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Abstract

 

The lungs together with the heart are the core of the human body. These organs maintain 

the homeostasis and provide substantial elements for proper functioning of the organism. Any kind of 

damage or dysfunction to these organs, results in serious disorders and general imbalance of 

the organism. Most critical are defects in the endothelial barrier, which consist of the endothelial cells 

(ECs). The vascular system is padded with a single layer of ECs. Endothelial cell structure and 

functional integrity are essential for the maintenance of the vessel wall and the circulation. Endothelial 

cell injury, activation or dysfunction is a feature of many pathologic states, just to mention few like 

inflammation or effects on vascular tone. 

Regenerative medicine, including cell replacement therapy, is a promising alternative for disease 

treatments. The application of in vitro-generated (and if required) genetically amended cells could help 

to recover the function of damaged parts of a specific organ. One of the approaches is to establish or 

restore normal function of affected endothelial cells, by therapies based on embryonic stem cells 

(ESCs). However, generation of those cells is ethically debatable. Development of induced pluripotent 

stem cells (iPS) from somatic cells has emerged as a solution. This enables the generation of patient- 

and disease-specific iPS cells, which may produce therapeutic cell populations without immune 

rejection and moral dispute. Regenerative therapies seem to carry a great promise to treat endothelial 

dysfunction in respiratory and cardiovascular diseases. 

To investigate the sites of integration of ES cell-derived endothelial (progenitor) cells, new cell lines 

from murine ES cells using lentiviral (LV) transduction were generated. In order to achieve the aim it 

had been decided to test different promoter-resistance-gene combinations. Therefore, a set of vectors 

containing murine promoters: VE-Cadherin (vascular endothelial) or VEGFR2 (vascular endothelial 

growth factor) in connection with GFP (green fluorescent protein) and antibiotic resistance genes 

hygromycin B, neomycin and puromycin, were produced and validated. It was feasible to generate and 

screen a cell line within a few weeks.  

The newly established cell lines are suitable for monitoring endothelial differentiation and selection by 

means of antibiotic resistance. These experiments demonstrated that for an effective antibiotic 

selection of the desired cell type, further investigations are required. It was possible to produce murine 

iPS cell lines, containing the above-mentioned transgenes. Carefully selected and purified murine ECs 

subsets will be used for in vivo studies in tumor angiogenesis models in subsequent studies. 
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Zusammenfassung

 

Die Lunge, zusammen mit dem Herzen, bildet den Kern des menschlichen Körpers. Gemeinsam 

erhalten diese Organe die Homöostase und stellen wesentliche Substanzen für die einwandfreie 

Funktion des Organismus zur Verfügung. Störungen oder Dysfunktionen in Teilen dieser Organe oder 

deren Gesamtheit führen zu schwerwiegenden Erkrankungen sowie zu einem physiologischen 

Ungleichgewicht. Sehr kritisch sind dabei Defekte in der endothelialen Barriere, die aus 

Endothelzellen aufgebaut ist. Das weit verzweigte vaskuläre System ist mit einer einzelnen Schicht 

dieser Endothelzellen ausgekleidet. Die Endothelzellstruktur sowie die funktionale Integrität dieser 

Schicht sind essentiell für die Aufrechterhaltung der Blutgefäßwand und deren zirkulatorische 

Funktion. Verletzungen, Aktivierungen oder Dysfunktionen der Endothelzellen sind Charakteristika 

verschiedener pathologischer Zustände, z.B. im Zuge von inflammatorischen Prozessen oder bei 

krankhaften Veränderungen des vaskulären Tonus. Die Ansätze der regenerativen Medizin, die auch 

eine Zellaustausch-Therapie beinhalten, sind eine vielversprechende Möglichkeit, derartige 

pathologische Prozesse zu behandeln. Die Verwendung in vitro-generierter und falls notwendig 

gentechnisch veränderter Zellen könnte zur Regenerierung der Funktion der gestörten Teile des 

spezifischen Organs beitragen. Die Etablierung von Therapien, basierend auf embryonalen 

Stammzellen könnte eine Möglichkeit sein, die normale Funktion pathologisch betroffener 

Endothelzellen wiederherzustellen. Jedoch befindet sich die Generierung derartiger Zellen im 

Spannungsfeld ethischer Diskussion.  

Daher ist die Entwicklung induzierter pluripotenter Stammzellen (iPS) aus somatischen Zellen eine 

Möglichkeit, diesen Debatten entgegenzutreten. Die Etablierung von iPS-Zellen ist individuell je nach 

Patient und Erkrankung und könnte zur Produktion von therapeutisch verwendbaren Zellpopulationen 

führen, die ohne Abstoßungsreaktion nutzbar sowie ethisch unbedenklich sind. Derartige regenerative 

Therapien sind eine vielversprechende Entwicklung zur Behandlung endothelialer Dysfunktionen in 

respiratorischen und kardiovaskulären Erkrankungen. Um die Funktionalität der aus Stammzellen 

entwickelten endothelialen (Vorläufer) Zellen zu analysieren und räumliche Verteilung zu verfolgen, 
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wurden unter Verwendung der lentiviralen Transduktion neue Zelllinien aus Mausstammzellen mit 

verschiedenen Promoter/Resistenzgen-Kombinationen generiert. 

Die Vektoren besitzen einen spezifischen murinen Promotor, VE-Cadherin (Vaskulär-endotheliales) 

oder VEGFR2 (Vascular Endothelial Growth Factor Rezeptor), der die Expression von GFP (grün 

fluoreszierende Protein) reguliert, und ein Gen für antibiotische Resistenz, wie Hygromycin B, 

Neomycin oder Puromycin. Die verschiedenen hiermit generierten Zelllinien wurden etabliert und 

erwiesen sich als geeignet, eine Endothelzelldifferenzierung und Selektion auf Basis der spezifischen 

Antibiotikaresistenzen zu verfolgen. Die experimentellen Ergebnisse zeigen jedoch, dass weitere 

Untersuchungen notwendig sind, um eine Selektion des gewünschten Zelltyps vornehmen zu können. 

Die Generierung der murinen iPS Zelllinien, die die oben genannten Transgene beinhalten, befindet 

sich daher in einem derzeit voranschreitenden Entwicklungsprozess. Sorgfältig selektierte und 

aufgereinigte murine Endothelzellpopulationen sollen im weiteren Verlauf unter Inanspruchnahme 

eines Tumor-Angiogenese Modells in in vivo Studien eingesetzt werden. 
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1. Introduction 

 

1.1. The respiratory and cardiovascular system 

The lungs represent a very unique organ in the human body, not only do lungs have to endure contact 

with various particles and microorganisms during the entire life but also fulfill other functions. Among 

those tasks are, for example filtration of blood running to the systemic circulation, or absorption of 

metabolically active peptides within this circuit (Effros, 2006). The exceptional structure of the lungs 

helps to complete the most important role which is the distribution of the oxygen and elimination of 

carbon dioxide from the circulation (Tomashefski and Farver, 2008). The healthy human lung weighs 

around  1 kg, where 40% to 50% of the mass is blood (Effros, 2006). Lungs are embedded in a shiny 

visceral pleura and with time the pleura gathers black pigmentation. This pigmentation is the result 

from contact with the particles from the inspired air (Tomashefski and Farver, 2008). 

The development of the mammalian lungs is strictly correlated with the appearance of surfactant. 

Surfactant is a mix of lipids and proteins which reduces the surface fraction of the air-fluid interface of 

the lungs (Effros, 2006). The surfactant is secreted by type II alveolar cells, these cells have cubical 

shape and large basal nucleus. The lamellar inclusion bodies are characteristic for type II cells and are 

randomly distributed in the cell. The lamellar inclusion bodies are the precursors of surfactant. Type II 

cells establish 60% of the surface cells but account only for around 5% of the alveolar surface. 

The type II pneumocytes provide a reservoir that matures into type I alveolar cells. Type I cells stretch 

along the alveolar wall and have a flattened nucleus and a broad area of adjacent cytoplasm. In 

contrast to type II cells, type I cells cover 95% of the alveolar surface, but form just 40% of 

the alveolar lining cells. The type I pneumocytes are less resistant to injury then the type II cells 

(Tomashefski and Farver, 2008).  

During human development, the first appearance of lungs falls on around 26
th
 day. The lungs are 

generated from the primitive gut which accesses the surrounding mesenchyme. After the 26
th
 week of 

embryonic development, the type I and II pneumocytes emerge from differentiated epithelial cells. 

The secretion of surfactant does not occur until the last weeks of gestation. The final formation of 
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the alveoli takes place after birth, approximately until a child reaches eight years of age (Harrison, 

2005). In the Update in Pediatric Lung Disease 2012 a very interesting investigation conducted by 

Narayanan and colleagues is recalled. In that study, data were obtained from the non-invasive 

evaluation of alveolar size by helium-3 (
3
He) magnetic resonance imaging. The results imply that there 

is almost a doubling in the number of alveoli during childhood and adolescence (age from 7 to 21) in 

humans. These data lead to the conclusion that late alveolarization is possible. Therefore, the lung 

could recuperate from damage that arose in the early stage of life (McColley and Morty, 2013). In total 

the number of alveoli reaches around 400 million with the entire surface area of 70 m
2
. Nevertheless, 

at the age of 30 or 40 a gradual expansion of air space in the lungs follows.  

During birth, the adaptation of lungs from a fluid-secreting organ to the structure, which takes in 

the liquids, is occurring. Prior to birth, the breathing movements exist and some amniotic fluid is 

swallowed. Between the thorax and the abdomen there is a musculo-fibrous separating pane, 

the diaphragm. The formation of the diaphragm, commences in the third week after fertilization. 

the diaphragm is the primary muscle of respiration (Harrison, 2005). The diaphragm is innervated by 

the phrenic nerve, which during embryogenesis originates from the cervical spinal cord (C3, 4, and 5) 

(Effros, 2006). 

In higher vertebrates, the first organ which is structured during embryogenesis is the vasculature, 

encompassing the heart and blood vessels. Around the 3
rd

 week of human embryogenesis, 

the cardiovascular system emerges. The vascular-alveolar network in the lungs is the principal place of 

gas exchange. After oxygenation in the lungs, the blood is distributed in the body by the pumping 

heart. The exchange of gases from tissues is accomplished through capillary beds (Schwarz and 

Cleaver, 2009). 

Pulmonary and cardiac function are the most significant mechanisms to sustain human life (Tsai and 

Lee, 2011). These systems are to some extent autonomous and pursue individual patterns of functional 

organization. The integration of changes in respiratory movements and blood pressure occurring as an 

adaptation to changing conditions, indicates structural and functional interaction between respiratory 

and angiokinetic centers. The respiratory and circulatory systems are subject to independent neural 

pathways in response to signals originating from pulmonary, vascular and cardiac stretch receptors. 



1.Introduction 

 
 17 

the most important function of the neurons in the cardiovascular system is the guarantee to sustain 

the gas exchange in the circumstances that threaten the normal functioning of the organism (Donina, 

2011). The dynamic mechanical properties of the heart and lungs assure complementary response 

between lung and cardiac volumes and pressures. 

1.2. Endothelium 

The complete vascular structure is cushioned with endothelium, which is comprised of  an endothelial 

cell (EC) monolayer (Sumpio et al., 2002). The endothelium embeds the vascular wall and 

the adventitia (Lerman and Zeiher, 2005). In a fully-grown human organism, the endothelium 

constitutes a structure of almost 1 kg. The endothelial cells, similar to hematopoietic cells, originate 

from precursor cells called hemangioblasts. The precursor cells emerge from differentiated 

mesenchymal cells. The hemangioblast becomes a pre-endothelial cell, which can convert into 

a committed hematopoietic cell or endothelial cell. It was proved that endothelial cells can moreover 

re-differentiate into mesenchymal cells and intimal smooth muscle cells. Endothelial cells are very 

flat, with a centrally located nucleus. The ECs shape uniform line on the inside of the vessels and at 

the junctions. Between cells, there are overlapping regions which help to seal the vessel. 

the intercellular junctions are very important, helping to maintain the integrity of the vessel  

(Alberts et al., 2002). The endothelium functions as a barrier, which is semi-accessible and regulates 

the relocation of small and large molecules (Sumpio, Riley, and Dardik 2002). Pinocytotic vesicles are 

very characteristic of endothelial cells. These structures are formed by small vesicles adjacent to 

the cell membrane, through which the exchange of particles from the bloodstream to the underlying 

tissues is carried out (Sumpio et al., 2002). Many molecules are located on the surface of endothelial 

cells. Those molecules serve as receptors and interaction sites for various essential particles.  

A molecule of high importance, which maintains homeostasis and that is synthesized in endothelial 

cells is Factor VIII (von Willibrand Factor). This molecule takes part in the process of blood clotting. 

Endothelial cells are also involved in the inflammatory response. The reaction of endothelial cells, to 

eliminate inflammation, is manifested by opening of intercellular junctions. This action permits 
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the release of large amounts of fluid from the blood plasma into the encompassing tissues, which 

develops swelling (Alberts et al., 2002).  

A schematic drawing illustrating some of the processes in which the ECs are involved is depicted in 

Fig. 1. 

 

 

 

 

 

 

Figure 1: Scheme illustrating the balance of the endothelial cell functions. Abbreviation: EC - endothelial cell. 

Various disruptions in endothelial integrity and function will lead to pathological conditions, including 

atherosclerosis, diabetes, or pulmonary hypertension (Sumpio, Riley, and Dardik 2002). It is crucial to 

maintain the right balance between the injury and repair of endothelium in order to diminish 

cardiovascular events as the regenerative potential of mature endothelial cells is very low (Shantsila, 

Watson, and Lip 2007).   

There are two more terms inseparably connected with endothelial cells: vasculogenesis and 

angiogenesis (Fig. 2). Vasculogenesis is defined as a process of de novo formation of blood vessels 

from angioblasts. The angioblasts assemble and become organized to form a linear cluster within 

which a lumen will develop. In the process of vasculogenesis, the first embryonic vessels are 

assembled. Angiogenesis referrers to growth and remodeling of the pre-existing primitive vasculature. 

Angiogenic mechanisms occur as natural events in developing organs and tissues. In angiogenesis 

there are two different actions recognized: sprouting angiogenesis and angiogenic remodeling  

((Fig. 2 image 2.) and 3.)). Sprouting angiogenesis describes the growth and elongation of new vessels 

from existing vessels. Angiogenic remodeling refers to various alterations to which the pre-existing 
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vessels are subjected. The already formed vessels can change shape and size, including narrowing of 

the vessel diameter. Those transformations are frequently the result of a response to changes in 

hemodynamic pressure. Vasculogenesis and angiogenesis often appear simultaneously, for example, in 

developing tissues and organs, when the vascular beds are being formed (Schwarz  and Cleaver 2009) 

(Fig. 2 (4)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Formation of blood vessels. Adapted from: Schwarz and Cleaver 2009. 

 

1.2.1. Endothelial dysfunction in respiratory and cardiovascular diseases 

Endothelial dysfunction is associated with high rates of morbidity and death (Lerman and Zeiher 

2005). In Fig. 3 the statistics concerning importance of endothelial dysfunction are presented. These 

data were obtained from the Medline (PubMed) trend browser. On this webpage numbers of entries 

concerning articles in PubMed (Medline) published each year are available. The search phrase was 

“endothelial dysfunction”.   
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Figure 3: Changes in the numbers of publications concerning endothelial dysfunction over the past seven 

decades. 

 

Endothelial dysfunction should be interpreted more as an endothelium activation, which ultimately 

may lead to arterial diseases. Activation of the endothelium means a shift from an inactive phenotype 

to a phenotype associated with defence responses of the organism. The molecular cascade that is 

activated in the endothelium, by elements that cause cardiovascular diseases (CVD), involves 

the release of chemokines, cytokines and adhesion molecules. These molecules interplay with 

elements in the blood such as leukocytes and aim inflammation in particular tissues. Repeatedly 

occurring cardiovascular risk factors may wear out the defensive capacity of the endothelial cells. 

The repercussions of that state may cause loss of endothelium functionality and stability. The damage 

to endothelial integrity is connected with the degree of injury and intrinsic ability to repair. 

The damage can be fixed by mature endothelial cells which can multiply and substitute missing cells. 

Alternatively, circulating endothelial progenitor cells (EPC) can be recruited to sites of injury. 

The EPC are found in the peripheral blood, where these cells originate from the bone marrow. 

The progenitor cells are able to transform into mature endothelial cells (Deanfield et al., 2007). 

Endothelial malfunction or injury are characteristic of pulmonary system illnesses like interstitial lung 

diseases (ILDs), which include idiopathic pulmonary fibrosis (IPF) (Cottin, 2013). Two other diseases 

in which endothelial dysfunction plays a crucial role are pulmonary arterial hypertension (PAH) and 

chronic obstructive pulmonary disease (COPD).  
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Once arteriolar remodeling has occurred, the endothelium is involved in the functional modifications 

of the pulmonary vasculature (Guazzi et al., 2014). Among CVD the most common disorders are 

coronary heart diseases (angina and heart attack), heart failure, congenital heart disease and stroke 

(Povsic and Goldschmidt-Clermont, 2008). 

1.3. Therapeutic perspectives  
 

According to the World Health Organization (WHO), 38 million (68%) out of 56 million of global 

deaths in 2012 were caused by noncommunicable diseases (NCDs). The NCDs are defined as chronic 

diseases which cannot be passed from person to person and are generally of long duration and slow 

progression. The WHO statistics from the year 2012, reveal that CVDs account for 46% of all deaths 

among NCDs. The major factors responsible for NCDs include rapid development and globalization, 

aging and an unhealthy way of life (http://www.who.int). The WHO figures concerning the mortality 

rate in cardiovascular and chronic respiratory diseases for 2012 are presented in Fig 4. 

 

 

Figure 4: WHO data concerning death rate caused by chronic respiratory and cardiovascular diseases.  

Source: http://www.who.int. 
 

Given the trends reported above, the influence of NCDs on the socio-economic situation in countries 

all over the world is very high. In the group of NCDs are highlighted diseases which are inevitably 

linked to endothelial dysfunction, hence, it is even more challenging to find treatments for these 

disorders.  



1.Introduction 

 
 22 

In many cases it is too late for prevention, thus other management steps need to be undertaken. 

Regenerative therapies seem to carry a great promise to treat endothelial dysfunction in respiratory and 

cardiovascular diseases. 

1.3.1. Gene therapy 

 

Gene therapy is a novel method that could be used for treating a sickness by introducing a gene into a 

patient’s cells rather than using pharmacological medications or device therapies. This technique can 

be used to substitute a defective gene, or to insert a new gene to cure or to positively alter the medical 

progression of a disorder. In order to benefit from gene therapies, it is important that (after Misra, 

2013): 

 the inquired disorder is well understood, 

 the deficient gene was recognized and a functioning copy needs to be obtainable, 

 the defined cells in the body, which will undergo the treatment, need to be selected and 

approachable, 

  an effective way to transfer  the functional copies of the gene to right target cells need to be 

accessible. 

Gene-based therapies depend on the introduction of a gene or small sequences of nucleic acids to 

the faulty cell or tissue. Sometimes the replaced gene is intended to modify the product of 

the defective gene and in this way cures the disease. The general classification of gene-based therapies 

includes two groups: germline and somatic gene therapies. In the germline method, the cells in focus 

are sperm or egg. Modifications made in those cells, prior to conception, will be transferable to 

the next generation. In the somatic cell technique the alterations are made to already mature cells. 

Gene-based therapies carry the possibility to carefully address diverse stages of a disorder and 

regenerative progress (Devaney et al., 2011). In order to deliver genes to desired tissues, many systems 

including viral and non-viral methods are available.  
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A short overlook of the existing methods for gene transfer is presented below (Kolb et al., 2006): 

1. Liposomes - an artificial sphere-shaped vesicles consisting of a lamellar phase lipid bilayer. 

Liposomes seem to be non-immunogenic, but when utilized with plasmids, liposomes cause 

considerable immune response. 

2. Adenovectors - the biggest asset is the exceptional efficiency of gene delivery. The gene expression 

is temporary and additionally the immunogenicity of the human adenovirus (of two serotypes: Ad2 

and Ad5) hampers potent re-administration. 

3. AAV (adeno-associated vectors) - demonstrated a great precision of infection and extended 

expression in the tissue. These vectors are assumed to generate a weaker inflammatory and immune 

response than adenoviruses. 

4. Retro and lentivirus vectors - in vivo applications have been restricted due to the necessity of 

obtaining high titers to achieve a satisfactory degree of expression. Retroviral vectors can only 

transfect non-quiescent cells, whereas lentiviruses (LV) can also transfect non-dividing cells. 

The "candidate" diseases for gene-based therapies include interstitial disorders or COPD, which are 

resultant from many endo- and exo-genous factors (Kolb et al., 2006). Concerning CVD, the area of 

restorative angiogenesis is in focus, preliminary data from clinical trials reveal encouraging results 

with only a few side-effects (Wolfram and Donahue, 2013). 

1.3.2 Cell replacement therapy 

Cell replacement therapies carry high expectations for patient-specific personalized treatments in 

the near future. In the cell replacement therapies, cells acts as a tool to mend dysfunction and deficits, 

where even nanoparticles or biomolecular methods fail. The most demanding task in the development 

of these strategies is to comprehend and manage the therapy itself and the reaction caused in the body 

of the patient (Dudek et al., 2014). There are two leading methods of reprogramming characterized 

(Thomas Graf, 2011): 
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 the induction of pluripotency in somatic cells leading to induced pluripotent stem cells (iPS), 

 the transformation of somatic cells into already specialized cell type (transdifferentation). 

The iPS cells, which can be converted into any kind of cell type, provide hope for the cure of various 

diseases. It is not yet possible to differentiate iPS cells into the cells which will possess the same 

attributes as the cells being replaced. Other issues that also need to be addressed are: (i) how to extend 

the cell production, (ii) finding ways to exclude tumorogenic factors and how to (iii) cutback the time 

required for growing, differentiation, selection and validation of the cells. At present, the available 

methods for cell-based therapies are lengthy and too expensive to be applied for severe organ failure. 

Currently, one issue can be dealt with, the immune rejection of implanted cells. The engrafted iPS 

cells can be derived from the patient and transplanted as autologous cells. This helps to avoid 

the immune response caused by histocompatibility mismatch (Fox et al., 2014). Increasing interest has 

also emerged in the lung field, where the focus is on recognition and application of endogenous 

progenitor lung cells. Precursor cell populations had been found in the mesenchyme, epithelium and 

endothelium in the distal lung. Insight into to these progenitor cells throughout development and in  

injury and regeneration will help to apply progenitors in therapies in which the capacity of endogenous 

cells in restoration, of an organ, is triggered (Collins and Thébaud, 2014). 

1.4. Embryonic stem cells  
 

The field of stem cells remains thrilling, undiscovered and a questionable sector of scientific 

endeavour. Though this research holds promise to transform the approach in which various human 

diseases can be cured. The phenomenal and unique abilities of  stem cells make them suitable for use 

in replacement therapies and drug development (Alexander van Servellen & Ikuko Oba, 2014). 

The stem cells represent an unspecialized pluripotent cell population. To the exceptional features of 

ESCs are included ability to self-renew and the potential to differentiate into any cell type of 

the mature organism (Power and Rasko, 2011). Stem cells are often referred to as naïve cells, because 

the chromatin is folded lightly over the histone proteins. In mature and specialized cells, chromatin is 
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firmly attaching to the histones. In that manner the regions of DNA, in the differentiated cells, which 

are not in use are switched off (Takahashi et al., 2007). 

 

 

 

 

 

 

 

 

Figure 5: Classification of stem cells. 

 

Stem cells can be divided into three categories: 

1. Embryonic stem cells, obtained from embryo.  

2. Tissue/adult stem cells. 

3. Induced pluripotent stem cells. 

The cells derived from the epiblast in culture, exhibit pluripotency and can differentiate into over 200 

cell-types of the human body. However, these cells are not able to generate the cells which make 

extra-embryonic tissues. The ESCs can be maintained in the culture almost endlessly. The hES 

(human) cells are obtained from embryos in the blastocyst-stage and in the majority cases, those 

embryos are collected from in vitro fertility clinics, where the embryos were donated for use in 

scientific research. During embryonic development, almost all cells become specialized, but there 

remain some populations of undifferentiated cells which can be found in various parts of the organism. 

Those subsets of cells in case of sudden need for rapid aid, can be activated and start to divide. In this 

manner, the inner balance in the body can be maintained. These stem cells are named "somatic" or 
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"adult" stem cells. What distinguishes adult stem cells from ES cells is the limited ability to 

differentiate. The "adult" stem cells are multipotent, this means that can only transform into two or 

more mature lineages associated with the tissues of its origin. The last group of stem cells is 

constituted by iPS cells. Due to the "reverse engineering" it became possible to unlock already mature 

adult cells. The reprogramming of skin fibroblasts by Takahashi and Yamanaka in 2006 represented a 

breakthrough. Fibroblasts were driven back to a naïve state by expression of a cocktail of different 

transcription factors. The iPS cells turned out to be identical to ES cells in morphology and 

performance (Power and Rasko, 2011).  

1.4.1. Murine embryonic stem cells 

Embryonic development commences with fertilization, after meiotic and then mitotic divisions 

the fertilized oocyte becomes a diploid cell. When the structure consists of eight cells it receives 

the name morula and undergoes the first localization and is subjected to morphological processes. 

The blastocyst is composed of 16 to 32 cells and represents a further increase in size and next stage of 

embryo development. Some fluid starts to gather and the pressure forces the formation of a cavity 

within the blastocyst. A cluster of cells accumulates on one side of the cavity, those cells are 

the pluripotent inner cell mass (ICM). The external layer of epithelium constitutes the trophectoderm. 

After embryo implantation, the ICM has completed a second round of lineage differentiation and has 

transformed into a primitive endoderm (which coats the cavity) and into the pluripotent epiblast. 

The cells from the epiblast are exclusively able to become an embryo proper. The trophectoderm and 

the primitive endoderm establish the other embryonic tissues, like for example, the placenta 

(Wennekamp et al. 2013). In mammalian development, at the early stage of an embryo, cells are able 

to differentiate into all cell types of the adult organism and above all, into the gametes. This ability  

is a hallmark of the epiblast tissue, which lasts only for a very short time. The cells which will be 

obtained from the next phases of the developing embryo are named postimplantation epiblast stem 

cells (EpiSCs). Certainly those cell types need different maintenance conditions and execute diverse 

gene programs. It can be stated that the determinative force is unleashed during the development of 

the epiblast cells within the ICM of the blastocyst. In support of this statement are molecular studies 
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which demonstrated that the key transcription factors (Oct4, Sox2) are not expressed in the zygote 

(Nichols and Smith 2012).  

 

 

 

 

 

 

 

 

 

 

Figure 6:  Mouse embryonic development. Mouse pre-implantation development: from fertilized oocyte to 

blastocy. Images courtesy of Sebastian Wennekamp, European Molecular Biology Laboratory (EMBL), 

Heidelberg, Germany (Wennekamp et al., 2013). 

