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In the Name of Allah (God), 

the Most Gracious, the Most Merciful

Proclaim! (or read!) in the name of thy Lord and Cherisher, Who 

created- Created man, out of a (mere) clot of congealed blood: 

Proclaim! And thy Lord is Most Bountiful,- He Who taught (the use 

of) the pen,- Taught man that which he knew not.

Man We did create from a quintessence (of clay); Then We placed 

him as (a drop of) sperm in a place of rest, firmly fixed; Then We 

made the sperm into a clot of congealed blood; then of that clot We 

made a (foetus) lump; then we made out of that lump bones and 

clothed the bones with flesh; then we developed out of it another 

creature. So blessed be Allah, the best to create! After that, at length 

ye will die. Again, on the Day of Judgment, will ye be raised up.

(Al-Quran)
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Rhotekin-RBD   Rho-binding domain of rhotekin 

Rock     RhoA-dependent kinase 
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1 INTRODUCTION 

 

1.1 Barrier function of the vascular endothelium 

 

The vascular endothelium acts as a semi-permeable barrier between the 

vascular lumen and the interstitial spaces and extends over a wide surface area. It 

controls the passage of ions, solutes, macromolecules and leukocytes across the 

vessel wall. It is well known that loss of this barrier function leads to extravasation 

of blood components and may finally result in edema formation (Mehta and Malik, 

2006; Bazzoni, 2006).  

The endothelial barrier function is maintained by an equilibrium of 

competing contractile and adhesive forces generated by the actomyosin 

cytoskeleton and adhesive molecules located at cell-cell and cell-matrix contacts. 

Endothelial cells are tightly connected with each other via interactions of adherens 

and tight junctional proteins of adjacent cells. These proteins are linked to the 

cortical actin cytoskeleton present directly under the cell membrane (Furuse et al., 

1994; Ben-Ze’ev and Geiger, 1998; Vleminckx and Kemler, 1999). Inflammatory 

mediators like thrombin cause activation of the contractile apparatus, derangement 

of the actomyosin cytoskeleton, and loss of cell adhesions. This results in barrier 

failure, increased macromolecule extravasation, and edema formation in the 

inflamed tissue (Lum and Malik, 1996; van Hinsbergh 1997; Wojciak-Stothard et 

al., 1998). 

The present study focuses on the role of the endothelial contractile 

machinery in regulating endothelial barrier function under pathophysiological 

inflammatory conditions, during which activation of endothelial cells leads to 

edema formation and organ failure. It is well documented that agents which 

counteract contraction in smooth muscle cells can also reduce endothelial 

permeability (van Hinsbergh and van Nieuw Amerongen, 2002). In accordance, 

maneuvers increasing the intracellular levels of cyclic adenosine monophosphate 

(cAMP) can counteract imminent barrier failure induced by inflammatory mediators 

like thrombin (Qiao et al., 2003). Presently, the molecular mechanisms of this 

barrier protection are not completely understood. Thrombin activates the 

contractile machinery of endothelial cells mainly via inhibition of the myosin light 

chain phosphatase (MLCP) and activation of myosin light chain kinase (MLCK) 
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leading to phosphorylation of the small regulatory myosin light chains (MLC) (Zhao 

and Davis, 1999; Gündüz et al., 2003), the key regulatory element of the 

contractile machinery. Activation of the cAMP-dependent protein kinase A (PKA) 

pathway leads to activation of MLCP in smooth muscle cells (Azam et al., 2007) as 

well as in endothelial cells (Bindewald et al., 2004) which leads to 

dephosphorylation of MLC. In endothelial cells, dephosphorylation of MLC goes 

along with inactivation of the contractile machinery and this causes stabilization of 

the endothelial barrier (Tinsley et al., 2004).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.1  Schematic presentation of the mechanism of endothelial barrier failure 
induced by inflammtory mediators. Mediators like thrombin cause failure of 
endothelial barrier function mediated by intracellular signal transduction 
mechanism. Effectors of these mechanisms are: the contractile machinery, cell-
cell and cell-matrix adhesion structures and the actin cytoskeleton. 
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 adhesion structures 

Barrier failure
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cytoskeleton 
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The main objective of the present study was to elucidate the mechanism of 

cAMP/PKA-mediated activation of MLCP as an important molecular target for 

endothelial barrier protection. The study was performed with a well-established in 

vitro cell culture model, using monolayers of human umbilical vein endothelial cells 

(HUVEC). Thrombin was used as an inflammatory mediator to simulate the in vivo 

state of hyperpermeability while forskolin (FSK), a direct activator of adenylyl 

cyclase, was used to activate the cAMP/PKA pathway. 

 
1.2 Endothelial actomyosin cytoskeleton 

 

Like other eukaryotic cells, endothelial cells possess a functional 

cytoskeleton consisting of actin and myosin filaments. The first direct evidence of 

endothelial cell contraction, in response to permeability-increasing agonists, was 

given by Majno and co-workers (1961a; 1961b). Using electron microscopy, they 

demonstrated endothelial cell contraction and gap formation in intact capillaries 

exposed to inflammatory mediators. A primary function of the contractile apparatus 

in endothelial cells is to regulate endothelial barrier integrity. Endothelial cell-cell 

adhesion and thus barrier integrity is mainly dependent on the actin cytoskeleton. 

Disruption of actin cytoskeleton by C2 toxin and cytochalasin D led to loss of 

endothelial cell-cell and cell-matrix contacts and detachment of cells from the 

substratum (Schnittler et al., 2001), whereas phallacidin, an actin stabilizer, 

prevented agonist-mediated barrier dysfunction (Phillips et al., 1989).  

In endothelial cells actin and myosin filaments represent ~16% of total 

cellular protein (Wong and Gotlieb, 1990). Actin comprises about 5% of the total 

protein and exists in two different forms: in a filamentous form, called F-actin, and 

in a monomeric form, called G-actin (Tobacman and Korn, 1983). Actin filaments 

are dynamic structures, and the shift between the monomeric and the polymeric 

form of this protein plays a central role in several cell functions, especially in cell 

contraction and migration. In endothelial cells, about half of the actin is present in 

F-actin form, and half in G-actin form. Stress fibers are composed of bundles of F-

actin and myosin filaments and are the primary elements of the contractile 

machinery of endothelial cells (Dudek and Garcia, 2001). Inhibition of actin 

polymerization by cytochalasin D or latrunculin leads to actin depolymerisation and 

abrogates the contractile response to inflammatory mediators (Goeckeler and 
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Wysolmerski, 1995; Moy et al., 1996, Mehta et al., 2002). Stimulation of 

endothelial cells with thrombin increases polymerization of actin filaments, as 

determined by the conversion of G-actin to F-actin (Thurston and Turner, 1994; 

Ehringer et al., 1999) reduces cortical actin content and leads to reorganization of 

actin to form stress fibers (Goeckeler and Wysolmerski, 1995; Ehringer 1999, van 

Nieuw Amerongen et al., 2000a; 2000b). This increase in stress fiber formation 

leads to a change in endothelial cell shape (Vouret-Craviari et al., 1998), which is 

an important factor in increased endothelial gap formation.These results provide a 

concept that actin polymerization plays a key role in induction of endothelial 

contraction.   

 

1.3 Endothelial contractile machinery 

 

Endothelial contractile machinery consists of actin and myosin filaments, the 

activation of which is mainly regulated by the phosphorylation state of the 

regulatory MLC. The phosphorylation state of MLC is precisely regulated by 

balanced activities of MLCK and MLCP. Thus, the major components of 

endothelial contractile machinery are actin-myosin filaments, MLC, MLCK and 

MLCP. 

 

1.3.1 Myosin light chains  

 

MLC is a 20 kDa small protein and an important determinant of the state of 

contractile activation in endothelial cells. It was shown that phosphorylation of 

serine 19 (S19) (monophosphorylation) and/or threonine 18 (T18) 

(diphosphorylation) of the regulatory MLC not only increases actomyosin ATPase 

activity, but also shifts the equilibrium from the folded to unfolded myosin forms 

(Kamisoyama et al., 1994), thus providing the assembly and function of the 

contractile apparatus of the cells. After thrombin treatment, MLC phosphorylation 

is accompanied by an increase in the F-actin and decrease in G-actin contents in 

endothelial cells (Goeckler and Wysolmerski, 1995). Phosphorylation of MLC has 

been shown to be involved in the regulation of  permeability of cultured endothelial 

cells as well as intact isolated postcapillary venules and pulmonary microvessels in 

response to histamine and thrombin (Yuan et al., 1997; Vogel et al., 2000). The 
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relationship between MLC phosphorylation and interendothelial gap formation is 

only partly understood. It is clear, however, that activation of the contractile 

machinery leads to an increase in paracellular permeability. The maximal increase 

in MLC phosphorylation in response to an agonist such as thrombin precedes 

tension development and the increase in endothelial barrier permeability 

(Goeckeler and Wysolmerski, 1995; Moy et al., 1996; Moy et al., 2002). 

 

1.3.2 Myosin light chain kinase  

 

MLCK is a Ca2+/calmodulin-dependent enzyme that phosphorylates MLC at 

S19 and/or T18 (Goeckeler and Wysolmerski, 1995). In contrast to smooth muscle 

cell MLCK (SMC-MLCK), which is 110-130 kDa, endothelial cell MLCK (EC-

MLCK) is a 210-kDa protein (Dudek and Garcia, 2001). Structurally, EC-MLCK 

contains all the domains present in the smooth muscle form, but in addition, has a 

unique 922 amino acid NH2-terminal domain containing consensus sites that may 

be phosphorylated by diverse protein kinases, including PKA (de Lanerolle et al., 

1984; Garcia et al., 1997), PKC (Bogatcheva et al., 2003), p21-activated kinase 

(PAK) (Goeckeler et al., 2000), Src (Birukov et al., 2001), and Ca2+/calmodulin-

dependent protein kinase II (CaMKII) (Verin et al., 1998). It is well established that 

activation of EC-MLCK leads to endothelial cell contraction and barrier dysfunction 

in response to inflammatory mediators like thrombin and histamine (Dudek and 

Garcia, 2001), while inhibition of EC-MLCK, using pharmacological inhibitors like 

KT5926 or ML-7, abrogates the increase in vascular permeability (Yuan et al., 

1997; Tinsley et al., 2000). Recently, it has been shown that expression of a 

constitutive active form of EC-MLCK resulted in an elevated basal permeability of 

venules as well as venular endothelial cells in culture (Tinsley et al., 2000). The 

selective knockout of EC-MLCK in a mouse model resulted in protection against 

barrier failure induced by lipopolysaccharides (Wainwright et al., 2003) and burn 

injury (Reynoso et al., 2007). These studies indicate that EC-MLCK plays a critical 

role in agonist-induced endothelial barrier failure via activation of the contractile 

machinery.  
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1.3.3 Myosin light chain phosphatase  

 

MLCP is a holoenzyme consisting of a catalytic subunit (PP1), a regulatory 

subunit (MYPT1), which targets PP1 to myosin and a smaller subunit of 20 kDa 

(M20) of unknown function. In endothelial cells the primary function of MLCP is to 

dephosphorylate MLC at S19 and T18.  

 

PP1 catalytic subunit. The PP1 catalytic subunit in mammalian cells is encoded 

by three genes, α, γ, and δ (also called β). Alternative splicing generates α1, α2, γ1, 

and γ2 variants (Sasaki et al., 1990; Durfee et al., 1993). The resulting five 

isoforms have high sequence homology and are expressed in many different cell 

types. They share over 95% identity in the core catalytic domain. With the 

exception of α2, which has an N-terminal insert, the other isoforms differ mostly in 

their C-terminal sequence, sharing less than 50% identity. Substrate specificity is 

modulated by association with a large number of regulatory and/or inhibitory 

subunits. In endothelial cells it is well established that PP1δ is the predominant 

isoform of PP1 existing in the MLCP holoenzyme (Verin et al., 2000; Härtel et al., 

2007). 

 

Myosin phosphatase targeting subunit. The specific activity of PP1 of MLCP to 

dephosphorylate the MLC is dependent upon its binding to the regulatory subunit 

MYPT1. MYPT1 is a 130 kDa protein and plays a key role in determining the 

physical and functional integrity of the trimeric myosin phosphatase (Khatri et al., 

2001). PP1δ binds to the N-terminus and M20 to the C-terminus of MYPT1. 

Myosin binds to both C- and N-terminal of MYPT1. The N-terminal of MYPT1 

shows ~15 fold increased activity and ~10-fold higher affinity for phosphorylated 

MLC than the isolated catalytic subunit (Hartshorne, 1998; Hartshorne et al., 2004; 

Ito et al., 2004). 
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Fig. 1.2 Regulation of endothelial cell contractility: Phosphorylation of myosin light 
chain (MLC~P) is a key step in the regulation of the activation of the contractile 
machinery. Calcium/calmodulin (Ca2+/CM)-dependent myosin light chain kinase 
(MLCK) phosphorylates, while myosin light chain phosphatase (MLCP) 
dephosphorylates MLC. Activation of the contractile machinery leads to endothelial 
cell contraction and barrier failure, while inactivation to relaxation and barrier 
stabilization. 
 
1.3.4 Regulation of myosin light chain phosphatase activity via MYPT1 

phosphorylation 

 

The activity of MLCP can be regulated either through its regulatory subunit 

MYPT1 or through direct inhibition of the catalytic subunit PP1 by low molecular 

weight endogenous inhibitors. Stimulation of endothelial and nonendothelial cells 

with thrombin leads to activation of RhoA-dependent kinase (Rock), which induces 

phosphorylation of MYPT1 and inhibition of MLCP activity (Goeckeler and 

Wysolmerski, 2005; Pandey et al., 2006).  

