequilibrium along the chromosomes, a situation that occurs often in plant breeding populations. We
conclude that the RRWA and RMLV approaches provide alternatives to the commonly used Bayesian
methods, in particular for applications in which computational feasibility or accuracy of effect estimates
are important, such as detection or functional analysis of genes or planning crosses.
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Best linear unbiased prediction (BLUP) and Bayesian approaches were
suggested by Meuwissen et al. (2001) for predicting genotypic val-
ues with DNA markers. These genome-wide prediction (GWP) ap-
proaches have proven to be useful in plant breeding populations (cf.
Crossa et al. 2010; Albrecht et al. 2011; Hofheinz et al. 2012). To
overcome the problem of overparameterization triggered by more
available marker data (p) than number of observations (n), shrinkage
factors (ridge regression; BLUP) or variable selection (Bayesian ap-
proaches) can be used. Shrinkage factors can be constant for all

markers or marker-specific with the use of homo- or heteroscedastic
genetic variances.

Homoscedastic genetic variances at all markers in the linear model
are regarded as a major shortcoming of the BLUP approach because
many traits are assumed to be controlled by only a subset of the genes
of an individual, not by all of them. This shortcoming motivated the
development of Bayesian approaches that allow for heteroscedastic
marker variances but at the expense of being computationally
demanding (cf. Meuwissen et al. 2001, Shepherd et al. 2010, Kärkkäinen
and Sillanpää 2012). To avoid the computational demands of
Bayesian approaches, a linear model approach that uses heteroscedas-
tic marker variances for data sets with more genotypes than markers
was proposed by Piepho (2009). The generalized ridge regression
(heteroscedastic effects model, or HEM) of Shen et al. (2013) also
allows marker-specific shrinkage for overparameterized situations.
These authors emphasized the need for computationally efficient
GWP approaches with heteroscedastic marker variances.

The accuracy of the predicted genotypic values for GWP ap-
proaches with homoscedastic and heteroscedastic marker variances
was compared, e.g., for fruit traits in apple (Kumar et al. 2012),
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Fusarium head blight resistance in barley (Lorenz et al. 2012), 13 traits
important in wheat breeding (Heffner et al. 2011), and for eight data
sets in wheat, barley, Arabidopsis, and maize data sets (Heslot et al.
2012). The common conclusion was that in most instances the accu-
racy of predicting genotypic values was comparable for the investi-
gated approaches. In particular, (1) none of the approaches was clearly
superior under a broad range of applications; and (2) the BLUP
approaches proved to provide good prediction accuracies, even for
traits that are not supposed to follow closely the infinitesimal model
of quantitative genetics, such as resistances. This finding was con-
firmed in a simulation study by Wimmer et al. (2013), who recom-
mend the use of BLUP in plant breeding populations with large
linkage disequilibrium (LD) extent, small sample sizes, and medium
trait heritabilities.

The focus of the aforementioned studies was on the prediction
of genotypic values of the individuals of a prediction set, and high
prediction accuracies were observed when the individuals of the
training and the prediction set were related (cf. Hofheinz et al. 2012).
If training and prediction sets are a finite population of related indi-
viduals, then long chromosome stretches are expected to be in LD. In
such populations, it is sufficient for a high prediction accuracy of
genotypic values that the effects of chromosome stretches in LD are
estimated with high accuracy. A high accuracy of estimating the effects
of single markers is not necessary. Even if the estimated effects of
single markers might be different for the different GWP approaches,
the sum of the effects on a chromosome stretch in LD might be of
similar size. This can be regarded as an explanation why different
GWP approaches with homoscedastic and heteroscedastic variances
result in a prediction of gentoypic values of similar accuracy.

The focus of this research lies on the accuracy of GWP approaches
with respect to estimating the effects of single markers. This accuracy
is important for the identification and functional analysis of genes, for
the identification of target genes for marker-assisted gene introgres-
sion programs, and for the prediction of the performance of crosses.
Predicting crosses, i.e., estimating expectation and variance of the
performance of a population derived from a cross of two parental
genotypes, is an application of GWP in which plant breeders have
high expectations, but no reports of successful implementations have
been published. Predicting crosses builds on modeling the breaking up
of existing LD and the recombination of favorable alleles originating
from the two parents of a cross. Both the accurate localization of
markers linked to the investigated trait and the accurate estimation
of the effects via a GWP approach are of central importance for the
success of such a prediction.

Our objectives were (1) to present novel heteroscedastic ridge
regression approaches that improve existing approaches with respect
to computational efficiency or accuracy of effect estimates and (2) to
demonstrate their properties with computer simulations and with data
sets of maize, wheat, and sugar beet.

METHODS

Linear model
For estimating the genetic effects of m biallelic single-nucleotide poly-
morphism (SNP) markers, a linear model, as follows, can be used:

y ¼ 1b0 þ Zuþ e; (1)

y is the vector of N phenotypic values, b0 is a fixed intercept, Z is the
design matrix relating the marker data to genotypes, u is the vector
of genetic effects, and e is the vector of residuals. The elements of Z

are coded as linear regression on the number of one of the two
alleles, i.e., as 0,1,2. The genetic effects ul (l = 1. . .m) and the resid-
uals are normally distributed with ul � Nð0;s2

l Þ and ek � Nð0;s2
e Þ

(k = 0. . .N). Furthermore, cov(ui, uj) = 0 (i 6¼ j) and cov(ek, el) =
0 (k 6¼ l).

In ridge regression, the genetic effects ul are predicted by solving
the following mixed-model equations

�
19 1 19Z
Z91 Z9ZþL2

��
b0
u

�
¼

�
19 y
Z9y

�
; (2)

where L is a diagonal matrix that defines the amount of shrink-
age. If its elements ll (l = 1. . .m) are defined as ll ¼ s2

e=s
2
l and

s2
l ¼ s2

k for all l, k 2 {1. . .m}, then the predictions ul are the
BLUPs (cf. Piepho 2009). This approach uses typically variance
components s2

g and s2
e estimated from the data set under

investigation.
In an approximative approach, preliminary rule of thumb estimates

of the heritability h2p can be used to define ll ¼ ð1=h2p 2 1Þm (ridge
regression employing preliminary estimates of the heritability (RIR),
Hofheinz et al. 2012). In the following, we suggest approaches to
determine marker-specific shrinkage parameters ll for ridge regression.

Shrinkage by single-marker variance
component estimates
A moment estimator of the variance component for each marker can
be obtained from a random single-factor analysis of variance (ANOVA)
as follows:

ŝ2�
l ¼ MQMl 2MQEl

1
2

�
N2

P
in

2
i =N

�: (3)

MQMl and MQEl are the mean squares due to the marker and the
error in the ANOVA for the l-th marker, N is the total number of
individuals, and ni (i = 1,2,3) are the numbers of individuals in the
three marker classes.

The ŝ2�
l are not independent and, therefore, they do not sum up to

the genetic variance, which means that they cannot be used directly to
determine the shrinkage factor. However, they can be used to partition
the total genetic variance to the individual markers:

ŝ2
l ¼ ŝ2

g  
ŝ2�
lPm

l9¼1
ŝ2�
l9

: (4)

Here, the proportion of the genetic variance that is assigned to
a marker l is proportional to the contribution of the single-marker
ANOVA variance component of marker l to the sum of the single
marker variance components of all markers. This results in shrink-
age factors

ll ¼
ŝ2
e

ŝ2
g

 

P
l9 ŝ

2�
l

ŝ2�
l9

: (5)

The approach used to determine the shrinkage factors in Equation 5
is abbreviated as RMLA (i.e., estimation of the error and genetic
variance components with restricted maximum likelihood and par-
titioning according to ANOVA variance components).