 

The first mouse ESCs were derived from the cells obtained from the ICM of the blastocyst which was 

cultured on the layer of mitotically inactivated fibroblasts (iFC) with fetal calf serum-supplemented 

medium. For conducting those extremely important experiments in 1981, three scientists need to be 

acknowledged: M. Evans, M.H. Kaufman, and G.R. Martin. In order to establish the culture 

conditions, in the test phase pluripotent embryonal carcinoma cells were used by Martin and Evans in 

1975. Similarly to carcinoma cells, ESCs form teratomas when injected into mice. The ultimate proof 

for the pluripotency was achieved by Bradley and colleagues (1984), by blastocyst injections which 

yielded chimeric mice. Typically, the ESC derivation is made by removal of the whole blastocyst or 

isolation of the entire ICMs and then culture of the isolated structure. In 1997, Brook and Gardner, 

after the single cell isolation succeeded in generating the ES cell lines from the microdissected 

epiblast. The above-mentioned experiment by Brook and Gardner confirmed that the murine epiblast 

at the prenatal day 4.5 (E4.5), is the source of ES cells (Nichols and Smith, 2012). The genes from ES 

cells in chimeric mice can be transferred to the next generation. Particular changes can be introduced 
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into the genes of ES cells and those cells can be placed back into the blastocyst. The new-born mice 

will possess the amended genes. Such mice can be used to model many human diseases (Blair, Wray, 

and Smith 2011). 

The ESCs are very susceptible to pH or temperature oscillations and to overgrowth. Improper culture 

conditions may lead to unplanned differentiation of the ES cells, even though the cells are grown on 

iFCs and in the presence of leukemia inhibitory factor (LIF) (Turksen 2002). LIF is involved in 

the self-renewal process of ES cells. The key sources of this factor for ESCs culture are iFCs and 

exogenous LIF which is added to the medium (Tremml, Singer, and Malavarca 2008). The LIF action 

is initiated by the LIFR/gp130 receptor which leads to STAT3 stimulation. The transcription factor 

STAT3 plays a crucial role in controlling the self-renewal of stem cells. Differentiation and lineage 

commitment is blocked by STAT3 signaling. Simultaneously the MEK/ERK (mitogen-activated 

protein kinase/extracellular signal-regulated kinase) signaling pathway is initiated (Graf, Casanova, 

and Cinelli 2011a). The MEK/ERK pathway impacts many actions inside the cell, like for example 

propagation, differentiation and survival. The MEK/ERK signaling in ESCs has a negative impact on 

cell self-renewal by counteracting STAT3 action. The MEK/ERK pathway is not yet fully recognized 

in hESCs (Li et al. 2007). Numerous experiments have confirmed that LIF is important in managing 

self-renewal and maintaing the pluripotency in ES and iPS cells (Graf, Casanova, and Cinelli 2011). 

1.4.2. In vitro differentiation of embryonic stem cells 

Although much time has elapsed since the first ESCs isolation, many questions remain unanswered. 

The great ability of ESCs to determine three primary germ lineages, the capacity of stem cells to be 

used to generate transgenic animals was reported by Gossler and colleagues (Gossler et al., 1986). 

The possibility to amend the genome of stem cells by means of homologous recombination was 

presented by Thomas and Capecchi in 1987. Another milestone in ES cell research was reached by 

Smithies and colleagues, who demonstrated that the changes made to the genes which are then re-

implanted into the blastocyst, are able to carry the modifications into the developing germline. 

So far, only mouse ES cells, among other mammalian stem cells, transmit the transformed genome to 

the germline (Turksen, 2002). Embryonic stem cells serve as a great experimental prototype of 
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mammalian embryogenesis. In mammals, the blastocyst (the preimplantation embryo) consists of 

the following sections: (i) the trophectoderm, (ii) the hypoblast and (iii) epiblast. The epiblast is 

responsible for generating the fetal tissues. The two first structures mentioned-above (i) and (ii) form 

organs and extraembryonic tissues. The blastocyst of rodents is very much like in other mammals in 

arrangement. There are dissimilarities in the time at which the three sections appear and the duration 

of preimplantation growth which in mice lasts four days and in primates seven to ten days (Medvedev 

et al., 2010). 

 

 

 

 

 

 

 

 

 

Figure 7: The embryonic development of the mouse illustrating correlations between early cell subsets and 

the three primary germ layers. Adapted from: (Keller, 2005). 

 

Self-renewal and pluripotency make ES cells a perfect experimental system for studying 

the mechanisms behind cell differentiation. The capability of ES cells to differentiate into almost any 

kind of cell of the human body, make ES cells very desirable for use in regenerative medicine 

(Medvedev et al., 2010). In order to obtain clinically applicable cell subsets, ES cells are differentiated 

in vitro to form so called embryoid bodies (EBs). There are three common methods of differentiation: 

 suspension culture, 
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 culture in methylcellulose semi-solid media, 

 hanging drops culture.                          

The EB is described typically as an aggregate of ESCs in suspension culture, which is able to generate 

all three germ layers of an embryo (Bratt-Leal et al., 2009).  

The formation of EBs is dependent on many factors: the quality of fetal calf serum (FCS), the presence 

of various growth factors and the ESC line, the time and amount of the ES cells at the starting point 

(Chen et al., 2011). Prior to triggering differentiation in ES cells, LIF and feeders need to be removed 

from the culture. The suspension (static or rotary-orbital) culture of EBs requires seeding of ES cell 

suspensions on a non-adherent Petri dish. The ESCs start to aggregate due to cell-cell adhesion forces. 

The EBs obtained through this method are usually asymmetric in shape but high in number (Bratt-Leal 

et al., 2009). Better quality EBs are achieved by placing the plates on a shaker or cells in the small 

bioreactors (Spinner flasks®), which provide continuous flow of medium. This condition offers 

improved access to nutrients and cytokines or growth factors and makes the production of EBs more 

scalable (Li et al., 2013). Single-cell suspensions or clusters of ES cells can also be put onto 

a hydrogel matrix. The hydrogels like methylcellulose or hyaluronic acid are thermoresponsive and 

provide cell aggregates of clonal derivation. This semi-solid culture allows for high reproducibility but 

the amount of EBs is significantly reduced. The most consistent embryoid bodies in known quantities 

are obtained by hanging drops method. The ES cells are placed in a very small amount of medium on 

a Petri dish and the plate then is inverted. The cells fuse due to the gravity forces and form EBs. 

The maintenance of hanging drops cultures is rather challenging and not easily scaled-up  

(Bratt-Leal et al., 2009). Each of the above-mentioned approaches has pros and cons. The 3-D 

arrangement of EBs provides an insight into cell-cell interplay, which is crucial for developmental 

mechanisms (G. Keller 2005, Murry and Keller, 2008). 

Gordon Keller the "guru" in the ESC field, underlines three important factors which need to be obeyed 

if ESCs will be used as a standard for lineage commitment. Primarily, the establishment of a protocol 

which promotes a dynamic and repeatable way of collecting the desired cell types must be achieved.  
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A big advantage would be the possibility to integrate the differentiation process with the selection 

method. This kind of combination would increase the pool of cells for collection. The second issue 

concerns proper lineage development. The ESCs need to mimic the processes that occur when 

the lineage commitment appears in the embryo. The last objective implies that the generated cell 

subsets will possess characteristic functional abilities both in vitro and in vivo (Keller, 2005). 

1.4.3. Differentiation towards endothelial cells 

The origin of endothelial cells needs to be considered together with lineage commitment, more 

precisely, with the mesoderm. In the embryo the mesoderm is shaped between the outer layer, 

the ectoderm and the most inner layer, the endoderm (Turksen, 2002). Day 15 in human 

embryogenesis is considered as the hallmark of the initiation of gastrulation. On that day, a temporary 

formation the primitive streak is structured and the establishment of that transitory formation starts 

from the anterior epiblast. During the course of gastrulation, the epiblast undergoes transformation 

from a bilaminar into a trilaminar disc. Around day 16 of embryogenesis, part of the cells from 

the epiblast move along the primitive streak and settle in the gap between the epiblast and 

the embryonic definitive endoderm. In this way, the third germ layer is constituted the intraembryonic 

mesoderm (Larsen, 2008). That movement of the cells in and over the primitive streak is named 

epithelio-mesenchymal transition. The three germ layers after transformation in the embryo are 

referred to as: (i) ectoblast/derm dorsally located, (ii) mesoblast/derm situated in-between and (iii) 

ventrally based replacement of the hypoblast endoblast/derm (Smith, 2001). 

In the 3
rd

 week of human embryogenesis the blood vessels and blood islands appear inside the yolk 

sac. The blood islands mature beside the endoderm and divide into separate hemangioblasts, encircled 

by endothelial progenitor cells. The blood cells originate from the hemangioblasts and the progenitor 

ECs establishes the endothelium of blood vessels. The splanchnopleuric mesoderm converts into 

angioblasts under the influence of molecules excreted by the endoderm. Fusing, deflated mesodermal 

angioblasts are turning into endothelial cells which form vesicular structures. These complexes merge 

further, to finally constitute arterial, venous and lymphatic channels. Even though the early blood cells 
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come from the yolk sac, afterwards, the blood cells are produced by the bone marrow, liver, thymus 

and spleen. Two key theories have been proposed. The first assumes that the hemangioblasts, which 

are bipotential, generate endothelial precursor cells and the primitive erythroid. Alternatively, 

the hemogenic endothelium originates hematopoietic stem cells and endothelial progenitors (Atala and 

Lanza, 2012). During the transition from an epithelium to mesenchymal subset, cells cease to express 

E-cadherin, which is the epithelial cell adhesion molecule (CAM). That batch of mesodermal cells 

commences expressing the Flk1 receptor. The VEGFR2 (vascular endothelial growth factor receptor 

2) in the mouse is also known as the fetal liver kinase (Flk1) and in humans is referred to as KDR 

(insert domain receptor). The group of Flk1 positive cells (Flk1
+
) comprises endothelial progenitor 

cells. The Flk1
+
 cells, during the further development of the embryo, start to produce blood islands. 

The conducted experiments revealed that mice which are deprived of Flk1 are unable to generate 

blood islands and die. Meanwhile, a distinct subset of cells emerges from the paraxial mesoderm, 

which is characterized by expression of PDGFRα (platelet-derived growth factor receptor α). 

Surprisingly, clusters of these cells are able to produce endothelial cells but fail to deliver 

hematopoietic cells. At the same time, the Flk1
+
 lateral mesoderm gives rise to endothelial and 

hematopoietic cells. The endothelial cells, of which the sources were either the proximal or lateral 

mesoderm, establish the vasculature of the yolk sac and the body of the embryo. On the contrary to 

primitive erythroids, which are derived from lateral mesoderm, the definitive erythrocytes originate 

from endothelial cells. Those EC express VE-cadherin (vascular endothelial-cadherin, CD144), which 

is essential for proper vascular development. Investigations confirmed a close connection of 

the differentiation pathway of endothelial and hematopoietic cells. This fact is causing complications 

when trying to separate these two subsets of cells using surface markers. At the beginning of 

embryogenesis, both types of cells express the same markers PECAM-1 (platelet endothelial cell 

adhesion molecule-1/CD 31), CD 34, AA4 (CD93) and isolectin IB4. The above-mentioned cell-

surface markers prove that there is a strong affiliation of endothelial cells with hematopoietic cells 

(Turksen, 2002). Fig. 8 depicts the heterogeneity of endothelial cell origin and the differentiation 

processes during embryogenesis. Comprehending the molecular basis of the diversity of endothelium 

would provide the necessary tools to use in the treatments of vascular network (Aird, 2012). 
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Figure 8:  Endothelial differentiation. From hemangioblasts originate (i) blood cells and (ii) angioblasts, 

the endothelial progenitor cells, which mature to become the endothelial cells of arteries, veins and capillaries. 

Capillaries constitute the capillary bed, which is a linking system of capillaries, feeding organs and tissues. 

Adopted from: (Aird, 2012). 

 

1.4.4. Serum- and feeder-free (2i) cell culture of mouse embryonic stem 

cells 

The conventional ESC culture requires inactivated feeder cells, fetal calf serum and other extrinsic 

components. Serum derived from animals is the basic component which is applied to sustain and 

propagate cells. The fetal calf/bovine serum consists of diverse proteins, growth factors, hormones. 

These factors make the composition of the culture medium undefined. The presence of xenobiotics in 

the maintenance medium for human cells would put on risk the medical application of 

the therapeutical cells. Therefore, it becomes inevitable to detect small molecules which would sustain 

the self-renewal capacity of ESCs in the absence of iFC and animal serum (Li and Ding 2010, Van der 

Valk et al. 2010). A cell which is pluripotent is characterized as a naïve cell without a defined 

differentiation plan. Important questions are related to the state of pluripotency itself and how it is 
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preserved. Some answers were found by investigations on the ERK pathway, which appeared to be 

responsible for maintaining ESCs in the pluripotency phase. What is more, it was proved that by 

inhibition of GSK3 (glycogen synthase kinase 3) this effect was boosted. There is a view suggesting 

that embryonic stem cells should be perceived as cells which are fundamentally in a proliferative 

mode, which is independent of epigenetic regulation and does not require external stimulation. 

The balance of these conditions is confirmed by the uniformity of ESCs, which were maintained in 

the culture with the MEK/ERK and GSK3 inhibitors. Further surveys helped to reach the conclusion 

that LIF and BMP4 (bone morphogenetic protein 4) strengthen the capacity of self-renewal by 

inhibiting the lineage differentiation (Wray et al., 2010). Human ESCs display substantial 

dissimilarities in phenotype and signaling in contrast to mouse ESCs. The mES cells should be 

considered as cells that resemble pluripotent stem cells from ICM, while hES cells ought to be 

perceived as representing the late epiblast stage (Li and Ding 2010, Van der Valk et al. 2010). Joining 

of the PD0325901 inhibitor of MEK and the CHIR99021 inhibitor of GSK-3 and addition of LIF, 

maintain mESCs in the state of self-renewal and protects from spontaneous differentiation. However, 

these conditions are not sufficient for hESCs or hiPSCs maintenance. For this reason, an extra 

molecule needs to be included, TGF-β receptor inhibitor. The TGF-β/Activin A/Nodal signaling 

pathway turned out to be critical for hESCs or iPSCs to persist in an undifferentiated state. Blocking 

MAP kinase and GSK-3 signaling was named "dual inhibition" (2i) (Silva et al. 2008, Li and Ding 

2010).  

Determination of the small molecules responsible for self-renewal of mESCs in the defined culture 

conditions, was evaluated by many experiments. Pluripotin (SC1) is the discovered molecule, which 

controls self-renewal of ESCs. SC1 alone can maintain undifferentiated mES cells. This small 

molecule function through the double inhibition of ERK and Ras-GAP (Ras GTPase-activating 

protein) extracellular signals. The mESCs culture in medium supplemented with SC1 sustained ESCs 

capability to commit into three germ layer lineages in vitro and in vivo in chimeric mice (Chen et al., 

2006). When Ras-GAP is inhibited the self-renewal of ES cells is boosted by strengthening the PI3K 

(phosphoinositide-3 kinase) signaling pathway. From the other side, the blockade of ERK1 hampers 
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the differentiation of embryonic stem cells. The discovery of pluripotin confirmed that the self-

renewal of ESCs occurs aside from extrinsic deactivation of intrinsic proteins which promote 

differentiation. Two chemical blockers CHIR99021 and PD0325901 inhibit the GSK3 and MEK 

pathways by enhancing the durable generation of mESCs in the undifferentiated state, with omission 

of extrinsic proteins. However, the Wnt/β-catenin signaling pathway is stimulated by deactivation of 

GSK3. This action enhances ES cell differentiation towards the mesoderm, when additional small 

molecules or self-renewal proteins are not present. The application of the small molecules in the cell 

culture can improve the outcomes by scaling up the more homogeneous cell populations (Li and Ding, 

2010a). In order to create fully defined media, without FSC and iFC support for the ESC culture, two 

more supplements are vital: B27 and N2. The N2 supplement is a chemically defined, 100(x) 

concentrate of Bottenstein's N2 formulation and is used as a substitute of general blood serum. This 

supplement helps to keep ES cells in the undifferentiated state. The B27 supplement consists of 

determined ingredients mainly antioxidants and free radical killers (Ying et al., 2008). 

1.4.5. Controversy concerning embryonic stem cells 

The ES cells allowed for handling the mouse genome in order to better encompass the embryonic 

development and get to know the potential of the undifferentiated cells and their fate commitment 

(Keller, 2005). Only a minority of people is denying the medical capabilities of stem cells 

investigation. Queries relates to efficacy and safeness of the ESCs use, derivation or donation. Also 

social concerns are being raised like, how costly the treatments would be and if they would be then 

available to all? The biggest controversy is connected with the origin of cells and use of the human 

embryos (J.Barfoot, D.Bruce, G.Laurie, and N.Bauer, J.Paterson and M.Bownes, 2014). Human ESCs 

are considered as never-ending pool of all the body’s cells. This phenomenon can be utilized in cell 

therapies of yet not curable disorders, for disease modelling and drugs testing. The pathways which are 

responsible for ensuring the genomic stability of hESCs have to be identified. These signalling 

pathways have crucial importance when it comes to continuous culture and lineage commitment. 

Furthermore, solutions to acquire pure cell subsets of only differentiated hESCs products, in a large 

number, are required (Fu and Xu, 2012).          
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1.5. Induced pluripotent stem cells  

"Induced pluripotent stem cells - pluripotent cells that can be generated from many different types of 

somatic cells by expression of only a few pluripotency-related transcription factors, and that have 

properties of embryonic stem cells." (Plath and Lowry, 2011). 

1.5.1. Characteristics of the pluripotency state 

The retroviral vector was used to transduce mouse skin fibroblasts and this resulted in reversing 

the cells to the naïve-like stage (Power and Rasko, 2011). Following the work of the father of the iPS 

cells, Shinya Yamanaka, the induction of pluripotency needs to be regarded as bringing together three 

main scientific views: 

 

1. Nuclear reprogramming in amphibians (J. Gurdon, 1962). 

2. The ESCs discovery by: M.J. Evans and M.H. Kaufman in UK and G. Martin and  

A. Smith in USA (1981).  

3. Detection of leading transcription factors (TF) in Drosophila (Schneuwly et al., 1987). 

 

The iPS cell discovery sparked new areas of research and initiated discussion about whether iPS cells 

are truly identical to ESCs. The first iPS cells were obtained by Takahashi and Yamanaka  

in 2006 as a result of reprogramming of mouse fibroblasts. In order to induce the pluripotency, a mix 

of TFs was used. One year later the results of reprogramming were confirmed with the use of human 

fibroblast by Takahashi. A similar achievement was reported by a group of James Thomson at 

the University of California at Santa Barbara (Yamanaka, 2012). Adult somatic cells were 

reprogrammed to pluripotent stem cells due to the imposed expression of TFs. The ability to reverse 

cell fate raised a question concerning how the TFs impacted the differentiation and epigenetic pattern 

of the cell during the natural growth and in reprogramming (Stadtfeld and Hochedlinger, 2010). The 

reprogramming was achieved by applying only 4 TFs:  Oct4 (POU5F1), Sox2 (sex determining region 

Y-box 2), Klf4 (Krüppel-like factor 4), and c-Myc (Myc). After around one to two weeks, first 

reprogrammed cell colonies are appearing. The reprogramming efficiency is on the level of 3-5% in 
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a time frame of two weeks. For this outcomes presumably responsible are epigenetic obstacles (Plath 

and Lowry, 2011). Furthermore, the transduction with retro- or lentiviruses may cause the insertional 

mutations. That is why new approaches had been applied in order to eliminate the possibility of 

integration of the extrinsic reprogramming factors to the genome (He et al., 2014).  

The iPS cells are free from any moral objectives and immune rejection of an allograft. Nowadays, 

the reprogramming of somatic cells with the cocktail of TFs: Oct4, Sox2, Klf4 and c-Myc (OKMS) 

into pluripotent stem-like cells must be seen as a change in the perception of ultimate faith of the cell’s 

planned development. The view concerning pluripotency need to be revised, it cannot be understood 

as being above epigenetic control, but rather as stabilized case of interacting differentiation signals. 

There is also an attempt, to prove that pluripotency markers can also act as conventional lineage 

specifiers, which lead ESCs to differentiate into a definitive lineage and at the same time to prohibit 

their specification to reciprocally unshared lineages (Wu et al., 2013, Shu et al., 2013). 

The induced pluripotent stem cells had given a hope for generation of patient- and disease-specific 

cells in order to model the disorder or to use the obtained cells in therapies, without the risk of immune 

rejection (Stadtfeld and Hochedlinger, 2010). The more approachable solution would be to create 

universal cell bank with prefabricated immune-proved pluripotent stem cell lines and to with 

the most often presented haplotypes in a community (Power and Rasko, 2011).  

1.6. Gene transfer  
 

Gene transfer enables shift of a given gene from one DNA double stranded helix to another DNA 

molecule. The possibility to amend the DNA structure allows for generation of the organisms with 

improved chances for existence. Alterations made in the DNA sequence may be utilized in 

the medicine by modifying the faulty protein. Many systems of gene delivery exist: micro- or 

macroinjection, viral systems, liposome or calcium phosphate mediated gene transfer and gene transfer 

through peptide (Khan, 2010).  
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1.6.1. Lentiviral system of gene delivery 

The lentiviruses belong to the family of retroviruses (Retroviriade) which utilizes viral reverse 

transcriptase (RT) and protein integrase (IN) in order to stably deliver viral genomes to the host 

(Sakuma et al., 2012). There are three main attributes of retroviral vectors, which make these viruses 

an alluring system of gene transfer: 

1. ability to insert the transgene into the genome of the host, 

2. possibility to carry nearly 10 kb of cDNA, 

3. no transmission of the proteins determined in the packaging vector. 

The viral RNA genome contains cis-acting sequences, which are crucial for: (i) packaging, (ii) reverse 

transcription, (iii) nuclear translocation and integration, (iv) essential proteins encrypted by gag and 

env genes and (v) the chemical products of the pol gene. All mentioned elements constitute 

the potential virion on the surface of the host cell membrane. In the lentiviruses, the activation of Gag 

and Pol requires a catalyst named Rev (Merten and Rubeai, 2011). The HIV virus genome contains 

single-stranded sense RNA of ~9kb which is responsible for encrypting main viral proteins. The gag 

gene is coding the core proteins, the pol enzymes which are needed for viral propagation and the env is 

coding glycoprotein from the viral surface. The regulatory proteins Rev and Tat are liable for 

transcription. LTRs (long terminal repeats) are at the ends of viral genome and are necessary for 

transcription, reverse transcription (RT) and incorporation. All transferred viral proteins, or genomes 

are being compiled at the surface of the plasma membrane. When the "undeveloped" virions are out of 

the cell, the Gag and Gag-Pol stimulate the viral protease (PR) which "maturates" the viral particles to 

become infectious. The commonly used lentiviral vectors went through a long process to reach 

the current state. Below is presented a structured order of the lentiviral constructs development: 

1. The precursor vectors were divided into two plasmids: one for HIV-1 proviral DNA with 

the changes in the env gene, the second plasmid conveying Env. That separation of the Env 

protein created a virus which was able to conduct only one infection due to the lack of env.  
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2. Pseudotyping with VSV-G (vesicular stomatitis virus envelope glycoprotein G) broaden 

the viral tropism. The VSV-G possesses a phosphatidylserine, a membrane element, which 

makes the vector able to infect different type of cells.  

3. The first generation HIV-1-based lentiviral vectors, this stage was reached by dividing 

the vector parts into three plasmids: (i) a packaging vector, (ii) an Env plasmid encrypting 

the viral glycoprotein, (iii) a transfer vector. The separation enabled the transfer of a transgene 

without the risk of activation of the viral proteins in the host cell.  

4. The second-generation lentiviral vectors are lacking following proteins: Vif, Vpu, Vpr or Nef. 

That amendment of accessory proteins again elevated the biosafety degree.  

5. The self-inactivating (SIN) vectors with a deletion in the U3 region of the 3'-LTR. 

6. The third-generation lentiviral vectors Tat-independent vectors. Safety usage of that system is 

increased due to the removal of further six HIV genes, yet these vectors are showing low 

yield.  

Nowadays, the vectors are being assembled from several plasmids, which lack HIV-1 accessory 

proteins and with self-inactivating alterations, still not affecting the transduction ability in vitro or in 

vivo (Sakuma et al., 2012).  

1.6.2. Integrase deficient lentiviral vectors  

The high efficiency of lentiviral vectors in transducing cells was praised, as it purely relies on viral 

integration with the genome of the targeted cell. This assumption had been questioned using 

integration deficient lentiviral vectors (IDLV). That kind of LV is generated with a mutation in 

the sequence of the protein called integrase (IN). This mutation inhibits the viral integration,  

at the same time there is an increase in the number of the vector episomes in the host cell. 

The mentioned circular vector episomes do not have replication signals and are progressively absent in 

the dividing cells, although are durable in non-dividing cells (Wanisch and Yáñez-Muñoz 2009). 

Upon accessing the cell and integration with the viral DNA, the lentiviral vector generates 

transcriptionally active episomal forms of DNA. Episomes are considered to be the circular forms of 

viral extrachromosomal DNA (E-DNA). The E-DNA is transcriptionally active, thus synthesizing 
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RNA and proteins (Michelini et al., 2010). The integrase deficient LVs may be remodeled to become 

replicating episomes. This means that IDLVs could be applied for stable transduction of dividing cells. 

That type of a vector subsequently could be relevant for use in treating disease and dysfunction. 

The integration of the virus is a complex action involving: (i) vector 3'-end processing, (ii) strand 

transfer (insertion of the viral DNA to target cell), (iii) gap reparation and finally (iv) ligation 

(Wanisch and Yáñez-Muñoz, 2009). There had been various experimental results announced 

concerning the impact of mutations of different amino acids in the IN, in order to generate lentiviruses 

with disabled mechanism of integration. The protein integrase is considered to be pleiotropic and thus 

affecting viral activities not connected with the integration (class II mutation). The class I mutations 

are concerning strictly IN role in DNA cleavage and integration. For obtaining the class I mutant 

commonly substitutions in the catalytic triad of HIV-1, IN are implemented. These three amino acids 

are as follow: D64, D116, and E152 (Wanisch and Yáñez-Muñoz, 2009). 

1.6.3. Endothelial specific promotors 

The vascular endothelial growth factor (VEGF) together with the VEGF receptor (VEGFR) are 

the key players in normal and dysfunctional angiogenesis (Shibuya 2011). It would be beneficial to 

control the vasculature, both by enhancing the growth of vessels and by preventing the angiogenesis in 

tumor formation (Galas and Liu 2014). VEGF is a part of the PDGF supergene family and VEGF 

signaling protein acts as a homodimer structure. With the VEGF group so far seven representatives are 

affiliated, the VEGFR class of genes consists of three to four units and this is related with 

the vertebrate species. The first member of the VEGF family is VEGF-A which is responsible for 

angiogenesis and permeability of the vessels via controlling following receptors: VEGFR-1 (Flt-1) and 

VEGFR-2 (KDR/Flk1 in mice). While the VEGF-C and the VEGF-D together with the VEGFR-3 

(Flt-4) determines lymphangiogenesis (Shibuya 2011). The VEGF-E is encoded by the Orf virus, 

a zoonotic parapoxvirus (Wise et al. 2012). The VEGF receptors are mostly tyrosine kinase receptors 

(RTKs). In experiments described in this thesis the focus was put on Flk1 receptor which is assumed 

to be the marker for the earliest subsets of endothelial and blood cells. The encouraging studies were 
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conducted, amongst others, by Yamashita describing that Flk1 positive ESCs can establish endothelial 

cells in vitro (Yamashita et al. 2000).  

