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Summary 
 

Climate change due to the increment of atmospheric concentrations of CO2 has had 

several impacts on different ecosystems around the world. Among the effects of elevated 

CO2 (eCO2) on soil ecosystems are its consequences on plant metabolism, which 

include the increase of plant photosynthetic rates, carbon inputs into soil and root 

exudation. Due to around 21% of photosynthetically fixed carbon is transferred to soil 

rhizosphere, eCO2 has a direct impact on soil microorganisms and the microbial 

processes that are regulated by them. Therefore, in this work it was analyzed the effects 

of eCO2 on the soil microbiome and the soil microbial processes at two Free Air Carbon 

Dioxide Enrichment experiment (FACE) systems in Hessen, Germany. The Giessen 

FACE and the Geisenheim VineyardFACE, being the first one located at a grassland 

field with a long-term exposure to eCO2 and the latter one situated at vineyard and with 

a midterm exposure to eCO2. The soil microbiome was analyzed by high-throughput 

sequencing methods for the assessment of soil active microorganisms through the 

analysis of 16S rRNA and mRNA, for taxonomical and functional metagenomics 

approaches, respectively. Alongside, it was measured the soil microbial activity 

assessing soil respiration activity, real time qPCR for 16S rRNA and functional genes, 

soil gas fluxes and soil chemical parameters. 

 

The 16S rRNA results from both facilities demonstrated that eCO2 treatments were 

significantly different from the ambient CO2 ones and areas under higher plant influence 

were the most affected by eCO2. Furthermore, 16S rRNA qPCR analyses indicated in 

the Giessen FACE an increment in the number of active bacteria, oppositely to 

Geisenheim Vineyard FACE where occurred a decrease of the copy numbers of bacterial 

16S rRNA, nonetheless at both sites the total soil activity was augmented in the eCO2 

treatments. Moreover, differential abundance analyses showed that several microbial 

taxa were significantly affected, either positively or negatively because of eCO2, being 

many of these taxa directly involved in the cycling of soil nutrients. Additionally, the 

analysis of functional genes by qPCR and functional metatranscriptomic approaches 

indicated affectations in the microbial processes involved in nitrogen (N) and carbon (C) 

cycles. The data obtained at both sites indicated a lessening of the nitrogen fixation 

process under eCO2, suggesting that soil microorganisms are mining the soil organic 

matter (SOM) in order to fulfill their higher requirements for N due to a higher supply of 

C at eCO2 concentrations. Moreover, functional metatranscriptomics from the Giessen 

FACE showed an increase in carbohydrates and amino acids metabolisms, alongside 

the augmentation of genes for the degradation of cellulose, chitin and lignin. Concerning 
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nitrogen cycle, it observed a shift in the metabolism of nitrate (NO3
-) reduction, with an 

increment of dissimilatory NO3
- reduction to ammonium (NH4

+) (DNRA) pathway and an 

impairment of denitrification process which explains the increment of N2O emissions 

observed in the Giessen FACE. 

 

In general, the results obtained in the present work, demonstrated that eCO2 and climate 

change have significantly affected the active soil microbiome at two different ecosystems 

with different lengths of exposure time to eCO2, producing significant alterations in the 

way that soil microorganisms are using and cycling soil elements. 

 

Zusammenfassung 
 
Der Klimawandel, der auf den Anstieg der CO2-Konzentration in der Atmosphäre 

zurückzuführen ist, hat verschiedene Auswirkungen auf unterschiedliche Ökosysteme in 

der ganzen Welt. Zu den Auswirkungen von erhöhtem atmosphärischem CO2 (eCO2) auf 

Bodenökosysteme gehören die Folgen für den Pflanzenstoffwechsel, die den Anstieg 

der Photosyntheseraten der Pflanzen, den Kohlenstoffeintrag in den Boden und die 

Wurzelexsudation umfassen. Da etwa 21% des photosynthetisch gebundenen 

Kohlenstoffs in die Rhizosphäre des Bodens gelangt, hat eCO2 direkte Auswirkungen 

auf die Bodenmikroorganismen und die von ihnen geführten mikrobiellen Prozesse. 

Daher wurden in dieser Arbeit die Auswirkungen von eCO2 auf das Bodenmikrobiom und 

die mikrobiellen Prozesse im Boden an zwei Free Air Carbon Dioxide Enrichment 

Experimenten (FACE) in Hessen, Deutschland, untersucht. Das Gießener FACE und 

das Geisenheimer VineyardFACE, wobei ersteres auf einem Grünlandfeld mit einer 

langfristigen Exposition mit eCO2 und letzteres in einer Rebenanlage mit einer 

mittelfristigen Exposition mit eCO2 angesiedelt ist. Das Bodenmikrobiom wurde mit Hilfe 

von Hochdurchsatz-Sequenzierungsmethoden analysiert, um die bodenaktiven 

Mikroorganismen durch die Analyse von 16S rRNA und mRNA für einen taxonomischen 

bzw. funktionellen Metagenomik-ansatz zu bewerten. Daneben wurde die mikrobielle 

Aktivität des Bodens durch die Bewertung der Bodenatmungsaktivität, Echtzeit-qPCR 

für 16S rRNA und funktionelle Gene, Bodengasflüsse und bodenchemische Parameter 

gemessen. 

 

Die 16S rRNA-Ergebnisse aus beiden Anlagen zeigten, dass sich die eCO2-

Behandlungen signifikant von denen mit normalem atmosphärischem CO2 

unterschieden und dass die Bereiche mit höherem Pflanzeneinfluss am stärksten von 

eCO2 betroffen waren. Darüber hinaus zeigten 16S rRNA qPCR-Analysen im Gießener 
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FACE eine Zunahme der Anzahl aktiver Bakterien, im Gegensatz zum Geisenheimer 

Vineyard-FACE, wo eine Abnahme der Kopienzahlen der bakteriellen 16S rRNA auftrat, 

nichtsdestotrotz war an beiden Standorten die gesamte Bodenaktivität bei den eCO2-

Behandlungen erhöht. Darüber hinaus zeigten Analysen der differentiellen Abundanz, 

dass mehrere mikrobielle Taxa durch eCO2 entweder positiv oder negativ beeinflusst 

wurden, da viele dieser Taxa direkt in den Nährstoffkreislauf des Bodens eingebunden 

sind. Die Analyse funktioneller Gene mittels qPCR und funktioneller Metatranskriptomik 

deutete Beeinträchtigungen von mikrobiellem Prozesse an, die am Stickstoff- und 

Kohlenstoffkreislauf beteiligt sind. Die an beiden Standorten gewonnenen Daten wiesen 

auf eine Verringerung der Stickstofffixierung unter eCO2 hin, was darauf hindeutet, dass 

die Bodenmikroorganismen die organische Bodensubstanz (SOM) abbauen, um ihren 

höheren Bedarf an Stickstoff zu decken, da bei eCO2-Konzentrationen eine größere 

Verfügbarkeit von Kohlenstoff besteht. Darüber hinaus zeigte die funktionelle 

Metatranskriptomik des Gießener FACE eine Zunahme des Kohlenhydrat- und 

Aminosäurestoffwechsels sowie eine Zunahme von Genen für den Abbau von Zellulose, 

Chitin und Lignin. Was den Stickstoffkreislauf betrifft, so wurde eine Verschiebung im 

Stoffwechsel der Nitrat (NO3-)-Reduktion beobachtet, mit einer Zunahme des 

dissimilatorischen NO3
--Reduktionswegs zu Ammonium (NH4

+) (DNRA) und einer 

Verminderung des Denitrifikationsprozesses, was die in der Gießener FACE 

beobachtete Zunahme der N2O-Emissionen erklärt. 

 

Generell zeigen die Ergebnisse der vorliegenden Arbeit, dass eCO2 und der 

Klimawandel das aktive Bodenmikrobiom in zwei verschiedenen Ökosystemen mit 

unterschiedlich langer Exposition mit eCO2 signifikant beeinflusst haben, was zu 

signifikanten Veränderungen in der Art und Weise führt, wie Bodenmikroorganismen 

Bodenelemente nutzen und umsetzen. 
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1.1 Climate change, global warming and greenhouse gases 
 
Over the last five decades anthropogenic greenhouse gas (GHG) emissions have 

steadily increased, with larger absolute values between 2000 and 2019 (IPCC, 2014, 

2021). Atmospheric carbon dioxide (CO2) accounts for a great proportion of GHG 

emissions, and it has been demonstrated that its concentrations in the year 2019 were 

the highest in the last 2 million years (DOE.2020, 2020; IPCC, 2021). Moreover, the 

Intergovernmental Panel on Climate Change (IPCC) also has described in its synthesis 

report from 2014, that not only CO2 emissions, but the atmospheric levels of other GHG 

as methane (CH4), and nitrous oxide (N2O) are the highest in history since the pre-

industrial era (Fig. 1a) (IPCC, 2014). Besides, The Physical Science Basis IPCC report 

from 2021 indicated that since 2011 GHG concentrations have continued to increase in 

the atmosphere, reaching annual averages of 410 parts per million volume (ppmV) for 

CO2, 1866 parts per billion volume (ppbV) for CH4, and 332 ppbV for N2O in 2019, which 

represented a rise of 47%, 156% and 23% respectively, in comparison with their values 

from 1750 (IPCC, 2021). Taking into account the different sources that contribute to GHG 

emissions, fossil fuel combustion and industrial processes are responsible for about 78% 

of the total GHG (Fig. 1b). Furthermore, according to the IPCC, economic and population 

growth have been the most important drivers of rises in atmospheric CO2 concentrations 

from fossil fuel combustion (IPCC, 2014). 

 

First assessments on the contribution of atmospheric CO2 to the global greenhouse 

effect were performed in the 19th century by Arrhenius, who also hypothesized about the 

relation between atmospheric CO2 concentrations and long-term variations in climatic 

conditions (Arrhenius, 1986). Decades later, observations of atmospheric CO2 from the 

1950s to the 1960s indicated the seasonal cycle in CO2 concentration and that it was 

steadily increasing. Moreover, this increase was most likely due to human activities, and 

the consequences for climate could be severe (Baes et al., 1977; DOE.2020, 2020). 

Additionally, between 1850 and 2019, cumulative anthropogenic CO2 emissions to the 

atmosphere were 2390 ± 240 Gt CO2 (IPCC, 2021).  

 

A clear outcome of the increment of GHG is the warming of the global climate system, 

demonstrated by a near-linear relationship between cumulative anthropogenic CO2 

emissions and the global warming they cause. Each 1000 Gt CO2 of cumulative CO2 

emissions cause an increment of 0.27°C to 0.63°C in global surface temperature with a 

best estimate of 0.45°C (Fig. 1c) (IPCC, 2021). Furthermore, each of the last four 

decades have been successively warmer at the Earth’s surface than any preceding 
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decade since 1850, in which during the 21st century, global average surface temperature 

in 2001–2020 and 2011–2020 were 0.99°C and 1.09°C respectively higher in 

comparison with 1850–1900 period (IPCC, 2021).  

 

The aforementioned has caused the warming of the atmosphere and oceans, diminishing 

of snow and ice amounts, rise of sea level, alterations of precipitation patterns and 

changes in hydrological systems, which has affected water resources in terms of quantity 

and quality. As consequence, many terrestrial, freshwater and marine species have 

shifted their geographic ranges, seasonal activities, migration patterns, abundances and 

species interactions in response to ongoing climate change. Likewise, in many regions 

negative impacts of climate have been observed on crop yields (IPCC, 2014, 2021).  

 

1.2 Free Air Carbon Dioxide Enrichment experiment (FACE) system 
 

Different methodologies have been used to assess the effects of elevated atmospheric 

CO2 (eCO2) levels on soil ecosystems, with the free-air CO2 enrichment (FACE) 

experiment as one of these approaches. The FACE technology was first developed in 

the United States of America (USA) by Brookhaven National Laboratory (BNL) for use in 

an agricultural setting and it consisted of large-scale plots ringed by towers, with a 

network of pipes or plenums near the ground in such a design as to provide eCO2, to the 

ambient air of the plants, which allows for the manipulation of CO2 levels inside the plots 

(DOE.2020, 2020; Lewin et al., 1994). The object is to avoid the need for an enclosure 

or chamber around the plants. The major differences between FACE and either outdoor 

controlled environment chambers or open top chambers, the closest alternatives, are 

that FACE eliminates the following chamber effects: (1) reduction of the solar radiation 

environment, and (2) unnatural wind flow, turbulence, and micrometeorological patterns 

(Drake et al., 1985).   

 

At this first FACE facility eCO2, combined with manipulations of water and nitrogen 

supply, were conducted from 1989 to 1999 in Maricopa, Ariz., with cotton, wheat, and 

sorghum (Hendrey et al., 1993; Lewin et al., 1994). Since then, FACE experiments have 

spanned for four decades during which global ambient CO2 (aCO2) has risen from <360 

ppmV to >410 ppmV and have permitted to evaluate the effects of eCO2 on several 

terrestrial ecosystems, diverse vegetation types and biomes across the globe (Ainsworth 

& Long, 2021; Butterly et al., 2015; DOE.2020, 2020; Lewin et al., 1994; Mollah et al., 

2009; Norby, 2011) (Table 1). 
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In the State of Hessen, Germany, the FACE systems at the Justus-Liebig-University 

Giessen (JLU) and the Geisenheim University of Applied Sciences (HSGM), have been 

running since 1998 and 2014, respectively. Aiming to investigate both short and long-

term changes of an increased atmospheric CO2 concentration (conditions predicted for 

approx. 2050) on the agro-ecosystems grassland, field vegetables, viticulture as well as 

fruit and shrubbery.  

 

1.2.1 Giessen FACE 
 

The effects of eCO2 levels on a tempered grassland ecosystem have been studied in the 

Giessen FACE (Gi-FACE), which has been operating continuingly since 1998, becoming 

a good predictor of the consequences of eCO2 on this ecosystem. The Gi-FACE study 

is located at 50°32'N and 8°41.3'E near Giessen, Germany, at an elevation of 172 m 

above sea level. It consists of three pairs of rings with a diameter of 8 m; each pair 

consists of an ambient and an eCO2 treatment ring (Jäger et al., 2003) (Fig. 2). Since 

May 1998 until present, eCO2 rings have been continuously enriched by 20% above 

aCO2 concentrations during daylight hours. Ambient and elevated CO2 rings are 

separated by at least 20 m, and each pair is placed at the vertices of an equilateral 

triangle. The presence of a slight slope within the experimental site (between 0.5 and 

3.5°) place the rings on a moisture gradient, such that pair 1 has the lowest mean 

moisture content (38.8% ± 10.2%) and pair 2 has the highest mean moisture content 

(46.1% ± 13.2%), whereas pair 3 is intermediate (40.7% ± 11%) (de Menezes et al., 

2016; Jäger et al., 2003). The average annual air temperature and precipitation are 

9.4 °C and 580 mm, respectively. 

 

The vegetation is an Arrhenatheretum elatioris Br.Bl. Filipendula ulmaria subcommunity, 

dominated by Arrhenatherum elatius, Galium album and Geranium pratense. At least 12 

grass species, 15 non-leguminous herbs and up to 5 legumes with small biomass 

contributions (<5%) are present within a single plot (Andresen et al., 2018). The 

experimental field has not been ploughed for more than 100 years. It has received N 

fertilization in form of granular mineral calcium-ammonium-nitrate (40 kg N ha-1 year-1) 

once a year since 1995 and has been mown twice a year since 1993. The soil at the Gi-

FACE site is classified as Fluvic Geysol; its texture is a sandy clay loam over a clay layer, 

with pH= 6.2 and average C and N contents of 4.5% and 0.45%, respectively, as 

measured in 2001 (Jäger et al., 2003).  
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Figure 1. (a) Observed changes in atmospheric greenhouse gas concentrations of 

carbon dioxide (CO2, green), methane (CH4, orange), and nitrous oxide (N2O, red). (b) 
Total annual anthropogenic greenhouse gas (GHG) emissions for the period 1970 to 

2010 by gases: CO2 from fossil fuel combustion and industrial processes; CO2 from 

Forestry and Other Land Use (FOLU); methane (CH4); nitrous oxide (N2O); fluorinated 

gases (F-gases). (c) Increment in observed global surface temperature (grey range) and 

projected increment of global surface temperature (colored range) as a function of 

cumulative CO2 emissions in Gt CO2 from 1850 to 2019 (IPCC, 2014, 2021). 

 

a.

b.

c.
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Table 1. Summary of some long-term global FACE experiments. 

Name Country Coordinates Running 
time 

CO2 
concentration 

Another 
controlled 

env. 
Factor 

Number 
of plots Vegetation Reference 

Maricopa 
FACE 

Maricopa, 
Ariz, USA 

33°05′N, 
111°59′W 

1989–
1999 

Ambient +0, 
ambient +200 
ppmV 

------ 8 
Cotton, 
Wheat, 
and 
Sorghum 

(Hendrey 
et al., 
1993; 
Lewin et 
al., 1994) 

Duke FACE 
Chapel Hill, 
North 
Carolina, USA 

35°59′N, 
79°06′W 

1994–
2011 

Ambient +0, 
ambient +200 
ppmV 

------ 6 
Loblolly Pine 
(Pinus 
taeda) 

(McCarthy 
et al., 
2010) 

Nevada 
Desert FACE 

Mojave 
Desert, 
Nevada, USA 

36°49′N, 
115°55′W 

1997–
2007 

Ambient 375 
ppmV, 
Elevated 550 
ppmV 

------ 9 Desert Scrub (Evans et 
al., 2014) 

Oak Ridge 
National 
Laboratory 
FACE 

Oak Ridge, 
Tennessee, 
USA 

35°54′N, 
84°20′W 

1997–
2009 

Ambient 396 
ppmV, 
Elevated 547 
ppmV 

------ 6 
Sweetgum 
(Liquidambar 
styraciflua) 

(Norby et 
al., 2010) 

Rhinelander 
FACE 

Rhinelander, 
Wisconsin, 
USA 

45°41′N, 
89°38′W 

1997–
2009 

Ambient 354 
ppmV, 
Elevated 539 
ppmV 

O3 about 
1.5 × 
ambient 

12 Northern 
Hardwoods 

(Burton et 
al., 2014) 

Giessen 
FACE 

Giessen, 
Hessen, 
Germany 

50°32'N, 
8°41.3'E  

1998-
present 

Ambient 388 
ppmV, 
Elevated 490 
ppmV 

------ 6 Temperated 
grassland 

(Jäger et 
al., 2003) 

AGFACE 
Horsham, 
Victoria, 
Australia 

36°45´07´´S, 
142°06´52´´E 

2007-
2018 

Ambient 370 
ppmV, 
Elevated 550 
ppmV 

Water 
level     
Nitrogen 

16 
Wheat 
(Triticum 
aestivum L.) 

(Mollah et 
al., 2009) 

Maize FACE 

Braunschweig, 
Lower 
Saxony, 
Germany 

52°18´N, 
10°26´E 

2009-
2012 

Ambient 385 
ppmV, 
Elevated 600 
ppm 

Rainfall 6 
Maize (Zea 
mays L., cv. 
"Romario") 

(Erbs et 
al., 2012) 

SoilFACE 
Horsham, 
Victoria, 
Australia 

36°44´57´´S, 
142°06´50´´E 

2009-
2018 

Ambient 370 
ppmV, 
Elevated 550 
ppm 

Nitrogen 
fertilization 8 

Wheat 
(Triticum 
aestivum L.) 
and field pea 
(Pisum 
sativum L.) 

(Butterly et 
al., 2015) 

EucFACE  
Richmond, 
New South 
Wales, 
Australia 

-33.618°, 
150.738° 

2012-
present 

Ambient +0, 
ambient +150 
ppmV 

------ 6 
Dry 
Eucalyptus 
forest 

(Crous et 
al., 2015) 

Geisenheim 
WineFACE 

Geisenheim, 
Hessen, 
Germany 

49°59′N, 
7°57′E 

2014-
present 

Ambient 409 
ppmV, 
Elevated 483 
ppm 

------ 6 

Vitis vinifera          
cv. Cabernet 
Sauvignon              
cv. Riesling  

(Reineke 
& Selim, 
2019; 
Wohlfahrt 
et al., 
2018) 

AmazonFACE  
North of 
Manaus, 
Brazil 

-2.596°, -
60.208° 

2016-
present 

Ambient +0, 
ambient +200 
ppmV 

------ 
2, 

expanding 
to 8 

Broadleaf 
evergreen 
rainforest 

(Lapola & 
Norby, 
2014)E 
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BIFoR-FACE 
Staffordshire, 
Central 
England, UK 

52.801°,-
2.301° 

2016-
present 

Ambient +0, 
ambient +150 
ppmV 

------ 9 

Deciduous 
coppice  
with 
standards 
woodland 

(Butterly et 
al., 2015) 

 

 
Figure 2. Air view of Giessen FACE experimental site. E: elevated CO2 ring, A: ambient 

CO2 ring. Google Earth Pro Image (2021). 

 

 
1.2.2 WineFACE 
 
The Geisenheim VineyardFACE facility is located at Hochschule Geisenheim University, 

Germany (49°59′N, 7°57′E; 96 m above sea level) in the German wine growing region 

Rheingau on the banks of river Rhine and it has been functioning since 2014. 