The estimation of the genetic and error variance components from
the data set under consideration can be replaced by using preliminary
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estimates of the heritability h2p as suggested by Hofheinz et al. (2012).
This results in shrinkage factors

ll ¼
�
1=h2p 2 1

�
m 

P
l9s

2�
l

s2�
l9

: (6)

We abbreviate this procedure RRWA (i.e., ridge regression with
weighing factors according to ANOVA variance components).

Shrinkage by fixing the residual variance in variance
component estimation
BLUPs of u in a linear model as defined by Equation 1 can be obtained
with an iterative procedure on basis of the expectation-maximization
algorithm (Searle et al. 1992) that consists of solving the mixed-model
equations in Equation 2 for the parameter vector and then solving the
following,

ŝ 2
e ¼

�
y9y2 b̂9X9y2 û9Z9y

��ðN2 1Þ
ŝ2
l ¼

�
ûl9ûl 2 ŝ2

e trCll
��

ql
(7)

for the variance components until convergence is reached (Misztal
and Schaeffer 1986). Here ql is the number columns of the design
matrix Z that correspond to the variance component s2

l and trCll is
the trace of the inverse of the coefficient matrix of Equation 2 that
corresponds to the variance component.

If s2
l ¼ s2

k (l, k 2 {1. . .m}) is the constant variance of marker
effects, Cll is the complete coefficient matrix, and ql the number of
columns of Z (assuming full column rank), then the procedure can be
used to obtain the variance components that yield the BLUPs.

A modification can be used to determine marker-specific shrink-
age factors for ridge regression. First, ŝ2

e is estimated as with BLUP.
Then, the iterative procedure is repeated, but with two modifications:
(1) The residual error s2

e is not updated in each iteration round but
instead the residual variance is held fixed for the value estimated in the
first round. (2) For each marker, a different ŝ2

l is estimated. This
results in m values for ŝ2

l and those are used to define the shrinkage
factor for ridge regression as ll ¼ ŝ2

e=ŝ
2
l . We abbreviate this pro-

cedure RMLV (i.e., modification of the restricted maximum likelihood
procedure that yields heteroscedastic variances).

Software
We implemented the RIR, RMLA, RRWA, and RMLV approaches in
our software SelectionTools (www.uni-giessen.de/population-genetics/

downloads), which was also used for computer simulations. To per-
form reparametrized BLUP we used the R package rrBlupMethod6
(Piepho et al. 2012). The package BLR (Pérez et al. 2010) was applied
for performing the Bayesian LASSO (BL). We used 1500 iterations
and discarded the first 500 iterations as burn-in. The R package bigRR
(Shen et al. 2013) was used for the HEM approach. A summary of all
approaches used in the present study is given in Table 1. The code for
all calculations is available in the Supporting Information, File S1, File
S2, File S3, and File S4.

Experimental data sets
Three experimental data sets were used to investigate the prediction
accuracy, size of effect estimates, and computing time of GWP ap-
proaches. The first data set consisted of 300 tropical maize lines from
the International Maize and Wheat Improvement Center (CIMMYT),
which were genotyped with 1148 SNP markers (Crossa et al. 2010).
The traits grain yield (GY), female flowering, male flowering, and
anthesis-silking interval were analyzed. Each trait was evaluated under
severe drought stress and well-watered conditions.

The second data set consisted of 306 elite wheat lines from CIMMYT,
which were genotyped with 1717 diversity array technology markers
(Pérez-Rodríguez et al. 2012). The averages of all employed environments
for the traits GY and days to heading were analyzed. The maize and the
wheat data sets are available as an online supplement to the publications.
The third data set consisted of 310 inbred lines from a commercial sugar
beet breeding program, which were genotyped with 300 SNP markers
(Hofheinz et al. 2012). The traits sugar content and molasses loss were
analyzed. Genotypic and phenotypic data for both traits are available in
the File S4.

To assess the accuracy of predicting genotypic values, we used
repeated random subsampling to divide the data for cross validation.
The first subset was used to estimate the marker effects and contained
80% of the data. The second subset contained 20% of the data and was
used to validate the effects. The correlations between observed and
predicted values were averaged over 100 cross validation runs.

Simulations
Computer simulations were used to investigate prediction accuracy of
GWP approaches with respect to map position and effect size. To
investigate the effect of high and low LD, we simulated random
intermating of a large F1 population for either three or 19 generations
(ngen = 3, 19). From the last intermating generation, 600 random
doubled haploid lines were developed. We simulated 10 chromosomes,
each of 1.6 M length, which were evenly covered with markers. To

n Table 1 Summary of GWP approaches organized by the assumption of marker variances in the present study

Approach
Marker Variances

Reference/R PackageHomoscedastic Heteroscedastic

BLUP x Meuwissen et al. (2001)
rrBlupM6 x Piepho et al. (2012)
RIR x Hofheinz et al. (2012)
BL x Pérez et al. (2010)
HEM x Shen et al. (2013)
RMLA x New approach
RMLV x New approach
RRWA x New approach

GWP, genome-wide prediction; BLUP, best linear unbiased prediction; RIR, ridge regression employing preliminary estimates of the
heritability; BL, Bayesian LASSO ; HEM, heteroscedastic effects model; RMLA, estimation of the error and genetic variance components with
restricted maximum likelihood and partitioning according to analysis of variance components; RMLV, modification of the restricted maximum
likelihood procedure that yields heteroscedastic variances; RRWA, ridge regression with weighing factors according to analysis of variance
components.
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investigate the effect of high, medium, and low marker density, we
considered distances between two adjacent markers of 1 cM, 2 cM, or
5 cM (md = 1, 2, 5). Two genes affected the trait on each chromosome;
they were 0.401 M and 1.201 M distant from the telomere. Each had
a positive effect of 2.5 on the trait. Both favorable alleles originated from
the same parental line of the F1 population. To obtain phenotypic values,
for each of the 600 doubled haploid lines, a random normally distributed
residual was added to the genotypic value. The residual effect was chosen
such that the heritability of the trait was h2 = 0.5 or h2 = 0.8. Estimation
of marker effects in the simulated data set was replicated 50 times for
each GWP approach and the estimated effects sizes for each marker were
averaged over the replications.

RESULTS

Computational efficiency
The computing time required to estimate marker effects with the
simulated and experimental data sets was compared with a Linux

workstation with 8 GB RAM and an Intel Core Quad 2.80 GHz
processor. Among the approaches with homoscedastic marker variances,
RIR was the fastest, and among those with heteroscedastic marker
variances, RRWA was the fastest (Table 2). With both approaches,
marker effect estimation took less than a second for all investigated data
sets. RMLV was the slowest approach; in particular, for large data sets, the
required computing time was considerable greater than that required for
the other approaches.

