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Abstract. Nonperturbative equations of state (EoSs) for two and three
quark flavors are constructed with the functional renormalization group
(FRG) within a quark-meson model truncation augmented by vec-
tor mesons for low temperature and high density. Based on previous
FRG studies without repulsive vector meson interactions the influence
of isoscalar vector ω- and φ-mesons on the dynamical fluctuations of
quarks and (pseudo)scalar mesons is investigated. The grand potential
as well as vector meson condensates are evaluated as a function of quark
chemical potential and the quark matter EoS in β-equilibrium is applied
to neutron star (NS) physics. The tidal deformability and mass-radius
relations for hybrid stars from combined hadronic and quark matter
EoSs are compared for different vector couplings. We observe a signif-
icant impact of the vector mesons on the quark matter EoS such that
the resulting EoS is sufficiently stiff to support two-solar-mass neutron
stars.

1 Introduction

With the recent dawn of multimessenger astrophysics new data will become available
with the possibility to further scrutinize models of the structure of compact objects.
In particular, several observational projects are underway or planned to pin down the
compact star equation of state (EoS) not yet fully known to date. Let us mention for
example precise mass determinations from pulsar timing with current [1–4] and future
instruments such as the SKA [5], observations of binary neutron star (BNS) mergers
by the LIGO/Virgo collaboration [6–8] introducing constraints on the EoS via the
measurement of the tidal deformability of the inspiraling stars, and measurements of
the neutron star’s x-ray emission giving information on masses and radii [9,10], see
also the recent NICER results [11,12]. Post-merger oscillations are very sensitive to the
dense matter EoS, too [13], and can among others indicate the existence of a strong
first-order phase transition in compact star matter [14], such that future observations
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by the LIGO/Virgo/Kagra collaboration or via various projects such as the Einstein
Telescope or the Cosmic Explorer are promising tools to reduce uncertainties.

However, despite this bright future on the experimental side, a precise determi-
nation of the underlying EoS will not be fully conclusive because on the theoretical
side the EoS alone cannot resolve for the detailed matter composition and interac-
tions. Only a full theoretical understanding of dense QCD will enable a satisfactory
final picture which entails the need for a quantitative EoS grounded in first-principle
QCD.

This theoretical challenge is aggravated by the confinement property of QCD: due
to the running of the QCD gauge coupling the fundamental degrees of freedom lose
their significance at low temperatures and densities and are confined into colorless,
composite states, the hadrons. After confinement, a relatively small residual nuclear
interaction is left which binds the nucleons into atomic nuclei with a typical bind-
ing energy per nucleon of the order of 1–10 MeV. This energy scale is two orders
of magnitude smaller than the confinement scale but still very strong. Decades of
considerable effort together with constraints from experimental data on nuclei and
theoretical calculations have led to reliable models for the NS crust and homogeneous
nuclear matter up to roughly twice the saturation density, ρ0 ∼ 0.16 fm−3, see e.g.
[15–17] and references therein for a discussion. Above this density, not only the mod-
els are less under control, but non-nucleonic degrees of freedom might appear and
the situation becomes more complicated.

Presently, the composition and in particular the phase structure of the interior
of compact stars is not known. In addition to the possible onset of non-nucleonic
hadronic degrees of freedom, such as hyperons [18–20], mesons, or ∆-baryons [21],
quark matter could exist in the cores of compact objects where due to extreme
gravitational forces densities of up to ≈8–10ρ0 are expected [22,23]. At extremely
high densities ρ > 60ρ0 perturbative QCD can be used to guide reliably the con-
struction of the EoS. However, the density of matter relevant for the description of
compact stars is not high enough for a perturbative treatment to be conducive. Alter-
native approaches for a proper theoretical description of this intermediate density
regime from low-energy QCD are inevitable. Unfortunately, ambitious first-principle
lattice QCD simulations are not applicable in this regime due to a generic sign prob-
lem at finite densities. Therefore, so far mainly either parameterised interpolations
between the low-density nuclear part and the perturbative QCD regime have been
used, e.g. [23,24], generic parameterisations of the quark matter part, e.g. [25–28] or
phenomenological approaches, such as bag models, Nambu–Jona-Lasinio (NJL)-type
models or the quark-meson coupling model in mean field approximation have been
employed to describe quark matter in this intermediate density regime, e.g. [29–45].
Some models include constraints from lattice calculations, see e.g. [46], and recently
holographic approaches have been developed, e.g. [47–49]. It is obvious that still
much effort is needed and it should in particular be stressed that the fundamen-
tal dynamics of fluctuations is mostly ignored in mean-field calculations or simple
parameterizations, see e.g. [50,51].

An alternative approach for the elaboration of the EoS in the intermediate den-
sity regime is based on the functional renormalization group (FRG) method. It is
a promising nonperturbative realization of Wilsonian renormalization group idea
in the continuum and not limited to small couplings. The straight and controlled
computation of the EoS from first-principle QCD quark and gluonic degrees of free-
dom becomes conceivable [52]. However, towards lower densities the quarks cluster
into nucleons and the emergence of long-range correlations between nucleons will
increasingly complicate the QCD-based FRG approach [53–55].

Nevertheless, within this framework, the impact of fluctuations in the
(pseudo)scalar interaction channel on the compact star EoS has recently been stud-
ied [56]. It was found that the fluctuations decrease the sound speed of the quark
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matter even below the mean-field value of c2s = 1/3, leading to a rather soft EoS at
high densities. This rather soft EoS does not allow for the construction of hybrid
stars with a three-flavor quark core in agreement with present neutron star mass
measurements [2–4]. Therefore, here we will extent the work of [56] and investigate
the impact of additional vector meson interactions. While the (pseudo)scalars fields
are integrated out within the functional renormalization group framework, the vec-
tor mesons are treated on a constant background level. This idea has already been
employed to studies of the phase diagram at finite temperature, see e.g. [57–60].