Most of our understanding about the regulation of the contractile machinery 

by MYPT1 is based on data obtained primarily from smooth muscle cells and little 

from endothelial cells. Several studies have well documented that MLCP activity is 

regulated by phosphorylation of its targeting subunit (MacDonald et al., 2001; 

Wooldridge et al., 2004). The two main inhibitory phosphorylation sites identified in 

smooth muscle cells as well as in endothelial cells are threonine 696 (T696) and 

threonine 850 (T850). However, the mechanism of MLCP inhibition remains 

unclear. Several kinases have been reported to phosphorylate MYPT1 at one or 

MLC MLC~P Contraction 
Barrier failure

Relaxation 
Barrier stabilization

Ca2+/CM
MLCK

MLCP

MLC MLC~P Contraction 
Barrier failure

Relaxation 
Barrier stabilization
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MLCK
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both of these sites. The major well-known kinase is Rock, which phosphorylates 

MYPT1 at both sites and inhibits its catalytic activity (Hartshorne, 1998; Fukata et 

al., 2001). Other kinases phosphorylating MYPT1 in a Ca2+-independent manner 

include zipper-interacting protein kinase (ZIPK) and the so called MYPT1-

associated kinase, which is highly homologous to ZIPK ( Hartshorne, 1998; 

Borman et al., 2002). Phosphorylation at T696 by Rock or ZIPK inhibits the activity 

of MLCP (Fukata et al., 2001; MacDonald et al., 2001; Borman et al., 2002). 

Accordingly, phosphorylation of T850 by Rock was shown to induce dissociation of 

MYPT1 from myosin and thus inactivation of MLCP (Velasco et al., 2002). These 

data confirm that the phosphorylation of MYPT1 plays an important role in the 

regulation of MLCP activity. 

 

1.3.5 Regulation of myosin light chain phosphatase activity by CPI-17 

 

Recent data, mainly from smooth muscle cells suggests an alternative 

mechanism for the regulation of the activity of MLCP holoenzyme. A small 17 kDa 

protein, the PKC-potentiated inhibitor 17-kDa protein (CPI-17), can directly interact 

with, and inactivate the catalytic subunit of MLCP (Murthy et al., 2003; Somlyo and 

Somlyo, 2003). CPI-17 is a soluble globular protein and was purified as a myosin 

phosphatase specific inhibitor from pig aorta (Eto et al., 1995). Phosphorylation of 

CPI-17 at threonine 38 (T38) was shown to enhance its inhibitory potency by more 

than 1000-fold (Eto et al., 2004). Several kinases such as PKCα/δ, PAK, ZIPK, 

integrin linked kinase (ILK), and Rock were shown to activate CPI-17 by 

phosphorylation at T38 (Koyama et al., 2000; MacDonald et al., 2001; Erdödi et 

al., 2003). Initially, CPI-17 was assumed to be present only in smooth muscle 

cells, but recently it was found in platelets (Watanabe et al., 2001), brain (Dubois 

et al., 2003) and also in endothelial cells of different origins (Kolosova et al., 2004). 

The phosphatase activity of purified MLCP towards phosphorylated MLC was 

completely inhibited in the presence of phosphorylated CPI-17 (Senba et al., 

1999). Agonists like histamine and thrombin, cause phosphorylation of CPI-17 in 

smooth muscle cells (Kitazawa et al., 2003), as well as in platelets (Watanabe et 

al., 2001) and endothelial cells (Kolosova et al., 2004).  
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1.4 cAMP and endothelial permeability 

 

cAMP is a well-known intracellular second messenger mediating 

stabilization of barrier function in isolated vessels as well as in cultured endothelial 

monolayers (Adamson et al., 1998; Stelzner et al., 1989; He et al., 2000). 

Consistently, activation of adenylyl cyclase via G-protein-coupled receptor (GPCR) 

agonists like, adenosine, prostacyclin, prostaglandin E2, and β-adrenergic 

agonists, direct activation of adenylyl cyclase (by FSK) as well as elevation of  

cytosolic cAMP concentration by blocking its degradation via phosphodiesterases, 

reduce endothelial hyperpermeability induced by inflammatory stimuli both in vitro 

and in in vivo (Carson et al., 1989; Langeler and van Hinsbergh, 1991; Suttorp et 

al., 1993; He and Curry, 1993; Fu et al., 2006). The effect of cAMP is fast and 

occurs in endothelial cells both under basal conditions as well as after exposure to 

inflammatory mediators. Its efficacy is independent on whether cAMP is elevated 

by activation of  adenylyl cyclase or by inhibition of cAMP-degrading 

phosphodiesterases (Van Hinsbergh, 2001).  

cAMP exerts its effect primarily through direct activation of PKA (Yuan, 

2002). It has been shown in endothelial cells that inhibition of PKA by 

overexpression of a specific peptide inhibitor of PKA (PKI) as well as by 

pharmacological inhibitors (e.g. Rp-cAMP), resulted in increased endothelial 

permeability (Lum et al., 1999; Liu et al., 2001). The barrier protective effects of 

cAMP towards inflammatory mediators were abolished in these cells. In an in situ 

study in intact frog and rat microvessels it was shown that inhibition of PKA leads 

to increased basal permeability (He et al., 2000). Liu and co-workers (2005) 

showed in cultured endothelial cells that inhibition of PKA leads to an increase in 

stress fiber formation and basal endothelial permeability. These studies 

demonstrate clearly that cAMP exerts its  effects on endothelial barrier function 

mainly by activating PKA.  

Recently, it has been shown that cAMP can also strengthen barrier function 

by PKA-independent mechanism. cAMP can activate the small GTPase Rap1 via 

activation of the exchange factor Epac1/2 (Cullere et al., 2005; Fukuhare et al., 

2005) leading to stabilization of adherens junctions. However, there is no evidence 

that activation of Epac causes dephosphorylation of MLC and  inactivation of the 

contractile machinery. 
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The present study focuses on the molecular mechanism of the cAMP/PKA 

pathway which has been related to barrier stabilisation and protection via inhibition 

of the contractile machinery. A number of studies have shown that activation of 

PKA causes dephosphorylation of MLC (Moy et al., 1993), dissociation of F-actin 

from myosin (Langeler et al., 1991) and stabilization of cytoskeleton filaments 

(Hastie et al., 1997). Several studies have tried to elucidate the molecular 

mechanisms by which cAMP/PKA stabilizes the endothelial cytoskeleton. It has 

been proposed that cAMP/PKA inhibits the small GTPase RhoA and this in turn 

results in inhibition of phosphorylation of the regulatory MLC and thus activation 

state of the contractile machinery (Essler et al., 2000; Qiao et al., 2003). In an 

early study, Garcia and co-workers (1995) showed that cAMP/PKA activation 

causes MLCK phosphorylation and proposed that this might lead to MLCK 

inhibition. In a recent study Goeckeler and Wysolmerski (2005) clearly excluded 

that activation of cAMP/PKA pathway can lead to MLCK phosphorylation and 

inactivation.  

A number of studies in smooth muscle cells and few in endothelial cells 

(Birukov, 2003; Goeckeler and Wysolmerski, 2005) have shown that activation of 

cAMP/PKA pathway leads to activation of MLCP but a detailed molecular analysis 

has not yet been performed.  
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Fig 1.3 Regulation of myosin light chain phosphatase (MLCP). Thrombin, via 
protease-activated receptor-1 (PAR1), activates RhoA/Rock pathway. Rock 
inactivates myosin light chain phosphatase (MLCP) leading to increased myosin 
light chain (MLC) phosphorylation and contractile activation. Agonists like 
adenosine, via activation of adenosine A2 receptors activate adenylyl cyclase (AC) 
leading to increased production of cAMP and activation of protein kinase A (PKA). 
Activation of cAMP/PKA pathway can activate MLCP, which dephosphorylates 
MLC causing inactivation of  the contractile machinery. CPI-17 is an endogenous 
inhibitor of MLCP, activated by several kinases including PKC and Rock. 

 

1.5 Aims and objectives of the study 

 

The present study was conducted to elucidate the molecular mechanisms 

by which activation of the cAMP/PKA pathway leads to inactivation of the 

endothelial contractile machinery and protection of endothelial barrier function. 

Since previous studies in endothelial as well as smooth muscle cells demonstrated 

that cAMP/PKA exerts its main effect on contractile machinery via activation of 

MLCP, the present study was focused to analyze the molecular mechanism of 

MLCP activation via the cAMP/PKA signaling pathway. 
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The study was performed using an established model of cultured 

monolayers of human umbilical vein endothelial cells (HUVEC). The following 

questions were addressed: 

 

• Does cAMP/PKA induce complex formation of the MLCP holoenzyme? 

Special emphasis was laid on analysis of recruitment of PP1 to MYPT1 and 

and the translocation of both to myosin. 

• Is this cAMP/PKA-induced MLCP holenzyme complex formation dependent 

on inhibition of RhoA/Rock pathway? 

• Does cAMP/PKA pathway cause inactivation of CPI-17, a specific inhibitor 

of PP1?  

• Does the RhoA/Rock pathway play a role in the cAMP/PKA-mediated effect 

on CPI-17?  

• Does inhibition of CPI-17 have any functional role in endothelial barrier 

failure caused by inflammatory mediators (e.g. thrombin)? 

 

The following experimental strategies were used to answer these questions. 

 

• Recruitment of MYPT1 and PP1 to myosin was analyzed by co-

immunoprecipitation analysis. 

• Activation of MLCP was analyzed by direct determination of phosphatase 

activity in co-immunoprecipitated complexes. 

• Activation of RhoA/Rock pathway was analyzed by pulldown assay and 

RhoA translocation to membranes by cell fractionation. 

• Interaction of CPI-17 with PP1 was analyzed by co-immunoprecipitation 

analysis and CPI-17 phosphorylation (i.e. activation) was analyzed by 

western blot analysis. 

• Macromolecule permeability across endothelial monolayers was used as a 

functional assay to evaluate the impact of CPI-17. in these experiments 

CPI-17 was downregulated by siRNA technique. 
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2 Methods 

 

2.1 Cell culture 

 

Isolation of human umbilical vein endothelial cells (HUVEC) 

 

Collagenase solution 

HBSS        x ml 

Collagenase II, 293 IU/mg (wt/vol)   0.025 % 

MgCl2        0.5 mM 

CaCl2        1.5 mM 

 

Endothelial cell culture medium 

Endothelial cell basal medium (PromoCell® ) supplemented with  

FCS (vol/vol)       10 % 

Endothelial cell growth supplement/Heparin (wt/vol) 0.4 %  

Hydrocortisone (wt/vol)     0.1 %  

bFGF (wt/vol)      1 ng/ml 

hEGF (wt/vol)      0.1 ng/ml 

Penicillin/streptomycin (vol/vol)    2 %  

 

Procedure. The study conforms with the principles outlined in the ‘’Declaration of 

Helsinki’’ (Cardiovascular Research 1997;35:2–3). Human umbilical vein 

endothelial cells (HUVEC) were isolated from freshly collected umbilical cords 

(from Gynecology Department, University Hospital Giessen) according to Jaffe et 

al., (1973) with some modifications. After cleaning, the umbilical vein was 

canulated and perfused with HBSS to remove traces of blood. Afterwards, the 

lumen of the vein was filled with collagenase solution and incubated for 20-30 

minutes at 37 °C. Afterwards, the collagenase solution, containing endothelial 

cells, was gently flushed from the vein by perfusion with 30 ml of HBSS containing 

3% (vol/vol) FCS, to inactivate the collagenase. The effluent was collected in a 50 

ml Falcon tube and centrifuged at 250 x g for 5 minutes at room temperature. The 

supernatant was removed and the cell pellet was resuspended in endothelial cell 

culture medium containing 0.1% gentamycin. The cell suspension was seeded on 
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3-4 primary cell-culture dishes and incubated at 37 °C with 5% CO2 for 2 hours. 

Thereafter, cells were washed with HBSS to remove erythrocytes, non-adherent 

cells, and cell debris and were incubated with cell culture medium containing 0.1% 

(vol/vol) gentamycin at 37 °C with 5% CO2. After 24 hours the medium was 

replaced with normal endothelial cell culture medium.  
 

Sub-culturing of HUVEC. Confluent monolayers of primary endothelial cells were 

trypsinized (5-7 days after isolation) in phosphate-buffered saline [PBS; 

composition in mM: 137 NaCl, 2.7 KCl, 1.7 KH2PO4, and 10 Na2HPO4; pH 7.4, 

supplemented with 0.05% (wt/vol) trypsin, and 0.02% (wt/vol) EDTA] and seeded 

at a density of 7 x 104 cells/cm2 on Transwell® filters (for permeability) or on cell 

culture dishes (for western blot analysis, immunoprecipitation and pulldown 

assay). Experiments were performed with confluent endothelial monolayers of 

either primary or passage 1, 3 days after seeding. 

 

2.2 General incubation conditions 

 

The basal medium used in incubations was HBSS supplemented with 1.3 

mM CaCl2, 1.2 mM MgCl2, and 2 % (vol/vol) FCS. After an initial equilibration 

period of 20 minutes, agents were added as indicated. Stock solutions of thrombin, 

Y27632 and PKI were prepared immediately before use with basal medium. Stock 

solutions of forskolin were prepared with dimethyl sulfoxide (DMSO). Appropriate 

volumes of these solutions were added to the cells yielding final solvent 

concentrations < 0.1% (vol/vol). The same final concentration of DMSO was 

included in all respective control experiments. Stock solutions of all other 

substances were prepared in basal medium (composition as described above). 