Prediction accuracy of GWP approaches
For the approaches BLUP, RRWA, RMLA, BL, and HEM, the
correlation between predicted and observed phenotypic values ranged
between 0.31 for flowering time in the maize data set and 0.86 for
molasses loss in the sugar beet data set (Table 3). The differences in
prediction accuracy between the data sets were pronounced; however,
a clear trend with respect to differences between the GWP approaches
was not observable. Prediction accuracies were nearly identical for the
approaches BLUP, RIR, and RRBlupM6; therefore, only the results for

n Table 2 Computing time (sec) required for the estimation of marker effects with different GWP approaches

Homoscedastic Marker Variances Heteroscedastic Marker Variances

RIR BLUP rrBLUPM6 RMLV RRWA RMLA BL HEM

Simulated data, 500 individuals
330 markers 0.03 0.16 0.91 5.07 0.05 0.16 5.14 39.92
810 markers 0.05 3.18 1.55 50.30 0.13 3.38 7.99 49.56
1610 markers 0.23 32.11 1.68 330.60 0.30 28.22 11.77 63.65

Crossa et al. (2010), 264 maize lines
1135 SNP markers 0.10 9.08 0.37 118.20 0.14 9.17 11.10 8.79

Pérez-Rodríguez et al. (2012), 306 wheat lines
1717 DArT markers 0.23 61.8 0.62 405.60 0.37 60.60 8.96 12.49

Hofheinz et al. (2012), 310 sugar beet lines
300 SNP markers 0.01 0.12 0.35 3.72 0.04 0.11 5.51 3.69

For the maize data set, the trait GY-WW was investigated, for the wheat data set the trait GY, and for the sugar beet data set the trait SC. GWP, genome-wide
prediction; RIR, ridge regression employing preliminary estimates of the heritability; BLUP, best linear unbiased prediction; RMLV, modification of the restricted maximum
likelihood procedure that yields heteroscedastic variances; RRWA, ridge regression with weighing factors according to analysis of variance components; RMLA, estimation of
the error and genetic variance components with restricted maximum likelihood and partitioning according to analysis of variance components; BL, Bayesian LASSO; HEM,
heteroscedastic effects model; SNP, single-nucleotide polymorphism; DArT, diversity array technology; GY, grain yield; WW, well-watered; SC, sugar content.

n Table 3 Correlation between observed and predicted phenotypic values determined with cross validation for different traits in the
maize, wheat, and sugar beet data sets

Trait-Environment
Heteroscedastic Marker Variances

BLUP RMLV RRWA ðh2pÞ RMLA BL HEM

Crossa et al. (2010), 284 maize lines (264 lines, GY)
MFL-WW 0.36 0.28 0.35 (0.8) 0.38 0.36 0.35
MFL-SS 0.45 0.28 0.38 (0.8) 0.39 0.45 0.44
FFL-WW 0.31 0.27 0.32 (0.8) 0.31 0.31 0.32
FFL-SS 0.51 0.35 0.46 (0.8) 0.47 0.48 0.50
ASI-WW 0.51 0.35 0.50 (0.8) 0.52 0.51 0.47
ASI-SS 0.51 0.35 0.44 (0.8) 0.46 0.50 0.45
GY-WW 0.54 0.36 0.46 (0.9) 0.50 0.54 0.52
GY-SS 0.43 0.19 0.34 (0.9) 0.37 0.43 0.35

Pérez-Rodríguez et al. (2012), 306 wheat lines
GY-average 0.65 0.54 0.66 (0.8) 0.66 0.63 0.63
DTH-average 0.59 0.41 0.57 (0.9) 0.60 0.58 0.55

Hofheinz et al. (2012), 310 sugar beet lines
SC 0.83 0.78 0.80 (0.9) 0.80 0.83 0.82
ML 0.85 0.82 0.84 (0.4) 0.86 0.86 0.85

For the RRWA approach, the preliminary heritability estimates h2p are given in brackets. BLUP, best linear unbiased prediction; RMLV, modification of the restricted
maximum likelihood procedure that yields heteroscedastic variances; RRWA, ridge regression with weighing factors according to analysis of variance components;
RMLA, estimation of the error and genetic variance components with restricted maximum likelihood and partitioning according to analysis of variance components;
BL, Bayesian LASSO; HEM, heteroscedastic effects model; GY, grain yield; MFL, male flowering; WW, well-watered; SS, severe drought stress; FFL, female flowering;
ASI, anthesis-silking interval; DTH, days to heading; SC, sugar content; ML, molasses loss.

542 | N. Hofheinz and M. Frisch

−22−



BLUP are presented. The RMLV approach showed considerable lower
prediction accuracies than the other approaches, ranging from r =
0.19 to 0.82. Similar trends were observed with the simulated data
(data not shown).

Size of effect estimates in the wheat data set
In the wheat data set for the trait GY, markers for which the effects
estimated with the BLUP approach were high had even greater effects
with the RMLA approach (Figure 1). With RMLV, the differences in
size between small and large effects were even greater. Most marker
effects were shrunken to zero, and only a subset of markers had re-
markably high effect estimates. The approaches RRWA and RMLA
estimated marker effects of identical effect sizes. HEM and RRWA
estimated marker effects of comparable magnitude. Both shrank many
marker effects toward zero and estimated greater effects for the
remaining markers. However, the marker effects shrunken near zero
were not the same for both approaches.

Simulation study on accuracy of marker effect estimates
For all combinations of marker distance (md = 1, 2, 5) and LD
(ngen = 3, 19) the BLUP approach estimated the true marker effects
with the least accuracy and the RMLV approach with the greatest
accuracy (Figure 2). The BL, HEM, and RMLA approaches reached

greater accuracies than the BLUP approach but still were outper-
formed considerably by the RMLV approach.

The accuracy of the BLUP approach was in particular low for the
combination of small marker distances (md = 1) and high LD (ngen =
3). Here only RMLV resulted in usable effect estimates. With
decreasing marker distances and decreasing LD the accuracy of the
effect estimates obtained by the BLUP approach increased. However,
the other approaches still provided effect estimates with considerable
greater accuracy.

The greatest accuracy of effect estimates was achieved for large
marker distances (md = 5) and low LD (ngen = 19), but still the BLUP
showed a considerable underestimation of the true effects.

In addition to the simulations with a heritability of h2 = 0.8 (Figure
2), we performed the same set of simulations with a heritability of h2 =
0.5. The accuracy of effect estimates was lower but showed the same
trends as with h2 = 0.8 (File S5).

DISCUSSION

Heteroscedastic marker variances
For highly polygenic traits that follow closely the infinitesimal model
of quantitative genetics, like yield, GWP approaches assuming
homoscedastic marker variances are expected to be efficient for

Figure 1 Comparison of the
estimated marker effects for
grain yield (GY) in the wheat
data set for the best linear un-
biased prediction (BLUP), ridge
regression with weighing factors
according to analysis of variance
components (RRWA), estimation
of the error and genetic variance
components with restricted max-
imum likelihood and partitioning
according to analysis of variance
components (RMLA), modifica-
tion of the restricted maximum
likelihood procedure that yields
heteroscedastic variances (RMLV),
and heteroscedastic effects model
(HEM) approaches.
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predicting genotypic values. However, GWP approaches with hetero-
scedastic marker variances model better the genetic basis of traits
when the number of markers is substantially greater than number of
genes underlying the trait. This is the case for SNP maps with high
marker densities or for traits that are controlled by only a few genes.
Bayesian models were the first heteroscedastic GWP approaches.
Their two main drawbacks are that choosing a suitable prior is
required and that they are computationally very demanding. Dense
marker maps have become state of the art and aggravate the problem
of high computing times required for Bayesian approaches. Hence,
fast and efficient heteroscedastic GWP approaches are necessary (cf.
Shen et al. 2013).

Our RMLA approach, as well as the HEM approach of Shen et al.
(2013), provides computational efficient alternatives to Bayesian
approaches. The core of both approaches is to determine an individual
shrinkage factor for each marker and then apply these shrinkage
factors in ridge regression. The shrinkage factors for HEM are de-
termined on basis of a BLUP estimate of the marker effects ui, whereas

RMLA uses a single-marker ANOVA. From a computational point of
view, obtaining the BLUP estimates requires iterative procedures,
whereas RMLA requires only the calculation of sums of squares.
Consequently, determining shrinkage factors for RMLA is simpler
and faster than for HEM. A second property that distinguishes RMLA
from HEM is that the shrinkage factors for HEM are based on a first
approximation, which uses homoscedastic marker variances; in con-
trast, the shrinkage factors for RMLA are based on a first approxima-
tion using heteroscedastic marker variances.