Geisenheim has a temperate oceanic climate (Köppen-Geiger classification: Cfb) with 

mild winters and warm summers. The mean annual temperature is 10.5 °C and total 

annual precipitation averages 543.1 mm (long-term average from 1981 to 2010). The 

soil at the experimental site is characterized as low-carbonate loamy sand to sandy loam. 

The VineyardFACE consists of three ring pairs each with an inner diameter of 12 m, of 

which three are under eCO2 and three under aCO2 concentration (Fig. 3). Within eCO2 

rings air was enriched during daylight hours to approximately 18% above the aCO2. 

Within VineyardFACE rings, vines of Vitis vinifera L. cv. Riesling (clone 198–30 Gm) 

grafted on rootstock SO4 (clone 47 Gm) and cv. Cabernet Sauvignon (clone 170) grafted 

on rootstock 161–49 Couderc, respectively, were planted in April 2012 as one-year-old 
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potted plants. Each ring contains seven rows of cv. Riesling and cv. Cabernet Sauvignon 

plants, which were planted alternately across a central divide. Vines were planted with a 

spacing of 0.9 m within rows and 1.8 m between rows, with a north-south orientation. 

Cover crop consisted of Freudenberger WB 130 mulch mixture III (10% Lolium perenne, 

50% Festuca rubra and 40% Poa pratensis) and has been sowed to every second inter-

row, while every other second inter-row was ploughed once in spring and was largely 

bare or covered with spontaneous vegetation (Reineke & Selim, 2019; Wohlfahrt et al., 

2018). 

 

1.2.3 Effect of the increase of environmental CO2 on plants  
 
In general terms, eCO2 concentration has several consequences on plants, such as 

increased growth in C3, C4 and CAM plants by 41%, 22%, and 15%, respectively (He et 

al., 1995; Idso, 1994); increased plant yield (Kimball, 1983); decreased 

evapotranspiration of both C3 (Owensby et al., 1997) and C4 plants (Kimball, 2016); 

augmented photosynthetic capacity (Habash et al., 1995; P. He et al., 1995; Johnson & 

Pregitzer, 2007); increased below-ground biomass (Jongen et al., 1995). 

 

 
Figure 3. Air view of Geisenheim Wine FACE experimental site. E: elevated CO2 ring, 

A: ambient CO2 ring. Google Earth Pro Image (2021). 
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1.2.4 FACE experiments on grasslands 
 
At the different FACE experiments around the globe the effects of eCO2 on different 

types of plants have been demonstrated. In grassland ecosystems the assessment of 

plant responses to eCO2 have indicated different results, which vary depending on 

several environmental factors. At a grassland prairie FACE, the effect of eCO2 combined 

with elevated temperature and the elevation of the field, produced an increment of 

aboveground biomass in the first three years, but later root biomass was stronger 

affected than aboveground biomass (Carrillo et al., 2014; Mueller et al., 2016; Zelikova 

et al., 2014). At the BioCON experiment and the TasFACE above and below grass 

biomass had positive responses to eCO2, but also precipitations (Hovenden et al., 2014; 

Reich et al., 2014). Furthermore, Californian grassland (Jasper Ridge FACE) showed a 

weak response of aboveground biomass, with the CO2 response being independent on 

precipitation and temperature (Dukes et al., 2005; Zhu et al., 2016). 

 

At the Giessen FACE experiment it was reported that the total aboveground biomass 

(TAB) was significantly increased under eCO2. Furthermore, the different plant functional 

groups (grasses, forbs and legumes), had different responses through time. Initially 

suggesting a suppression of the forbs by grasses under eCO2, and later converging to a 

positive CO2 effect. Additionally, it was described that extreme climatic events combined 

with eCO2 impact significantly the plant composition in this ecosystem (Andresen et al., 

2018).  

 
1.2.5 FACE experiments on crop plants 
 
Largely, at the different FACEs assessing crop plants as cotton, wheat, ryegrass, rice, 

barley (C3 plant), sorghum and maize (C4 plant) diverse responses have been 

documented. One usual response to eCO2 is a partial stomatal closure with a reduction 

in stomatal conductance to water vapor, which slows the loss rate of water from the 

leaves or transpiration (Ainsworth & Rogers, 2007; Kimball, 2016). Regarding shoot 

biomass in C3 plants, it was observed an increase, contrasting with C4 plants, which had 

little or no increase of shoot biomass (DOE.2020, 2020; Kimball, 2016; Taylor et al., 

2006). One important aspect concerning crop plants is their agricultural yield. In C3 

grasses (wheat, rice, and barley), it has been reported an increase of crop yield with 

plenty N and H2O, and under N limited conditions. On the contrary C4 grass grain crops 

(sorghum and maize), have shown slightly negative average response to eCO2 

(Ainsworth & Long, 2017, 2021; Kimball, 2016). 
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At the Geisenheim VineyardFACE it has been reported by Wohlfahrt et al. (2018) that 

under eCO2 conditions the varieties Riesling and Cabernet Sauvignon presented higher 

net photosynthesis rates of 32% and 28% respectively. Similarly, it has been 

demonstrated that under both scenarios eCO2 plus reduced water availability and eCO2 

plus elevated ambient temperature grapevines presented higher net photosynthetic rates 

(da Silva et al., 2017; Edwards et al., 2017). Additionally, eCO2 has been proven to affect 

berry and must properties, increasing berry weights, lateral leaf area, summer pruning 

fresh weight and yield; and altering malic and tartaric acids concentration (Kizildeniz et 

al., 2018; Wohlfahrt et al., 2020). Furthermore, future CO2 concentrations might alter the 

way and magnitude of interactions between plants and herbivorous insects, as it was 

demonstrated by Reineke et al. (2019), who described that grapevine plants presented 

different transcriptional patterns as a response to herbivorous insect Lobesia botrana 

under eCO2 compared to ambient concentrations.  

 

1.3 Effect of eCO2 on Carbon and Nitrogen Cycles in terrestrial ecosystems 
 
Terrestrial ecosystems act as a “sink” for a significant portion of this carbon, removing 

and sequestering it from the atmosphere (DOE.2020, 2020). Likewise, global terrestrial 

soil organic carbon (SOC) pool is the largest terrestrial carbon (C) pool and constitutes 

a C stock that is more than twice the size of the atmospheric CO2-C pool (IPCC, 2014; 

Vestergard et al., 2016) 

 

Consequently, even relatively moderate fluctuations in net C exchange between soil and 

atmosphere impact the CO2 concentration in the atmosphere profoundly. Hence, the 

response of terrestrial ecosystems to increasingly higher concentrations of CO2 under a 

changing climate has important implications for the global carbon cycle. (Vestergard et 

al., 2016).  

 

1.3.1 Increment of roots exudates and priming effect 
 

Input of fresh plant carbon (C) and nitrogen (N) availability can potentially alter SOC 

decomposition, which are expected to change with rising CO2 levels. Elevated 

atmospheric CO2 increases efflux amounts of total soluble sugars, amino acids, phenolic 

acids, and organic acids in the root exudates (Dong et al., 2021; Jia et al., 2014; Phillips 

et al., 2012). Therefore, the supply of fresh plant derived C into the soil matrix due to 

eCO2 may accelerate the decomposition of SOC and decrease soil C stocks 

(Blagodatskaya & Kuzyakov, 2008; Fontaine et al., 2004); a phenomenon known as “the 
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priming effect”. This alteration of increased decomposition of SOC has been reported in 

grasslands (Liu et al., 2017; Vestergard et al., 2016), forests (Liu et al., 2017; Phillips et 

al., 2012; Qiao et al., 2014) and crop fields (Trivedi et al., 2016) 

 

Several studies have demonstrated that eCO2 changes C turnover dynamics of different 

fractions of SOM. The extent of priming seems to depend on the concentration of labile 

C inputs, with no or low priming at low concentrations and gradually increasing priming 

with increasing concentrations (Blagodatskaya & Kuzyakov, 2008) until reaching 

saturation point (Liu et al., 2017; Vestergard et al., 2016). Additionally, the sensitivity of 

priming in response to C input varies depending on the type of soil and elevation (Liu et 

al., 2017). For instance, it has been reported that greater priming occurs in low nutrient 

soils compared to high nutrient soils (Dimassi et al., 2014). In contrast, similar 

magnitudes of priming were detected in soils with different nutrients (Qiao et al., 2014). 

Soils with higher soil C and C:N ratio exhibited higher priming in some soils (Qiao et al., 

2014) but lower priming in others (Dimassi et al., 2014; Qiao et al., 2014).  

 

Nevertheless, it seems that eCO2 induces in greater amounts the decomposition of older 

soil C (Niklaus & Falloon, 2006; Van Groenigen et al., 2005; Vestergard et al., 2016; Xie 

et al., 2005). Furthermore, Vestergard et al. (2016), reported that C assimilated in eCO2 

conditions is decomposed in the soil basal respiration and enhanced the formation of 

coarse particulate SOM (fresh SOM) and decreased the fraction of physically protected 

SOM (old SOM). 

 

1.3.2 Effect on soil microbial C and N cycles related processes 
 

Regarding the study of the impact of eCO2 on the microbiome composition and microbial 

processes, they have been thoroughly analyzed in the different systems all over the 

world. As result diverse reports have described several changes in microbiome 

structures, genes and microorganisms involved in the different steps of C and N cycles. 

In this sense and considering that nearly up to 21% of all photosynthetically fixed carbon 

is transferred to the rhizosphere, roots and root exudates exert a strong influence on the 

composition and biomass of soil microbiome (Li et al., 2013; Walker et al., 2003). Thus, 

eCO2 augments the rates of organic carbon as energy sources, through the 

enhancement of microbial degradation of soil SOC (Dong et al., 2021) and the microbial 

succession that follows is accompanied by activation of various, previously dormant 

microorganisms that respond specifically to the added substrate (Blagodatskaya & 

Kuzyakov, 2008; Di Lonardo et al., 2017). Likewise, Eisenhauer et al. (2017) has 
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described that bacterial and fungal biomass are positive correlated with root biomass 

and root exudates. Hence, the relationship between C input and priming might be 

affected by the size of microbial biomass present in the soil (Blagodatskaya & Kuzyakov, 

2008).  

 

With the increased soil C content, it is likely that the microbial N demand increases, 

consequently the enhanced priming and mineralization of SOC results in an increment 

of microbial N mining. Thus, due to the fact that old SOM pools contain significant 

physically and chemically protected N stocks, the priming effect is a response to the 

labile C supply by which microorganisms gain access to a reservoir of N to meet their 

enhanced N demand under conditions of plenty C supply (Derrien et al., 2014; Liu et al., 

2017; Vestergard et al., 2016). The aforementioned has been described by Müller et al. 

(2009), who reported that under eCO2 mineralization of labile organic N became more 

important. Also occurs an increment in the dissimilatory NO3
- reduction to NH4

+ (DNRA) 

and in the immobilization of NH4
+ and NO3

- (Müller et al., 2009). 

 

Furthermore, alterations in N cycle due to eCO2 conditions have been also described by 

Kammann et al. (2008), who indicated an increment of N2O (a potent greenhouse gas) 

emissions. Likewise, Moser et al. (2018) reported that, N2O emissions were 1.79-fold 

higher, and that the linear interpolations showed a 2.09-fold, 1.64-fold and 1.66-fold 

increase in N2O emissions from denitrification, nitrification and heterotrophic nitrification 

respectively. As outcome, alterations in N cycle induces significant changes in soil 

biogeochemical characteristics in the rhizosphere, such as NO3
-, available K+, soil 

microbial biomass carbon (SMBC) and available PO4
2- (Yu et al., 2016). 

 

Also, the abundance of genes involved in labile C degradation and C and N fixation, as 

Ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCo), carbon monoxide 

dehydrogenase (CODH), propionyl-CoA/acetyl-CoA carboxylase (PCC/ACC), nifH and 

nirS genes were significantly increased under eCO2 (Xu et al., 2013). He et al. (2014) 

and Xiong et al. (2015) have reported a shift of soil microbial communities under eCO2 

in a soybean and a maize agro-ecosystems, respectively. These changes included 

stimulation of key functional genes involved in carbon fixation and degradation, nitrogen 

fixation, denitrification, methane metabolism and phosphorus cycling. Song et al. (2012) 

described that community composition of soil microbiota associated with Phytolacca 

americana and Amaranthus cruentus roots were significantly affected by eCO2 and 

numbers of bacteria and fungi, as well as microbial C and N in the rhizosphere soils of 

both species, were higher at eCO2. Simonin et al. (2015) reported that shoot biomass, 
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root biomass, and soil respiration were increased under eCO2 and N supply, and these 

variables were positively correlated with ammonia-oxidizing bacteria abundance. Le 

Roux et al. (2016) described that potential nitrite oxidation rate was enhanced in soil by 

eCO2. More recently, Bei et al. (2019) showed that eCO2 had significant effects on the 

functional expression associated to both rhizosphere microbiomes and plant roots; and 

that abundances of Eukarya relative to Bacteria were significantly decreased.  

 
Oppositely to the aforementioned studies, other reports have shown small or no effects 

of eCO2 on soil microbiome structure and activity, as Marhan et al. (2011) who described 

that abundances of total 16S rRNA genes and nitrate-reducing bacteria were not 

influenced by CO2 but by sampling date and depth. Dunbar et al. (2014) described that 

neither bacterial nor fungal community structure nor composition were altered under 

eCO2. Pujol Pereira et al. (2013) did not find any significant effects of eCO2 on bacterial 

abundance, soil C, and N concentrations. Regan et al. (2011) described that extractable 

organic carbon, dissolved organic nitrogen, NH4
+, NO3

-, and abundances of genes 

involved in ammonia oxidation and denitrification depended more on soil depth and 

moisture gradient than on eCO2. Similarly, de Menezes et al. (2016) described that 

increases in atmospheric CO2 may cause only minor changes in soil bacterial community 

composition and that functional responses of the soil community are due to factors like 

soil moisture rather than CO2 concentration. Brenzinger et al. (2017) reported that the 

abundance and composition of microbial communities in the top soil under eCO2 

presented only small differences from soil under aCO2, concluding that +20% CO2 had 

little to no effect on the overall microbial community involved in N-cycling. 

 

1.4 rRNA metagenomics: advantages and disadvantages  
 

The use of rRNA instead of DNA to assess the structure and composition of microbiome 

in metagenomic studies provides an ideal tool to study the microbial populations that 

actively participate in various ecological processes (Sharma & Sharma, 2018). Some 

drawbacks regarding the use of DNA are that after a cell dies, amplifiable extracellular 

DNA can remain in soils for weeks to years and may obscure DNA-based estimates of 

the diversity and structure of soil microbial communities (Dlott et al., 2015; Morrissey et 

al., 2015). Moreover, it has been reported by Carini et al. (2016) that DNA from dead 

cells or free DNA represented a large fraction of microbial DNA in many soils, comprising 

approximately 40.7% and 40.5% of amplifiable prokaryotic 16S rRNA genes and fungal 

ITS amplicons, respectively. Therefore, DNA depending studies may overestimate the 

richness of the soil microbiome by up to 55% for prokaryotes and 52% for fungi (Carini 
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et al., 2016) and in consequence may hide the active microorganisms that are involved 

in soil microbial processes 

 

Moreover, an argument in favor of the use of rRNA is that it has been demonstrated that 

ribosome numbers are correlated to the metabolic activity of bacteria (Felske et al., 1996) 

and different studies showed using this approach, that the active organisms instead of 

the dormant ones are assessed (Duineveld et al., 2001; Hoshino & Matsumoto, 2007; 

Hunt et al., 2013). Additionally, metatranscriptomic results reported by Bei et al. (2019), 

demonstrated that RNA instead of DNA is a better predictor of microbiome composition 

and activity in soils. 

 

However, RNA metabarcoding has its limitations as well, mainly due to the fact that RNA 

conversion to cDNA requires the use of a reverse transcriptase which lacks proofreading 

activity, creating point mutations in some of the cDNA sequences (Houseley & Tollervey, 

2010). Reverse transcriptase also regularly performs template switching, which can lead 

to the production of chimeric cDNA sequences and the creation of shortened isoform 

sequences from intramolecular template switching (Cocquet et al., 2006; Laroche et al., 

2017). Nevertheless, these limitations can be minimized by using a Moloney murine 

leukemia virus reverse transcriptase (MMLV-RT) derivative combined with a Escherichia 

coli DNA polymerase III e subunit which lowers the reverse transcription error rate by 

threefold, and the resulting cDNA is amplified with a proofreading DNA polymerase which 

produces up to eightfold fewer errors (Arezi & Hogrefe, 2007). 

 
1.5 Functional metatranscriptomics 
 
Profiling the small ribosome subunit 16S gene (16S rRNA gene), referred also as 

taxonomical metagenomics, has been widely utilized for the study and the description of 

microbial communities’ composition in several environments (Bashiardes et al., 2016; 

Bikel et al., 2015). However, taxonomical metagenomics approaches have a very limited 

role in revealing the microbial activity measured by gene expression. An alternative to 

this would be the use of techniques like quantitative PCR (qPCR) to quantify gene 

expression in natural samples, although these are limited usually to measurement of a 

small number of known genes (Frias-lopez et al., 2008).  

 

The functional metatranscriptomic shotgun sequencing (mRNAseq) provides the access 

to the metatranscriptome of the microbiome allowing the profiling of the active microbial 

community under different conditions. It is based on direct sequencing of mRNA, which 

is more likely to analyze the alive and active microbiome populations (Bei et al., 2019; 
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Moran et al., 2013). Moreover, metatranscriptomics reveals community responses 

simultaneously across all three domains of life (Archaea, Bacteria, and Eukarya) due to 

random-primed cDNA synthesis (Sharma & Sharma, 2018). Data from functional 

metatranscriptome analyses, thus, complement taxonomical metagenomics data by 

elucidating accurately which genes are transcribed and to what extent, thereby enabling 

to demonstrate the functions from a potential range of microorganisms (Franzosa et al., 

2014). From such functional data, active metabolic pathways can be identified in the 

bacterial communities and can be associated to particular environmental conditions. 

Therefore, metatranscriptomics offers a more informative perspective compared with 

metagenomics, as it can reveal details about populations that are transcriptionally active 

(Bashiardes et al., 2016). 

 
1.5.1 Principles, applications and limitations of functional metatranscriptomics 
 
Usually, a functional metatranscriptomics analysis involves isolation of total RNA from 

the sample matrix and depending on the target taxonomical group (Bacteria, Archaea, 

or Eukarya) different procedures are applied for the isolation of mRNA. In eukaryotes, 

mRNA can be selected by synthesizing cDNA using oligo-d(T) primers, and taking 

advantage of the poly-A tail characterizing mRNA species (Belstrøm et al., 2017; Frias-

lopez et al., 2008; Ogura et al., 2011). However, in contrast to eukaryotic mRNA, 

prokaryotic mRNA lacks a poly-A tail, making its selection during cDNA synthesis 

inapplicable (Bashiardes et al., 2016). One approach for the removal of rRNA is the use 

of probes targeting specific rRNA regions that are attached to magnetic beads followed 

by their removal with the use of a magnet (He et al., 2015; Mann et al., 2018; Peano et 

al., 2013; Sharma & Sharma, 2018). What is left after these depletions methods is an 

enriched population of mRNAs that are representative of transcriptionally active genes. 

For massively parallel sequence analysis, these RNAs are fractionated, cDNA is 

synthesized, and adapters are ligated to the cDNA ends generating a library that is 

amplified and then sequenced. Sequence reads are mapped to reference genomes, and 

the expressed genes are identified by comparison against several data bases (Fig. 4) 

(Section 1.5.2.). 

 

Functional metatranscriptomics has been applied to characterize a wide range of 

environments. It has been utilized to analyze seawater and coastal environments (Cabral 

et al., 2018; Frias-lopez et al., 2008; Moran et al., 2013; Ogura et al., 2011; Wu et al., 

2013), soil under the influence of different stressors (Bei et al., 2019; Sharma & Sharma, 

2018), extreme environments (Chen et al., 2015; He et al., 2015), human microbiome 

(Belstrøm et al., 2017; Franzosa et al., 2014) and rumen microbiome (Mann et al., 2018) 



Chapter 1  

 
 

1-20 

 

 

 

 

 

 

 

 

Figure 4. Schematic workflow of functional metatranscriptomics analysis (Moran et al., 

2013). 

 

There are several technical issues regarding the application of functional 

metatranscriptomics: (1) the collection and storage procedures to preserve the RNA of 

the sample, (2) the limitation to obtain high-quality and sufficient quantity of RNA, (3) the 

mRNA enrichment procedures by removing rRNAs which represent over 90% of the total 

RNA, (4) the average useful life of mRNA leads to difficulty in the detection of rapid and 

short-term responses to environmental changes, (5) the transcriptome databases are 

insufficient. Furthermore, as with all methods involving RNA manipulation, the challenge 

of avoiding degradation by contaminating ribonucleases needs to handle mostly by the 

use of RNase inhibitors (Bikel et al., 2015). Additional problems during the reverse 

transcription process to synthesize cDNA, were addressed in section 1.4. 