Appropriate volumes of these solutions were added to the cells. Identical additions 

of basal medium were included in all respective control experiments. 

In a set of pilot experiments, concentration-response relationships were 

determined to find the optimum effective concentration of the agents to be used in 

this study. The agents were applied in their optimum effective concentrations as 

follows: forskolin (5 µM), thrombin (0.2 IU/ml), PKI (100 µM), Y-27632 (10 µM). 
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2.3 Protein analysis 

 

Sample preparation 

 Endothelial cells were washed with HBSS and subsequently lysed in 150 µl 

2x SDS sample buffer (250 mM Tris/HCl; pH 6.8, 20% (vol/vol) glycerol, 4% 

(wt/vol) SDS, 1% (vol/vol) β-mercaptoethanol, 10 µM cantharidin, 0.001% (wt/vol) 

bromphenol blue, and 10 mM DTT added freshly before use). Subsequently, 50 

IU/ml Benzonase® and 2 mM MgCl2 was added and lysate was collected in a 1.5 

ml Eppendorf tube. Samples were denatured for 3 minutes at 95 °C and used 

immediately or stored at –20 °C. 

 

SDS-polyacrylamide gel electrophoresis (SDS-PAGE) 

 

Resolving gel buffer: Tris/HCl; pH 8.8   120 mM  

Stacking gel buffer:   Tris/HCl; pH 6.8  120 mM  

 

10x Gel running buffer 

Tris      250 mM 

Glycine    2.0 M 

SDS (wt/vol)   10 % 

 

SDS gels 

The composition of gels of different percentages is given below: 

 

Gels Resolving gels 
Stacking 

gel 
Solutions   7.5 %    10 %    12.5 %   15 %     6 % 

Acrylamide 40% (wt/vol)   7.7 ml 10.2 ml 12.7 ml 15.3 ml   3.8 ml 

Bisacrylamide 2% (wt/vol)   4.2 ml   5.6 ml   7.0 ml   8.4 ml   2.0 ml 

Millipore water 17.7 ml 13.8 ml   9.8 ml   5.8 ml 17.5 ml 

Resolving gel buffer   9.5 ml   9.5 ml   9.5 ml   9.5 ml ------ 

Stacking gel buffer ------ ------ ------ ------   6.0 ml 

SDS 10% (wt/vol)   0.4 ml   0.4 ml   0.4 ml   0.4 ml 0.25 ml 

TEMED    30 µl   30 µl   30 µl   30 µl   20 µl 

APS 10% (wt/vol)   0.4 ml   0.4 ml   0.4 ml   0.4 ml 0.25 ml 
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Procedure. After cleaning the glass plates and spacers with water and ethanol, 

the gel apparatus was assembled and the resolving gel solution was poured (app. 

10 cm height), and layered with water. The gel was let to polymerize for 3-4 hours 

or overnight at room temperature.  

The layer of water was removed, the stacking gel solution was poured on 

top of the resolving gel, the comb was inserted and the stacking gel was let to 

polymerize for 1 hour at room temperature. After removing the comb 1x running 

gel buffer was added to the chamber and the wells were washed with a syringe. 

Protein samples were loaded into the wells and the gel was run overnight at 45 

volts. The run was stopped when bromophenol blue had passed through the gel. 

 

Electroblotting and immunodetection of proteins (Western Blot) 

Proteins separated by SDS-PAGE were transferred onto a nitrocellulose 

membrane by semi-dry blotting. Afterwards specific proteins were 

immunodetected using specific antibodies. 

 

Materials and solutions 

• Nitrocellulose transfer membrane, cut to the same dimensions as the gel  

• Six pieces of Whatman® 3 MM filter paper, cut to the same dimensions as 

the gel  

• Blotting chamber  

• Anode buffer 1: 0.3 M Tris/HCl; pH 10.4, 20% (vol/vol) methanol  

• Anode buffer 2: 30 mM Tris/HCl; pH 10.4, 20% (vol/vol) methanol  

• Cathode buffer: 25 mM Tris/HCl; pH 9.4, 40 mM 6-amino-n-hexanoic acid, 

20% (vol/vol) methanol  

• Millipore water 

 

Procedure. The blotting chamber was assembled as follows: Two sheets of filter 

paper (Whatman® 3MM) soaked in anode buffer 1, were placed in the centre of the 

graphite anode of the blotting chamber. On top of these sheets, two sheets of filter 

paper, soaked in anode buffer 2, were placed followed by nitrocellulose membrane 

equilibrated in anode buffer 2 for 10-15 minutes. After briefly equilibrating with 
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cathode buffer, the SDS-gel (devoid of stacking gel) was layered on top of the 

nitrocellulose membrane, avoiding air bubbles. Two sheets of filter paper, pre-

soaked in cathode buffer, were placed on top of the gel followed by the graphite 

cathode of the blotting chamber. Transfer was achieved by application of 0.8-0.9 

mA/cm2 current for approximately 2-2.5 hours. 

 
Ponceau staining of proteins 

To estimate the efficiency of protein transfer after blotting, the membrane 

was stained with ponceau S. This stain is reversible and produces pink bands on a 

light background. The nitrocellulose membrane was washed with Millipore water 

for 1 minute, incubated in Ponceau-S solution for 2-3 minutes with constant 

shaking at room temperature. Subsequently the membrane was destained by 

washing in Millipore water to the desired contrast and photographed. To remove 

the stain completely, the membrane was washed with TBST (1x TBS plus 0.1% 

tween 20) under constant shaking. 

 

Immunodetection of proteins 

 
Solutions
10x Tris-buffered saline (TBS) 

Tris/HCl (pH 7.4)  100 mM 

NaCl    1.6 M 

 
TBS Tween (TBST) 

1x TBS    

0.1% (vol/vol) Tween 20 

  

Blocking-buffer and antibody-dilution buffer 

3% (wt/vol) BSA in 1x TBST (BSA) or  

5% (wt/vol) non-fat dried milk powder in 1x TBST (Milk) 
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Primary Antibodies 

Antibody      Dilution  Dilution buffer 
CPI-17 (Rabbit IgG, polyclonal)   1:1000  Milk 

Phospho CPI-17 (Rabbit IgG, polyclonal) 1:1000  BSA 

MLC (Clone MY-21, mouse IgM, monoclonal) 1:2000  Milk 

MYPT1 (Sheep IgG, polyclonal)   1:1000  Milk 

Phospho MYPT696 (Rabbit IgG, polyclonal) 1:1000  BSA 

Phospho MYPT850 (Rabbit IgG, polyclonal) 1:1000  BSA 

PP1δ (Rabbit IgG, polyclonal)   1:1000  BSA 

RhoA (Mouse IgG, monoclonal)   1:1000  BSA 

Vinculin (Clone hVIN-1, mouse IgG,  

monoclonal)      1:1000  BSA 

 
Secondary  antibodies, horseradish peroxidase (HRP)-labeled 

Antibody      Dilution  Dilution buffer 

Anti-rabbit IgG     1:1000  BSA or Milk  

Anti-mouse IgG     1:1000  BSA or Milk 

Anti-mouse IgM     1:2000  BSA or Milk 

Anti-sheep IgG     1:1000  BSA or Milk 

 

Procedure. After a brief washing with Millipore water and TBST, the membrane 

was blocked with either 5% (wt/vol) non-fat milk powder or 3% (wt/vol) BSA in 

TBST for 2 hours at room temperature. After blocking, the membrane was 

incubated with primary antibody overnight at 4°C. The membrane was then 

washed with TBST 3-4 times for 5-10 minutes each at room temperature and 

incubated with secondary antibody for 1 hour at room temperature. The membrane 

was then washed with TBST 3-4 times for 10-15 minutes (each) and was then 

incubated with enhanced chemiluminescence (ECL) solution (30 seconds to 1 

minute) and the luminescence was detected and recorded with Bio-Rad Quantity 

One gel documentation system. 
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2.4 Determination of MLC phosphorylation  

 

The phosphorylation of MLC was determined by glycerol-urea polyacrylamide gel 

electrophoresis and Western blot analysis (Persechini et al., 1986). This procedure 

allows separation of non-phosphorylated from phosphorylated MLC protein, the 

latter of which migrates more rapidly. 

 

Urea-glycerol gel 

Following solutions were used to make 6 small gels: 

Glycerol (87%)    20.70 ml 

Acrylamide solution 40% (wt/vol)  11.25 ml 

Bisacylamide solution 2% (wt/vol) 9.50 ml 

Urea-gel buffer    3.80 ml 

To remove air bubbles, the solution was degassed for 10 minutes with a water 

vacuum pump. 

TEMED     7.10 µl 

APS 10% (wt/vol)    200 µl 

 

Urea-gel buffer    

Tris/HCl     240 mM   

Glycine     276 mM   

Adjust pH to 8.8  

Anode buffer  

Urea-gel buffer    83 ml 

Millipore water    917 ml 

 

Cathode buffer 

Anode buffer     450 ml 

DTT      2.3 mM 

Sodium thioglycolate    2.4 mM 

 

Procedure. Experimental incubations of cultures were terminated by a rapid 

removal of the medium and addition of 10% (wt/vol) ice-cold trichloroacetic acid 

and incubation on ice for 30-60 minutes. Precipitated proteins were transferred 
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into 1.5 ml Eppendorf tubes and centrifugated at 10,000 x g for 10 minutes at 4 °C. 

Sediments were washed 2-3 times with diethylether. After evaporation of 

diethylether, sediments were suspended in 30 µl lysis buffer (8.8 M urea, 60 mM 

imidazole, 23 mM glycine, 20 mM Tris/HCl; pH 8.8, 10 mM DTT, 5 mM sodium 

thioglycolate, 10 µM cantheridin, 0.001 % (wt/vol) bromophenol  blue). Before 

loading the lysates, the gels were pre-run at 400 V for 1 h. Approximately 20-40 of 

µg protein per lane was loaded on 10% urea-glycerol polyacrylamide gels and 

allowed to run at 400 V and 18 °C for 80 minutes. Separated proteins were blotted 

on nitrocellulose membranes (0.2 µm) and incubated as described under section 

2.3, with an anti-MLC antibody (1:2000) over night, followed by incubation of HRP-

labeled anti-mouse IgM antibody (1:2000) for 1 hour at room temperature. 

Luminescence was detected and recorded with Bio-Rad Quantity One gel 

documentation system. The percentage of MLC phosphorylation (expressed as % 

of total MLC) was calculated from densitometrical values of non- (MLC), mono- 

(MLC~P), and diphosphorylated MLC (MLC~PP) as follows: 

 

     (2 x MLC ~ PP) + MLC ~ P 
MLC phosphorylation (%) =     --------------------------------------------   x 100   

Total MLC 
 

As all MLC can become diphosphorylated, MLC phosphorylation (%) varies 

between 0 and 200 %. 

 

2.5 Co-immunoprecipitation of proteins 
 

Preparation of beads. Protein G-coated magnetic beads (6 µl beads suspension 

for approximately 1 mg of total cell lysate) were washed 3-4 times with 0.1 M 

sodium phosphate buffer (composition: 80 mM Na2HPO4, 20 mM NaH2PO4; pH 

7.4) and incubated with the respective antibody (4-5 µg for 1 mg total cell lysate) 

overnight at 4 °C with end-over-end rotation. Afterwards the beads were washed 

3-4 times with 0.1 M sodium phosphate buffer containing 0.1 % (vol/vol) Tween 20 

and stored in 50 µl of PBS. 

 

Immunoprecipitation. Confluent endothelial monolayers cultured on a 10-cm cell 

culture dish were stimulated as indicated in the text. Cells were incubated with 600 
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µl lysis buffer containing 50 mM Tris/HCl; pH 7.4, 150 mM NaCl, 1% (vol/vol) 

Triton X-100, 0.5% (vol/vol) NP-40, 1 mM EDTA, 1 mM EGTA, 20 mM NaF, 1.5 

mM Na-orthovanadate, 10 mM DTT, 0.5 mM PMSF, and Complete® protease 

inhibitor cocktail, for 10 minutes on ice and subsequently harvested by scraping 

with a rubber policeman and lysed by passing through a 26G needle (4-5 times). 

Lysates were cleared by centrifugation at 1,000 x g for 5 minutes at 4 °C. The 

supernatant was transferred to another tube and incubated with the respective 

antibodies pre-immobilized on protein G-coated magnetic beads for 1.5 hours at 4 

°C with end-over-end rotation. After incubation, beads were washed three times 

with PBS containing 0.1 % (vol/vol) Tween 20. The beads were collected and the 

bound proteins were eluted in 2x SDS sample buffer and analyzed by western blot 

analysis. 

 

2.6 Protein phosphatase assay 

 

Preparation of [32P]-labeled substrate. [32P]-labeled phosphorylase-a was 

prepared according to Essler et al., (1998) with some modifications. Briefly, 

phosphorylase-b (5 mg/ml) and phosphorylase-kinase (200 IU/ml) were incubated 

in a 2 ml incubation mixture (composition: 20 mM MgCl2, 31 mM β-

mercaptoethanol, 0.5 mg/ml BSA, 1 mM CaCl2, 1 mM ATP, 1 mCi γ-[32P]-ATP, and 

50 mM Tris/HCl; pH 7.4) for 2.5 hours at 30 °C. The radioactive-labeled 

phosphorylase-a was precipitated by addition of 2 volumes of ice-cold saturated 

ammonium sulfate solution. The tube was incubated for 20 minutes on ice and  

centrifuged for 30 minutes at 12,000 x g at 4 °C. The precipitate was solubilized in 

2 ml dialysis buffer (10 mM Tris/HCl; pH 7.4, 1 mM EDTA) dialyzed two times at 

room temperature against 2 liter dialysis buffer and finally stored at 4 °C. 