Vector interactions are expected to add repulsion [61]. This can be seen from
classical models of the nucleon-nucleon interaction, from phenomenological models
allowing for hyperons in the neutron star core, see e.g. [62,63], or from many phe-
nomenological quark matter studies, see e.g. [64–66]. The inclusion of a repulsive
vector interaction in the quark-meson model should thus stiffen the quark matter
EoS, leading to a higher speed of sound and allowing for constructing hybrid stars
compatible with observations.

Within this first study, we neglect the possibility of diquark pairing and do not
enter the discussion of the extremely rich phase structure of color superconducting
matter in the density range of neutron stars [67,68]. Diquark pairing is important for
transport properties, but, being a Fermi surface phenomenon, has only little influence
on the equation of state we are focusing on here.

As already mentioned for very low baryon density a neutron star can be charac-
terized by nonrelativistic nucleons via nuclear forces while at high densities quarks
have more and more of an impact such that the EoS in the low density regime can
be constructed with techniques of nuclear matter theory. At high baryon density,
due to the failure of first-principle QCD approaches, usually phenomenological quark
models such as NJL-type models are adopted mostly on a mean-field level to incor-
porate the dynamics of quarks. In order to gap the bridge between these two density
regimes nonperturbative effects as the generation of constituent quark masses by a
spontaneous chiral symmetry breaking must be taken into account.

The work is organized as follows: In the following Section 2 a chirally symmet-
ric effective model with quarks and mesonic degrees of freedom is introduced with
scalar-pseudoscalar as well as axialvector-vector channels to account for quark matter
including chiral symmetry breaking. Later, the focus lies mainly on the two and three
lightest quark flavors relevant for the strongly interacting intermediate transition
regime. The introduced model setup serves then as truncation for a nonperturbative
integration of the quark and meson dynamics with the FRG in Section 3. The aug-
mentation of the FRG with vector mesons is presented in Section 3.2. Now equipped
with a nonperturbative EoS neutron star properties can be investigated. The numer-
ical results are presented in Section 4 wherein the β-equilibrated EoS, mass-radius
relation and tidal deformability with and without strangeness for pure quark matter
stars as well as hybrid stars for various vector couplings are discussed. In Section 5
a summary with a conclusion is given. A list of the used input parameters and some
technical details for the numerical solution are collected in the appendices.

2 Effective description of quark matter

2.1 Quark-meson model with vector mesons

A chirally symmetric effective theory is considered with Nf flavors of constituent
quark fields q and N2

f (pseudo)scalar and (axial)vector meson fields. With the usual

U(Nf ) flavor transformation generators Ta with a = 0, . . . , N2
f −1 the meson matrices
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can be rewritten as

Φ := Ta(σa + iπa) for the (pseudo)scalar mesons and

Vµ := Ta(ρa,µ + ia1a,µ) for the (axial)vector mesons.
(1)

Accordingly, the field strength tensor field is given by Fµν = i
gv

[Dµ, Dν ] = ∂µVν −
∂νVµ − igv[Vµ, Vν ] with the canonical covariant derivative Dµ = ∂µ − igvVµ.

For two quark flavors we have the identifications ρa,µ = (ωµ, ρρρµ) and
a1a,µ = (f1,µ, aaa1,µ) and for three flavors ρa,µ = (ωµ, ρρρµ,KKKµ, φµ) and a1a,µ =
(f1,µ, aaa1,µ,KKK1A,µ, f1,µ).1

The mesons interact via a scalar gs and a vector gv Yukawa coupling with the
quarks which is encoded in the quark-meson Lagrangian in Euclidean space

L = q̄
[
/∂ + gsTa(σa + iγ5πa) + gvTaγµ(ρa,µ + γ5a1a,µ)

]
q

+ Tr(∂µΦ†∂µΦ) +
1

2
Tr(FµνFµν) + Uχ(ρ1, . . . , ρNf

)

− cA[det Φ† + det Φ]− Tr
[
H(Φ† + Φ)

]
.

(2)

The anomalous breaking of the axial U(1)A-symmetry is realized via ’t Hooft
determinants ξ = [det Φ† + det Φ] with a constant parameter cA. The mesonic
(self-)interactions are parametrized with the chiral symmetric potential

Uχ(ρ1, . . . , ρNf
) with ρn = Tr[(Φ†Φ)n], (3)

and is in general a function of Nf independent chiral invariants ρn. The highest chiral
invariant ρNf

is usually omitted in the chiral potential because it often depends on
the other invariants.

A small explicit breaking of chiral symmetry is implemented with a linear term in
the meson fields Tr[H(Φ† + Φ)] and a corresponding symmetry breaking parameter
matrix H.

We assume isospin symmetric matter such that the two lightest quark flavors up
and down are degenerated in the masses and only one index l = u = d is needed.
Hence, for three quark flavors Nf = 3 the explicit symmetry breaking term in (2)
reduces to two different terms proportional to −clσl − csσs with the strange quark
flavor index s. A constant rotation establishes the relation of the non-strange-strange
basis (σl, σs) and the singlet-octet basis (σ0, σ8) in the scalar meson sector(

σl
σs

)
=

1√
3

(√
2 1

1 −
√

2

)(
σ0

σ8

)
, (4)

such that the isospin-symmetric scalar vacuum condensates are diagonal in flavor
space

〈Φ〉 = T0σ0 + T8σ8 = diagf

(
σl/2, σl/2, σs/

√
2
)
. (5)

For Nf = 2 quark flavors only one independent invariant ρ1 in the chiral potential
survives and hence one explicit symmetry breaking parameter is needed.

Since the U(1)A-symmetry breaking term scales with the meson fields to the power
Nf the ’t Hooft determinant corresponds to a mesonic mass term for Nf = 2 and
constitutes a mass splitting between the scalar and pseudoscalar meson multiplets

1The two possible isoscalar axial-vector states are f1,µ(1285) and f1,µ(1420).
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{σ0, π1, π2, π3} ↔ {π0, σ1, σ2, σ3}. Hence, the parameter cA is dropped for Nf = 2
and only the first multiplet corresponding to lighter mesons, i.e., the scalar resonance

and the pseudoscalar Goldstone bosons ϕ =
(
σ,πππT

)T
, is considered dynamically. In

this way the axial U(1)A-symmetry breaking is assumed to be maximally broken. For
more details see e.g. [69,70].