The computational efficiency of HEM was similar to that of RMLA
for the data set of Crossa et al. (2010), but HEM was faster than
RMLA for the data set of Pérez-Rodríguez et al. (2012) (Table 2).
This advantage can be attributed to the optimized fitting algorithm
of HEM, which makes its running time proportional to the number of
individuals and not to the number of markers, as is the case for
RMLA. Adopting a similar approach for RMLAmight provide increased
performance for dense marker maps. We chose to implement a different
strategy for obtaining better performance. Approximating RMLA

Figure 2 Marker effects (blue
circles) estimated with different
GWP approaches in the simu-
lated data set plotted against
marker locations [M] for the first
chromosome. The positions of
the simulated quantitative trait
loci are symbolized by open red
diamonds, ngen is the number
of random intermating genera-
tions, and md is the marker
distance [cM] of two adjacent
markers.
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with RRWA uses preliminary estimates of the heritability instead
of estimating the genetic and the residual variance from the data set
under investigation. This results in a heteroscedastic ridge regres-
sion approach that does not need iterative procedures at all. RMLA
and its approximation RRWA yielded the same effect estimates
(Figure 1), and estimating the marker effects with RRWA took less
than 1 sec for medium-sized data sets (Table 2). RRWA outper-
formed the other investigated approaches by factors between 10
and 100.

Prediction of genotypic values and size of
estimated effects
The accuracy of predicting genotypic values was comparable for
homo- and heteroscedastic genetic GWP approaches (cf. Heffner et al.
2011). Our results confirm that in general no advantage of a particular
approach can be observed with respect to predicting genotypic values
(Table 3). The size of effect estimates, however, was clearly different in
the wheat data set of Pérez-Rodríguez et al. (2012) for the five in-
vestigated GWP approaches (Figure 1). The estimated effects for grain
yield were greater for RMLA and HEM than for BLUP. RMLV
resulted in the greatest effects and the most effects shrunken near
zero. Hence, the similarity of GWP approaches with respect to pre-
dicting genotypic values is not caused by similar estimated marker
effects.

We conclude that a high accuracy of estimated marker effects is
not a prerequisite for high prediction accuracies of genotypic values,
as long as marker alleles that were in positive LD in the estimation set
are still to a large extent in positive LD in the individuals for which the
genetic values were predicted. However, because there are consider-
able differences in the estimated marker effects between the GWP
approaches, the choice of the GWP approach is expected to have an
impact on the success of such applications of GWP that rely on the
accuracy of estimates of single marker effects.

Importance of accurate effect estimates
Identification of known candidate genes in Arabidopsis (Shen et al.
2013) and apple (Kumar et al. 2012) was possible with effect estimates
obtained by heteroscedastic GWP approaches. In contrast, no success-
ful identification of genes was reported with results from homosce-
dastic BLUP estimates. This can be regarded as an indication that the
greater effects obtained by the heteroscedastic approaches (Figure 1) are
modeling the genetic basis of traits controlled by few genes better than
homoscedastic BLUP and that accurate marker effect estimates are a pre-
requisite for the identification and fine mapping of functional genes.

An application of GWP that is most anticipated by plant breeders
is planning crosses. In planning crosses, the probability distribution of
the genotypic values of a population is investigated, which was derived
from the cross of two parents with known phenotype and marker
genotype. This distribution depends on the recombination between
loci in the two parents of the cross, which breaks up the LD present in
the parents. Here, it is not sufficient that the sum of genotypic values
on a chromosome stretch in LD is correctly estimated. Instead, the
effect of each single marker needs to be estimated with high accuracy.
These two applications demonstrate that there is a need for GWP that
provide accurate effect estimates for single markers.

With experimental data sets, the differences between GWP
approaches with respect to effects sizes can be investigated (Figure
1), but it is not possible to evaluate which of the different effects at
a marker is in fact the better estimate of the true (but unknown) effect.
The importance of the two aforementioned applications and the fact

that with experimental data the true effects are unknown motivated
our simulation study.

Accuracy of effect estimates depending on the
GWP approach
In breeding populations of crop species, the level of LD is typically high.
Li et al. (2011) observed 20.6 cM for sugar type inbreds of sugar beet, and
Stich et al. (2005) found an average LD length of 33 cM in European elite
maize germplasm. The simulations with high marker density (md = 1)
and high LD (ngen = 3) represent such a genetic situation (Figure 2).
Here BLUP estimates of the genetic effects of traits controlled by two
genes are underestimated. The underestimation is so severe that a useful
application of the BLUP effect estimates seems unrealistic. Although there
is still a considerable underestimation of RMLV in this scenario, this
approach was the only that provided an effect estimate useful for appli-
cations like prediction of crosses and identification of functional genes.

In conclusion, our results confirm the results of previous studies
that the BLUP can provide accurate predictions of genotypic values.
However, for dense markers and strong LD, the effect estimates of
BLUP are very imprecise. For applications of GWP that rely on
accurate effect estimations, heteroscedastic approaches are superior. In
particular, the RMLV approach is a promising approach for providing
accurate GWP effect estimates.

LITERATURE CITED
Albrecht, T., V. Wimmer, H. J. Auinger, M. Erbe, C. Knaak et al.,

2011 Genome-based prediction of testcross values in maize. Theor.
Appl. Genet. 123: 339–350.

Crossa, J., G. de los Campos, P. Pérez, D. Gianola, J. Burgueño et al.,
2010 Prediction of genetic values of quantitative traits in plant breeding
using pedigree and molecular markers. Genetics 186: 713–724.

Heffner, E. L., J.-L. Jannink, and M. E. Sorrells, 2011 Genomic selection
accuracy using multifamily prediction models in a wheat breeding pro-
gram. Plant Genome J. 4: 65–75.

Heslot, N., H.-P. Yang, M. E. Sorrells, and J. L. Jannink, 2012 Genomic
selection in plant breeding: a comparison of models. Crop Sci. 52: 146–160.

Hofheinz, N., D. Borchardt, K. Weissleder, and M. Frisch, 2012 Genome-
based prediction of test cross performance in two subsequent breeding
cycles. Theor. Appl. Genet. 125: 1639–1645.

Kärkkäinen, H. P., and M. J. Sillanpää, 2012 Back to basics for Bayesian
model building in genomic selection. Genetics 191: 969–987.

Kumar, S., D. Chagné, M. C. A. M. Bink, R. K. Volz, C. Withworth et al.,
2012 Genomic selection for fruit trait quality in apple (Malus x do-
mestica Borkh.). PLoS ONE 7: e36674.

Li, J., A. K. Lühmann, K. Weißleder, and B. Stich, 2011 Genome-wide
distribution of genetic diversity and linkage disequilibrium in elite sugar
beet germplasm. BMC Genomics 12: 484.

Lorenz, A. J., K. P. Smith, and J.-L. Jannink, 2012 Potential and optimiza-
tion of genomic selection for fusarium head blight resistance in six-row
barley. Crop Sci. 52: 1609–1621.

Meuwissen, T. H. E., B. J. Hayes, and M. E. Goddard, 2001 Prediction of
total genetic value using genome-wide dense marker maps. Genetics 157:
1819–1829.

Misztal, I., and L. R. Schaeffer, 1986 Nonlinear model for describing con-
vergence of iterative methods of variance component estimation. J. Dairy
Sci. 69: 2209–2213.

Pérez, P., G. de los Campos, J. Crossa, and D. Gianola, 2010 Genomic-
enabled prediction based on molecular markers and pedigree using the
Bayesian Linear Regression Package in R. Plant Genome 3: 106–116.