Radioactive labeling was verified by measuring the product in a liquid scintillation 

counter (Tri-Carb 1600 TR liquid scintillation counter).   

 

Determination of protein phosphatase activity. Protein phosphatase activity 

was determined according to Neumann et al. (1991). For determination of protein 

phosphatase activity of MLCP, the holoenzyme was immunoprecipitated using an 

anti-MYPT1 specific antibody pre-immobilized on protein G-coated magnetic 

beads (see section 2.5). Aliquots were preincubated in a total volume of 30 µl for 
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10 minutes at 30 °C in the presence or absence of 5 nM okadaic acid, a 

concentration inhibiting protein phosphatase 2A, or 0.5 µM human recombinant 

inhibitor 2 (rec. I-2), a specific inhibitor of PP1. The reaction was started by 

addition of 20 µl [32P]-labeled phosphorylase-a in an incubation mixture containing 

50 mM Tris/HCl; pH 7.4, 12.5 mM caffeine, 0.25 mM EDTA, 1.25 mM MnCl2, 

0.25% (vol/vol) β-mercaptoethanol. After incubation for 20 minutes at 30 °C, the 

reaction was terminated on ice by addition of 20 µl of 50% (wt/vol) ice-cold 

trichloroacetic acid (TCA) and 30 µl of 2% (wt/vol) bovine serum albumin (BSA). 

After 15 minutes on ice, the suspension was centrifuged at 12,000 x g for 5 

minutes at 4 °C. 70 µl of the supernatant was measured in a liquid scintillation 

counter. Reactions were carried out in duplicate or triplicate. To ensure linear rates 

of dephosphorylation, the extent of dephosphorylation of [32P]-labeled 

phosphorylase-a was restricted to <25%.  

 
2.7 Detection of activated RhoA  

 

   The assay was performed according to the manufacturer’s instructions 

using the Rho binding domain of rhotekin (Rhotekin-RBD) to specifically bind and 

isolate activated GTP-bound RhoA.  

 

Procedure. Endothelial cells were stimulated with FSK, thrombin, or combination 

of both. Afterwards the cells were washed with ice-cold PBS and incubated with 

600 µl of lysis buffer (25 mM Hepes; pH 7.4, 150 mM NaCl, 5 mM MgCl2, 1 mM 

EDTA, 10 mM NaF, 2 mM Na-orthovanadate, 5 mM DTT, 0.5 mM PMSF, 2% 

(vol/vol) glycerol, 0.5% (vol/vol) Triton X-100, and Complete® protease inhibitor 

cocktail. The cells harvested by scraping with a rubber policeman and lysed by 

passing through a 26G needle (4-5 times). Lysates were cleared by centrifugation 

at 14,000 x g for 5 minutes at 4 °C. The supernatant was transferred into another 

tube and incubated with 10 µg of Rhotekin-RBD beads at 4 °C for 40 minutes. The 

beads were washed four times with wash buffer (25 mM Tris/HCl; pH 7.4, 150 mM 

NaCl, 10 mM MgCl2, 1% (vol/vol) Triton X-100, 0.5 mM PMSF and Complete® 

protease inhibitor cocktail, heated to 95 °C for 5 minutes with 40µl of 2x SDS 

sample buffer (see section 2.3) and loaded on a 12.5% SDS-PAGE. RhoA protein 

was detected by western blot analysis using anti-RhoA mouse monoclonal 
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antibody. RhoA activation was estimated by correlation of isolated GTP-bound 

RhoA to total amount of RhoA in cell lysates.  

 
2.8 Determination of RhoA translocation 

 

 Activation of RhoA leads to its translocation to the cell membrane (Takaishi 

et al., 1996), so RhoA translocation to membrane was also determined by cell 

fractionation. After stimulation the cells were washed briefly with ice-cold PBS and 

then incubated with lysis buffer (5 mM Tris/HCl; pH 7.4, 250 mM sucrose, 5 mM 

NaCl, 1 mM MgCl2, 5 mM EDTA, 10 mM DTT, 0.5 mM PMSF, and Complete® 

protease inhibitor cocktail, for 10 minutes on ice. Subsequently, cells were 

collected with a rubber policeman and lysed by passing through a 26G needle (4-5 

times). Cell debris and nuclei were removed by centrifugation at 1000 x g for 5 

minutes at 4 °C to clear the lysate. Afterwards, the supernatant was centrifuged at 

100,000 x g for 30 minutes at 4 °C. The pellet was washed three times with lysis 

buffer, dissolved in 2xSDS-sample buffer and analyzed by SDS-PAGE and 

western blot analysis. 

 

2.9 Measurement of endothelial monolayer permeability  

 

The endothelial permeability was measured according to Noll et al. (1999) 

using a two compartment system. The luminal and abluminal compartments were 

separated by a porous membrane (pore size 0.4 µm). The cells were cultured on 

the membrane (Transwell®) filters until confluent. HBSS [supplemented with 1.3 

mM CaCl2, 1.2 mM MgCl2, and 2% (vol/vol) fetal calf serum (FCS)] was added in 

both compartments as basal medium. The luminal compartment contained 2.5 ml 

the while the abluminal compartment contained 9.5 ml of this medium. There was 

no difference in hydrostatic pressure between the luminal and abluminal 

compartment. In the luminal compartment, trypan blue-labeled albumin was added 

in a final concentration of 60 µM. The diffusion of trypan blue-labeled albumin from 

the luminal to the abluminal compartment was measured with a spectrophotometer 

(Specord 10, Zeiss Jena, Germany) continuously every minute. To avoid 

measurement artefacts, two-wavelength measurement mode was used (trypan 

blue 600 nm versus control 720 nm). 
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The albumin flux (F, measured in mol/(sec x cm2) through endothelial monolayer 

area (S) was calculated as the increase in albumin concentration (d[A]2) during the 

time interval (dt) in the abluminal compartment with the volume (V) as follows: 

 

d[A]2 / dt x V 
F = ------------------------   (1) 

        S 
 

The combined permeability coefficient (P [cm/sec]) of both endothelial cell 

monolayer and filter membrane was calculated as: 

 

     F 
P = ------------------------   (2) 

([A]1 – [A]2) 
 

Where [A]1 and [A]2 are the albumin concentrations in luminal and abluminal 

compartments, respectively.  

 

2.10 Downregulation of endogenous CPI-17  

 

To reduce the content of CPI-17, endothelial cells were treated with CPI-17-

specific siRNA duplex. siRNA was ordered from QIAGEN in purified, desalted, 2'-

deprotected duplex form. Duplex of sense 5'-ACCUGUCGAGGACUUCAUCdTdT-

3' and antisense 5'-GAUGAAGUCCUCGACAGGUdTdT-3' siRNA was used as 

described by Kolosova et al. (2004). Nonspecific RNA duplex was used as a 

control treatment. Endothelial cells were seeded on 35-mm cell culture dishes (for 

western blotting), and on Transwell® filters (for permeability experiments). When 

70% confluence was reached siRNA (100 nM) was transfected with FuGENE® 6 

transfection reagent. Experiments were performed 48 hours after the incubations. 

Downregulation of CPI-17 was determined by western blot analysis. 
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Transfection  

Transfection was carried out with 100 nM of siRNA.  Calculations for 7 wells (6 

well culture dish) are given below:  

Two mixtures (siRNA and FuGENE® 6) were prepared in two different tubes.  

Tube 1.  35 µl of 40 µM siRNA was mixed with 315 µl of serum-free medium. 

Tube 2. 6 µl of FuGENE® 6 was mixed with 344 µl of serum-free medium. 

 

The content of Tube 1 were added to Tube 2 and mixed by vortexing for 10 

seconds and were incubated for 25 minutes at room temperature. Afterwards, the 

mixture was added to 6.3 ml of serum free medium and mixed properly. 

Subsequently, 1 ml of this mixture was added to each well already containing 1 ml 

of serum free medium. Cells were then incubated at 37 ºC in 5% CO
2 

for 12 hours. 

Afterwards the transfection medium was replaced with the normal medium. After 

48 hours, respective experiments were performed. 

 

2.11 Statistical analysis  

 

Data are given as means + S.D. of 5 experiments using independent cell 

preparations. The comparison of means between groups was performed by one-

way analysis of variance (ANOVA) followed by a Student-Newman-Keuls post-hoc 

test. Changes in parameters within the same group were assessed by multiple 

ANOVA analysis. Probability (P) values of less than 0.05 were considered 

significant (P< 0.05). 
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3 Results  

 
3.1 Effect of FSK on endothelial permeability 

 In the first instance, experiments were performed to confirm that, in the 

endothelial cell culture model used, activation of adenylyl cyclase can reduce 

basal endothelial permeability as well as thrombin-induced hyperpermeability, and 

that this effect is associated with reduction in the contractile activity of endothelial 

cells. Under control conditions endothelial monolayers exhibited a stable 

permeability for albumin (Fig. 3.1). When 5 µM FSK was added, to directly activate 

the adenylyl cyclase, permeability rapidly declined. Conversely, permeability 

rapidly rose when thrombin (0.2 IU/ml) was applied. Simultaneous addition of both 

agents reduced the thrombin effect nearly to basal level. To test whether the effect 

of FSK on thrombin-induced hyperpermeability is mediated by PKA, endothelial 

cells were incubated for 30 minutes in the presence of 100 µM PKI, a specific cell 

permeable peptide inhibitor of PKA. As shown in Fig. 3.1, PKI abolished the effect 

of FSK on thrombin-induced hyperpermeability. 
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Fig. 3.1   Effects of forskolin (FSK), thrombin (Thr), and FSK plus Thr on albumin 
permeability of human umbilical vein endothelial monolayers. Endothelial cells 
were exposed to 5 µM FSK, 0.2 IU/ml Thr, FSK plus Thr or vehicle (Control). In a 
set of experiments cells were incubated with 100 µM PKI (a specific peptide 
inhibitor of PKA) for 30 minutes before FSK plus Thr was added (PKI+FSK+Thr). 
Data are means ± SD of 5 separate experiments with independent cell 
preparations. As indicated at time points between 2.5 and 30 minutes permeability 
is significantly different. P < 0.05: ∗FSK vs. Control; #FSK plus Thr vs. Thr alone. 
PKI plus FSK plus Thr is not significantly different from Thr alone. 
 

 

3.2 Effect of FSK on MLC phosphorylation 

Since MLC phosphorylation controls the activation of the endothelial 

contractile machinery, this parameter of contractile activation was analyzed (Fig. 

3.2). FSK caused a decrease and thrombin an increase in MLC phosphorylation. 

The combined addition of FSK plus thrombin abolished the thrombin effect and 

reduced MLC phosphorylation below basal level. To test whether the effect of FSK 

on thrombin-induced MLC phosphorylation is mediated by PKA, endothelial cells 

were incubated for 30 minutes in the presence of 100 µM of PKA inhibitor (PKI). 

As shown in Fig. 3.2, PKI abolished the effect of FSK on thrombin-induced MLC 

phosphorylation. 

 



 

 

31

 

 
 

Fig. 3.2   Effects of forskolin (FSK), thrombin (Thr),  FSK plus Thr and calyculin A 
on endothelial MLC phosphorylation. (A) Representative western blots of MLC 
phosphorylation. Endothelial cells were exposed to 5 µM FSK, 0.2 IU/ml Thr, FSK 
plus Thr or vehicle (C; control) for 10 minutes. In a set of experiments cells were 
incubated with 100 µM PKI (a specific peptide inhibitor of PKA) for 30 minutes 
before FSK plus Thr was added (PKI+FSK+Thr), as indicated. As a positive 
control 1 nM Calyculin A (Caly), a protein phosphatase inhibitor, was added for 20 
minutes. The bands represent, from top to bottom, non- (MLC), mono- (MLC~P), 
and diphosphorylated MLC (MLC~PP), respectively. (B) Densitometric analysis of 
the western blots shown in A. As all MLC can become diphosphorylated, MLC 
phosphorylation varies between 0 and 200 %. Data are means ± SD of 5 separate 
experiments with independent cell preparations. P < 0.05: ∗FSK vs. Control; #FSK 
plus Thr vs. Thr alone. n.s: not significantly different.  
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 MLC phosphorylation is mediated via RhoA/Rock pathway in endothelial 

cells. Here it was analyzed whether cAMP/PKA causes dephosphorylation of MLC 

via inhibition of the RhoA/Rock pathway. For that reason RhoA/Rock pathway was 

blocked by Y27632, a specific inhibitor of Rock. At optimum concentration (10 µM), 

Y27632 reduced MLC phosphorylation to 20 ± 6 % in 10 minutes (Fig. 3.3). 

Addition of 20 µM Y27632 could not further reduce MLC phosphorylation. 

