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1 Introduction

Matter, as we know it from everyday life, consists of bound states that are composed
by only a few elementary particles, such as e.g. quarks or electrons. The dynamics
between elementary particles resulting in the formation of bound states as well as
the stability thereof are governed by fundamental interactions. The theoretical de-
scription of these fundamental interactions is summarized in the standard model of
particle physics (SM), set up in its present day formulation. The SM describes all
interactions of particles as an exchange of a (gauge)boson between the elementary
fermionic particles of the respective interaction. It distinguishes between electromag-
netic (QED), weak and strong force (QCD), exchanging photons, Z and W bosons,
and gluons between leptons and quarks. While QED and the weak theory can be
treated perturbatively due to weak coupling constants, the gauge boson of the strong
theory interacts, as the name states, too strongly to allow for a perturbative approach.

Experimentally, physicists around the world investigate the standard model in all
its particulars. Singular aspects, as the measurement of the anomalous magnetic
moments of leptons, are subject to intense focused experimental effort. We will elab-
orate on some of these measurements later in this thesis. At the same time, a host
of large experiments such as PANDA or CBM at FAIR center will take a plethora
of data with the goal of observing exotic particles, in-medium effects of hadronic
matter or even quark-gluon-plasma. Each of these experimental settings strives to
contribute more detailed information on different states of matter under more or less
extreme conditions in order to better understand, refine or even adjust our formula-
tion of the SM and to fill in the ’white spots’ on our experimental maps.

From a theoretical point of view, it is a tremendous task to analyze and describe
how the formation of bound states from these basic particles takes place. Already
in the nineteen-sixties [1], the predecessor of today’s model got introduced and was
continuously refined to today’s different modern forms. In this thesis, we focus on
the most basic bound state matter, the mesons, and their influence on the anomalous
magnetic moment of the muon. These states consist of a quark and an antiquark
partner. Quarks were introduced by Gell-Mann and Zweig and believed to be a purely
mathematical method. Later, they were proved to be real particles by deep inelastic
scattering of electrons on nucleons [2,3]. Gell-Mann and Zweig’s quark model allows
to draw up particle spectra and multiplets sorted by quark content. In fig. 1.1 we
show the multiplets for pseudoscalar and vector mesons [4], parts of both further
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1 Introduction

Figure 1.1: Picture (a) shows the multiplet for pseudoscalar and (b) for vector mesons
in a quark content representation. The definition of quark content allows
to order mesons in a systematic way. Axes denote the third component
of isospin (sorting for u and d content), charm content and hypercharge,
which gives us the strange content. [4]

discussed and investigated later on.

More suited for the description and, in consequence, analysis of the nonperturba-
tive phenomena, are lattice gauge theory or functional methods. These are, for in-
stance, Dyson-Schwinger equations (DSE) [5, 6] or functional renormalization group
approaches. A common feature of these are quarks and gluons as fundamental de-
grees of freedom. Each of these methods has its own strengths and weaknesses.
While lattice gauge theory is often considered as ’theoretical measurement’, it is
limited by the involved numerics, in particular the often unphysical quark or pion
masses, finite volume effects or other technical problems. Most settings also need to
connect separate fits for high energy and low energy regions with a Heaviside step
function. Nevertheless, the lattice, implemented in a correct way, is an invaluable
tool to investigate QCD physics.

A complementary approach to lattice calculations are the above mentioned func-
tional methods. This becomes more obvious considering for example their benefits
of dynamical chiral symmetry breaking, a continuous treatment of the transition
from low to high energy regime and - compared to lattice gauge theory studies- over-
whelmingly short computation times. The main disadvantage of functional methods
is the need to truncate the ’infinite tower if DSEs’, which we will further explain
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in chapter 2. In the past, descriptions of bound states and their form factors in
the framework of Dyson-Schwinger and Bethe-Salpeter equations (BSE) have been
very successful [7–24], not only in the field of simple mesons, but also investigating
baryons, exited states or even tetra-quarks.

Also, functional methods have a history of successful calculations for the above men-
tioned anomalous magnetic moments [25–29]. We try to provide a fresh look at some
of these. The focus of this work lies in isospin symmetry breaking in processes for-
merly described without these considerations. For many applications it is sufficient
to use approximate isospin symmetry, treating the up (u) and down (d) quark as an
averaged particle ūd. In this work, we want to investigate the effect of a modified
QCD/QED model for our DSE/BSE framework. This model lifts the current quark
mass degeneracy and in a second step includes charge dependency to the calculation
of quark propagator, meson mass and amplitudes and the quark-photon vertex. The
establishment of the model and tests on the hadronic vacuum polarization (HVP) as
a part of the anomalous magnetic moments of muon and tau, are the first results in
this framework where the assumptions of isospin symmetry are lifted. As a further
application of the model, we followed the calculations of [30] and compare our results
to their corrections of αQED and the weak mixing angle.

The thesis is structured in the following way.

In chapter 2, basic concepts of QCD in general, and functional methods in par-
ticular are laid out. We start from the QCD Lagrangian in order to exemplary
construct the DSE for the quark propagator. As a next step, we proceed to explain
the Rainbow-Ladder (RL) truncation and the Maris-Tandy (MT) interaction model
for αQCD, that is used in the following thesis. Since we numerically restrict ourselves
to specific ways to solve the quark, we also present the employed method at this
point. Even though this chapter represents a compilation of techniques one could
find in textbooks or publications, we consider this synopsis helpful, in order to under-
stand the basic toolbox before interpreting the results presented in the later chapters.

Next, we focus on isospin symmetry and its implications for the meson sector in
chapter 3. We describe how meson masses and amplitudes can be calculated by
solving a BSE. Following our general explanations, we explicitly use the solved BSEs
for the light meson sector and extend the previously introduced method with QED
contributions and mass splitting to investigate isospin symmetry breaking. In this
context, we also probe the influence of the described changes to the vector meson
channel. Summarizing the chapter, we discuss our new QCD/QED model and the
resulting meson masses.
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1 Introduction

In chapter 4, we give an overview over leptonic magnetic moments and the hadronic
vacuum polarization in the DSE/BSE framework. We present how we are finally
able to apply our model to the HVP problem. The final part of the chapter discusses
the latest DSE/BSE results for muon and tau. These are, together with the model
parameters themselves, the main results of this thesis.

As mentioned earlier, the possibility to utilize our method to calculate corrections to
the electromagnetic coupling and the weak mixing angle was brought to our atten-
tion. The explicit implementation as well as results are compiled in chapter 5.