 
1.5.2 Software and pipelines for the analysis of functional metatranscriptome 
 
Bioinformatics pipelines analyze the data obtained from a metatranscriptomic 

experiment in different ways and they vary in terms of capacities and approaches. 

However, they could be classified in two large groups: The first group comprises 

platforms and tools that map sequence reads to reference genomes and genes and 

consequently rely on the direct annotation of the raw reads. Within this classification are 

include pipelines as MG-RAST (Meyer et al., 2008), Anvi’o (Eren et al., 2015), FMAP(Kim 

et al., 2016) and SAMSA2 (Westreich et al., 2018). The second group includes the ones 

which perform de novo assembly of new transcriptomes, as IMP (Narayanasamy et al., 

2016) and SqueezeMeta (Tamames & Puente-Sánchez, 2019). 

 

Regarding the use of raw reads, there are some disadvantages, mainly due to the fact 

that are based on homology searches for millions of sequences against huge reference 

databases, which exclude reads from uncultured species and/or divergent strains which 

are discarded during data analysis, thereby resulting in the loss of potentially useful 

Sample 
Matrix 
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information; and additionally they usually require very large CPU usage (Narayanasamy 

et al., 2016; Sunagawa et al., 2013; Tamames & Puente-Sánchez, 2019). Some of these 

tools are web-based, such as MG-RAST (Meyer et al., 2008), which allows to perform 

analyses without the need for local compute resources, nonetheless they depend upon 

a service that may become oversubscribed and slow, and mapping to custom reference 

data bases is not supported.  

 

Some authors, argue that it is advisable to perform assembly because it can recover 

larger fragments of genomes, often comprising many genes. Having the complete 

sequence of a gene and its context makes its functional and taxonomic assignment much 

easier and more reliable (Narayanasamy et al., 2015, 2016; Tamames & Puente-

Sánchez, 2019). Also, it facilitates the recovery of quasi-complete genomes via binning 

methods and enables linking organisms and functions, thus contributing to a much more 

accurate ecologic description of the community’s functioning. The drawback of assembly 

is the formation of chimeras because of misassembling parts of different genomes, and 

the inability to assemble some of the reads, especially the ones from low abundance 

species (Tamames & Puente-Sánchez, 2019).  

 

In summary, a standard metatranscriptomic pipeline involves reads curation, assembly 

(not in all cases), gene matching, and functional and taxonomic annotation of the 

resulting genes. 

 

1.6 Next generation sequencing data and compositionality  
 

Sanger sequencing served as the primary sequencing tool during several years, making 

possible significant accomplishments including the sequencing of the entire human 

genome. This sequencing method is considered as a “first-generation” technology, 

nevertheless since the second half of the 2000s, it has occurred a shift away this “first-

generation technology” toward new technologies collectively known as next-generation 

sequencing (NGS), which has changed the way of thinking about scientific approaches 

in basic, applied and clinical research (Metzker, 2010; Quinn, Erb, et al., 2018). 

 

Several NGS products exist, each differing in the sample preparation and chemistry 

used, although they all work by determining the base order from a population of 

fragmented nucleotide sequences, such that it becomes possible to estimate the 

abundances of unique sequences. However, these sequence abundances are not 

absolute abundances because the total number of sequences measured by NGS 
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technology (i.e., the library size) ultimately depends on the chemistry of the assay and 

not the input material. Depending on the input material, NGS has many uses. These 

include (1) variant discovery, (2) genome assembly, (3) transcriptome assembly, (4) 

epigenetic and chromatin profiling, (5) metagenomic species classification or gene 

discovery and (6) transcript abundance quantification (Metzker, 2010; Quinn, Erb, et al., 

2018). 

 
1.6.1 What are compositional data (CoDa)? 
 

Compositional data (CoDa) are multivariate data in which the components represent 

some part of a whole. They are usually recorded in closed form, summing to a 

constant, that is, the values for each multivariate sample are either observed as summing 

to a constant, usually 1 or 100%, or are expressed as values relative to a total that is 

irrelevant to the research objective. (Greenacre, 2021; Pawlowsky-Glahn & Egozcue, 

2006). Compositional data do not exist in real Euclidean space, but rather in a sub-space 

known as the simplex: 3-part compositions are inside a triangle, 4-part compositions are 

inside a tetrahedron, and so on for higher dimensional simplexes (Aitchison, 1982, 1986; 

Greenacre, 2021; Pawlowsky-Glahn & Egozcue, 2006; Quinn, Erb, et al., 2018). CoDa 

are observed in many fields as: geochemistry (i.e. mineral compositions), ecology (i.e. 

relative abundances of species), biochemistry (i.e. fatty acid proportions), morphology 

(i.e. the shapes of living organisms), sociology (i.e. time budgets), geography (i.e. 

proportions of land use), political science (i.e. voting proportions), marketing (i.e. brand 

shares), and recently genomics and microbiome research (i.e. proportions of operational 

taxonomic units) (Aitchison, 2005; Greenacre, 2021) 

 
These types of data have particular and important numerical properties that have major 

consequences for any statistical analysis. The properties peculiar to compositional data 

arises from the fact that they represent parts of some whole; therefore, they convey only 

relative information. Hence, they are always positive, range only from 0 to 100, or any 

other constant, when given in closed form and usually constrained to a constant sum. 

Values for components or parts in compositional data are not free to range from -∞ to +∞ 

(as unconstrained variables are). This conditions the relationships that variables have to 

one another, which implies that if one component increases, others must, perforce, 

decrease, whether or not there is a link between these components (Pawlowsky-Glahn 

& Egozcue, 2006). This means that the results of standard statistical analysis of the 

relationships between raw components or parts in a compositional dataset are clouded 

by spurious effects, because the constant sum constraint forces at least one covariance 

(and thus at least one correlation coefficient between elements) to be negative. 
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Consequently, if one correlation has to be negative, then none of the correlation 

coefficients between elements are free to range between -1 and +1 producing a bias 

towards negative correlations. This problem has been described under different 

headings: the constant-sum problem, the closure problem, the negative bias problem, 

the null correlation difficulty (Aitchison, 2005; Pawlowsky-Glahn & Egozcue, 2006). 

  
1.6.2 Microbiome sequencing data are compositional  
 
Microbial ecosystems are extremely complex and interactions within and between 

microbial species can profoundly impact microbiome composition in natural 

environments (Susin et al., 2020). Traditionally, microbiome data analysis assumes that 

sequencing data are equivalent to ecological representation of the taxa within a 

determinate environment, thus methods typically used for macro-ecology analyses are 

applied, including count-based strategies such as Bray-Curtis dissimilarity, zero-inflated 

Gaussian models and negative binomial models (Gloor et al., 2017). 

 

However, in the case of the microbiome data, the compositional nature comes from the 

fact that true independence cannot be assumed in high-throughput sequencing (HTS) 

experiments because the sequencing instruments can deliver reads only up to its own 

capacity (Gloor et al., 2017). Thus, it is proper to think of these instruments as containing 

a fixed number of slots which must be filled. Consequently, the total read count observed 

in a HTS run is a fixed-size, and it represents a random sample of the relative abundance 

of the molecules in the underlying ecosystem (Gloor et al., 2017; Susin et al., 2020). 

 

Furthermore, biases from sample collection, polymerase chain reaction (PCR) 

amplification, and the sequencing technology itself, make impossible to recover the 

absolute abundances of microbes from sequence counts, but the proportions of different 

taxa are still relevant for the analysis (Tsilimigras & Fodor, 2016). 

 

1.6.3 Methods to deal with compositional data 
 
John Aitchison stablished the foundations of a new approach to the statistical analysis 

of compositional data in his work from the 1980s (Aitchison, 1982, 1986). In Aitchison’s 

approach, the paradoxes mentioned above are eliminated by not considering the original 

values of the compositional parts, but rather their ratios, since the ratio between the parts 

of the composition remain constant irrespective of what other parts are present, before 

or after closure (Greenacre, 2021; Pawlowsky-Glahn & Egozcue, 2006). 
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Nonetheless, the use of ratios for analyzing CoDa, brings with it some issues due to the 

nature of these kind of data, which are not coherent since the values of a subset of parts 

would change after closing to have unit sum, furthermore, ratios are generally compared 

multiplicatively. Aitchison addressed this problem by using a logarithmic transformation 

of the composition, which converts the ratios on a multiplicative scale to an additive 

scale. Thus, the log-ratio transformations (Tab. 2) take the compositional data out of the 

simplex into real vector space, with an additive scale, thereby complying with most 

standard statistical methodologies (Aitchison, 1982; Greenacre, 2021; Tsilimigras & 

Fodor, 2016). 

 

Table 2. Log-ratio transformations of a composition consisting of a determined number 

(J) of parts (Greenacre, 2021) 
Abbreviation Name Description 
LR Pairwise log-ratio The log of the ratio of two parts 
ALR Additive log-ratio A pairwise log-ratio (LR) that is one of a set of J − 

1 ALRs having the same denominator (or 
numerator) 

SLR Summated 
(amalgamated) log-ratio 

The log of the ratio of the sums (amalgamations) 
of two subsets of parts log-ratio 

CLR Centered log-ratio The log of the ratio of a part and the geometric 
mean of all the parts; usually one of a set of J 
CLRs, each with one of the J parts in the 
numerator 

ILR Isometric log-ratio The log of the geometric means of two subsets of 
parts 

PLR Pivot log-ratio The log of the ratio of a single part and the 
geometric mean of a subset of the parts; usually 
one of a set of J − 1PLRs 

 
 
1.6.4 Analysis of microbiome data as composition 
 
In general, compositional data analyses begin with a log-ratio transformation, 

which restores much of the utility of traditional statistical analyses. However, a natural 

problem in using a ratio-based transformation is that one has to choose what will be in 

the denominator; that is to say, which value to use to normalize all the values in a sample. 

Aitchison considered two possible transformations. The simplest transformation is to 

choose one component as a reference, it is to say, a determinate taxon. Performing this 

type of analyses, and then correcting for multiple hypotheses is not usually realistic due 

to the large numbers of distinct taxa in most of metagenomic analyses. As an alternative, 

it is better to transform each taxon within a sample by taking the log-ratio of the counts 

for that taxon divided by the geometric mean of the counts of all taxa, called the centered 

log-ratio (clr) (Table 2) (Tsilimigras & Fodor, 2016). The clr transformed values can be 
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used as inputs for multivariate hypothesis testing, regression, and for model building. 

The clr-transformed values are scale-invariant; that is the same ratio is expected to be 

obtained in a sample with few read counts or an identical sample with many read counts, 

only the precision of the clr estimate is affected (Gloor et al., 2017; Quinn, Erb, et al., 

2018).  

 

Nonetheless, clr transformation has potential problems when applied to metagenomic 

data sets. This difficulty arises from extreme variability of library sizes and the great 

sparsity of metagenomic data sets. In a highly sparse data set, the geometric mean of 

all taxa can often be zero or near zero (Tsilimigras & Fodor, 2016). However, there are 

acceptable methods for handling with 0 count values, including the approaches of using 

point estimates or modeling the data as a probability distribution, implemented in the R 

packages zCompositions and ALDEx2 respectively (Fernandes et al., 2014; Palarea-

Albaladejo & Martín-Fernández, 2015; Quinn, Crowley, et al., 2018). 

 

Beta diversity analysis using a compositional approach differs from the traditional 

methods for analyzing microbiome datasets, which include usually the creation of a 

distance matrix based of different methods as Bray-Curtis, UniFrac (both the weighted 

and unweighted variants), among others (Bray & Curtis, 1957; Lozupone et al., 2011). In 

contrast, it is used the Aitchison distance which provides a measure of distance between 

two D-dimensional compositions (Quinn, Erb, et al., 2018). The Aitchison distance is 

simply the Euclidean distance between clr-transformed compositions, this distance has 

scale invariance, perturbation invariance and sub-compositional dominance (Aitchison, 

1982, 2005). Afterwards, the distance matrix is ordinated utilizing the variance-based 

compositional principal component (PCA) biplot where the relationship between inter--

Operational taxonomic unit (OTU) variance and sample distance can be observed 

(Aitchison & Greenacre, 2002; Gloor et al., 2017; Greenacre, 2021). The compositional 

biplot has advantages over the ordination methods normally used in microbiome 

analyses, as principal co-ordinate (PCoA) and Non-metric multidimensional scaling 

(NMDS) plots for Beta diversity analysis. Some of these are: (1) stability of subset data, 

(2) analysis is not driven simply by the presence absence relationships in the data, (3) 

robustness against excessive sparsity (Aitchison & Greenacre, 2002; Gloor et al., 2017; 

Quinn, Erb, et al., 2018). However, it is important to stress, that covariances and 

correlations between features now exist with respect to the geometric mean reference of 

the log-transformed data (Aitchison & Greenacre, 2002).  
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In microbiome studies after the assessment of the diversity in the microbial community, 

it is customary to evaluate what features have changed among the groups or treatments 

that are being evaluated. This kind of analyses are usually referred as Differential 

Abundance Analysis. Currently, there are available several bioinformatic tools capable 

of performing such task within a compositional approach. Among these are ALDEx2 

(Fernandes et al., 2014), ANCOM (Mandal et al., 2015), ANCOM-II (Kaul et al., 2017), 

selbal (Rivera-Pinto et al., 2018), Songbird (Morton et al., 2019), clr-lasso (Susin et al., 

2020) and ANCOM-BC (Lin & Peddada, 2020) . Each one of them part from the basis of 

performing a log-ratio transformation, although the algorithm and the way they deal with 

sparsity and zero counts varies from one to another.  

 

In the case of ALDEx2 the algorithm first creates randomized instances based on the 

compositionally valid Dirichlet distribution. This renders the data free of zeros. Second, 

each of these so-called Monte Carlo (MC) instances undergoes log-ratio transformation, 

most usually clr or iqlr transformation. Third, conventional statistical tests (i.e. Welch’s t 

and Wilcoxon tests for two groups; glm and Kruskal-Wallis for two or more groups) get 

applied to each MC instance to generate p- values (p) and Benjamini-Hochberg adjusted 

p-values (BH) for each feature. Fourth, these p-values and effect-sizes get averaged 

across all MC instances (Fernandes et al., 2014). ALDEx2 authors highlight that 

evidence for differential abundance can be accurately evaluated using both statistical 

significance and effect-size estimates because these two values respectively describe 

the confidence that abundance in the conditions are different, and the magnitude by 

which they differ. Furthermore, it has been argued that characterizing biological data in 

this way is more informative than decisions based upon p-value thresholds because p-

values encourage acceptance or rejection of a null hypothesis rather than an explicit 

assessment of the evidence (Fernandes et al., 2013, 2014). 

 
In microbiome research it is a matter of interest to elucidated who is interacting with 

whom, however as described in section 1.7.1., the correlation is unreliable in 

compositional datasets because of the negative correlation bias. Although some 

algorithms have been developed to evaluate microbe-microbe associations as SparCC 

package, available for the R programming language. SparCC replaces Pearson’s 

correlation coefficient with an estimation of correlation based on its relationship to the 

log-ratio variance VLR (Friedman & Alm, 2012). The algorithm works by iteratively 

calculating a “basis correlation” under the assumption that the majority of pairs do not 

correlate (i.e. a sparse network). Another algorithm, SPIEC-EASI, assumes also that the 

underlying network is sparse, but bases its method on the inverse covariance matrix of 
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clr-transformed data (Kurtz et al., 2015). However, determining an optimal and general 

approach for correlation in compositional datasets is an open research problem. 

 

1.7 Aims of the study 
 
The increment of atmospheric CO2 concentration affects terrestrial ecosystems, 

stimulating plant’s above and below ground biomass and rhizodeposition of roots 

exudates (Section 1.1). As consequence, soil microbiome structure, composition and 

function are affected. Nonetheless, existing results on microbiome response to eCO2 are 

in many cases contradictory or inconclusive, frequently indicating other environmental 

parameters as main drivers of the soil ecosystem. Furthermore, the studies conducted 

so far have worked mainly with DNA metabarcoding, which has several limitations when 

facing the assessment of microbiomes (Section 1.4). Likewise, most of current 

microbiome research in this area hasn’t done the transition to analyze HTS data as 

compositional data (Section 1.6), using in many cases inadequate statistical methods to 

address the questions that are needed to be answered. Hence, to assess the effect eCO2 

on soil microbiome at the FACE systems in Giessen (Gi-FACE) and Geisenheim 

(VineyardFACE), in this work it was implemented an RNA metabarcoding approach, 

using either 16S rRNA metabarcoding to assess taxonomically the active microbiome 

structure and mRNA to address the function and changes in the expressed genes under 

eCO2 conditions; and analyzing these data using a compositional data approach. 

 

For the reasons mentioned above, the aims of the present work were: i) to assess the 

effect of long and mid-term eCO2 concentrations on active soil microbiome through an 

rRNA-based metabarcoding approach and compositional data analysis; ii) to evaluate 

differences between eCO2 and aCO2 conditions in the vineyard and grassland soils; iii) 

to study how changes in soil microbiome are connected to environmental variables; iv) 

address changes in functional metatranscriptome due to eCO2 conditions; v) to evaluate 

changes in microorganisms and genes involved in N and C cycles. 
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Abstract 
 
Background: Climate change together with elevated carbon dioxide (eCO2) has several 

consequences on both vine and cover plants in vineyards and therefore potentially also 

on the soil microbiome. Hence, possible changes of the metabolically active microbiome 

(cDNA of 16S rRNA) were analyzed by metabarcoding from soil samples taken at the 

Geisenheim Vineyard free-air CO2 enrichment (VineyardFACE) experiment in the inter-

rows with and without cover cropping. 

Results: Results from diversity indices and redundancy analysis (RDA) demonstrated 

that eCO2 changed the active soil microbiome diversity in grapevine soil with cover crop 

significantly (p-value 0.007) whereas the microbiome in unplanted soil was unaffected. 

In addition, the microbial soil respiration (p-values 0.04 - 0.003) and the ammonium 

concentration (p-value 0.003) were significantly different in the inter-rows with cover 

crops and eCO2. qPCR results showed significant decrease in 16S rRNA, and transcripts 

for enzymes involved in N2 fixation and NO2
- reduction under eCO2 conditions. Co-

occurrence analysis revealed a shift on the number, strength and patterns of microbial 

interactions under eCO2 conditions, mainly represented by a reduction of the number of 

interacting ASVs and the number of interactions. 

Conclusions: The results obtained in this study demonstrate that even within a relative 

short period of eCO2 concentrations, soil active microbiome has undergone through 

changes, which could have future consequences on soil and wine properties and quality. 

 

Keywords: active soil microbiome, carbon cycle, nitrogen cycle, vineyard, rRNA, mRNA 

quantification, CO2 
 

Background 
 
Vineyards are important economic and agricultural ecosystems. According to the 

“Deutsche Wein Statistik”, in 2017 the total amount of vineyard hectares worldwide, in 

the European Union and in Germany were 7,564,000, 3,312,000 and 102,000 

respectively. Grapevines (Vitis vinifera L.), as perennial culture grows in a complex and 

dynamic ecosystem, where climate, soil, microorganisms and management practices are 

key factors of plant health, plant productivity and wine quality. These complex 

interactions in the local growing area together with the viticulture and enological 

techniques lead to the unique taste (the terroir) of the wine in a local area. Alteration of 

factors in this balance may alter the terroir and lead to less consumer acceptance and 
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economic losses. Climate change is one of these factors and connected with this 

increasing CO2 concentrations that influence plant physiology and microbial communities 

in vineyards. 

 

Elevated CO2 (eCO2) concentrations can modulate plant’s transcriptional and metabolic 

profile, stress responses of C3 plants and consequently affect vegetative and 

reproductive development. Wohlfahrt et al. [1] reported that under eCO2 conditions the 

varieties Riesling and Cabernet Sauvignon presented higher net photosynthesis rates of 

32 % and 28 %, respectively. Similarly, it has been demonstrated that under both 

scenarios eCO2 plus reduced water availability and eCO2 plus elevated ambient 

temperature grapevines presented higher net photosynthetic rates [2, 3]. Additionally, 

eCO2 has been proven to affect berry and must properties, increasing berry weights, 

lateral leaf area, summer pruning fresh weight and yield; and altering malic and tartaric 

acids concentration [4, 5]. Furthermore, future CO2 concentrations might alter the way 

and magnitude of interactions between plants and herbivorous insects, as it was 

demonstrated by Reineke et al. [6], who described that grapevine plants presented 

different transcriptional patterns as a response to herbivorous insect Lobesia botrana 

under eCO2 compared to aCO2 concentrations.  

 

Different methodologies have been used to assess the effects of elevated atmospheric 

CO2 levels on soil ecosystems, with the free-air CO2 enrichment (FACE) experiments as 

one of these approaches. In Geisenheim (Germany) in the wine growing region 

Rheingau the Geisenheim VineyardFACE was started in 2014. Since then, several 

studies have been conducted in the Geisenheim VineyardFACE, which intend to assess 

the effects of future CO2 concentrations on different aspects of grapevine physiology, 

yield efficiency, grape composition and ecology [1, 5–7]. 