Shear stress is inevitable to maintain the vascular homeostasis, control vascular remodelling or 

atherogenesis. Platelet endothelial cell adhesion molecule (PECAM-1) is responsible for direct 

transmission of mechanical forces. The vascular endothelial cell cadherin is acting as an adaptor and 

VEGFR2 stimulates phosphatidylinositol-3-OH kinase. All the specified elements constitute 

a mechanosensory complex (Tzima et al. 2005). In the light of these findings, the second promoter 

applied in the vectors used in the course of this doctorate was Ve-cadherin. The vascular endothelial 

cadherin (Ve, CD 144) is a defined endothelial specific adhesion molecule. The cadherin is settled in 

the intracellular junctions of endothelial cells. Apart from the role of the Ve-cadherin in adhesion, this 

molecule is also important for cell propagation and cell death and adjusts VEGFR activity.  

The CD 144 is leading the actions of endothelium but also guards the permeability of the blood vessel 

wall for various cells and substances. The cadherins belong to the large family of CAM and are 

characterized by the extracellular cadherin domain (EC-domain). Cadherins regulate adhesion through 

homophilic, Ca
2+ 

dependent interplays. The CD 144 molecule had been reported to control contact 

restrictions of growing cells, thus adversely interacting with cell propagation activated by VEGFR-2 

(Vestweber, 2007). 

To sum up the used promoters sequences for generating the viral vectors were as follow: 

1. Studies from Kappel et al. (1999) showed that a 939bp fragment between -640bp and +299bp in 

combination with a 510bp enhancer sequence located between +3437bp to +3947bp in the second 

intron, is enough for a specific expression. 

2. According to analyzes of Gorry et al. (1999), where various lengths of the promotor region were 

tested, it appeared that the fragment between -2486bp and +64bp should be used. That specified 

promoter region shows the best specificity. 



1.Introduction 

 
 42 

1.7. Hypothesis and aim 

The underling hypothesis of all the experiments in the framework of this doctoral thesis, was 

the assumption that it is possible to isolate specific cell type from differentiated murine embryonic 

stem cells (mESCs). Consequently the aim of the investigations was to generate endothelial 

(progenitor) cells by means of lentiviral transgene delivery. The lentiviral vectors were also a subject 

of the investigation, in order to achieve the safest possible tool to impact the host genome (IDLVs). 

The results obtained from the experiments carried out on animal ES cells will be applied to studies 

concerning induced pluripotent stem cells (iPS). The studies on murine cells will serve as a starting 

point and "training" field, on which the mistakes might be made without serious repercussions. 

Inquiries concerning hES/hiPS cells, involve in addition, studies on specific culture conditions for 

these types of cells (xenobiotic-free culture media). Finally, the generated endothelial progenitor cells 

could serve as a source of therapeutically applicable cell subsets for treating vascular and parenchymal 

diseases of the lung.  
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2. Materials 

 

2.1. Equipment 

Table 1: Equipment used in the laboratory. 

Equipment name Producer 

3D Sunflower Mini-Shaker Kisker Biotech GmbH (Steinfurt, Germany) 

Bacteria shaker (Innova 44) New Brunswick Scientific (Hamburg, Germany) 

Balance A&D Weighing (San Jose, USA) 

Cell culture incubator (DHD AutoflowCO2 Air-

Jacketed incubator) 
Nuaire (Plymouth, USA) 

Cell culture incubator (Galaxy 170S) New Brunswick Scientific (Hamburg, Germany) 

Cell culture incubator (Innova CO170) New Brunswick Scientific (Hamburg, Germany) 

Spinner flasks system (CELLSPIN) Integra Biosciencee AG (Fernwald, Germany) 

Confocal microscope (LSM 710) Zeiss (Oberkochen, Germany) 

Cooling-centrifuge (5430R) Eppendorf (Wesseling-Berzdorf, Germany) 

Cooling-centrifuge (Fresco 17) Thermo Scientific (Waltham, USA) 

Corning® bottle-top vacuum filter 
Corning B.V. Life Sciences (Amsterdam, 

the Netherlands) 

Electrophoresis chamber PeqLab (Erlangen, Germany) 

Fine scale Pinacle, Denver instruments (Göttingen, Germany) 

Flow cytometry machine (FACScalibur) BD Bioscience (Heidelberg, Germany) 

Gel imaging and documentation Intas (Göttingen, Germany) 

Gene Pulser Xcell™ Electroporation System BioRad (Munich, Germany) 

Heating block HLC BioTech (Pforzheim, Germany) 
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High end fluorescent microscope Imager Z.1 Zeiss (Oberkochen, Germany) 

Laminar flow cabinet (Labguard Class II Type B1) Nuaire (Plymouth, USA) 

Microwave (R93ST-AA) Sharp (Hamburg, Germany) 

Mini centrifuge ( C130 1T) Labnet International (Edison, USA) 

Neubauer cell counting chamber Marienfeld (Luda Königshofen, Germany) 

Optical microscope (DMIL) Leica (Nussloch, Germany) 

PCR machine (Mastercycler ep gradientS) Biometra/Eppendorf ( Hamburg, Germany) 

Pipetboy Integra Biosciences (Fernwald, Germany) 

Pipettes (0.5-10 μl, 10-100 μl, 100 -1000 μl) Brand GMBH + CO KG (Wertheim, Germany) 

Sigma 3_16P centrifuge Thermo Scientific (Waltham, USA) 

Spectrophotometer (NanoDrop ND-1000) Peqlab  (Erlangen, Germany) 

Table centrifuge (Multifuge 1S) Thermo Scientific (Waltham, USA) 

Table centrifuge (Multifuge 35R) Thermo Scientific (Waltham, USA) 

Vacuum pump KNF Lab (Freiburg, Germany) 

ViiA 7 Real-time PCR system ABI/Life Technologies (Darmstadt, Germany) 

Water bath Microm (Walldorf, Germany) 
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2.2. Chemicals and reagents 
 

Table 2: Chemicals used in the experiments. 

Name Producer 

Acetone Roth (Karlsruhe, Germany) 

Agarose NEEO Ultra Quality Roth (Karlsruhe, Germany) 

Calcium chloride (CaCl2) Roth (Karlsruhe, Germany) 

Dimethylsulfoxide (DMSO) Serva Feinbiochemica (Heidelberg, Germany) 

Disodium hydrogen phosphate (Na2HPO4 x 2H2O) Roth (Karlsruhe, Germany) 

Ethanol Roth (Karlsruhe, Germany) 

Ethanol (absolute ≥99.8%) Merck (Darmstadt, Germany) 

Ethidiumbromide (10 mg/ml) Roth (Karlsruhe, Germany) 

Ethylendiamintetraacetate (EDTA) Roth (Karlsruhe, Germany) 

Glycerine 99.5% Roth (Karlsruhe, Germany) 

HEPES PAA (Cölbe, Germany) 

Isopropanol Roth (Karlsruhe, Germany) 

Liquid nitrogen Linde AG (Pullach, Germany) 

Magnesium chloride (MgCl2) Sigma Aldrich (Steinheim, Germany) 

Methanol Roth (Karlsruhe, Germany) 

MOWIOL Calbiochem/Merck (Darmstadt, Germany) 

n-Butanol Roth (Karlsruhe, Germany) 

Paraformaldehyde (4% PFA)  VWR Syngene (Darmstadt, Germany) 

Potassium chloride (KCl) Roth (Karlsruhe, Germany) 

http://en.wikipedia.org/wiki/Liquid_nitrogen
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Potassium dihydrogen phosphate (KH2PO4) Roth (Karlsruhe, Germany) 

Sodium chloride (NaCl) Roth (Karlsruhe, Germany) 

TRIS acetate salt Roth (Karlsruhe, Germany) 

Triton X-100 Roth (Karlsruhe, Germany) 

Tween 20 Sigma Aldrich (Steinheim, Germany) 

 

2.3. Antibodies and fluorescent dyes 

 Table 3: Antibodies and fluorescent dyes. 

Name Producer 

 

Primary antibodies (dilution) 

Anti_TurboGFP rabbit (1:500) Evrogen (Heidelberg, Germany) 

Anti-Human/Mouse Oct3/4 conjugated with PE 

(1:50)  
eBioscience (San Diego, USA) 

Anti-Human/Mouse Sox2 conjugated with Alexa 

Fluor®488 (1:50) 
eBioscience (San Diego, USA) 

Ve-Cadherin (CD 144) rat anti mouse (1:300) 

 
BD Bioscience (Heidelberg, Germany) 

PECAM-1 (CD31) rat anti mouse (1:300) BD Bioscience (Heidelberg, Germany) 

Flk1 rat anti mouse (1:100) BD Bioscience (Heidelberg, Germany) 

Oct3/4 (C10) mouse (1:100) Santa Cruz Biotechnology, Inc (Dallas, USA) 

SSEA1 (MC480) mouse (1:100) Cell Signaling Technology (Boston, USA) 
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Secondary antibodies and IgG controls (dilution) 

Alex 555 goat anti rat (1:1.000) Invitrogen (Carlsbad, USA) 

Alexa 488 goat anti mouse (1:1.000) Invitrogen (Carlsbad, USA) 

Alexa 488 goat anti rabbit (1:1.000) Invitrogen (Carlsbad, USA) 

Alexa 647 goat anti rabbit (1:1.000) Invitrogen (Carlsbad, USA) 

mouse IgG (1:50) Invitrogen (Carlsbad, USA) 

rabbit IgG  (1:400) Cell Signaling Biolabs (Boston, USA) 

Rat IgG2 conjugated with PE (1:50) Biolegend/Biozol (Eching, Germany) 

Rat IgG2a K isotype control conjugated with FITC 

(1:50) 
eBioscience (San Diego, USA) 

 

Viability staining 

7-aminoactinomycin D (7-AAD) eBioscience (San Diego, USA) 

Propidium iodide (PI) BD Bioscience (Heidelberg, Germany) 

 

Nuclear counterstain (dilution) 

4'6-Diamidin-2-Phenylindol (DAPI) 1:1.000 Invitrogen (Carlsbad, USA) 

 

Sera for blocking buffers 

Goat serum PAA (Pasching, Austria) 

Rabbit serum Chemicon (Limburg, Germany) 

Buffers 

Cytofix/Cytoperm™ BD Bioscience (Heidelberg, Germany) 
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2.4. Enzymes 

 Table 4:  Restriction enzymes. 

Name  and sequence Producer 

AgeI (BshTI)  a|ccggt 

 
Thermo Scientific (Waltham, USA) 

BglII a|gatct Thermo Scientific (Waltham, USA) 

BspTI (AflII) c|ttaag 

 
Thermo Scientific (Waltham, USA) 

ClaI (Bsu15I) at|cgat 

 
Thermo Scientific (Waltham, USA) 

Eam1105I (AhdI) gacn|nnnngtc Thermo Scientific (Waltham, USA) 

KpnI ggtac|c Thermo Scientific (Waltham, USA) 

MreI cg|ccggcg Thermo Scientific (Waltham, USA) 

NcoI c|catgg Promega (Madison, USA) 

NheI g|ctagc Thermo Scientific (Waltham, USA) 

SalI g|tcgac Fermentas (Pittsburgh, USA) 

SapI (LguI) gctcttc(N)1| Thermo Scientific  (Waltham, USA) 

ScaI agt|act Thermo Scientific (Waltham, USA) 

SdaI (SdfI) cctgca|gg Thermo Scientific (Waltham, USA) 

SmaI ccc|ggg Thermo Scientific (Waltham, USA) 

SwaI (SmiI) attt|aaat Thermo Scientific (Waltham, USA) 
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2.5. Primers 

Table 5: Sequences of the used primers. 

Name Sequence  5'>3' (number of nucleotides)  

A_flk_enhancer CTGCGTTGCCAACTTCAAGG (20) 

AP_GE_scr TGAAAGGGACGGGAGCCACTG (21) 

AP_screen_WPRE AGTGCACACCACGCCACGTT (20) 

copGFP-R TTCAGGGTGCCGGTGATGCG (20) 

cPPT-scr-F GGGGGTACAGTGCAGGGGAAA (21) 

Flk1_FW AAACCTCTTGGCCGCGGTGC (20) 

Flk1_REV AGGGCTCGATGCTCGCTGTG (20) 

FP-Chd5-rt CGGCCCGCCACTGTCTTGT (20) 

FP-Flk-rt GAGCGCTGTGAACGCTTGCC (20) 

GAPDH murine F CGAGACCCCACTAACATCAAA (21) 

GAPDH murine Re TGCATTGCTGACAATCTTGAG (21) 

GATA4_FP GACGTGGGAGCATCCTGGGC (20) 

GATA4_RP TCCCGTCCCATCTCGCCTCC (20) 

HIV1_PSS_F CGCAGGACTCGGCTTGCT (18) 

HIV1_PSS_R GACGCTCTCGCACCCAT (17) 

hVE-Cad-F 

 

CTATAATCGATGCCCCTCCAATCTGTCTTGTC

TACC (36) 

 

hVE-Cad-R 

 

CATATGCTAGCGCCTGGCTGCCTCCCCTTC 

(30) 

 

hVE-Cad-scr-R 

 

GCAGAGGAGGAGGGCAGGGG (20) 
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Hygro-BshTI-F 

 

GTATACCGGTCCGGGAGCTTGTATATCCATTT

TCG (35) 

 

Hygro-SalI-R 

 

CATATGTCGACGCGGCGGTGGAATCGAAATC

T (32) 

 

IntD64V_forw_1 
GCAGCTAGTTTGTACACATTTAGAAGGAAAA

G (32) 

IntD64V_rev_1 CATATTCCTGGGCTACAGTCTACTTGTC (28) 

KDR-enh-F 

 

TGCATGTATGTGTGGAATTGGGGAATG (27) 

 

KDR-enh-R 

 

ATGCTGAGCCTGGGCAGATCAAG (25) 

 

KDR-enh-scr-R 

 

TCTAGTGCGCTTCCCCTGGT (20) 

 

KDR-prom-F 

 

AGCTGGCCTCCTTCCCCTGG (20) 

 

KDR-prom-R 

 

TCCTGCACCTCGAGCCGGG (19) 

 

KDR-prom-scr-R 

 

CCAGTTCGCCAACATTCCCGC (21) 

 

mKlf4-FP TGTGACTATGCAGGCTGTGGC (21) 

mKlf4-RP GGCCCTGTCACACTTCTGGC (20) 

mM-myc-FP GCCCGCGATCAGCTCTCC (18) 

mM-myc-RP CTCGTCGCAGATGAAATAGGGC (21) 

mNanog-FP GAACGCCTCATCAATGCCTGC (21) 

mNanog-RP TGTTCTCCTCCTCCTCAGGGC (21) 

mOct4-FP CAAGTTGGCGTGGAGACTTTGC (22) 

mOct4-RP CCCCAAGGTGGATCCTCTTCTGC (22) 

mSox2-FP GGGCTCTGTGGTCAAGTCCG (20) 

mSox2-RP CGCTCTGGTAGTGCTGGGC (19) 

Myc_fwd GCGTGGGGAGCAAACAGG (18) 
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Myc_rev GACACGAGCTGACGACAACC (20) 

Neo-BshTI-F 

 

GATAACCGGTCGCATGATTGAACAAGATGGA

TTGC (35) 

 

Neo-SalI-R 

 

CTATAGTCGACTTTCGAACCCCAGAGTCCCG 

(31) 

 

Nes_FP TCCAGGAGCGCAGAGAGGCG (20) 

Nes_RP GAGGTGTGCCAGTTGCTGCCC (21) 

PGK_Hygro_screenF GTTAATGTGGCTCTGGTTCTGG (22) 

PGK_Hygro_seqR GTCGTCCATCACAGTTTGCC (20) 

pJet_forw CGACTCACTATAGGGAGAGCGGC (23) 

pJet_rev AAGAACATCGATTTTCCATGGCAG (24) 

psPax2_forw GGGTGCCCACACTAATGATGTGAAA (25) 

psPax2_rev TCCCCTGCACTGTACCCCC (19) 

Puro-BshTI-F 

 

CTATAACCGGTACCATGACCGAGTACAAGCC

CA  (33) 

Puro-SalI-R 

 

GATATGTCGACTCAGGCACCGGGCTTGCG 

(29) 

RP-Chd5-rt CCAAGGGCTTGCCCACTCGG (20) 

RP-Flk-rt ACCATGAGAGGCCCTCCCGG (20) 

Snail_FP TCTGCACGACCTGTGGAAAGGC (22) 

Snail_RP TGGCACTGGTATCTCTTCACATCCG (25) 

SP neo-IRES scre AGGACATAGCGTTGGCTACCCG (22) 

SP_neo_IRES_scr AGGACATAGCGTTGGCTACCCG (22) 

SP_PGK_Hyg#6 TGTGTAGAAGTACTCGCCGATAG (23) 
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2.6. Vectors 
 

This subsection contains descriptions of the backbones of all the vectors which have been used in 

the experiments described in this thesis. Where indicated, vectors were bought from Addgene. 

The remaining vectors were modified in situ. 

1. The pMD2.G vector was used for viral particles production in HEK cells. Plasmid was bought 

from Addgene (pMD2.G was a gift from Didier Trono to Addgene, plasmid # 12259). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9:  Backbone of the pMD2.G - envelope vector. 

CMV - promoter/enhancer of the Cytomegalovirus, VSV-G - glycoprotein of the vesicular stomatitis virus, pA - 

polyadenylylation signal, Amp - ampicillin resistant gene for selection in E. coli.  
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2. The psPAX2 (2
nd

 generation lentiviral packaging plasmid) was used for viral particles 

production in the HEK cells. Plasmid was bought from Addgene (psPAX2 was a gift from 

Didier Trono to Addgene, plasmid # 12260). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Backbone of the psPAX2 - packaging vector. 

CMVenh - enhancer of the Cytomegalovirus, CApro - chicken beta actin promoter, CAintron - chicken beta actin 

intron, Gag - group antigen, Pro - protease, Pol - polymerase, dEnv - envelope proteins including the genes for 

Tat und Rev, RRE - reverse responsive element, pA - polyadenylation signal, SV40 ori - simian virus 40 origin, 

Amp - ampicillin resistant gene for selection in E. coli. 
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3. The psPAX2 IntD64V - integrase deficient vector. It was used for generation of integrase 

deficient viral particles for induction of pluripotency. Plasmid was modified by means of site-

directed mutagenesis (SDM) in house. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11:  Backbone of the psPAX2-IntD64V - packaging vector. 

CMVenh - enhancer of the Cytomegalovirus, CApro - chicken beta actin promoter, CAintron - chicken beta actin 

intron, Gag - group antigen, Pro - protease, Pol - Polymerase, dEnv - envelope proteins including the genes for 

Tat und Rev, RRE - reverse responsive element, pA - polyadenylation signal, SV40 ori - simian virus 40 origin, 

Amp - ampicillin resistant gene for selection in E. coli. 
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4. The pGZ_CMV vector is used for expression of transgenes under a CMV promoter. For 

research purposes stated in this thesis the pGZ_CMV vector had been modified as it is shown 

in the sections 5 to 8. This vector was available in house. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12:  Backbone of the transfer vector pGZ-CMV. 

RSV-5'LTR - long terminal repeat, required for viral packaging and transcription, Gag - packaging signal, RRE - 

rev responsive element, cPPT - central polypurine tract (includes DNA Flap region) involved in nuclear 

transcription and integration of transduced viral genome, copGFP - GFP-reporter gene from copepod Pontellina 

plumata, Zeo - zeocin resistance gene, WPRE - posttranscriptional regulatory element which enhances 

the stability of  the viral transcripts, ori -  allows high copy replication in E. coli, pA - transcription termination 

and polyadenylation,  Amp - ampicillin resistant gene for selection in E. coli.  
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5. The pG*-mVE - all vectors contain murine Ve-cadherin promoter, but each of the vector has 

different resistant gene for antibiotic selection. Those are SIN (self-inactivating) vectors, 

which can be used for virus production by means of transfection and consequently for 

transduction of mESCs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 13:  Backbones of the transfer vectors: pGH-mVE, pGN-mVE and pGP-mVE. 

RSV 5' LTR - long terminal repeat, required for viral packaging and transcription, Gag -  packaging signal, cPPT 

- central polypurine tract (includes DNA Flap region) involved in nuclear transcription and integration of 

transduced viral genome, copGFP - GFP-reporter gene from copepod Pontellina plumata, T2A - 2A peptide 

from Thosehasigma virus to mediate protein cleavage, WPRE - posttranscriptional regulatory element which 

enhances the stability of the viral transcripts, 3'LTR - required for viral reverse transcription, self-inactivating 

3'LTR with deletion in U3 region prevents formation of replication competent viral particles after integration 

into genomic DNA, SV40 pA - transcription termination and polyadenylation, SV40 Ori - allows episomal 

replication of plasmid in eukaryotic cells, ori - allows high copy replication in E. coli, Amp -  ampicillin resistant 

gene for selection in E. coli, H - hygromycin, N -  neomycin  and P -  puromycin, SIN - self-inactivating vectors 

lacking viral enhancers/promoters in the 3' long terminal repeat (LTR). 
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6. The pG*-Flk1- all vectors contain murine Flk1 promoter, but each of the vector has different 

resistant gene for antibiotic selection. Those are SIN vectors, which can be used for virus 

production by means of transfection and consequently for transduction of mESC. 

 

 

 

 

 

 

 

 

 
 
  
 

 

 

 

 

 

 

 

 

 

Figure 14: Backbones of the transfer vectors: pGH-Flk, pGN-Flk, and pGP-Flk. 

 
RSV 5'LTR -  long terminal repeat, required for viral packaging and transcription, Gag - packaging signal, cPPT -

central polypurine tract (includes DNA Flap region) involved in nuclear transcription and integration of 

transduced viral genome, copGFP - GFP-reporter gene from copepod Pontellina plumata, T2A - 2A peptide 

from Thosehasigma virus to mediate protein cleavage, WPRE - posttranscriptional regulatory element which 

enhances the stability of the viral transcripts, 3'LTR - required for viral reverse transcription, self-inactivating 

3'LTR with deletion in U3 region prevents formation of replication competent viral particles after integration 

into genomic DNA, SV40 pA - transcription termination and polyadenylation, SV40 Ori - allows episomal 

replication of plasmid in eukaryotic cells, ori - allows high copy replication in E. coli, Amp - ampicillin resistant 

gene for selection in E. coli, H - hygromycin, N - neomycin and P -  puromycin, SIN - self-inactivating vectors 

lacking viral enhancers/promoters in the 3' long terminal repeat (LTR). 
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7.  The pG*-hVE – all vectors contain human Ve-cadherin promoter, but each of the vector has 

different resistant gene for antibiotic selection. Those are SIN vectors, which can be used for 

virus production by means of transfection and consequently for transduction of mESC.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
 

 

 

 

Figure 15:  Backbones of transfer vectors with human promoters: pGH-hVE, pGN-hVE and pGP-hVE. 

 

RSV 5'LTR - long terminal repeat, required for viral packaging and transcription, Gag - packaging signal, cPPT - 

central polypurine tract (includes DNA Flap region) involved in nuclear transcription and integration of 

transduced viral genome, copGFP - GFP-reporter gene from copepod Pontellina plumata, T2A - 2A peptide 

from Thosehasigma virus to mediate protein cleavage, WPRE - posttranscriptional regulatory element which 

enhances the stability of the viral transcripts, 3'LTR - required for viral reverse transcription, self-inactivating 

3'LTR with deletion in U3 region prevents formation of replication competent viral particles after integration 

into genomic DNA, SV40 pA - transcription termination and polyadenylation, SV40 Ori - allows episomal 

replication of plasmid in eukaryotic cells, ori - allows high copy replication in E. coli, Amp - ampicillin resistant 

gene for selection in E. coli, H - hygromycin, N - neomycin and P - puromycin, SIN - self-inactivating vectors 

lacking viral enhancers/promoters in the 3' long terminal repeat (LTR). 
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8. The pG*-KDR- all vectors contain human KDR promoter, but each of the vector has different 

resistant gene for antibiotic selection. Those are SIN vectors, which can be used for virus 

production by means of transfection and consequently for transduction of mESC. 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 16:  Backbones of transfer vectors with human promoters: pGH-KDR, pGN-KDR and pGP-KDR. 

RSV 5'LTR - long terminal repeat, required for viral packaging and transcription, Gag - packaging signal, cPPT -

central polypurine tract (includes DNA Flap region) involved in nuclear transcription and integration of 

transduced viral genome, copGFP - GFP-reporter gene, from copepod Pontellina plumata, T2A - 2A peptide 

from Thosehasigma Virus to mediate protein cleavage, WPRE - posttranscriptional regulatory element which 

enhances the stability of the viral transcripts, 3'LTR - required for viral reverse transcription, self-inactivating 3' 

LTR with deletion in U3 region prevents formation of replication competent viral particles after integration into 

genomic DNA, SV40 pA - Transcription termination and polyadenylation, SV40 Ori - allows episomal 

replication of plasmid in eukaryotic cells, ori - allows  high copy replication in E. coli, Amp - ampicillin resistant 

gene for selection in E. coli, H - hygromycin, N - neomycin and P - puromycin, SIN - self-inactivating vectors 

lacking viral enhancers/promoters in the 3' long terminal repeat (LTR). 
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9. The pKP332 (Lenti-OSK) vector was used for induction of pluripotency. The plasmid was 

bought from Addgene (plasmid # 21627) and was primarily used in the experiments published 

by Chang (Chang et al., 2009). 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

Figure 17:  Backbone of pKP332 (Lenti-OSK) vector. 

1(PTV1) - porcine Teschovirus 2A sequences that function as cis-acting hydrolase elements (CHYSELs) to 

trigger "cleavage" and ribosome skipping linked with human Oct4, Sox2 and Klf4 cDNAs, SV40 Ori - allows 

episomal replication of plasmid in eukaryotic cells, ori - allows high copy replication in E. coli; Amp - ampicillin 

resistant gene for selection in E. coli, WPRE - posttranscriptional regulatory element which enhances the stability 

of the viral transcripts, cPPT - central polypurine tract (includes DNA Flap region) involved in nuclear 

transcription and integration of transduced viral genome, RRE - rev responsive element,  pBR322 - an E. coli 

plasmid cloning vector containing the origin of replication from pMB1 (a plasmid in the ColE1 compatibility 

group), EF1a_promotor - human elongation factor 1α subunit promotor for high level expression, transcription 

factors: Oct4 - POU5F1 a homeodomain,  Sox2 - (sex determining region Y)-box 2, Klf4 - Kruppel-like factor 4. 

http://en.wikipedia.org/wiki/Homeobox
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10. The pLM-fSV2A (Lenti-OKMS) vector was used for induction of pluripotency. This vector 

was bought from Addgene (plasmid # 27512) and was primarily used in the experiments 

published by Papapetrou (Papapetrou et al., 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 18:  Backbone of pLM-fSV2A (Lenti-OKMS) vector. 