Simultaneous addition of FSK plus Y27632 (10 µM) reduced MLC phosphorylation 

to 3 ± 5% . These data indicate that even under basal conditions the level of MLC 

phosphorylation is influenced by Rock pathway and is reduced by cAMP/PKA at 

least in part by a RhoA/Rock-independent pathway. 
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Fig. 3.3   Effects of forskolin (FSK), Y27632 (Y), or FSK plus Y on endothelial MLC 
phosphorylation. (A) Representative western blots of MLC. Endothelial cells were 
exposed to FSK (5 µM), Y (10 or 20 µM), FSK plus Y (10 µM) or vehicle (C; 
control) for 10 minutes. The bands represent, from top to bottom, non- (MLC), 
mono- (MLC~P), and diphosphorylated MLC (MLC~PP), respectively. (B) 
Densitometric analysis of the western blots  shown in A. Data are means ± SD of 5 
separate experiments with independent cell preparations. ∗P < 0.05, #P < 0.05.  
n.s.:  not significantly different. 
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3.3 Effect of FSK on MLC phosphatase complex formation and activity 

 Dephosphorylation of MLC may result either from inactivation of MLCK or 

activation of MLCP. Previously it has been shown (Bindewald et al., 2004) that 

stimulation of cAMP/PKA pathway can attenuate MLCK activity in endothelial cells. 

However, this attenuation can not explain the reduction of MLC phosphorylation 

observed. This concept is supported by recent data from Goeckeler and 

Wysolmerski (2005) who reported that cAMP/PKA has no significant effect on 

MLCK activity. Therefore, in the present study the effect of cAMP/PKA on MLCP 

activation was analyzed. The activation of MLCP requires that the PP1 catalytic 

subunit interacts with MYPT1, the myosin phosphatase targeting subunit, leading 

to formation of the MLCP holoenzyme complex. This MLCP holoenzyme complex 

has higher affinity to phosphorylated MLC. To analyze whether FSK induces 

MLCP complex formation, recruitment of PP1 and MYPT1 to myosin, was 

determined by immunoprecipitation using either a MYPT1 or a PP1-specific 

antibody. In the first step, PP1 and MLC were co-immunoprecipitated with MYPT1 

in non-stimulated cells, indicating that an MLCP complex is already formed under 

basal conditions in endothelial cells (Fig. 3.4A, C). Exposure of endothelial cells to 

FSK increased the recruitment of PP1 and MLC to MYPT1 by 2.4 ± 0.5 and 

4.3 ± 0.6-fold, respectively. This recruitment of PP1 lead to a 2-fold increase in 

phosphatase activity of the immunoprecipitated MLCP complex (Fig. 3.4B). 

Phosphatase activity of the immunoprecipitates, both of control and FSK-treated, 

was completely blocked by addition of 0.5 µM recombinant inhibitor 2 (rec. I-2), a 

PP1 specific inhibitor, indicating that the phosphatase activity is solely due to PP1. 

In the second step, the assembly of MLCP complex was confirmed by 

immunoprecipitation using a PP1 specific antibody. As shown in Fig. 3.4D, under 

basal conditions MLCP complex is already formed and FSK induced the 

recruitment of MYPT1 and MLC to the catalytic subunit PP1.  
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Fig. 3.4   Effect of forskolin (FSK) on MLCP complex assembly and activity of the 
immunoprecipitated phosphatase complexes. Endothelial cells were exposed to 
5µM FSK or vehicle (C; control) for 10 minutes. MLCP was immunoprecipitated 
with an anti-MYPT1 antibody coupled to protein G-coated magnetic beads and 
analyzed by western blot analysis. Phosphatase activity of the immunoprecipitates 
was determined by phosphatase assay. (A) Densitometric analysis of the western 
blots shown in C.  PP1 and MLC relative to MYPT1 are given as x-fold increase 



 

 

36

 

compared to control. The ratio of control was set to 1. (B) Phosphatase activity of 
the immunoprecipitated MCLP complex, measured in the absence or presence of 
0.5 µM recombinant inhibitor 2 (rec. I-2). The mean phosphatase activity of the 
control cells was set to 1. (C) Representative western blots of MYPT1, PP1 and 
MLC co-immunoprecipitated with MYPT1. (D) Representative western blots of 
PP1, MYPT1, and MLC co-immunoprecipitated with PP1. PP1 was 
immunoprecipitated with an anti-PP1 antibody coupled to protein G-coated 
magnetic beads. Data are means ± SD of 5 separate experiments of independent 
cell preparations. ∗P < 0.05, FSK vs. control; n.s.: not significantly different. 
 

 

 

To analyze whether RhoA/Rock is involved in cAMP/PKA-induced MLCP 

complex formation, endothelial cells were exposed to 10 µM Y27632, a 

concentration with maximum effect on MLC dephosphorylation (see Fig. 3.3). The 

assembly of MLCP complex was determined by co-immunoprecipitation using the 

same MYPT1 specific antibody as in the previous set of experiments. If 

cAMP/PKA mediates the formation of the MLCP complex via inhibition of 

RhoA/Rock, then Rock inhibition should influence MLCP complex formation. 

However, Y27632 did not lead to an increase in PP1 recruitment to MYPT1. It was 

found that Y27632 does not affect FSK-induced recruitment of PP1 to MYPT1. 

These data indicate that inhibition of RhoA/Rock is not involved in cAMP/PKA-

induced MLCP complex formation.  
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Fig. 3.5   Effect of forskolin (FSK), Y27632 (Y) or FSK plus Y on MLCP complex 
formation. Endothelial cells were exposed to FSK (5 µM), Y (10 µM), FSK plus Y 
for 10 minutes or vehicle treated (C; control). MYPT1 was immunoprecipitated 
using an anti-MYPT1 antibody coupled to protein G-coated magnetic beads. Co-
immunoprecipitation of MYPT1 and PP1 was analyzed by western blot analysis. 
(A) Representative western blots of MYPT1 and PP1 co-immunoprecipitated with 
anti-MYPT1 antibody. (B) Densitometric analysis of western blots shown in A. PP1 
relative to MYPT1 is given as x-fold increase compared to control. The ratio of 
control was set to 1. Data are means ± SD of 5 separate experiments of 
independent cell preparations. ∗P < 0.05, FSK plus Y or FSK alone vs Control. 
n.s.: not significantly different. 
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3.4 Effect of FSK on MYPT1 phosphorylation  

There is evidence that the affinity of the MLCP complex to phosphorylated 

MLC is controlled by phosphorylation of MYPT1 at T850. Here it was studied 

whether activation of cAMP/PKA signaling can affect MYPT1 phosphorylation and 

whether this signaling mechanism can counteract thrombin-induced MYPT1 

phosphorylation. Under control conditions exposure of endothelial cells to FSK 

reduced MYPT1 phosphorylation at T850 to half of the basal level (Fig. 3.6). 

Addition of thrombin for 10 minutes caused a 2.5-fold increase in MYPT1 

phosphorylation. Simultaneous addition of FSK plus thrombin abolished the 

thrombin-induced MYPT1 phosphorylation. 
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Fig. 3.6 Effect of forskolin (FSK), thrombin (Thr) or FSK plus Thr on MYPT1 
phosphorylation at threonine 850 (T850). Endothelial cells were exposed to FSK 
(5µM), thrombin (0.2 IU/ml), FSK plus Thr or vehicle (C; control) for 10 minutes. 
(A) Representative western blots with an anti-phospho-T850 MYPT1 and anti-
vinculin antibody. (B) Densitometric analysis of western blots shown in A. MYPT1 
phosphorylation relative to vinculin is given as % increase compared to control. 
The ratio of control was set to 100%. Data are means ± SD of 5 separate 
experiments of independent cell preparations. ∗P < 0.05. 
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3.5 Effect of FSK on RhoA translocation 

Activation of RhoA/Rock pathway requires that RhoA is translocated to the 

plasma membrane. To analyze whether FSK affects translocation of RhoA, 

membrane fractions were prepared and analyzed by western blot analysis. 

Stimulation of endothelial cells with FSK reduced the amount of RhoA in the 

membrane fraction to half of the control value (Fig. 3.7). Thrombin increased the 

translocation of RhoA to membranes by 1.8-fold, compared to control. This 

thrombin effect was abolished when cells were incubated in the presence of FSK 

plus thrombin. 
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Fig. 3.7 Effect of forskolin (FSK), thrombin (Thr) or FSK plus Thr on RhoA 
translocation. Cells were treated with FSK (5 µM), thrombin (0.2 IU/ml), FSK plus 
thrombin or vehicle (C; control) for 10 minutes. Membrane fractions from equal 
amounts of cell lysates were isolated and analyzed by western blot analysis using 
an anti-RhoA antibody. (A) Representative western blots of membrane fraction 
and whole cell lysate with an anti-RhoA antibody (B) Densitometric analysis of 
western blots shown in A. RhoA in the membrane fraction relative to total RhoA is 
given as x-fold increase compared to control. The ratio of control was set to1. Data 
are means ± SD of 5 separate experiments of independent cell preparation. ∗P < 
0.05. 
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3.6 Effect of forskolin on CPI-17 phosphorylation and co-

immunoprecipitation with PP1 

The activity of the catalytic subunit PP1 is regulated by an endogenous 

inhibitor CPI-17, which interacts and inactivates PP1 when phosphorylated at 

threonine 38 (T38). Here the influence of FSK and thrombin on CPI-17/PP1 

interaction and PP1 activity were analyzed. Therefore, PP1 was 

immunoprecipitated by using an anti-PP1 antibody coupled to magnetic beads. 

The immunoprecipitated proteins were resolved by SDS-PAGE and analyzed by  

western blot analysis. Under basal conditions CPI-17 is co-immunoprecipitated 

with PP1 (Fig. 3.8). Exposure of endothelial cells to FSK reduced co-

immunoprecipitation of CPI-17 with PP1 by 0.5-fold within 10 minutes. This 

reduction was accompanied by 60% increase in PP1 activity corresponding to a 2-

fold increase in PP1 activity in MYPT1 co-immunoprecipitates. Thrombin caused a 

1.7-fold increase of CPI-17 with PP1 immunoprecipitates and a 40% reduction in 

PP1 activity. Simultaneous addition of FSK plus thrombin completely abolished 

thrombin-induced complex formation and PP1 inhibition. Phosphatase activity of 

the immunoprecipitates, both of control and FSK-treated, was completely blocked 

by addition of 0.5 µM rec. I-2, a PP1 specific inhibitor, indicating that the 

phosphatase activity is solely due to PP1. 
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Fig. 3.8 Effect of forskolin (FSK), thrombin (Thr) or FSK plus Thr on CPI-17/PP1 
complex and activity of the co-immunoprecipitaed complexes. Endothelial cells 
were treated with FSK (5 µM), Thr (0.2 IU/ml), FSK plus Thr or vehicle (C; control) 
for 10 minutes and PP1 was co-immunoprecipitated using anti-PP1 antibody 
coupled to protein G-coated magnetic beads and analyzed by western blot 
analysis. Phosphatase activity of the immunoprecipitated complex was measured 
by phosphatase assay. (A) Representative western blots of PP1 and CPI-17 co-
immunoprecipitated with PP1. (B). Densometric analysis of western blots shown in 
A. CPI-17 relative to PP1 are given as x-fold increase compared to control. The 
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ratio of control was set to 1. (C). Phosphatase activity of immunoprecipitated 
phosphatase, measured in the absence or presence of 0.5 µM recombinant 
inhibitor 2 (rec. I-2). PP1 activity is given as % increase compared to control. The 
mean of PP1 activity of control was set to 100%. Data are means ± SD of 5 
separate experiments with independent cell preparations. ∗P < 0.05. n.s.: not 
significantly different. 
 

 

 

It is reported that the interaction of CPI-17 with PP1 is controlled by its 

phosphorylation at T38. Therefore it was analyzed whether the reduction of co-

immunoprecipitation of CPI-17 with PP1 was accompanied by a decrease of CPI-

17 phosphorylation. In accordance with the reduction in co-immunoprecipitation of 

CPI-17 with PP1, FSK caused a dephosphorylation of CPI-17 at T38 by 50% 

compared to control within 10 minutes (Fig. 3.9), whereas thrombin increased CPI-

17 phosphorylation to 150%. FSK abrogates this thrombin effect on CPI-17 

phosphorylation. 
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Fig. 3.9 Effect of forskolin (FSK), thrombin (Thr) or FSK plus Thr on CPI-17 
phosphorylation at threonine 38 (T38). Endothelial cells were treated with FSK 
(5µM), Thr (0.2 U/ml), FSK plus Thr or vehicle (C; control) for 10 minutes. (A) 
Representative western blots with an anti-phospho-T38 CPI-17 and pan-specific 
anti-CPI-17 antibody. (B) Densitometric analysis of western blots shown in A. CPI-
17 phosphorylation relative to total CPI-17 is given as % of control. The ratio of 
control was set to 100%. Data are means ± SD of 5 separate experiments with 
independent cell preparations. ∗P < 0.05. 
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 Furthermore it was analyzed whether FSK-induced dephosphorylation of 

CPI-17 is due to an inhibition of RhoA/Rock pathway. For that reason endothelial 

cells were incubated in presence of Y27632 to inhibit Rock. At 10 µM, an optimum 

concentration to obtain maximum effects on MLC dephosphorylation, it reduced 

CPI-17 phosphorylation to approximately 50% after 10 minutes. (Fig. 3.10). 

