
Vol.:(0123456789)

Computational Optimization and Applications (2021) 78:181–203
https://doi.org/10.1007/s10589-020-00239-2

1 3

Implementing and modifying Broyden class updates
for large scale optimization

Martin Buhmann1  · Dirk Siegel2

Received: 3 December 2018 / Accepted: 21 October 2020 / Published online: 9 November 2020
© The Author(s) 2020

Abstract
We consider Broyden class updates for large scale optimization problems in n
dimensions, restricting attention to the case when the initial second derivative
approximation is the identity matrix. Under this assumption we present an imple-
mentation of the Broyden class based on a coordinate transformation on each iter-
ation. It requires only 2nk + O(k2) + O(n) multiplications on the kth iteration and
stores nK + O(K2) + O(n) numbers, where K is the total number of iterations. We
investigate a modification of this algorithm by a scaling approach and show a sub-
stantial improvement in performance over the BFGS method. We also study several
adaptations of the new implementation to the limited memory situation, presenting
algorithms that work with a fixed amount of storage independent of the number of
iterations. We show that one such algorithm retains the property of quadratic termi-
nation. The practical performance of the new methods is compared with the perfor-
mance of Nocedal’s (Math Comput 35:773--782, 1980) method, which is considered
the benchmark in limited memory algorithms. The tests show that the new algo-
rithms can be significantly more efficient than Nocedal’s method. Finally, we show
how a scaling technique can significantly improve both Nocedal’s method and the
new generalized conjugate gradient algorithm.

Keywords  Nonlinear optimization · Broyden class · BFGS method · Norcedal’s
method · Conjugate gradient method

 *	 Martin Buhmann
	 buhmann@math.uni‑giessen.de

1	 Justus-Liebig University, Mathematics Department, 35392 Giessen, Germany
2	 University of Cambridge, Pembroke College, Cambridge CB2 1RF, UK

http://orcid.org/0000-0002-3313-4561
http://crossmark.crossref.org/dialog/?doi=10.1007/s10589-020-00239-2&domain=pdf

182	 M. Buhmann, D. Siegel

1 3

1  Introduction

There is a variety of methods for unconstrained optimization calculations, where in
general the following problem is studied: given an at least twice continuously differ-
entiable objective function f in n unknowns, we seek its minimum for x on a domain or
the whole n dimensional space

As an important step towards this, we seek a stationary point x∗ where f’s gradient
vanishes. This stationary point is approached iteratively, by sequence of points xk in
n dimensions, beginning with an initial point x0 . We go from step to step along a so-
called search direction without using a Hesse matrix of the objective function.

However, in the so-called quasi-Newton algorithms for large scale unconstrained
optimization calculations, an approximation Bk = (Hk)−1 to the second derivative
matrix is used successfully for the computation of the search direction dk.

A superior method for nonlinear optimization is the DFP (Davidon–Fletcher–Pow-
ell) algorithm (a “variable metric method”, and such methods had a huge impact on
optimization) a predecessor to the BFGS scheme we use in this article. It contains Mike
Powell’s name and that scheme uses derivative information (Fletcher and Powell [2],
Powell [6–12]).

We use the condition as a stopping criterion in our algorithms that the gradient at xk
that we shall denote by gk has length at most � after only finitely many steps.

Algorithm 1  Step 0	� Let any starting vector x0 and any positive definite symmet-
ric matrix H0 be given, often the identity matrix. Set k ∶= 0.

Step 1	� If the stopping criterion ‖gk‖2 ≤ � for a small positive � is
satisfied then stop. Else: calculate the search direction from
the formula

Step 2	� Compute the vectors

where �k is determined by a line search that reduces the value of the objective func-
tion f and provides 𝛿kT𝛾k > 0 (e.g., the Wolfe conditions).

Step 3	� Form the matrix Hk+1 by applying the usual Broyden class
update formula where its parameter �k is chosen so that
Hk+1 is positive definite: it is of the form

x∗ ∶= argminf (x).

(1.1)dk ∶= −Hkgk.

(1.2)�k ∶= �kdk, xk+1 ∶= xk + �k, �k ∶= gk+1 − gk,

183

1 3

Implementing and modifying Broyden class updates for large…

where I is the identity matrix. Then increase k by one and go back to Step 1.

In Step 3 we restrict the parameter �k to choices giving a positive definite matrix
Hk+1 since this ensures that the search directions calculated in Step 1 are downhill.

For large scale problems, that is to say, large n, the standard method of Algo-
rithm 1 has the unfavourable feature of requiring O(n2) operations per iteration and
storage for 1

2
n2 + O(n) numbers.

The limited memory updating technique presented by Nocedal [4] computes a
second derivative approximation by updating a simple matrix (usually the identity
or some other diagonal matrix) using the �k and �k vectors from the most recent
m iterations, where m is a prescribed integer. Nocedal’s method stores 2nm + O(n)
numbers and calculates 4nm + O(n) + O(m) multiplications per iteration.

In Sect. 2 of this paper we present an implementation of Broyden class updates
that, for H0 = I , stores only one new n vector per iteration. Our approach dif-
fers from the work quoted above by following a geometrical motivation based on
Lemma 1 below—which uses the span of the first k gradient vectors to show cer-
tain invariance properties with respect to multiplications by Hk for our following
algorithms—rather than relying on algebraic simplifications and by applying to the
entire Broyden class.

This algorithm is the basis for the investigations of this paper. We demonstrate
that it is computationally efficient [requiring only 2nk + O(k2) + O(n) multiplica-
tions on the kth iteration] and leads in a natural way to a modification by a scaling
technique that, in our test cases, substantially reduces the number of functions calls
required to find the solution within given accuracy. These numerical results are pre-
sented in Sect. 3. The mentioned reduction is as much as close to 60 percent.

Section 4 offers a number of limited memory modifications of the algorithms pre-
sented in Sect. 2. The numerical results presented in Sect. 5 indicate that these meth-
ods are superior to Nocedal’s method. In Sect. 6 we apply a scaling technique to
both Nocedal’s method and the ones developed in Sect. 4 arriving at the surprising
result that scaling is so beneficial to Nocedal’s method that it closes the performance
gap observed in Sect. 5.

2 � A new implementation of Broyden class updates

The algorithm presented in this section relies on the simplifications that occur
if the initial second derivative approximation B0 is the identity matrix. We note
that due to the invariance properties of the Broyden class updates with respect to

(1.3)

Hk+1 ∶=

(
I −

�k�k
T

�k
T
�k

)
Hk

(
I −

�k�k
T

�k
T
�k

)
+

�k�k
T

�k
T
�k

− �k(�k
T
Hk�k)

(
Hk�k

�k
T
Hk�k

−
�k

�k
T
�k

)(
Hk�k

�k
T
Hk�k

−
�k

�k
T
�k

)T

184	 M. Buhmann, D. Siegel

1 3

diagonal scaling (which cancel), the choice B0 = D , where D is a diagonal matrix,
is equivalent to setting B0 = I and scaling the axes by the transformation

so that such choices of B0 can be treated within our framework. We note that other
choices of B0 are uncommon in practical large scale calculations.