 

Regarding grapevine microbiome under normal atmosphere, various research studies 

addressed this topic from different angles. Some investigations have demonstrated that 

differences exist between the microbiome of the different grapevine parts and the 

surrounding soil microbiome, indicating a particular niche adaptation of distinct 

taxonomic groups to each plant structure, yet soil plays an important role as a major 

reservoir becoming a bottleneck to microbial abundance in the rest of the grapevine [8–

10]. As it was indicated by Nerva et al. [11], who observed that pathogens associated to 

the chronic and complex wood disease known as ESCA (Black Measle) and grapevine 

trunk disease pathogens were more abundant in the bulk soils of affected plants, 

indicating that the soil represents an important source of inoculum. Likewise, studies 
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have established that independent of the growing region, rootstocks have a core 

microbiome which influences the taxonomy, structure and the microbial community in 

grapevine roots [12, 13]. Also, Liu et al.[14] showed that fungal microbiome was 

influenced by grapevine habitat and plant development stage and the core microbiome 

members changed through a seasonal community succession. 

 

Nevertheless, eCO2 effects on the microbiome of vineyard soil have not been studied 

until now. Taking into account that eCO2 increases concentrations of sugars, amino 

acids, and organic acids in plant´s root exudates and in consequence having a direct 

influence on soil microbiome structure and composition [15, 16]. It has been 

demonstrated in several studies that the structure and function of soil microbiome 

changed due to eCO2 conditions [17–21]. Moreover, larger inputs of carbon under eCO2 

may increase the microbial nitrogen demand, therefore, nitrogen dynamics are likely to 

change under eCO2 [22]. 

 

For the reasons mentioned above, the aims of the present work were: i) to assess the 

effect of mid-term eCO2 concentrations on active soil microbiome through an rRNA-

based metabarcoding approach; ii) to evaluate differences between eCO2 and aCO2 

conditions in the vineyard soil; and iii) to study how changes in soil microbiome are 

connected to environmental variables. 

 

Results  
 

Ion torrent sequencing 

A total of 3,903,289 raw sequences were obtained. After demultiplexing, sequences were 

assigned to each sample, ranging sequence counts in each sample from 135,651 to 

34,214. After quality control, denoising, sequence dereplication and chimera filtering with 

DADA2 software, 2,010,680 sequences were removed, resulting in 1,892,609 non-

chimeric sequences that were grouped into 10,708 amplicon sequence variants (ASVs) 

at a 99% similarity. Later, sequences belonging to chloroplast and mitochondria were 

removed, resulting in 10,583 ASVs from 1,887,273 total sequences. 

 

Soil microbial diversity  

In the Geisenheim VineyardFACE soil the bacterial diversity of the active part of the 

bacteria has changed as result of elevated atmospheric CO2 concentration. Our results 

indicate that under ambient CO2 (aCO2) conditions green inter-rows tend to have 

significantly higher alpha diversity values than open inter-rows, according to indexes of 
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Observed ASVs (p-value 0.014), Shannon (p-value 0.0074) and Fisher (p-value 0.014) 

(Fig. 1a). Nevertheless, in eCO2 rings no statistically difference was observed between 

green and open inter-rows (Fig. 1a). Even though, alpha diversity values do not show 

significant differences between green inter-rows from ambient and elevated CO2 rings, 

a slight decrease on the values of the different alpha diversity metrics of green inter-rows 

from elevated CO2 rings were observed (Fig. 1a). 

 

To evaluate the beta diversity of VineyardFACE, a distance matrix was created using the 

Aitchison distance and later ordinated using the Principal Components Analysis (PCA). 

Previous the assessment of differences among the evaluated experimental blocks the 

dispersion of the soil cores taken within each ring from the different inter-rows and their 

distance to centroids was measured. The results indicate that soil microbiome 

composition of each soil core was considerable different from the others, even those 

taken within the same ring (S1, Fig. S1.1-S1.6, Tab. S1.1-S1.6). Besides, examination 

of variations on structure of soil bacterial microbiome among the evaluated block indicate 

that ring, block and row (green or open inter-rows) factors all had statistically significant 

influence on the microbiome composition of the Geisenheim VineyardFACE according 

to the performed Adonis test (p-value 0.001). Likewise, CO2 conditions had also a 

significant effect on the overall microbiome structure (p-value 0.002), although to a lesser 

degree than the ones mentioned above. Additionally, when examining green inter-rows 

diversity from ambient and elevated CO2 rings, these two habitats have strong 

statistically differences in terms of beta diversity (p-value 0.001) (Fig. 1b, Fig. 1c). 

Moreover, the ring factor has a significant impact (p-value 0.001) on the differentiation of 

microbiomes of green inter-rows under elevated and ambient CO2 concentrations. 

 

On the other hand, when analyzing the microbiome´s beta diversity of open inter-rows 

from ambient and elevated CO2 rings, no statistically significant differences were 

observed between these two soils (p-value 0.123) (Fig. 1d, Fig. 1e). However, the 

structure of microbiomes in the open inter-rows is essentially influenced by the ring factor 

(p-value 0.001). 

 
Effect of environmental factors on microbial community 

A redundancy analysis (RDA) was performed using a distance matrix based on the 

Aitchison distance to determine the effect of the different environmental factors that 

influence the microbiome structure and composition of the Geisenheim VineyardFACE. 

Results showed that eCO2 concentration significantly influenced the differentiation of the 

bacterial microbiome in green inter-rows from ambient and elevated CO2 rings (p-value 
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0.007) (Tab. 1, Fig. 2a). Nevertheless, the effect of elevated CO2 on the differentiation 

of soil microbiomes of open inter-rows was much weaker in comparison with green inter-

rows and not statistically significant (p-value 0.102) (Tab. 1, Fig. 2b). Likewise, 

correlation analysis performed with Aldex2 showed that ASVs belonging to genera 

Bradyrhizobium, Marmoricola, Nocardioides, Ilumatobacter and Chthoniobacter had 

significant positive correlations with environmental CO2 concentrations (Tab. S3.1, S3.2).  
 

Table 1. Effect of environmental parameters on microbiome from green and open inter-rows. 

Environmental parameter Green inter-rows soil Open inter-rows soil 
CO2 concentration 0.007 ** 0.102 

NH4
+ 0.015 * 0.035 * 

Water holding capacity 0.003 ** 0.240 

Soil respiration 0.010 ** 0.211 

Water content 0.230 0.212 

Total carbon  0.005 ** 0.164 

Total nitrogen 0.001 ** 0.222 

Carbon/Nitrogen ratio 0.686 0.260 
Adjusted p-values of permutation test for redundancy analysis (RDA) based on Aitchison  

community dissimilarity distance matrix. ** p<0.01, * p<0.05. 

 

Furthermore, RDA showed that ammonium content of soil, had an important effect on 

the composition of soil microbiome of the VineyardFACE, both in green inter-rows (p-

value 0.015) and open inter-rows (p-value 0.035). Moreover, when comparing the 

ammonium content of inter-rows from ambient CO2 rings on average higher values on 

green inter-rows in comparison with open inter-rows (p-value 0.003) were observed (Tab. 

2, Fig. 2c). On the contrary, when comparing inter-rows from elevated CO2 rings, open 

inter-rows present higher ammonium concentrations than green inter-rows (p-value 

0.025), nevertheless, ammonium concentration in general were higher under elevated 

than ambient CO2 conditions (Tab. 2, Fig. 2d). Some bacterial taxa presented significant 

correlations with soil ammonium content as an ASV from the uncultured family 

“Entotheonellaceae” and genus Phenylobacterium, which had negative and positive 

correlation coefficients respectively. 

 

Additionally, water holding capacity (WHC), total nitrogen and total carbon content are 

all factors that shaped microbiome differentiation of green inter-rows according to the 

permutation test of canonical axes in redundancy analysis (Tab. 1). In this regard, green 

inter-rows had significant higher average values of these three environmental 

parameters in comparison with open inter-rows (S2) and several bacterial ASVs and 
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genera showed significant correlations with each one of these environmental parameters 

(S3). 

 

Soil microbial respiration in the Geisenheim VineyardFACE, exhibited that microbial 

activity, understood as the amount of CO2 produced by soil organisms is a significant 

factor shaping the soil microbiome (p-value 0.034). Moreover, soil respiration values 

were on average higher in eCO2 rings. In addition, when examining the effect of eCO2 

on green inter-rows soil respiration, a significant higher CO2 production was observed 

on basal respiration and with all examined substrates in soils from elevated CO2 rings in 

comparison with soils from the ambient ones (Fig. 2e). In contrast in open inter-rows, 

although soil respiration was higher in soils from eCO2 rings it was only significantly 

higher in basal respiration (p-value 0.02), however there were not major statistical 

differences on the other substrates utilized (Fig. 2f). Additionally, soil microbial 

respiration was significantly higher in green inter-rows in comparison with open inter-

rows, in either elevated or aCO2 rings, however, these differences were slightly higher 

under eCO2 conditions (Fig. S1.7, Tab. S1.7). 
 
Table 2. Average ammonium content of green and open inter-rows from ambient and elevated 

CO2 rings.  

CO2 conditions Green inter-rows 
NH4

+ [µM g-1 DW soil] 

Open inter-rows 
NH4

+ [µM g-1 DW 

soil] 

p-value 

Ambient 245.66 ± 81.21 161.35 ± 39.3 0.003** 

Elevated 370.44 ± 250.86 948.69 ± 628.71 0.025* 

Error is expressed as standard deviation of mean values (n=3). P-values significance  

codes are from a t-test for samples with unequal variances. Significance codes:  

** p<0.01, * p<0.05. 

 

Changes on microbial community composition of green inter-rows 

Differential abundance analysis confirmed that several core ASVs and genera presented 

changes in the green inter-rows soil under eCO2 conditions. In total 44 ASVs and 13 

genera showed greater abundance under eCO2 conditions. Among the highly stimulated 

ASVs in eCO2 rings were Bradyrhizobium, Marmoricola, Nocardioides mesophilus, 

uncultured bacterium clone C10 (JF718671, class Deltaproteobacteria), Nocardioides 

islandensis and Nocardioides caverna, which presented Aldex effect sizes between 0.86 

and 1.29 and fold changes ranging from 1.75 to 366.32 (Fig. 3a, S3). Similarly, core 

genera Chthoniobacter, Asticcacaulis, Phenylobacterium, Legionella, Candidatus 

Udaeobacter, Luteolibacter and Pedosphaeraceae were positively stimulated under 
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eCO2 concentrations, with Aldex effect sizes between 0.78 and 0.5 and fold changes 

from 1.47 to 44.52 (Fig. 3b, S3).  

In contrast, 51 ASVs and 10 genera belonging to the core microbiome showed a 

decrease under eCO2 conditions. ALDEx2 results indicated that ASVs identified as 

Variovorax, Nocardioides islandensis, uncultured bacterium (EU192989, order 

Acidobacteriales), Gaiella, uncultured bacterium (EU134489 family “Polyangiaceae”), 

Piscinibacter and Bryobacter were the most affected by eCO2 in the green inter-rows, 

presenting Aldex effect sizes between -0.8 and -1.18 and fold changes from 13.44 and 

189.6 (Fig. 3a, S3). Additionally, genera Paenibacillus, Acidibacter, Clostridium sensu 

stricto 1, Hydrocarboniphaga, uncultured bacterium (order Azospirillales), uncultured 

bacterium (DS-100, class Blastocatellia), uncultured bacterium (TRA3-20, order 

Burkholderiales), uncultured bacterium gene (clone SZB85, family “Nitrosococcaceae”) 

showed a reduction under eCO2 conditions with fold changes between 1.98 and 10 and 

Aldex effect sizes ranging from -0.723 to -0.54 (Fig. 3b, S3). 

 

Co-occurrence analysis 

Co-occurrence analysis results demonstrated changes regarding interactions that 

happened among soil microorganisms under eCO2 concentrations. Networks of ASVs 

with absolute ALDEx effect sizes greater than 0.5, showed a shift on the number, the 

strength and the patterns of these microbial interactions (Tab. 3). Under eCO2 conditions 

a decrease of interacting ASVs and the number of interactions occurred, although the 

average number of interactions and the network density increased under this condition 

(Tab. 3, Fig 4a). Also, the number of negative co-occurrence decreased under eCO2 

among these ASVs, appearing at aCO2 green inter-rows a total of 26 (28.3%) negative 

associations in comparison to only 6 (8.8%) at the aCO2 ones. Moreover, most of the 

negative interactions at aCO2 conditions occurred between nodes that are positive and 

negative affected by the increment of atmospheric CO2 (Fig. 4a). Oppositely, under eCO2 

interaction patterns changed, occurring mostly among ASVs that were negatively 

affected (Fig. 4b). 

 

Likewise, co-occurrence analyses performed with SpiecEasi and SPRING packages, 

showed changes of associations of bacterial genera in the green inter-rows. In terms of 

interacting genera under aCO2 and eCO2, there was no difference between these two 

conditions, although under eCO2 there were fewer interactions (Tab. 3). Moreover, the 

number of positive interactions greater than 0.25 is larger under elevated atmospheric 

CO2 (8.7%) in comparison to aCO2 (4.6%). Furthermore, co-occurrence patterns 

indicated a shift of bacterial interactions due to eCO2, as it occurred to genus 



Chapter 3  

 
 

3-68 

Deinococcus, which under aCO2 conditions, presented positive partial correlations with 

13 genera, among which were found Agromyces, Candidatus Nitrososphaera, 

Jatrophihabitans, Sphingomonas, Azohydromonas, Coxiella and Novosphingobium (Fig. 

4c). Nonetheless, most of these interaction patterns were no longer present under eCO2, 

and it the case of genus Deinococcus, it only kept its positive co-occurrence with genus 

Azohydromonas (Fig. 4d). 
 

 
 

 

 

 

Table 3. Attributes of co-occurrence analysis from ASVs and genera belonging to green inter-

rows. 

Co-occurrence attribute 
aCO2 rings 

ASVs 

eCO2 rings 

ASVs 

aCO2 rings 

genera 

eCO2 rings 

genera 

Number of taxa 79 55 198 199 

Number of interactions 92 68 413 393 

Average number of 
interactions 

2.33 5.7 4.17 3.95 

Negative interactions 26 (28.3%) 6 (8.8%) 132 (32.0%) 144 (36.6%) 

Positive interactions 66 (71.7%) 62 (91.2%) 281 (68.0%) 249 (63.4%) 

Clustering coefficient 0.056 0.66 0.15 0.116 

Network density 0.057 0.44 0.021 0.02 

 

cDNA Real time PCR 

The assessment of active bacteria through 16S rRNA quantification demonstrated 

changes in the soil microbiome due to eCO2 concentrations. In general, it was observed 

a decrease of active bacteria under eCO2 conditions, in both green and open inter-rows. 

On average aCO2 green inter-rows had significant higher copy numbers per g dry weight 

of soil than the eCO2 ones (p-value 0.015) according to Kruskal-Wallis test, about 36% 

more in aCO2 (1.81 ± 0.78*108) in comparison to eCO2 (1.16 ± 0.56*108). Also, aCO2 

open inter-rows presented significant higher concentrations of 16S rRNA (8.93 ± 

2.32*107) in relation their eCO2 counterparts (5.24 ± 4.03*107) (p-value 0.047). 

Nonetheless, either in aCO2 and eCO2 rings, green inter-rows showed higher values of 

active bacterial biomass compared to the open inter-rows (Fig. 5).   
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Similarly, to the 16S rRNA, the analysis of mRNA of functional genes involved in nitrogen 

cycle indicated changes mainly in N2 fixation and denitrification processes probably 

because of eCO2 (Fig. 5). The analysis of the transcribed bacterial nitrogen fixation gene 

nifH showed a significant decrease under eCO2 in green inter-rows (p-value 0.007), with 

on average 84% fewer copies of nifH in eCO2 green inter-rows (2.75 ± 5.15*10-4) in 

comparison to aCO2 (1.69 ± 2.17*10-3) (Fig. 5). Likewise, NO2
- reduction gene nirK 

transcription was affected negatively under eCO2 concentrations in both green and open 

inter-rows. Under eCO2 green inter-rows had an average of 2.09 ± 2.71*10-2 copies 

expressed as % of 16S rRNA copy numbers, in comparison to 3.11 ± 3.14*10-1 copies 

under aCO2 conditions, which represented a decrease of 93%. Moreover, open inter-

rows presented too higher values of nirK transcripts under aCO2 (2.31 ± 3.12*10-1) than 

eCO2 ones (1.41 ± 1.55*10-2) (Fig. 5). Oppositely, NO2
- reduction gene nirS transcripts 

did not show any differences between eCO2 and aCO2 conditions, neither between green 

inter-rows nor open inter-rows. Similarly, also transcripts of nirS gene, amoA and nosZ 

genes involved in NH4
+ oxidation and N2O reduction respectively, did not presented any 

differences among the evaluated conditions (Fig. 5). 

 

Discussion 
 
Microbiome structure and diversity  

Grapevine (Vitis spp.) is one of the most extensively grown and economically important 

fruit crops and the terroir of wines as main products of the grapes are the outcome of 

physical (climate), biological (soil, microbiome, grape variety, fauna), viticulture and 

enological factors. Changes in these factors change the terroir. It is well known that 

grapevines are particularly sensitive to changes in climatic conditions, on which the 

increment of atmospheric CO2 concentrations has several consequences on them [1–3, 

5, 6, 23, 24], although it is not well known what the influence is of changed climate 

conditions on the microbes involved in the microbial terroir [25].  

 

Our results demonstrated that the rise of atmospheric CO2 concentration altered active 

soil microbiome structure in a vineyard, in addition to the already reported effects on 

grapevine physiology, yield efficiency, grape composition and ecology [1–6]. Moreover, 

our data indicate that changes in soil microbiome occurred mainly in the green inter-rows 

of eCO2 rings of the Geisenheim VineyardFACE. Regarding alpha diversity, Observed 

ASVs, Shannon and Fisher indexes demonstrated that there are differences between 

green and open inter-rows under aCO2 conditions; nonetheless, this difference 
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disappeared under eCO2. This indicates that under eCO2 a decrease in terms of alpha 

diversity in the soil of green inter-rows occurred (Fig. 1a).  

 

Soil microbiome structure and activity were highly affected by eCO2 in the Geisenheim 

VineyardFACE, as it is indicated by our beta diversity (Aitchsion diversity) outcomes, 

which showed a change on the structure and composition of Geisenheim VineyardFACE 

soil microbiome in eCO2 rings in comparison to the aCO2 ones (Fig. 1b-e). The increment 

of atmospheric CO2 was one of the environmental factors that had a significant influence 

on the alteration of soil microbiome (Fig. 2a-b). Nevertheless, this change was only 

observable in the green inter-rows and not in the open ones, very likely due to the 

presence of vegetation in these inter-rows. Similar results have been reported in crop 

plants, as wheat and soybean on which eCO2 altered the structure of soil and 

rhizosphere microbiomes [26, 27]. Likewise, comparable outcomes have been described 

on the root and rhizosphere microbiota associated with Phytolacca americana, 

Amaranthus cruentus and grassland ecosystems, which described significant changes 

due to eCO2 [17, 28, 29]. These changes are probably a consequence of the increment 

of C and N inputs derived from plant increased rhizodeposition, which influences the 

composition and biomass of soil microbiome [30, 31].  

 

Our data showed a significant increase of soil heterotrophic respiration on eCO2 soil 

samples, with average fold changes ranging from 1.65 to 1.85, a sign of stimulated soil 

microbial activity. Nonetheless, our quantification of bacterial 16S rRNA through qPCR, 

demonstrated a decline of bacterial abundance caused by eCO2 concentrations, which 

might be explained by an alteration of soil microbial structure in favor of fungal growth. 

This behavior has been already described in a chaparral ecosystem [32], a scrub-oak 

ecosystem [33] and a wheat-soybean agroecosystem [26], in which the ratio 

fungi:bacteria augmented under eCO2 along with an enhancement of soil microbial 

heterotrophic respiration.  

eCO2 effect on N cycle, changes in bacterial abundance and microbe-microbe 

interactions 

Greater inputs of labile C under eCO2 via root exudation increases the microbial nitrogen 

(N) demand and consequently, N dynamics are likely to change under eCO2 [22]. 

Following this train of thought, several studies have investigated and shown the changes 

that genes, proteins and microorganisms undergo due to eCO2 conditions, some of 

which described an enhancement of their amount and/or activity [26, 34–38] and some 

others did not find any significant differences [39, 40]. In this sense, N2 fixation at eCO2 

concentrations has been usually reported to increase as a response to higher N demand 
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due to the excess of C compounds [34, 35, 37, 38]. Nevertheless, our data did not 

indicate an augmentation in the N2 fixation because of eCO2, on the contrary nitrogenase 

nifH qPCR results demonstrated a diminishing of N2 fixing activity in the green inter-rows 

of eCO2 rings (Fig. 5, Fig. 6).  