Pérez-Rodríguez, P., D. Gianola, J. M. González-Camacho, J. Crossa, Y.
Manés et al., 2012 Comparison between linear and non-parametric
regression models for genome-enabled prediction in wheat. G3 (Be-
thesda) 2: 1595–1605.

Volume 4 March 2014 | Heteroscedastic Ridge Regression Approaches | 545

−25−



Piepho, H.-P., 2009 Ridge regression and extensions for genomewide se-
lection in maize. Crop Sci. 49: 1165–1176.

Piepho, H.-P., J. O. Ogutu, T. Schulz-Streeck, B. Estaghvirou, A. Gordillo
et al., 2012 Efficient computation of ridge-regression best linear unbi-
ased prediction in genomic selection in plant breeding. Theor. Appl.
Genet. 52: 1093–1104.

Searle, S. R., G. Casella, and C. E. McCulloch, 1992 Variance Components.
Wiley, New York.

Shen, X., M. Alam, F. Fikse, and L. Rönnegård, 2013 A novel generalized
ridge regression method for quantitative genetics. Genetics 193: 1255–
1268.

Shepherd, R. K., T. H. E. Meuwissen, and J. A. Wooliams, 2010 Genomic
selection and complex trait prediction using a fast EM algorithm applied
to genome-wide markers. BMC Bioinformatics 11: 529.

Stich, B., A. E. Melchinger, M. Frisch, H. P. Maurer, M. Heckenberger et al.,
2005 Linkage disequilibrium in European elite maize germplasm in-
vestigated with SSRs. Theor. Appl. Genet. 111: 723–730.

Wimmer, V., C. Lehermeier, T. Albrecht, H. J. Auinger, Y. Wang et al.,
2013 Genome-wide prediction of traits with different genetic architec-
ture through efficient variable selection. Genetics 195: 573–587.

Communicating editor: D.-J. De Koning

546 | N. Hofheinz and M. Frisch

−26−



General discussion

Chapter 4

General discussion

Prediction of genotypic values

Cross validation and independent validation

The main focus of GWP applications in plant breeding has been on the pre-

diction of genotypic values. In order to assess the prediction accuracies of

GWP methods, many studies used cross validation methods on experimental

data sets. Further, the correlations between observed and predicted perfor-

mances were calculated. In a study with sugar beet inbred lines, we assessed

correlations between observed and predicted test cross performances for 310

inbred lines (Hofheinz et al. 2012). The lines were genotyped with 384 SNPs

and BLUP yielded in cross validation prediction accuracies of 0.86 and 0.82

for the low- and highly heritable traits molasses loss and sugar content, re-

spectively. Similar high prediction accuracies between 0.72 and 0.80 were

reported in a study employing a diversity set of 924 sugar beet inbred lines

(Würschum et al. 2013). The inbred lines were genotyped with 677 SNPs and

phenotyped for yield- and quality-related traits. Using mixed linear models,

Albrecht et al. (2011) observed prediction accuracies between 0.72 and 0.74

for grain yield in a data set of 1,380 doubled haploid maize lines. They were

genotyped with 1,152 SNPs. Such high prediction accuracies suggest that
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GWP can be implemented in practical hybrid breeding programs for the pre-

diction of test cross performance of lines from the same breeding cycle with

only a moderate number of SNPs.

In the above-mentioned studies, average distances between two adjacent

markers of 1 cM (Würschum et al. 2013), 3 cM (Hofheinz et al. 2012) and 2.9

Mb (Albrecht et al. 2011) resulted in prediction accuracies which were based

on gametic disequilibrium between marker and QTL alleles. The reported

high prediction accuracies were most likely caused by the homogeneity of the

breeding material. Homogeneity results in identical linkage phases of marker

and QTL alleles for large parts of the breeding material. Here, a division

into estimation and prediction set for cross validation leads to a situation in

which closely related lines with high performance and the same marker alleles

at loci not influencing the trait under study are assigned to both sets. Hence,

high effect estimates are assigned to these marker alleles even though the loci

do not account for the trait of interest. Consequently, high prediction accu-

racies are the result of such a validation. We assessed a prediction accuracy

of 0.86 for the trait molasses loss, which typically reaches heritabilities of

h2p = 0.4 in sugar beet breeding programs (Hofheinz et al. 2012). This result

gives clear evidence for the phenomenon of overfitting due to relatedness in

cross validations.

Accounting for relatedness between inbred lines, Albrecht et al. (2011) pre-

dicted maize test cross performance with respect to within and across family

sampling. Here, the high degree of relatedness between estimation and vali-

dation set and high linkage disequilibrium (LD) between markers and QTL

lead to higher prediction accuracies within families. Moreover, Würschum

et al. (2013) investigated prediction within families when the marker effects

were estimated in a diverse set of sugar beet lines. Prediction accuracies

were consequently lower than those observed when the diversity set was used

for both estimation and prediction. Despite those findings, a certain degree

of relationship between individuals of estimation and prediction set is essen-

tial for the prediction of genotypic values. However, the degree of relation
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highly influences the amount of prediction accuracy. The proposed approach

of Daetwyler et al. (2013) to account for relatedness between individuals of

estimation and prediction set by adding a measure for relationship might

improve the comparability of studies.

The prediction of genotypic values with marker effects estimated in a pre-

vious breeding cycle cannot be evaluated with cross validation. Instead,

independent validation with data sets from two breeding cycles is required.

Most recently, Albrecht et al. (2014) reported a small decrease in predictive

ability with independent validation compared to cross validation in a study

employing two highly heritable traits in maize. These results support our

hypothesis that a transferability of effects estimated in one breeding cycle

for predicting genotypes of a subsequent breeding cycle is only promising for

highly heritable traits like sugar content in sugar beet (Hofheinz et al. 2012).

Similarity of prediction accuracies between GWP meth-

ods

The broad variety of GWP methods employing homo- and heteroscedastic

marker variances achieved similar prediction accuracies in many studies em-

ploying experimental plant breeding data. Heslot et al. (2012) compared sev-

eral GWP methods for their prediction accuracies in data sets of Arabidopsis,

barley, maize and wheat and found no superior method. Four GWP methods

showed similar prediction accuracies for 13 traits in a wheat data set (Heffner

et al. 2011). Comparing GWP methods for traits with different genetic ar-

chitectures in maize inbred lines, Riedelsheimer et al. (2012) found similar

performance of all methods for both highly polygenic traits and metabolites

with one known major QTL. In a study with data sets of maize, wheat and

sugar beet, we compared six GWP methods and found no method to be ad-

vantageous (Hofheinz and Frisch 2014). Moreover, we demonstrated similar

prediction accuracies reached by different GWP methods.
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The main reason for small differences of prediction accuracies can be seen in

the fact that long chromosome stretches are in LD in practical plant breeding

populations. Observed average LD of sugar beet sugar type inbreds was 20.6

cM (Li et al. 2011) and European elite maize germplasm revealed an average

LD of 33 cM (Stich et al. 2005). Average extents of intra-chromosomal LD

in spring and winter wheat were 20.8 cM and 19.2 cM, respectively (Chao

et al. 2010). Hence, tracing an individual QTL effect with marker-specific

shrinkage as realized by heteroscedastic marker variances will reach predic-

tion accuracies similar to those obtained by spreading the QTL effect along

a LD stretch with homoscedastic marker variances. Wimmer et al. (2013)

concluded that aside from a large LD extent, small sample sizes and medium

trait heritabilities in applied plant breeding populations are reasons why

GWP methods with heteroscedastic marker variances do not yield higher

prediction accuracies. Besides, the authors showed that only the combina-

tion of large effective population sizes (Ne) and traits influenced by few genes

can lead to a superiority of GWP methods employing heteroscedastic marker

variances for the prediction of genotypic values. However, effective popula-

tion sizes are typically small in plant breeding populations, e.g., Ne = 21.2

in a study with sugar beet yield types (Li et al. 2011). In applied plant

breeding populations, GWP methods employing homoscedastic marker vari-

ances such as BLUP are therefore highly recommendable for the prediction

of genotypic values. Besides easy implementation, their main advantage lies

in computationally efficient performance.