The following lemma and the ensuing comments form the basis for our
implementation.

Lemma 1  Let Algorithm 1 with H0 = I be applied to a twice continuously differen-
tiable function f. Define the subspace

Then, for all k, the inclusion

is satisfied. Let in addition the vectors s and t belong to Sk and the orthogonal com-
plement of Sk , respectively. Then we have the relations

Proof  We prove the lemma by induction over k, noting that for k = 0 the statements
(2.3)–(2.5) follow directly from �0 being parallel to d0 ∶= −g0 and B0 = H0 = I . We
now assume that the Eqs. (2.3)–(2.5) hold for k and consider them for k + 1 . By the
induction hypothesis we have the inclusions

and by definition the vector in (1.2) is also contained in Sk+1 . Using Bk�k, �k ∈ Sk+1 ,
we find Bk+1t = Bkt = t for any vector t belonging to the orthogonal complement of
Sk+1 which is equivalent to Hk+1t = t.

Hence, since Bk+1 is symmetric, orthogonality yields (2.4) with k replaced by
k + 1 for any vector s ∈ Sk+1 . Finally the definition

and the second inclusion of (2.4) with k replaced by k + 1 give �k+1 ∈ Sk+1 . 	� ◻

Let the conditions of Lemma 1 be satisfied, where we begin with the identity
matrix as a start matrix by assumption. This is an essential feature of our method.

We define �k ∶= dim Sk and let Qk be an orthogonal matrix whose first �k col-
umns span the subspace Sk . Consider the change of variables

(2.1)x� ∶= D
1

2 x,

(2.2)Sk ∶= span {g0, g1,… , gk}.

(2.3)�k ∈ Sk

(2.4)Bks ∈ Sk, Hks ∈ Sk and

(2.5)Bkt = Hkt = t.

(2.6)𝛿k ∈ Sk, Bk𝛿k ∈ Sk ⊂ Sk+1,

(2.7)�k+1 ∶= −�k+1Hk+1gk+1

185

1 3

Implementing and modifying Broyden class updates for large…

which suggests the definitions

Thus, using Lemma 1 we find

where Ĥk is an �k × �k matrix, and we apply these updates to Ĥk from now on. We
notice as well that the last n − �k components of �k′ and gk′ are zero. Let us now
assume that gk+1 ∈ Sk , implying Sk+1 = Sk and �k+1 = �k . Then the last n − �k com-
ponents of gk+1� and hence also those of �k′ are zero. It thus follows that, in trans-
formed variables, the updated matrix is

where Ĥk+1 is obtained by updating the �k × �k matrix Ĥk instead of Hk , resulting in
Ĥk+1 in place of Hk+1 , and the �k vectors 𝛿k and 𝛾̂k containing the first �k components
of �k′ and �k′ , respectively. These choices come once more from Lemma 1.

We now turn to gk+1 ∉ Sk giving �k+1 = �k + 1 and consider the change of
variables

where the first �k columns of Qk+1 agree with those of Qk and the (�k + 1) st column
is the normalized component of gk+1 orthogonal to Sk . Because the first �k columns
are the same, we have the identities

In addition, the last n − (�k + 1) components of gk+1�� , and therefore also those of
�k

′′ , are zero. Hence

where Ĥk+1 is now the (�k + 1) × (�k + 1) matrix obtained by updating

using the vectors 𝛿k and 𝛾̂k formed by the first �k + 1 components of �k′′ and �k′′.
The following new algorithm applies the above observations, exploiting the fact

that all the information that is required from the n × n matrix Hk is contained in the
first �k columns of Qk and in the �k × �k matrix Ĥk.

(2.8)x� ∶= QkTx,

(2.9)�k
�
∶= QkT�k, gk

�
∶= QkTgk, Hk� ∶= QkTHkQk.

(2.10)Hk� =

(
Ĥk 0

0 I

)
,

(2.11)Hk+1� =

(
Ĥk+1 0

0 I

)
,

(2.12)x�� ∶= Qk+1Tx,

(2.13)�k
��
= �k

�
, gk

��
= gk

�
, Hk�� = Hk�.

(2.14)Hk+1�� =

(
Ĥk+1 0

0 I

)
,

(2.15)H̃ ∶=

(
Ĥk 0

0 1

)
,

186	 M. Buhmann, D. Siegel

1 3

We shall take

We decompose the current approximation to the inverse of the Hesse matrix into
Q̂kĤkQ̂kT + RRT , where the columns of R span the orthogonal complement of the
space spanned by the columns of Q̂k . Then −Hkgk gives the above dk where we use
RTgk = 0.

Algorithm 2  Step 0	� Let any starting vector x0 be given. If g0 = 0 then stop, else
set k ∶= 0 , �0 ∶= 1 and let Ĥ0 = Ĥ0

11
 be the 1 × 1 unit matrix.

Let the column of the n × 1 matrix Q̂0 be the vector g0∕‖g0‖ .
End.

Step 1	� If the stopping criterion is satisfied then End. Else: calculate
the search direction by (2.16).

Step 2	� As in Algorithm 1.
Step 3a	� Compute the vector

 If �k = 0 , then set �k+1 ∶= �k and Q̂k+1 ∶= Q̂k.

	� Else: set �k+1 ∶= �k + 1 and Q̂k+1 ∶= (Q̂k � 𝜂k∕‖𝜂k‖).

	� End. Always calculate the vectors 𝛿k ∶= Q̂k+1T 𝛿k ,
 𝛾̂k ∶= Q̂k+1T 𝛾k.

Step 3b	� If �k = 0 , then, using the vectors 𝛿k and 𝛾̂k , apply the Broyden
class update to Ĥk . Else apply the Broyden class update to
the matrix H̃ . End. Increase k by one and go back to Step 1.

The algorithm requires storage for n�k + O((�k)2) + O(n) numbers, where k is the
total number of iterations and �k ≤ k + 1.

By storing appropriate intermediate results, the kth iteration of Algorithm 2 can be
done in 3n�k + O((�k)2) + O(n) multiplications in total, where �k ≤ k + 1 . In fact, we
note that the temporary �k vectors defined by

can be computed from the identities ( ‖ ⋅ ‖ meaning the Euclidean norm)

(2.16)dk = −Q̂kĤkQ̂kT gk.

(2.17)𝜂k ∶= gk+1 − Q̂kQ̂kT gk+1.