 

hPGK_promoter - phosphoglycerate kinase promoter drives transgene expression subcloned within 

the multicloning sites, pBR322 - an E. coli plasmid cloning vector containing the origin of replication from 

pMB1 (a plasmid in the ColE1 compatibility group), Amp - ampicillin resistant gene for selection in E. coli, 

WPRE - posttranscriptional regulatory element which enhances the stability of the viral transcripts, cPPT - 

central polypurine tract (includes DNA Flap region) involved in nuclear transcription and integration of 

transduced viral genome, RRE - rev responsive element,  transcription factors: Oct4 - POU5F1 a homeodomain,  

Klf4 - Kruppel-like factor 4,  c-Myc - a regulator gene, Sox2 - (sex determining region Y)-box 2. 

  

http://en.wikipedia.org/wiki/Homeobox
http://en.wikipedia.org/wiki/Regulator_gene
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2.7. Kits and standards 

Table 6:  Kits and standards used in the experiments. 

Kit or standard Producer 

Agarose Gel Extraction Kit Jena Bioscience (Jena, Germany) 

DNA marker (Roti®-Load DNA) Roth (Karlsruhe, Germany) 

DNase treatment Kit Promega (Madison, USA) 

DNeasy Blood and Tissue Kit Qiagen (Hilden, Germany) 

dNTPs Thermo Scientific (Waltham, USA) 

Fast-n-Easy Plasmid Mini-Prep Kit Jena Bioscience (Jena, Germany) 

GeneJet™RNA Purification Kit Thermo Scientific (Waltham, USA) 

High-Capacity cDNA Reverse Transcription Kit 
Applied Biosystems/Life Technologies (Darmstadt, 

Germany) 

ImmoMix™Red Bioline GmbH (Luckenwalde, Germany) 

MangoMix™ Bioline GmbH (Luckenwalde, Germany) 

NuceloBond Xtra Maxi Kit Macherey-Nagel GmbH (Düren, Germany) 

PCR Purification Kit Jena Bioscience (Jena, Germany) 

Pfu Polymerase Fermentas (Pittsburgh, USA) 

Phusion® High Fidelity DNA Polymerase New England Biolabs (Ipswich, USA) 

QIAamp® Viral RNA Mini Kit Qiagen (Hilden, Germany) 

RNeasy® Mini Kit Qiagen (Hilden, Germany) 

Shrimp Alkaline Phosphatase (SAP) Fermentas (Pittsburgh, USA) 

SYBER® Select Master Mix 
Applied Biosystems/Life Technologies (Darmstadt, 

Germany) 

T4 Ligase Fermentas (Pittsburgh, USA) 
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T4 Polynucleotidkinase (PNK) Fermentas (Pittsburgh, USA) 

Taq Polymerase  Bioline GmbH (Luckenwalde, Germany) 

TurboFect Fermentas (Pittsburgh, USA) 

2.8. Media 

2.8.1. Media, buffers and solutions used in the cell culture 

Table 7: Cell culture media. 

Name Producer 

0.05% Trypsin-EDTA Gibco Invitrogen (Karlsruhe, Germany) 

1-Thioglycerol (3-Mercapto-1,2-diol) Sigma Aldrich (Steinheim, Germany) 

2.5% Trypsin Gibco Invitrogen (Karlsruhe, Germany) 

Ampicillin  Serva Feinbiochemica (Heidelberg, Germany) 

Ascorbic Acid (vitamin C) STEMCELL Technologies (Köln, Germany) 

B-27 supplement Gibco Invitrogen (Karlsruhe, Germany) 

BD SMC4 (small molecule cocktail of inhibitors) BD Bioscience (Heidelberg, Germany) 

Fibroblast Growth Factor-basic (bFGF) Life Technologies (Darmstadt, Germany) 

Bovine Albumin Fraction V Solution (BSA)  Gibco Invitrogen (Karlsruhe, Germany) 

Bovine Pituritary Extract (BPE) Sigma Aldrich (Steinheim, Germany) 

GSK-3 inhibitor CHIR99021 [3 mM] Reagents Direct (Encinitas, USA) 

Collagenase type IV Gibco Invitrogen (Karlsruhe, Germany) 

Deoxyribonuclease I from bovine pancreas (DNaseI) Roche (Indianapolis, USA) 

Dispase VWR Syngene (Darmstadt, Germany) 
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Dulbecco’s Modified Eagle’s Medium: Nutrient 

Mixture F-12 (DMEM-F12) 
PAA (Cölbe, Germany) 

Dulbecco’s Modified Eagle Medium with Glucose 

(DMEM) 
Gibco Invitrogen (Karlsruhe, Germany) 

Dulbecco’s Phosphate Buffer Saline (PBS) without 

Ca
2+

 & Mg
2+

  
PAA (Cölbe, Germany) 

Fetal calf serum (FCS) PAA (Cölbe, Germany) 

Fibronectin BD Bioscience (Heidelberg, Germany) 

Gelatin from porcine skin, type A Sigma Aldrich (Steinheim, Germany) 

Geltrex™ LDEV-Free hESC-qualified Reduced 

Growth Factor Basement Membrane Matrix 
Life Technologies (Darmstadt, Germany) 

Geneticin disulfate (G418) powder Sigma Aldrich (Steinheim, Germany) 

Ham’s F 12 Nutrient Mixture Gibco Invitrogen (Karlsruhe, Germany) 

Heparin  Sigma Aldrich (Steinheim, Germany) 

Hygromycin B Sigma Aldrich (Steinheim, Germany) 

Iscove's liquid medium with stable glutamine 

(IMDM) 
Biochrom AG (Berlin, Germany) 

Knockout DMEM (KO DMEM) Gibco Invitrogen (Karlsruhe, Germany) 

Knockout Serum Replacement (KO replacement) Gibco Invitrogen (Karlsruhe, Germany) 

Leukemia inhibitory factor (LIF)  Millipore (Darmstadt, Germany) 

L-Glutamine PAA (Cölbe, Germany) 

MCDB 131 Medium PAN Biotech (Aidenbach, Germany) 

Mitomycin C  Sigma Aldrich (Steinheim, Germany) 

N-2 supplement Gibco Invitrogen (Karlsruhe, Germany) 

Neomycin  Sigma Aldrich (Steinheim, Germany) 

Neurobasal
® 

Medium Gibco Invitrogen (Karlsruhe, Germany) 

Non-essential amino acids (NEAA) PAA (Cölbe, Germany) 
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MEK inhibitor PD0325901 [1 mM] Reagents Direct (Encinitas, USA) 

Penicillin/Streptomycin (Pen/Strep) PAA (Cölbe, Germany) 

Poly (2-hydroxyethyl methacrylate) (polyHEMA) Sigma Aldrich (Steinheim, Germany) 

Polybrene (Hexadimethrin bromide) [10 mg/ml] Millipore (Darmstadt, Germany) 

Sodium pyruvate (Pyruvat) PAA (Cölbe, Germany) 

β-Mercaptoethanol [2 mM] Sigma Aldrich (Steinheim, Germany) 

VitronectinXF™ STEMCELL Technologies (Köln, Germany) 

 

2.8.2 Cell culture media composition  

Each medium containing all ingredients after preparation was filter sterilized and kept in 4 °C up to six 

weeks. 

 Complete ES-medium for ESCs culture: 

Iscove’s modified DMEM (IMDM) containing 25 mM HEPES and it is optimal for 

the cell culture conducted when the concentration of CO2 is at the level of 5%. 

IMDM with 15% (v/v) FCS, 1% (v/v) NEAA, 1% (v/v) Pen/Strep, 1% (v/v) Pyruvate, 

4.4 μl β-Mercaptoethanol, 10
6 

U/ml LIF (stock concentration 10
7
 Units in 1 ml of 

phosphate buffered saline) 

 Differentiation medium: 

ES-medium without LIF 

 MEF-medium for culturing murine embryonic fibroblasts: 

DMEM with 15% (v/v) FCS, 1% (v/v) Pen/Strep, 1% (v/v) NEAA 

 Medium for mitotic inactivation of MEFs: 

DMEM with 5% (v/v) FCS, 1% (v/v) Pen/Strep, 1% (v/v) NEAA and 10 μg/ml (w/v) 

mitomycin C (stock 50 mg powder of which 2 mg mitomycin C and 48 mg of NaCl)   
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 mEndo medium - medium for culturing mouse endothelioma cells (mEndo): 

MCDB 131 medium with 15% (v/v) FCS, 50 μg/ml (w/v) L-glutamine, 50 μg/ml 

(w/v) BPE, 100 μg/ml (w/v) heparin, 1% (v/v) Pen/Strep 

 Medium for culturing HEK 293T cells: 

DMEM with 10% (v/v) FCS and 1% (v/v) Pen/Strep 

 Freezing medium: 

DMEM with 50% (v/v) FCS and 10% (v/v) DMSO 

 HEPES buffer: 

Composition for 3 L stock: 21.21 g of  NaCl, 1.2 g of KCl, 0.18 g of KH2HPO4 , 0.24 

g of Na2HPO4 (x) 7H2O, 3 g of glucose, 0.03 g of phenol red, 14.3 g of HEPES. 

Dissolve all chemicals in 2.5 L of cell culture water, adjust pH to 7.3 (with NaOH or 

HCl accordingly), fill up to 3 L. Distribute into 500 ml bottles, autoclave and store in 

4 °C for several weeks.  

 0.2% (w/v) gelatin solution for coating the cell culture dishes: 

Dissolve 1 g of gelatin type A in 500 ml of cell culture water and autoclave at 121 °C 

for 15 min. 

2.8.3. Bacterial culture media composition 

 

 LB medium (Roth, Karlsruhe, Germany): 

 

The formulation of this broth is based on the LB broth described by E.S. Lennox 

(Lennox, 1955). LB medium was used for the growth and maintenance of E.coli 

strains, this broth is nutrient rich and specifically developed for the isolation of pure 

recombinant strains.  

Preparation: dissolve 20 g of the LB medium in 1 L of purified water and autoclave. 

Afterwards add 800 µl of ampicillin (stock 100 mg/ml). 
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 LB agar (Roth, Karlsruhe, Germany): 

The LB agar was established by E.S. Lennox for growth and maintenance of pure 

cultures of recombinant strains of E. coli (Lennox, 1955).   

Preparation: suspend 16 g of the LB agar in 500 ml of purified water, then heat with 

frequent agitation and boiled for 1 min to completely dissolve the medium. Autoclave 

at 121 °C for 15 min. Before pouring the agar on the Petri dishes, add 400 µl of 

ampicillin (stock concentration 100 mg/ml). 

 SOC medium: 

SOC medium is appropriate for use in the final step of cell transformation to obtain 

maximal transformation efficiency of E. coli (Hanahan, 1983). Use of SOC medium 

increases the molecular uptake, while stabilizing the cells and at the same time 

maximizing the transformation efficiency. 

Preparation: 

tryptone 2 g, yeast extract 0.5 g, NaCl 0.2 ml [15 M], KCl 0.25 ml [1M], MgCl2 

1 ml [1 M], glucose 2 ml [1 M] constitutes the SOB medium (Super Optimal Broth). 

To the ready SOB solution containing the first four reagents, after autoclaving at  

121 °C, add sterile MgCl2 and glucose. 

2.8.4. Xenobiotic-free media composition (2i media) 

 Serum free ES medium (SFES-basal media), composition for 500 ml: 

50% (v/v) Neurobasal medium, 50% (v/v) DMEM/F12, 0.5% (v/v) N-2 supplement, 1% (v/v) 

B-27 supplement, 0.6% (v/v) BSA, 1% (v/v) Pen/Strep  

Aliquot 10(x) into 50 ml conicals and wrap each in tin foil, store at 4 °C. 
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 Complete 2i medium: 

Take one aliquot of SFES medium and add: 

50 µl MEK inhibitor PD0325901 [1 mM], 50 µl GSK-3 inhibitor CHIR99021 [3 mM], 500 µl 

glutamine  [200 mM], 0.63 µl monothioglycerol (MTG) [11.9 M], 50 µl LIF  [10
6 
U/ml]  

 Serum free differentiation medium (SFD), composition for 150 ml: 

75% (v/v) IMDM, 25% (v/v) Ham’s F12, 0.5% (v/v) N-2 supplement, 1% (v/v) B-27 

supplement, 1% (v/v) Pen/Strep, 0.6% (v/v) BSA (0.05%), 1% (w/v) glutamine (2 mM) 

Directly before use supplement with 1% (v/v) ascorbic acid and 0.002% (v/v) MTG 

(1.5(x)10
4
M). 

 "STOP" buffer to terminate the trypsin activity: 

50% (v/v)  IMDM, 50%  (v/v)  serum, DNAse (10 mg/ml) 

 Freezing medium: 

50% (v/v) IMDM, 40% (v/v) serum, 10% (v/v) DMSO  

 VitronectinXF™ solution for coating the cell culture dishes: 

Thaw Vitronectin XF™ at room temperature and then dilute in PBS to reach a final 

concentration of 10 μg/ml (i.e. use 40 μl of Vitronectin XF™ per 1 ml of buffer). Prepare 

the dilution in 50 ml conical tube and mix gently. Coated plates, after incubation, should be 

washed once with PBS before use. 

2.9. Cell lines 
 

 Embryonic stem cell line - E14Tga2a.4  

This is a derivative of one of several embryonic stem cell lines developed by M. Hooper in 

1987 (Hooper et al., 1987). Cells were obtained from the 129P2/OlaHsd mouse strain. 

 Mouse embryonic fibroblasts (MEFs) 

MEFs are obtained from d13.5 to d14.5 postcoitum (p.c.) mouse embryos. After propagation 

cells can be aliquoted and frozen indefinitely in liquid nitrogen.  
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In order to use MEFs as feeders, cells first need to be mitotically inactivated (see paragraph 

3.2.1.). 

 Mouse endothelioma cells (mEndo) 

It is an immortalized cell line which possesses endothelial characteristic. This cell line was 

used as a positive control to validate the vectors created for establishing the reporter cell lines. 

 Human Embryonic Kidney cells (HEK 293T ) 

 Human embryonic kidney cells have been transformed by exposing cells to sheared fragments 

of adenovirus type 5 DNA (Graham et al., 1977). The 293T cells are derivative of 293 cells 

but are stably expressing the SV40 large T antigen. That antigen can bind to SV40 enhancers 

of expression vectors increasing in that manner protein production. The HEK cell line was 

used for viral particle (VP) production. 
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3. Methods 

 

3.1. Molecular methods 

3.1.1. Isolation of total RNA and DNase treatment 

The isolation of total RNA from cell culture samples was performed by using GeneJET™ RNA 

Purification Kit or RNeasy
®
 Mini Kit according to the manufacturers’ protocol. Each sample was 

eluted in 50 μl of nuclease free water. Next, the quality and concentration of RNA were measured on 

NanoDrop. After determination of RNA concentration, samples were normalized to an end 

concentration of 100 ng/μl. Next, DNase treatment was applied and samples were incubated for 30 

min at 37 ºC. 

                        Set up of the DNA digestion reaction: 

Component Volume 

10(x)DNase Reaction Buffer 2 μl 

DNase 2 μl 

RNA sample 15.5 μl 

RNase inhibitor 0.5 μl 

Total volume per reaction: 20 μl 

 

3.1.2. Determination of nucleic acid concentration 

The DNA yield can be estimated by absorbance (optical density), agarose gel electrophoresis, or by 

use of fluorescent DNA-binding dyes. Nucleic acids and proteins have absorbances maxima at 260 

and 280 nm, respectively. The ratio of absorbance at these wavelengths has been used to estimate 

the purity of proteins and nucleic acids. The ratio of ~1.8 is generally accepted for DNA and for RNA 

~2.0. 
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3.1.3. Synthesis of cDNA from total RNA (reverse transcription) 

The synthesis of DNA from an RNA template, by means of reverse transcription, creates 

a complementary DNA (cDNA). The reverse transcriptases utilize an RNA template and a short 

primer complementary to the 3' end of the RNA to drive the synthesis of the first strand of cDNA. 

That strand will be used immediately as a template for the polymerase chain reaction (PCR). A 

mixture of reverse transcription and PCR reactions allow for the detection of low amounts of RNA in 

a sample and production of the corresponding cDNA. Applications of engineered reverse 

transcriptases boost the efficiency of full-length product arrangement, at the same time providing that 

the copying of the 5' end of the mRNA transcript is complete. In the Promega Kit a Moloney Murine 

Leukemia Virus Reverse Transcriptase (M-MLV RT) is used as an RNA-dependent DNA polymerase. 

RT-PCR reaction mix: 

Component Volume per reaction End concentration 

ddH2O 4.2 μl N/A 

10(x)RT Buffer 2 μl 1(x) 

10(x)Random Primers 

(hexamers) 
2 μl 1(x) 

25(x)dNTP Mix [100 mM] 0.8 μl 1(x) 

MultiScribeTM-RT  

[50 U/μl] 
1 μl 50 U 

RNA 10 μl 100 ng/μl 

 Total volume: 20 μl 
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    The PCR was run in the Mastercycler Ep Gradient S machine, with the following set up: 

Time Temperature Process 

10 min 25 ºC Primer binding to an RNA 

2 h 37 ºC Reverse Transcription 

5 min 85 ºC 
Inactivation of MultiScribe

TM
 

reverse transcriptase 

>5 min 4 ºC ∞ 

 

3.1.4. DNA amplification by polymerase chain reaction (PCR) 

To be able to investigate single genes or particular DNA regions of interest, large quantity of nucleic 

acid are required for analysis. To avoid isolation of single copy of desired DNA, it is better to have 

multiple copies of a target. PCR makes it possible to produce millions of copies of a specific DNA 

sequence in a fairly short time. This technique was developed by Kary Mullis and associates in 1984.  

In experiments described in this thesis, PCR was used for both analytical and preparative purposes.  

For the detection of positive bacterial clones or selection of ESC clones, MangoMix containing  

Taq Polymerase was used. The Taq Polymerase is a highly thermostable DNA polymerase from 

the thermophilic bacterium Thermus aquaticus. 

Preparative PCR was utilized for amplification of DNA fragments which were used as inserts for 

production of plasmid DNA (pDNA) constructs. In preparative PCR Pfu polymerase instead  

of Taq polymerase was applied. The Pfu polymerase possesses proof reading ability, which makes it 

superior in comparison to the other polymerase.  

3.1.5. Real Time PCR 

For the purposes of the experiments presented in the thesis, changes in gene expression during cell 

differentiation were explored. To conduct tests with real time PCR, a florescent dye called SYBR® 

Green was used. This is a universal probe, which attaches to all double-stranded DNA. This allows 

the detection and monitoring by measuring the increase in fluorescence throughout the cycle. SYBR® 
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Green has an excitation maximum of 494 nm and emission of 521 nm. The threshold cycle (Ct) is 

the quantitative endpoint for real-time PCR. The Ct is defined as the PCR cycle, at which 

the fluorescent signal of the reporter dye, exceeds an arbitrarily set up threshold. Presentation of 

the generated data as the Ct values guarantees that the PCR is in the exponential phase of 

amplification. The numerical value of the Ct is inversely linked to the amount of amplicon in 

the reaction. 

3.1.6. Gel electrophoresis 

 

To confirm the specificity of the primers, verify the DNA fragments after digestion, ligation, or other 

PCR products, the gel electrophoresis method was used. It is a common method for separating DNA 

by size (i.e. length in base pairs) for visualization and purification. The molecules to be separated are 

driven by an electrical field through a small porous gel. The speed at which the molecules migrate 

through the gel is inversely connected with the lengths of the molecule. Bands can be detected by 

staining and visualized by illumination with 300 nm UV light. Ethidium bromide, the added dye, is a 

DNA intercalator which inserts itself between the base pairs in the double helix.  

3.1.7. DNA restriction 

Restriction enzymes are DNA-cutting enzymes found in bacteria. Those enzymes cleave the sugar- 

phosphate backbone of the DNA. In order to prevent self-ligation of the vector, shrimp alkaline 

phosphatase (SAP from Pandalus borealis), which dephosphorylates the vector was added. 

Over the course of experiments carried out in this PhD project, the restrictive digestion of DNA was 

used for cloning purposes, as well as for the purification of desired plasmid fragments. Those 

fragments were obtained by means of gel electrophoresis followed by gel extraction, which is 

necessary to obtain sufficient amount of the product. For the digestion reaction, commonly 5 µg of 

the vector DNA and 1µg of the insert(s), originating from the PCR, were applied.  
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       Example setup of the digestion reaction: 

Component Volume 

10(x)buffer 
(adequate for the particular enzyme) 

2 µl 

Restriction enzyme 1-2 U  

DNA ~ 1 µg  

H2O 
Sufficient amount to bring the total 

reaction volume to 20 or 50 µl 

 

Reaction mix was separated by gel electrophoresis and the band exhibiting the expected size was 

extracted and purified with Agarose Gel Extraction Kit.  

3.1.8. DNA ligation 

 

Ligation was catalyzed by T4 DNA ligase, this enzyme is obtained from bacteriophage T4. The ligase 

mediates formation of phosphodiester bonds between the free 3'-hydroxyl terminus with  

the 5'-phospate group of adjacent DNA. T4 DNA ligase will link cohesive end termini as well as repair 

single stranded nicks in double helix of DNA.   

      Ligation mix for 20µl reaction: 

Component Amount 

10(x)T4 DNA Ligase Buffer 2 μl 

Vector DNA  50-100 ng  

Insert DNA in molar ratio of 1:3 over vector  

Nuclease-free H2O up to 20 μl 

T4 DNA Ligase 1 μl 
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The mixture was incubated for 30 min to 1 h at room temperature (22 °C).  Depending on need 

the mixture was enriched with polyethylene glycol (5% PEG per reaction), which "packs" the aqueous 

solution of the ligation mix, thus increasing the concentration of the DNA and ligase, making 

the interaction more efficient. 

3.1.9. Electroporation 

 

Transformation of bacteria is a method in which the naked DNA molecules will be taken up by 

bacterial cells, by means of electric field the permeability of the bacteria cell membrane is increased. 

When the extrinsic DNA has an origin of replication recognized by the polymerase of the host cell, 

then the bacteria will replicate the incorporated DNA as its own.  

In order to remove salts from the sample, the DNA was precipitated. This procedure is crucial since in 

the subsequent electroporation step, the salt content could cause interference.  

The protocol for DNA precipitation was as follows: 

1. Fill up the reaction mix with water up to 100 µl. 

2. Mix with 1 ml of n-butanol and vortex thoroughly. 

3. Centrifuge for 20 min at maximum speed at room temperature. 

4. Pellet should be well visible. Discard supernatant and add 500 µl of 70% ethanol to wash 

the pellet. Centrifuge for 5 min at the highest speed. 

5. Pellet should be now white, dry it for about 10-15 min. Then suspend the precipitated DNA in 

10 µl of ddH2O. 

An aliquot (100 µl) of electrocompetent bacteria was thawed on ice and 50 µl of the bacterial 

suspension was mixed with 10 µl of the precipitated DNA. The remaining bacteria were used for 

the ligation control, where instead of insert water was added (colonies on the plate will indicate 

undigested or self-ligated vector). Mix was kept on ice and pipetted into a 1 mm plastic cuvette. 

The dried-off cuvette was placed in the electroporator and standard for bacteria current pulse was 

applied (1.8 kV and capacitance of 25 µF with a resistance of 1 Ω), bacteria were mixed with 800 µl 

of pre-warmed SOC medium, to stimulate the recovery of the microorganisms. 
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The mixture was transferred to a 1.5 ml reaction tube and maintained in a heating block (37 °C)  

for 40 min with shaking at 500 rpm. After the incubation, bacteria were distributed on agar plates 

containing ampicillin selective medium and incubated at 37 °C overnight. 

3.1.9.1. Bacterial strain 

An Escherichia coli XL1-Blue strain was used for the plasmid propagation. That type of bacteria has 

the following genotype: 

recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac [F´proAB lacI
q
Z∆M15 Tn10 (Tet

r
)] 

This strain of E. coli is the most common strain used in cloning. The XL-1-Blue strain is tetracycline-

resistant and also has endonuclease deficiency (endA). The endA mutation deletes endonuclease and 

this has a significant impact on the quality of plasmid preparations. This strain is recombination-

deficient (recA
-
) and that results in better insert stability. Another characteristic of this specific E. coli 

strain is the hsdR mutation, which prevents the cleavage of cloned DNA by the EcoK endonuclease 

system. While E. coli DNA is protected from degradation by an equivalent methyl-transferase, foreign 

DNA will be cut at the specific sites. The deletion of hsdS eliminates both the endonuclease and 

methyl-ltransferase activities of EcoK. The gene (F' Δ(lacZ)M15) constitutes the omega-fragment  

of β-gal; Δ(lac-proAB) deletes the β-gal gene on the chromosome. Several plasmids code for  

the α-peptide of β-galactosidase (lacZ). The α-peptide is able to connect with the omega-fragment  

of β-galactosidase, which is carried on the F' (α-complementation). When β-galactosidase is built 

again in this way it can cleave X-gal and then the blue colonies on an X-gal plate will emerge. Inserts 

cloned into the plasmid polylinker (multiple cloning sites) disrupt the α-peptide gene and accordingly 

the growing colonies will be white (www.neb.com, NewEngland Biolabs). 

3.1.10. Ligation control after bacterial transformation 

There are two methods to ensure that the grown bacteria had been properly transformed. The first 

utilizes digestion enzymes to screen the clones. As it was mentioned previously (3.7.1.), the restriction 

endonucleases will create unique band patterns of the digested vectors.  

In order to isolate enough of plasmid DNA for experiment the liquid culture was used.  

http://www.neb.com/
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Protocol for liquid bacteria culture: 

1. Add 3 ml of liquid LB to a culture tube (liquid medium should be supplemented with 800 µl 

of ampicillin). 

2. Pick a single colony from given LB agar plate using a sterile pipette tip (it is important to pick 

one single colony only). Drop the tip into the liquid LB and swirl. 

3. Loosely cover the tube with a sterile aluminium foil or a cap that is not air tight. 

4. Incubate bacterial culture at 37 °C overnight in a shaking incubator at 250 rpm. 

5. Next day a cloudy haze in the media should be observed (evidence of bacterial growth). 

6. Remove tubes from the incubator and pick out the pipette tip with forceps and spin down the 

liquid cultures in 15 ml tube at 4.000 rpm at 4 ºC for 5 min.  

7. Discard the supernatant and let excess liquid to drain by inverting tube on a paper towel.  

8. Proceed with a mini prep following the kit instruction or freeze the pellet in -20 °C. 

After the mini prep, vector in the amount of 1 µg was digested with the adequate restriction enzyme.  

The second possibility for detection of bacterial colonies, with inserted desired cloning product, was 

performed using PCR. Primers used for the screen, were designed in a way to include a part from 

the vector and a piece from the insert. This approach guarantees that the vector and insert are correctly 

oriented. Taking into consideration colony density on the plate which served as a control (ligation 

without insert), colonies from the ligation plate were picked in the appropriate ratio. The picked clones 

were suspended in 10 µl of liquid medium and incubated in a shaking heating block (37 °C) for 1-2 h. 