 

However, NH4
+

 concentrations are higher in eCO2 rings than aCO2 ones, which suggests 

that although N2 fixation is downregulated in eCO2 rings, microorganisms are obtaining 

NH4
+ from other sources, probably from soil organic matter (SOM) (Fig. 6). Therefore, 

the supply of fresh plant derived C into the soil matrix due to eCO2 may accelerate the 

decomposition of SOM and decrease soil C stocks [41, 42]; a phenomenon known as 

“the priming effect”. Also, SOM pools contain significant physically and chemically 

protected N stocks, therefore the priming effect is a response to the labile C supply by 

which microorganisms gain access to a reservoir of N to meet their enhanced N demand 

[43–45]. The aforementioned has been described by Müller et al. [22] who reported that 

under eCO2 mineralization of labile organic N became more important. Also occurs an 

increment in the dissimilatory NO3
- reduction to NH4

+ (DNRA) and in the immobilization 

of NH4
+ and NO3

- [22]. Which might explain why some taxa stimulated under eCO2 

conditions are significantly positive correlated with NH4
+ concentrations (S3), as genus 

Phenylobacterium which has been also reported to perform heterotrophic DNRA [46]. 

 

Similar to nifH, it has been frequently reported that under eCO2 occurs an augmentation 

of transcripts for denitrification genes nirS, nirK and nosZ [34, 35, 37], nonetheless our 

results did not show an increment on the abundance of mRNAs of these genes, on the 

contrary our data indicated an alteration of the denitrification process at the step of NO2
- 

reduction, by the decrease of nirK activity under eCO2 (Fig. 5, Fig. 6). 

 

Furthermore, the alteration of N cycle related gene transcripts seems to be associated 

to the decrease of certain bacterial taxa and the shift of the soil microbiome because of 

the selective pressures imposed by eCO2. Our co-occurrence data demonstrated a shift 

of bacterial taxa and a simplification of microbial interactions under eCO2 conditions. The 

aforementioned could be appreciated in the shift of N2 fixing bacteria with nifH genes as 

Microbacterium [47, 48] and Paenibacillus [49–53] by genus Bradyrhizobium [54–56] in 

eCO2 rings, which were negative and positive correlated with atmospheric CO2 

concentrations respectively (S3). Likewise, the decreased abundance of nirK transcripts 

under eCO2 might be linked to the depletion of bacterial taxa as Noviherbaspirillum [57], 

Massilia [58] and Clostridium sensu stricto 1 [59] described to perform NO2
- reduction 

and possess this gene.  
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Furthermore, network analysis outputs showed a strong positive co-occurrence between 

Noviherbaspirillum and Microbacterium in eCO2 rings, which demonstrated that the 

depletion of these two genera is linked. Similarly, the co-occurrence cluster observed 

among ASVs negatively affected by eCO2, supports the idea that the increment of 

atmospheric CO2 concentrations disrupts soil microbial networks, and the depletion of 

certain bacterial taxa is entangled to the decrease of others. This cluster included ASVs 

belonging to genera Xenophilus and Nocardioides and ASVs from families 

Geminicoccaceae and Thermoleophilaceae. Additionally, partial correlation data 

displayed alterations in the co-occurrence patterns caused by eCO2, where taxa that 

were interacting among each other did no longer exhibited these patterns at eCO2. A 

good example is genus Deinococcus, which at aCO2 showed positive interactions with 

13 genera but it only kept its positive co-occurrence with genus Azohydromonas at eCO2. 

This modification of interaction patterns is probably connected to alterations of nirK 

mediated denitrification, due to the fact that genus Deinococcus has also been described 

to perform NO2
- reduction and possess this gene [60]. 

 

Moreover, it has been reported in field experiments of tea seedlings (Camellia sinensis 

L. ‘Baihaozao’) that increase in the quantity of nirK and nosZ genes was linked to the 

decline of N2O [61]. This might suggest that in the Geisenheim VineyardFACE eCO2 

might augment N2O emissions due to alteration of denitrification process reflected in the 

abundance of nirK gene transcripts. Additionally, Moser et al. [62], described that N2O 

emissions were 1.79-fold higher in the Giessen FACE under eCO2 conditions. 

Nonetheless, it is important to mention that in vineyard fields N2O emissions depend on 

its management, including soil type, amount of fertilizers, and humidity along with climate 

conditions [63], and that correlations with soil properties are likely to be highly system 

specific [64]. 
 

Conclusions 
Our results demonstrate that the increase of atmospheric CO2 concentrations has 

changed the structure and composition of soil microbiome in the Geisenheim 

VineyardFACE. This suggests that even with a relative short period of eCO2 

concentration in the VineyardFACE field, alterations in carbon cycle have had an impact 

on soil nitrogen cycle microbiome, producing a shift of diverse bacterial taxa. These soil 

microbiome alterations could have in the future more consequences on wine terroir and 

quality. Nevertheless, additional analyses and timepoints will be needed in order to 



Chapter 3  

 
 

3-73 

assess alterations regarding functional metatranscriptome due to eCO2 and its impact on 

wine production and grapevine health and productivity. 

 
Materials and Methods 
 
Study site description  

The Geisenheim VineyardFACE facility is located at Hochschule Geisenheim University, 

Germany (49°59′N, 7°57′E; 96 m above sea level) in the German wine growing region 

Rheingau on the banks of river Rhine. Geisenheim has a temperate oceanic climate 

(Köppen-Geiger classification: Cfb) with mild winters and warm summers. The mean 

annual temperature is 10.5 °C and total annual precipitation averages 543.1 mm (long-

term average from 1981 to 2010). The soil at the experimental site is characterized as 

low-carbonate loamy sand to sandy loam. The VineyardFACE consists of three ring pairs 

(A1-E1, A2-E2, A3-E3) each with an inner diameter of 12 m, of which three are under 

elevated CO2 (eCO2; E1, E2, E3) and three under ambient CO2 (aCO2; A1, E2, E3) 

concentration. Within eCO2 rings air was enriched during daylight hours to approximately 

18% above the ambient CO2. Average daily CO2 concentration of aCO2 and eCO2 

treatments in June was 409.4 ± 8.6 and 483.2 ± 8.4 (means ± SD), respectively. Within 

VineyardFACE rings, vines of Vitis vinifera L. cv. Riesling (clone 198–30 Gm) grafted on 

rootstock SO4 (clone 47 Gm) and cv. Cabernet Sauvignon (clone 170) grafted on 

rootstock 161–49 Couderc, respectively, were planted in April 2012 as one-year-old 

potted plants. Each ring contains seven rows of cv. Riesling and cv. Cabernet Sauvignon 

plants, which were planted alternately across a central divide. Vines were planted with a 

spacing of 0.9 m within rows and 1.8 m between rows, with a north-south orientation. 

Cover crop consisted of Freudenberger WB 130 mulch mixture III (10% Lolium perenne, 

50% Festuca rubra and 40% Poa pratensis) and was sowed to every second inter-row, 

identified in this work as green inter-rows; while every other second inter-row was 

ploughed once in spring and was largely bare or covered with spontaneous vegetation 

identified in this work as open inter-rows (Fig. 7) [1, 6] 

 
Soil sampling and physico-chemical parameter measurements 

Soil sampling was performed utilizing sawed 50 ml syringes (11 x 3 cm) and 12 samples 

were taken up to a depth of ~10 cm within each ring in June 2018 distributed equally 

between green inter-rows and open inter-rows; half of the samples were taken to perform 

molecular biology and chemical analyses, and the other half were utilized to perform soil 

microbial respiration measurements. Green inter-rows soil cores were by hand gently 

shaken to remove loosely attached soil (bulk soil) and the soil that remained attached to 
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the roots was considered as rhizosphere soil. Open inter-rows soil cores were only 

managed as bulk soil due to no roots were present in them. Bulk and rhizosphere soils 

were sieved (<2 mm) and stored at -80 °C for molecular biology, at -20 °C for chemical 

analyses and at 4 °C for soil microbial respiration analyses. Soil samples were classified 

in four different blocks considering the CO2 conditions (ambient and elevated) and the 

inter-rows where they were taken from (green inter-row soil and open inter-row soil). 

 

Ammonium concentrations were measures after soil extractions with 1 M KCl using a 

colorimetric assay (Kandeler and Gerber 1988). Nitrate was extracted with deionized 

water and the filtered supernatant was analyzed by ion chromatography (Sykam S5200 

chromatograph, Sykam GmbH, Eresing, Germany) according to Bak et al. (1991). Water 

content, dry matter and water holding capacity of soils samples were measured 

gravimetrically [66]. Carbon and nitrogen content of soil were measured by pyrolysis 

coupled to gas chromatography on a EA 1100 elemental analyzer (ThermoQuest, Milan, 

Italy) using a TCD detector by the Dumas method according to HBU (1996) [67] and 

VDLUFA (2012) method [68]. In each ring CO2 concentration was recorded by using an 

infrared gas analyzer (LI-840A CO2/H2O Analyzer, LI-COR Biosciences, Lincoln, NE, 

USA) mounted at 1.5 m height within the ring center. 

 

Respiration analysis with the MicroResp™ system (James Hutton Ltd, Aberdeen, 

Scotland UK) was performed following the protocol described by Campbell et al. [69]. 

Detection plates were prepared mixing agar solution 3% and indicator solution (Cresol 

Red 12.5 µg ml-1, KCl 150 mM and NaHCO3 2.5 mM) in a ration 1:2 (agar:indicator). Soil 

samples were weighed, added into deep well plates and incubated for 3 days in a sealed 

box containing wet paper towels. Later, distilled sterile water and substrates (L-Arginine, 

D-Galactose, D-Glucose and N-Acetyl glucosamine) were added by quadruplicated to 

each sample at a final concentration of 20 mM. Detection plate’s absorbance at time 0 

was measured with a TECAN Infinite® M200 multimode Microplate Reader (Tecan 

Austria GmbH) at 570 nm, immediately assembled with the MicroRespTM seal (James 

Hutton Ltd) and the deep well plate and incubated for 6 h at 25 °C. After incubation time, 

detection plate´s absorbance was read as described above. For calculation of CO2 

production rate, data were normalized and %CO2 were calculated with a previously 

prepared calibration curve using a spline fit with Origin Lab® software 

(OriginLabCorparation, Northhampton, USA). Later %CO2 values were converted to CO2 

rate (µg CO2 – C g-1 DW soil h-1). 
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For chemical parameter results, measures of central tendency and dispersion were 

calculated. Ammonium, total carbon, total nitrogen and carbon/nitrogen ratio differences 

among the four different experimental blocks were assessed using a t-test for groups 

with similar variances. Differences on respiration results were calculated utilizing a t-test 

for samples with different variances using Microsoft Excel 2013. 

 
RNA extraction and reverse transcription 

RNA extraction was performed following a modified protocol of Mettel et al. [70]. For the 

extraction, 0.3 – 0.5 g of soil were weighed in reaction tubes containing 100 mg of sterile 

zirconia beads, added with 700 µL TPM buffer (50 mM Tris-HCl (pH 5), 1.7% [wt/vol] 

polyvinylpyrrolidone, 20 mM MgCl2) and vortexed for 30 s. Cells were then disrupted in 

a cell mill MM200 (Retsch, Haan, Germany) for 2 min at a frequency of 30 Hz. Soil and 

cell debris were precipitated by centrifugation in a microcentrifuge (Heraeus Fresco, 

Thermo Fisher Scientific Inc., Waltham) for 5 min at 17,000 g and 4 °C, then the 

supernatant was transferred into a fresh reaction tube. Buffer PBL (770 µl, 5 mM Tris-

HCl (pH 5), 5 mM Na2EDTA and 0.1% [wt/vol] sodium dodecyl sulfate) were added to 

the resulting soil pellet and the disruption process was performed again as described 

above. Both supernatants from the lysis processes were pooled in one reaction tube. 

The pooled supernatant was immediately extracted, initially with the addition of 500 µl of 

phenol/chloroform/isoamyl alcohol (25:24:1) and subsequent with chloroform/isoamyl 

alcohol (24:1). Afterwards, each time the sample was centrifuged for 5 min at 17,000 g 

and 4 °C. The resulting upper aqueous phase was transferred to a new reaction tube, 

800 µl of PEG solution was added (30% [wt/vol] polyethylene glycol 6000 and 1.6 M 

NaCl), incubated in ice for 30 min and centrifuged for 30 min at 17,000 g and 4 °C. 

Subsequently, the DNA/RNA pellet was washed with 800 µl of ice-cold 75% ethanol, 

dried out and dissolved in 50 µl of nuclease free water. 

 

After extraction, samples were treated for DNA digestion with RNase-Free DNase Set 

(QIAGEN GmbH - Germany) according to manufacturer instructions; DNase reaction 

was stopped with 10 µl of 50 mM EDTA. With the DNA-free RNA, a PCR was carried 

out, using the universal 16S rRNA gene primers 27F (5’-

AGAGTTTGATCMTGGATCMTGGCTCAG-3’) and 1492R (5’- 

GGTTACCTTGTTACGACTT-3’) (Lane, 1991; Weisburg, Barns, Pelletier, & Lane, 1991) 

and checked on agarose gel electrophoresis to verify the absence of remaining DNA in 

the samples. Subsequently, reverse transcription was performed utilizing AccuScript 

High Fidelity 1st Strand cDNA Synthesis Kit (Agilent Technologies, Inc., Cedar Creek – 

Texas, USA) following manufacturer instructions. 
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16S rRNA Ion Torren sequencing and metagenomics analysis 

The 16S rRNA gene hypervariable regions (V4&V5) was PCR amplified using the set of 

primers 520F (5’-AYTGGGYDTAAAGNG-3’) [73] and 907R (5’-

CCGTCAATTCMTTTRAGTTT-3’) [74] and PCRs and sequencing by Ion Torrent 

technique were done by following the protocol described by Kaplan et al. [75]. The 

obtained Ion Torrent sequencing output was analyzed using QIIME2 version 2020.6 [76], 

sequences were demultiplexed with the QIIME cutadapt command [77] using a barcode 

error rate of 0 and assigned to specific samples by corresponding barcodes. Later, 

quality control, denoising, sequences dereplication and chimera filtering were performed 

using DADA2 software [78], the first 15 nucleotides were trimmed and sequences were 

truncated at a position of 320 nucleotides. Amplicon Sequence Variants (ASV) generated 

with DADA2 were taxonomic affiliated with a trained fitted classifier [79, 80] based on the 

SILVA 138 database [81, 82]. 

 

Diversity and differential abundance analyses  

Alpha and Beta diversity analyses were performed using R studio software 1.1.419, R 

packages Phyloseq 1.28.0 [83] and Vegan 2.4-6 [84]. For alpha diversity assessment 

rarefaction was applied and diversity indices (Observed species, Shannon, Fisher) were 

calculated and compared among CO2 conditions and soil habitats using the Wilcoxon 

test (Wilcoxon, 1945) with the Bonferroni correction method through 999 permutations. 

For non-constrained beta diversity analyses, data were transformed using centered log 

ratio (clr) method [85, 86], using R package Microbiome version 1.8.0 [87]. Later, 

community dissimilarity distance matrices were created using the Aitchison distance [85, 

86] and visualized using principal components analysis (PCA) [88]. Statistical differences 

among blocks, rings, CO2 conditions and ring plus soil habitats, were assessed by a 

Permutational Multivariate Analysis of Variance using Adonis method and employing 999 

permutations [89]. Additionally, it was assessed the degree of dispersion of the bacterial 

community composition from the soil cores taken in each ring as it is described above. 

Redundancy analysis (RDA) was used to explore associations between microbial 

community structures and environmental parameters, and a Permutation test of 

redundancy analysis using 999 permutations was applied for evaluating their statistical 

significance [90]. 

 

Core microbiome ASVs of green and open inter-row soils were calculated by 

transforming the ASV counts to relative abundance with Microbiome version 1.8.0 [87]. 

Later, ASVs with a total relative abundance ≥0.01% and present in ≥85% of samples 
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were included as part of the core. For core genera estimation, ASVs were collapsed by 

genera and analyzed utilizing the settings described above. 

 

Differential abundance of ASVs and genera from green inter-row soils was assessed by 

comparing the core microbiomes of each one utilizing R package ALDEx2 1.22.0 [91]. 

ALDEx2 analysis was done by performing a centered log ratio (clr) transformation using 

as denominator the geometric mean abundance of all features and 128 Monte-Carlo 

instances; later it was done a Welch's t-test with a Benjamini-Hochberg correction with a 

threshold of <0.05. Furthermore, features with absolute Aldex effect sizes of >0.8 and 

>0.5 were considered to have a significantly greater and a moderate higher abundance 

respectively. 

 

Microbe-microbe and microbiome-environmental parameters correlation analyses 

Network analysis was performed using the core ASVs from aCO2 and eCO2 green inter-

row soils, which showed an absolute ALDEx effect size >0.5. Later, ASVs were analyzed 

utilizing a co-occurrence network with the R package Spiec-easi 1.1.1 [92], using the 

neighborhood selection method [93], a number of lambda path of 100, a lambda 

minimum ratio of 10-2 and the Stability Approach to Regularization Selection (StARS) 

using its defaults settings. Subsequently, the network visualization was done on 

Cytoscape 3.8.2 [94].  

 

Similarly, it was assessed core genera co-occurrence from aCO2 and eCO2 green inter-

rows with Spiec-easi 1.1.1 [92] and SPRING 1.0.4 [95] using genera with an absolute 

Aldex effect size >0.1 and using the neighborhood selection method [93], a number of 

lambda path of 100, a lambda minimum ratio of 10-1 and the Stability Approach to 

Regularization Selection (StARS). Additionally, previous SPRING partial correlation 

analysis, it was performed a modified central log ratio (mclr) transformation of the genera 

counts.  

 

Correlation analysis between green inter-rows’ ASVs and genera with environmental 

parameters was done using ALDEx2 1.22.0 [91] and its “aldex.corr” function, utilizing 

Pearson's and Sperman’s correlation coefficients, and obtained p-values were corrected 

using false discovery rate (FDR) method with a threshold of <0.05.  

 

cDNA Quantitative PCR 

The quantification of 16S rRNA gene to estimate total bacterial abundance was 

performed following the protocol described by Kaplan et al. [75], but instead of DNA, 
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cDNA products described above were used for the quantification. Likewise, it was 

performed the mRNA quantification of transcripts involved in the nitrogen cycle including 

nitrogen fixation (nifH), ammonia oxidation (amoA), nitrite reduction (nirS, nirK) and 

nitrous oxide reduction (nosZ) using primers and amplification protocols described on 

Tab. 4 and expressed as percentage (%) of 16S rRNA copy numbers. All quantitative 

PCR (qPCR) were conducted on a Rotor Gene Q (Qiagen, Hilden, Germany) by using 

Absolute qPCR SYBR Green Mix (ThermoFischer Scientific). Statistical comparisons 

were done with Kruskal-Wallis and Wilcoxon tests with the Benjamini & Hochberg 

adjustment method using R Package stats version 3.6.3. 
 
Table 4. Primer sets and thermal profiles of transcripts for N cycle functional genes and 16S 

rRNA. 

qPCR target  Primer set Thermal cycling profile No. 
cycles 

Reference 

16S RNA 520F, 926R 

complemented 

95° C/45s, 60 °C/45 s, 

72 °C/60 s, 84 °C/20 s 

40 [73, 74] 

amoA amoA1_F, amoA2_R 95 °C/30 s, 59 °C/30 s, 

72 °C/20s, 80 °C/20 s 

35 [96] 

nifH IGK3, DVV 95 °C/20 s, 55 °C/30 s, 

72 °C/30s, 84 °C/20 s 

40 [54] 

nirK nirK876, nirK 5R  95 °C/20 s, 63 °C/25 s, 

72 °C/60 s, 80 °C/20 s 

40 [97, 98] 

nirS Cd3aF, R3cd 95 °C/20 s, 63 °C/25 s, 

72 °C/60 s, 80 °C/20 s 

40 [99, 100] 

nosZ nosZ2F, nosZ2R 95 °C/30 s, 63 °C/50 s, 
72 °C/50 s, 80 °C/20 s 

40 [101] 
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Figure 1. Diversity analysis of Geisenheim VineyardFACE. (a) Alpha diversity metrics. aCO2, 

ambient CO2 conditions; eCO2, elevated CO2 conditions. * p<0.05. (b, c) Principal Components 

Analysis (PCA) calculated based on Aitchison community dissimilarity distance matrix of axis 1-2 

(left) and axis 1-3 (right) of green inter-rows from ambient and elevated CO2 rings, (d, e) Principal 

Components Analysis (PCA) calculated based on Aitchison community dissimilarity distance 
matrix of axis 1-2 (left) and axis 1-3 (right) of open inter-rows from ambient and elevated CO2 

rings. A, ambient CO2 rings; E, elevated CO2 rings; aCO2, ambient CO2 conditions; eCO2, 

elevated CO2 conditions. 
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Figure 2. Environmental parameters effect on Geisenheim VineyardFACE microbiome. (a, b) 
Redundancy Analysis (RDA) based on Aitchison community dissimilarity distance matrix of green 

inter-rows (left) and open inter-rows (right) from ambient (blue) and elevated (red) CO2 rings. 
WHC, Water holding capacity; CO2 Conc., CO2 concentration; Soil resp., Soil basal respiration; 

C, Total carbon concentration; N, Total nitrogen concentration; C:N, Carbon-nitrogen ratio; NH4+, 

Ammonium concentration. (c, d) Multidimensional scaling (MDS) with a grid of ammonium 

concentration expressed as (µM NH4*g-1), using Aitchison community dissimilarity distance matrix 

of green and open inter-rows from ambient CO2 rings (left), green and open inter-rows from 

elevated CO2 rings (right). (e, f) Soil microbial respiration expressed as CO2 production rate under 

the addition of different carbon substrates of green inter-rows from ambient and elevated CO2 

rings (left), and open inter-rows from ambient and elevated CO2 rings (right). Error bars are 
expressed as variance of mean values 
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Figure 3. Differential abundances of core microbiome of green inter-rows soil under elevated and 
ambient CO2 of (a) Bacterial ASVs and (b) Bacterial genera. ALDEx2 results of features with an 

ALDEx effect size > 0.5 using centered log ratio (clr) transformation and the geometric mean 

abundance of all features. 
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Figure 4. Co-occurrence analysis of features from green inter-rows. (a) Network analysis of core 

ASVs from aCO2 rings and (b) eCO2 rings. Features with an absolute Aldex effect size > 0.5 were 

utilized for SpiecEasi analysis applying the Meinshausen & Bühlmann (mb) method with a number 

of subsamples of 50, n-lambda of 100 and lambda minimum ratio of 0.1; blue and red edges 

indicate positive and negative co-occurrence respectively; size of the nodes is proportional to the 

number of ASV reads. Partial correlation analysis of genera with an absolute ALDEx effect size 
>0.1 from (c) aCO2 and (d) eCO2 green inter-rows using SpiecEasi and SPRING. SpiecEasi run 

applying the Meinshausen & Bühlmann (mb) method and SPRING with a modified centered log 

ratio (mclr). Both analyses utilized a number of subsamples of 99, a lambda minimum ratio of 0.1 

and the Stability Approach to Regularization Selection (StARS) using co-occurences with a 

threshold of <-0.5 and >0.5 
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Figure 5. qPCR Boxplots of 16S rRNA, nifH, amoA, nirS, nirK and nosZ genes from aCO2 rings 
green inter-rows (a-green), aCO2 rings open inter-rows (a-open), eCO2 rings green inter-rows (e-

green), eCO2 rings open inter-rows (e-open). Significance codes: *** p<0.001, ** p<0.01, * p<0.05. 
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Figure 6. Model diagram of N cycle of Geisenheim Vineyard FACE soil under (a) aCO2 conditions 

and (b) eCO2 conditions. 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 
 
 
 
 
 

 
Figure 7. Design of a Vineyard FACE-ring with the two grape varieties Riesling (R) and Cabernet 

Sauvignon (CS). The vertical lines represent the seven rows per ring of vine plants. Green-colored 

inter-rows represent the area within the ring with cover crop (green inter-rows) and brown-colored 

inter-rows represent the areas within the ring where the soil is periodically ploughed (open inter-

rows). 
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Abstract 

Soil organisms play an important role in the equilibrium and cycling of nutrients. In this 

sense, because elevated CO2 (eCO2) affects plants metabolism including 

rhizodeposition, it has a direct impact on the soil microbiome and microbial processes. 