Computationally efficient ridge regression ap-

proaches

High-throughput marker systems strongly increase marker densities and re-

quire GWP methods, which are able to fit the growing parameters in compu-

tationally efficient ways. Rapid advances have recently been made in devel-

oping genome-wide dense molecular markers with a low per-sample cost using
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genotyping-by-sequencing (GBS). In wheat breeding, 34,749 SNPs have been

identified with GBS and successfully been used for GWP employing BLUP

(Poland et al. 2012). Up to 235,265 SNPs were identified with GBS in a maize

data set and used in a cross validation (Crossa et al. 2013). To overcome

the increasing computing time needed for marker effect estimation in such

data sets, especially when cross validation runs are involved, computationally

efficient GWP methods are required.

Approximating BLUP estimates of genetic effects

Since BLUP yields accurate predictions of genotypic values, efforts are being

made towards improving its computational efficiency. We provided RIR as a

ridge regression approach employing preliminary estimates of the heritabil-

ity (Hofheinz et al. 2012). Variance components are not estimated directly

from the data as with BLUP. Instead, a rapid approximation of genetic and

residual variance components from results of preliminary estimates of the

heritability is used (Table 4.1). These estimates are only rule-of-thumb val-

ues for the traits under study and are typically available in applied plant

breeding programs. Therefore the application of the RIR is straightforward.

Neither these preliminary estimates of the heritability nor the assumption

that dividing an estimate of the genotypic variance by the total number of

markers approximates the variance due to each marker are mathematically

rigorous. However, RIR resulted in identical prediction accuracies as ob-

tained with BLUP in the sugar beet data set (Hofheinz et al. 2012).

An alternative computation of BLUP termed “rrBlupMethod6” was devel-

oped to address the need for computationally efficient GWP methods (Piepho

et al. 2012). The method allows for a fixed residual variance, as the authors

emphasized that the residual variance is readily available in applied plant

breeding programs from obtaining adjusted entry means of the phenotypes.

Therefore, computational efficiency of rrBlupMethod6 is achieved by omit-

ting the re-estimation of the residual variance. However, we showed that
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RIR clearly outperformed conventional BLUP and was faster than rrBlup-

Method6 (Hofheinz and Frisch 2014). RIR took 0.23 sec for the estimation of

marker effects in the wheat data set of Pérez-Rodŕıguez et al. (2012), whereas

rrBlupMethod6 and BLUP were slower with computing times of 0.62 sec and

61.8 sec, respectively. RIR took less than 0.3 seconds for the estimation of

marker effects in simulated data and experimental data sets of maize, wheat,

and sugar beet. Therefore, RIR proved to be a computationally efficient

GWP method with high prediction accuracies.

Heteroscedastic ridge regression approaches

Plant breeders have high expectations for applications of GWP such as the

identification of functional genes and prediction of the performance of crosses.

Accurate marker effect estimates are a prerequisite for these applications

and therefore homogeneous shrinkage of all marker effects will not suffice.

Since the Bayesian methods require high computing times, computationally

efficient alternatives to the Bayesian methods are required. We proposed

RMLA, RRWA and RMLV (Table 4.1) as novel heteroscedastic ridge regres-

sion approaches, which allow marker-specific shrinkage by employing het-

eroscedastic marker variances (Hofheinz and Frisch 2014).

Table 4.1. Newly developed ridge regression methods in my thesis.

Marker variances

Method Homoscedastic Heteroscedastic Calculation of the shrinkage factor λ

RIR x Approximation of BLUP using preliminary rule-of-thumb
estimates of the heritability

RMLA x Estimation of single-marker variance components
RRWA x Approximation of RMLA using preliminary rule-of-thumb

estimates of the heritability
RMLV x Fixation of the first residual variance component estimate

The RMLV approach is characterized by a modification of the iterative pro-

cedure of variance component estimation. Heteroscedastic marker variances
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are obtained by fixing the first estimate of the residual variance for further

iterations. From a computational point of view, RMLV is a rather slow

approach. However, the benefit of RMLV lies in most accurate effect estima-

tion, which is a prerequisite for the above-mentioned applications. It remains

to be investigated whether RMLV can be optimized in order to increase its

computational efficiency.

Ridge regression with shrinkage factors that are proportional to random

single-marker analysis of variance (ANOVA) estimates of variance compo-

nents is employed with the methods RMLA and RRWA. For both methods,

a moment estimator of the variance component for each marker is obtained

by performing a random single-factor ANOVA. These estimates are used to

partition the total genetic variance to each marker. The difference between

both methods is that with RMLA the variance components are estimated

directly from the data set under study. In contrast to RMLA, preliminary

estimates of the heritability are used for a rapid approximation of variance

components with RRWA, as is the case with RIR (Hofheinz et al. 2012).

Shen et al. (2013) proposed HEM as a computationally efficient generalized

ridge regression method in which running time is proportional to the num-

ber of individuals. HEM is therefore especially efficient when the number of

markers exceeds the number of individuals (p > n). This advantage of HEM

became apparent in our study for the wheat data set (Hofheinz and Frisch

2014). For the remaining data sets, HEM showed computing times similar

to those of RMLA. The main difference to RMLA is that HEM bases shrink-

age factors for each marker on a first approximation of BLUP. Therefore,

homoscedastic marker variances are involved in the first approximation with

HEM. Another distinction to RMLA is that iterations are involved for ob-

taining the BLUPs of each marker with HEM, whereas RMLA requires only

the calculation of sums of squares. RMLA and its approximation RRWA re-

sulted in identical effect estimates in our study (Hofheinz and Frisch 2014).

Moreover, RRWA took less than one second to estimate the marker effects

and outperformed all investigated heteroscedastic approaches in experimen-

tal data sets of maize, wheat and sugar beet with respect to computational
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efficiency. It can be concluded that RRWA is the most rapid GWP method

employing heteroscedastic marker variances.

Accuracy of single marker effect estimates

Accuracy of estimated effects for single markers is a neglected, but very im-

portant criterion for the evaluation of GWP methods. Several studies com-

pared sizes of marker effect estimates between GWP methods in data sets of

Arabidopsis, apple, barley and wheat (Shen et al. 2013; Kumar et al. 2012;

Lorenz et al. 2012; Hofheinz and Frisch 2014). Here, BLUP shrank each esti-

mated marker effect to the same extend by employing homoscedastic marker

variances. The studies revealed that heteroscedastic GWP methods esti-

mated large effects for a few markers while most marker effects were shrunk

close to zero. Moreover, we found remarkable differences between GWP

methods employing heteroscedastic marker variances (Hofheinz and Frisch

2014). The methods HEM, RMLA and RRWA estimated greater effects for

markers that already had comparatively high effect estimates with BLUP.

Greatest effect sizes were estimated for some markers with RMLV, while re-

maining markers were shrunk strongly. Based on the reported differences be-

tween GWP methods in estimated marker effect sizes, heteroscedastic GWP

methods are expected to model the genetic architecture of traits controlled

by only a few genes with large effects in a proper way. The comparisons

showed that the earlier discussed similarity in prediction accuracies of the

GWP methods is not induced by similar effect estimates. Accurate marker

effect estimation has no benefit on the prediction accuracy when the same

marker alleles are in positive LD in estimation and prediction set. However,

accuracy of marker effect estimates has a major impact on further applica-

tions of GWP like the identification of functional genes and prediction of

crosses.