We close with an overall summary of the findings and challenges of our investi-
gations in Chapter 6 and provide an outlook on interesting aspects of the topic that
might be subject of future research.
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2 Framework

This chapter summarizes the necessary steps to start at the Lagrangian and end up
with a strategy to solve the Dyson-Schwinger equation of the quark. On the way, we
cover some ’must knows’ such as the way to arrive at the equation we want so solve,
the truncation and the modeling needed. The chapter concludes with an explanation
why and how we solve the quark in a specific way.

2.1 From Lagrangian to quark

The euclidean gauge fixed Lagrangian of QCD LQCD and thus the starting point of
our investigation reads as

LQCD = Z2ψ̄
(
−/∂ + Zmm

)
ψ + Z3

1

2
Aaµ

(
−∂2δµν −

(
1

Z3ξ
− 1

)
∂µ∂ν

)
Aaν

+ Z̃3c̄
a∂2ca − Z1F igψ̄γµt

aψAaµ − Z1gf
abc (∂µA

a
ν)A

b
µA

c
ν

+ Z4
1

4
g2fabef cdeAaµA

b
νA

c
µA

d
ν + Z̃1gf

abcc̄a∂µ
(
Acµc

b
)
.

(2.1)

This construct is built by particle fields of the theory; ψ for quarks, Aaµ for gluons
and c for the unphysical Faddeev-Popov ghosts that were introduced to enforce gauge
fixing. t denotes the generator of color su(3), and fabc the total antisymmetric struc-
ture constant. ξ is the gauge parameter and g the strong coupling constant. The
current quark mass is labeled m. QCD is a multiplicative renormalizable theory,
which means that divergences in fields and vertices can be countered by the intro-
duction of renormalization constants Z∗. Expressing all these constants in terms of
renormalizations of fields and the coupling, we get the relations

Z1F = ZgZ2Z
1/2
3 , Z1 = ZgZ

3/2
3 , Z̃1 = ZgZ̃3Z

1/2
3 , Z4 = Z2

gZ
2
3 . (2.2)

As a result of the Becchi-Rouet-Stora-Tyutin symmetry (BRST) [31], Slavnov-Taylor
identities (STI) [32, 33] and by working in Landau gauge ξ = 0, we can also use

Z4

Z1

=
Z1

Z3

=
Z̃1

Z̃3

=
Z1F

Z2

(2.3)

and
Z̃1 = 1. (2.4)
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2 Framework

From the Lagrangian, we define the generating functional Z, using the classical
action S[Φ] =

∫
d4xL[Φ]. Φ is a superfield enclosing all fields in the theory and J

the correlated supersource.

Z[J ] =

∫
DΦe−S[Φ]+

∫
d4xJa(x)Φa(x) (2.5)

The path integral
∫
DΦ covers all fields at all space-times. We apply the assumption

that the generating functional falls of quickly enough at large space-time points.
Thus any surface terms vanish, we can write

0 =

∫
DΦ

δ

δΦ
e−S[Φ]+JiΦi =

∫
DΦe−S[Φ]+JiΦi

(
δS[Φ]

δΦi

− Ji
)

(2.6)

which is the vacuum expectation value of the bracket enclosed term in the presence
of a source.

0 =

〈
δS[Φ]

δΦi

− Ji
〉

[J ]

. (2.7)

Expressing the field Φ with the derivative of its source Φi → δ
δJi

acting on the
generating functional, we arrive at the master DSE. All other equations for the
full 1PI Greens functions can be derived from this seed equation. A more detailed
description can be found in [34,35](

δS

δΦi

∣∣∣
Φi→ δ

δJi

− Ji

)
Z[J ] = 0 (2.8)

To solve for a specific equation, one has to apply the functional derivatives corre-
sponding to the sources of interest and set said sources to zero afterwards. For our
concerns, the most used equation is the Dyson-Schwinger equation for the quark
propagator. Employing the explicit derivative δ/δψ̄(x) and source j(x) for an anti-
quark at given space-time point x, we get〈

δSQCD
δψ̄(x)

− j(x)

〉
[J ]

= 0. (2.9)

Performing another derivative with respect to the source j at a second space-time
point y, we arrive at 〈

δSQCD
δψ̄(x)

ψ̄(y)

〉
[J ]

− δ4(x− y) = 0. (2.10)

Now we are able to insert the QCD Lagrangian, perform the derivative and set all
leftover sources to zero. The resulting equation

δ4(x− y) = Z2

(
−/∂ + Zmm

)
S(x− y)

− igZ1F

∫
d4zd4z′δ4(x− z)δ4(x− z′)γµλ

a

2
〈ψ(z)ψ̄(y)Aaµ(z′)〉

(2.11)
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2.1 From Lagrangian to quark

is the quark DSE in coordinate space, where S(x − y) is the fully dressed quark
propagator

S(x− y) = 〈0|ψ(x)ψ̄(y) |0〉 (2.12)

while 〈ψ(z)ψ̄(y)Aaµ(z′)〉 can be identified as the quark-quark-gluon vertex −igtaΓµ.
Since all calculations in this thesis were performed in euclidean momentum space,
we end the derivation with equation 2.13

S−1(p) = Z2(i/p+ Zmm) + g2Z1FCf

∫
d4k

(2π)4
γµS(k)Γµ(k, q)Dµν(q), (2.13)

where Dµν(q) denotes a gluon propagator and q = p− k. The Casimir Cf = tata can
be immediately evaluated to

Cf = (N2
c − 1)/2Nc = 4/3. (2.14)

The presence of the quark-gluon vertex shows an underlying challenge of the func-
tional Dyson-Schwinger method, which will be tackled in the next section.
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2 Framework

2.2 Rainbow-Ladder and Maris-Tandy model

Any given equation we generate in this manner will inevitably include a higher lying
Greens function. To calculate this function, one would need to solve the correspond-
ing DSE and subsequently end up at the next higher order. This phenomenon is
called the infinite tower of DSEs. Obviously, it is impossible to solve a system of
infinitely many coupled equations. To get any quantitative results, a truncation of
the system is needed. Note that up to this point no simplifications were made, the
equation itself is exact.

The most common method used in our field of research is the so called Rainbow-
Ladder truncation, where the quark-vertex and the gluon propagator are treated as
closed expressions and thus the quark DSE can be solved directly. Mathematically,
we reduce the Dirac structure of the full quark-gluon vertex to its leading component.
The full vertex would have the form

Γµ(p, q) =
12∑
i

T iµ(p, q)λi(p, q), (2.15)

with T i denoting tensor structures and λi their dressing functions. Here, p denotes
the quark and q the gluon momentum. The basis for the vertex would be linear
combinations of

{γµ, pµ, qµ} ⊗
{
1, /p, /q,

[
/p, /q
]}
. (2.16)

Rainbow-Ladder now reduces the number of tensor structures to one, with the scalar
dressing function ΓRL as a function of only the squared gluon momentum.