To the reaction tube containing 5 µl of the incubated sample 100 µl of water was added. Tubes were 

centrifuged for about 1 min at maximum speed and 95 µl of the supernatant was discarded. 

The remaining volume with the pellet was incubated for 5 min at 95 °C to lyse bacteria. The last step 

required brief centrifugation at the highest speed. For PCR mix 1 µl of the supernatant was used. 
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25 

cycles 

           Reaction mix: 

Component Volume 

H2O 2.6 μl 

Buffer Top Taq Mix 5 μl 

Forward primer for 

screen 
0.2 μl 

Reverse primer for screen 0.2 μl 

Loading dye 1 μl 

Template 1 μl 

Total volume  10 μl 

 

                                     PCR-program set up: 

  

 

 

 

 

 

 

The bacterial colonies showing a band at the accurate height, after the gel electrophoresis, were used 

for liquid culture. After the overnight incubation the mini prep was performed.  

3.1.11. Plasmid preparation 

A plasmid preparation is a technique by which plasmid DNA is extracted and purified. The general 

concept behind the function of the kit is the preparation of plasmid DNA from chromosomal DNA.  

 

Time Temperature 

2 min 95 ºC 

15 s 95 ºC 

15 s 58 ºC 

10 s 72 ºC 

1 min 40 s 72 ºC 

∞ 4 ºC 
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The available kits are named after the size of the bacterial culture and corresponding plasmid yield: 

miniprep, midiprep or maxiprep. The plasmid DNA yield will be subjected to the plasmid copy 

number, type and size, the strain of bacteria, the growing conditions and the kit applied. 

For the purpose of the experiments carried out in the course of this research two approaches had been 

utilized: 

 to extract small amounts of plasmid DNA (10-50 µg) the Fast-n-Easy Plasmid Mini-Prep Kit 

was used, 

 to obtain bigger quantities of plasmid DNA (up to 1 mg) NuceloBond Xtra Maxi Kit was 

applied. 

In the first step, bacteria are lysed in the alkaline conditions and the lysate is applied, under defined 

salt settings, on the specially design columns. The plasmid DNA is selectively bound and purified 

from RNA, proteins and other cellular contaminants. The cells should not be exposed to alkaline 

conditions for too long, because this may lead to the plasmid denaturation, resulting in faster migration 

in the agarose gel or causing resistance to digestion by restriction endonucleases. 

3.1.12. Viral vectors production 

Vectors for establishing a reporter cell line  

Vectors with murine promotors (Fig. 13 and 14) 

In the first step of the pFlk vector creation, the α-mMHC promotor was replaced by Flk1 promoter in 

the pMHC plasmid. Later to replace the promoter the following restriction sides were used: XhoI and 

BspTI. The sequences of the Flk1 promoter and its enhancer were provided by Stefanie Bachmann 

from Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH).  

The promoter was subcloned using indicated primers: 

forward:  SP Flk promoter: 5'catatctcgagcgacccagccaggaagttc3' 

reverse: AS Flk promoter: 5'gtatacttaagcctgcacctcgcgctgg3' 

(Bolded nucleotides specify the recognition sequences of restriction enzymes). 
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The enhancer was amplified by use of specified primers: 

forward: SP Flk enhancer: 5'tcgagctctaaatgtgctgtctttagaagcc3' 

         reverse: AP Flk enhancer: 5'tacccggggtccaataggaaagccctt3' 

 

To the plasmid containing the desired promoter and enhancer was cloned on the SacI and SmaI 

restriction sites. In the original vector, there was no restriction site between the neomycin resistance 

gene cassette (Neo) and polyadenylation (pA) signal. Due to that fact it was possible to cut out Neo 

from the primary vector without pA signal. Amplification was made by using the showed primers: 

     forward: SP_neo_BspTI: 5'tgcaggccttaaggcggc3' 

 

reverse: AP_neo_SalI_hTm: 5'gtatagtcgacgccgatcccctcagaagaactc3' 

Next, the Neo cassette was ligated to the interfaces of BspTI and SalI into the plasmid already 

comprising Flk1 promoter and the enhancer. 

In the case of building up the pVe-Cad construct also pMHC plasmid was used. Similarly,  

the α-mMHC promoter was replaced by Ve-cadherin promoter. In 1998 Gorry described and analyzed 

the activity of this promoter (Gorry et al., 1998). The template for subcloning was prepared from 

genomic DNA and the promoter region was placed between -2486 to +24 base pairs. In that step 

the subsequent primers were used: 

forward: SP_VE-Cad: 5'gtatactcgagcatgcagtgcaggagggagccagaa3' 

reverse: ASP_VE-Cad: 5'ctatacttaagagtctgtccagggccgagctttgtg3' 

From already completed pFlk vector, the whole neo-IRES-EGFP cassette was removed and subcloned 

to pVe-Cad construct at the interface of BspTI and SacI. 

It is important to mention, that at the very beginning of the project Dr. Sven Becker from MPI Bad 

Nauheim, created also vectors containing zeocine as a resistance gene pGZ_Flk and pGZ_Ve-

Cadherin. These constructs were used in the transitional stages of cloning procedures presented in 

the thesis.  
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The next step covered replacement of CMV promoter from pcDNA™5/TO plasmid. This promoter 

has a tendency to be silenced in the ES cells. That is why it had been replaced by PGK promoter. 

The new promoter was amplified from pMHC vector with the following primers: 

forward: SP-PGK-MluI: 5'gtataacgcgttaccgggtaggggaggcgctt3' 

revers: AP-PGK-BspTI: 5'ctatacttaagggtggcgggatgcaggtcga3' 

and then ligated to the generated plasmid at the subsequent restriction sites: MluI and BsptI.           

After sequencing of the already assembled plasmids, it appeared that a mistake had been made. While 

cutting out the neo-IRES-EGFP cassette at the site of BsptI, the T2A sequence had been also removed. 

T2A gene flanked by multiple cloning sites should facilitate the simultaneous expression of multiple 

genes. In order to rescue the situation, the T2A sequence was ligated again to the vectors. 

The synthetic linkers were applied, which are single-stranded pieces of DNA of usually 8-12 base 

pairs in length. Linkers self-associate in solution to create regular helixes, which are even at both ends. 

Upon attachment of a linker to the cDNA, each of the strands is cleaved with the suitable restriction 

enzymes and new sticky-ends are generated. These ends will be complementary to the one created by 

similar handling of the vector (Greene, 1998). 

Scheme of actions undertaken to recover the T2A sequence: 

1. Linker synthesis with T4 Polynucleotide Kinase (T4 PNK) which catalyzes the transfer of 

the γ-phosphate from ATP to the 5'-OH group of oligonucleotides. 

2. Digestion of the vectors with AgeI. 

3. Ligation of the T2A linker to the vectors. 

4. Exchange of the T2A-Zeo sequence, from PGZ-VE by the T2A-Neo sequence from pGN-Flk 

by using MreI and SalI restriction enzymes (generation of pGN-VE). 

In order to add the puromycin cassette, the pLKO.1cloning vector was used. This vector was obtained 

from a shRNA library. The sequence encoding that resistance gene was cut out at the interface of MreI 

and SalI. After amplification the puromycin cassette was subcloned to constructs containing Flk1 
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promoters. For attaching the hygromycin to the backbones, its coding sequence was obtained from 

pGK_GFP vector. This vector was received from Dr. Marten Szibor from MPI Bad Nuaheim. 

Vectors with human promoters (Fig. 15 and 16) 

The sequences for KDR and hVe- Cadherin promoters were derived from the human blood received 

from the blood bank (University Hospital of Giessen). The blood was delivered as a buffy coat. 

The genomic DNA was extracted with the DNeasy Blood and Tissue Kit accordingly to 

the manufacturers’ manual. In the PCR reaction the human endothelial promoters were amplified with 

specifically designed primers. In case of the KDR promoter it was also important to amplify 

the enhancer. This short sequence of DNA binds with the proteins in order to promote the gene 

transcription. The role of the KDR enhancer was described, among others, in the work conducted by 

Patterson (Patterson et al., 1995).  

Following the PCR amplification, the human endothelial promoters were sub-cloned to already 

generated vectors: 

1. hVe-Cadherin promoter with the use of following primers: 

forward: hVE-Cad-F:  5'ctataatcgatgcccctccaatctgtcttgtctacc3' 

revers: hVE-Cad-R:  5'catatgctagcgcctggctgcctccccttc3' 

 

2. for the KDR promoter subsequent primers were applied: 

forward: KDR-prom2-F: 5'gtataatcgattccactgaagcacgctggca3' 

revers: KDR-prom-R: 5'gatatgctagctcctgcacctcgagccggg3', 

 

and the oligos for the KDR enhancer: 

forward: KDR-enh-F: 5'gtatgtcgactgcatgtatgtgtggaattggggaatg3' 

revers: KDR-enh-R: 5'gatacccgggatgctgagcctgggcagatcaag3' 

The T2A sequence was now completed and the Neo sequence had been cut out of the Flk-pGN vector 

by using the MreI and SalI restriction enzymes. The neomycin cassette was ligated into the pGN_KDR 
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construct, to confirm if the vector was assembled correctly screen with copGFP_F and AP-T2A-screen 

primers was performed. 

The pGN-hVE vector din not have SalI restriction site. This site was required for the exchange of 

resistance genes. To solve that, vectors PGZ-CMV and pGN-hVE had been digested with ClaI and 

NheI. The hVE-Cadherin promoter was then ligated instead of CMV in the PGZ-vector and 

the exchange of T2A-zeo cassette was accomplished. The next two resistance genes hygromicin B and 

puromycin were added in the same way it was described for the vectors containing murine endothelial 

promoters.  

Integrase deficient lentiviral vector (Fig. 11)  

 

The described in this subparagraph, psPAX2-IntD64V lentiviral vector, contains a point mutation in 

the amino acids sequence (D64 residue) of a protein called integrase (Shaw and Cornetta, 2014).  

To obtain the IDLV, the psPAX 2 vector was used in the process of site-directed mutagenesis (SDM). 

The psPAX2 due to its size (over 10.000 bp) and the risk of mutations in the fragments that are 

important for its functioning, could not be used in the SDM. Only relevant part of the vector was 

amplified by using the subsequent primers: 

 

forward: psPax2_forw: 5'gggtgcccacactaatgatgtgaaa3' 

 

reverse: psPAX2_rev: 5'tcccctgcactgtaccccc3' 

 

Fragment for amplification was removed from the psPAX2 plasmid at the unique interface of AlfII 

and SwaI. The PCR product was then ligated into the cloning vector pJet1.2 (Fermentas), which 

contains the same restriction sites. The size of the cloning vector after ligation was 4 kb and was 

suitable for introducing the point mutation in the sequence of the chosen protein. The amino acid 

residue aspartic acid (D) was substituted by valine (V). The primers for SDM were designed with 

mismatched base pairs and used for the PCR of the entire Pjet1.2 vector. In this reaction the Phusion
®
 

High-Fidelity DNA Polymerase was applied.  
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The following primers were utilized: 

 

forward: IntD64V_forw_1: 5'gcagctagtttgtacacatttagaaggaaaag3' 

 

reverse: IntD64V_rev_1: 5'catattcctgggctacagtctacttgtc3' 

 

The sequence coding the integrase protein with the introduced point mutation was cut out from pJet1.2 

vector with the restriction endonucleases AflII and SwaI. The two mentioned restriction enzymes were 

applied in a double digest reaction, where the modified protein sequence was pasted back to 

the psPAX2 vector.  

3.1.13. Sequencing  

The sequencing was conducted in order to ensure, that the positive clones after ligation, or 

the prepared vector constructs do not contain any mutations. This check was performed by an external 

laboratory StarSEQ®GmbH. 

Each sample for sequencing, prior to sending, was prepared in the following manner: 

1. 400-700 ng DNA, 

2. 1 µl of forward or reverse primer, 

3. filled up with dd H2O to the final volume of 7 µl. 

3.1.14. Viral test 

In order to transfer the transduced ESCs from S2 area to the S1 laboratory it is crucial to exclude any 

content of viral particles in the medium. The mRNA was isolated from the supernatant with 

the QIAamp® Viral RNA Mini Kit. The aliquots of supernatant (150 µl) were prepared from medium 

which was exchanged to HEPES buffer in a clone picking procedure (subparagraph 3.2.6.). The cDNA 

was synthesized and used for the PCR screen to check possible content of viral particles.  
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 Reaction mix: 

Component Volume 

H2O 3 µl 

2(x)Immo Mix 5 µl 

HIV1_PSS_F 0.5 µl 

HIV1_PSS_R 0.5 µl 

cDNA 1 µl 

Total volume  10 µl 

 

           PCR set up: 

 

 

 

 

 

 

 

 

 

 

3.2. Cell culture methods 

 

The cell culture experiments were performed under sterile conditions in the clean laminar flow hoods 

and using sterile materials and aseptic techniques. All cell lines were kept at 37 ºC with 5% of CO2   

concentration and in 95% of relative air humidity incubators. Thawing, splitting and freezing of 

the cells were conducted under the general rules of the cell culture. 

Time Temperature 

10 min 95 °C 

10 s 95 °C 

10 s 53 °C 

10 s 72 °C 

1 min 72 °C 

∞ 4 °C 

35 

cycles 
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When it was important to know the exact number of passaged cells, cells were counted. Cell counting 

was performed using the Neubauer counting chamber. Cells were counted within four large squares, 

next the cell concentration in the suspension was calculated according to the following equation: cell 

number/ml = number of counted cells / 4(x)10
4 
(x) dilution factor. 

Mycoplasma test 

None of the cell culture is free from risk of mycoplasma contamination, which are the smallest and 

simplest self-replicating prokaryotic organisms. In the course of all cell culture experiments, cell 

batches were checked routinely for mycoplasma presence. 

Mycoplasma testing was carried out by use of PCR method. Samples for mycoplasma check were 

prepared in two ways. In the first the aspirated medium, from the plate of tested cells, was centrifuged 

and then the pellets were resuspended in 20 µl of water. Samples were heated in the 97 °C for 5 min. 

Alternatively, the samples for testing were obtained from purification of genomic DNA from cells. In 

this case the cell suspension was spun down for 5 min at 200 (x) g and then washed once with 1 ml of 

PBS. After the last centrifugation the genomic DNA was isolated by use of DNeasy Blood and Tissue 

Kit. Following controls were included in the experimental set up: 

 positive control, a sample know to be contaminated 

 internal control consisting of a DNA fragment with the same primer sequences for 

amplification, the internal control is of a different size than the amplicon of mycoplasma-

contaminated samples 

For each sample (including controls) to be tested PCR reaction mixes were prepared in two 

configurations:  

 one containing the internal control, 

 second without the internal control. 
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         Reaction mix:

Component Amount 

H2O 7 µl 

2(x)MangoMix 10 µl 

myc-fwd primer 0.5 µl 

myc-rev primer 0.5 µl 

Template 1 µl 

Internal control (or 

without) 
1 µl 

Total volume per 

reaction  
20 µl 

 

 

 

         PCR set up: 

 

Time Temperature 

3 min 95 °C 

30 s 95 °C 

30 s 56 °C 

10 s 72 °C 

2 min 72 °C 

∞ 4 °C 

 

The size of DNA fragments amplified, depending on the mycoplasma species, would appear at around 

270 bp, indicating a mycoplasma contamination. The specific primers used for this PCR reaction are 

specified in the paragraph 2.5. 

  

35 

cycles 
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3.2.1. Isolation and inactivation of mouse embryonic fibroblasts 

 

Embryonic stem cells need feeder cells (FCs) for the optimal growth. The cells which fulfill this task 

are mitotically inactivated mouse embryonic fibroblasts (iFCs). The MEFs are the primary cells which 

were isolated from mouse embryo at E13.5 to E14.5 of pregnancy. The mice were sacrificed by 

cervical dislocation. The animals were sprayed with alcohol and the abdomen was opened with flamed 

surgical utensils and the uterine horns containing embryos were dissected out when placed in a culture 

dish containing 10 ml of PBS. The uterus was transferred to the dish containing fresh PBS and swirled 

few times to remove blood. The uterine wall was opened with sharp forceps and the embryos were 

removed from uterus and amniotic sac and washed 3(x) times in PBS buffer. The amniotic sac, main 

vessels, mice heads and other tissues were discarded. The remains of the embryo were once again 

washed 2-3(x) in PBS and kept on ice. Each embryo was minced with small scissors or a new scalpel 

blade for 10-15 min. Then 2 ml of trypsin/EDTA (x) 2 solution (made from 10 (x) stock solution) was 

added and tissues were further minced. Additional 5 ml of trypsin/EDTA solution were added and 

pipetted up and down several times to break up tissue chunks and generate a cell suspension. The plate 

was incubated in 37 °C for 15 min with gentle agitation. To stop the enzymatic digestion 20 ml of 

MEF medium was added and mixed well to resuspend the cells. The suspension was centrifuged at 

200(x)g for 5 min. The pellet was suspended in 30 ml of fresh MEF medium and distributed between 

3(x) 10-cm cell culture plates, constituting passage 0. Cells were incubated overnight in 37 °C. 

The following day medium was exchanged. After reaching a confluence of 70-80%, MEFs were 

frozen for long term storage or passaged for further expansion. 

MEFs as a primary cells have a limited lifespan in culture. In order to make use of these cells, as cells 

which provide the matrix and nutrients for ESCs, fibroblasts need to be mitotically inactivated. 

The interference with the ability to divide was completed with mitomycin C, which is isolated from 

Streptomyces caespitosus and inhibits DNA synthesis and nuclear division. 
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Protocol for preparation of feeder cells: 

1. Defrost two vials of primary fibroblasts and plate cells on two 15-cm cell culture plates 

(MEFs medium). 

2. Propagate the cells for two consecutive passages to reach the number of 10(x) 15-cm cell 

culture dishes.  

3. When cells are confluent replace the medium for the one containing re-suspended  

mitomycin C (10 µg/ml final concentration). Incubate for 2 h but not longer than 4 h.  

4. Aspirate the inactivation medium and wash cells 3(x) with PBS.   

5. Trypsinize the cells, spin down and re-suspend in freezing medium. Distribute between 50 

pre-labeled cryotubes. 

Each time fresh cell culture dishes were coated with the 0.2% (w/v) gelatin solution and incubated for 

40-60 min in the incubator (or left overnight for the next day).  Shortly before using the plate, gelatin 

solution was aspirated. Cell from one cryovial after defrosting are enough to cover 6-8(x) 35-mm 

plates. These are the standard culture plates on which ESCs will be grown. 

3.2.2. Murine embryonic stem cells  

3.2.2.1. Cultivation of murine embryonic stem cells 

 

The routine cell culture of ES cells starts from preparation of feeders. Mitotically inactivated MEFs 

are plated one day earlier on gelatinized plates. One hour before seeding mES cells, the complete 

medium is exchanged to the one containing LIF. The medium was exchanged every day and cells were 

split every second day at the ratio of 1:20 or 1:50.  

3.2.2.2. Differentiation of mESCs 

 

Upon removal of factors which maintain ES cells in unspecialized state, cells will start to differentiate. 

When cells are allowed to aggregate will form three-dimensional structures embryoid bodies (EBs), 

which give rise to derivatives of the three embryonic germ layers (Keller, 2005). 
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In order to trigger the differentiation processes ES cells need to be pre-differentiated. At that step, 

feeder depletion and adaptation to the medium without LIF was accomplished. Embryonic stem cells 

after passage were seeded on freshly gelatinized plate and after around 45 min the medium containing 

ES cells, which did not settled yet, was transferred on to a new gelatin coated plate. Cells were kept in 

ESC complete medium without LIF, for the next two days. After trypsinization, mESCs were counted 

and in a number of one million transferred on the 10-cm Petri dishes, which did not have an adherent 

surface or neither were coated with gelatin. The mES cells now were kept in 15 ml of ESC complete 

medium in a constant movement. To provide such conditions, Petri dishes were placed on the plate 

shaker and continuously gently agitated. 

 

 

Figure 19:  Stages of ES cells differentiation: standard cell culture, pre-differentiation and EBs formation. 

3.2.3. Xenobiotic-free media 

 

Protocol for serum- and feeder-free adaptation of murine ES cells: 

1. Thaw one vial of feeder cells and plate them on gelatinized 6-well plate in IMDM containing 

20% (v/v) FCS. 

2. Defrost one vial of ES cells and seed them in one well of the 6-well culture dish in SFES 

medium (paragraph: 2.8.4.) 

3. When the cells become confluent, passage mESCs in the 1:5 ratio onto remaining wells with 

iFCs. 
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4. Prepare two new gelatin coated 6-well plates without feeders. Trypsinize all five wells with 

ES cells. Wash cells with IMDM and spin down. Split cells in a 1:2 ratio. Cells from now on 

are maintained in the 2i medium (paragraph: 2.8.4.) 

After feeder depletion cells can be now passaged on the nine new gelatinized 6-well plates. 

The splitting ratio was 1:5. To inhibit the enzymatic activity of trypsin the "STOP" solution was 

used (paragraph: 2.8.4.). Cells were washed once with IMDM after trypsinization.  

5. Pre-label 100 cryovials and make sufficient amount of freezing medium (paragraph: 2.8.4.). 

6. To simplify and speed up the whole procedure, one can add trypsin to all 50 wells at the same 

time and pull content of 5 wells into one 10 ml conical tube (step repeated then (x) 10).  After 

washing re-suspend the pellet with 10 ml of freezing medium and distribute quickly between 

10 cryovials. Repeat the steps with the remaining nine conical tubes.  

7. Place all cryovials in the -80 °C freezer and after 24 h move them to the liquid nitrogen 

storage tank. 

8. To start the new 2i culture, thaw one cryovial of feeder-free mESCs into concial tube 

containing 10 ml of IMDM. Spin down and plate in the 2i medium on the 6-cm culture plate. 

Plate should be coated in advance with gelatin or VitronectinXF™. 

3.2.4. HEK 293T cells 

 

The human embryonic kidney cells were used for production of  viral particles according to the work 

presented by Naldini (Naldini et al., 1996). The maintenance of HEK cells required the use of 10-cm 

dishes and culture in HEK medium (paragraph 2.8.2.). 

3.2.4.1. Viral particle production 

 

In order to produce viral particles, HEK cells were seeded at the amount of 5(x) 10
5  

cells per well on 

6-well plate. The transfection mix was freshly prepared just before the procedure. The mix consisted 

of five components: 

1. DMEM medium. 
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2. Transfer vector (from the vectors bank/accordingly to requirements of the planned 

experiment). 

3. Packaging vector (psPAX2). 

4. Enveloping vector (pMD2.G). 

5. Transfection reagent (Turbofect). 

To prepare the mix (per one well) 3 µg of total DNA (vector ratio 3:2:1 in the order used above) were 

diluted in 300 µl of DMEM. Turbofect was briefly vortexed and added in an amount of 5 µl.  

All the ingredients were gently mixed and incubated in the laminar flow hood for ~20 min. 

The transfection mixture was added on each well in drop-wise manner. Plate was gently rocked to 

achieve equal distribution of the mix. The expression of the transgene was observed after 48 h.  

To obtain the viral particles from the supernatant, the medium was collected and passed through 

the 0.20 µm cell strainer. The stocks of viral particles were used directly for the transduction  

or kept at -80 °C. 

3.2.5. Mouse endothelioma cells  

 

The mouse endothelioma cells (mEndo) were routinely cultivated on 10-cm gelatin coated plates and 

maintained in mEndo medium (paragraph 2.8.2.). Before the splitting, after medium removal, cells 

were incubated with PBS for around 20 min, to facilitate the cell detachment, the passage ratio was 

usually 1:5. The mouse endothelioma cells were used to validate the vector constructs applied for 

generation of reporter cell lines. 

3.2.6. Stable transduction of mouse embryonic stem cells 

Since the procedure is extensive, the most convenient way to present the method is to divide 

the protocol description into the particular days. 

Day 1 

Plate 5(x)10
6 
HEK cells on 10-cm dish. 
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Day 2 Transfection of HEK cells with specific vectors using TurboFect 

1. Replace the medium on the dish with 8 ml of fresh medium.  

Note: Prepare transfection reagent immediately before transfection like described in the subsection 

3.2.4.1. 

2. Incubate the transfected cells and analyze the transgene expression after 24 to 48 h. 

Day 5 Transduction of ES cells 

1. Seed 3(x)10
3
 (per well) of ES cells in 6-wells of 24-well plate. 

Note: The rest of the procedure from now on must be conducted in a S2 laboratory. 

2. Prepare the required number of 0.5 ml reaction tubes containing 0.8 µl of polybrene. 

Note: To obtain the right amount of cells per well and to double the amount of LIF in the medium, 

collect 18.000 cell in a conical tube and resuspend them in 3 ml of complete medium and add 6 µl 

of LIF (1.000 U of LIF per 1 ml of the medium). Distribute between the six wells, giving 500 µl of 

the cell suspension per well. 

3. Take the supernatant from each well of the 6-well plate and pass through syringe filter. 

4. Mix 0.5 ml of the viral particles with the content of the 0.5 ml reaction tube and add to the ES 

cells. 

5. Freeze the remaining supernatant. 

6. Prepare 10-cm dish(s) with iFCs one cryovial per dish is sufficient. 

Day 6 Maintenance  

1. Change the medium on the plates with iFC for the medium containing LIF. 

2. Wash the 24-well plate containing ES cells with HEPES buffer. 

3. Add few drops of trypsin/EDTA. 

4. Take 1 ml of medium from a 10-cm plate and add to the well to stop the enzymatic activity, 

suspend cells well to avoid clumps and distribute evenly on 10-cm dish with feeder layer. 
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Day 8 Maintenance 

Wash the 10-cm plates 2(x) with HEPES buffer and exchange the medium. 

Day 9 Maintenance 

1. Wash the 10-cm plates 2(x) with HEPES buffer and exchange the medium. 

2. Prepare 96-well plate(s) with iFCs, using one cryovial per plate.   

Each well should contain 100 µl of medium. 

Day 10 Clone picking 

Note: Before picking clones collect the culture supernatant for virus testing. 

1. Remove the medium from a 96-well plate and replace with the ESC complete medium (100 µl 

per well). 

2. Prepare V-bottom 96-well plate(s) with 50 µl of trypsin/EDTA solution. 

3. Take the first 10-cm plate and aspirate the medium and wash the cells once with HEPES 

buffer. Leave the cells in 15 ml of new buffer. 

4. Pick carefully all non-differentiated colonies of ES cells with a yellow tip (200 µl) and put on 

the 96-well plate with trypsin/EDTA. 

Note: The 20 min time frame, while picking the clones, should not be exceed. 

5. Transfer the colonies on the 96-well plate with seeded iFCs (containing medium supplemented 

with LIF) and mix well. 

6. Repeat with remaining plates and incubate overnight. 

Day 11  

Exchange the medium on the 96-well plate(s). 

Day 12  Duplicating plates, pre-differentiation. 

1. Gelatin coat 96-well plates, 2(x) per plate with clones. 

2. Prepare freezing medium: 10% (v/v) DMSO with 45% (v/v) FCS and 45% (v/v) DMEM. 
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3. Put 150 µl of ESC complete medium in each well of one of the gelatinized plates. 