The generalization to finite temperature and baryonic densities is achieved within
the Matsubara formalism, wherein the time-component is Wick-rotated t→ −iτ and
the imaginary time τ is compactified on a circle with radius equal to the inverse
temperature β = 1/T . In general, Nf independent quark chemical potentials µf can
be implemented in the quark part of the Euclidean Lagrangian, equation (2), by

Lqm = L+ q†µq with µ = diagf
(
µu, µd, . . . , µNf

)
. (6)

However, for cold neutron star matter a weak equilibrium with neutrinos that leave
the star without further interactions is present such that not all chemical potentials
are independent anymore. For three light quark flavors a common quark chemical
potential µ can be introduced which is related to the baryon number via µ = µB/3.
Respecting the different electrical charges of the quarks by an additional electron
chemical potential µe which is the negative charge chemical potential one finds

µu = µ− 2

3
µe,

µd = µs = µ+
1

3
µe.

(7)

Taking electrical charge neutrality of the star into account yields for the quark and
electrical densities

2

3
nu −

1

3
nd −

1

3
ns − ne = 0, (8)

such that only one independent chemical potential remains. Our choice for two and
three quark flavors is the common quark chemical potential µ. Despite the fact that
isospin symmetry is broken in the way the chemical potentials are introduced we still
assume only one light condensate σl as approximation. Consequently, even for isospin
asymmetric matter the light quark masses are degenerate mu = md = ml.

For the following investigation of the equation of state the total grand potential
Ω is needed. It is given by the logarithm of the grand partition function,

Ω(T, µ) =
−T lnZ

V
, (9)

which in general is a path integral over all involved quantum fields and hence incor-
porates all quantum, thermal and density fluctuations of the studied system. In
the literature usually the integration over the quark fields is performed whereas the
dynamics of the remaining fields are drastically truncated and are taken into account
on a mean-field level, see e.g. [35]. In this work we consider in addition the fluctu-
ations of the remaining mesons via the FRG method which we will employ in the
next Section to evaluate the grand potential at finite temperatures and densities and
determine the EoS in a nonperturbative manner.
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3 Nonperturbative EoS

3.1 Functional renormalization group approach

For a consistent implementation of successively integrating out quantum, density
and temperature fluctuations from large to small energy scales we employ Wilson’s
functional renormalization group idea [71,72] in terms of the Wetterich equation [73]

∂tΓk =
1

2
Tr

[
∂tRk

(
Γ

(2)
k +Rk

)−1
]
. (10)

This flow equation is a functional differential equation for the evolution of the scale
dependent effective action Γk where the logarithmic scale derivative is denoted by
∂t = k d

dk . The effective average action Γk interpolates between a microscopic or bare
UV action SΛ = Γk→Λ and the full quantum effective action Γ = Γk→0 in the infrared.
It thus governs the dynamics of the field expectation values after the integration
of quantum fluctuations from the UV scale Λ down to the infrared scale kIR. The
infrared regulator Rk specifies the regularization of quantum fluctuations near an
infrared momentum shell with momentum k. It is a diagonal matrix for mesons and
symplectic for quarks. The scale-dependent IR regulator Rk can be interpreted as
momentum-dependent masses that suppress the infrared modes of the associated
fields. The derivative term ∂tRk in (10) ensures UV-regularity. The second functional
derivative of the effective average action with respect to the fields of the given theory is

generally denoted as Γ
(2)
k . The trace runs over all discrete and continuous indices, i.e.,

color, spinor and the loop momenta and/or frequencies. Since the full nonperturbative
propagators enters in the flow equation the Wetterich equation is highly non-linear
and includes higher loop contributions in perturbation theory despite its simple one-
loop structure. The application of this approach is not restricted to the existence of
a small expansion parameter and hence is applicable in any nonperturbative regime.
For QCD-related applications of this approach see e.g. the reviews [74–79].

For the explicit solution of the functional equation some truncations are required
that turn it into a system of finite-dimensional partial differential equations. Even
though any truncation of a functional equation might induce a certain dependence of
physical observables on the employed regulator the impact can be minimized by choos-
ing optimized regulators or by implementing RG consistency [80]. Here, a modified
three-dimensional flat regulator has been used [81,82].

For the solution of the flow equation (10) an initial condition at the UV scale k = Λ
must be supplemented. A complete solution of the entire Lagrangian is presently
beyond the scope of this work such that we simplify the system in the following way:
The full dynamical fields in the flow equations are the quarks and the (pseudo)scalar
mesons which affect the effective potential and the condensates of the remaining
vector mesons. For three quark flavors the UV initial condition for the flow equation
(10) for Γk=Λ reads

Γ
(2+1)
k=Λ =

∫
d4x

{
q̄
(
/∂ + gsTa(σa + iγ5πa)

)
q

+Tr
(
∂µΦ†∂µΦ

)
+ U

(2+1)
k=Λ (ρ1, ρ̃2)

}
,

(11)

wherein the effective potential U
(2+1)
k=Λ depends on the first two chiral invariants ρ1

and ρ̃2 := ρ2 − ρ2
1/3, see (3). Here ρ2 has been shifted by ρ2

1/3 for computational

simplicity. For two quark flavors, the effective potential U
(2)
k=Λ(ρ1) depends only on
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one chiral invariant. This truncation for the effective action corresponds to a leading-
order derivative expansion with standard kinetic terms for the (pseudo)scalar meson
fields. In this local potential approximation (LPA) of the initial action no scalar wave
function renormalizations and no scale-dependence in the Yukawa couplings between
quarks and mesons are taken into account. Note that in this simple truncation the
important dynamical back-reaction of the mesons on the quark sector of the model
is already included. For more details see the literature, e.g. [69,70].