Γµ (p, q) ' γµΓRL
(
q2
)
. (2.17)

Next, we take a closer look at the gluon propagator

Dµν (q) =

(
δµν −

qµqν
q2

)
Z (q2)

q2
= Tµν(q)

Z (q2)

q2
, (2.18)

where the only unknown is the scalar dressing Z (q2). Combining both dressings for
gluon and vertex to an effective interaction αeff (q2) leads to

Z1F
g2

4π
Z
(
q2
)

ΓRL
(
q2
)

= Z2
2αeff

(
q2
)
. (2.19)

The renormalization behavior stems from the fact that we can use the STI for
Z1F = ZgZ2Z

1/2
3 and know that g scales as 1/Zg, the vertex as Z1F and the gluon

propagator as 1/Z3.
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2.2 Rainbow-Ladder and Maris-Tandy model

Furthermore we use the axial-vector Ward-Takahashi identity (AxVWTI) [7,36–38],
which relates the quark-antiquark interaction via the axial-vector vertex to the quark
propagator:

iPµΓf5µ(p, P ) = S−1 (p− P/2) γ5t
f + γ5t

fS−1 (p+ P/2) . (2.20)

Here P and p are the total and relative momenta of the quarks, and tf generators
of the axial UA(Nf ) flavor symmetry. In the case of RL truncation, the extracted
quark-antiquark interaction kernel reads

iKqq̄ = 4πZ2
2

αeff (q2)

q2
Tµν(q)(iγ

µ)⊗ (iγν). (2.21)

The interaction can be seen as a single dressed gluon exchange between the quark
and its anti-partner. This treatment ensures the Goldstone boson behavior of pseu-
doscalar mesons in the absence of a current mass.

An effective interaction needs to satisfy certain requirements. First of all it should
preserve symmetries if possible. Secondly, it is desirable to approach logarithmic run-
ning of the coupling for high momenta, reproducing perturbative behavior. Thirdly,
a certain strength in the IR region will produce dynamical chiral symmetry breaking.
A very successful model which incorporates all these properties is the Maris-Tandy
model [10]. It reads

αeff
(
q2
)

=
π

ω6
Dq4 exp

(
− q

2

ω2

)
+

2πγm[1− exp (−q2/ (4m2
t ))]

log
(
τ (1 + q2/ΛQCD)2) , (2.22)

with ω = 0.4 GeV and D = 0.93 GeV2. The other parameters are γm = 12/(33−2Nf )
the anomalous dimension of the quark propagator, mt = 0.5 GeV, τ = e2 − 1 and
ΛQCD = 0.234 GeV. Nf , the number of quark flavors is usually set to 4. Another
representation of the MT-parameters is η and Λ instead of ω and D. These notations
are related by

ω =
Λ

η
and D = ηΛ2. (2.23)

Above mentioned standard values translate to η = 1.8 and Λ = 0.72 GeV [39]. For
completeness it should be mentioned that we modify the effective interaction with a
Pauli-Villars regulator

αeff
(
q2
)
→ αeff

(
q2
) 1

1 + q2/PV 2
(2.24)

of size PV = 200 GeV for the numerical calculations, which in turn modifies Λ = 0.74
GeV to keep the pion decay constant intact.
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Figure 2.1: A diffent model parameter η defines the shape of the MT effective in-
teraction. The perturbative running for high momenta is not changed,
while the IR behavior regulates chiral symmetry breaking. We show αeff
for η = 1.6, η = 1.8 and η = 2.0. For our calculations, we use
eta = 1.8.

As we wished for, αeff approaches the one-loop coupling of QCD for q2 >> ΛQCD.
In the standard setting, the parameters ω and D are used to fit the model to the
physical pion decay constant fπ.

The research on beyond Rainbow-Ladder [11, 40–42] is a highly challenging field,
but in the scope of this thesis, we restrict ourself to the Rainbow-Ladder truncation
with MT-model.
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2.3 Solving the complex quark

2.3 Solving the complex quark

Now that we decided on a truncation and an effective coupling, we take a look at
equation 2.13 again. After we are done inserting equations 2.17, 2.18 and 2.19, the
system we have to solve is

S−1(p) = Z2(i/p+ Zmm) + 4πZ2
2Cf

∫
d4k

(2π)4
Tµν(q)γ

µS(k)γν
αeff (q2)

q2
. (2.25)

The general structure of S−1(p) and S(p) are

S−1(p) = i/pA
(
p2
)

+B
(
p2
)

and S(p) =
−i/pA (p2) +B (p2)

p2A2 (p2) +B2 (p2)
, (2.26)

where A and B are scalar dressing functions. These dressings are related to the quark
wave function renormalization Zψ and the quark mass function M by

Zψ
(
p2
)

=
1

A (p2)
and M

(
p2
)

=
B (p2)

A (p2)
. (2.27)

To solve for these dressing functions, simple projections are applied to equation
2.25. For the extraction of B, tracing the equation is enough. For A, a possible
projection is to multiply by /p and trace afterwards. The resulting system of two
coupled integral equations can be solved numerically straight forward. We use naive
fixed point interaction and hyperspherical coordinates for the integrals, see appendix
7.1. At the moment, any result would still depend on the chosen cutoff of the integral.
To find meaningful results we need to apply a scheme to relate calculations to a fixed
renormalization point µ. We demand of our system the properties

A
(
µ2
)

= 1 B
(
µ2
)

= mq (2.28)

where mq is the quark flavor dependent current mass. A standard value for the
renormalization point is µ = 19 GeV. We traded the cutoff dependency for a µ
dependency, which is a much better point of reference when there is need to compare
different calculations. Figure 2.2 shows the quark DSE in diagram form.

Figure 2.2: The dressed quark propagator (left side) is the heart of our calculations.
It contains the bare propagator and the hadronic quark self energy. The
self energy diagram contains the dressed quark itself, the dressed gluon
and the dressed quark-gluon vertex. Depending on notation, the two
diagrams are connected by a ’+’ or a ’-’ sign.
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2 Framework

Thus we solved the quark propagator for a given real momentum p. Usual current
masses used for calculations are listed in table I. These quark masses were determined
to produce the correct masses pseudoscalar and vector mesons. For the averaged
barud and the s quark pion and kaon were uses [10], for c the vector J/Ψ [12], and
for b the bottomonium ground states, especially the Y (1S) [22].

mūd ms mc mb

3.7 85 827 3680

Table I: Standard current masses for quarks used in DSE/BSE calculations. The
masses, together with the MT parameters are chosen to reproduce light
meson properties as bound state masses and decay constants, J/Ψ, and
bottomonium ground states. All masses are given in MeV.