In order to compare GWP methods for their accuracy of marker effect

estimates in different genetic scenarios, we conducted a simulation study
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(Hofheinz and Frisch 2014). A trait controlled by two genes on each of the

ten chromosomes, for example a polygenic resistance, was simulated with

known positions and effect sizes. Considering the presence of dense marker

maps and high LD levels in applied plant breeding programs, the simulation

study showed that BLUP greatly underestimates the genetic effects of the

trait and its application seems not appropriate. Throughout the simulation

study, RMLV proved to be most useful for GWP applications that require

accurate marker effect estimates. It outperformed each of the GWP meth-

ods employing heteroscedastic marker variances, even though it also showed

a considerable underestimation when high LD was present. In situations in

which the distance of two adjacent markers was 5 cM and therefore in the

range of the low LD level that is present after 19 generations of random mat-

ing, almost precise marker effect estimates were obtained with RMLV. These

results indicate that with the presence of short-distance LD, high effects will

only be estimated for markers close to the gene. However, effect estimates

will be spread over those markers that are located in the same LD stretch as

the gene, when longer LD stretches are present. Similar results were found

by van den Berg et al. (2013), who implemented Bayes C(π) for QTL fine

mapping in a simulation study. It can be concluded that RMLV provides

most accurate single marker effect estimates in each genetic scenario.

Practical implementations of GWP in plant

breeding programs

Prediction of selection candidates in hybrid breeding

programs

Since my work mainly focused on sugar beet data sets, the following demon-

strations are about possible implementations of my results in applied hybrid

breeding programs. In hybrid breeding, the most promising parental inbred
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lines are typically identified by comparing their test cross performances, i.e.

crossing them to carefully chosen testers to estimate their general combining

ability. Test cross performances are evaluated in field trials, which are ex-

tremely resource intensive and limit the number of candidate lines in plant

breeding programs. For resource efficiency, GWP can be implemented for

the prediction of untested lines. Here, estimation and prediction sets belong

to the same breeding cycle. More candidate lines are generated and each of

them is genotyped, whereas only a part of them is evaluated in field trials.

Test cross performances of lines which were not evaluated are then predicted

by performing GWP and the lines with the highest predictions enter the

second stage of line testing.

Another implementation of GWP in hybrid breeding programs is the pre-

diction of highly heritable traits with an estimation set from the previous

breeding cycle. More candidate lines are generated and they are all geno-

typed. Marker effects estimated in the previous breeding cycle are used for

the prediction of test cross performances of all generated candidate lines.

Hence, instead of evaluating each generated candidate line, only those candi-

date lines with the highest predicted test cross performances are evaluated in

field trials. The usage of RIR can be recommended for the prediction of geno-

types, because it provides high prediction accuracies and is computationally

efficient.

Potential for genome-wide prediction of crosses

Having identified the most promising parental inbred lines, the next stage in

a hybrid breeding program is the selection of parental combinations. There-

fore, parental inbred lines are crossed and the progeny is evaluated for max-

imum expression of the desired characteristics. Plant breeders anticipate

the prediction of the performance of crosses in order to support the critical

step of identifying promising crosses. Cross prediction can be implemented

in the breeding program by crossing only those parental inbred lines with
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best cross predictions and evaluating their progeny in field trials. Predic-

tion of crosses has been a theoretical approach of implementing GWP until

now and therefore little knowledge about its practical application in breed-

ing programs is known. Typically, genome-wide marker data and phenotypic

values of parental genotypes are available in breeding programs. This data

can be used to predict expectation and variance of the performance of a

population derived from crossing two parental genotypes. When planning

crosses with GWP, the probability distribution of genotypic values in the

derived population needs to be investigated. This distribution depends on

the recombination between loci of the two parents. In a cross, recombination

breaks up existing LD in the parents. Hence, summing up genotypic values

for chromosome stretches, which works well for obtaining high prediction

accuracies, is not sufficient for the prediction of crosses.

Accurate marker effect estimates are essential for the prediction of the per-

formance of a cross. Iwata et al. (2013) recently predicted the simulated

segregation patterns of two fruit-related traits in a progeny population of

Japanese pear (Pyrus pyrifolia) in order to identify promising crosses. How-

ever, only the GWP methods BayesA and RR-BLUP were compared. As

expected, RR-BLUP resulted in lower accuracies between observed and pre-

dicted segregation. We demonstrated in our simulation study that GWP

methods differ substantially in their accuracy of marker effect estimation

(Hofheinz and Frisch 2014). It remains open to further research whether the

most accurate single marker effect estimates obtained with RMLV can be

used for reliable cross predictions in applied plant breeding programs.

Identification of functional genes

The identification of functional genes is an application of GWP which has

recently been investigated. The known gene RPM1 of the monogenic trait

AvrRpm1 was identified in a data set of Arabidopsis employing the het-

eroscedastic method HEM (Shen et al. 2013). In another study, LASSO and

−37−



General discussion

elastic net precisely identified major metabolite QTLs (Riedelsheimer et al.

2012). Homogeneous shrinkage of marker effects with RR-BLUP diluted the

effects of the candidate gene and major QTLs in both studies. Therefore,

BLUP estimates are not appropriate for the identification of genes. Iden-

tified candidate genes could be used for marker-assisted gene introgression

in applied plant breeding programs. However, there is no evidence in the

above-mentioned studies that the estimated marker effects represent the true

genetic effects.

If experimental data sets are employed for GWP, the true genetic effects are

not known. Therefore, simulated data sets with known positions and sizes of

genes influencing the trait of interest are required for the evaluation of GWP

methods concerning accuracy of effect estimates. In our simulation study,

accuracy of effect estimates was higher when a high trait heritability was

simulated (Hofheinz and Frisch 2014). Similar results were found by van den

Berg et al. (2013), who conclude that high trait heritabilities and large data

sets are a prerequisite for QTL mapping. RMLV can be recommended for the

identification of genes, because it reached greatest marker effect accuracies

in all combinations of LD and marker distances in our simulation study.

The presented results suggest that GWP is a promising tool with numerous

applications in plant breeding programs such as the prediction of genotypic

values, identification of functional genes or prediction of crosses. Our pro-

posed ridge regression methods are an important contribution to the exist-

ing variety of GWP methods: Besides high prediction accuracies, the ridge

regression methods in this thesis research have the potential to be computa-

tionally efficient and to estimate accurate marker effects.
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Chapter 5

Summary

Genome-wide prediction (GWP) was suggested in order to overcome the

shortcomings of quantitative trait loci mapping and marker-assisted selec-

tion. The latter failed to improve quantitative traits which are influenced by

many genes with small effects, because only markers with significant effects

are considered. GWP, in contrast, is based on molecular markers covering the

whole genome. Genetic effects of markers are simultaneously estimated with

a statistical GWP method in an estimation set consisting of genotyped and

phenotyped individuals. Research has mainly focused on using the estimated

genetic effects for the prediction of genotypic values for individuals in a pre-

diction set which are only genotyped. However, plant breeders anticipate the

usage of estimated genetic effects for the identification of functional genes for

gene introgression or for the prediction of the performance of crosses. The

objective of the present study was therefore the development of novel ridge

regression methods that improve existing GWP methods with respect to ac-

curacy of predicted genotypic values, accuracy of marker effect estimates and

computational efficiency. For this purpose, their properties were compared in

simulated data and data sets from applied plant breeding programs of maize,

wheat and sugar beet.