Addition of 20 µM Y27632 did not further reduce CPI-17 phosphorylation 

significantly. However, simultaneous addition of FSK plus 10 µM Y27632 reduced 

CPI-17 phosphorylation to almost zero.  
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Fig. 3.10   Effects of forskolin (FSK), Y27632 (Y), or FSK plus Y on endothelial 
CPI-17 phosphorylation. Endothelial cells were exposed to FSK (5 µM), Y (10 or 
20 µM), FSK plus Y (10 µM) or vehicle (C; control). (A) Representative western 
blots with an anti-phospho-T38 CPI-17 and anti-vinculin antibody. (B) 
Densitometric analysis of western blots shown in A. CPI-17 phosphorylation 
relative to vinculin is given as % of control. The ratio of control was set to 100%. 
Data are means ± SD of 5 separate experiments with independent cell 
preparations. ∗P < 0.05; #P < 0.05. n.s: not significantly different. 
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3.7 Effect of CPI-17 downregulation on endothelial permeabiity  

 

To analyze the role of CPI-17 in endothelial barrier function, the content of 

endogenous CPI-17 was reduced by gene silencing. Treatment of endothelial cells 

with CPI-17-specific siRNA caused a significant reduction in the amount of CPI-17 

protein compared to the control siRNA treatment (Fig. 3.11A). Albumin 

permeability of endothelial monolayers of CPI-17-depleted cells in absence and 

presence of thrombin was determined compared to cells treated with non-specific 

control siRNA. CPI-17 depletion did not affect basal permeability. However, in CPI-

17 depleted cells the maximum effect of thrombin on permeability after 10 minutes 

was reduced by 35% compared to the corresponding effect on endothelial cells 

treated with non-specific control siRNA (Fig. 3.11B). 
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Fig. 3.11   Effect of thrombin (Thr) on albumin permeability of endothelial 
monolayers treated with CPI-17 or control siRNA. (A) Representative western 
blots with an anti-CPI-17 antibody or an anti-vinculin antibody. (B) Effect of Thr 
(0.2 IU/ml) on albumin permeability. Data are means ± SD of 5 separate 
experiments with independent cell preparations. At time points between 6 and 30 
minutes, the albumin permeability in the presence of Thr in CPI-17 siRNA treated 
monolayers is significantly different from the control siRNA treated monolayers; 
∗P < 0.05. 
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4 Discussion  

 

4.1 Main Findings 

In the present study the molecular targets of the cAMP/PKA pathway 

controling the activation state of the endothelial contractile machinery, an 

important determinant of endothelial barrier function, were investigated. FSK, a 

direct activator of adenylyl cyclase, reduced basal permeability as well as 

antagonized thrombin-induced hyperpermeability. These effects on permeability 

were accompanied by related changes in MLC phosphorylation, the key regulator 

of the contractile machinery in endothelial cells. The effects of forskolin on both 

parameters were abolished by a specific inhibitor of PKA, PKI. PKI is a small (22 

amino acid) peptide, and  constitutes the inhibitory domain of PKI-protein (a 75 

amino acid small protein), isolated originally from rabbit muscle (Scott et al., 1985). 

It can specifically bind to the catalytic subunit of PKA (Walsh et al., 1971) and 

provides greater selectivity to PKA inhibition than the pharmacological agents. 

These data show that in the cell model used in this study, the effects of activation 

of adenylyl cyclase on endothelial barrier function and the contractile machinery 

are mediated by PKA.  

The present study focuses on the regulation of myosin light chain 

phosphatase. The major findings are (1) that activation of adenylyl cyclase by FSK 

reduces basal permeability and MLC phosphorylation. It also antagonizes the 

effect of thrombin on both parameters. (2) FSK induces the recruitment of the 

catalytic subunit PP1 and the myosin targeting subunit MYPT1 to myosin. This 

recruitment leads to an increase in phosphatase activity of the formed complex. (3) 

FSK reduces the inhibitory phosphorylation of MYPT1 at threonine 850 and also 

antagonizes the thrombin-induced phosphorylation at that site. (4) FSK reduces 

the interaction of PP1 with the endogenous inhibitor CPI-17. This reduction is 

accompanied by dephosphorylation of CPI-17 at its activation site threonine 38. 

FSK also antagonizes the thrombin effect on this endogenous inhibitor of PP1. 

The data of the present study shows that FSK can cause activation of the MLCP 

by two principal mechanisms: it induces the assembly of the MLCP holoenzyme 

complex and its recruitment to myosin, and activates the phosphatase by 

dephosphorylation and release of the regulatory inhibitor CPI-17. 
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It is well known that agents increasing intracellular levels of cAMP relax both 

endothelial and smooth muscle cells (Morel et al 1989; McDaniel et al., 1994; Stull 

et al., 1991). However, the target sites of cAMP/PKA on the contractile apparatus 

is still not clear. The phosphorylation level of MLC, the key regulator of contractile 

activity, is controlled by the balanced activities of at least two enzymes: the Ca2+-

calmodulin dependent myosin light chain kinase (MLCK) and myosin light chain 

phosphatase. Studies analyzing the mechanism of cAMP/PKA on MLCK inhibition 

have mainly focused on the Ca2+ lowering effect of cAMP in non-vascular smooth 

muscle cells. Recently Azam and co-workers (2007) have shown that cAMP 

relaxes vascular smooth muscle cells without affecting Ca2+ homeostasis. 

However, MLCK may also be modulated by direct PKA-dependent 

phosphorylation. In line with this concept, it has been reported that in smooth 

muscle cells PKA can phosphorylate MLCK (de Lanerolle et al., 1984). However, 

there is no report that this phosphorylation also affects the activity of MLCK.  

Studies investigating the effects of cAMP on endothelial permeability found no 

alterations on Ca2+ homeostais, suggesting that cAMP protects endothelial barrier 

in an Ca2+-independent manner (Carson et al., 1989). Garcia and co-workers 

(1997) reported that augmentation of cAMP levels increased phosphorylation and 

reduced the activity of MLCK endothelial cells. In contrast, Goeckeler and 

Wysolmerski (2005) have demonstrated that activation of cAMP/PKA pathway 

does not lead to phosphorylation of MLCK and does not affect the activity of 

MLCK. Previous data from our laboratory (Bindewald et al., 2004) has shown that 

maneuver increasing the cellular cAMP levels can lead to slight inhibition of MLCK 

activity in porcine aortic endothelial cells. However, this reduction in MLCK activity 

can not explain the increase in the velocity of MLC dephosphorylation in response 

to the elevation of cAMP level. Thus, inhibition of MLCK is of minor, if any, 

importance for the cAMP/PKA-induced inactivation the contractile machinery. 

 
4.2 MLCP holoenzyme complex formation and activation  

 

If the MLCK inhibition can be ruled out, activation of the MLCP is the most 

obvious target of the cAMP/PKA pathway to reduce the activation state of the 

contractile machinery. The activation of MLCP requires the assembly of the MLCP 

holoenzyme complex and its recruitment to phosphorylated MLC (Terrak et al., 
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2004). In the present study, major components of the holoenzyme complex, i.e. 

PP1 and MYPT1, were found to be associated with MLC already under the basal 

conditions in non-stimulated cells. This recruitment was demonstrated by co-

immunoprecipitation with specific antibodies, targeting both components of MLCP, 

MYPT1 and PP1. FSK increased the recruitment of PP1 to MYPT1. The binding of 

MLC to the MYPT1 containing complex was also increased. Western blot analysis 

showed a 4.5-fold increase in MLC/MYPT1 association as compared to a 2.5-fold 

increase in PP1/MYPT1 interaction. Irrespective of the possible differences in non-

linearities of co-immunoprecipitations for MLC and PP1, the increase in MLC 

association with the MLCP complex correlates with the dephosphorylation of MLC, 

suggesting an increase in affinity of MLCP holoenzyme for MLC. Measurement of 

phosphatase activity of the immunoprecipitated MLCP complexes showed that the 

PP1 activity is increased corresponding to its binding to MYPT1. This indicates 

that recruitment of PP1 to MYPT1 is of central importance for the activation of the 

MLCP complex by the cAMP/PKA pathway.  

The activity of the phosphatase in the immunoprecipitated complex was 

completely blocked by addition of recombinant inhibitor-2 (rec. I-2), which has 

been shown to specifically abrogate PP1 activity in phosphatase assays (Härtel et 

al., 2007). This supports the assumption that the increase in phosphatase activity 

is due to an increase in the MLCP specific phosphatase PP1, and excludes the 

recruitment of other phosphatases. 

As a specific substrate of MLCP, MLC co-immunoprecipitates with MYPT1 and 

PP1. However, in this study it remains unclear as to what extent this is due to a 

direct interaction of MYPT1 with MLC or with the catalytic subunit PP1. The co-

immunoprecipitation of MLC gives rise to the question whether the 

immunoprecipitates could contain even other phosphatases attached to the actin 

part of actomyosin. The close correspondence between the recruitment of PP1 

into the complex and the rec. I-2-sensitive inhibition of its activity, however, 

renders these possible contaminants of minor importance. 

 

4.3 Forskolin induced MLCP complex formation is independent of 
RhoA/Rock pathway 

Activation of the RhoA/Rock pathway is one of the most important regulatory 

steps in basal, and agonist-mediated inhibition of MLCP. RhoA, a member of the 
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Ras superfamily, has been implicated as the Ca2+-independent regulator of non-

muscle and smooth muscle cell contraction. RhoA cycles between its inactive 

(GDP-bound) and active (GTP-bound) form (Nobes and Hall, 1995). Activation of 

RhoA leads to its translocation to the cell membrane (Takaishi et al., 1996). The 

GTP-bound form of RhoA then interacts with the downstream effectors and 

transmits the signals. RhoA regulates cellular tension through its effector kinase, 

RhoA-dependent kinase (Rock). Active Rock catalyzes the phosphorylation of 

MYPT1 and is assumed to cause inactivation of MLCP. In smooth muscle cells it 

was also shown that Rock can directly phosphorylate the regulatory MLC (Somlyo 

and Somlyo 2003, Fukata et al 2001). Phosphorylation of either substrate results 

in a net increase in MLC phosphorylation, activation of the contractile machinery 

and contraction. 

It is well known that the phosphorylation state of MLC is regulated 

antagonistically by the cAMP/PKA and RhoA/Rock pathways (Essler et al., 2000). 

Activation of cAMP/PKA pathway leads to a decrease while activation of 

RhoA/Rock pathway leads to an increase in phosphorylation of MLC in smooth 

muscle cells as well as in endothelial cells. Studies both in vitro and in vivo 

(Ellerbroek et al., 2003; Lang et al., 1996; Essler et al., 2000) have shown that 

PKA can phosphorylate RhoA and this phosphorylation has been proposed as a 

molecular mechanism by which cAMP directly inactivates RhoA or indirectly RhoA 

effectors. In a recent study Goeckeler and Wysolmerski (2005) have shown that in 

endothelial cells cAMP/PKA activation led to RhoA phosphorylation accompanied 

by a reduction in its activity. Qiao et al., (2003) showed that cAMP inhibited 

thrombin-induced RhoA activation in microvascular endothelial cells. Consistent to 

these previous reports, in the present study it was confirmed that exposure of 

endothelial cells to FSK resulted in a 50% inhibition of RhoA translocation to the 

membrane under basal conditions. FSK completely blocked RhoA translocation to 

the membrane in thrombin stimulated cells. 

Therefore, in context of the study, the question was analyzed whether 

cAMP/PKA mediates its effect on MLCP complex formation via inhibition of the 

RhoA/Rock pathway and/or via other, yet unknown mechanisms. For that reason 

Rock was blocked by a specific pharmacological inhibitor Y27632 (Fu et al., 1998), 

and the effect of cAMP/PKA on MLC phosphorylation and assembly of the MLCP 

was determined. Inhibition of Rock alone led to a partial reduction of MLC 
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phosphorylation. Stimulation of cAMP/PKA pathway in Rock inhibited cells 

reduced MLC phosphorylation to almost zero. Immunoprecipitation experiments in 

the presence of Rock inhibitor showed that Rock inhibition does not lead to 

recruitment of PP1 to MYPT1. This  indicates that RhoA/Rock inhibition does not 

enhance MLCP complex formation and that cAMP/PKA-induced assembly of 

MLCP complex most probably is independent of Rock inhibition. Recently, we 

have shown that extracellular ATP can also induce MLCP holoenzyme complex 

formation in endothelial cells (Härtel et al., 2007). Interestingly, ATP does not 

inhibit RhoA activation in endothelial cells (Gündüz et al., 2003), indicating that 

induction of MLCP complex formation  by ATP is also independent of RhoA 

inhibition. In another study Ruegg et al., (1981) have shown that in smooth muscle 

cells, cAMP and cGMP can activate MLCP independent of RhoA/Rock inhibition. 

Similarly Surks and co-workers (1999 and 2003) demonstrated that PKG can 

directly interacts with MYPT1 and activates MLCP. This suggests that RhoA/Rock-

independent induction of MLCP complex formation by cAMP/PKA might involve a 

direct interaction of PKA with MLCP, however, there is no evidence for this 

interaction untill now and further studies are required to investigate this interaction. 

 

4.4 MYPT1 dephosphorylation 

 

A second level of regulation of MLCP activity is the phosphorylation state of 

MYPT1 at two threonine residues, T696 and T850. It is generally accepted that in 

smooth muscle cells the phosphorylation of these two sites is regulated mainly by 

Rock and to some extent by other kinases causing MLCP inactivation and/or 

dissociation of MLCP from myosin (Muranyi et al., 2002; Feng et al., 1999; 

McDonald et al., 2001; Velasco et al 2002). It has been shown recently, that 

stimulation of endothelial cells with thrombin induces a Rock-mediated increase in 

phosphorylation of MYPT1 at T850 and T696 (Birukova et al., 2004, Härtel et al., 

2007). The results of the present study demonstrate that activation of the 

cAMP/PKA pathway antagonizes the effect of thrombin at these strategic sites of 

MYPT1, since FSK could completely abolish the effect of thrombin on T696 and 

T850 phosphorylation. Furthermore RhoA translocation studies and pulldown 

assays show that FSK effectively blocks RhoA translocation and activation under 

basal conditions as well as thrombin induced RhoA translocation and activation. 
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This indicates that cAMP/PKA induced MYPT1 dephosphorylation involves 

inhibition of RhoA/Rock pathway. 