 0.001
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 0.1
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 10

 1×10
−10
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 1×10
−6  0.0001  0.01  1  100  10000

M
(p

2
)

p
2
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2
]

−
ud

s
c
b

Figure 2.3: A standard set of quark masses as shown in table I used with the RL-MT
truncation produces quark mass functions as shown here. We see the the
chiral symmetry breaking in the mass function. At the renormalization
point µ, the mass function is fixed to the quark current masses.
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2.3 Solving the complex quark

When it comes to bound states, such as mesons we will need to extend the procedure
to the complex plane. A straight forward way to do this is to route the complex
part of the momentum through the gluon. This allows us to insert our real quark
in the equation for the complex quark. Then, we perform the integral only once
instead of doing a complex iteration. This is possible since we have an expression
for the effective interaction, which does not explicitly depend on the quark dressing
functions. Unfortunately, we will not be able to use this method for all calculations
in this thesis. We have to find other means to get complex expressions for A and B.

One such way [43,44] is the use of Cauchy’s Theorem, which implies that a function
f at a given point p2 can be found by integrating over a closed contour C via

f
(
p2
)

=
1

2iπ

∮
C

dq2 f (q2)

q2 − p2
(2.29)

To find a proper contour, we look into the momentum region we are actually inter-
ested in. First we change the momentum routing from passing the external (and thus
now complex) momentum p through the gluon via q = p − k, to passing it through
the internal quark. The loop momentum is now q2, while the momentum evaluated
in the internal quark reads as

k2 = p2 + q2 + 2(p · q) (2.30)

These probed points are, for a fixed momentum p, located on the shape of a parabola.
This parabola in turn is enclosed by a parabola parameterized as

p2 = x− 1

4
M2 ± iM

√
x (2.31)

for any given p2 with x ∈ {0,Λ2 + M2/4}, as long as the real part of the squared
momentum k2 is lower than the upper bound of x. M and Λ define the shape of
the parabola where M fixes the apex and Λ relates this representation to the cutoff
formerly used in the self energy integral. Together they define the new cutoff Λ̃, at
which both ends of the parabola are connected with a straight line to finalize the
closed contour we need. In reality, also values slightly higher than Λ̃2 are tested, but
the change compared to values lying on the contour is numerically negligible, so it is
sufficient to use these instead of performing involved extrapolations.
In terms of quadrature rules, we can express equation 2.29 in a numerically approach-
able form:

f
(
p2
)

=

∑
j

wjf(q2j )
q2j−p2∑

j
wj

q2j−p2
, (2.32)

with
2πi =

∑
j

wj
q2
j − p2

(2.33)
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2 Framework

Since numerical errors occur for tested inputs close to the contour border, a technical
trick is employed [45]. Writing the factor 2iπ as an interpolation of a function using
the same quadrature, basically any error mentioned above is divided out of the sys-
tem. There are even more sophisticated approaches to the problem of the complex
quark which can be found in e.g. [46].

We are now in a position to start investigating bound state physics using the quark
propagator in the complex plane and the Rainbow-Ladder/Maris-Tandy Kernel 2.21.
The method to do so will be described in the following chapter.
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3 Isospin in the meson sector

In this chapter we specify the general treatment of mesons in the Dyson-Schwinger/
Bethe-Salpeter approach. This allows us to investigate the manifestations of isospin
symmetry. We separate and analyze the impact of quark current masses and charge
on mesons masses to find a phenomenologically motivated model extension to the
functional DSE/BSE approach incorporating isospin symmetry breaking.

3.1 Mesons in DSE/BSE

In chapter 1, mesons were introduced as the easiest color neutral combination of
quarks and antiquarks, namely one of each with opposite color charge. In the func-
tional DSE/BSE formalism, all related information are encoded in the connected
quark-antiquark four point function T . This object contains any exchange in a given
theory between a propagating quark and its antiquark partner. Schematically, we de-
rive the homogeneous BSE for a mesonic bound state by starting with the scattering
equation of the T -Matrix

T = K + TSSK, (3.1)

as seen in figure 3.1. K denotes the interaction Kernel, in our case the RL-Kernel
from equation 2.21. The quark and antiquark are represented by their propagators S.
For readabiliy, we suppress indice and momentum dependencies. The derivation as
it is shown here is of course extremely simplified and only used to get a general idea
of the underlying process. For more involved discussion we suggest reading [47,48].

Figure 3.1: The inhomogeneous BSE for the T -matrix. The right hand side of the
equation consists of a ’bare’ interaction Kernel in our case the one gluon
exchange, and a T -matrix connected to a Kernel via dressed quarks.
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3 Isospin in the meson sector

Figure 3.2: Pole representation of T . The scattering matrix T can be approximated
by a sum of meson poles and regular parts, which are not interesting
for our concerns. The meson poles are defined by their bound state
amplitudes, which encode the quark-antiquart to meson transformation

Expressing T in the pole representation (figure 3.2), we get

T ' ΓΓ̄

P 2 +M2
+ reg (3.2)

where Γ is the bound state amplitude of a meson of mass M and reg sums up regular
and thus irrelevant parts of T . Plugging in equation 3.2 in equation 3.1 lets us solve
for

Γ = KSSΓ, (3.3)

which is the homogeneous BSE for mesonic bound states.
Important information we find in this exercise are the fact that any momentum P 2

that solves equation 3.3 corresponds to a bound state. P = p+ − p− is the total
momentum of quark (p+ = p+P/2) and antiquark (p− = p−P/2). Any non bound
states included in T , namely scattering states got projected out in the derivation.
Solutions for complex squared momenta correspond to resonances, which will not be
of further importance in this thesis. Solving the equation itself gives us two connected
information, masses and amplitudes. Finding a solution is the theoretical analogue
to measuring/detecting mesons in an experiment. The strategy to find these values

Figure 3.3: The cobination of T matrix BSE and pole representation leads us to the
meson bound state BSE. It is valid for bound state momenta P 2 = −M2,
and solved as an linear algebra eigenvalue problem. Normalization is
arbitrary if interest is only in the mass. For the amplitudes an aditional
condition must be employed.
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3.1 Mesons in DSE/BSE

involves an auxiliary parameter λ. We state

Γ
(
P 2
)

= λ
(
P 2
)
KSSΓ, (3.4)

which modifies the equation to resemble an eigenvalue problem, where Γ is the eigen-
vector. Any value P 2

∗ leading to λ (P 2
∗ ) = 1 corresponds to a solution of the actual

equation 3.3 and thus to a meson mass. Solving an eigenvalue problem for well be-
haved problems is straight forward.