(2.18)tk
1
∶= Q̂kT gk, tk

2
∶= Q̂kT gk+1, tk

3
∶= Ĥktk

1
,

(2.19)tk
1
=tk−1

2
if �

k = �
k−1,

187

1 3

Implementing and modifying Broyden class updates for large…

and from the definitions (2.18) in n�k + O(n) + O((�k)2) multiplications. Given tk
1
 ,

tk
2
 and tk

3
 , the calculations of dk and of �k in Eqs. (2.16) and (2.17), respectively, can

each be done in n�k multiplications via the definitions

Moreover we observe that computing the transformed vectors 𝛿k and 𝛾̂k requires only
O((�k)2) + O(n) operations. In fact, we have the identities

where the elements of the �k+1 × �k matrix Q̂k+1T Q̂k are zero except for the diagonal
elements which are one. We thus have: If �k+1 = �k , 𝛿k = −𝛼ktk

3
,

else (i.e., if �k+1 = �k + 1),

the last equation being a consequence of the following identities:

by (2.17). The value (�k)Tgk need not be zero. Finally we note that the update of Ĥk
itself is only an O((�k)2) process.

Equation (2.17) shows that the columns of the matrix Q̂k are calculated by
applying the Gram-Schmidt process to the gradients {g0,… , gk} . It is well known
that the calculation of �k is ill-conditioned if the gradients are almost linearly
dependent, which due to rounding leads to a loss of orthogonality in the columns
of Q̂k . In the following paragraphs we present a technique overcoming this.

Let at the kth iteration of Algorithm 2 the columns of the n × �k matrix Gk be
from

(2.20)
tk
1

T
=

�
tk−1
2

T � �
k−1Tgk

‖�k−1‖
�

=

�
tk−1
2

T � ‖�k−1‖
�

if �
k = �

k−1 + 1,

(2.21)dk ∶= Q̂ktk
3
, 𝜂k ∶= gk+1 − Q̂ktk

2
.

(2.22)
𝛿k = − 𝛼kQ̂k+1T Q̂kĤkQ̂kT gk

= − 𝛼kQ̂k+1T Q̂kĤktk
1

(2.23)= − 𝛼kQ̂k+1T Q̂ktk
3
,

𝛾̂k = Q̂k+1T 𝛾k = tk
2
− tk

1
,

𝛿k
T

= − 𝛼k(tk
3

T � 0),

𝛾̂k
T

=

�
tk
2

T � 𝜂
kTgk+1

‖𝜂k‖
�
−

�
tk
1

T � 𝜂
kTgk

‖𝜂k‖
�

= (tk
2

T
− tk

1

T � ‖𝜂k‖),

�
𝜂k
�T
𝛾k =‖gk+1‖2 − �

gk+1
�T
Q̂k

�
Q̂k

�T
gk+1 −

�
𝜂k
�T
gk

=‖𝜂k‖2 − �
gk+1

�T
gk +

�
gk+1

�T
Q̂k

�
Q̂k

�T
gk

188	 M. Buhmann, D. Siegel

1 3

By construction of Q̂k there exists a nonsingular upper triangular �k × �k matrix, Rk
say, so that the identity

is satisfied, the elements of Rk being the coefficients of the Gram-Schmidt process
that has just been described. We exploit this relation by storing Gk and Rk instead of
Q̂k , noting that the work for computing products of the form

where v ∈ IRn and w ∈ IR�k , increases only by O(�k2) multiplications. The update of
Rk and Gk is done as follows:

If ‖�k‖ = 0 we do not change Rk and Gk , otherwise we let Gk+1 and Rk+1 be

We note that the computation of the Cholesky factorisation in this fashion using
orthogonality does not worsen condition numbers. We also note from (2.17) and
(2.18) that

because

We also note that the argument of the square root is nonnegative in exact arithmetic
as Q̂k contains orthogonal vectors.

The ill-conditioned calculation of the vector �k is thus avoided. This also saves
n�k multiplications. Cancellation will, however, occur in the computation of the dif-
ference ‖gk+1‖2 − ‖tk

2
‖2 , if gk+1 is almost contained in the column span of Gk . In our

practical implementation we will, therefore, ignore the component of gk+1 orthogo-
nal to the column span of Gk and thus keep Gk and Rk unchanged, if

holds, where C ≥ 0 (the value C ∶= 0.1 gave good results in our numerical experi-
ments). With this choice, inequality (2.30) failed on most iterations, so the above
modification was hardly ever invoked. We also noticed that choosing C ∶= 0.2 or
C ∶= 0.05 led to only very minor changes in the number of function evaluations or
iterations required for the solution of our test problems. Since rounding errors could

(2.24)
{
gj | [j = 0

]
∨

[
(1 ≤ j ≤ k) ∧ (�j = �

j−1 + 1)
]}
.

(2.25)Q̂kRk = Gk

(2.26)Q̂kT v = Rk−TGkTv, Q̂kw = Gk(Rk)−1w,

(2.27)Gk+1 ∶=(Gk | gk+1),

(2.28)Rk+1 ∶=Q̂k+1TGk+1 =

�
Q̂k � 𝜂k

‖𝜂k‖
�T

(Gk � gk+1) =
�
Rk Q̂kT gk+1

0 ‖𝜂k‖
�
.

(2.29)‖�k‖ =

�
‖gk+1‖2 − ‖tk

2
‖2,

‖gk+1‖2 − ‖tk
2
‖2 = ‖gk+1‖2 − gk+1

T
Q̂kTQ̂kgk+1.

(2.30)‖�k‖ ≤ C ‖gk+1‖

189

1 3

Implementing and modifying Broyden class updates for large…

cause the argument of the square root in (2.29) to become negative we replace (2.30)
by

which are equivalent in exact arithmetic.
Algorithm 3 incorporates the changes suggested above. It thus requires only

2n�k + O((�k)2) + O(n) multiplications on iteration k, where �k ≤ k + 1.

Algorithm 3  Step 0	� Let any starting vector x0 be given. If g0 = 0 then End. Else:
set k ∶= 0 , �0 ∶= 1 and let Ĥ0 and R0 be given by Ĥ0

11
= 1

and R0
11

= ‖g0‖ , respectively. Let the column of the n × 1
matrix G0 be the vector g0 and let the real component t0

1
 be

given by (t0
1
)1 = ‖g0‖.

Step 1	� If the stopping criterion is satisfied then stop. Else: calculate
the search direction from the formulae (2.18) and

Step 2	� As in Algorithm 1.
Step 3a	� Compute the vector

If inequality (2.31) does not hold, set

else

(2.31)‖tk
2
‖2 ≥ (1 − C2) ‖gk+1‖2,

(2.32)dk ∶= −Gk(Rk)−1tk
3
.

(2.33)tk
2
∶= Rk−TGkTgk+1.

(2.34)�k ∶=

�
‖gk+1‖2 − ‖tk

2
‖2,

(2.35)�
k+1 ∶= �

k + 1,

(2.36)Gk+1 ∶= (Gk | gk+1),

(2.37)Rk+1 ∶=

(
Rk tk

2

0 �k

)
,

(2.38)𝛿k ∶= −𝛼k(tk
3

T | 0)T ,

(2.39)𝛾̂k ∶= (tk
2

T
− tk

1

T | 𝜂k)T ,

(2.40)tk+1
1

∶= (tk
2

T | �k)T ,

190	 M. Buhmann, D. Siegel

1 3

End.