Plugging the truncation (11) of the action into the Wetterich equation (10) yields
finally an IR and UV finite flow equation for the effective potential

∂U
(Nf )
k

∂k
=

k4

12π2

{ 2N2
f∑

b=1

1

Eb
coth

(
Eb
2T

)
− 2Nc

∑
f

1

Ef

×
[
tanh

(
Ef − µf

2T

)
+ tanh

(
Ef + µf

2T

)]}
,

(12)

where the flow of the (pseudo)scalar mesonic degrees of freedom is fully taken into

account. The single-particle energies Eb =
√
k2 +m2

b include the RG scale dependent
(pseudo)scalar meson masses mb which are obtained by diagonalizing the mass entries
of the matrix

M2
k,ab :=

∂2U
(Nf )
k

∂φa∂φb
for φa = {σa, πa}. (13)

Both the potential U
(Nf )
k and the mass matrix (13) are evaluated at the vacuum

expectation value given in equation (5). Details and the lengthy explicit expres-
sions of the eigenvalues can be found in the literature [69,70]. The corresponding

single-particle energies for the quarks are Eu = Ed ≡ El =
√
k2 + g2

sσ
2
l /4 and

Es =
√
k2 + g2

sσ
2
s/2, respectively. The full thermodynamic potential evaluated at

the solution of the gap equation, i.e., the minimum of the grand potential is obtained
by evolving the system towards the infrared.

As initial UV condition for the flow (12) the effective potential is parameterized
for Nf = 2 + 1 as

U
(2+1)
k=Λ (ρ1, ρ̃2) = U

(2+1)
χ,k=Λ(ρ1, ρ̃2)− cAξ − clσl − csσs, (14)

which contains the scale-dependent chiral effective potential

U
(2+1)
χ,k=Λ(ρ1, ρ̃2) = a10ρ1 +

a20

2
ρ2

1 + a01ρ̃2, (15)

and the ’t Hooft determinants ξ evaluated for the light and strange condensates

ξ =
σ2
l σs

2
√

2
. (16)

For three quark flavors only three scale-dependent expansion coefficients aij in the

chiral potential U
(2+1)
χ,Λ are needed and all remaining parameters are kept constant.

For two quark flavors, the number of coefficients reduces to two because the second
chiral invariant is not independent anymore.
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From the RG point of view at the initial scale it is sufficient to take only rele-
vant and marginal operators into account since meson fluctuations are small at high
energies (due to their larger masses) and irrelevant operators are in addition dimen-
sionally suppressed. However, this does not mean that irrelevant operators can be
ignored in general. They are generated by the RG flow at smaller scales and are of
relevance, see e.g. [83].

3.2 Implementation of vector mesons

The vector mesons are implemented on a mean-field level in the quark-meson
Lagrangian (2), i.e., as static background fields such that their kinetic terms are
not of further relevance anymore. Due to rotational symmetry all components of the
vector meson condensates except the temporal ones are assumed to vanish [84]. For
three quark flavors the only non-vanishing meson fields are in principle the diagonal
scalar fields and the isoscalar vector fields ω and φ and the third isovector vector
field ρ3

0. For asymmetric isospin matter on the one hand two scalar condensates σ0

and σ3 emerge for two quark flavors and on the other three scalar condensates σi,
i = 0, 3, 8 for three flavors in general. Due to technical reasons2 we slightly simplify
our approximation further by dropping the already small isospin breaking condensate
σ3 in the flow equation. Hence, to be consistent within our approximation scheme
we also omit the isovector vector condensate ρ3

0 since this would introduce a further
isospin asymmetry.

For three quark flavors this yields finally a diagonal matrix in flavor space for the
ω- and φ-vacuum expectation values

〈Vµ〉 = δµ0
1

2
diagf (ω, ω,

√
2φ). (17)

This also assumes an ideal quark mixing such that the quark content of the ω-meson
consists purely of up and down quarks while the φ-meson is purely strange. This
in turn leads to the additional Yukawa-type coupling in the quark sector of the
Lagrangian

Lvec =
gv
2
q̄γ0 diagf (ω, ω,

√
2φ)q, (18)

which can be interpreted as a shift in the corresponding chemical potentials, giving
now rise to modified effective chemical potentials

µ̃u = µu −
gv
2
ω

µ̃d = µd −
gv
2
ω

µ̃s = µs −
gφ
2
φ

, (19)

with gφ :=
√

2gv. The constant vector meson vacuum expectation values also
contribute to the mean-field potential

U (2+1)
vec (ω, φ) = −1

2

(
m2
ωω

2 +m2
φφ

2
)
, (20)

2Generally for each condensate an extra grid dimension for the solution of the corresponding flow
equation is necessary which is numerically quite time-consuming.
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wherein the negative sign expresses the repulsive nature of the vector interactions.
The mass-like parameters m2

ω and m2
φ are basically unconstrained and not to be

identified with the physical vector ω- and φ-meson masses. They just inherit their
names due to their mass dimension. However, we fix them to the measured vector
meson masses mω = 782 MeV and mφ = 1 020 MeV such that the vector meson
coupling gv is the only remaining free parameter of the system and of the order
of one. For two quark flavors, only the ω-meson is accounted for. However, in the
following we will establish the Nf = 2 + 1 flavor equations and suppress the flavor
index. The two flavor results arise in an obvious way.

This approximation can now be augmented with the FRG by adding the vector
meson potential Uvec to the scale-dependent chiral effective potential. For an arbitrary
renormalization scale k, the total effective potential Ũk reads

Ũk = Uk(ρ1, ρ̃2, ω, φ) + Uvec(ω, φ). (21)

Since the masses associated with the ω- and φ-bosons are related to the inverse range
of the isoscalar short-distance NN interactions and are large compared to the relevant
low-energy scales the ω- and φ-fluctuations should be more suppressed. Hence as a
sort of inert degrees of freedom they can be treated as background fields. Contrarily,
the fluctuations in the pseudoscalar channel (e.g. the sigma and the pions for two
flavors) and also the particle-hole excitations of the quarks around the Fermi surface
are fully taken into account.