We can also extract the meson amplitudes related to a bound state of specific mass
M2 = −P 2. To actually use them, we need to normalize Γ. The normalization
condition makes use of the eigenvalue λ again and is defined by [48](

d ln (λ (P 2))

dP 2

)−1∣∣∣
P 2=−M2

!
= Γ̄SSΓ. (3.5)

An example where amplitudes are needed would be calculations involving formfac-
tors. For any analyses presented in this thesis they are not directly employed, so
normalization is arbitrary.

Translating to a proper mathematical form, we get

Γ(p, P ) = −4

3
Z2

2

∫
d4k

(2π)4
Tµν (q) γµS (k+) Γ (k, P )S (k−) γν

αeff (q2)

q2
(3.6)

where the gluon Dµν(q = p− k) was treated as in equation 2.18 and αeff from equa-
tion 2.19. The loop momentum k is, as in the quark, usually integrated over via
hyperspherical coordinates.

This equation is a general expression for any meson. To further specify the actual
particle of interest, two informations need to be passed. First, we need to define the
quark content. This happens strictly in the current mass of the quark propagator,
since the effective interactions is flavor blind. Furthermore the quantum numbers of
the meson need to be set. This determines how the tensor structure of Γ is defined.
We work with pseudoscalar (Psi) and vector (Vi) mesons, so we give explicit bases
for these states:

Ps1 = γ5

Ps2 = −γ5 /P (3.7)

Ps3 = −γ5
/p

Ps4 = γ5[/p, /P ]
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3 Isospin in the meson sector

V µ
1 = iγµT

V µ
2 = γµT /P

V µ
3 = −γµT/p+ pµT1

V µ
4 = iγµT [/P , /p] + 2ipµT /P (3.8)

V µ
5 = pµT1

V µ
6 = pµT /P

V µ
7 = −ipµT/p

V µ
8 = pµT [/P , /p]

The index T means that the vector/matrix was constructed transversally to P . These
are specific bases, for example listed in [11]. In general, any basis system spanning
{γ5, γ5 /P , γ5/p, γ5[/p, /P ]} can be used for pseudoscalars. Higher spin states can be con-
structed as described in e.g. [39,49].

ΓPS(p, P ) =
4∑
i=1

Psi(p, P )ΓPS,i(p, P ) (3.9)

ΓµV (p, P ) =
8∑
i=1

Vi(p, P )ΓµV,i(p, P )

Now we discretize the integral, and the amplitude elements Γi are projected out.
Respective projectors can be found using linear algebra methods and need to satisfy

Γi(p, P ) = Tr[P
(µ)
i (p, P )Γ(µ)(p, P )]. (3.10)

Applying the projection to equation 3.6 gives an equation system that can be treated
as an eigenvalue problem as explained around equation 3.4. We are now able to
solve the bound state BSE for pseudoscalar and vector mesons and start focusing at
physics.
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3.1 Mesons in DSE/BSE

As mentioned in chapter 1, the u and d quark are usually treated as an averaged
particle ūd. Using the standard values for quark masses from chapter 2, a collection
of meson masses relevant for this thesis and calculated with our numerics is listed
in table I. The mass values are averaged for charged and neutral mesons. Pseu-

Mπ0 Mπ± MK0 MK± Mρ0 Mρ± Mφ

DSE 138.2 495.6 745.3 1075.4
Exp 135 139.5 497.6 493.6 775 775 1020

Table I: Standard meson masses in RL-MT with the presented parameter set. Since
isospin symmetry does not distinguish between charged and neutral pions,
kaons and rhos, the effective interaction is set to produce averaged masses.
The experimental values taken from the PDG [4]. All masses are given in
MeV.

doscalar mesons, together with their respective decay constant were used to fix the
model [10]. To find a proper c and b mass, the vector mesons masses MJ/Ψ = 3.1
GeV and MY (1S) = 9.46 GeV were used. Since we did only use the masses and did
not calculate the bound states ourself they are not listed in table I. The rho meson
is a bit too light while the phi is too heavy. In some cases alternative current quark
masses were used in calculations to cover the related vector current physics more
precisely [50]. This treatment trades better precision in the vector channel for dis-
torted pseudoscalar masses.

Smaller differences to other publications originate from different specifics as e.g.
Pauli-Villars regulators or MT-parameter.

We summarize some limitations of the used methods. All bound states are treated as
’pure’ quark states of one defined quark and one defined antiquark. For pion, kaon
and rho masses, charged and neutral states are degenerated. In isospin limit, u and
d quark have the same mass and charge is not included yet. Also, bound states do
not have a width using our method.

Before we start modifying our calculations, we remind the reader of an important fea-
ture of DSE/BSE systems. The Gell-Mass - Oakes - Renner relation (GMOR) [51]
is preserved, even in the ’simple’ system of RL-MT. This relation links the quark
current mass to the squared pion mass and is a direct implication of the pseudo-
goldstone boson nature of the pions. Figure 3.4 shows the calculated values for M2

π

versus the quark mass. We see an almost perfect linear behavior as expected from
the relations. In any GMOR like plot we show, the values for the physical masses of
neutral and charged pions are marked with a horizontal line.
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Figure 3.4: The Gell-Mann - Oakes - Renner relation shows the relation between
quark mass and the squared pion mass. The two horizontal lines mark
the physical pion masses at (0.135 GeV)2 and (0.140 GeV)2. We use this
plot mainly to show results for a range of different quark masses at a time
while keeping the pion mass splitting in our mind.