Step 3b	� If �k+1 = �k then use the vectors 𝛿k and 𝛾̂k and apply the
Broyden class update to Ĥk . Else (i.e., �k+1 = �k + 1) apply
the Broyden class update to the matrix H̃ . End. Increase k by
one and go back to Step 1.

The following observations will lead to an alternative formulation of Algo-
rithm 3. This is relevant to the next section, where we present a limited memory
update. Let us assume that on iteration k the gradient gk+1 has been included into
the matrix Gk+1 . We note that, because of (2.32), the vector �k+1 = �k+1dk+1 is
contained in the column span of Gk+1 . Moreover, we find �k+1Tgk+1 ≠ 0 as dk+1 is
a downhill search direction, thus the columns of the matrices Gk+1 and (Gk | �k+1)
span identical subspaces. One could replace the last columns of Gk+1 and Rk+1 by
�k+1 and

respectively, without changing the underlying matrix Q̂k+1 . Employing this exchange
of columns whenever �k is increased gives an equivalent algorithm, in which the
vectors �k rather than the gradients gk are stored. Note that �k+1 cannot be included
into Gk+1 directly, as it is available only at the beginning of iteration k + 1.

Now Algorithm 4 is obtained from Algorithm 3 by inserting Step 2a below
after Step 2.

Algorithm 4  As in Algorithm 3, but insert after Step 2 the following

Step 2a	� If �k = �k−1 + 1 , then replace the last columns of Gk and Rk by �k and
−�ktk

3
 , respectively.

(2.41)�
k+1 ∶= �

k,

(2.42)Gk+1 ∶= Gk,

(2.43)Rk+1 ∶= Rk,

(2.44)𝛿k ∶= −𝛼ktk
3
,

(2.45)𝛾̂k ∶= tk
2
− tk

1
,

(2.46)tk+1
1

∶= tk
2
.

(2.47)Q̂k+1T𝛿k+1 = −𝛼k+1Ĥk+1Q̂k+1T gk+1 = −𝛼k+1Ĥk+1tk+1
1

= −𝛼k+1tk+1
3

,

191

1 3

Implementing and modifying Broyden class updates for large…

As indicated, Algorithm 4 will be important in Sect. 4. Nonetheless, we do not
recommend its general use, since inequality (2.30) whose purpose is to make sure
that no cancellation occurs in the gk vectors, does not guarantee this for the cor-
responding �k vectors, which may lead to a loss of orthogonality in Gram-Schmidt.

Due to the structure given in (2.10), the new algorithms provide full information
on the subspace for which the second derivative information is based on the gradient
information gathered so far and on the orthogonal subspace on which it is still the
identity matrix. In the final algorithm of this section we intend to enhance the per-
formance of Algorithm 3 by a scaling technique (as suggested in a similar setting for
instance in Powell [11] and Siegel [14]) aimed at not distorting the second derivative
information already gained on the previous iterations.

This is achieved by multiplying the identity matrix in (2.10) by a scalar, which we
shall denote by � , thus changing the curvature of our second derivative approxima-
tion on the subspace orthogonal to the gradients from 1 to �−1.

Of course, reasoning for choosing � is heuristic; it applies to a subspace on which
no curvature information has been gathered so far. Our approach is �

kT�k

�k
T
�k

 as in Oren
and Luenberger [5] as an approximation of the one dimensional curvature encoun-
tered on iteration k and choose (�k)−1 to be the geometric mean

recursively computed of all such curvature approximations encountered so far, thus
implementing the assumption that the average curvature encountered so far should
be a reasonable indicator for the curvature on the not yet discovered subspace.
For such a curvature approximation it is reasonable to take geometric averages as
weights to balance between the subspaces as all updates are essentially products in
these method. No particular subspace is however emphasised.

The resulting Algorithm 5 is obtained from Algorithm 3, using the well-known
recursive expression for the geometrical mean in (2.48), as follows:

Algorithm 5  Step 0–2	� As in Algorithm 3, but add the definition �0 ∶= 1

		 �and �k by (2.48).
Step 3a	� As in Algorithm 3 .
Step 3b	� As in Algorithm 3, but: If �k+1 = �k + 1 then update (

Ĥk 0

0 𝜏k

)
, instead of H̃. End.

3 � Numerical results—full BFGS implementations

In this section we compare the performances of Algorithms 3 and 3HH (Alg. 3 with
Householder factorisation) and 5, all using �k = 0 in the Broyden H updates.

(2.48)𝜏k =

k∏
j=0

(
𝛿j

T
𝛾 j

𝛿j
T
𝛿j

)1∕(k+1)

, k > 0,

192	 M. Buhmann, D. Siegel

1 3

Our test problems, motivated by the need to be able to create problems for both
small and very large values of n, are derived from the physical situation described in
(Siegel [13]). Our stopping condition is the inequality

where 𝜖 > 0 (in our work we chose � = 10−2, 10−4, 10−6, 10−8).
All algorithms were implemented in double precision. Our line search routine

finds steplengths �k that satisfy Wolfe’s [15] conditions with the choice of constants
c1 = 0.01 and c2 = 0.9 . It uses function gradients as well as function values, and is
a slightly modified version of the line search used in the TOLMIN Fortran pack-
age (see Powell [11]). We implemented the algorithms so that they were compat-
ible (see the first paragraph of Sect. 2) with choosing the initial second derivative
approximation

noting that this initial scaling is often used in practice (Oren and Luenberger [5]).
Moreover, it is compatible with the choice of �0 in Algorithm 5.

For Algorithm 3 and Algorithm 5 we use C ∶= 0.1 . Anticipating the well-known
robustness of the Householder approach we use C ∶= 0.0 in Algorithm 3HH.