The respective condensates are determined in the infrared by solving the gap
equations

∂ŨIR

∂ω
= 0 =

∂ŨIR

∂φ
, (22)

where ŨIR denotes the fully evolved effective IR potential including all dynamic
quark and (pseudo)scalar meson fluctuations. The condensates, i.e. the fields at the
minimum of the potential, depend on the temperature and chemical potentials.

The gap equations for the ω- and φ-condensates (22) can be rewritten

ω +
gv

2m2
ω

(
∂UIR

∂µu
+
∂UIR

∂µd

)∣∣∣∣
gap

= 0 = φ+
gφ

2m2
φ

∂UIR

∂µs

∣∣∣∣
gap

. (23)

The subscript “gap” in (23) labels the gap equation solution meaning that the poten-
tial is evaluated at these field configurations which solve the corresponding gap
equations. Thus, both gap equations for the vector condensates (23) are self-consistent
and can be solved numerically by root finding.

Finally, the infrared potential ŨIR evaluated on the gap equations can now be
identified as the grand potential yielding the equation of state in a standard ther-
modynamic manner. For vanishing temperature the normalized pressure and energy
density are given by

p({µf}) = Ω({0})− Ω({µf}) and ε = −p+
∑
f

µf nf , (24)

with the quark number densities

nf ≡ −
∂Ω(T, {µf})

∂µf
= − dŨIR

dµf

∣∣∣∣∣
gap

for f = {u, d, s} . (25)



3638 The European Physical Journal Special Topics

The quark number densities are defined as the derivative of the grand potential
Ω(T, {µf}) with respect to the corresponding chemical potentials. Since the implicit

dependence of the infrared potential ŨIR on the chemical potentials through the
condensates vanishes by virtue of the gap equation, i.e.

dŨIR

dµf

∣∣∣∣∣
gap

=

(
∂ŨIR

∂µf
+
∂ŨIR

∂ω

dω

dµf
+ . . .

)∣∣∣∣∣
gap

=
∂ŨIR

∂µf

∣∣∣∣∣
gap

=
∂UIR

∂µf

∣∣∣∣
gap

, (26)

where the ellipses represent similar derivative terms for all other condensates, we can
identify the derivative terms in (23) with the quark number densities:

ω − gv
2m2

ω

(nu + nd) = 0 = φ− gφ
2m2

φ

ns. (27)

Note that the gap equation (27) is solved including the full underlying nonpertur-
bative contributions from the FRG in the (pseudo)scalar channel. This is in contrast
to a similar two quark flavor FRG study [59] where the gap parameter for the isoscalar
ω-condensate is evaluated from a mean-field flow which ignores the back-coupling of
the FRG flow.

Furthermore, the inclusion of the vector mesons into the (pseudo)scalar sector
appears solely by the replacement of the chemical potentials in (12) with the effective
chemical potentials given in (19).

4 Numerical results

In the following we will present our findings obtained with the FRG quark-meson
truncation including isoscalar vector-mesons for two and three quark flavors. All
results are obtained for β-equilibrated and electrical charge neutral matter. Since
we are primarily interested in the physics of older neutron stars for which temper-
ature effects can be neglected, all flow equations are strictly solved for vanishing
temperature.

We have employed two different and complementary numerical solution strategies
for the flow equations as explained in Appendix B. The two quark flavor results are
obtained with an upwind finite difference scheme while for the three flavor calculations
a two-dimensional grid of the two scalar field variables has been used. In principle, this
enables us to estimate possible numerical artefacts. We found excellent agreement in
particular at low chemical potentials with no strange quarks populated, showing the
robustness of the numerical scheme. This can be seen in Figure 1 where the isoscalar
ω- (dashed and solid lines) and φ-meson (dash-dotted lines) condensates for three
different vector couplings as a function of the quark chemical potential are shown.
The difference in the ω-condensate with and without strangeness is negligible. From
the gap equations (23) it is clear that the vector condensates are proportional to
the (respective) number densities. Hence, for T = 0 the ω-condensate vanishes in the
chirally broken phase where all occupation numbers are zero, and the φ-condensate
(dash-dotted lines) is zero until µ ≈ 400 MeV when the strange quark states get
populated. Since an increase in a vector condensate means a decrease in the respective
effective chemical potential(s), cf. equation (19), which in turn decreases the number
density from its initial value, there is always a unique solution to the vector meson
gap equation (23). Note that the assumption of one light chiral condensate for both
the up and down flavors breaks down close to the chiral phase transition under the
assumptions of β-equilibrium and charge neutrality [56]. Hence, only data points



Strong Correlations in Dense Matter Physics 3639

Fig. 1. Vacuum condensates of the isoscalar ω-meson (solid line: Nf = 2, dashed: Nf = 2 +
1) and φ-meson (dash-dotted) as a function of the quark chemical potential. The condensates
are evaluated for neutral matter in weak equilibrium with vector coupling gv.

Fig. 2. Equation of state of the FRG quark-meson model with vector mesons and cou-
pling gv. Weak equilibrium and charge neutrality conditions have been imposed. Solid lines
correspond to Nf = 2 quark matter and dashed lines to Nf = 2 + 1.

above the chiral phase transition in the light scalar sector with µ > 310 MeV are
considered.

The effect of the background isoscalar vector mesons on the equation of state
is displayed in Figure 2. In this figure the (normalized) pressure obtained with the
FRG quark-meson truncation including the vector meson condensates is displayed
for different vector couplings gv as a function of the corresponding energy density.
As already mentioned, β-equilibrium and charge neutrality have been implemented.
The two quark flavor EoS (solid lines) is stiffer than the corresponding EoS with
strangeness (dashed lines) for energy densities beyond the onset of strangeness. This
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Fig. 3. Mass-radius relations for pure quark matter stars with various vector couplings gv
based on the EoS in Figure 2. Horizontal bands: PSR J1614-2230 (blue), PSR J0348+0432
(green) and MSP J0740+6620 (gray) mass measurements [2–4].

is not astonishing since an additional degree of freedom generally reduces pressure
and thus softens the EoS.