3.2 Modeling QED

We identified the two manifestations of isospin symmetry. Our next step is to modify
our calculations to handle quark mass and charge separately. Almost trivial is the
change in mass, since the current mass is explicitly treated in the equations. Inserting
different values for mu and md immediately lifts the content degeneration of π±, π0,
K±, K0, ρ± and ρ0. This step leads to the matter of defining particles by their quark
content. Previously, a pseudoscalar containing two quarks of mass mūd automatically
was labeled pion. The same was true for kaons (mūd and ms) and in the case of vector
mesons rhos (two times mūd again). Now, the content of π±(ud), K±(us), K0(ds)
and ρ±(ud) are clear, while the neutral states are left to be constructed from uu and
dd states. We use the quadratic average [52,53]

M2
π0 =

M2
uu,PS +M2

dd,PS

2
(3.11)
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3.2 Modeling QED

M2
ρ0 =

M2
uu,V +M2

dd,V

2
, (3.12)

where Muu,PS/V and Mdd,PS/V are the pure bound state masses for pseudoscalar and
vector quantum numbers. An alternative naive approach would be a linear averaging

Mπ0 =
Muu,PS +Mdd,PS

2
(3.13)

Mρ0 =
Muu,V +Mdd,V

2
. (3.14)

Comparing these two and possible other way to construct neutral mesons might be
an interesting topic for future work.

We mention or show some intermediate results and plots in this section to moti-
vate further modifications to the model. The discussion will follow in section 3.3,
when we are able to relate the findings to a coherent picture.

We tested pairs of mu and md constraining the choice so that the resulting charged
pion is physical, Mπ± = 140 MeV, while the mass of the neutral pion is open to
change. We find that the effects of the different mass in the quark and the bound
state seem to cancel each other, leading to the same result for both pions, Mπ± = Mπ0 .
This renders the pion splitting a perfect opportunity to fix the parameters of our ex-
panded model. The results for the mass pairs are listed in table II in section 3.3.

The more interesting parts are the electromagnetic corrections. We implement these
by adding an electromagnetic self energy to the quark. The first try was a naive
photon exchange with tree-level vertices. Corrections to the photon itself can be
neglected, since we know that lepton-loops are of a higher electromagnetic order.
Quark-loops were found to be even further subleading, which we know from hadronic
vacuum polarization considerations. Instead, analogue to the quark self energy, one
quark-photon vertex should be fully dressed with all twelve tensor structures. To
be able to solve the quark, we keep the leading structure corresponding to the bare
vertex γµ and drop the rest, similar to the truncation of the quark-gluon vertex. The
advantage of this procedure is that we arrive at a term simply added to the effective
interaction αeff . Photon and gluon are both transverse exchange bosons and thus
have the same tensor structure. Constructing a new effective interaction α̃eff of the
form

α̃eff = αQCDeff + αQEDeff , (3.15)

we identify
αQEDeff = α0Q

2
qZ̃QED

(
q2
)
, (3.16)

where Q2
q is the squared charge of the quark. α0 denotes the electromagnetic cou-

pling ate zero momentum transfer. Z̃QED corresponds to the dressing related to the
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3 Isospin in the meson sector

Figure 3.5: The QED extended DSE for the quark propagator. Additionally to bare
quark and hadronic self energy, we add an electromagnetic self energy.
The squared vertex denotes the truncated and modeled quark-photon
vertex.

vertex structure γµ. Our truncation dictates that it can only depend on the squared
gluon momentum. In figure 3.5 we show the new modified DSE with electromagnetic
exchange diagram and truncated vertex. We mark this vertex with a square.

Now we need to find a meaningful description of the dressing Z̃QED. The full quark-
photon vertex obeys a Ward-Takahashi identity derived from the U(1) gauge sym-
metry of QED

iP µΓµ (P, p) = S−1 (p+)− S−1 (p−) . (3.17)

The vertex can be separated in a transverse part ΓTµ , where the WTI yields the form

P µΓTµ = 0, (3.18)

and the fixed non-transverse part ΓNTµ , explicitly related to the quark dressing func-
tions. The resulting vertex, called Ball-Chiu vertex [54] consists of four of the twelve
tensor structures. It reads

ΓBCµ =γµ
A
(
p2

+

)
+ A

(
p2
−
)

2
+ 2/ppµ

A
(
p2

+

)
− A

(
p2
−
)

p2
+ − p2

−
(3.19)

− 2ipµ
B
(
p2

+

)
−B

(
p2
−
)

p2
+ − p2

−
.

We see that the tree-level vertex γµ is accompanied by the term

Γ1BC =
A
(
p2

+

)
+ A

(
p2
−
)

2
, (3.20)

but our truncation only allows dependences on the squared photon momentum q2.
Instead, we use an alternative ansatz, which satisfies fundamental requirements as
multiplicative renormalisability and correct perturbative behavior [55]. We effectively
substitute the quark A functions

A
(
p2

+

)
+ A

(
p2
−
)

2
' A

(
q2
)
. (3.21)
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3.2 Modeling QED

Figure 3.6: Meson bound state BSE with an additional photon exchange diagram.
The squared vertex is the same truncated modeled vertex we introduced
in the quark.

We now define the dressing as,

Z̃QED
(
q2
)

= fm
A1 (q2) + A2 (q2)

2
, (3.22)

where fm was introduced to compensate interaction strength relative to the QCD
part lost by dropping non-dominant tensor structures. A1 and A2 are the dressing
functions of the two quarks in the vertex. For the DSE, it will always be the same
quark, but in the meson BSE we have to average two potentially different flavors.

We fix fm by using the measured pion mass splitting. As mentioned before, in the
case of the pions, basically the full splitting is a result of electromagnetic interaction.
Knowing this, we extend our model to incorporate QED in the meson BSE while
keeping the quark mass degenerated, for now leaving only fm as an open parameter.

The natural way to extend the meson BSE is, analogue to what we did to the quark
DSE, add a photon exchange diagram mirroring the existing gluon exchange. Con-
trary to the DSE, we now have to deal with one quark and one antiquark. Previously
there was no difference in the treatment, but introducing a charge changed this and
has to be accounted for. Phenomenologically, we know that a bound state consti-
tuted by charged particles should have higher mass compared to the neutral state,
so we implement the additional diagram in an appropriate way. We show the BSE
diagram equation with the new contribution in figure 3.6.

Mathematically, the change is the same modification to αeff . Only this time with
a minus sign relative to the quark implementation, to treat the antiquark charge,
which is the anti charge Qq̄ = −Qq of its quark partner. These two minus signs
cancel and let us pretend that the antiquark is a quark. Now we calculate the meson
with the same modification as the quark, exchanging the squared quark charge Q2

q

by the product of the charges of the two quarks Q2
q → Q1 ·Q2.