Table 1 gives the results of 20 runs for each pair of n and � , where the first col-
umn entry gives the average number of function evaluations and the second the aver-
age number of iterations. We draw the following conclusions:

•	 Generally the performance of the native BFGS algorithm is very similar to both
Algorithm 3 with C ∶= 0.1 and Algorithm 3HH (with Householder factorisation).
We view this as an indication that the measures introduced to retain stability in the
orthogonalization process required by the new algorithms are successful. In fact,
in the course of our numerical tests we continuously monitored the orthogonality
of the Qk matrices implied by the matrices Rk and Gk for Algorithm 3 and by the

(3.1)‖gk‖ < 𝜖,

(3.2)(H0)−1 = B0 =
�0

T
�0

�0
T
�0

I,

Table 1   Average no. of function evaluations and iterations/Performance of the BFGS method compared
to Algorithm 3, Algorithm 3HH and Algorithm 5 on Siegel’s problem with 20 random values for x0

n � BFGS A3HH A3 A5

20 1.0E−02 36 32 36 32 36 32 21 17
20 1.0E−04 98 94 98 94 98 94 54 49
20 1.0E−06 107 103 107 103 108 104 63 58
20 1.0E−08 111 106 111 107 112 108 67 62
50 1.0E−06 281 274 281 274 281 274 117 109
100 1.0E−06 470 463 473 466 483 477 172 161
200 1.0E−06 943 932 959 948 985 973 314 277
500 1.0E−06 1.434 1.423 1.395 1.383 1.421 1.409 839 579
1000 1.0E−06 2.545 2.518 2.430 2.404 2.698 2.669 1.863 1.195

193

1 3

Implementing and modifying Broyden class updates for large…

Householder factorization for Algorithm 3HH instead of Gram-Schmidt to ascer-
tain this point.

•	 The scaling introduced by Algorithm 5 is indeed highly beneficial in our examples
for the Siegel test, typically reducing the number of function calls by 25% to 60%
and the number of iterations even further.

4 � Derivation of limited memory algorithms

In this section we consider the case when, due to limitations in the storage available on
the computer, the number of columns of G is restricted by a number m, say.

We therefore have to devise a procedure for removing a column from G and making
corresponding changes to R and Ĥ . Our strategy will be to delete the gradient or �-vec-
tor with the smallest iteration index. As a consequence of this procedure the column
spaces of the matrices G will no longer agree, so now G usually changes the search
directions of the algorithm even in exact arithmetic. For the deleting procedure it will
turn out to be advantageous if the gradient or �-vector to be removed is the last column
of G.

We therefore replace the Gram-Schmidt process used so far by the “inverse” Gram-
Schmidt procedure, which is outlined below. First we consider an algorithm in which
gradients are stored.

When we add a column to Gk we define the matrix Gk+1 ∶= (gk+1 | Gk) and the pre-
liminary matrix

Thus the equation Q̂k+1
prel

Rk+1
prel

= Gk+1 implies the same underlying preliminary basis
matrix

as before. The matrix Rk+1
prel

 possesses the sparsity structure

Therefore we can obtain an upper triangular matrix Rk+1 by premultiplying Rk+1
prel

 by
an orthogonal matrix

(4.1)Rk+1
prel

∶=

�
tk
2

Rk

‖�k‖ 0

�
.

(4.2)Q̂k+1
prel

= (Q̂k � 𝜂k∕‖𝜂k‖),

(4.3)

⎛⎜⎜⎜⎜⎝

× × × … ×

× 0 × … ×

× 0 0 … ×

⋮ ⋮ ⋮ ⋱ ⋮

× 0 0 … 0

⎞⎟⎟⎟⎟⎠
.

(4.4)Xk ∶= Xk
1
⋯Xk

𝓁k+1−1
,

194	 M. Buhmann, D. Siegel

1 3

where Xk
i
 is a Givens rotation that is different from the identity matrix only in its ith

and (i + 1) st rows, which is defined by making the (i + 1) st and ith components of
the first column of the matrix

zero and positive, respectively. Therefore the equation Q̂k+1Rk+1 = Gk+1 defines the
new basis matrix using the definition

We note that we have to take into account this change to Q̂k+1 when calculating the
vectors 𝛿k and 𝛾̂k and updating the matrix Ĥk , see Steps 3a and 3b of Algorithm 6.

In case �-vectors are stored we proceed as above obtaining the matrices
Gk+1 = (gk+1 | Gk) and Rk+1 . We replace the first columns of Gk+1 and Rk+1 by �k+1
and −𝛼kĤk+1tk+1

1
 once these vectors are available. By premultiplying Rk+1 by an

orthogonal matrix, Yk+1 say, we restore Rk+1 to upper triangular structure, again
keeping in mind that this operation changes the underlying basis matrix Q̂k+1 , see
Step 2a of Algorithm 7 below.

As required the updates of G have the property that the last columns of G con-
tain the gradient or �-vector with the smallest iteration number. We outline our
deleting procedure. We give a description for the case that gradients are stored.

Consider the case �k+1 = m + 1 and denote by Gk+1
del

 the matrix formed by the
first m columns of Gk+1 and by Rk+1

del
 the mth principal minor of Rk+1 , noting that

Rk+1
del

 is upper triangular and that the matrix

is formed by the first m columns of Q̂k+1 = Gk+1(Rk+1)−1 . We therefore let Ĥk+1
del

 be
the matrix obtained by deleting the last row and column from Ĥk+1 . We note that for
any two vectors v1 and v2 in the column space of Q̂k+1

del
 we have the identity

where

Hk+1
del

 is the same with Ĥk+1
del

 replacing Ĥk+1 , and Qk+1 is any orthogonal n × n matrix,
whose first m + 1 columns agree with those of Q̂k+1 . Our deleting procedure thus
leaves the approximation to the inverse Hessian unchanged on the column space of
Q̂k+1

del
 . Moreover, assuming that Ĥk+1 is positive definite, the matrices Ĥk+1

del
 and thus

Hk+1
del

 inherit this property as any principal minor of a positive definite matrix is itself
positive definite.

Algorithm 6 employs the inverse Gram-Schmidt process and the deleting pro-
cedure outlined above.

(4.5)Xk
i
Xk
i+1

⋯Xk

𝓁k+1−1
Rk+1

prel

(4.6)Q̂k+1 ∶= Q̂k+1
prel

XkT .

(4.7)Q̂k+1
del

∶= Gk+1
del

(Rk+1
del

)−1

(4.8)vT
1
Hk+1v2 = vT

1
Hk+1

del
v2,

(4.9)Hk+1 ∶=Qk+1

(
Ĥk+1 0

0 I

)
Qk+1T ,

195

1 3

Implementing and modifying Broyden class updates for large…

Algorithm 6  Step 0	� Let an integer m ≥ 2 and a starting vector x0 be given. If
g0 = 0 then stop. Else set k ∶= 0 , �0 ∶= 1 and let Ĥ0 and
R0 be the 1 × 1 matrices given by Ĥ0

11
= 1 and R0

11
= ‖g0‖ ,

respectively. Let the column of the n × 1 matrix G0 be the
vector g0 and let t0

1
∈ IR1 be given by (t0

1
)1 = ‖g0‖ . End.

Step 1	� As in Algorithm 3.
Step 2	� As in Algorithm 3.
Step 3a	� Compute the vector

If (2.31) does not hold (i.e., ‖tk
2
‖2 < (1 − C2) ‖gk+1‖2) , set

where Xk is the product of Givens rotations defined in the paragraph containing
equation (4.4).