4. Wash cells with 100 µl of HEPES buffer and add 50 µl of trypsin/EDTA. 

5. Transfer 10 µl from trypsinized cells on the plate containing ESC complete medium. 

6. Stop the trypsin activity with 40 µl of ESC medium. 

7. Add 80 µl of freezing medium and mix well. Overlay each well with 50 µl of mineral oil, 

cover with parafilm and freeze (first plate). 

8. After approx. 1 h transfer the entire medium, from the second plate, onto a new gelatinized 96-

well plate and placed in the incubator. 

Note: This step helps to remove feeders. 

Day 14 Differentiation - EB formation 

1. Coat 96-well plate with polyhema and leave for drying, next wash once with PBS. 

2. Wash cells with HEPES buffer then add 20 µl of trypsin/EDTA and put for several minutes 

into the incubator. 

3. Add 180 µl of complete medium to each well, mix and move on the earlier prepared 96-well 

plate. 

4. Leave the plate in the incubator for four days to observe EB formation. 

Note: When the EBs start to express GFP, plate the EBs and wait for formation of vessel-like 

structures. Then according to the number of the clone (well), mark those which are positive. 

3.2.7 Cultivation of iPS cells 

 

The iPS cells were grown either on a mitotically inactivated feeder cell layer or on Matrigel 

(Geltrex
®
).  

Preparation of Matrigel plates: 

Matrigel is a matrix, which is made of soluble basement membrane extract of the Engelbreth-Holm-

Swarm (EHS) mouse tumor. This matrix gels at room temperature to form a genuine reconstituted 

basement membrane. 
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The Geltrex® should be aliquoted and frozen. All the preparation should be made on ice to prevent 

the matrix from solidifying.  

Geltrex was diluted 1:1 with DMEM/F-12 medium and frozen in 250 µl aliquots: 

 for 1:50 dilution add 6 ml of DMEM/F-12 to one aliquot 

 for 1:25 dilution add 2.9 ml of DMEM/F-12 to one aliquot 

1. Thaw one aliquot of Matrigel on ice. 

2. Dispense 24 ml of cold DMEM/F 12 into a 50 ml conical tube and keep on ice. 

3. Add thawed matrix to the cold DMEM/F 12 and mix well.  

4. Immediately use the diluted Geltrex® solution to coat tissue culture plate.  

5. It is very important to swirl the cultureware to spread the solution evenly across the surface. 

6. Incubate at room temperature for at least 1 h, before use, remove the excess of Geltrex
® 

solution  

(do not scratch the coated surface). 

3.2.7.1. Murine iPS cells 

 

Mouse induced pluripotent stem cells (miPS) were generated by transduction of genetically 

unmodified mouse embryonic fibroblasts with viral particles produced in HEK cells. To harvest 

the viral particles first the HEK cells were co-transfected with: psPax2, pMD2.G and OSK. 

Maintenance of mouse iPS cells 

1. Aspirate the medium and wash the cells twice with 2 ml of PBS.  Remove PBS and add 0.5 ml 

of trypsin/EDTA solution and incubate at 37 °C for 10 min. 

2. In the meantime, remove medium from 6-well plate with seeded feeder cells and add 2 ml per 

well of fresh complete ES medium. 

3. Swirl the plate containing mouse iPS cells to remove the cells from the bottom of the plate. 

Add 1 ml of ES medium to the plate and re-suspend the cells by pipetting up and down to 

obtain a single cell suspension. 

4. Distribute 0.2 ml of the mouse iPS cell suspension to each well of the 6-well plate. 

5. After plating iPS cells, gently swirl the plate back-and-forth to evenly distribute the cells. 
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6.  The ES medium must be changed every day and miPS cells need to be sub-cultured (ratio 

~1:10) every two days. 

3.2.8. Fluorescence and confocal microscopy imagining 

In the course of the studies, apart from a conventional widefield optical microscope, the confocal 

microscope was used. Confocal microscopy gives noticeable advantages over a conventional optical 

microscopy through controlled depth of field and elimination or reduction of background information 

from the focal plane (Olympus corporation, www.olympus-global.com). The immune fluorescent (IF) 

methods are equally suitable for fresh as for fixed samples. The IF techniques are based on antibodies 

which are chemically conjugated to fluorescent dyes. The labeled antibodies bind (directly or 

indirectly) to the antigen of interest, which allows for its detection, by for example flow cytometry or 

visualization by fluorescence or confocal microscopy (Sawant et al., 2014). 

 

 

 

 

 

 

 

 

 

Figure 20: Immunofluorescence techniques: direct and indirect labeling. Adapted from: Sawant, Priyanka, et al. 

(2014). 

3.2.8.1. Immunofluorescent staining of cells 

 

The ES cells were stained to inspect the expression of pluripotency markers. In this subparagraph 

the general protocol for cell staining is provided. The ES cells for staining were grown in a 6-well 

plate. The medium in which cells were grown depended on the experiment setting. In each well four 

small, round cover slips (Ø13 mm) were placed. The cover slips were first immersed for 10 min in 
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70% (v/v) ethanol and coated with gelatin solution. After letting the cells grow and expand for two 

days, the medium was aspirated and the following steps were performed: 

1. Wash cells once with PBS. 

2. Add 1% (n/v) PFA and incubate for 20 min. 

3. Aspirate PFA and add 0.1% (w/v) Triton X-100 and leave for 20 min. 

4. Block with blocking solution for 30 to 45 min. The blocking solution: 5% serum (from 

the same species that the secondary antibody was raised) in PBS. 

5. Remove blocking solution and wash once with 0.01% (v/v) PBST. Apply adequately diluted 

primary antibody in 100 μl (per cover slip) of blocking solution. Incubate for 1 h in room 

temperature. 

6. Aspirate the primary antibody solution and wash once with 0.01% (v/v) PBST. 

7. Apply secondary antibody at the required concentration in 100 μl of blocking solution.  

Transfer cover slips to a black box to protect from photobleaching. Incubate slides for 1 h at 

22 °C. 

8. Remove the secondary antibody solution and wash extensively with 0.01% (v/v) PBST. 

9. Apply solution of counter staining dye and incubate for 5 min, do not extend the incubation 

time as this may result in a high background. 

10. After washing carefully transfer cover slips (with a scalpel blade) on to the microscope slide 

and mount cover slips with MOWIOL (turn the cover slips upside down before mounting).  

Store the specimens at 4 °C in a microscope slide holder. 

When conjugated antibodies were used step 7 was omitted. With each staining IgG controls were 

applied or the specimen was stained with secondary antibody only in order to verify its specificity.  

For all washing steps a phosphate-buffered saline with Tween 20 (PBST) was used. PBST is a water-

based salt solution, perfect as a wash buffer because the buffer reduces nonspecific binding, 

protein:protein interactions and background. 

Preparation for 1(x): 10 mM phosphate, 150 mM NaCl, and 0.05% (v/v) Tween 20, pH adjusted to 

7.4, stable for 1 year at room temperature. 
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3.2.8.2. Immunofluorescent staining of embryoid bodies  

 

The embryoid bodies were stained to observe the differentiation, monitor the formation of vessel-like 

structures and expression of endothelial specific markers. In order to stain these three-dimensional 

structures, the EBs needed to be re-plated. The EBs at a given time point were collected in the middle 

of the plate by gentle swirling the dish. The medium was carefully aspirated and replaced with PBS. 

All EBs were then again collected in the middle of the culture plate. With use of a 1ml pipette tip, set 

at the smallest possible amount (~80 μl), the embryoid bodies were transferred into the wells of  

a 6-well plate. The 6-well plates with cover slips were prepared as in the protocol in subsection 

3.2.8.1. The EBs were cultured in ESC complete medium until EBs expanded on the cover slips and 

developed vessel-like structures. On the day of staining the following stages were implemented: 

1. Remove the medium and wash cells once with PBS.  

2. Fixing (30 min) and permeabilization (10 min) steps depend on the antibody used. Therefore, 

the below provided adjustments were carried out: 

 for Ve-Cadherin staining 2% (v/v) PFA then 1% (v/v) Triton X-100, 

 for CD 31staining 2% (v/v) PFA then ice cold methanol, 

 for Flk1staining only ice cold methanol. 

3. Block with blocking solution for 45 min. 

4. Apply the primary antibody, diluted accordingly in 100 μl of blocking buffer for 1 h at room 

temperature. 

5. Wash once with 0.01% PBST. Add secondary antibody solution, leave protected from light for 

1 h at 22 ºC. 

6. Wash 3(x) times with 0.01% (v/v) PBST and incubate for 5 min with nuclear staining 

solution. 

7. Wash extensively and carefully transfer cover slips to the microscope slide (invert cover slips) 

and mount with MOWIOL. 

8. Store the specimens in a microscope slide holder at 4 ºC.   
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The same procedure was applied to the GFP expressing cells. The used controls were unchanged, 

according to the subparagraph 3.2.8.1. If the cells had a transgene and were expressing GPF 

the antibody against GFP was applied simultaneously with primary antibody solution.   

3.2.9 Flow cytometry analysis  

Flow cytometry technology is used to study the physical and chemical features of particles suspended 

in a fluid as it passes through a laser beam. The cell components which are fluorescently labelled 

become excited by the laser and emit light at variable wavelengths. The estimation of number, shape 

and size of the sampled cells is measured on the basis of the fluorescence. Even up to thousands of 

events per second can be evaluated as they pass through the liquid stream. 

This technique was utilized to: 

1. Validate the functionality of produced vectors (transfection on mEndo cells). 

2. Estimate the quality and amount of produced viral particles. 

3. Investigate the expression of GFP under the endothelial specific promoters. 

4. Survey the "peak" point of GFP expression in the developing EBs. 

5. Compare expression levels of Oct4 and Sox2 in ES cells cultured in different conditions. 

Protocol for preparation of cells expressing GPF for flow cytometry analysis (applicable to points 

from above 1 to 4): 

1. Aspirate medium and wash cells once with PBS 

2. Trypsinization: 

a. Add appropriate amount of trypsin/EDTA and incubate plate(s) for 10 min to speed up 

the enzymatic activity. 

b. In case of EBs preparation, collect them in the middle of the Petri dish and transfer 

sufficient amount of the cell aggregates to the 15 ml tube. Wash once with PBS and 

centrifuge at 200 (x) g for 5 min. To dissociate the EBs use 200 µl of dissociation 

solution (see below) and incubate for ~30 min. Stop the enzymatic activity with  

500 µl of FCS. Wash once with IMDM or PBS, continue with point 4. 
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3. Detach cells from the plate and re-suspend cells with adequate amount of medium to stop 

the trypsinization.  

4. Transfer cells to a 15 ml tube containing 5 ml of FACS buffer. Spin down for 5 min (x) 200g. 

Aspirate the liquid and repeat the washing step. 

5. Re-suspend the pellet in 500 µl of FACS buffer and transfer to FACS tubes.  

6. Approximately 5 -10 min before conducting the experiment add 5 µl of 7-Aminoactinomycin 

D (7-AAD) ready to use staining solution. Mix well and proceed with analysis. 

Samples ready to investigate generally should be kept on ice in the dark. 

Used controls: samples with wild-type (no GFP expression) or un-transfected cells or transfected cells 

of non-endothelial origin like MEFs. 

Dissociation solution (for 10 ml): mix 8 ml of trypsin EDTA with 1 ml of IMDM and 1 ml of DNase 

[stock 1 mg/ml]. Filter through 0.20 µm syringe strainer, keep at 4 ºC for up to one week. 

Protocol for preparation of cells for flow cytometry analysis with antibody staining (point 5, p 105): 

1. Points 1, 2a, 3, 4 applied as in paragraph 3.2.9.. 

2. Distribute appropriately cells between tubes, then fix and permeabilize with 

Cytofix/Cytoperm™ for 10 min on ice. After incubation add 1 ml of 0.1% (v/v) saponin 

solution to wash the cells. Spin down at 200 (x) g for 5 min. 

3. At this stage cells were counted and in given amounts used for the experiments: 1(x)10
6 
cells 

for unstained control sample, 1(x)10
5
 for IgG controls and relevant samples. 

4. Block cells with appropriate serum for 30 min, next wash with 0.1% (w/v) saponin solution. 

5. Re-suspend the cell pellet in 100 µl (for 1(x)10
5
 cells) or in 200 µl (for 1(x)10

6
 cells) of 

saponin solution containing adequately diluted antibodies. Incubate for 30 min. 

Note: In all flow cytometry experiments with antibodies conducted in the thesis, conjugated 

antibodies were used. 

6. Wash cells once with FACS buffer. The stained cells were suspended in 300 µl of the buffer, 

the unstained sample and controls in 500 µl. 
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7. Approximately 5-10 min before conducting the experiment add 5 µl of 7-AAD ready to use 

staining solution. Mix well and proceed with analysis. 

Samples ready to investigate, generally should be kept on ice covered with tin foil. Used controls: 

unstained cells, IgG controls. 

Flow cytometry buffers used for maintenance of the machine: 

1. FACS Flow [FACS buffer] (Becton Dickinson, USA) and for re-suspending the samples, 

2. FACS Clean (Becton Dickinson, USA), 

3. FACS Rinse (Becton Dickinson, USA). 

5%  (w/v) Saponin solution: add 1 g of saponin to 20 ml of ddH2O in a 50 ml conical tube to dissolve, 

mix gently as this is a detergent and may foam. Store at 4 °C for up to two weeks. 

3.2.10. Software 

For analyzing the data acquired during the course of experiments, following software were used: 

 MacBiophotonics ImageJ  - image processing program, 

 Geneious R7 -  DNA alignment, assembly and analysis , 

 GraphPad Prism 5 - statistics, 

 Microsoft Office 2010, 

 Microsoft Excell 2010, 

 Microsoft PowerPoint 2010, 

 Flowing Software 2.5.1. - flow cytometry analysis.
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4. Results  

 

4.1. Analysis of ESC differentiation 
 

According, to what was mentioned at the beginning of this dissertation, the aim was to generate pure 

subsets of clinically-applicable endothelial cells. In order to achieve that goal, a fast, easily accessible 

and high-yield method to produce endothelial cells had to be established.  

As it was described in the subparagraph 2.8.2., mES cells are co-cultured on a layer of mitotically 

inactivated feeder cells. Below are presented pictures illustrating the culture of iFCs and ES cells 

grown on fibroblasts.                   

 

 

 

 

 

 

 

 

 

Figure 21:  Cells in the culture: a.) inactivated mouse embryonic fibroblasts on a gelatin coated culture dish,      

b.) mouse embryonic stem cells co-cultured on the single layer of iFCs in ESC medium containing LIF. 

 

It is important to maintain mESCs in the correct culture conditions as the cells are sensitive to changes 

in the environment. In the Fig. 21 picture (a) is showing inactivated fibroblasts which created 

a monolayer of feeder cells, in picture (b) healthy mESC colonies with shiny borders, can be observed. 

In the paragraph 3.2., was mentioned the importance of the mycoplasma test for the proper culture 

maintenance. Mycoplasma tests were carried out routinely prior to freezing the new batch of iFCs. 

After the PCR reaction the results excluding or confirming the mycoplasma presence were evident on 

the electrophoresed agarose gel (Fig. 22).  
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In the presented image (Fig. 22), mycoplasma-positive samples display a band at the height of ~270-

300bp. 

 

 

 

 

 

 

 

 

 

Figure 22: Test for possible mycoplasma contamination. PCR products obtained by agarose gel electrophoresis. 

In the samples: #1, 3, 5 and 7 as well in the one with negative control (NE) only. Samples: #2, 4, 6, 8 and 

internal control (IN) only. NE - ddH2O instead of the template, PC - positive control, M - PCR marker ladder 

(JenaBioscence), iFC - inactivated feeder cells. 

4.1.1. Generation of reporter cell line 

The production of the viral vectors was described in the subparagraph 3.1.12.1. After many steps of 

cloning and sub-cloning the presented in Fig. 23 vector bank was created. The vectors contain 

combination of endothelial specific promotors and the resistance gene for antibiotic selection and 

the reporter gene GFP. In the designed vectors, two different, definite endothelial promoters were 

used. A pair of murine and a pair of human specific promoters. One of the chosen endothelial markers 

is Flk1 present in more progenitor cells. The second promoter used is Ve-Cadherin, which is a marker 

expressed in more mature endothelial cells. In case of human promoters the equivalent for Flk1 was 

KDR and the murine Ve-Cadherin was replaced by human gene coding that cadherin. With that pairs 

of promoters, the endothelial cells could have been captured in the two different stages of 

development. 
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Figure 23: Vector bank. The depicted vectors present the combination of endothelial specific promoters: first two 

columns are showing mouse: Ve-cadherin and Flk1 promoters, the third and fourth columns are showing human: 

Ve-cadherin and KDR promoters. The three rows are indicating used antibiotic resistance gene: puromycin, 

hygromicin B and neomycin. Each vector also contains fluorescent protein GFP, which serves as an expression 

marker.  

 

4.1.1.1. Optimization of the production process and validation of viral particles 

 

To produce viral particles the HEK cells were used, next validation of the transfection efficiency was 

performed. The HEK cells are fairly easy to transfect and show a high transfection yield. Consistent 

and feasible system had been created to test the correlation between the expression and copy number. 

Below is presented a setup, of one from many, experiments applied to establishment the right 

concentration of the transfection "mixture". In regard to the subparagraph 3.2.4.1, into the transfection 
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mix were added helper vectors (psPAX and pMD2.G) plus pGZ_CMV vector containing GFP marker, 

transfection reagent Turbofect (TF) and basal not supplemented medium (DMEM) (Table 8). The ratio 

of the used three vectors was: 3:2:1, starting from the pGZ_CMV vector, next psPAX and lastly 

pMD2.G vector. The amount of the plated HEK cells also varied from 5(x)10
4
 to 5(x)10

6
, finally 

the chosen number of cells was 5(x)10
5
. In the Fig.24 are presented pictures which display 

the insensitivity of the GFP expression in the HEK cells from the tested combinations of 

the transfection mixtures.  

          Table 8: Test concentrations for the high efficiency transfections in HEK cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24: HEK cells expressing GFP after co-transfection. For each transfection 5(x)10
5
 of HEK cells were 

seeded on a plate. The amount of DNA from three plasmids (pGZ_CMV, psPAX, pMD2.G):  a.) 2 µg, b.) 3 µg,       

c.) 4 µg used in each transfection. The transfection reagent TurboFect used in amount of 5 µl per reaction. 
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The task was to achieve a good quality of the viral particles and to create a stock of VP for further 

transductions. To achieve sufficient amount of the viral particles, after each transfection, 

the correlation between the transfection and transduction was verified. The presented graphs  

in Fig. 25 (a) and (b) show experiments, which were conducted in order to verify if there is analogy 

between the favourable results obtained after production of viral particles and efficiency of 

transduction. The data presented in the Fig. 25 panel (b) are showing experiments in which 

the substance called polybrene was used. Polybrene (Hexadimethrine bromide) is a cationic polymer 

helping to increase the efficacy of infection of certain cells with viral vectors. These experiments 

presumed to establish the impact from high expression of the transfected cells on the increase in 

expression after transduction. This interrelationship was confirmed, but this time with smaller amount 

of samples. The combinations of the transfection reaction to conduct the experiments presented in 

the Fig. 26, were taken from the specimens indicated by the ellipses in the Fig. 25. 

 

 

 

 

 

 

 



4. Results 

 
 108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Flow cytometry analysis of GFP expression. Panel: a.) presenting GFP intensity of transfected HEK 

cells, b.) presenting GFP intensity of transduced HEK cells. Histograms are depicting the cell subsets with active 

GFP protein. Charts are showing the efficiency of those processes. The table below the chart in panel a.) is 

conveying information related to the experimental setup of the transfection. The sample numbers in both panels 

(under the both charts) are indicating the particular samples obtained from the transfection (panel a.)). The viral 

particles produced in that process were later used for transduction, the analyzed samples in this experiment are 

presented in the panel b.). 

The obtained results (Fig. 25) were not evidently showing the inter-play between the transfection 

efficiency and the results of transduction. The next set of experiments was conducted only with 

specimens indicated by the ellipses in the Fig. 25. 
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The results in the Fig. 26 (a) are displaying the GFP expression of the virus-producing transfected 

HEK cells. Panel (b) in the Fig. 26 is depicting the results from flow cytometry analysis of harvested 

HEK cells after transduction. In case of samples 1 and 6, the correlation between the amount of viral 

particles and its impact on the transduction can be observed. In agreement with these observations are 

also data from the real time PCR test presented in panel (c) Fig. 26, which confirmed the results 

obtained from the flow cytometry analysis (Fig.26 (b)). The outcomes attained from the flow 

cytometry are reliable and delivered solid information concerning the titer of the produced VPs and 

the efficiency of the transduction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Validation of the titer of the viral particles. Panel: a.) is presenting flow cytometry analysis of GFP 

expression of transfected HEK cells, b.) is showing flow cytometry analysis of GFP expression in transduced 

HEK cells. In panel c.) the real time PCR data are displayed. The mRNA was extracted from the transduced 

HEK cells used in the experiment b.). The tables below each of the chart are indicating the conditions set up for 

the transfection as the viral particles production was the starting point prior to transduction. 
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4.1.1.2. Validation of the created vectors for establishing the stable mESC 

cell line   

In order to verify, if the created vectors are functional, the assessment of their performance was 

performed with the use of mouse endothelioma cells. The mentioned immortalized cell line, described 

in subsection 3.2.5., was the correct tool to validate how well the vectors are working. 

The examinations were carried out on the basis of the GFP expression. Beneath in Fig. 27 are 

presented images displaying the cells expressing GFP gene under the control of specific endothelial 

promoter, accordingly to the transfer vector used for the transduction. The presented pictures are 

depicting, the expression of the GFP in the transduced cells confirming, that the specific endothelial 

promoters are working properly. As a negative control, MEFs were transduced with the same set of 

vectors and no GFP expression was observed (data not shown). 

 

Figure 27: Functionality test of vector constructs with specific endothelial promoters. First two columns are 

presenting vectors containing murine promoters: Ve-cadherin and Flk1, the third and fourth columns are 

showing vectors with human promoters: Ve-cadherin and KDR. The three rows are indicating used resistance 

gene, antibiotic are as follows: puromycin, hygromicin B and neomycin. The tests were carried with the use of 

mouse endothelioma cell line. 
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Counts 

The following histogram (Fig. 28) is reporting data from the flow cytometry analysis of GFP 

expression in transduced mEndo cells. In the graph are observed high GFP expression levels (lines: 

blue and red), confirming that the transduction with the generated vectors was achieved. Peaks of 

analyzed cell subsets were broad, reflecting the versatile states of the transduced mEndo cells. These 

data confirmed the heterogeneity of GFP expression levels, in different transduced cell groups. 

 

  

 

 

 

 

 

 

 

 

Figure 28: Flow cytometry analysis of GFP expression in transduced mEndo cells. The histogram is presenting 

the GFP expression, under the control of the different promoters used in the vectors. The different color lines are 

corresponding to: black - negative control (not transduced cells), blue - the pGP_mVe vector, red - the 

pGP_Flk1vector. 

 

The experimental setup for the subsequent tests (Fig. 29) was designed in a following manner: 

the mEndo cells from one day after proceeding transduction were harvested and analyzed with 

the flow cytometry. The mEndo cells were transduced with three vectors combinations. The graphs 

(Fig. 29) depict the mean intensity of GFP fluorescence under the control of the specific promoters, 

from the transduced mouse Endothelioma cells. In the Fig. 29 (panel a) it is apparent, that 

the constructs containing hygromicin B as a resistance gene, displayed the lowest values of the GFP 

mean intensity. The second graph in Fig. 29 (panel b), exhibits results from the repeated experiments 

with only constructs containing hygromicin B as a selective antibiotic. That repetition aimed to 

achieve good efficiency of the vectors carrying hygromicin B gene. The experiment had identified best 

batches of viral particles for the transduction of mESCs from the best performing vectors.  
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Figure 29: Quality control by flow cytometry analysis, of viral particle production. Graphs are showing mean 

intensity of GFP fluorescence of transduced mEndo cells under the control of the specific promoters. The used 

abbreviations are as follows: pGN - vector containing neomycin as a resistance gene, pGH - vector containing 

hygromicin B as a resistance gene, pGP - vector containing puromycin as a resistance gene, hVe - vector with 

human Ve-Cadherin promoter, KDR - vector with human VEGFR2 promoter, mVE - vector with mouse Ve-

Cadherin promoter. 

 

The above-presented experiment postulated to optimize different batches of produced viral particles. 

The result of this experiment enabled to prepare dilutions, according to the lowest achieved number 

from the produced VPs. The dilutions were used to transduce mEndo cells. The transduced mEndo 

cells were expressing the GFP at the same level (on all the plates), proving that the quality of VPs in 

each dilution were equal.  

4.1.1.3. Transduction of mouse embryonic stem cells 

 

The next step in the mESC differentiation protocol was the transduction of mouse ESCs with 

the produced and validated viral particles. After around one week, the emerging ESC clones (Fig. 30), 

could have been observed. 

 

 

 

 

Figure 30:  Clone of mouse ES cell emerging after viral transduction with the validated viral particles. 
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The developed clones were carefully picked under the microscope and transferred to the 96-well 

plates. The 96-well plates were duplicated, cells were passaged and one plate from the pair was frozen.  

The ESCs clones were used for the formation of embryoid bodies as it is shown in the picture (a) from 

Fig. 31. This step allowed for the preliminary screening and then by re-plating the EBs on gelatinized 

plates, for observation of the first signs of GFP expression restricted to vessel-like structures (Fig. 31 

(b)). After the initial screen, in search for GFP expression under the control of the endothelial specific 

promoter, the main screening for vessel-like structures could begin Fig. 31 (c).  

 

Figure 31: GFP expression under the control of the Flk1 promoter during the differentiation of a newly 

established murine ES cell line. Picture: a.) embryoid body in the suspension culture, showing dispersed GFP 

expression, b.) re-plated embryoid body with forming vessel-like structures expressing GPF, c.) re-plated 

embryoid body expressing GPF restricted to vessel-like structures, co-stained with the Flk1 antibody 

(GFP/Flk1/DAPI). 

 

The first picture (a) displayed in the Fig. 31 demonstrates the EB expressing GFP maintained in 

the suspension. The GFP expression was a sign of the forming vessel-like structures, though 

the expression was not fully localized. Picture (b) in Fig. 31 presents more developed vessel-like 

structures formed in the re-attached to the surface embryoid body, here the GFP expression is more 

defined. The last image (c) in Fig. 31, displays co-staining with the Flk1 specific antibody. The Flk1 

antibody is co-localized with GFP restricted to vessel-like structures. 
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4.1.1.4. Dissociation of embryoid body  

 

Formation of EBs is commonly used as a method for initiating spontaneous differentiation toward 

endothelium, it is a "default" function triggered by FSC present in the medium. Tissue-like structures 

are often exhibited within EBs, including the appearance of blood islands, reminiscent of early blood 

vessel structures. The picture (a) in the Fig. 32 is presenting the standard image of the 3-D structures in 

the suspension culture. The panel (b) of the Fig. 32 is displaying the EB with the blood islets forming 

within the EB structure. 