 

4.5 cAMP/PKA signaling inactivates CPI-17 

 

Data from smooth muscle cells shows that in addition to MYPT 

phosphorylation, the activity of the MLCP complex can be controlled by variety of 

other mechanisms. Today several small molecular weight endogenous inhibitory 

proteins are known to regulate MLCP activity by direct interaction with PP1 

catalytic subunit. One of the most prominent and specific endogenous inhibitor of 

PP1 is a small protein CPI-17 (Eto et al., 1995), which initially was assumed to be 

expressed only in smooth muscle cells. However, a recent report by Kolosova and 

co-workers (2004) shows the expression of CPI-17 also in endothelial cells. CPI-

17 can inhibit MLCP holoenzyme complex as well as PP1 catalytic subunit (Eto et 

al., 1995; 1999). Most of our understanding about CPI-17-induced inhibition of 

MLCP and PP1 are from studies in smooth muscle cells. It has been proposed that 

inflammatory mediators (e.g. histamine and thrombin)-induced phosphorylation of 

CPI-17 at threonine 38 (T38) potentiates its MLCP/PP1-inhibitory activity both in 

smooth muscle cells and endothelial cells (Kitazawa et al., 2000; Kolosova et al., 

2004) but precise mechanism is still unknown. Structure activity study (Ohki et al., 

2001) shows that phosphorylation of CPI-17 at T38 leads to conformational 

changes which may expose an inhibitory motif to the PP1 catalytic subunit. 

Accumulating evidence shows that cAMP and cGMP exert stimulating effects on 

MLCP by acting on more than a single target (Somlyo and Somlyo, 2003). In the 

present study, it was analyzed whether cAMP/PKA signaling mechanism can exert 

its effect on MLCP via direct influence on the PP1 catalytic subunit were 

examined. Co-immunoprecipitation experiments show for the first time the 

existence of CPI-17/PP1 complexes in endothelial cells. Activation of cAMP/PKA 

pathway reduced the interaction of CPI-17 with PP1 and led to dissociation of the 

CPI-17/PP1 complex, with a corresponding increase in PP1 activity. Stimulation of 

endothelial cells with thrombin induced CPI-17/PP1 complex formation and a 

corresponding decrease in PP1 activity. This complex formation and MLCP 

inactivation was effectively blocked by FSK. 

Phosphorylation of CPI-17 has been reported to induce its inhibitory activity 
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towards PP1 (Kitazawa et al., 2000). In vitro studies indicate that CPI-17 can be 

phosphorylated at T38 and hence be activated by multiple kinases including PKC 

(Eto et al., 1995) and Rho kinase (Koyama et al., 2000). In intact endothelial and 

non-endothelial cells, only PKC and Rock have been reported to phosphorylate 

CPI-17 (Kolosova et al., 2004; Pang et al., 2005; Sakai et al., 2006). In the present 

study it was shown by western blot analysis that FSK reduces basal CPI-17 

phosphorylation by 50%. This dephosphorylation corresponds with a decrease in 

CPI-17/PP1 complex to the same extent and a 60% increase in PP1 activity. 

Contrariwise, thrombin induced a 50% increase in CPI-17 phosphorylation 

corresponding to 1.6-fold increase in CPI-17/PP1 complex formation and a 40% 

reduction in phosphatase activity.  

To this point, the results left the question open whether the effect of the 

cAMP/PKA pathway on CPI-17 phosphorylation is due to an interference with the 

RhoA/Rock pathway or not. This question also can be addressed for the “basal” 

conditions of this study, since these imply also a basal activity of the latter pathway 

as indicated by some membrane binding of RhoA and the ability of the Rho-kinase 

inhibitor Y27632 to lower MYPT1 phosphorylation under basal conditions. To 

answer this question, the effect of Rho kinase inhibitor Y27632 was studied on 

CPI-17 phosphorylation. At maximal effective concentrations, Y27632 induced 

dephosphorylation of CPI-17 to 60% of the basal level. Copresence of Y27632 and 

FSK lead to nearly complete CPI-17 dephosphorylation. This indicates the 

existence of at least two mechanisms regulating the phosphorylation state of CPI-

17. One is Rock-dependent and the other is -independent.   

A recent study in smooth muscle cells has shown that activation of integrin 

linked kinase (ILK) via PI3K pathway can cause phosphorylation of CPI-17 in a 

Rock independent manner (Huang et al., 2006). Furthermore Stevens et al., 

(2004) have shown in human platelets that thrombin induced activation of ILK in a 

PI3K dependent manner.  However, there is no study showing that cAMP/PKA 

inhibits ILK.  

Taken together, this study indicates that in endothelial cells cAMP/PKA 

pathway can activate myosin phosphatase by at least two mechanisms: inhibition 

of Rock-dependent phosphorylation of MYPT1, CPI-17 phosphorylation and as 

shown here for the first time, by inhibition of CPI-17 interaction with PP1.  
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4.6 CPI-17 as mediator of thrombin induced barrier failure 

Finally, experiments using siRNA directed against CPI-17, illustrated a 

functional role of CPI-17 and PP1 activation in thrombin induced barrier failure. 

Specific siRNA down-regulated CPI-17 protein by approximately 70%. This down-

regulation attenuated the thrombin effect on endothelial barrier function by 35%. 

This is in accordance with a 50% increase in CPI-17 phosphorylation, a 1.5-fold 

increase in CPI-17/PP1 complex formation and a 40% decrease in PP1 activity.  

Changes in macromolecular permeability result from complex changes in the 

contractile activation and cell-cell and cell matrix adhesion. The fact that  

downregulation of an endogenous inhibitor of the catalytic subunit of the MLCP 

complex, as only one element in complex mechanism can lead to a one-third-

reduction of the effect, demonstrates the relative importance of this regulatory 

protein. In a previous report Kolosova and colleagues (2004) showed that in 

endothelial cells the effect of thrombin had no profound effect on CPI-17 

phosphorylation and depletion of CPI-17 in these cells could not attenuate the 

thromin effect significantly. This might have been due to the use of higher passage 

endothelial cells in the study. In this study either primary endothelial cells or cells 

of passage one were used. 

In summary, activation of the cAMP/PKA pathway protects the endothelial 

barrier function mainly via activation of MLCP. The novel findings are that 

cAMP/PKA pathway targets the MLCP complex at multiple sites. These include: (i) 

inhibition of upstream inactivating pathway e.g. Rho/Rock, thus shielding from 

inactivation (ii) induction of MLCP holoenzyme complex formation, thus providing 

quantitively increased levels of active MLCP to the contractile machinery, and (ii) 

activation of the catalytic subunit PP1 mainly by inactivating the inhibitory CPI-17. 

This activation of MLCP overrides the inhibitory pathways induced by inflammatory 

mediators.  
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Fig. 4.1 Schematic presentation of inactivation of contractile machinery via 
activation of myosin light chain phosphatase (MLCP) by cAMP/PKA pathway. 
Activation RhoA/Rock pathway by thrombin leads to phosphorylation of myosin 
phosphatase targeting subunit (MYPT1) at threonine 850(T850). It also leads to 
phosphorylation of CPI-17 and its increased interaction with PP1 catalytic subunit. 
This causes the inactivation of MLCP, an increas in phosphorylation of myosin 
light chain (MLC), actin myosin interaction and contraction. Activation of 
cAMP/PKA pathway leads to dephosphorylation of MYPT1 and an increase in 
recruitment of PP1 catalytic subunit and MYPT1 to myosin. Dephosphorylation of 
CPI-17 facilitates its dissociation from PP1 catalytic subunit. All these events 
cause activation of MLCP, dephosphorylation of MLC and endothelial cell 
relaxation. 

Contraction Relaxation

MYPT

PP1

P P
MLC MLC

M
oy

si
n

M
oy

si
n

Actin

Actin

PiPi

MYPT

PP1
T 850

-

CPI-17

P

MYPT

PP1
T 850

-
P

CPI-17

P

RhoA/
Rock

cAMP
PKA

CPI-17

Pi
Active

Inactive

Contraction Relaxation

MYPT

PP1

P P
MLC MLC

M
oy

si
n

M
oy

si
n

ActinActin

ActinActin

PiPi

MYPT

PP1
T 850

-

CPI-17

P
CPI-17

P

MYPT

PP1
T 850

-
P

CPI-17

P
CPI-17

P

RhoA/
Rock

cAMP
PKA

CPI-17

Pi
Active

Inactive



 

 

59

 

4.7  Future perspective 

 

Endothelial barrier dysfunction is a frequent cause of vascular leakage during 

inflammation. Elevation of cAMP can effectively block this leakage and is already 

being used in clinical situations with some limitations. β-adrenergic agonists in 

combination with phosphodiesterase inhibitors are applied to increase the cellular 

contents of cAMP. However, therapeutic use of β-adrenergic agonists and 

phosphodiesterase inhibitors leads to rapid desensitization of endothelial cells to 

these agents i.e. tachyphylaxis or tolerance, that leads to shortening the time of 

their effective application to reduce vascular leakage (Doorenbos et al., 1989; 

Droder et al., 1992). Secondly, endothelial cells from different vascular 

provenience do not respond similarly to cAMP elevating agents agents. 

Endothelial cells from microvasculature of the coronary and brain circulation do not 

respond with a reduction in permeability, but rather with an increase (Hempel et 

al., 1996; Palmer et al., 1986). Similarly, cAMP increasing agents have different 

effects on different cell types. It has been shown that in endothelial cells, β-

adrenergic agonists lead to protetection against barrier failure, however, in the 

same animal increased cAMP levels only in smooth muscle cells leads to 

increased vascular leakage (Warren et al., 1993). These unwanted side effects of 

cAMP elevating agents limit their use in clinical conditions. The knowledge of the 

targets of cAMP/PKA pathway can harnessed for the development of more 

specific therapeutic strategies targeting endothelial cells. One such target could be 

CPI-17. Knockdown of this protein leads to a 1/3 reduction in the effect of 

thrombin. Development of specific pharmacological inhibitors against CPI-17 might 

be an important innovation to block vascular leakage during pathophysiological 

conditions. 
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6 Summary 

 

Endothelial barrier dysfunction is often the underlying cause of capillary 

leakage during pathophysiological conditions like inflammation and ischemia 

reperfusion. Maneuvers increasing intracellular levels of cAMP protect against 

imminent failure of endothelial barrier function induced by inflammatory mediators 

or ischemia-reperfusion. This protective effect is mainly due to an inactivation of 

the contractile machinery, a primary determinant of endothelial barrier function. 

The activation of the contractile machinery is regulated by the phosphorylation 

state of the regulatory myosin light chains (MLC), which is controlled by balanced 

but antagonistic activities of myosin light chain phosphatase (MLCP) and myosin 

light chain kinase (MLCK). Here the molecular mechanisms by which cAMP/PKA 

induced the activation of the MLCP leading to inactivation of the contractile 

machinery were analyzed. In cultured human umbilical vein endothelial cells  

activation of adenylyl cyclase by forskolin (FSK) reduced basal macromolecule 

permeability and caused dephosphorylation of MLC. It also antagonized thrombin-

induced increase of both parameters. FSK stimulated the formation of MLCP 

holoenzyme complex, i.e. it induced the recruitment of the protein phosphatase 1 

(PP1) catalytic subunit and myosin phosphatase targeting subunit (MYPT1) to 

myosin, and activation of the PP1 catalytic subunit. FSK inhibited the RhoA/Rock 

pathway leading to dephosphorylation of MYPT1. It caused dephosphorylation of 

the PP1 inhibitory protein CPI-17 at threonine 38 and its detachment from the PP1 

catalytic subunit. FSK also blunted the thrombin-induced effect on MYPT1 and 

CPI-17 phosphorylation. Down regulation of CPI-17 by siRNA attenuated the 

thrombin effect on endothelial permeability by 35 %. The data of the present study 

show that stimulation of adenylyl cyclase causes assembly and activation of the 

MLCP holoenzyme complex and thereby stabilizes endothelial barrier function. 
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7 Zusammenfassung 

 

Das Versagen der endothelialen Schrankenfunktion ist eine häufige 

Ursache für die Entstehung eines „Capillary leakage“ im Rahmen einer 

Entzündung oder Ischämie/Reperfusion. Manöver, die die intrazelluläre cAMP-

Konzentration steigern, schützen vor einem drohenden Verlust der 

Schrankenfunktion.  Dieser Schutzeffekt beruht hauptsächlich auf einer 

Inaktivierung des kontraktilen Apparates, der ein wesentlicher Faktor der 

endothelialen Schrankfunktion ist. Der Aktivierungszustand des kontraktilen 

Apparates wird durch den Phosphorylierungsgrad der regulatorischen leichten 

Kette des Myosins (MLK) geregelt, welche durch die antagonistische Wirkung der 

MLK-Phosphatase (MLKP) und MLK-Kinase (MLKK) kontrolliert wird. 

In kultivierten humanen Endothelzellen der Nabelschnurvene reduziert die 

Aktivierung der Adenylylzyklase durch Forskolin (FSK) die basale 

Makromolekülpermeabilität und löst eine Dephosphorylierung der MLK aus. FSK 

antagonisiert auch die Thrombin-induzierte Steigerung beider Parameter. FSK 

stimuliert die Bildung des MLCP Holoenzymkomplexes, d.h. es induziert die 

Rekrutierung der Proteinphosphatase (PP1)-Untereinheit und der Myosin-

Phosphatase-bindenden Untereinheit (MYPT1) an Myosin und aktiviert die PP1-

Untereinheit. FSK hemmt den RhoA/Rock weg, was zu einer Dephosphorylierung 

von MYPT1 führt. Es induziert die Dephosphorylierung des PP1-inhibitorischen 

Proteins CPI-17 an Threonin 38 und seine Lösung von der PP1-Untereinheit. FSK 

vermindert auch die Thrombinwirkung auf die MYPT1 und CPI-17-

Phosphorylierung. Die Herunterregulation von CPI-17 durch siRNA verminderte 

die Thrombin-induzierte Zunahme der endothelialen Permeabilität. 