This setup allows us to solve the system of u and d quark and uu, dd and ud bound
states for different fm. We know that the quark mass splitting contributions to the
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3 Isospin in the meson sector

pion mass splitting is of negligible size. We also found that in the probed range of
fm = 1 - 1.4 the effects in DSE and BSE cancel for the pure states uu and dd, while
the mixed state ud and thus ∆M2

π = M2
π±−M2

π0 changes. Adjusting fm so that Mπ±

and Mπ0 both have their physical value for a degenerated mass of the u and d quark
defines the model. We scan through u masses and find their d partner to produce
physical pions. These pairs, listed in table VII in the next section, are candidates
that need to be verified by the kaon mass splitting. To do so, we keep both masses
MK± and MK0 constant at their (rounded) measured values and try to find an s
quark mass producing these results with an u, d candidate pair. The masses we find
are

mu = 2.45 MeV md = 4.61 MeV ms = 84.88 MeV (3.23)

with a model fixed at

fm = 1.3. (3.24)

A consistency check, calculating all pseudoscalar masses we used to find these values
in the model, gives

mπ± = 140 MeV mK± = 494 MeV (3.25)

mπ0 = 135 MeV mK0 = 498 MeV

This is the full setting we use in the thesis. Before we consider applications, we use
the next section to show the explicit plots and results that took us all the way to
find the models parameter set.

3.3 Discussion of the results

In this section we take a close look at our actual results. The baseline to our meson
results are the masses shown in table I.

The first step we described was lifting current mass degeneracy. When we calcu-
late the charged pion, we can keep the mass fixed at the physical value Mπ± = 140
MeV. Running the code with the u mass as input, we vary the d mass until the sys-
tem converges. The pairs found were then used to calculate the neutral pion mass.
Table II shows the quark mass pairs and the corresponding bound state masses. We
see essentially no difference between the fixed Mπ± and the calculated Mπ0 . In the
quark dressing functions, we can see the influence of higher current mass directly,
since it is basically the only distinction between any quarks right now. The modified
quark masses does not seem to have enough impact to significantly change the meson
masses, however. The mass Mπ0 , being subject to one raised and one lowered mass
compared to an averaged quark stays the same as Mπ± .
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3.3 Discussion of the results

mu md Muu Mdd Mπ0

0.50 7.10 50.5 191.7 140.20
1.00 6.60 71.7 184.8 140.15
1.50 6.10 87.8 177.6 140.10
2.00 5.60 101.4 170.1 140.05
2.50 5.10 113.5 162.3 140.03
3.00 4.61 124.3 154.1 140.01
3.50 4.10 134.4 145.5 140.03
4.00 3.60 143.7 136.3 140.03

Table II: Results for lifted quark mass degeneracy. Fixing u and π± mass lets us
find corresponding d masses. These pairs produce uu and dd bound states
which we quadratically average to π0 masses. We see that no matter how
huge the quark mass splitting is, the recombined π0 mass stays unchanged.
All values are listed in MeV.

Considering other approaches, this is not surprising. Calculations of the electro-
magnetic corrections to the pion splitting explain almost the whole observed mass
difference and can be calculated by the Cottingham formular [56, 57]. Additionally,
lattice calculations yielded similar results, which can be found for example in a re-
view of low energy particle physics of the FLAG group [58].

The electromagnetic extension lets us investigate some more interesting cases. As
explained in the last section, we extended the quark DSE and meson BSE separately.
This allowed us to further analyze the cancellation of contributions stemming from
the quark versus the meson equation. The additional quark self energy behaves as a
raised mass. The quark charge always appears squared, so the flavor only determines
the extent of said raise. In the meson BSE, we have to distinguish between quark
and antiquark and adjust the sign of the extension accordingly, so that the overall
charged bound state gains additional mass.

Our first tests were performed using a bare photon vertex in the calculations. We
made use of our previous findings and keep the masses mu = md = mq degenerated,
since their impact on the pion splitting is negligible anyway. Now we calculated sys-
tems of mq, Muu, Mdd, Mπ0 and Mπ± . Even with the same mass, u and d quark and
thus their bound states are set apart by their charge. The influence of quark and
meson equation can be tested by turning the extra diagrams on an off. Test cases
were: QED only in the quark, QED only in the meson, and QED in both equations.
We show the results in GMOR like plots in figures 3.7 to 3.9.
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3 Isospin in the meson sector

mq Muu Mdd Mπ0 Mπ±

0.1 33.93 25.82 30.15 30.00
0.4 51.77 47.01 49.45 49.50
0.8 68.90 65.31 67.13 67.13
1.2 82.57 79.54 81.07 81.07
1.6 94.29 91.60 92.95 92.95
2.0 104.71 102.27 103.50 103.50
2.4 114.20 111.93 113.07 113.07
2.8 122.97 120.83 121.91 121.91
3.2 131.17 129.13 130.15 130.15
3.8 142.59 140.68 141.64 141.64

Table III: Calculated results for bound states of interest in MeV using a bare vertex
in the QED expansion implemented only in the quark DSE. The quark
mass is degenerated, u and d quark are defined by their respective charge.
All bound states acquire additional mass, u content always gaining more
by the higher u charge. The final pion masses are degenerated, u and d
changes cancel each other.
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π± with QED extension in the
quark DSE using a bare quark-photon vertex. Corresponding date is
listed in table III.
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3.3 Discussion of the results

mq Muu Mdd Mπ0 Mπ±

0.1 - 18.85 - 28.68
0.4 37.91 43.59 40.85 48.76
0.8 58.95 62.83 60.92 66.48
1.2 74.37 77.50 75.95 80.50
1.6 87.11 89.81 88.47 92.43
2.0 98.23 100.65 99.45 103.00
2.4 108.23 110.44 109.34 112.60
2.8 117.38 119.43 118.41 121.44
3.2 125.89 127.81 126.85 129.70
3.8 137.67 139.45 138.56 141.19

Table IV: Calculated results for bound states of interest in MeV using a bare vertex
in the QED expansion implemented only in the meson BSE. Bound states
where quark and antiquark have opposite charge experience a lowered mass
(uu, dd). Mπ± , with quark and antiquark of similar charge gains mass,
giving us the first significant pion mass splitting. Our BSE implementation
becomes unstable for very low masses, so we did not reach convergence for
Muu with mq = 0.1.
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π± with QED extension in the
meson BSE using a bare quark-photon vertex. We see the first relevant
pion mass splitting. Corresponding date is listed in table IV.
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3 Isospin in the meson sector

The data shows the expected effects of the QED extensions. Implementing the charge
in the DSE effectively raises the quark mass. The raised quark mass raises the bound
state mass for all calculated states. As seen in table III, the effect varies depending on
the quark content. Qu is twice as big as Qd, thus the gain is highest for Muu. An in-
teresting observation is, that the averaged effect in Mπ0 is exactly the same as in Mπ± .