	 �Else set the variables as in (2.42)–(2.46). End.
Step 3b	� If �k+1 = �k then use the vectors 𝛿k and 𝛾̂k and apply the

Broyden class update to Ĥk . Else (i.e., �k+1 = �k + 1 ) apply
the Broyden class update to the matrix XkH̃XkT , where H̃ is
given by (2.15). End.

Step 4	� If �k+1 = m + 1 , then delete the last component of the vector
tk+1
1

 , the last column of Gk+1 , the last row and column of Rk+1
and Ĥk+1 which is the updated Ĥk , and set �k+1 ∶= m . End.

(4.10)tk
2
∶= Rk−TGkTgk+1.

(4.11)�k ∶=

�
‖gk+1‖2 − ‖tk

2
‖2,

(4.12)�
k+1 ∶= �

k + 1,

(4.13)Gk+1 ∶= (gk+1 | Gk),

(4.14)Rk+1 ∶= Xk

(
tk
2

Rk

�k 0

)
,

(4.15)𝛿k ∶= −𝛼kXk (tk
3

T | 0)T ,

(4.16)𝛾̂k ∶= Xk (tk
2

T
− tk

1

T | 𝜂k)T ,

(4.17)tk+1
1

∶= Xk (tk
2

T | �k)T ,

196	 M. Buhmann, D. Siegel

1 3

	� Increase k by one and go back to Step 1.

Algorithm 7 below (the algorithm that stores delta-vectors rather than gradients)
is obtained form Algorithm 6 by replacing the variable name G by Δ and inserting
Step 2a after Step 2.

Algorithm 7  As in Algorithm 6, except:

Step 2a	� If Δ was changed on the previous iteration, then replace the first columns
of Δk and Rk by �k and −𝛼kĤktk

1
 , respectively, and let the resulting matri-

ces overwrite the original matrices. Let Yk be an orthogonal matrix such
that YkRk is upper triangular and redefine the variables

End.

•	 As the additional Givens rotations are applied to m vectors and m × m matrices
they require only O(m2) multiplications. The total number of multiplications per
iteration is thus 2nm + O(m2) + O(n) both for Algorithms 6 and 7.

•	 Consider Algorithm 6 and assume that on iterations k − 1 and k the test
‖�k‖ ≥ C‖gk+1‖ is satisfied, this being the usual case. Then the vector �k is con-
tained in the column span of the matrix Gk+1 defined in (4.13) as gk+1 and gk are
the first two columns of Gk+1 . Moreover �k is also in the vector-space spanned
by the columns of Gk+1 since dk is calculated from (2.32). The update of Ĥk in
Step 3b is thus compatible with a Broyden update of the underlying matrix Hk .
Hence the resulting matrix Hk+1 satisfies the quasi-Newton equation. Unfortu-
nately, however, dk+1 is not calculated until the deleting procedure of Step 4 has
changed the underlying matrix Hk+1 . A “standard” proof of quadratic termination
is thus not possible.

(4.18)Rk ∶=YkRk

(4.19)tk
1
∶=Yktk

1

(4.20)Ĥk ∶=YkĤkYkT

(4.21)tk
3
∶=Yktk

3
.

197

1 3

Implementing and modifying Broyden class updates for large…

•	 We now turn to Algorithm 7 and note that by design of Step 1, dk , and thus �k ,
are contained in the column span of Gk . Thus the replacement taking place in
Step 2a does not change the subspace spanned by the columns of Gk.

•	 By design of Algorithm 7 the vectors �k and gk+1 are linear combinations of the
columns of Gk+1 . However, the gradient gk and thus the vector �k will in general
not be contained in this space. Thus the update in Step 3b does not correspond to
applying the Broyden formula to Hk , �k and �k , but we can enforce that the vector
will be in the mentioned space: we replace it by �k

P
 , where �k

P
 is the projection of

�k onto the column space of Gk+1 . Note that the update gives a positive definite
matrix Hk+1 too, since the relation

 is a consequence of �k being in the span of the columns of Gk+1.
•	 If we use the BFGS update in Step 3b, corresponding to �k = 0 , Algorithm 7

has the quadratic termination property, which is the following result:

Theorem 1  Let Algorithm 7 with �k = 0 in the updating formula employed in
Step 3b be applied to a strictly convex quadratic function f, and let the line searches
be exact. Then the algorithm finds the minimum of f in at most L iterations, where L
is the number of distinct eigenvalues of the Hessian matrix, A say, of f.

Proof  By induction we will show that the search directions dk generated by Algo-
rithm 7 satisfy the equations

Under the assumptions made in the statement of the theorem, Algorithm 7 is thus
equivalent to the conjugate gradient method, for which quadratic termination in at
most L steps is a well known result.

By definition (4.23) holds for k = 0 . We now assume that (4.23) has been estab-
lished for all search directions with iteration index less than or equal to k and con-
sider iteration k. From the theory of the conjugate gradient method we have

Thus tk
2
 formed in Step 3a is the zero vector as

and

(4.22)𝛿k
T
𝛾k
P
= 𝛿k

T
𝛾k > 0

(4.23)
dk = − gk for k = 0,

dk = − gk +
gk

T
Adk−1

dk−1
T
Adk−1

dk−1 for k ≥ 1.

⎫⎪⎬⎪⎭

(4.24)gk+1
T
gj = gk+1

T
dj = 0 for 0 ≤ j ≤ k.

tk
2
=
(
Rk
)−T(

Gk
)T
gk+1

198	 M. Buhmann, D. Siegel

1 3

This gives

since otherwise dk would have to vanish. This implies �k = ‖gk+1‖ , so the test Not
(2.31) [i.e., ‖tk

2
‖2 < (1 − C2) ‖gk+1‖2 ] holds. From the structure of (4.1) and the def-

inition of Xk in the paragraph containing Eq. (4.4) we deduce that Xk is the permuta-
tion matrix defined by the equations

the ei being the ith unit vector. Therefore we obtain in the Steps 3a and 3b

The first row of both sides of (4.29) implies that the first two columns of
Q̂k+1 = Gk+1(Rk+1)−1 are the vectors ‖gk+1‖−1gk+1 and ‖�k‖−1�k , giving the formula

Applying the update with �k = 0 to the matrix (4.30) and to the vectors 𝛿k and 𝛾̂k
given by (4.31) and (4.27), respectively, we obtain a matrix Ĥk+1 whose first column
is

The deletion process of Step 4 changes neither the nonzero elements of the first col-
umn of Ĥk+1 nor the first two columns of Q̂k+1 . Thus, recalling (4.28), the new search
direction dk+1 formed in Step 1 of the next iteration is

(
dk
)T

= −(tk
3
)T
(
Rk
)−T(

Gk
)T
.

(
dk
)T
gk+1 = 0 = −(tk

3
)T
(
Rk
)−T(

Gk
)T
gk+1,

(4.25)Xkei =ei+1 for 1 ≤ i ≤ n − 1,

(4.26)Xken =e1,

(4.27)𝛾̂k =(‖gk+1‖ � tk
1

T
)T ,

(4.28)tk+1
1

=(‖gk+1‖ � 0T)T ,

(4.29)Rk+1 =

� ‖gk+1‖ 0

0 Rk

�
,

(4.30)Xk

(
Ĥk 0

0 1

)
XkT =

(
1 0

0 Ĥk

)
.