Therefore, eCO2 influences directly the cycling of different elements in terrestrial 

ecosystems. Hence, possible changes in the cycles of carbon (C), nitrogen (N) and sulfur 

(S) were analyzed, alongside with the assessment of changes in the composition and 

structure of the soil microbiome through a functional metatranscriptomics approach 

(cDNA from mRNA) from soil samples taken at the Giessen free-air CO2 enrichment (Gi-

FACE) experiment. Results demonstrated changes under eCO2 in C cycle with 

augmentation in the uptake and degradation of carbohydrates and amino acids, 

alongside with the increment of genes for cellulose, chitin and lignin degradation and an 

increment of prokaryotic carbon fixation. N cycle changes included an impairment of 

denitrification process, which clarifies the increment of N2O emissions in the Gi-FACE. 

Also, occurred a shift in nitrate (NO3
-) metabolism, with an increment in the dissimilatory 

NO3
- reduction to ammonium (NH4

+) (DNRA) pathway. S metabolism showed an 

increment in the sulfate (SO4
2-) assimilation under eCO2 conditions. Furthermore, soil 

bacteriome, mycobiome and virome were significantly different between ambient and 

elevated CO2 conditions. The results obtained in this study demonstrate affectations in 

the metabolism and cycling of C, N, S and the overall soil microbiome due to eCO2, with 

a direct impact in the emission of greenhouse gases and availability of soil nutrients for 

the balance of soil ecosystems. 

 

Keywords: functional metatranscriptomics, carbon cycle, nitrogen cycle, sulfur cycle, 

soil microbiome 
 

Introduction 
 
World atmospheric carbon dioxide (CO2) has increased by more than 40%, from a pre-

industrial level of about 280 parts per million volume (ppmV) to the current concentration 

of more than 400 ppmV (DOE.2020, 2020), and the current anthropogenic emissions of 

the greenhouse gases (GHG) are the highest in history (IPCC, 2014). Because terrestrial 

ecosystems act as a “sink” for a significant portion of global carbon (C), fluctuations in 

net C exchange between soil and atmosphere impact the CO2 concentration in the 

atmosphere profoundly (DOE.2020, 2020). Hence, the response of terrestrial 
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ecosystems to increasingly higher concentrations of CO2 under a changing climate has 

important implications for the global carbon cycle. (Vestergard et al., 2016). In this sense, 

it has been widely described that elevated CO2 (eCO2) concentration affects plants in 

such a way that decreases evapotranspiration (Kimball, 2016; Owensby et al., 1997), 

and increases growth (P. He et al., 1995; Idso, 1994), plant yield (Kimball, 1983), 

photosynthetic capacity (Habash et al., 1995; P. He et al., 1995; Johnson & Pregitzer, 

2007), below-ground biomass (Jongen et al., 1995) and the efflux amounts of root 

exudates (Dong et al., 2021; Jia et al., 2014; Phillips et al., 2012). 

 

Consequently, the supply of fresh plant derived C into the soil matrix due to eCO2 may 

accelerate the decomposition of soil organic matter (SOM) and decrease soil C stocks 

(Blagodatskaya & Kuzyakov, 2008; Fontaine et al., 2004); a process known as “the 

priming effect”. This alteration of increased decomposition of SOM has been previously 

reported in different ecosystems as grasslands (Liu et al., 2017; Vestergard et al., 2016), 

forests (Liu et al., 2017; Phillips et al., 2012; Qiao et al., 2014) and crop fields (Trivedi et 

al., 2016). Thus, due to the fact that old SOM pools contain significant physically and 

chemically protected N stocks, the priming effect is a response to the labile C supply by 

which microorganisms gain access to a reservoir of N to meet their enhanced N demand 

under conditions of plenty C supply (Derrien et al., 2014; Liu et al., 2017; Vestergard et 

al., 2016), causing alterations of soil N balance and N cycle. The aforementioned has 

been described by Müller et al. (2009), who reported that under eCO2 mineralization of 

labile organic N became more important. Also occurs an increment in the dissimilatory 

NO3
- reduction to NH4

+ (DNRA) and in the immobilization of NH4
+ and NO3

- (Müller et al., 

2009). Other alterations in N cycle due to eCO2 have been described by Kammann et al. 

(2008), who indicated an increment of N2O (a potent greenhouse gas) emissions. 

Likewise, Moser et al. (2018) reported that, N2O emissions were 1.79-fold higher, and 

that the linear interpolations showed a 2.09-fold, 1.64-fold and 1.66-fold increase in N2O 

emissions from denitrification, nitrification and heterotrophic nitrification respectively. As 

outcome, these alterations induce significant changes in soil biogeochemical 

characteristics, such as NO3
-, available K+, soil microbial biomass carbon (SMBC) and 

available PO4
2- (Yu et al., 2016). 

 

Likewise, changes in C and N cycles are directly related to the soil microbiome and soil 

microbial processes, as it has been described by Xu et al. (2013) regarding the 

abundance of genes involved in labile C degradation and C and N fixation and 

denitrification processes, which were significantly increased under eCO2. Similarly, He 

et al. (2014) and Xiong et al. (2015) have reported a shift of soil microbial communities 
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under eCO2 in a soybean and a maize agro-ecosystems, respectively, which included 

stimulation of key functional genes involved in carbon fixation and degradation, nitrogen 

fixation, denitrification, methane metabolism and phosphorus cycling. Simonin et al. 

(2015) reported that shoot biomass, root biomass, and soil respiration were increased 

under eCO2 and N supply, and these variables were positively correlated with ammonia-

oxidizing bacteria abundance. Le Roux et al. (2016) described that potential nitrite 

oxidation rate was enhanced in soil by eCO2. Furthermore, the increase of soil microbial 

C and N cycling may be accompanied by microbial sulfur (S) and phosphorus (P) 

demand (Xiong et al., 2015; Yu et al., 2021; Yu et al., 2018). Regarding S cycle 

alterations under eCO2 it has been reported by Yu et al. (2021; 2018; 2018), that an 

increase of S cycling occurs in semiarid grassland soils exposed to eCO2, indicating too a 

significant increase in the abundance of dsrA, dsrB and sox genes. Likewise, Padhy et 

al. (2020), described that several genera as Desulfatibacillum, Desulfotomaculum, 

Desulfococcus, and Desulfitobacterium were more abundant under eCO2 conditions in 

a lowland rice field and that several enzymes involved in S assimilation pathways 

showed higher counts. 

 

Nonetheless, all the aforementioned studies utilized a DNA based approach to assess 

the changes of C, N and S cycle genes and the microbiome composition under eCO2 

conditions which could lead to biases because DNA from dead cells or free DNA 

represented a large fraction of microbial DNA in many soils (Carini et al., 2016), which 

can remain in soils for weeks to years and may opaque DNA-based assessments of 

microbiome analyses (Dlott et al., 2015; Morrissey et al., 2015). Therefore, the use of 

RNA instead of DNA for metagenomic studies provides an ideal tool to study the 

microbial populations that actively participate in various ecological processes (Sharma 

& Sharma, 2018). In this sense, some studies done in Giessen free-air CO2 enrichment 

(FACE) experiment (Gi-FACE) experiment in Giessen Germany, have addressed this 

issue by performing microbiome metatranscriptomics analyses with rRNA and mRNA, 

finding that eCO2 had significant effects on the functional expression associated to both 

rhizosphere microbiomes and plant roots; and that the structure and composition of the 

rhizosphere soil microbiome was the most affected by eCO2 (Bei et al., 2019; Rosado-

Porto et al., 2021). These reports demonstrated that through the use of RNA instead of 

DNA it was possible to assess the effects of eCO2 on the soil microbiome in the Gi-

FACE, contrary to the previous studies which reported little or no effect of it (Brenzinger 

et al., 2017; de Menezes et al., 2016; Regan et al., 2011).  
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Nevertheless, in the current literature it has not been described the use of mRNA 

metatranscriptomics to assess the effects of eCO2 conditions on C, N and S cycle 

processes. mRNA metatranscriptomics allows to elucidate accurately which genes are 

transcribed and to what extent, thereby enabling to demonstrate the functions from a 

potential range of microorganisms (Franzosa et al., 2014). From such functional data, 

active metabolic pathways can be identified in the microbiome and can be associated to 

particular environmental conditions, offering a more informative perspective as it can 

reveal details about populations that are transcriptionally active (Bashiardes et al., 2016). 

Therefore, for the aforementioned reasons, the aims of the present study were: i) to 

assess the effect of long-term eCO2 concentrations on active soil bacteriome, 

mycobiome, protistome and virome through an mRNA-based metabarcoding approach; 

ii) to evaluate the influence of eCO2 on C, N and S cycle expressed genes in a grassland 

ecosystem; and iii) to propose an interaction model of C, N and S cycle processes under 

eCO2 conditions. 

 

Methods 
 
Study site description 
 
The Gi-FACE study is located at 50°32'N and 8°41.3'E near Giessen, Germany, at an 

elevation of 172 m above sea level. It consists of three pairs of rings with a diameter of 

8 m; each pair consists of an ambient and an elevated CO2 treatment ring (Jäger et al., 

2003). Since May 1998 until present, elevated CO2 rings have been continuously 

enriched by 20% above ambient CO2 concentrations during daylight hours. Ambient and 

elevated CO2 rings are separated by at least 20 m, and each pair is placed at the vertices 

of an equilateral triangle. The presence of a slight slope within the experimental site 

(between 0.5 and 3.5°) place the rings on a moisture gradient, such that pair 1 has the 

lowest mean moisture content (38.8% ± 10.2%) and pair 2 has the highest mean 

moisture content (46.1% ± 13.2%), whereas pair 3 is intermediate (40.7% ± 11%) (de 

Menezes et al., 2016; Jäger et al., 2003). The average annual air temperature and 

precipitation are 9.4 °C and 580 mm, respectively. 

 

The vegetation is an Arrhenatheretum elatioris Br.Bl. Filipendula ulmaria subcommunity, 

dominated by Arrhenatherum elatius, Galium album and Geranium pratense. At least 12 

grass species, 15 non-leguminous herbs and up to 5 legumes with small biomass 

contributions (<5%) are present within a single plot (Andresen et al., 2018). The 

experimental field has not been ploughed for more than 100 years. It has received N 
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fertilization in form of granular mineral calcium-ammonium-nitrate (40 kg N ha-1 year-1) 

once a year since 1995 and has been mown twice a year since 1993. The soil at the Gi-

FACE site is classified as Fluvic Geysol; its texture is a sandy clay loam over a clay layer, 

with pH= 6.2 and average C and N contents of 4.5% and 0.45%, respectively, as 

measured in 2001 (Jäger et al., 2003).  

 

Soil sampling, total RNA extraction and ribodepletion 
 
Soil sampling was performed utilizing sawed off 50 ml syringes (11 x 3 cm) and four 

samples were taken to a depth of ~10 cm within each ring in September 2017. Soil cores 

were gently shaken by hand to remove loosely attached soil (bulk soil), while the soil that 

remained attached to the roots was considered as rhizosphere soil. Bulk and rhizosphere 

soils were sieved (<2 mm) and stored at -80 °C for further analyses. 

 

Total RNA extraction was performed following a modified protocol of Mettel et al. (2010), 

as described by Rosado-Porto et al. (2021). After extraction, samples were treated for 

DNA digestion with RNase-Free DNase Set (QIAGEN GmbH - Germany) according to 

manufacturer instructions; DNase reaction was stopped with 10 µl of 50 mM EDTA. With 

the DNA-free RNA, a PCR was carried out, using the universal 16S rRNA gene primers 

27F (5’-AGAGTTTGATCMTGGATCMTGGCTCAG-3’) and 1492R (5’- 

GGTTACCTTGTTACGACTT-3’) (Lane, 1991; Weisburg et al., 1991) and checked on 

agarose gel electrophoresis to verify the absence of remaining DNA in the samples. 

Afterwards, total RNA technical replicates were pooled into a composite sample 

according to the ring and the soil type they belong to. Afterwards, total RNA samples 

were ribodepleted using the MICROBExpress™ Kit (Life Technologies, 5791, Carlsbad 

– California, USA), following manufacturer instructions. Obtained mRNA was reverse 

transcribed to produce double stranded cDNA. 

 

cDNA Sequencing and metatranscriptomics analysis 
 

cDNA products were sequenced with Illumina MiSeq V3 (2 x 300 bp) - 40 M read pairs / 

12 Gb of raw data (LGC Genomics GmbH, Berlin, Germany). After sequenced, all 

libraries for each sequencing lane were demultiplexed using the Illumina bcl2fastq 

2.17.1.14 software (Illumina, 2019), allowing 1 or 2 mismatches in the barcode read 

when the barcode distances between all libraries on the lane allowed for it. Later, 

sequencing adapter remnants were removed and reads with final length < 100 bases 

were discarded. Afterwards, The sequencing outputs were analyzed using SqueezeMeta 
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version 1.3.1 (Tamames & Puente-Sánchez, 2019). Sequences assembly was 

performed using Megahit (Li et al., 2015) and the removal of short contigs (<200 bps) 

was done with Prinseq (Schmieder & Edwards, 2011). Afterwards, RNAs, tRNA/tmRNA 

and open reading frames (ORFs) were predicted using Barrnap (Seemann, 2014), 

Aragorn (Laslett & Canback, 2004) and Prodigal (Hyatt et al., 2010) respectively. 

Subsequently, it was utilized Diamond (Buchfink et al., 2015) to perform the search of 

similarities in GenBank (Clark et al., 2016), eggNOG (Huerta-Cepas et al., 2016), Kyoto 

Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & Goto, 2000) databases. 

Additionally, HMM homology searches were done by HMMER3 (Eddy, 2009) for the 

Pfam database (Finn et al., 2016). Moreover, additional ORFs were obtained by 

Diamond BlastX (Buchfink et al., 2015). The read mapping against contigs was 

performed using Bowtie2 (Langmead & Salzberg, 2012) and the binning was done 

utilizing MaxBin2 (Wu et al., 2016) and Metabat2 (Kang et al., 2019), later bin statistics 

were computed using CheckM (Parks et al., 2015). 

 

Diversity and differential abundance analyses  
 
For the analysis of SqueezeMeta output, data were imported into R studio software 

1.1.419 with package SQMtools version 0.6.1. (Puente-Sánchez et al., 2020). For 

diversity assessment of bacteria, archaea, fungi, viruses and protist frequency tables 

were created and analyzed with package Phyloseq 1.28.0 (McMurdie & Holmes, 2013). 

Core features for each of the aforementioned taxonomical groups were calculated for 

eCO2 and aCO2 conditions by transforming the frequency table counts to relative 

abundance with Microbiome package version 1.8.0 (Lahti & Shetty, 2019). Later, 

features with a total relative abundance ≥10x10-4 % and present in ≥95% of samples 

were included as part of the core. Likewise, for KEGG and GenBank Clusters of 

Orthologous Groups (COG) protein outputs, features with unknown function or 

unassigned name were removed from the frequency tables and core features were 

calculated as described above. 

 

For beta diversity analysis, core datasets were transformed using centered log ratio (clr) 

method (Aitchison, 1982, 1986), using R package ALDEx2 1.22.0 (Fernandes et al., 

2013). Afterwards, community dissimilarity distance matrices were generated using the 

Aitchison distance (Aitchison, 1982, 1986) and visualized using principal components 

analysis (PCA) (Jolliffe & Cadima, 2016). Similarly, beta diversity assessment and the 

identification of features that contributed the most to the clustering of samples was 

performed with DEICODE (Martino et al., 2019). Core features were transformed with a 
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robust centered log ratio (rclr) method, organized with robust principal-component 

analysis (RPCA) and visualized with EMPeror (Vázquez-Baeza et al., 2013). Statistical 

differences between CO2 conditions, were assessed by a Permutational Multivariate 

Analysis of Variance using Adonis method and employing 999 permutations (Anderson, 

2001).  

 

Differential abundance analysis of core features was done with R package ALDEx2 

1.22.0 (Fernandes et al., 2013) by performing a centered log ratio (clr) transformation 

using as denominator the geometric mean abundance of all features and 128 Monte-

Carlo instance. Subsequently, features with absolute ALDEx effect sizes of >0.8, >0.5 

and >0.2 were considered to have a significantly greater, moderate and slightly higher 

abundance respectively between aCO2 and eCO2 rings (Sawilowsky, 2009). 

 

Pathway reconstruction analysis 
 
Pathway prediction for KEGG (Kanehisa & Goto, 2000) and MetaCyc (Caspi et al., 2018) 

databases was done using MinPath (Ye & Doak, 2009). Pathways reconstruction and 

assessment of the Log2 fold change between aCO2 and eCO2 rings was performed with 

SQMtools version 0.6.1. (Puente-Sánchez et al., 2020) and its function “exportPathway” 

and analyzing feature frequencies as relative abundances. 

 
Results 
 
Sequencing and assembly  
 
In total 23,970,892,090 bases were obtained, comprised in 90,534,066 raw sequences, 

from which 72,253,754 sequences were mapped and assembled with Megahit, ranging 

the percentage of sequences successfully mapped per sample between 81.14% and 

78.12%. A total of 1,396,973,823 bases from the mapped sequences were retained after 

short contigs were removed and assembled into 3,997,902 contigs with lengths ranging 

from 9714 to 200 bases. From the obtained contigs, there were predicted 4,063,836 

ORFs, 1,199,550 rRNAs and 2,406 tRNAs/tmRNAs, which subsequently were 

annotated, producing 92,698 successfully annotated taxa and 483,556 and 1,163,975 

KEGG and COG annotations respectively. 

 
Beta diversity and microbe differential abundance 
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Metatranscriptome results from the Giessen FACE demonstrated changes in the 

composition and structure of soil microbial communities due to elevated concentrations 

of atmospheric CO2. Our data indicated that the soil core bacteriome, mycobiome and 

virome were the most affected by eCO2 concentrations, having significantly different 

compositions between aCO2 and eCO2 rings, according to the permutational multivariate 

analysis of variance using Adonis method (Fig. 1a-c). On the contrary the general 

structure of the Giessen FACE soil core archaeome and protistome were not significantly 

affected by eCO2 (Fig. 1d-e). 

 

Moreover, RPCA output from DEICODE and differential abundance results from ALDEx2 

indicated that several taxa were significantly increased or decreased under eCO2 

conditions and that these affected taxa shaped the soil microbiome of the Giessen FACE. 

Our data showed that the Giessen FACE bacteriome was highly influenced by taxa which 

were significantly diminished under eCO2 as is the case of Alcaligenaceae bacterium, 

Nocardioides oleivorans, Patulibacter sp. and Geminicoccus roseus (Fig. 1j, 2a). 