Die Daten der vorliegenden Untersuchung zeigen, dass die Stimulation der 

Adenylylzyklase die Assemblierung und Aktivierung des MLKP-Komplexes auslöst 

und dadurch die endotheliale Schranke stabilisiert und vor einem drohenden 

Versagen schützt.  
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9  Appendix 

 
9.1  Chemicals and consumables 

6-amino hexanoic acid   Merck, Darmstadt, Germany 

Acrylamide solution (40%; wt/vol)  Amersham Pharmacia, UK 

Acrylamide     Carl Roth, Karlsruhe, Germany 

Ammonium persulfate SERVA, Heidelberg, Germany 

Ammonium sulfate Merck, Darmstadt, Germany 

ATP      Roche, Mannheim, Germany 

Benzonase®     Merck, Darmstadt, Germany 

bFGF      PromoCell, Heidelberg, Germany 

Bisacrylamide solution (2%; wt/vol) Amersham Pharmacia, UK 

Bisacrylamide    Carl Roth, Karlsruhe, Germany 

Bovine serum albumin   Sigma-Aldrich, Steinheim, Germany 

Bromophenol blue    Sigma-Aldrich, Steinheim, Germany 

Caffein     Sigma-Aldrich, Steinheim, Germany 

Calcium chloride    Merck, Darmstadt, Germany 

Calyculin A     Calbiochem, Bad Soden, Germany 

Cantharidin     Calbiochem, Bad Soden, Germany 

Collagenase II    PAA Labs., Pasching, Austria 

Complete® inhibitor cocktail  Roche, Mannheim, Germany 

Culture dishes    BD, Heidelberg, Germany 

Diethyl ether     Merck, Darmstadt, Germany 

Dimethyl sulfoxide    Sigma-Aldrich, Steinheim, Germany 

Di-sodium hydrogen phosphate  Carl Roth, Karlsruhe, Germany 

Dithiothreitol Amersham Pharmacia, UK 

EDTA      Carl Roth Karlsruhe, Germany 

EGTA      Boehringer, Mannheim 

Endothelial cell basal medium® kit PromoCell, Heidelberg, Germany 

Endothelial cell growth supplement PromoCell, Heidelberg, Germany 

Eppendorf tubes (0.5, 1.5, 2 ml)  Eppendorf, Hamburg, Germany  

Falcon tubes (50 ml, 12 ml)  BD, Heidelberg, Germany 

FCS      PAA, Pasching, Austria  

Filter papers     Biotech-Fischer, Reiskirchen, Germany 
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Forskolin     Calbiochem, Bad Soden, Germany 

FuGENE® 6     Roche, Mannheim, Germany 

Gentamycin     Gibco BRL, Eggenstein, Germany 

Glass cover slips    Menzel, Braunschweig, Germany 

Glycerol (100%)    Sigma-Aldrich, Steinheim, Germany 

Glycerol (87%) Amersham Pharmacia, UK 

Glycine     Carl Roth, Karlsruhe, Germany 

HBSS      PAA, Pasching, Austria 

hEGF      PromoCell, Heidelberg, Germany 

HEPES     Sigma-Aldrich, Steinheim, Germany 

Human recombinant inhibitor 2  New England Biolabs, Frankfurt, Germany 

Hydrocortisone    PromoCell, Heidelberg, Germany 

Imidazole     Merck, Darmstadt, Germany 

Magnesium chloride   Fluka, Switzerland 

Magnesium sulfate    Merck, Darmstadt, Germany 

Manganese chloride    Merck, Darmstadt, Germany 

β-mercaptoethanol    Merck, Darmstadt, Germany 

Methanol     Merck, Darmstadt, Germany 

Millipore water    Millipore, Eschborn, Germany 

Molecular weight marker   Sigma-Aldrich, Steinheim, Germany 

Nitrocellulose membrane   Schleicher und Schuell, Dassel, Germany 

Non-fat milk powder   Applichem, Darmstadt, Germany, 

Nonidet P-40     Sigma-Aldrich, Steinheim, Germany 

Okadaic acid     Calbiochem, Bad Soden, Germany 

γ-[32P]-ATP     Amersham Pharmacia, UK 

Penicillin/streptomycin   Gibco BRL, Eggenstein, Germany 

Phosphorylase-b    Sigma-Aldrich, Steinheim, Germany 

Phosphorylase-kinase   Sigma-Aldrich, Steinheim, Germany 

Pipette tips     Eppendorf, Hamburg, Germany 

Pipettes     Eppendorf, Hamburg, Germany 

PKI      Calbiochem, Bad Soden, Germany 

PMSF      Sigma-Aldrich, Steinheim, Germany 

Ponceau S solution SERVA, Heidelberg, Germany 

Potassium chloride    Merck, Darmstadt, Germany 
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Potassium dihydrogen phosphate  Merck, Darmstadt, Germany 

Protein G-coated magnetic beads Dynal, ASA, Oslo, Norway 

Recombinant PP1    New England Biolabs, Frankfurt, Germany 

Rhotekin-RBD    Upstate, USA  

Rubber policeman    BD, Heidelberg, Germany 

Scalpal (disposble)    Feather, Japan 

See Blue® (pre-stained marker)  Invitrogen GmbH, Karlsruhe, germany 

siRNA      Qiagen, Hilden, Germany 

Sodium azide    Merck, Darmstadt, Germany 

Sodium bicarbonate   Carl Roth, Karlsruhe, Germany 

Sodium chloride    Carl Roth, Karlsruhe, Germany 

Sodium di-hydrogen phosphate  Carl Roth, Karlsruhe, Germany 

Sodium dodecyl sulfate   SERVA, Heidelberg, Germany 

Sodium fluoride    Sigma-Aldrich, Steinheim, Germany 

Sodium hydroxide    Carl Roth, Karlsruhe, Germany 

Sodium orthovanadate   Sigma-Aldrich, Steinheim, Germany 

Sodium thioglycolate   Sigma-Aldrich, Steinheim, Germany 

Sterile filters (0.22 µm)   Sartorius, Goettingen, Germany 

Sterile pipettes    BD, Heidelberg, Germany 

Sucrose     Sigma-Aldrich, Steinheim, Germany 

Super signal-west® (ECL solution) Pierce biotech, Bonn, Germany 

Syringes (20 ml, 2 ml)   BD, Heidelberg, Germany 

TEMED     Sigma-Aldrich, Steinheim, Germany 

Thrombin     Behring, Marburg, Germany 

Transwell® membrane filters   Corning, NY, USA 

Tricholoroacetic acid   Merck, Darmstadt, Germany 

Tris base     Carl Roth, Karlsruhe, Germany 

Tritone X-100 SERVA, Heidelberg, Germany 

Trypsin-EDTA    Gibco-BRL, Eggenstein, Germany 

Tween 20 Amersham Pharmacia, UK 

Urea  Amersham Pharmacia, UK 

Whatman® 3 MM filter paper  Millipore, Eschborn, Germany 
Y27632     Calbiochem, Bad Soden, Germany 
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9.2  Antibodies 

 
Primary antibodies 

Antibodies     Source 

CPI-17 (Rabbit IgG polyclonal)  Upstate, Charlottesville, VA, USA 

Phospho CPI-17  

(Rabbit IgG polyclonal)   Upstate, Charlottesville, VA, USA 

MLC (Mouse IgM monoclonal)  Sigma, Steinheim, Germany 

MYPT1 (Sheep IgG polyclonal)  Upstate, Charlottesville, VA, USA 

Phospho MYPT696  

(Rabbit IgG polyclonal)   Upstate, Charlottesville, VA, USA 

Phospho MYPT850  

(Rabbit IgG polyclonal)   Upstate, Charlottesville, VA, USA 

PP1δ (Rabbit IgG polyclonal)  Upstate, Charlottesville, VA, USA 

RhoA (Mouse IgG monoclonal)  Santa Cruz Biotechnology, Heidelberg,  

      Germany 

Vinculin (Clone hVIN-1) 

(Mouse IgG monoclonal)   Sigma, Steinheim, Germany 

 

Secondary antibodies (HRP-labeled) 

Antibody     Source 

Anti Mouse IgG    BD Bioscience, Heidelberg, Germany 

Anti Mouse IgM    Sigma, Steinheim, Germany 

Anti Rabbit IgG    Upstate, Charlottesville, VA, USA 

Anti Sheep IgG    Santa Cruz Biotechnology, Heidelberg,  

      Germany 
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9.3  Laboratory instruments 

 

Beckman Allegra 64R centrifuge  Beckman Coulter, USA 

Beckman TL 100 ultracentrifuge  Beckman Coulter, USA 

Blotting chambers    Biotech-Fischer, Reiskirchen, Germany 

Electrophoresis apparatus   Biometra, Goettingen, Germany 

Gel documentation system  Quantity One series, Bio-Rad, Munich,  

Germany 

Glass ware     Schott, Mainz, Germany 

Hamilton syringe    Hamilton, Bonaduz, Switzerland 

Incubators     Heraeus, Hanau, Germany 

Laminar flow hood    Heraeus, Hanau, Germany 

Tri-Carb 1600 TR liquid scintillation  

counter     Packard Instrument Company, CT, USA 

Magnet stirrer    Jahnke und Kunkel, Staufen, Germany 

Magnetic rack    DYNAL, Oslo, Norway 

Neubauer chamber    Superior, Marienfeld, germany 

Phase contrast microscope  Olympus, Japan 

pH-Meter     WTW-Weinheim, Germany 

Photometer     Carl Zeiss, Jena, Germany 

Power supply    Biometra, Goettingen, Germany 

Rocker     Biometra, Goettingen, Germany 

Table top (centrifuge)   Eppendorf, Hamburg, Germany 

Vortexer     Heidolph, Kelheim, Germany 

Water bath     Julabo, Seelbach, Germany 

Water demineralisation unit  Millipore, Eschborn, germany 
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9.4  Solutions 

 

2x-SDS sample buffer 

Tris.HCl   250 mM 

Glycerol   20 % 

SDS    4 % (wt/vol) 

DTT    1 mM (wt/vol) 

β-mercaptoethanol  5 % (vol/vol) 

Cantharidin   10 µM 

Bromophenol Blue  0.001 % (wt/vol) 

 

10x TBS 

Tris/HCl   100 mM 

NaCl    1.6 M 

pH 7.4 

 

TBS Tween (TBST) 

1x TBS   1000 ml 

Tween 20   1 ml (0.1%, vol/vol) 

 

10X PBS  

Na2HPO4    0.1 M  

KH2PO4   17 mM  

NaCl    1.37 M 

KCl    27 mM 

 
0.1M Sodium Phosphate buffer (pH 7.4) 

 

Soln. A (0.2 M sodium dihydrogen phosphate) 

Dissolve 15.6 g sodium dihydrogen phosphate (dihydrate) in 500 mL dH20 

Soln. B (0.2 M di sodium hydrogen phosphate) 

Dissolve 17.8 g disodium hydrogen phosphate (dihydrate) in 500 mL dH20 
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Mix 57 ml of soln. A, 243 ml of soln. B with 600 ml of water. The pH would itself be 

adjusted to 7.4 

 
Urea-glycerol gel buffer    

Tris     240 mM   

Glycine    276 mM   

pH to 8.8 – 8.9 

 

Urea-glycerol gel lysis buffer (10 ml) 

Urea      554 mg (8.8 M) 

Urea-gel buffer   975 µl  

0.5 M DTT    225 µl (10 mM) 

1 M Sodium thioglycolate  56.2 µl (5 mM) 

100 mM Cantharidin  11.24 µl (10 µM) 

6 M Imidazole (pH 8.8)  112.4 µl (60 mM) 

Millipore water (qs)   10 ml 

Bromophenol blue    0.001% (wt/vol) 

 

Lysis buffer (Immunoprecipitation) 

Tris/HCl pH 7.4)    50 mM 

NaCl     150 mM  

Triton X-100    1 % 

Nonidet P - 40   0.5 % 

EDTA     1 mM 

EGTA     1 mM 

NaF     20 mM 

Na-orthovanadate   1.5 mM 

DTT     10 mM 

PMSF     0.5 mM 

Complete® protease inhibitor cocktail    
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RhoA pulldown assay 

Lysis buffer 

HEPES    25mM 

NaCl     150 mM 

MgCl2     5 mM 

EDTA     1 mM 

NaF     10 mM 

Na-orthovanadate   2 mM 

DTT     5 mM 

Tritone-X100    0.5% 

Glycerol    2 % 

PMSF     0.5 mM 

Complete® protease inhibitor cocktail   

 

Wash buffer 

Tris/HCl (pH 7.4)   25mM 

Triton X-100    1% 

NaCl     150 mM 

MgCl2     10 mm 

PMSF     0.5 mM 

Complete® protease inhibitor cocktail  

 
Lysis buffer (Membrane fractionation) 

Tris/HCl (pH 7.4)   5 mM  

Sucrose    250 mM 

EDTA      5 mM 

MgCl2     1 mM 

NaCl     5 mM 

DTT     10 mM   

PMSF     0.5 mM   

Complete® protease inhibitor cocktail   
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