 

Figure 32: Three dimensional aggregates of the mES cells. Panel: a.) is showing routinely obtained EBs in 

suspension culture, b.) EBs in suspension with developing blood islands indicated by arrows.  

 

The proper dissociation of EBs is crucial as it gives the possibility to obtain viable and numerous cells 

from the aggregates. That allows for acquisition of endothelial-like cells from differentiated mESCs 

and to execute necessary functionality assays. In order to achieve big number of viable cells, various 

methods of dissociation were tested. The viability counts were performed on the automated cell 

counter Countess®, with the use of Trypan Blue stain. Table 9 presents data from three consecutive 

experiments with different methods of EBs dissociation: trypsin/EDTA, Dispase, Collagenase, 2 mM 

EDTA, Dissociation solution. 
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             Table 9: Combination of diffrent dissociation methods of EBs with regard to the cell viability. 

 

 

 

 

 

 

 

 

 

The bolded rows in Table 9 indicate the top results. In consideration to these results for the subsequent 

experiments, the in house made dissociation solution was used: the mix of trypsin EDTA with IMDM 

and DNase (refer to subparagraph 3.2.9.). 

4.1.1.5. Embryoid bodies differentiation and antibiotic selection 

 

EBs differentiation 

 

In order to confirm, if the pre-selected clones from the preliminary screen were truly functional, 

the duplicated plates were defrosted and then clones from indicated wells of 96-well plate cultured 

again. The clones were kept in culture for some time in order to expand the cells and to create a frozen 

stock, in case if particular clones will be needed for future experiments. During the process of 

embryoid bodies formation (differentiation of mESCs), variations in the GFP expression were 

observed. These distinctions were visible in images from the fluorescent microscope, without need of 

additional staining. Fig. 33 presents progress or deterioration of the GFP expression in the EBs on day 

seven and day nine in suspension (Fig. 33 column 1 and 3). The EBs on day seven were re-plated and 

maintained in culture for nine days (Fig. 33 column 2). The seen in column 4 in Fig .33 EBs from day 

five, were seeded on gelatin coated plate and cultured for three days.  
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Figure 33: The established murine ES cell lines showing GFP expressing vessel-like structures. The first and 

third columns are showing EBs in suspension culture, columns second and fourth are presenting re-plated EBs. 

Above each column are indicated the age (d) of presented EB and in case of re-attached EBs also the time (+) of 

the maintenance on the plate. (Magnification 20 x) 

 

To even more precisely validate the kinetics of GFP expression, another experiment was planned to 

obtain statistic data. The experiments were arranged in the particular manner in order to ensure a 

sufficient amount of EBs for at least a period of one week, from one batch of the ESCs every second 

day the ES cells were passaged and new plate for pre-differentiation was setup and again two days 

later the cells were put into suspension culture. With this routine, every day the EBs could have been 

analyzed by flow cytometry method for the GFP intensity. 

Results for the vectors containing mouse Flk1 endothelial specific promoter, with combination of three 

different antibiotic resistance genes are presented in the Fig. 34. The outcomes for the Ve-cadherin 

promoter, were collected only from the vector containing neomycin (Fig. 35). On the basis of 

the experiments with the Flk1 promoter, it was unnecessary to conduct a GFP kinetics analysis, with 
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all the constructs, as the differences between each construct were not significant. The vector 

containing neomycin as a resistance antibiotic presented the best performance in the course of 

subsequent trials. In case of Flk1 promoter, the highest point of GFP expression was estimated for 

the day three and four. Thereafter the GFP expression was decreasing to pick up again around day 

eight or nine. The GPF kinetics for the Ve-cadherin promoter generated the peak of the expression on 

day six. To exclude variations in the GFP expression, resulting from the heterogeneity of the different 

cells population, the data were collected from the same start-up culture, for numerous parallel 

experiments.    

 

 

 

 

 

 

 

 

 

 

 

Figure 34: Time-course of GFP expression during differentiation of established cell lines under the control of 

the Flk1 promoter. Three different vectors containing various resistance genes for the antibiotic selection were 

used: pGN - vector with neomycin, pGH - vector with hygromicin B, pGP - vector with puromycin. 
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Figure 35: Time-course of GFP expression during differentiation of established cell line under the control of 

the Ve-Cadherin promoter, this vector contained neomycin, as a resistance gene for the antibiotic selection. 

 

Determination of the peak of the GFP expression led to the prediction of a more accurate time point 

for the antibiotics application. In consequence antibiotic selection will enable collection of the pure 

subsets of endothelial cells.  

Antibiotic selection 

Diverse combinations of maintenance media were tested, in order to achieve higher amounts of 

mESCs differentiated towards endothelial cells. EBs were cultured in the following media: mEndo 

medium with altered concentration of FSC and also in the medium supplemented with VEGF or ESCs 

complete medium or serum free differentiation medium (SFD). Part of the results is presented in 

the Fig. 36. The introduced imagess are showing the same EBs in the bright field and in 

the fluorescent light. The various culture conditions impacted not only the GFP expression, but also 

the morphology of the EBs. In case of the maintenance of the differentiated mESC in SFD medium, 

the EBs were starting to spontaneously beat and the blood islets were observed (Fig. 36 (d)), arrows 

indicating the spots of blood islands. 
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Figure 36: Light microscope and fluorescent images of the EBs maintained in different suspension culture 

conditions, arrows - indicating emerging blood islands. Panel: a.) EBs day five in 2%  (v/v) mEndo medium, b.) 

EBs day five in 15% (v/v)  mEndo medium, c.) EBs day five in the complete ESC medium, d.) EBs day seven in 

SFD medium.  

 

Initially, just few reporter cell lines were selected and the focus was set on the GFP expression, which 

was quantified by flow cytometry. The GFP kinetics tests implied, that the antibiotics should be 

applied at the indicated by experimental outcomes time points. The expected enrichment of GFP did 

not lead to higher expression of endothelial specific markers. In the Fig. 37 are presented bright field 

and fluorescent images of EBs kept in suspension with the ESC complete medium, supplemented with 

antibiotic neomycin in the concentration of 500 µg per ml. The displayed EBs (Fig. 37) are 

the differentiated mESCs from the cell line containing as an endothelial specific promoter  

Ve-Cadherin and neomycin as a selection marker. It can be observed that these EBs are not having 

regular shapes and additionally in the panel (b) in the Fig. 37 are noticeable necrotic cores, which are 

the spots of probable hypoxia conditions. In addition, the GFP expression is dispersed and no vessel-

like structures can be noted. In the Fig. 38, the same clone is shown, but re-plated on the gelatinized 

culture dish. The clone was first maintained in the suspension with complete ESC medium, until 

the EBs were formed. After culturing the EB for three days, the antibiotic containing medium  

was added and then the formation of vessel-like structure was observed and the GFP expression was 

revealed. The concentration of antibiotic was tested in the range from 500 to 1.500 µl per ml. 
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The vessel-like structures and the co-localizing GFP expression could not be observed in any 

conditions. 

 

Figure 37: Embryoid bodies cultured in the ESC complete medium supplemented with the neomycin. Panel: a.) 

EB day seven cultured in the medium containing 500 µg/ml of antibiotic added at day five, b.) EBs day eleven 

cultured in the medium containing 500 µg/ml of  antibiotic added at day three. 

 

 

 

Figure 38: Re-plated embryoid bodies cultured in the ESC complete medium containing neomycin in different 

concentrations. Panel: a.) EBs day three medium containing 500 µg/ml of antibiotic was added at the day five,   

b.) EBs day three medium containing 1.000 µg/ml of antibiotic was added at the day five, c.) EBs day three, 

medium containing  1.500 µg/ml of antibiotic was added at the day five. 

 

The observed enrichment of the GFP expression could not be confirmed because no endothelial 

markers were visible after staining with specific antibodies. Further experiments had been applied and 

the time-point of the antibiotic selection was moved earlier in the procedure. The antibiotic 

supplemented medium was introduced allready at the stage of the preliminary screening for vessel-like 

structures. From the picked clones, which apperead after transduction of mESCs, the EBs were formed 

and the one expressing the GFP were selected. These chosen EBs were re-plated and exactly at that 

moment the antibiotic selection had been started. The graphs in the Fig. 39 and Fig. 40 present data 

concerning EBs expressing GFP. The differentiated mESCs were maintained in the two conditions in 
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parallel, in medium with or without antibiotic. The selected clones contained as a resistance gene 

puromycin and were selected on the basis of the preliminary screen of the GFP expression during 

the differentiation. In Fig. 39 the presented data were collected from twelve clones, the following 

figure Fig. 40 displays data only from four out of the twelve clones. The records were collected from 

the flow cytometry analysis. The nominated clones were selected on the basis of visible GFP 

expression in the fluorescent light, during the preliminary screening. These clones were cultured in 

the medium supplemented with neomycin.  

 

 

 

 

 

 

 

 

 

 

Figure 39: Antibiotic selection based on the GPF intensity. Graph is presenting data obtained from twelve 

clones, following number and letter abbreviations e.g. 2a are indicating the label of the clone taken for 

the purposes of the experiment. The GFP expression was driven by the Flk1 (flk) endothelial specific promoter 

or Ve-Cadherin (mve) endothelial specific promoter present in the vector. 

 

 

 

 

 

 

 

 

 

Figure 40: Antibiotic selection based on the GPF intensity. Graph is presenting data obtained from four clones, 

following number and letter abbreviations e.g. 2a are indicating the label of the clone taken for the purposes of 

the experiment. The GFP expression was driven by the Flk1 (flk) endothelial specific promoter present in 

the vector. 
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After the first flow cytometry analysis (Fig. 39), the experiment was continued with only four best-

performing clones (Fig. 40). Clone 12a displayed the highest consistency in the performance and could 

have been differentiated into the desired cell type but the assumption was not confirmed by 

the immunocytostaining (Fig. 42). To further support the selection of the twelve and then four clones 

for the experiments, one of the chosen clones was observed in the process of pre-differentiation and 

during this process the expression of GFP was already observed (Fig. 41). The visible GFP expression 

was a sign of unspecific GFP activity, which at that stage should not appear. This fact was a reason to 

discriminate this clone from further screening. In the Fig. 42 the unspecific expression coming from 

the fluorescent marker of the clone pGN_flk_4a can be observed. The construct for establishing this 

clone contained Flk1 promoter and neomycin as a resistance gene. 

 

Figure 41: Newly established clone pGN_flk_4a showing signs of GFP expression in the pre-differentiation 

stage. Panel: a.) picture taken in the bright field, b.) picture taken in the fluorescent light, c.) merged images.  

 

The selected four clones were used for immunocytostaining. The EBs generated from these clones 

were re-plated on gelatinized plates and after the re-attachment, started to form vessel-like structures. 

The medium was exchanged for the one containing antibiotic. The EBs were stained and the results 

are presented in the Fig. 42. images (a), (b) and (c) display re-plated EBs maintained in the medium 

supplemented with antibiotic, which was applied six days after seeding the EBs. The EBs were 

cultured to day eleven, until the staining was performed. The image (d) in the Fig. 42 is presenting 

four day-old EB which was maintained in antibiotic medium for five days. The clone presented in 

the image (d) from Fig. 42 does not display any co-localization with endothelial specific marker, 
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contrary to the staining with the Ve-Cadherin specific antibody. The observed GFP expression in Fig. 

42 image (d) was concluded to be unspecific, because the GFP was not restricted only to vessel-like 

structures. The used antibodies were Ve-cadherin as a marker for vascular endothelium cadherin and 

DAPI as a nuclear dye.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 42: ES cell clones: antibiotic selection, staining with specific markers and co-localization of GPF 

expression driven by the specific endothelial promoters. Panel: a.) the presented clone was labeled 2a, 

the expression was driven by Flk1 promoter, construct had puromycin as a selection marker, the stained EB is 

four day-old, b.) the presented clone was labeled 9a, the expression was driven by Flk1 promoter, construct had 

puromycin as a selection marker, the stained EB is four day-old, c.) the presented clone was labeled 10c, 

the expression was driven by Flk1 promoter, construct had puromycin as a selection marker, the stained EB is 

four day-old, d.) the presented clone was labeled 12a, the expression was driven by Flk1 promoter, construct had 

puromycin as a selection marker, the stained EB is four day-old. The used antibodies are as follows: Ve-

Cadherin/GFP/DAPI. 
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In order to exclude any coincidence of GFP expression occurring in the experiments, tests with the one 

of the established clones were conducted. The selected clone contained neomycin as a resistance gene 

and the GFP expression was driven by the Flk1 promoter (the clone not connected with 

the experiments presented in the Fig. 39 or Fig. 40). The clone generated from this construct was 

tested versus already well-known ES cell line E14, referred here as a wild-type and served as a 

negative control. The flow cytometry analysis of the GFP expression from the cell line and the clone 

were compared. The E14 ESCs were not displaying significant GFP expression. The small percentage 

of the GFP expressing cells, might occurred from the autofluorescence (Fig. 43). The GFP expression 

of the established clone was confirmed by the staining with the endothelial specific markers Flk1 and 

CD31, GFP antibody and DAPI which was used as a counter stain (Fig. 44). 

 

 

 

 

 

 

 

 

 

 

 

Figure 43: Comparison of the GFP expression in the cell lines. Panel: a.) ESC E14 cell line (wild-type), b.) 

newly established cell line expressing GFP driven by the Flk1 endothelial specific promoter, c.) histogram with 

overlapping data from panel a.) and b.). The analyses were conducted with the flow cytometer. The tables below 

each graph are indicating the percentage of GPF positive cells in the analyzed cell subsets, the red circle in the 

table (panel b.)) indicates the significant increase in the level of GFP expression.  
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Figure 44: the newly established cell line expressing GPF under the control of the Flk1 promoter. Panel: a.) co-

staining with the endothelial specific marker CD31 (PECAM - platelet endothelial cell adhesion molecule) and 

GFP antibody restricted to vessel-like structures, nuclei stained with DAPI (CD31/GFP/DAPI), b.) co-staining 

with the endothelial specific marker Flk1 and GFP antibody restricted to vessel-like structures, nuclei stained 

with DAPI (Flk1/GFP/DAPI). 

 

4.2. Induction of the pluripotency 
 

In the presented thesis the approach with the use of lentiviral system of transgene delivery was 

explored. In order to solve the remaining issue, the integration of the viral DNA into the host genome, 

the attempts of creating the non-integrating lentivirus (IDLV) were undertaken. Due to 

the introduction of the point mutation, into the integrase gene of the packaging plasmid, the integration 

of the transgene into the host genome could have been prevented. By means of the site-directed 

mutagenesis, the specific part of the packaging vector (psPAX2) was amplified then ligated into 

the cloning vector (pJet). The point mutation, mismatch of amino acids in the sequence of the protein 

integrase was introduced. After SDM the desired part, with the altered base pairs was re-ligated into 

the psPAX2 vector. In the Fig. 45 are visible vectors which were used in the SDM (detailed 

description in the subparagraph 3.1.12.2). 
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Figure 45: Site-directed mutagenesis strategy applied to the psPAX2 vector. Panel: a.) three vectors used in 

the SDM, b.) the PCR product ligated into pJet vector (pJet-Int vector), introduction of the desired point 

mutation by SDM was performed to achieve final product pJet-IntD64V, c.) psPAX2 vector with  the unique 

primers which are flanking the SwaI and AflII fragment. 

 

The functionality of the IDLV vector was estimated by the level of GFP expression in transduced 

HEK cells (Fig. 46). The experiment was run in parallel with the standard lentiviral vector (wild-type).  

In the Fig. 46 it can be observed that the GFP expression in the HEK cells transduced with the IDLV 

vector is diminishing after some time, due to the dilution-loss of episomes in the dividing cells.  
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These data are confirming that the introduced mutation, in the sequence of the protein integrase, is 

preventing the integration of the vector to the host cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 46: Comparison of the GFP expression in HEK cells after transduction with IDLV or LV (wild-type)   

construct, during the course of successive passages (P1-P4). The data were obtained through flow cytometry 

analysis (histograms in between the pictures). The presented fluorescent pictures of transduced HEK cells, panel 

a.) demonstrate that the expression of GFP was weakening in case of the cells transduced with the IDLV vector. 

The graph beside the pictures, (panel b.)), presents statistic values of the GFP expression levels. 

 

The next step in reprogramming of MEFs was the transduction of mouse embryonic fibroblast. This 

action should reverse the status of the adult cell to the naïve stem cell. The experiment with IDLV 

construct was run side by side with the LV vector (wild type). In the experiment transfer vector Lenti-

OKMS or Lenti-OSK were utilized (subsection 3.2.7.1). The induction of pluripotency was observed 

in the cells for generation of which the LV and OSK vectors were used. Additional tests were carried 

out in order to verify the endogenous expression of the transcription factors. To screen the iPS cells, 

the definitive primers were applied. 
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These primers could indicate the endo- and exogenous expression of the genes coding the particular 

transcription factor (Fig. 47). Figures 48 and 50 are displaying data confirming that there is no 

exogenous expression depending on the transgene. The concept of these specific primers was 

underlined by the fact that the exogenous mRNA contains only the coding sequences in contrast to 

the endogenous mRNA which encompasses also UTR regions (untranslated regions). The primers 

were designed in the way to also include the untranslated regions. Fig. 47 is depicting those distinct 

regions in one of the designed primers. 

Figure 47: Example of the strategy implemented to design specific primers for detection of endo- or exogenous 

expression of the transcription factors. 

 

To confirm that the designed primers were functioning properly, the PCR was run with 

the undifferentiated iPS cells (positive control). The results from that experiment are presented in 

the   Fig. 48, picture (c) presents outcomes from the mRNA extraction. The PCR with the exogenous 

primers proved, that the undifferentiated iPS cells do not express the lineage markers, though 

the visible signal might be resulting from the present fibroblast. Fibroblasts were used for the co-

culture of iPSCs, what presents image (b) from Fig.48. The decisive confirmation for the cells to be in 

the undifferentiated phase, was the lack of the signal coming from the Flk1 amplification. 

The displayed bands on the gel presented in the panel (a) of the Fig. 48, demonstrate signals imminent 

from the pluripotent markers, which should be expressed in all undifferentiated pluripotent stem cells. 

The mentioned markers are as follow: c-Myc, Klf4, Oct4, Sox2, Nanog. The GAPDH was used to 

verify cDNA synthesis efficacy by reverse transcription and as a control for mRNA.  

In the Fig. 48 the agarose gels displayed in the panels (b) and (c), are revealing bands originating from 
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undifferentiated ES cells. These bands allowed to compare the obtained pattern of expression, with 

the one of the undifferentiated iPS cells.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 48: Expression patterns of various genes in the undifferentiated iPS cells. Panel: a.) expression of 

the pluripotent markers (c-Myc, Klf4,Oct4 and Sox2, Nanog), b.) expression of the lineage specific markers 

(Snail, Nestin, Gata4) and endothelial specific marker Flk1, c.) expression of the transgene from the genomic 

DNA. In the experiments b.) and c.) ES cells were used as a negative control. M - marker ladder 

(JenaBioscence). 
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In the Fig. 49 are data derived from the undifferentiated ES cells, which were expressing pluripotent 

markers. Observed bands are supporting the conclusion that iPS cells behave like ESCs, when  

it comes to the expression of the pluripotency transcription factors. It was proved that, there is no 

expression of the transgene (exogene) in the ES cells (wild type). 

 

 

 

 

 

 

Figure 49: Expression pattern of pluripotency genes (c-Myc, Klf4, Oct4, Sox2, Nanog) in the undifferentiated 

mouse embryonic stem cells. M - marker ladder (JenaBioscence). 

 

The presented lineage specific markers (Fig. 48 (b) and Fig. 50) are characteristic of differentiated 

pluripotent stem cells. The Snail protein is considered to be crucial for mesoderm formation in 

the developing embryo. Nestin is present in many developing cells, however it is assumed as a marker 

for the ectodermal differentiation. Gata4 is involved in the regulation of the genes important during 

embryogenesis and above all in myocardial differentiation (NCBI, www.ncbi.nim-nih.gov). The bands 

on the agarose gel, in the Fig. 50 are distinctive for the lineage specific markers in the differentiated 

iPS cells. Samples with cDNA were used to confirm, that there is no expression of the transgene, 

because the transgene got silenced. In this case the differentiated ESCs were used as a control to prove 

the similarity of the expression pattern concerning the lineage specific markers in iPS and ES cells. 

The expression of Flk1 was evident and suggested the differentiation towards endothelial or blood 

cells. 
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Figure 50:  Expression pattern of the genes involved in the formation of the three embryonic germ layers (Snail. 

Nestin, Gata4) and endothelial marker Flk1 in the differentiated iPS cells. ES - differentiated ESCs were used as 

a positive control. M - marker ladder (JenaBioscence). 

 

The expression of the pluripotent markers was in addition verified through the immunofluorescent 

staining with the specific antibodies: Oct4, Sox2 (Fig. 51). 

 

 

 

 

 

 

 

 

 

Figure 51: The figure presents fluorescent images of iPS cells (ES cell-like colonies). Panel: a.) staining with 

the Oct 4 antibody (Oct4/DAPI), b.) staining with Sox2 specific antibody (Sox2/DAPI), DAPI used for nuclear 

staining. Staining confirmed presence of pluripotent markers in iPS cells. 

 

The biggest difficulty regarding the IDLV transduction is the concern of its silencing in the host. 

The possible cause may lie in the formed IDLV episomes, which in the host cell are becoming objects 
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of epigenetic silencing. These mentioned actions, implicate probable chromatin remodeling. 

the experiments carried out by (Pelascini et al., 2013), with HDACs inhibitors trichostatin A and 

sodium butyrate, aimed to test if the transduction efficiency and transgene yield will change 

accordingly, to the use or none of the above mentioned inhibitors.  

In the course of further studies, experiments were carried with the HDACs inhibitors and the IDLV 

construct. Due to the lack of the reporter gene (GFP) in the vectors for inducing pluripotency (OKMS, 

OSK) the mentioned vectors, could not be tested. Instead, the CMV_GFP vector was used in 

the experiment. Pictures presented in Fig. 52 display increased GFP expression in transduced MEFs in 

comparison to the untreated cells, upon the trichostatin A application. The enrichment of the marker 

gene GFP was significant and that fact supported the claim, that HDAC inhibitors are the potential 

protectors against the IDLV silencing in the host genome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52: Transduced mouse embryonic fibroblasts showing the enhancement of the GFP expression upon 

the inhibitor tirchostatin A application. TSA treatment caused chromatin rearrangements, such as elevated 

histone acetylation and chromosome de-condensation as well as increased rate of RNA synthesis. (Magnification 

25x) 
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4.3. Xenobiotic-free cell culture (2i culture) 

Prior to be able to apply the desired cells for human therapies, one critical condition needs to be 

fulfilled. Cells must be cultured in the setting which does not contain any animal or animal-derived 

elements, including medium or the support on which they are being grown. That is why one of 

the aims of this doctoral project was the verification of xenobiotic-free culture conditions. The 2i 

medium was described thoroughly in the subparagraphs: 1.4.4. and 2.8.4. Fig. 53 displayes mESCs 

cultured in the 2i conditions. Process of adaptation assumed gradual feeder depletion by consecutive 

passages on only gelatin or Vitronectin XF™ coated culture plates. Adjustments of the new conditions 

included also progressive decrease in the amount of FCS in the medium, until the stage when the cells 

were seeded in the defined medium. 

 

 

Figure 53: Gradual adaptation of mES cells to the xenobiotic-free conditions. Panel: a.) mESC second day after 

passage and feeder depletion, b.) mESC fifth day after passage and feeder depletion, c.) mESC in 2i medium at 

the day seven after passage and feeder depletion. 

 

The mESCs maintained in the 2i medium were stained with specific antibodies to verify if the new 

media conditions did not impact pluripotent capacities. The used markers were as follows: Oct4, Sox2 

and SSEA1 (Stage-Specific Embryonic Antigen-1 (CD15)). The CD15 is expressed on murine ES 

cells, however it decreases upon differentiation. The outcomes presented in the Fig. 54, confirmed 

the naïve state of the cells kept in the defined media conditions. 
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Figure 54: The mES cells maintained in the defined media conditions, xenobiotic-free media (2i), expressing 

defined pluripotency markers, panel: a.) Oct4 (Oct4/DAPI), b.) Sox2 (Sox2/DAPI), c.) SSEA1(SSEA1/DAPI). 

DAPI used for nuclear staining. 

 

The unique for embryonic stem cells transcription factors (Oct4, Sox2) as well as markers for the three 

germ layers (Gata4, Nestin) and for endothelial differentiation (Flk1), were validate as well. 

The specific features of the mESCs, cultured in the 2i medium, were verified by means of PCR. 

The bands specific for each marker can be observed on the agarose gel presented in the Fig. 55. 

The expression patterns of the mentioned markers are presented in four different experimental 

conditions. The mRNA was extracted from the following cells:  row 1 (i) feeder cells, row 2 (ii) mES 

cells co-cultured with iFCs in the conventional medium, row 3 (iii) mES cells cultured without feeder 

support in the defined medium, row 4 (iv) mES cell line expressing GFP, maintained in the 2i culture. 

The visible band from Flk1 expression, in the first row, was most probably originated by the fibroblast 

on which the mESCs were cultured. That band is not present in the other rows proving that the cells 

were in the undifferentiated state. The presented results proved that the expression pattern of 

the chosen markers was the same for the mESCs cultured in conventional medium containing FSC, 

like for the cells maintained in the defined media conditions. The strong band of Nestin expression in 

the second and third row does not have to indicate the differentiation, but according to the literature, it 

can be also a sign of cell proliferation (Wiese et al., 2004). 
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Figure 55: Screen of mESCs in different media conditions, concerning expression patterns of pluripotency 

markers (Oct4, Sox2) and lineage specific markers (Gata4, Nestin, Snail) and endothelial marker (Flk1). Rows: 

1.) iFCs maintained in the standard conditions, 2.) mESCs co-cultre with iFCs and complete medium, 3.) mESCs 

maintained in the 2i medium, 4.) ES cell line (expressing GFP) cultured in 2i medium. M - marker ladder 

(JenaBioscence). 

 

To further verify the performance of mESC in the defined media conditions, the comparison of cells 

from conventional culture method was carried by flow cytometry (Fig. 56). The presented data were 

selected from two experiments and are displaying the percentage of stained cells with specific 

pluripotency markers. In the study the IgG controls were used along. The narrow peaks, of 

the presented histograms, are indicating that the antigens are expressed at the same level. These 

findings underline the homogenous nature of the tested cell subsets. In case of the ESCs co-cultured 

with feeders in the medium containing FSC, the less homogenous population can be observed and 

lower percentage of stained cells. The double staining exhibited even higher heterogeneity in the ES 

cells maintained in the conventional conditions in comparison to the cells cultured in 2i medium. 
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Figure 56: Flow cytometry analysis concerning expression of pluripotency markers. Comparison of expression 

patterns in the mESCs cultured in the 2i medium (ESC2i) or in the conventional culture conditions (ESC). 