(4.31)𝛿k = Q̂k+1T𝛿k = (0 � ‖𝛿k‖ � 0T)T .

(4.32)Ĥk+1e1 =

�
1 � − ‖gk+1‖ ‖𝛿k‖

𝛿k
T
𝛾k

� 0T
�T

.

(4.33)dk+1 = − Q̂k+1Ĥk+1tk+1
1

199

1 3

Implementing and modifying Broyden class updates for large…

which, because of the identities

is equivalent to (4.23) postdated by one iteration, as required. 	� ◻

It is interesting to observe that Algorithm 7 can be seen as a generalization of
the conjugate gradient algorithm.

In the limited memory setting we have—unlike in the classic Quasi-New-
ton case—an additional option of dealing with the situation in which the test
‖tk

2
‖2 < (1 − C2) ‖gk+1‖2 fails: We can re-start the entire algorithm since (given

that usually m ≪ n ) the loss of second derivative information caused by the re-
start is acceptable. Moreover, failure of the above test may be an indicator of ill-
conditioning, in which case a re-start would be appropriate anyway.

We build in this modification into Algorithm 7 to arrive at the following
Algorithm 8 which, due to its importance, we spell out in full detail. We note
that it also has the quadratic termination property since the test Not (2.31) [i.e.,
‖tk

2
‖2 < (1 − C2) ‖gk+1‖2 ] cannot fail if the objective function is a strictly convex

quadratic function.
In order to avoid too many restarts we have also introduced the condition that no

restart is carried out unless at least m steps have been performed without a restart.

Algorithm 8  Step 0	� As in Step 1 in Algorithm 3 with m ≥ 2.
Step 1	� If the stopping criterion is satisfied then stop. Else: calculate

the search direction from the formula (2.18), (2.32). End.
Step 2	� As in Algorithm 5.
Step 2a	� As in Algorithm 7. End.
Step 3a	� Compute the vector tk

2
 given by (2.33). If Not (2.31)

(‖tk
2
‖2 < (1 − C2) ‖gk+1‖2) then set the variables as in

(4.11)–(4.17) where Xk is the product of Givens rotations
defined in the paragraph containing equation (4.4) and
where the argument of the square-root defining �k is non-
negative by the properties of Rk . End.

	 �If (2.31) holds and if at least m iterations have been carried
out without restart, then restart the algorithm by increas-
ing k by one, setting �k ∶= 1 and letting Ĥk = Ĥk

11
= 1 and

Rk = Rk
11

= ‖gk‖ . Moreover, let the column of the n × 1

(4.34)= − gk+1 +
‖gk+1‖2
�k

T
�k

�k,

(4.35)
‖gk+1‖2
�k

T
�k

�k =
gk+1

T
(gk+1 − gk)

�k
T
(gk+1 − gk)

�k =
gk+1

T
A�k

�k
T
A�k

�k

(4.36)=
gk+1

T
Adk

dk
T
Adk

dk

200	 M. Buhmann, D. Siegel

1 3

matrix Gk be the vector gk and let tk
1
∈ IR1 be given by

(tk
1
)1 = ‖gk‖ . End. Go to Step 1.

Step 3b	� If �k+1 = �k , then use the vectors 𝛿k and 𝛾̂k and apply the
Broyden class update to H̃ . Else (�k+1 = �k + 1) , use the
vectors 𝛿k and 𝛾̂k and apply the Broyden class update to H̃
given by (2.15). End.

Step 4	� If �k+1 = m + 1 , then delete the last component of the vector
tk+1
1

 , the last column of Gk+1 , the last row and column of Rk+1
and Ĥk+1 and set �k+1 ∶= m . End.

		 �Increase k by one and go back to Step 1.

5 � Numerical results—limited memory case

In this section we first compare the performance of Algorithms 6, 7 and 8 all using
�k = 0 with Nocedal’s [4] limited memory BFGS update.

Given the poor performance of Algorithm 6 we constrain the comparison for very
large problems to Nocedal’s method and the generalized conjugate gradient Algo-
rithms 7 and 8.

We use the test problems introduced in Sect. 3, implemented all algorithms in
double precision and used the same line search as in Sect. 3. Again we implemented
all algorithms so that they were compatible with choosing the initial second deriva-
tive approximation given by (3.2). When Algorithm 8 re-starts, it also updates this
initial scaling. For Algorithms 6, 7 and 8 we used C ∶= 0.1.

Table 2 gives the results obtained from 20 (for n ≤ 1000 ) and 10 (for n ≥ 2000 )
runs for m = 10 and � = 10−6 , where the first column entry gives the average num-
ber of function evaluations, the second the average number of iterations and the third
the percentage of cases in which the solution was not found within 10,000 function
calls (those runs not being included in the averages stated in the first two columns).
We observe the following:

Table 2   Comparison of Nocedal’s limited memory method with the generalized conjugate gradient
methods A6, A7 and A8

n � m Nocedal A6 A7 A8 (=
A7+restart)

100 1.0E−06 10 1013 1007 0% 2870 2833 5% 597 588 0% 327 300 0%
200 1.0E−06 10 1208 1202 0% 3803 3762 10% 725 715 0% 423 394 0%
500 1.0E−06 10 2051 2039 0% 4821 4771 25% 1217 1200 0% 639 572 0%
1000 1.0E−06 10 2535 2511 0% 4544 4474 45% 1527 1496 0% 817 745 0%

201

1 3

Implementing and modifying Broyden class updates for large…

•	 We note that Algorithm 6 performs poorly, which is why we excluded it from the
test of n ≥ 2000 . Therefore we do not recommend its use.

•	 Algorithm 7 and Nocedal’s algorithm exhibit comparable performance.
	  Algorithm 8 clearly outperforms Nocedal’s [4] approach, �k given by �

kT�k

�k
T
�k

 as
in Liu and Nocedal [3], often reducing the number of function calls by more than
two thirds—whilst at the same time requiring only half the storage for the same
choice of m.

6 � Scaling techniques for limited memory methods

In this section we ask the question in how far scaling techniques can be used—in
analogy to their positive effect shown in Sect. 3—to improve further the perfor-
mance of both the generalized conjugate gradient method Algorithm 7 and Noce-
dal’s limited memory method. It is well known that scaling techniques can offer
substantial improvements for Nodedal’s method (Liu and Nocedal [3]); we are
referring to the L-BFGS method, see also Al-Baali et al. [1]. However, the updat-
ing technique in Step 3 of their Algorithm 2.1 is different from the one we use.