The accuracy of predicted genotypic values is usually assessed using cross

validation within related individuals of the same breeding cycle. The ob-

tained accuracies are typically high. In the present study, prediction of test
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cross performance was investigated for the first time with an independent

validation of a data set originating from two subsequent breeding cycles of

an applied sugar beet breeding program. It was demonstrated that genetic

effects which were estimated in a certain cycle of a breeding program can

be used for prediction of genotypic values in the subsequent breeding cycle,

if the trait under consideration has a high heritability, as for example sugar

content.

In plant breeding populations linkage disequilibrium (LD) stretches cover

substantial parts of a chromosome. Thus, accurate marker effect estimation

most likely has no benefit on the accuracy of predicting genotypic values.

Negligible differences of prediction accuracies were consequently observed

between GWP methods employing homoscedastic and heteroscedastic marker

variances. For the prediction of genotypic values, ridge regression employing

preliminary estimates of the heritability (RIR) was the fastest GWP method

among those employing homoscedastic marker variances.

The development of high-throughput marker systems facilitated the avail-

ability of low-cost, dense marker maps. Thus, computationally efficient ridge

regression methods are required for GWP, especially when heteroscedastic

marker variances are employed. Accurate estimation of the true genetic

effects for each marker is an important criterion for heteroscedastic GWP

methods, if they are used for the identification of functional genes for gene in-

trogression or the prediction of the performance of crosses. A modification of

the expectation-maximization algorithm that yields heteroscedastic marker

variances (RMLV) and ridge regression with weighing factors according to

analysis of variance components (RRWA) provide alternative solutions to the

computationally demanding Bayesian methods. RRWA outperformed all of

the investigated GWP methods employing heteroscedastic marker variances

by factors between 10 and 100 in terms of computational efficiency. Most

accurate marker effects in a simulated data set were estimated using RMLV,

especially in situations with long LD stretches along the chromosomes and

high marker densities, which often occur in plant breeding programs.
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It can be concluded that the proposed novel ridge regression methods are

promising for providing accurate predictions of genotypic values, accurate

marker effect estimates and computational efficiency as was shown in a sim-

ulation study and data sets of applied breeding programs of maize, wheat

and sugar beet.
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Chapter 6

Zusammenfassung

Genomweite Vorhersage wurde entwickelt, um die Mängel der QTL-

Kartierung und der markergestützten Selektion zu überwinden. Letztere

verzeichnete keinen Erfolg im Hinblick auf die Verbesserung quantitativer

Merkmale, da diese von vielen Genen mit jeweils kleinen Effekten beeinflusst

werden. Die Begründung dafür ist, dass ausschließlich Marker mit signifikan-

ten Effekten berücksichtigt werden. Im Vergleich dazu basiert die genomweite

Vorhersage auf molekularen Markern, die das gesamte Genom abdecken. Die

genetischen Effekte dieser Marker werden mittels einer statistischen Methode

gleichzeitig in einem Schätzdatensatz, welcher genotypisierte und phänoty-

pisierte Individuen beinhaltet, geschätzt. Die Forschung konzentrierte sich

hauptsächlich auf die Verwendung der geschätzten genetischen Effekte für

die Vorhersage von genotypischen Werten der Individuen eines Vorhersage-

datensatzes, welche nur genotypisiert sind. Pflanzenzüchter erhoffen sich

jedoch vor allem die Nutzung der geschätzten genetischen Effekte für die

Identifikation funktioneller Gene für Genintrogression oder für die Vorher-

sage von Kreuzungsleistungen. Das Ziel der vorliegenden Arbeit war dem-

nach die Entwicklung neuartiger Ridge-Regressions Methoden, welche die

bisherigen Methoden zur genomweiten Vorhersage in Bezug auf Genauigkeit

der geschätzten genotypischen Werte, Genauigkeit der geschätzten Marker-

effekte und rechnerische Effizienz verbessern. Zu diesem Zweck wurden die

Eigenschaften der Methoden verglichen, und zwar anhand eines simulierten

Datensatzes und solchen aus angewandten Pflanzenzüchtungsprogrammen
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von Mais, Weizen und Zuckerrübe.

Die Genauigkeit der vorhergesagten genotypischen Werte wird gewöhnlich

mit einer Kreuzvalidierung innerhalb verwandter Individuen des gleichen

Zuchtzyklus bestimmt. Somit sind die erhaltenen Genauigkeiten üblicher-

weise hoch. In der vorliegenden Arbeit wurde die Vorhersage von Testkreuz-

leistungen zusätzlich mit einer unabhängigen Validierung eines Datensatzes,

der aus zwei nachfolgenden Zuchtzyklen eines Zuckerrübenzuchtprogramms

besteht, untersucht. Eine Übertragbarkeit der genetischen Effekte, die in

einem Zuchtzyklus geschätzt wurden und zur Vorhersage der genotypischen

Werte im nachfolgenden Zuchtzyklus verwendet werden, ist für hoch herita-

ble Merkmale, wie z.B. Zuckergehalt, Erfolg versprechend.

In Pflanzenzüchtungspopulationen weisen lange Chromosomenabschnitte

Gametenphasenungleichgewicht auf. Daher begünstigt eine präzise

Schätzung der Markereffekte höchst wahrscheinlich nicht die Genauigkeit

der Vorhersage von genotypischen Werten. Geringfügige Unterschiede in den

Vorhersagegenauigkeiten wurden zwischen den Vorhersagemethoden mit

homoskedastischen und heteroskedastischen Markervarianzen beobachtet.

Für die Vorhersage von genotypischen Werten war die Ridge-Regression,

welche vorläufige Schätzer der Heritabilität verwendet (RIR), die schnellste

Methode unter den Methoden, die homoskedastische Markervarianzen

annehmen.

Die Entwicklung von Hochdurchsatzmarkersystemen ermöglichte die

Verfügbarkeit von kostengünstigen, dichten Markerkarten. Folglich sind rech-

nerisch effiziente Ridge-Regressionsmethoden für die genomweite Vorher-

sage nötig, insbesondere bei heteroskedastischen Markervarianzen. Präzise

Schätzungen des wahren genetischen Effekts von jedem Marker sind ein

wichtiges Kriterium für heteroskedastische genomweite Vorhersagemodelle,

wenn sie für die Identifikation funktioneller Gene für Genintrogression

oder für die Vorhersage von Kreuzungsleistungen verwendet werden. Eine

Modifikation des Expectation-Maximization-Algorithmus, welche zu he-

teroskedastischen Markervarianzen führt (RMLV), und Ridge-Regression mit
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Gewichtungsfaktoren in Abhängigkeit von der Varianzkomponentenanalyse

(RRWA) sind Alternativen zu den Bayes’schen Methoden. Denn letztere

zeichnen sich durch einen hohen Rechenaufwand aus. RRWA hat die übrigen

untersuchten Methoden zur genomweiten Vorhersage mit heteroskedastischen

Markervarianzen um Faktoren zwischen 10 und 100 in Bezug auf rechnerische

Effizienz übertroffen. Die präzisesten Markereffekte in einem simulierten

Datensatz wurden mit RMLV geschätzt, insbesondere wenn sich lange

Abschnitte entlang der Chromosomen im Gametenphasenungleichgewicht

befanden und die Markerdichte hoch war. Dies kommt sehr häufig in

Pflanzenzüchtungsprogrammen vor.

Wie in Datensätzen aus angewandten Zuchtprogrammen von Mais, Weizen

und Zuckerrübe gezeigt wurde, sind die vorgeschlagenen neuartigen Ridge-

Regressions Methoden vielversprechend, sie erzielen präzise Vorhersagen von

genotypischen Werten und präzisere Markereffektschätzer und sind zudem

rechnerisch effizient.
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