Vector mesons contribute to the EoS with two effects. Firstly, since the vector
meson potential (20) gives a negative contribution to the grand potential, it follows
from (24) that an increasing vector meson condensate leads to an increasing overall
pressure. Secondly, at the same time, the effective chemical potentials are lowered
which reduces the contributions to the pressure and also the energy density via the
particle densities from the (pseudo)scalar and quark sectors. Altogether, a larger
vector coupling leads to an increase of the EoS’s stiffness both for Nf = 2 and Nf =
2 + 1 quark flavors as expected.

Knowing now the EoS for pure quark matter, the mass-radius relation of a com-
pact star can be obtained as solution of the Tolman-Oppenheimer-Volkoff equations,
assuming a perfect fluid and a non-rotating star. Such pure quark stars [85] could
exist under the hypothesis of absolutely stable strange quark matter [86,87]. Within
our setup, quark matter is not absolutely stable, but it is nevertheless instructive to
investigate the mass-radius relation of quark stars with different strengths of the vec-
tor coupling. The results are summarized in Figure 3, in the left panel for two flavor
quark matter and in the right panel including strangeness. The colored horizontal
bands indicate the measured two-solar-mass pulsars [2–4]. Increasing the vector cou-
pling shifts the masses to larger values and increases the radii. Maximum masses
are all compatible with observed pulsar masses, and radii are generally larger than
current neutron star observations suggest [1,6,11,12], see also [56].

As mentioned above, within our setup quark matter is not absolutely stable and
we will now turn to the construction of a hybrid matter EoS. Note that while generally
an increasing vector coupling increases the EoS’s stiffness the pressure decreases with
increasing vector coupling for a given quark chemical potential. This can be explained
by the aforementioned reduction of the effective chemical potential in the quark
loop, leading to an overall pressure reduction for a given chemical potential. This
has significant consequences for the possible occurrence of hybrid stars, i.e. neutron
stars with a quark matter core. We construct a hybrid EoS by assuming two separate
phases, a nucleonic phase described by the HS(DD2) hadronic equation of state [88,89]
and a quark matter phase described by the present FRG quark-meson EoS with
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Fig. 4. Equation of state for hybrid matter. The nucleonic phase is described by the
HS(DD2) EoS (gray color) and the quark matter phase by the FRG quark-meson EoS
with vector mesons (see Fig. 2). Both phases separately meet weak equilibrium and charge
neutrality and are connected via a Maxwell construction. For Nf = 2 + 1, energy densities
larger than ε ∼ 1200 MeV/fm3 corrresponding to µ > 500 MeV are dropped.

additional vector meson interactions. The results are shown in Figure 4, where the
pressure as a function of the energy density is displayed (left panel for two quark
flavors and right panel for Nf = 2+1). Both phases are separated by a clear boundary
and individually fulfill the weak equilibrium and charge neutrality conditions. A first-
order transition is obtained via a Maxwell construction (horizontal dotted lines in the
figure). It can be characterized by an onset energy density εtrans in the hadronic phase
and a gap ∆ε given by the difference between the energy density in the quark phase
at the end of the transition and the onset εtrans. The onset energy density also defines
the transition pressure pHS(DD2),trans ≡ pHS(DD2)(εtrans).

Due to the decreasing quark matter pressure at increasing vector interaction
strength, the phase transition gradually moves to higher quark chemical potentials,
i.e. to a higher intersection pressure and a higher εtrans. ∆ε also increases for increas-
ing gv. For Nf = 2 + 1, the transition generally occurs at lower pressures and with
larger ∆ε than for Nf = 2 due to the additional strange degree of freedom in the
quark matter EoS.

The size of the discontinuity of the energy density ∆ε determines, too, the stability
of the hybrid star against gravitational collapse: a large discontinuity destabilizes the
star immediately at the transition point p = ptrans whereas for a small discontinuity a
small quark core forms and the star remains stable. This scenario can be summarized
in terms of the Seidov limit [90]

∆εcrit

εtrans
=

1

2
+

3

2

ptrans

εtrans
. (28)

∆εcrit denotes here the threshold value below which a stable hybrid star branch is
connected to a hadronic star branch. Thus, above the Seidov limit the sequence of
stars become unstable immediately. All EoS displayed in Figure 4 remain well below
this limit.

If ∆ε > ∆εcrit, a so-called “third family” [91] stable sequence of hybrid stars
may exist at higher central densities for certain conditions, leading eventually to
twin or even triplet configurations [25,92]. The conditions for the existence of such
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Fig. 5. Similar to Figure 4: composite EoS for the FRG quark matter (QM2 and QM2+1)
and HS(DD2) nuclear model (gray color) compared with the hadron quark EoS QHC19 [51].
A combination of the HS(DD2) EoS with a parameterized quark matter EoS [25] for two
different speed of sound values c2s ≡ s = 1 and 1/3 are also shown.

twin or triplet configurations has been discussed in detail in [25], characterising the
transition by the two parameters εtrans and ∆ε together with a constant speed of
sound parameterisation of the quark phase. In Figure 5 we show, together with the
FRG hybrid EoS with gv = 0, such a parameterisation

p(ε) =

 pHS(DD2)(ε), ε < εtrans

pHS(DD2)(εtrans), εtrans < ε < εtrans + ∆ε
pHS(DD2)(εtrans) + s [ε− (εtrans + ∆ε)], ε > εtrans + ∆ε.