Moreover, differential abundance results demonstrated that the number of bacterial taxa 

that were positively stimulated under eCO2 is greater than the number of taxa which were 

negatively affected. Among the bacterial taxa which were highly stimulated under eCO2 

conditions are Flavobacterium, Ruminiclostridium, Gemmata, Dehalococcoides, 

Minicystis, Ureaplasma, Saccharopolyspora, Asaia, Nocardioides, Defluviimonas, 

Bacillus, Nannocystis, Glaesserella, Pedosphaera, Arenimonas, Nitrospirae bacterium, 

Blastopirellula, Amycolatopsis, Tatlockia, Povalibacte, Thermasporomyces, 

Halolactibacillus, Clostridium, Pedobacter, Aminipila, Rhodovastum, Pirellula and 

Burkholderia, which showed ALDEx effect sizes between 1.5 and 0.8 (Fig. 2a, S1).  

 

Likewise, soil mycobiome was shaped by several fungi greatly affected under eCO2 

conditions, most of them belonging to phyla Basidiomycota, Mucoromycota and 

Ascomycota, as is the case of genus Aspergillus (phylum Ascomycota), which presented 

an ALDEx effect size of 1.15 (Fig. 1l, 2b, S1). Additionally, fungi as Rhizopus, 

Cadophora, Gigaspora, Histoplasma and Aplosporella were also highly stimulated in 

eCO2 rings. Regarding the Giessen FACE soil virome, viruses as Brome mosaic virus, 

Panicovirus and Cocksfoot mild mosaic virus presented a decreased in eCO2 rings, 

whereas viruses as Penicillium discovirus, unclassified Picornavirales, unclassified 

Endornaviridae were positively affected under eCO2 conditions (Fig. 1k, 2d, S1), and the 

changes in these viral taxa has had the strongest influence on the Giessen FACE soil 

virome. Moreover, some viral features belonging to the families Leviridae, Siphoviridae, 

Bromoviridae and Dicistroviridae were affected by eCO2 as well. 
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Although, our data did not show that the general structure of the soil archaeome and 

protistome was significantly influenced by eCO2, the differential abundance test 

demonstrated that some archaea and protist taxa were either positive or negative 

affected under eCO2 conditions (Fig. 1e, 2c, 2e, S1). 

 
Functional metatranscriptome and differential abundance 
 

Beta diversity analysis of expressed genes mapped against GenBank COG and KEGG 

databases, exhibited that the functional metatranscriptome was greatly affected under 

eCO2 conditions in which the annotations performed to both databases were significantly 

different in its structure and composition between eCO2 and aCO2 conditions (Fig. 1g-h). 

After the removal from the core of unclassified and non-characterized proteins mapped 

against the GenBank COG and KEGG databases, 7780 remained for GenBank COG 

and 8880 for KEGG datasets. Furthermore, our data indicated that the sequences 

mapped against both databases showed similar results regarding the number of proteins 

which presented an absolute ALDEx effect size greater than 0.5. In the case of GenBank 

COG data, 146 features were moderately or greatly stimulated under eCO2 conditions, 

in contrast with 161 features which were negatively affected under these conditions. 

Similarly, KEGG results showed that 147 and 156 mapped proteins were positively and 

negatively affected, respectively (S2).  
 

Moreover, several COG categories were positively influenced under eCO2 conditions as 

is the case of categories for energy production and conversion; inorganic ion transport 

and metabolism; cell envelope biogenesis, outer membrane; intracellular trafficking; 

carbohydrate transport and metabolism; and signal transduction mechanisms (Fig. 3, 

S2). Oppositely, categories for translation, ribosomal structure and biogenesis; 

transcription; secondary metabolites biosynthesis, transport and catabolism; nucleotide 

transport and metabolism; DNA replication, recombination and repair; and coenzyme 

metabolism were negatively affected at eCO2 concentrations (Fig. 3, S2). 

 
Nitrogen cycle  
 

Concerning N metabolism, the obtained data showed that under eCO2 conditions a shift 

in the metabolism of nitrate (NO3
-) occurred which involved an increase of the 

dissimilatory NO3
- reduction to ammonium (NH4

+) (DNRA) pathway and a decrease of 

the assimilatory one (Fig. 4a). In which the expression of the genes for the DNRA 

enzymes nitrite reductase (NADH) (NirBD) and nitrate reductase (NarGHI) presented 
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greater abundances under eCO2 conditions (Fig. 4a-b). Whereas the mapped enzymes 

nitrate reductase (NAD(P)H) (NR), ferredoxin-nitrite reductase (NirA) and assimilatory 

nitrate reductase (NasAB) were negatively affected at eCO2 concentrations (Fig. 4a-b, 

S2). Similarly, our results exhibited that the denitrification process suffered alterations, 

presenting the mapped enzymes nitrate reductase/nitrite oxidoreductase 

(NarGHI/NapAB) and nitric oxide reductase (NorBC) higher levels under eCO2 

conditions, with ALDEx effect sizes of 0.44 and 0.641 respectively; being the first one 

responsible for the transformation of NO3
- to nitrite (NO2

-) and the latter one for the 

reduction of nitric oxide (NO) to nitrous oxide (N2O). On the contrary the expressed gene 

that codes for the enzyme nitrous-oxide reductase (NosZ), which catalyzes the 

transformation of N2O to atmospheric nitrogen (N2), was diminished in the eCO2 rings 

(Fig. 4a-b, S2). Likewise, the nitrification process underwent through changes, based on 

the variations of the expression patterns of the enzymes methane/ammonia 

monooxygenase (AmoCAB) and nitrate reductase/nitrite oxidoreductase (NrxAB), which 

were negative and positive affected respectively (Fig. 4a-b, S2). Furthermore, pathway 

reconstruction and differential abundance analyses did not show any significant changes 

in the abundance of N fixation enzymes under eCO2 conditions. 

 
Sulfur cycle 
 

Concerning S cycle alterations due to eCO2 concentrations, the metatranscriptomics 

results indicated affectations in the dissimilatory and assimilatory pathways of sulfate 

(SO4
2-) reduction. In the case of the dissimilatory pathway, the mapped enzymes sulfate 

adenylyltransferase (Sat) and adenylylsulfate reductase (AprAB) were highly decreased 

under eCO2 conditions, especially the latter one, which presented an ALDEx effect size 

of -0.857 and catalyzes the transformation of sulfite (SO3
2-) to adenosine 5'-

phosphosulfate (APS) (Fig. 5a-b). Similarly, the reduction of SO4
2- to APS in the 

assimilatory pathway was also decreased, due to the depletion of the enzymes sulfate 

adenylyltransferase subunit 2 (CysND) and sulfate adenylyltransferase (PAPSS), both 

depleted under eCO2, with ALDEx effect sizes of -0.581 and -0.409 respectively (Fig. 5a-

b, S2). Nonetheless, the enzymes adenylylsulfate kinase (CysC) and sulfite reductase 

(NADPH) (CysJI), responsible of the reduction of APS to 3′-Phosphoadenosine-5′-

phosphosulfate (PAPS), and the reduction of SO3
2- to sulfide (S2-) respectively, were 

increased at eCO2 concentrations (Fig. 5a-b, S2). Moreover, our data showed that 

several enzymes belonging to pathways responsible of the transformation of organic S 

compounds presented higher abundances at eCO2, as it is the case of dimethylsulfone 

monooxygenase, thiosulfate dehydrogenase [quinone] and taurine dioxygenase (Fig. 5b, 
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S2). Additionally, although the SOX system for the oxidation of S was in general not over 

expressed under eCO2 concentrations, the enzyme sulfane dehydrogenase subunit 

(SoxC) presented a slight increment at these conditions, with an ALDEx effect size of 

0.279. 

 
Carbon cycle and ABC membrane transporters 
Functional metatranscriptome showed changes in the metabolism of C compounds. The 

main changes comprised a general increment in the glycolytic and pentose phosphate 

pathways, which included the augmentation of mapped enzymes phosphoglucomutase; 

glucose-6-phosphate isomerase; phosphoenolpyruvate carboxykinase (ATP); pyruvate, 

water dikinase; 2-oxoglutarate, gluconate 2-dehydrogenase; gluconolactonase; 

transketolase and xylulose-5-phosphate/fructose-6-phosphate phosphoketolase, all with 

ALDEx effect sizes ranging from 0.795 to 0.524 (Fig. 6a). Likewise, the data 

demonstrated an increase in the expression of the genes which code for enzymes 

responsible for the degradation of chitin, cellulose and aromatic compounds, as it is the 

case of alpha-N-arabinofuranosidase; endo-1,4-beta-xylanase and chitinase (Fig. 6a). 

Oppositely, the metabolism of fatty acid, starch and sucrose seemed to be negatively 

affected under eCO2 conditions, with the most affected features having ALDEx effect 

sizes from -0,839 to -0,509 (Fig. 6a, S2). 

 

Furthermore, our results indicated a stimulation in the metabolism of aromatic, branched 

chain and sulfur amino acids. In the case of sulfur amino acids metabolism, an 

augmentation of expressed enzymes for the metabolisms of homocysteine, taurine and 

thiol groups occurred (S2). Likewise, the degradation of aromatic amino acids and their 

degradation pathways presented several enzymes highly stimulated as it is the case of 

the aminocarboxymuconate-semialdehyde decarboxylase; enoyl-CoA hydratase; 

amidase; monoamine oxidase; acylpyruvate hydrolase and the gentisate 1,2-

dioxygenase, which showed ALDEx effect sizes between 1.105 to 0.538. Moreover, the 

reconstruction of the prokaryotic carbon fixation pathway known as Arnon-Buchanan 

cycle, denoted its increase at eCO2 concentrations, involving the rise of key enzymes as 

phosphoenolpyruvate carboxykinase (ATP); pyruvate ,water dikinase and pyruvate 

ferredoxin oxidoreductase, among others (Fig. 6a, S2).  

 

Additionally, the metatranscriptomic data on the ABC membrane transport proteins 

suggested changes in the uptake and transport of different carbon compounds under 

eCO2 conditions. In the case of saccharides, there is an increase of the membrane 

transporters for glucose/mannose, ⍺-glucoside, ribose/D-xylose, chitobiose. Whereas 
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there is a decrease in the expression of membrane transporters for 

raffinose/stachyose/melibiose, rhamnose, galactose oligomer/maltooliosaccharide, 

maltose and fructose (Fig. 6b, S2). Similarly, a shift in the ABC transporters for amino 

acids occurred, with an augmentation of the transporters for general L-amino acids and 

branched chain amino acids and a diminishing of glutamate/aspartate and oligopeptides 

transporters (Fig. 6b, S2).  

 

Additionally, some other membrane transport proteins which were over expressed under 

eCO2 conditions were transporters for microncin C, osmoprotectant, lipopolysaccharide 

and iron (II) (Fig. 6b, S2). 

 
Discussion 
 
Soil microbiome response to eCO2 
 

Our results on the functional metatranscriptome of the Giessen FACE confirm previous 

reports from Bei et al. (2019) and Rosado-Porto et al. (2021) on the changes of 

microbiome composition and structure due to eCO2 concentrations. Additionally, 

expands our understanding of the consequences of the soil biological processes that 

involved N, S and C cycles and how these are affected under eCO2 conditions. 

Regarding the changes in the soil microbiome composition, our data confirm that the 

structure of Giessen FACE soil bacteriome was heavily influenced under eCO2 as it has 

been already portrayed by Bei et al. (2019) and Rosado-Porto et al. (2021), which have 

described significant changes in the rhizosphere bacteriome due to eCO2. Additionally, 

several bacterial taxa which were found in the present study have been already 

described to be stimulated under eCO2 conditions, as it is the case of genera Bacillus, 

Burkholderia, Mesorhizobium, Streptomyces, Dongia and Legionella (Rosado-Porto et 

al., 2021).  

 

Besides the soil bacteriome, the results showed that the soil mycobiome was greatly 

affected too at eCO2 concentrations and similarly to Bei et al. (2019), our data indicated 

that the Giessen FACE mycobiome was composed mainly by phyla Basidiomycota, 

Mucoromycota and Ascomycota, being the latter two the ones with the most significantly 

affected fungal features (S1). Nevertheless, although it was demonstrated a significant 

effect of eCO2 concentrations on the mycobiome composition, the reports of its effect on 

soil fungal communities vary according to different authors. Some studies have 

described a decrease of the fungi:bacteria ratio under eCO2 conditions (Bei et al., 2019; 
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Carney et al., 2007; Cheng et al., 2011) and some others reported no significant change 

of the fungal communities (Hayden et al., 2012; Z. He et al., 2010), which indicates that 

the response of fungal communities to eCO2 depends on other environmental factors 

and might be ecosystem specific as well.  

 

In the case of soil archaeome and its variations at eCO2 concentrations, it hasn’t been 

widely studied by metagenomics nor metatranscriptomics methods, nonetheless some 

reports described a strong influenced from CO2 on soil archaeal communities (Hayden 

et al., 2012; Lee et al., 2015; Lee & Kang, 2016). Although, the Giessen FACE 

archaeome did not show significant differences in its structure a composition in response 

to eCO2 concentrations, some taxa presented changes in their abundance, various of 

them belonging to the family Nitrosopumilaceae (phylum Thaumarchaeota). In addition, 

in the present study the core archaeome was mainly composed phylum Euryarchaeota, 

contrary to what Bei et al. (2019) described, who reported the phylum Thaumarchaeota 

as the most abundant one. 

 

Furthermore, our data demonstrated that not only the Giessen FACE soil bacteriome 

and mycobiome were the ones significantly affected under eCO2 conditions, but the soil 

core virome responded to it too. So far, in the current literature there are no reports about 

the effects of eCO2 on the soil virome. Moreover, it has been indicated that in general the 

diversity of the soil virome is highly underestimated, with of most the current information 

focused on bacterial phages and almost nothing is known about viruses that infect 

nonbacterial soil microbes, such as the archaea, fungi, and soil protozoa (Pratama & van 

Elsas, 2018; Williamson et al., 2017). Nevertheless, it has been described the 

entanglement of viral soil communities with the rest of the soil microbiome and its 

response to biotic and abiotic properties of soil, highlighting the importance of the virome 

within the whole soil microbiome (Santos-Medellin et al., 2021). Our results on the 

differential abundance of the core virome under eCO2 conditions, suggested that several 

viral features were reacting to changes in bacterial, archaeal and fungal taxa. As it is the 

case of the augmentation of features from the families Leviridae and Siphoviridae (S1), 

which are viruses that use bacteria and archaea as hosts (Krupovic et al., 2020; 

“Leviviridae,” 2012; “Siphoviridae,” 2012). Similarly, some fungal viruses as Mitovirus 

and Penicillium discovirus have suffered significant changes in their abundance under 

eCO2 conditions, which might be linked to the changes of some fungal features as 

Penicillium oxalicum and members belonging to the class Ophiostomatales (Hong et al., 

1999; Krishnamurthy, 2017).  
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Changes in C compounds assimilation and priming effect 
 

The obtained data demonstrated changes in several mapped enzymes and 

reconstructed pathways which involved the metabolism of different C compounds, 

indicating that C dynamics have suffered alterations due to eCO2. It has been widely 

described that eCO2 increases the efflux of soluble sugars, amino acids, phenolic acids, 

and organic acids in the root exudates (Dong et al., 2021; Jia et al., 2014; Phillips et al., 

2012), which produces the so called “priming effect”, that consists in an acceleration in 

SOC decomposition (Blagodatskaya & Kuzyakov, 2008; Fontaine et al., 2004). 

Therefore, the functional metatranscriptomic data demonstrated the occurrence of this 

aforementioned phenomena in the Giessen FACE soil, presented mainly in an 

overexpression of glycolysis and pentose phosphates pathways for the metabolism of 

saccharides and an increment in the metabolism of certain amino acids, alongside with 

an augmentation of enzymes responsible for the degradation of chitin, cellulose and 

lignin (Fig. 7). Similar results have been reported by He et al. (2010, 2014), Xiong et al. 

(2015) and Yu et al. (2018; 2018), who described that functional genes for C compounds 

degradation, either labile or recalcitrant, were stimulated under eCO2 conditions, and the 

increment in the degradation of soil organic polymers as part of the decomposition of 

older soil C (Niklaus & Falloon, 2006; Van Groenigen et al., 2005; Vestergard et al., 

2016; Xie et al., 2005).  

 

Furthermore, the data suggest a shift in the uptake and use of C sources at eCO2 

concentrations, reflected in a shift towards a higher utilization of sugars and amino acids 

and a decrease in the metabolism of lipids, especially fatty acids (Fig. xxx). Additionally, 

the analysis of ABC membrane transporters revealed changes on the saccharide 

compounds that are more often used under eCO2 conditions, indicating a preference for 

the uptake of glucose, mannose, ⍺-glucosides, ribose, xylose and chitobiose instead of 

raffinose, stachyose, melibiose, rhamnose, galactose, maltose and fructose (Fig. xxx). 

Similarly, pathway reconstruction of amino acids metabolism exhibited a shift towards 

the utilization of aromatic, sulfur and branched chain amino acids over glutamate, 

aspartate and oligopeptides. 

 

Besides, functional metatranscriptome revealed that prokaryotic carbon fixation was 

augmented at eCO2 concentrations, with the increment of different mapped enzymes as 

phosphoenolpyruvate carboxykinase, pyruvate water dikinase and pyruvate ferredoxin 

oxidoreductase companied by a decrease of the ribulose-bisphosphate carboxylase 

(Rubisco) enzyme (Fig. xxx). These results are opposite to the ones reported by He et 
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al. (2010, 2014), Xu et. al (2013), Xiong et al. (2015) and Yu et al. (2018; 2018), in which 

all of them described a significant increment of the Rubisco enzyme under eCO2 

conditions. The aforementioned suggests that in the Giessen FACE, the C fixation 

performed by prokaryotes at eCO2 concentrations is very likely to be done through the 

reverse Krebs cycle, also known as Arnon-Buchanan cycle, (Buchanan et al., 2017; 

Buchanan & Arnon, 1990) instead of the Rubisco pathway. 

 

Shift in N cycle processes 
 

Changes in the N cycle and N compounds metabolism have been previously described 

in the Giessen FACE (Kammann et al., 2008; Moser et al., 2018; Müller et al., 2009), 

nonetheless the microbiological underlying mechanisms which were driving these 

processes were not detected until now. The metatranscriptomic results confirmed a 

switch on the NO3
- reduction at eCO2 concentrations, from an assimilatory process to a 

DNRA, reflected by the increment of mapped enzymes nitrite reductase (NADH) (NirBD) 

and nitrate reductase (NarGHI), responsible for the transformations of NO3
- to NO2

- and 

from NO2
- to NH4

+ in the DNRA process (Fig. 4a-b, 7). The aforementioned was formerly 

described by Müller et al. (2009), who through a 15N labelling approach identified an 

increment in the DNRA and in the immobilization of NH4
+ and NO3

-.  

 

Additionally, our functional metatranscriptomic approach clarifies the processes leading 

to the excess on the production of N2O under eCO2 conditions previously described by 

Kammann et al. (2008) and Moser et al. (2018). According to our data, the 

abovementioned occurred due to an impairment of the denitrification process with an 

increase in the production of N2O, because an over expression of the enzyme nitric oxide 

reductase (NorBC), alongside a decrease in the transformation of N2O to N2 due to a 

under expression of the enzyme nitrous-oxide reductase (NosZ), which denotes that in 

the Giessen FACE the excess of produced N2O has not been totally converted to N2 (Fig. 

7).  

 

Moreover, the results also demonstrated changes in the nitrification process, which are 

represented by a depletion of the conversion of NH4
+ to hydroxylamine (H3NO) 

performed by the enzyme methane/ammonia monooxygenase (AmoCAB), accompanied 

by an increment in the expression of the mapped enzyme nitrate reductase/nitrite 

oxidoreductase (NrxAB), suggesting an augmentation in the transformation of NO2
- to 

NO3
- and therefore and increment in the overall nitrification process (Fig. 4a-b, 7). 

Nonetheless, due to the fact that the first nitrification step is under expressed in the eCO2 
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rings, denotes that at these conditions soil organisms are obtaining N from other sources 

instead of NH4
+, which could be explained by Müller et al. (2009) results, in which are 

described that the mineralization of labile organic N became more important at eCO2 

concentrations. These shift in the use of N sources might have occurred as part of the 

priming effect, due to old SOM pools contain significant physically and chemically 

protected N stocks, and therefore the priming effect was a response to the increased C 

supply in the Giessen FACE by which microorganisms gained access to N reservoirs to 

meet their enhanced N demand (Derrien et al., 2014; Liu et al., 2017; Vestergard et al., 

2016). Moreover, because our results did not show under eCO2 conditions any increment 

of N fixation enzymes, contrary to what has been described by He et al. (2010, 2014), 

Xu et. al (2013), Xiong et al. (2015) and Yu et al. (2018; 2018), supports the idea that in 

the Giessen FACE, the enhanced N requirements are being met through the uptake of 

organic sources. Which according to our results might have been the aromatic, sulfur 

and branched chain amino acids, since their metabolism and uptake were augmented at 

eCO2 concentrations (Fig. 7). 