Following the line of reasoning of Sect. 2 we obtain the scaling version of
Algorithm 7 which we shall refer to as Algorithm 9 by using a geometric average
for scaling.

Algorithm 9  Step 0–3a	� As in Algorithm 7, but add the statements �0 ∶= 1 and
(2.48).

Step 3b	� As in Algorithm 7, but—for the case �k+1 = �k + 1—

apply the update to
(
Ĥk 0

0 𝜏k

)
, instead of H̃ , given by

(2.15).
Step 4	� as in Algorithm 7.

For Nocedal’s method the idea is to replace the identity matrix as the initial
second derivative approximation by �I , where we calculate the series of �k in the
same way as above. The final Table 3 gives a comparison of Nocedal’s Algorithm

Table 3   Comparison of Nocedal’s limited memory method with the generalized conjugate gradient
methods and A8, A7, A9, � = 10

−6 , m = 10

n Problem Nocedal Nocedal Scal Geo A8 A9

5010 NCB20 983.0 316.0 309.0 214.0 383.0 204.0 345.0 218.0
10,000 CURLY10 6116.0 1821.0 6362.0 2154.0 3001.0 2674.0 7952.0 2930.0
10,000 CURLY20 15,592.0 4461.0 6909.0 2260.0 8435.0 4216.0 15,315.0 5381.0
10,000 CURLY30 29,171.0 7968.0 16,062.0 5028.0 11,988.0 6749.0 13,482.0 4667.0
100,000 INDEFM 2077.0 486.0 2301.0 514.0 187.0 88.0 274.0 99.0
5000 NONCVXU2 14,019.0 4115.0 8310.0 2882.0 5600.0 5288.0 14,120.0 5164.0

202	 M. Buhmann, D. Siegel

1 3

with and without scaling with Algorithms 7, 8 and 9 for a number of test problem
from CUTEst.

7 � Conclusions/observations

In line with the results of Liu und Nocedal, applying the scaling approach to Noce-
dal’s limited memory method provides a significant improvement. Algorithm 9 is
indeed superior to the original generalized conjugate gradient Algorithm 7. How-
ever, the improvement is comparatively small—and it performs worse than Algo-
rithm 8. There is little to choose between Nocedal’s method with scaling and Algo-
rithm 8 (generalized conjugate gradient with restarts).

We also tried the obvious idea of applying the scaling approach to the generalized
conjugate gradient method with restarts of Algorithm 8. Unfortunately this did not
give any improvements. In fact, we observed that scaling removes the need for restarts
in most cases, so the resulting algorithm performs almost identically to Algorithm 9.

In summary, in this paper we introduced a new way of looking at the Broyden
class of Quasi Newton methods for the case in which the initial second derivative
approximation is the identity matrix. We exploited the resulting computational
simplifications to derive several new algorithms (both quasi-Newton and Limited
Memory) that are particularly efficient in housekeeping cost (storage and number
of multiplications per iteration) and number of iterations and function calls required
to find the solution within a given accuracy. Of particular interest is an algorithm
that can be viewed as a generalized conjugate gradient method. Similarly to what is
the case for Nocedal’s Limited Memory algorithm, restart and scaling modifications
offer improvements for this generalized conjugate gradient method as well.

Acknowledgements  We would like to thank referees and editor for their helpful comments, careful analy-
sis of, and suggesting improvements to the manuscript. We would also like to thank Tobias Durchholz for
the new computation of the tables. We are very grateful to the late M.J.D. Powell for introducing us to the
world of numerical optimization methods and radial basis functions, and for many interesting discussions
and important comments on a draft of this work. We dedicate this paper to Mike. His work on optimiza-
tion and on approximation theory, and he himself as a wonderful person, will always be remembered.

Funding  Open Access funding enabled and organized by Projekt DEAL.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat​iveco​mmons​.org/licen​
ses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

203

1 3

Implementing and modifying Broyden class updates for large…

References

	 1.	 Al-Baali, M., Spedicato, E., Maggioni, F.: Broyden’s quasi-Newton methods for a nonlinear system
of equations and unconstrained optimization: a review and open problems. Optim. Methods Softw.
29, 937–954 (2014)

	 2.	 Fletcher, R., Powell, M.J.D.: A rapidly convergent descent method for minimization. Comput. J. 6,
163–168 (1963)

	 3.	 Liu, D.C., Nocedal, J.: On limited memory BFGS method for large scale optimization. Math. Pro-
gram. 45, 503–528 (1989)

	 4.	 Nocedal, J.: Updating quasi-Newton matrices with limited storage. Math. Comput. 35, 773–782
(1980)

	 5.	 Oren, S.S., Luenberger, D.G.: Self-scaling variable metric (SSVM) algorithms. Manage. Sci. 20,
733–899 (1974)

	 6.	 Powell, M.J.D.: A hybrid method for nonlinear equations. In: Rabinowitz, P. (ed.) Numerical Meth-
ods for Nonlinear Equations, pp. 87–114. Gordon and Breach, London (1970)

	 7.	 Powell, M.J.D.: On the convergence of the variable metric algorithm. J. Inst. Maths. Appl. 7, 21–36
(1971)

	 8.	 Powell, M.J.D.: Some global convergence properties of a variable metric algorithm for minimi-
zation without exact line searches. In: Cottle, R.W., Lemke, C.E. (eds.) Nonlinear Programming
SIAM-AMS Proceedings, vol. IX, pp. 53–72. American Mathematical Society, Providence (1976)

	 9.	 Powell, M.J.D.: “The convergence of variable metric matrices in unconstrained optimization” (with
R-P. Ge). Math. Program. 27, 123–143 (1983)

	10.	 Powell, M.J.D.: How bad are the BFGS and DFP methods when the objective function is quadratic?
Math. Program. 34, 34–47 (1986)

	11.	 Powell, M.J.D.: TOLMIN: a Fortran package for linearly constrained optimization calculations.
Report DAMTP 1989/NA2, University of Cambridge (1989)

	12.	 Powell, M.J.D.: “On the convergence of the DFP algorithm for unconstrained optimization when
there are only two variables”, in Studies in algorithmic optimization. Math. Program. 87, 281–301
(2000)

	13.	 Siegel, D.: Implementing and modifying Broyden class updates for large scale optimization.
DAMTP-Report, University of Cambridge (1992)

	14.	 Siegel, D.: Modifying the BFGS update by a new column scaling technique. Math. Program.
66(1993), 45–78 (1993)

	15.	 Wolfe, P.: Convergence conditions for ascent methods. SIAM Rev. 11, 226–235 (1969)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	Implementing and modifying Broyden class updates for large scale optimization
	Abstract
	1 Introduction
	2 A new implementation of Broyden class updates
	3 Numerical results—full BFGS implementations
	4 Derivation of limited memory algorithms
	5 Numerical results—limited memory case
	6 Scaling techniques for limited memory methods
	7 Conclusionsobservations
	Acknowledgements
	References