(29)

εtrans has thereby been chosen very close to the transition density in the FRG two-
flavor hybrid EoS, whereas ∆ε/εtrans = 0.6 is close to the Seidov limit. It is obvious,
as already anticipated from the Seidov limit, that the FRG hybrid stars remain stable.
Two different values for the speed of sound in the quark phase have been chosen. The
first one, s = 1/3, is close to the FRG sound speed, whereas the second one s = 1
represents the causality limit, i.e. the stiffest possible quark matter EoS. As already
discussed in [56], for s = 1/3, the pressure in the quark matter phase is not sufficient
to counteract the strong gravitational pull due to the large energy density of the
quark core, cf. reference [25], and thus does not support a stable hybrid star branch.
For s = 1, a stable third family branch with twin configurations exists [56]. Since
even with the inclusion of vector interactions ∆ε does not exceed the Seidov limit
and the sound speed is only insufficiently increased in the quark phase, the findings
discussed here for the case gv = 0 remain valid for nonzero vector coupling. We thus
confirm the conclusion of [56] that the occurrence of twin stars in our model is ruled
out due to the small energy gap at the phase transition from nuclear matter to quark
matter and due to the small stiffness of the quark matter EoS.

The shift of the phase transition in a hybrid star to higher densities with increasing
vector coupling can also be seen in the mass-radius relations, shown in Figure 6 from
the combined HS(DD2) and the present FRG quark-matter EoSs (left panel two quark
flavors and right panel with strangeness). An increase of the vector coupling leads to a
continuously smaller quark matter core in the hybrid star, but an increasing maximum
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Fig. 6. Mass-radius relations for hybrid stars from the combined HS(DD2) and quark-
matter EoSs (see Fig. 4) for various vector couplings gv. Purely nucleonic stars governed only
by the HS(DD2) EoS are depicted in gray color. The horizontal bands are similar to Figure 3.
Additionally, the posterior probability distributions for the mass-radius correlations from
the two independent recent NICER analyses are depicted (left panel: Riley et al. [11], right
panel: Miller et al. [12]).

mass. Especially for Nf = 2 + 1 (right panel), where without vector interactions
the two solar mass limit cannot be satisfied, the maximum mass is in agreement
with current observations for gv & 1. However, a quark matter core is only found
as a small, continuous branch. For example, for gv = 1 the Nf = 2 + 1 hybrid star
model yields for the heaviest stable star a quark matter core with radius around
3.2 km, constituting about 4% of the star’s total gravitational mass. For gv = 2,
the heaviest star’s quark core radius is 1.6 km and makes up only 0.6% of its total
mass. Concerning the possibility of twin stars, the mass-radius relations confirm the
absence of twin configurations within our model.

Below the onset of quark matter, the mass-radius relation coincides with the
nuclear HS(DD2) one as it should. This means that the properties of stars with
masses below 1.8 M� are given entirely by the HS(DD2) EoS. Among others, the
HS(DD2) EoS leads to a relatively large radius for intermediate mass stars which
seems, although being in agreement with recent NICER results, to be disfavored
by some radius determinations, see e.g. [1]. We expect that a hybrid construction
with a nuclear EoS which features a smaller radius for intermediate mass stars, does
not result in any quark core in the stars. Since with increasing vector coupling, the
pressure of the quark matter EoS as a function of the chemical potential is decreased,
shifting thus the transition, as noted already for the HS(DD2) EoS, to higher densities
and above the central densities of stable neutron stars for most nuclear EoSs.

Another interesting quantity that is experimentally accessible is the tidal deforma-
bility of neutron stars. For a static, spherically symmetric star, placed in a static
external quadrupolar tidal field Eij , the tidal deformability λ can be defined to linear
order as

Qij = −λEij , (30)

where Qij represents the star’s induced quadrupole moment. The tidal parameter λ
can then be computed from a perturbation of the spherical TOV solution, see [93]
for more details. The results for the dimensionless tidal deformability Λ = λ/M5 as a
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Fig. 7. Dimensionless tidal deformabilities of pure quark (dashed lines) and hybrid stars
(solid lines) with different vector couplings gv as a function of gravitational mass. Similar
to Figure 6, the deformabilities of purely nucleonic stars are shown in gray.

function of the star’s gravitational mass are shown in Figure 7 for hybrid and quark
stars with two and three quark flavors, respectively, and different values of the vector
coupling.

The pure quark stars lead to tidal deformabilities which are significantly too large
compared with the GW170817 observations [6,7]. This is also in line with findings
from parameterized EoS’s in [94]. As discussed before, we do not expect pure quark
stars to exist within our setup since quark matter is not absolutely stable. The hybrid
star tidal deformabilities only differ from the HS(DD2) ones close to their respective
maximum masses, i.e., the quark cores are too small to have an impact on the tidal
deformabilities for all inspiral stars of masses below ≈1.8M� or even higher, depend-
ing on gv. The HS(DD2) tidal deformability is in slight tension with the GW170817
observations. A hybrid construction with other nucleonic EoS leading to lower tidal
deformabilities could thus be appropriate. However, in [56] we found no intersection
of the quark matter EoS with other such nucleonic EoS, since the nucleonic pres-
sure over the entire relevant range exceeded the quark matter one for given chemical
potentials. Since with increasing vector coupling, the pressure is reduced for given
chemical potential, we confirm that we do not find hybrid stars with lower tidal
deformabilities within the present FRG approach to the quark matter EoS.

5 Summary and conclusions

Based on a previous work [56] a two- and three flavor quark-meson model that fully
incorporates chiral symmetry breaking has been augmented with vector mesons to
investigate the quark matter EoS relevant for neutron star physics. Quantum and
density fluctuations of the quarks and the (pseudo)scalar meson channels beyond the
mean-field approximations are treated using the nonperturbative functional renor-
malization group method wherein the coupling of the isoscalar vector mesons to the
FRG flow is taken into account.

As an application pure quark stars as well as hybrid stars are analyzed for different
vector meson couplings always in β-equilibrated neutral matter. Since quark matter
within our setup is not absolutely stable we construct hybrid stars where the EoS
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obtained with the FRG are combined with a nuclear EoS via a Maxwell construction.
In general, an increase of the vector interaction increases the EoS’s stiffness while the
pressure decreases for a given chemical potential due to a reduction of the effective
chemical potential in the quark loop.