The exhibited data are conceived from two different experiments a.) and b.). In each experiment, mESC obtained 

from both culture conditions, were stained with specific antibodies Oct4 or Sox2 and the IgG control or both 

antibodies were applied together. In case of double staining, the percentage of double positive cells in the cell 

subset are presented. 

 

In order to investigate the expression levels of particular genes in the mESCs culture in the two culture 

conditions, the mRNA was extracted from the cells. The mRNA was pulled down from: cells in cell 

culture (i) day zero (D0) and from (ii) the EBs day one to day eight. The 3-D aggregates, from both 

starting cultures, were maintained in the medium containing FSC nevertheless some differences in 

the level of gene expression were observed (Fig. 57). The graphs from the Fig. 57 present mean ∆Ct 

values.  
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Figure 57: The ∆ Ct data (mean values) showing the different gene expression in the mESCs cultured in 

the defined media (2i) or in the conventional conditions (conv). The real time PCR was applied to visualize and 

compare the expression tendency of pluripotency markers (Oct4, Sox2) and lineage specific markers (Gata4, 

Nestin, Snail) and endothelial marker (Flk1) in mESCs maintained in both culture conditions. 

 

The genes, which were tested, were as follows: Flk1, Sox2, Oct4, Nestin and Snail. As expected 

the expression of the Flk1 with time decreased. That case was already previously spotted in 

the experiments with the GFP kinetics (Fig. 34 and Fig. 35). This state is connected with 

the maturation of the probable endothelial or blood cells. The Sox2, Nestin and Snail expression 

patterns, in both conditions, displayed the same tendency and rather high expression. The trend for 

Nestin and Snail genes is in accordance with possible germ layers differentiation in the developing 

EBs. Likewise, the Sox2 expression maybe related to the emergence of the ectoderm and neural 

progenitor populations, which can be true for some EBs in the population. The Oct4 pattern is 

insignificantly different in the both conditions. The observed tendency is correct, with time Oct4 

expression may get even higher, marking the differentiation towards mesoendoderm. This fact stays in 

agreement with the possibility of formation of early endothelial or blood cells, triggered as a default 

by FSC in the medium. The observed imbalance of Sox2 and Oct4 expression was assumed to be 

common, as the cells start to differentiate and are losing their pluripotent potential.  
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5. Discussion 

 

5.1. Embryonic stem cells 

The mouse ES cells were chosen as an object for the experiments presented in this dissertation. 

The boundless capabilities of the mouse ESCs constitute a platform to better comprehend the science 

of human embryonic stem cells. The unlimited potential of ES cells to generate any, from the desired 

cells of the organism for therapeutic usage and the opportunity to create models of the mammalian 

development, make the ESCs exceptional and hard to replace.  

To be able to manage their capacity and the process of differentiation, which would lead the cells 

towards particular pathways, these actions need to be first recognized and characterized. Several 

pathways had been described, due to the advances in the embryology, which stimulated progress in 

visualization of the gastrulation process in culture and initiation of the three germ layers formation. 

The mechanisms mentioned-above helped to recognized and derive various progenitor cells. 

The biggest test will be passed by application of these cells in in vitro assessments, as well as in 

the clinical trials (Murry and Keller, 2008). The ES cells had unclosed entirely different door for 

the biomedical science. Credited to ESCs, it became possible to study the growth and role of the cells 

or tissues in healthy and pathological conditions in vitro. There is also a prospect to indicate 

determinants, which play crucial role in the embryogenesis and to asset those factors that may have 

influence on the human organism in the future life (Power and Rasko, 2011). However promising all 

the statements appear, there are still matters concerning ES cell science, which are perceived as major 

hurdles that need to be overcome, before the cells could be even considered for use in cell replacement 

therapies (Laura E. Sperling, 2013). The ability of ESCs to propagate infinitely, turned out to be a 

double-edged sword. That feature of stem cells, may cause formation of a tumor after the cell 

transplantation. It had been reported that inserted undifferentiated ESCs evoke teratomas.  

The aim of this study was to generate progenitor cells and to utilize these cells for therapeutic reasons.  
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Before applying the differentiated ES cells in the regenerative medicine, the cell subset needs to reach 

100% purity (Laura E. Sperling, 2013; Murry and Keller, 2008). The most promising method for 

purifying the heterogeneous cell populations is the method established on the ground of expression of 

detectable markers. Such markers are under control of the lineage specific promotors (Murry and 

Keller, 2008). That kind of approach had been tested during the course of experiments conducted 

during this doctorate program. As described in the experiments of Murry and Keller, apart from 

the antibiotic resistance also the fluorescent marker gene was applied for the selection procedure. 

Power and Rasko discussed the creation of suitable and imitating the real conditions environment for 

development of desired cells, tissues or ultimately organs (Power and Rasko, 2011). This matter was 

also approached during this doctorate. The main obstacle was the construction of specific bioreactors, 

which could yield satisfactory amount of differentiated cells.  

5.2. Endothelial differentiation 

The common way to differentiate ESCs into hematopoietic precursors assumes the use of cells from 

culture with feeders and medium comprising FSC, as well as formation of EBs. That approach is not 

free from pitfalls such as undefined cell culture setting, which makes the study of a single cell 

outcome difficult. Batch-depending variations of the serum composition make the serum an unreliable 

ingredient to use. Utilization of feeders carry the risk of possible contaminations or presence of 

pathogens. The supporting cells release numerous molecules, which may have an impact on 

unrestrained lineage commitment towards undesired phenotypes. That is why, in order to obtain 

hematopoietic precursors, stable and defined conditions must be created. There is also a demand for 

introduction of specific molecules, which would direct the fate of differentiation for the particular 

cells. An example of that molecule is bone morphogenetic protein 4 (BMP4), which displays high 

potential for deciding about the cell’s destiny. The ideal system of differentiation needs apart from 

defined conditions, also a possibility to observe that process in a straightforward manner. 

The suspension culture of EBs formation is also not optimal. It lacks monitoring of the cell to cell 

occurring interactions or following the secretion of substances. The important issue concerning 

the differentiation is the selection of desired cell subsets at various stages. The suspension culture may 

not truly reflect the conditions needed for the differentiation towards the wanted cell type (Chiang and 
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Wong 2011). It is crucial to mimic the topography of the tissue extra cellular matrix which is not one-

dimensional. This vital detail cannot be omitted, especially when it comes to endothelial cells, where 

shear stress plays crucial role in the healthy arteries. Numerous proofs exist to confirm the importance 

of the interactions between the cells, and the character of the surface they are based on. It is highly 

probable, that the topographical signaling can induce endothelial cells lining up and intensification of 

its propagation after the damage. The vascular endothelium is placed on the basement membrane 

which is significantly influencing ECs functions (Hatano et al., 2013). 

All the mentioned above factors had been analyzed during the experimental plan of this PhD program. 

The downfalls had been recognized and the suggestion had been prepared. One of the considered 

optimizing methods assumes implementation of the BMP4 molecule. This protein is thought to 

increase, by impacting the Gata2 gene, the probability of the differentiation towards hemogenic and 

angiogenic precursors in the time-dependent mode. Chiang and Wong proved that destiny towards 

hemogenic differentiation is categorical at the very beginning of cell development and is decided in a 

cell self-governing mode. Szabo et al. in 2010 investigated the causes underlying the alterations of 

adult cells into the blood precursors in the responsiveness to direct change. The successful recognition 

of such factors, could help to eliminate the need of viral delivery of the transgene into the host cell 

(McCloskey et al., 2006, Chiang and Wong, 2011).  

The questions raised by this dissertation concern the plausibility of implementation of the murine 

endothelial precursors and to which extend the identified processes can be translated in to the human 

ES or iPS cells. The findings provide a foundation for further improvements of in vitro schemes of 

action in order to generate human ES/iPS cell-derived endothelial cells. 

5.3. Genetic manipulations 

 

Gene therapies emerged after 1970 when the recombination of DNA became attainable. The enormous 

amounts of time and expenses invested into the scientific and medical research, brought achievements 

in the field of cell replacement therapies. Everything became reachable in gratitude to ESCs discovery 

and countless trials to improve their usage for human therapies. Patients gained access to treatments 
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using autologous transplants, which highly decreased risk of immune rejection or even death. The next 

step was the generation of iPS cells. Reprogramming gave new sources and capabilities for cell 

transplants and minimized the exposure to aggressive treatments (Fox et al., 2014).  

However, to make these aims approachable on a larger scale, effort must be still placed on making 

the derivation of specific cells from hES or iPS cells possible. In the next subchapter one of 

the approaches to facilitate the generation of specific cells will be characterized, the lentiviral 

transgene delivery (refer to paragraphs: 1.3.1 and 1.6.1). 

5.3.1. Lentiviral transduction of mESCs 

The main objective of this doctorate was the generation of stable mES-cell lines by means of 

the lentiviral system of gene delivery. The aim had been realized, though the cloning procedures were 

not free from mistakes (T2A sequence, subchapter: 3.1.12.) or obstacles to overcome like for example 

difficulties with cloning of the murine pGP-mVe-cadherin vector. Numerous trials lead ultimately to 

the decision of removing the resistance gene sequence from the pGN-mVe-cadherin vector and then 

sub-cloning into that place sequence coding puromycin resistance gene.  

The great progress in the field of lentiviral vectors made these vectors an effective, safe and solid 

instrument, which can be used for stable gene delivery into various cell types. Another benefit of this 

gene transfer is the fact that LVs can infect also non-quiescent cells, which puts them above 

retroviruses. Over decades, lentiviruses which originated from HIV-1 have been advanced to improve 

safety and to add new functionalities. One of the desired features is the fact that LVs are not 

transferring sequences responsible for coding the proteins belonging to the packaging vector.  

This ability reduces the danger that the cells transduced by lentiviral vector could become prone to 

the attacks carried by virus-specific cytotoxic T lymphocytes (Merten and Rubeai, 2011;  

Sakuma et al., 2012). 

All the improvements introduced to the LVs created a safe and reliable transduction instrument. These 

features are essential for the vector, which should be used for derivation of clinically functional cells 

and that is why lentiviruses were used during this PhD program. 
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5.3.1.1. Integrase deficient lentiviral vectors  

 

The vectors originated from lentiviruses are currently the most widely used tool for gene therapies.  

The danger connected to the insertional mutations pressed the need to find the alternative, which 

appeared to be the non-integrating LVs. That kind of vector may be obtained by two methods:  

  introduction of point mutation in the sequence of the viral protein integrase (IN), 

  alteration of the two conserved CA residues in the site of attachment of the virus LTRs. 

Those intramolecular modifications effect in formation of circular DNA episomes and transgene 

expression (Cornu and Cathomen, 2007).  

In this dissertation the IDLV vector was generated by means of site-directed mutagenesis. 

The innovative use of SDM, helped to introduce the point mutation to the viral protein sequence. 

The amino acid residue aspartic acid (D) was substituted by valine (V), what disabled the function of 

the targeted protein. The test carried out to verify the functionality of this vector showed promising 

result (paragraph 4.2). The generated episomes, in transduced cells, were subsequently lost through 

cell division (Fig. 52). As the episome is not replicated, it only remains in one of the dividing cells. 

However, in case of non-dividing cells the expression is stable.  

The IDLV based vectors can prove to be very beneficial when it comes to the vascular gene transfer, 

what correlates with increased level of safety. Reports showed that the genotoxicity and integration 

system of IDLVs presents significantly diminished number of induced modifications of the genes in 

the host cells (Chick et al., 2012). 

5.3.2. Induction of pluripotency 

The development of mammals is a one-way route through which a gradual deficiency in 

developmental capacities occurs. The development process originates from a single cell, the diploid 

zygote and terminates when all of the 220 highly specific cells of the mammalian organism are 

established. During this path of development, cells pass through few stages characterizing their 

potential (Hochedlinger and Plath, 2009): 
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 totipotency - possibility to differentiate into all cell types of the organism, 

 pluripotency - capacity to differentiate into any of the three germ layers, 

 multipotency - ability to differentiate into multiple but limited cell types (lineage 

specification), 

 unipotency - capability to differentiate into only one cell type. 

Fig. 58 presents the decrease of the differentiation capacities during the normal development of 

the organisms. 

 

 

 

 

 

 
 
Figure 58: The gradual loss of differentiation potential by cells of the developing organism. The scheme is 

depicting the origin of cells and their potencies. 

 

The possibility to artificially produce pluripotent stem cells in vitro became probable by 

the application of a cocktail of the transcription factors: Oct4, Sox2, Klf4 and c-Myc. The science of 

iPS cells demonstrates an uncharted territory of unlimited capabilities carried by these cells. 

The patient-specific cells would elevate the need of taking immunosuppressive medications 

throughout patient life. This method is not free from drawbacks and the procedures to generate iPS 

cells need various improvements and optimization. Probable genomic modifications emerged during 

the reprogramming or differentiation process of the iPSCs into the desired cell type, may impact 

the immunological phenotype of these cells. Other factors like incomplete (partial) reprogramming or 

genetic variability can also influence the possible rejection of transplanted cells. Reports indicated that 
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iPS cells possess "epigenetic memory", meaning that the cells can carry outputs from parental cells or 

acquired during reprograming process. This specific memory may effect potential of iPS cells to 

differentiate and moreover to retain in the state of a therapeutic cell. To overcome all the hurdles 

the "ground" state of iPS cells need to be first established and then subsequent clinical trials will 

become feasible (de Almeida, P.E. et al., 2014). 

The cocktail of TFs used for induction of the pluripotency included: Oct4, Sox2, Klf4, c-Myc. After 

their application around one to two weeks are needed to observe reprogrammed cells and even though 

not all of the reprogrammed cells will reach the state of pluripotency. Nowadays, many scientist turn 

to the view that in order to successfully reprogram cells, a particular stepwise approach is needed. 

However, each step yields less and less fully reprogrammed cells, which may be due to unknown 

underlying actions. Comprehending the impact of the particular transcription factors during 

the different step of reprogramming will allow to uncover molecular mechanisms responsible for 

the pluripotency induction. The target genes in iPS cells, similar to the gene discovered in ESCs are 

Oct4 and Sox2, which co-reside promotors of highly expressed genes, as well as their own promoters. 

Klf4 deal with around half of its targets with the two above-mentioned TFs. The c-Myc activity was 

established through the analysis of limited target overlap and concluded that its function is distinct 

from the functions of Oct4, Sox2 and Klf4. The c-Myc targets are related with control of cells 

proliferation, metabolisms and biosynthetic pathways. The remaining three TFs are responsible for 

the governance of the transcriptional and developmental factors in the pluripotency organization.  

It can be thus concluded, that c-Myc is not needed for the up regulation of the pluripotency system at 

the last step of reprogramming. There is also an assumption that c-Myc enhances the discharge of 

promotor-proximal interruption of Pol II (RNA polymerase) and hence boosts transcriptional 

elongation instead of attracting the Pol II to the promotors. It is established that Oct4 and Sox2 are 

the master pluripotency genes. The controversy regards presence of Klf4 and c-Myc. 

The overexpression of c-Myc leads to elevated levels of the p53 protein. On the other hand expression 

of Klf4 impacts the amount of p21 protein, which is a cyclin-dependent kinase inhibitor. The p21 is 

involved in the inhibition of the proliferation and also decreases levels of the p53 in the cell. 

Therefore, it was proposed that c-Myc and Klf4 are reciprocally dependent and the balance between 
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their actions may guarantee good reprogramming (Hochedlinger and Plath, 2009; Yamanaka, 2012; 

Miyazaki et al. 2012; Muchkaeva et al. 2012).  

Specific small molecules had been used to indicate that repressive chromatin states support 

the stability of the differentiated cells. The whole mechanism is not yet fully recognized and it is 

unknown whether if the changes in chromatin structure are global or just are related to the particular 

gene. The HDACs (see paragraph 4.2) are typically connected with chromatin condensation and 

suppression of transcription. The HDACs inhibitors trichostatin A (TSA), butyrate and valporic acid 

(VPA) markedly enhance the reprogramming efficacy in murine and human fibroblasts. This statement 

is supporting the results obtained from the experiment presented in the Fig. 52. Similar improvement 

of reprogramming was observed when the c-Myc was excluded from the TFs cocktail but the VPA 

was used (Plath and Lowry, 2011). 

The success in induction of pluripotency in MEFs with the use of LV and OSK vectors, conducted 

during this doctorate, is brining closer the answers. The lack of reprogramming of the adult cells with 

the generated in house integrase deficient lentiviral vector is fully justified. That rationale can be based 

on the discussed in this subchapter difficulties, concerning the matter of the successful cell 

differentiation.  

After the strenuous efforts to gain the insight into the genetic and epigenetic mechanism underlying 

reprogramming and pluripotency, scientists are only getting a grip of that complicated networks.  

The proposed solutions which could be employed, are either establishment of a technique that would 

yield enormous amounts of reprogrammed cells or identification of early epigenetic indicators which 

would designate only the cells that will undergo the full reprograming and could achieve pluripotency 

(Plath and Lowry, 2011). 

5.4. Xenobiotic-free medium 

Cell culture has a vital task to recapitulate physiological conditions of the one found in vivo. This 

specific microenvironment needs to provide suitable temperature, pH, oxygen and nutrient supplies 

(Brunner et al., 2010). Another important aspect is the determination of the appropriate cell 

attachment, like gelatin or other coating agent, or supporting cells (feeder cells). These factors can also 

impact the performance of the growing cells.  
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In this thesis improvements, which are able to create fully defined conditions for the sustainable cell-

growth and are minimizing the risk of contact with animal photogenes, were investigated.  In order to 

be able to use the generated hES or hiPS cells for the therapeutical treatments, such specific conditions 

have to be created (see paragraph: 1.4.4 and 4.3). 

Traditionally, the hES or hiPS cells had been co-cultured with mouse fibroblast in the serum 

supplemented medium, thus several solutions had been proposed: 

 medium with serum replacement, 

 addition of growth factors mixtures, 

 fibronectin or Matrigel matrices for growing cells.  

A short comparison of the use of serum and serum replacement, in the cell culture medium is 

presented in Table 10. 

Table 10: Summary of the benefits of the serum and serum replacement application in 

 the cell culture media. Adapted from: Brunner et al.,2010. 

 

 

 

 

 

 

 

 

 

In this study yet another approach concerning xenobiotic-free media was tested the 2i (two inhibitors) 

medium (refer to subchapter 1.4.4. and chapter 4.3). The obtained results proved that the maintenance 

of mESCs in these conditions does not impact negatively the performance of the tested cells. Neither, 

lack of serum or serum replacement, nor the absence of feeder cells showed undesirable functioning of 

the mES cells (refer to Fig. 55 and Fig. 57). Moreover, it was noticed that the cells in 2i conditions 
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were growing slightly faster and the propagation process had been facilitated. The passage of cells 

does not need additional washing step of the cells, before trypsinization, due to the lack of serum in 

the medium. 

 In regard to the reprogramming the continuous attempts are undertaken, in order to determine and 

define further small molecules which are impacting the reprogramming method. Hopefully those 

endeavors will result in establishment of proficient and accurately defined maintenance conditions for 

iPS cells. Due to the difficulties concerning the complex matter of iPS differentiation towards specific 

cell types, maybe it would be more beneficial to generate: (i) transitional lineage specific stem cells 

and (ii) progenitors or (iii) differentiate desired cells by means of chemically characterized conditions. 

Chemical methods are attracting interest and may prove to be useful, especially in the field of 

regenerative medicine (Li and Ding, 2010).   

5.5. Conclusion  

The generated stable cell lines were suitable for the groundwork purposes, before the experiments 

concerning m/hiPS cells could be implemented. The employed endothelial specific promoters were 

useful as cell markers. Due to the presence of the GFP fluorescent protein, which is expressed under 

the control of applied endothelial promoters, the differentiated cells were traceable. The newly 

established cell lines can be used in the angiogenesis models. One of the proposed angiogenesis assay 

assumes injection of SK-MLE 5 cell line (Human Skin Melanoma) into the nude mice, where these 

cells will form a malignant melanoma. Next, the selected and purified endothelial cells would be 

subcutaneously implanted to the immune-deficient mice with the developed tumor. Subsequently, 

the endothelial cells are expected to migrate and proliferate in order to form the new blood vessels or 

to integrate into the existing ones. The histological studies would definitely show the sites of 

integration of the implanted endothelial cells, due to the presence of the reporter gene GFP.  

The subsequent goal, of the presented doctoral program, concerned induction of the pluripotency. 

The generated miPS cells gave the insight into the extremely complex nature of the cell 

reprogramming. The achieved results are solely restricted to the induction with the use of lentiviral 

gene delivery. The generated miPSCs were used as a study of the pluripotency and allowed to tackle 
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and approach the difficult matter of the maintenance of that kind of cells. The task of the pluripotency 

induction with the integrase deficient lentivirus was not entirely realized. The vector carrying the point 

mutation in that specific viral protein was generated in house and was subjected to numerous 

experiments.  

Most importantly, a novel tool had been developed, the newly generated stable cell lines can be used 

in the research for the pilot experiments in the field of regenerative medicine. Investigations carried 

out on the non-human live material, allow for the progress without ethical controversy, nevertheless 

this development is to a certain degree limited. The restrictions concern mostly similarities and 

the extent of the comparability of the rodent and human systems. Presented data can serve as 

a platform or interface between the bench and bedside and bring closer to the personalized medicine.  

In this doctoral thesis various assessments to maximize the profits from in vitro methods were 

presented. On the other hand, the in vivo experiments are indispensable in order to truly explore 

the multiplicity of the roles which endothelial cells play in the vascular system of the human beings. 

The interactions occurring in health and pathological conditions cannot be envisaged and fully 

recapitulated in vitro. The experiments conducted with living organisms are also not free from 

disadvantages: (i) advancement of the techniques, (ii) length of the time needed for the assay, (iii) 

restricted amount of animals that can be used per possible tests, (iv) inconstancy within the specimens 

and between the animals coming from the same species.  

The newly established cell lines were attainable in the time frame of four weeks. These cell lines were 

applied for tracking the endothelial differentiation and verification of the antibiotic resistance. 

The conducted experiments showed that the utilized system of antibiotic selection did not bring 

the anticipated results. Despite the noticeable enrichment of the GFP expression, the weak point of this 

procedure was most probably insufficient number of the endothelial cells in the population. Another 

objective, that needs to be raised, is the choice of the suitable differentiation method, which would 

yield high amount of the ESC-derived endothelial cells.  

Additional hurdle to overcome after differentiation is the indication of positive/stable clones. 

The process is a vicious circle, because only upon differentiation the transduced cells can be screened, 
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in search of the specific GFP expression. The efficiency of this procedure was extremely low, few 

clones out of generally 96 picked clones from among 3(x)10
3
 transduced mES cells turned out to be 

positive. The ratio of lentiviral transductions was reaching 1-3% of the success rate. This fact is widely 

reported in the literature. However, the production of viral particles for the successful transductions 

was achieved. The idea of testing different concentrations of the DNA and transfection factor in 

combination with the determined number of HEK cell brought satisfactory results. The next step, in 

the optimization of that procedure, was the creation of the stock of validated viral particles, ready-to-

use in upcoming experiments, what was successfully implemented.   

Until now, the core issue of the application of the integrase deficient lentiviral vector remains 

unresolved. The attempts with HDAC inhibitors brought new hope, yet it is too early to state if 

the achieved results would benefit the induction of pluripotency with the OKMS or OSK vectors. 

To summarize, the collected data need careful consideration and application of strengthening 

arrangements in order to bring closer the idea of derivation endothelial cells from hES or hiPS cells. 

Possibility to use genetically amended, but yet autologous cells, will tremendously minimize the risk 

of implant rejection by autoimmune response. Pluripotent stem cells are endless, but still not fully 

discovered, source of potentially applicable remedies to be used in the regenerative medicine. Gene 

transfer and cell replacement therapies are still in their infancy, though they are closer than ever 

before. 
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6. Outlook  

 

Methods which could be applied are described in this chapter and will be considered for future 

experiments in order to improve the derivation of the endothelial cells.  

The risk of the random insertion of the exogenous gene into the rodent genome can cause many 

unexpected events, like for example default functioning of critical genes. The introduced gene may be 

silenced, which in consequence may result in unclear phenotype. One of the possible solutions might 

be the Rosa26 permissive locus (Fig. 59). 

 

 

 

 

Figure 59: The cartoon depicting Rosa26 locus functionality. Graphic modified after genOway website: 

http://www.genoway.com/. 

The Rosa26 locus in mice is very useful when it comes to genetic modifications, because it might be 

targeted with tremendous efficacy and is expressed in almost all cell types. The gene directed to 

the Rosa26 locus by homologous recombination in ES cells can be utilized in order to obtain 

constitutive and ubiquitous expression of the introduced gene (Perez-Pinera et al., 2012). 

The existence of the Rosa26 locus was proved by targeting the tdRFP (red fluorescent protein), cDNA 

to this locus by means of homologous recombination. The expression of tdRFP in the various lineages 

derived from human ES cells was then observed, proving that the hypothesis was right (Irion et al., 

2007; Friedrich and Soriano, 1991). 

Another approach to be considered is the application of adeno associated virus integration  

site 1 (AAVS1). The AAVS1 is also known as a PPP1R2C locus on human chromosome 19 and is 

referred to as a "safe harbor". This means, that it can anchor exogenous DNA of an anticipated 
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function. What is characteristic for this site is the fact that it possesses an open chromatin structure and 

is capable of transcription. There are no reports concerning unwanted consequences for the cell 

resulting from the introduced DNA sequence. In order to achieve the integration at the safe genomic 

locus one more element needs to be introduced the transcription activator-like effectors (TALEs). 

TALEs belong to a group of bacterial plant pathogen proteins, which identify exact DNA sequences 

and alter the gene behavior. Upon binding with the a FokI cleavage domain, the naturally occurring 

restriction endonuclease, TALE nucleases (TALENs) identify particular sequences of DNA, which 

were previously determined through the internal tandem repeats conveyed in the TALEs. Connection 

of the two TALENs and the desired DNA enables FokI to dimerize. Through that action, a break in 

the aimed chromosome is initiated and in this way homologous recombination at the site of 

the cleavage is promoted. The TALEs paired with the nucleases (Fig. 60), when applied in 

combination with the AAVS1 donor vectors, which comprises homologous recombination flanking 

arms, may serve as tool for exogenous gene insertion to the defined and safe genomic harbors  

(Juillerat et al., 2014).  

 

Figure 60: Scheme illustrating targeted integration at a safe genomic locus AAVS1 Safe Harbor TALE-

Nuclease. Reprinted from System Biosciences website: http://www.systembio.com/aavs1. 

 

Making the introduction of new genes into the mammalian cells a common technique, would 

tremendously facilitate the basic science. Majority of the methods for the stable introduction of genes 

in to host cells apply random integration of the transgene, accompanied by antibiotic selection and 

screening processes, which would indicate cell subset carrying the transgene. The random integration 

method, however, causes many undesired side-effects. Finding the right tools, which would ease 
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the exact insertion of the transgene at the precise locus in the host genome, could elevate all unwanted 

consequences of random integration (Perez-Pinera et al., 2012). 

The two presented alternatives, for introducing an exogenous DNA sequence into the host genome, 

sound promising. These methods may bring closer to reach the desired cell subsets, thanks to 

the transgenic animals from which these cells could be obtained. 
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