 

S metabolism at eCO2 concentration 
 

Most research about the effects of eCO2 on the cycling of nutrients have been focused 

on C and N cycles, nonetheless the effects of eCO2 conditions have been also assessed 

for other elements including S (He et al., 2010, 2014; Padhy et al., 2020; Yu et al., 2018), 

however, until now there were no reports about the changes in the S cycling and 

metabolism in the Giessen FACE. The results obtained in the present study 

demonstrated alterations in the metabolism of SO4
2-, which comprised a lessening of the 

dissimilatory metabolism of SO4
2 reduction, evidenced by the decrease in the expression 

of the enzymes sulfate adenylyltransferase (Sat) and adenylylsulfate reductase (AprAB) 

under eCO2 conditions (Fig. 5, 7). Similarly, the assimilatory SO4
2- reduction metabolism 

suffered changes due to eCO2, in which the first step that involves the reduction of SO4
2- 

to APS and is catalyzed by the enzymes sulfate adenylyltransferase subunit 2 (CysND), 

sulfate adenylyltransferase (PAPSS) and sulfate adenylyltransferase (Sat) presented 

some degree of depletion. However, the other steps of this pathway, from the reduction 

of APS up to the production of S2-, were increased under eCO2 conditions (Fig. 5). This 

phenomenon could indicate that similarly to N metabolism, due to the augmented C 

supply, S has become too a limiting element for the development of soil organisms, thus 

the assimilatory metabolism of S was enhanced at eCO2 concentrations as a response 

of this environmental pressure. Although, there are not many reports about the effect of 

eCO2 on the S cycle, it has been described by Yu et al. (2018) that under eCO2 an 
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increase of S cycling occurred and similar to our data Padhy et al. (2020) reported an 

increment in the assimilatory metabolism of S under eCO2 conditions. Moreover, these 

data also suggested that the obtention of S in the Giessen FACE is not coming from 

inorganic sources but from organic ones, very likely as consequence of the priming effect 

and the mining of S from the SOM. One of these sources for the supply of S according 

to our data, might be sulfur amino acids and molecules with thiol groups, due to the 

metabolism of these compounds was augmented under eCO2 conditions (Fig. 5b, 7). 

Moreover, although our data did not show an overall increment of the SOX system for 

the obtention of sulfur, it a slight augmentation of the enzyme sulfane dehydrogenase 

(SoxC) occurred. Which could confirm that in the Giessen FACE, soil organisms have 

been used organic molecules to supply the S requirements because of eCO2 

concentrations, similar results have been described by He et al. (2014), who reported an 

increment of sox genes under eCO2 conditions.  
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Figure 1. Beta diversity analysis of core features from the Giessen FACE metatranscriptome. 

Principal Components Analysis (PCA) of (a) archaea, (b) bacteria, (c) virus, (d) fungi, (e) protist, 
(f) other eukarya, (g) GenBank COG and (h) KEGG functions; p-values obtained from Adonis 

test. Robust principal-component analysis (RPCA) of (i) archaea, (j) bacteria, (k) virus, (i) fungi. 

Length and direction of the arrows indicate taxa that contributed the most to the clustering of 

samples. 
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Figure 2. Differential abundances of core features from the Giessen FACE metatranscriptome of 

(a) bacteria, (b) fungi, (c) archaea, (d) virus and (e) protist. ALDEx2 results of features with an 

ALDEx effect size > 0.5 using centered log ratio (clr) transformation and the geometric mean 

abundance of all features. 
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Figure 3. Differential abundance of Giessen FACE metatranscriptome core features annotated 

against GenBank Clusters of Orthologous Groups (COG) and grouped according COG 
categories. Results expressed as relative abundance (right) and ALDEx effect size (left) of 

features with an ALDEx effect size > 0.5 using centered log ratio (clr) transformation and the 

geometric mean abundance of all features. 
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Figure 4. Reconstructed N pathways of NO3- assimilatory and dissimilatory reduction, 

denitrification and nitrification processes. (a) N transformations expressed as Log2 fold change of 

features as relative abundance. ALDEx effect size: (**) >0.5, (*) >0.2. (b) Differential abundance 

of N cycle enzymes with absolute ALDEx effect sizes > 0.2.  
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Figure 5. Reconstructed pathways of S metabolism. (a) Assimilatory SO42- reduction and 

dissimilatory SO42- reduction and oxidation processes expressed as Log2 fold change of features 
as relative abundance. ALDEx effect size: (***) >0.8, (**) >0.5, (*) >0.2. (b) Differential abundance 

of S cycle enzymes with absolute ALDEx effect sizes > 0.1 involved in assimilatory SO42- 

reduction, dissimilatory SO42- reduction and oxidation, uptake of S from organic compounds and 

sulfide synthesis 
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Figure 6.  Differential abundance of enzymes grouped by KEGG Orthology (KO) second level 

of (a) Carbon compounds metabolism and (b) ABC transporters.  

 

Figure 7. Model diagram of interaction of C, N and S cycles in the Giessen FACE. 
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The effects of eCO2 on the soil microbiome have been described in different ecosystems 

around the globe, demonstrating several changes in its structure and function (Cheng et 

al., 2011; He et al., 2010, 2014; Simonin et al., 2015; Wang et al., 2017; Xiong et al., 

2015; Xu et al., 2013; Yu, Deng, et al., 2018; Yu, He, et al., 2018). Nonetheless, in the 

Giessen FACE, most of performed research did not show major effects of eCO2 on the 

soil microbiome function nor its structure (Brenzinger et al., 2017; de Menezes et al., 

2016; Regan et al., 2011), although the changes in soil nutrient dynamics had been 

already described with great implications in a feedback system which has been causing 

higher emissions of greenhouse gases as a response to eCO2 concentrations (Kaleem 

Abbasi & Müller, 2011; Kammann et al., 2008; Moser et al., 2018; Müller et al., 2009). 

One key aspect to consider for the detection of how the soil microbiome has been 

affected by eCO2 is to target and assess the active soil microorganisms through the 

utilization of metagenomics analyses based on RNA instead of DNA, as it has been 

demonstrated by Bei et al. (2019), who was the first to report changes on the microbiome 

of the Giessen FACE because of eCO2, applying a metatranscriptomics approach for 

that purpose. Therefore, in the present work the evaluation of the soil microbiome at the 

Giessen FACE and Geisenheim VineyardFACE was done through transcriptomics 

methods, based on 16S rRNA sequencing and the evaluation of functional genes through 

mRNA sequencing and qPCR. 

 

Moreover, in the current literature about the assessment of soil microbiome changes 

affected by eCO2 utilizing NGS technologies have not applied proper methods for the 

analysis of sequencing outputs, due to a well described fact that is the compositionality 

of NGS data (Gloor et al., 2017; Susin et al., 2020), for which the procedures proposed 

by John Aitchison to deal with these kind of data are necessary to be taken into account 

(Aitchison, 1982, 1986, 2005; Aitchison & Greenacre, 2002; Kaul et al., 2017). Hence, in 

the present study microbiome’s structure of various other environments, differential 

abundances, correlation with environmental factors and microbe-microbe interactions 

were mostly evaluated applying compositional data approaches (Fernandes et al., 2013, 

2014; Kurtz et al., 2015; Martino et al., 2019; Yoon et al., 2019). Consequently, the use 

of metatranscriptomics approaches together with proper methods for the analysis of the 

NGS data permitted to determine several effects of eCO2 on the soil of the Giessen 

FACE and Geisenheim VineyardFACE, which included alterations on soil microbiome 

structure and composition, alongside to changes in the cycling of nutrients (Chapter 2-

4).  
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In both facilities the obtained results showed that the zones under higher influence of 

vegetation were the ones with the greater changes on the soil microbiome, as it was the 

case of the Giessen FACE in which the rhizosphere soil structure and composition was 

significantly affected by eCO2 (Chapter 2). Likewise, in Geisenheim the green inter-rows 

were the ones with significant differences between aCO2 and eCO2 microbiomes, 

contrary to the open inter-rows, which did no presented significant changes (Chapter 3). 

Furthermore, differential abundance analyses from both FACEs performed with ALDEx2 

(Fernandes et al., 2014), showed how several taxa were significantly affected, either 

positively or negatively by eCO2 (Chapter 2-4). Among the bacterial genera that were 

stimulated under eCO2 conditions in both FACEs are Burkholderia, Asticcacaulis, 

Marmoricola, Nocardioides, Massilia, Bradyrhizobium, Acidibacter and Legionella, which 

might suggest that certain bacterial genera could be more susceptible to increased C 

supplies to the soil due to eCO2 concentrations and therefore augmented under these 

conditions. Moreover, microbe-microbe interaction data obtained from the Geisenheim 

VineyardFACE demonstrated that eCO2 produced alterations on bacterial interaction 

patterns, represented mainly by fewer interactions in eCO2 rings but more of the strong 

positive correlations (Chapter 3). 

 

Although initially for both locations it was only evaluated the bacteriome through the 

amplification of 16S rRNA V4-V5 regions, which showed important differences between 

aCO2 and eCO2 rings (Chapter 2-3). Later, by the sequencing of mRNA the analysis of 

other taxonomical groups from the Giessen FACE was possible, that included archaea, 

fungi, virus and protist alongside bacteria as well. A similar approach for the analysis of 

the functional metatranscriptome was applied by Bei et al. (2019), who described that 

eCO2 had significant effects on the functional expression associated to both rhizosphere 

microbiomes and plant roots; and that abundances of Eukarya relative to Bacteria were 

significantly decreased in eCO2 as well. Nonetheless, the mRNA metatranscriptomic 

approach used in the present research, allowed to expand the report of Bei et al. (2019), 

demonstrating that besides the bacteriome, the mycobiome and the virome of the 

Giessen FACE have undergone through significant changes in their structure and 

compositions because of eCO2 concentration, oppositely to soil archaeome and 

protistome, which were generally not significant affected under these conditions (Chapter 

4).  

 

In general terms, the obtained data from both FACEs demonstrated that the soil microbial 

activity was enhanced under eCO2 conditions, evidenced in Giessen FACE by a 

significant increase of CO2 fluxes in the eCO2 rings (Chapter 2) and in Geisenheim by 
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an augmentation of the soil basal respiration but also with the addition of different carbon 

substrates (Chapter 3). Previous reports of Cheng et al. (2011) and King et al. (2004) 

have described that eCO2 affected soil microbial respiration, producing an augmentation 

of microbial biomass and activities. Nonetheless, 16S rRNA real time qPCR showed 

different results at both facilities about the way that bacterial populations have been 

affected by eCO2 in the areas of higher plant influence, represented by an increment in 

bacterial 16S rRNA copy number in the Giessen FACE rhizosphere soil but a decrease 

in Geisenheim green inter-rows at eCO2 concentrations. These results could reflect the 

differences in time exposure to eCO2 conditions in both places, because Giessen FACE 

and Geisenheim VineyardFACE have been running since 1998 and 2014 respectively, 

which have given more time to soil bacterial communities in the Giessen FACE to adapt 

to the environmental pressures which have occurred because of eCO2, a process that 

could be still occurring in the VineyardFACE. This trend might also explain the great 

difference in the number of bacterial taxa significantly correlated with the supplied eCO2 

at both facilities, a total of 119 and 16 genera in Giessen and Geisenheim respectively. 

 

Nonetheless, despite the differences in the way that bacterial taxa have been affected 

by eCO2 at both facilities, the data clearly indicated that the overall soil microbial activity 

has been stimulated under eCO2 conditions, which denotes that soil microbiomes have 

been responding to a higher availability of C sources. The aforementioned is supported 

by the microbial respiration data from Geisenheim, that demonstrated an increased 

response to the added C substrates L-Arginine, D-Galactose, D-Glucose and N-Acetyl 

glucosamine. Likewise, functional metatranscriptomics data from Giessen, showed an 

increment of saccharides and amino acids metabolisms. A direct consequence of this 

increment of C input is a higher demand for other nutrients especially N, which leads to 

the phenomenon known as priming effect, that produces an augmentation in the 

degradation of SOC (Blagodatskaya & Kuzyakov, 2008; Fontaine et al., 2004) (Chapter 

1 section 1.3.1). Functional metatranscriptomics results demonstrated that this process 

has been occurring in the Giessen FACE and the access to protected C sources has 

become more important in the eCO2 rings, evidenced by an increment in the expressed 

genes of enzymes as alpha-N-arabinofuranosidase; endo-1,4-beta-xylanase and 

chitinase involve in the degradation of cellulose, chitin and lignin as it has been similarly 

described in other FACE experiments by He et al. (2010, 2014), Xiong et al. (2015) and 

Yu et al. (2018a; 2018b) (Chapter 4). Although the assessment of enzymes able to 

degrade complex C sources has not been performed in Geisenheim VineyardFACE, it is 

very likely that a similar process is occurring in the eCO2 rings of this facility, supported 
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also by the observed changes in N metabolism in this FACE, which suggested that soil 

microorganisms are satisfying their N requirements by mining the SOM. 

 

An obvious consequence of a higher demand of N due to a greater input of C through 

root exudates and the degradation of the SOM, would be an increment in N2 fixation 

rates and metabolism to achieve the enhanced N requirements under eCO2 conditions. 

This increment of N2 fixation genes has been reported by several authors (He et al., 

2010, 2014; Xiong et al., 2015; Xu et al., 2013; Yu, Deng, et al., 2018; Yu, He, et al., 

2018) and it was hypothesized by Rosado-Porto et al. (2021) (Chapter 2) that a similar 

process was occurring in the Giessen FACE due to a significant increment in the 

abundance of certain bacterial genera that belong to families Rhizobiaceae and 

Xanthobacteraceae as Rhizobium, Mesorhizobium and Phyllobacterium, which have 

been widely described as N2 fixing microorganisms. Nevertheless, the assessment 

through mRNA of functional genes involved in this process does not support the 

hypothesis of an increment in N2 fixation in the Giessen FACE, since the reconstruction 

of N2 fixation pathway and differential abundance results from the functional 

metatranscriptomics outputs did not show significant differences between aCO2 and 

eCO2 conditions (Chapter 4). Comparably, in Geisenheim VineyardFACE the measuring 

of cDNA from nifH mRNA by qPCR, showed that under eCO2 conditions occurred a 

significant diminishing of copy numbers of the expression of this gene, indicating no 

augmentation of N2 fixing metabolism, but oppositely a decrease of it (Chapter 3). Both 

data regarding N2 fixation in both FACE facilities, suggests that similar processes have 

been happening concerning the sources that soil organisms have been using to fulfill 

their enhanced N demands. According to the results from both FACEs, the most likely 

source for N would be the SOM, since the report of Müller et al. (2009) demonstrated 

that in the Giessen FACE the mineralization of labile organic N became more important 

under eCO2 conditions, due to SOM pools contain important protected N stocks, which 

could indicate that Geisenheim VineyardFACE is undergoing through a similar process. 

Therefore, the priming effect would be a response to access N reservoirs to meet their 

greater N demand under conditions of higher C inputs (Derrien et al., 2014; Liu et al., 

2017; Vestergard et al., 2016).  

 

The abovementioned would be supported by the results on the analysis of the nitrification 

process in both FACEs, in which the step from NH4
+ oxidation to H3NO catalyzed by the 

enzyme ammonia monooxygenase was under eCO2 conditions either decreased or with 

no significant changes in the Giessen FACE and the Geisenheim VineyardFACE 

respectively. This was initially reported by Müller et al. (2009), who portrayed alterations 
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in the nitrification process under eCO2, which consisted of a decreased of NH4
+ oxidation 

to NO3
- by 25%. Moreover, pathway reconstruction of the nitrification process in the 

Giessen FACE (Chapter 4), revealed that although there was a lessening of the mapped 

enzyme methane/ammonia monooxygenase, responsible for the oxidation of NH4
+ to 

H3NO, an increment in the expression of the enzyme nitrate reductase/nitrite 

oxidoreductase occurred, which catalyzes the oxidation of NO2
- to NO3

-. These results 

could be explained by increment of heterotrophic nitrification made by fungi, which has 

been previously reported by several authors, in which nitrification is mostly performed 

from the oxidation of organic N as L-asparagine, propionamide, 

malonylmonohydroxamate and 3-nitropropionate using peroxidase enzymes (Doxtader 

& Alexander, 1966; Hora & Iyengar, 1960; Marshall & Alexander, 1962). Additionally, 

more recent studies done by Laughlin et al. 2008 and Zhu et al. 2015 have described in 

a grassland soil and in subtropical forest respectively, that a significant part of the 

nitrification was carried out by fungi and that they can simultaneously oxidize NH4
+ and 

organic N. Moreover, many of the fungal taxa able to perform nitrification are members 

of the genus Aspergillus (Doxtader & Alexander, 1966; Hora & Iyengar, 1960; Marshall 

& Alexander, 1962), one of the most positively affected and with the largest influence in 

the structure of the Giessen FACE mycobiome (Chapter 4). Therefore, the 

abovementioned might support the idea of the mining of SOM by soil microorganisms, 

very likely fungi, in order to fulfill their N requirements under eCO2, having as 

consequence alterations in the nitrification process. 

 

Furthermore, metatranscriptomics and qPCR analyses also demonstrated that the 

denitrification process has undergone through changes in the levels of expression of 

different genes under eCO2 conditions, which in the case of the Giessen FACE are 

directly related with augmentation of N2O emissions. Initially, Rosado-Porto et al. (2021) 

based on the prediction of the functional metatranscriptome utilizing PICRUSt2 (Douglas 

et al., 2020), suggested that the increment of different predicted enzymes involved in the 

denitrification process were linked to the increased emissions of N2O under eCO2 

conditions (Chapter 2). Which later was confirmed by the reconstruction of the Giessen 

FACE denitrification pathway, that demonstrated that at eCO2 concentrations occurred 

an unbalance between the expression levels of the genes responsible of coding the 

enzymes nitric oxide reductase (NorBC) and nitrous-oxide reductase (NosZ), in charge 

of the reduction of NO to N2O and N2O to N2, which lead to the increase in the production 

of N2O by denitrifying microorganisms (Chapter 4). This increment of N2O emissions 

under eCO2 conditions was first reported by Kammann et al. (2008) and later by Moser 

et al. (2018) by applying a 15N approach detailed the different sources of these increased 
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emissions. According to Moser et al. (2018), in the case of the denitrification, it occurred 

a rise of 2.09-fold of N2O emissions mostly because of the oxidation of organic N and 

incomplete reduction in NO2
-, which would support the idea that soil microorganisms are 

obtaining their N supplies from SOM and leading to greater N2O emissions. Although, in 

Geisenheim VineyardFACE the data on the evaluated genes nosZ, nirK and nirS, did not 

show the same patterns of change in eCO2 rings as in the Giessen FACE, it did present 

alterations in the expression of nirK gene (Chapter 3). Which suggests that denitrifying 

metabolism has undergone through some changes that are needed to be clarified to 

determine if alterations in the expressions of the other genes involved in denitrification 

process could lead to higher emissions of GHG. 

 

Beyond the alterations of C and N cycles caused by eCO2, functional 

metatranscriptomics data from the Giessen FACE demonstrated that S cycling has 

undergone through changes as well, represented mainly by modifications in SO4
2- 

metabolism and the S sources that have been used by soil organisms under eCO2 

conditions (Chapter 4), alterations that have not been detected before the execution of 

this study. Proving that the use of functional metatranscriptomics is an important tool for 

the evaluation of the effects of climate change on the soil microbiome and soil microbial 

processes, due to it allows to determine a broader array of microbial groups and proteins 

which permit to develop a better understanding of the effects of environmental stressors 

on soil microorganisms. Therefore, future microbiome research on the Geisenheim 

VineyardFACE will need to assess the soil functional metatranscriptome as well, with the 

aims of expanding the data of the effects of eCO2 on C and N cycles, but also to evaluate 

changes in the cycling of other nutrients as S and P and to determine what other 

microbial groups have been disturbed under these conditions in this facility. Additionally, 

forthcoming investigations will need to perform more sampling events at different time 

points to assess the effects of seasonal and vegetation changes in order to create a 

better picture of the alterations that the soil microbiome and soil microbial processes 

have been undergoing due to eCO2. 

 

In general terms, the results obtained in the present study demonstrated that through the 

use of a metatranscriptomic approach and applying compositional data analysis it was 

possible to determine that eCO2 have affected the soil microbiome and the cycling of C 

and N from two ecosystems with different times of exposure to eCO2 concentrations. 

Nonetheless, it is important to consider that future climatic conditions, according to IPCC 

latest report, also include rise of global temperatures (IPCC, 2021), factor that is 

indispensable to be evaluated alongside with eCO2, in order to have a better 
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understanding of future climatic conditions on soil microbiome and its associated 

processes. Some reports have been already performed to assess the effects of these 

two environmental factors on the soil microbiome, together and separately in different 

ecosystems, which have showed various effects and alterations on the microbiome 

structure and/or microbial process (Padhy et al., 2020; Xue et al., 2016; Yu, Deng, et al., 

2018). Therefore, future research in temperate European ecosystems will need to focus 

on the assessment of the eCO2 and elevated temperature simultaneously, as it is 

currently happening in the Giessen temperature FACE and from which some initial 

results will be given in the forthcoming year. 
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