Similar to the previous findings of the FRG EoS without vector interactions the
inclusion of strangeness softens the EoS at high densities. This is in contrast to
the addition of repulsive vector interactions to the system which stiffens the EoS.
However, because of the decreasing quark matter pressure at increasing vector inter-
action strength the phase transition is shifted to higher quark chemical potentials.
Also the energy density gap at the transition increases with increasing vector cou-
plings. Including strangeness, the transition generally occurs at lower pressures but
with larger energy density gaps which is plausible due to additional strange degree
of freedom in the EoS.

As a consequence pure quark matter as well as hybrid stars with vector interac-
tions lead to larger maximum masses such that the stars are consistent with existing
observed pulsar masses. For pure quark stars, the radii are generally larger than
observations suggest. Note that for hybrid stars without vector interactions the two
solar mass limit cannot be reached when strangeness is included.

However, even though the hybrid stars’ maximum mass increases with vector
interaction, the quark matter core becomes smaller. Despite the fact that a quark
matter core is only found as a small continuous branch in the mass-radius relation
the largest core radius is found for a vanishing vector coupling. Within our setup the
possibility of twin stars can be excluded.

Furthermore, hybrid stars with lower tidal deformabilities can also be excluded
with the present FRG setup. The tidal deformability is mainly determined by the
nucleonic EoS and differs from it only in the vicinity of its maximum mass where a
quark matter core forms. The nucleonic pressure required to produce smaller tidal
deformabilities would be too large to allow for a hybrid construction over the relevant
range of chemical potentials.

In total, regarding repulsive vector interactions the occurrence of hybrid stars
with extensive quark cores seems to be disfavored within our setup, in particular
in view of experimental restrictions on the masses, radii, and tidal deformabilities.
Besides these findings, a number of open issues remain: A systematic improvement of
the employed FRG truncation, specifically including the running of higher derivative
couplings in the (pseudo)scalar channel, might lead to further insights on the impact
of fluctuations and on the robustness of the approach. Finally, the role of many-body
quark correlations relevant for a more realistic description of dense matter – such as
residual six-quark or diquark correlations in the quark phase – needs to be considered
in the future.
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Appendix A: Input parameters

Table A.1. FRG input parameters for the chiral ultraviolet potential, equation (15), for
Nf = 2 and Nf = 2 + 1 quark flavors.

Nf a10 [MeV2] a20 a01

2 706.312 21.16
2+1 515.702 37.45 47.68

In this appendix all input parameters for the FRG calculations are given. For
further information see also [56,69,70]. We start with Nf = 2 + 1 quark flavors and
then simplify to Nf = 2 quark flavor. The finite pseudoscalar masses of the pions,
mπ = 138 MeV, and kaons, mK = 496 MeV, are fixed via the explicit chiral symmetry
breaking terms cl = (120.73 MeV)3 and cs = (336.41 MeV)3. Without an explicit
symmetry breaking all pseudoscalar masses would vanish in a chirally invariant or
spontaneously broken theory due to the Goldstone theorem. The summed squares of
the η and η′ masses m2

η +m2
η′ = (1103.2 MeV)2 are reproduced with the axial U(1)A

symmetry breaking parameter cA = 4807.84 MeV. The remaining three parameters
in the ultraviolet effective potential are fixed with the (broad) sigma meson resonance
mass which we have chosen to be of the order of mσ = 560 MeV and the two vacuum
condensates σl,0 = 92.4 MeV and σs,0 = 94.5 MeV that yield the pion and kaon decay
constants, fπ = 92.4 MeV and fK = 113 MeV. The constituent light and strange
quark masses follow from a single Yukawa coupling g = 6.5, i.e. ml = gσl,0/2 ≈
300 MeV and ms = gσs,0/

√
2 ≈ 434 MeV. For Nf = 2, we proceed in an analogous

fashion. Only the remaining non-strange condensate σl,0 and mσ are set by the two
free parameters in the chiral potential in the ultraviolet whereas ml and mπ are fixed
by g and cl as before.

The used input parameters of the chiral potential for an initial UV cutoff of
Λ = 1 GeV and an infrared cutoff of kIR = 80 MeV are summarized in Table A.1.

Appendix B: Numerical solution details

In this work, one of the numerical challenges consists of solving for multiple gap
equations (23) simultaneously, whereas for each trial point a full FRG flow equation
(12) in the (pseudo)scalar sector has to be solved. In order to retain reasonable
computation times, we solve the vector meson gap equations by computing data
points on a discrete set of vector meson condensates and interpolating key quantities
like the number densities (25). This allows us to use the same basic set of points for
all coupling strengths. The same process is used for the electron chemical potential
to satisfy charge neutrality, see (8). Instead of keeping the interpolated values for
the equation of state, we then calculate new data points with the appropriate shifts
in the chemical potentials inserted. This way, we have a method to check to what
extent the gap equations and charge neutrality condition are actually fulfilled and to
thereby gauge the quality of the interpolation.

The solution of the FRG flow equation (12) for the (pseudo)scalars is performed
numerically by discretizing field space [95,96]. This leads to a set of coupled ordinary
differential equations. Considering recent numerical advances in the field, see [97], for
Nf = 2 flavors we employ an upwind finite difference scheme for the determination of
field derivatives while in parallel solving the flow for the potential and its derivative.
For Nf = 2 + 1 flavors, the two-dimensional grid of the two scalar field variables
is linked via cubic splines as outlined in [69] and also applied in preceding works
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[56]. While we found the latter method to lead to small numerical inaccuracies for
large vector couplings gv at chemical potentials higher than the onset of strangeness
around µ ≈ 430 MeV, the close agreement with the vastly different method for Nf = 2
flavors at smaller chemical potentials gives us confidence in the general validity of
the employed approach.

Open Access This is an open access article distributed under the terms of the Creative Com-
mons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is properly cited.
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