In the case of only an extended BSE, we have to keep in mind how we set up the
model. We implemented the extension in a specific way, to ensure that an overall
charged meson has higher mass than a neutral particle. The absolute value of the
charge product determines how big the effect is. Figuratively speaking, the neutral
pion averaged over the loss and the charged pion averages the potential gain from
one u and one d quark charge. Results are listed in table IV.

Table V combines both extensions. All states have raised mass from the DSE, but at
the same time neutral final states lose mass from the BSE. Only Mπ± gets its mass
raised by both effects. Notable is, that the two effects negate each other and give us
Muu = Mdd = Mπ0 .

In general, calculating with quark masses producing pions around the physical pion
masses is enough, but we wanted to show two things. First, the quadratic dependency
keeps satisfied by the extension, which is reassuring. Secondly, the mass splitting is
independent of the quark mass. Intuitively this is natural, since electromagnetic
corrections to a bound state mass can be seen as a purely electromagnetic cloud in-

mq Muu Mdd Mπ0 Mπ±

0.1 22.59 22.60 22.60 35.05
0.4 45.38 45.34 45.36 52.50
0.8 64.17 64.10 64.13 69.43
1.2 78.64 78.54 78.59 83.00
1.6 90.84 90.73 90.79 94.65
2.0 101.61 101.48 101.54 105.03
2.4 111.35 111.21 111.13 114.49
2.8 120.31 120.16 120.24 123.22
3.2 128.66 128.50 128.58 131.39
3.8 140.28 140.09 140.18 142.79

Table V: Calculated results for bound states of interest in MeV using a bare vertex
in the QED expansion implemented in both the quark DSE and the meson
BSE. The two effects of DSE and BSE cancel almost perfectly for the pure
states Muu and Mdd and thus also for Mπ0 . The charged pion picks up
raised mass from both effects.
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Figure 3.9: GMOR plot forM2
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π± with QED extension in the quark
DSE and meson BSE using a bare quark-photon vertex. The difference
between the neutral states is numerically negligible. Masses are generally
raised, but the splitting originating from the BSE part is the same as
before. Corresponding date is listed in table V.

teracting with the particle. This cloud cannot see anything except the charge of the
particle and thus needs to behave as it does in our results. QCD corrections to the
photon vertex expose this line of thinking as naive, but so far, these were neglected.

The splitting we observe is not enough to explain the experimentally observed masses.
We already know that by omitting structures of the photon vertex, significant in-
formation is lost. Using the 1BC like vertex ansatz with equation 3.22, dependent
on the squared gluon momentum, is the best truncation we are able to implement.
Our calculations showed that it restores some of the lost strength, but an additional
compensation in form of a strength factor fm was needed to fit the model to the mea-
sured splitting. An unexpected finding was that Muu = Mdd was still valid for all
tested interaction strengths. Even with a nontrivial vertex, contributions from DSE
and BSE canceled each other within the scope of numerical accuracy. The influence
of the vertex can be understood as a quark dressing dependent effective charge. The
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Figure 3.10: Dependence of the pion mass splitting ∆M2
π of the strength factor fm.

The linear behavior easily allows us to identify fm = 1.3 as the necessary
model to reproduce physical pion splitting.

effective charge however will always be bigger than the bare charge, amplifying the
influence of DSE and BSE described previously. Since the behavior mirrors the case
of the bare vertex otherwise , we do not show additional plots for DSE and BSE
extensions separately.

The increase of ∆M2
π = M2

π± −M2
π0 with the strength factor fm was found to be al-

most linear (see figure 3.10). In the quark mass region of physical pions, the required
splitting could be constructed with

fm = 1.3. (3.26)

With an A dressing dependent vertex, the mq independence of the splitting was lost.
As seen in figure 3.11, the effect is tiny, so using a value of the general physical region
of mq is good enough. Table VI lists results for fm = 1.3 in the region of physical
pion masses.
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3.3 Discussion of the results

mq Muu Mdd Mπ0 Mπ±

2.4 111.53 111.38 111.45 117.39
2.8 120.51 120.33 120.42 125.96
3.2 128.87 128.68 128.77 134.00
3.8 140.50 140.28 140.39 145.23

Table VI: Bound state results for QED extension in both DSE and BSE with a 1BC
inspired vertex model in MeV. We show results for the strength factor fm
which produces the observed physical pion mass splitting.
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Figure 3.11: Results for M2
uu, M

2
dd, M

2
π0 and M2

π± with QED extension in the quark
DSE and meson BSE using a 1BC inspired quark-photon vertex. The
pion mass splitting is not necessarily independent of mq anymore, but
we see that the impact in the region of physical pion masses is negligible.

With fixed QED extension, we can get our focus back on the quark mass degeneracy.
While the interaction strength ensured the proper mass splitting, we were able to
concentrate on the charged pion to find potential u and d quark masses to produce
physical pions. The requirement was that we wanted to produce physical kaons
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3 Isospin in the meson sector

mu md ms (K0) ms (K±)

1.50 5.56 84.01 85.75
2.00 5.06 84.47 85.29
2.25 4.81 84.69 85.07
2.45 4.61 84.88 84.89
2.50 4.56 84.92 84.84
2.55 4.51 84.97 84.80
2.65 4.42 85.05 84.70
2.75 4.31 85.14 84.61
3.00 4.06 85.37 84.39
3.50 3.56 85.83 83.93

Table VII: Potential u, d pairs which produce physical pions. Each pair requires
different s quark masses to produce physical kaon masses. The pair that
uses the same s quark for both K± and K0 is the pair we use for our
model. All masses are listed in MeV.

simultaneously. We used these masses to find s quarks that solve the meson BSE for
physical kaons, where each u, d pair produces one s quark per kaon. A pair where
both s quarks coincide fixes the model. In table VII, we show the u, d masses and
the two s quarks generated by K± and K0.

The final masses we find this way, which we already pointed out in equation 3.23,
are

mu = 2.45 MeV md = 4.61 MeV ms = 84.88 MeV. (3.27)

While the model is to some extent phenomenologically motivated in its implementa-
tion, this set is surprisingly reasonable. The u and d quark mass splitting is of the
correct order, while the s quark varies only slightly compared to standard values in
RL-MT calculations. As a reminder, the masses were found by enforcing the physical
light meson masses and setting the correct pion splitting.
With the model parameters determined, we wanted to look into the effects on the
vector meson channel. This channel is supposedly most important in the calculation
of the hadronic vacuum polarization, which is the main motivation for this work.
We compared the influence of our modifications to the baseline results Mρ = 745.31
MeV and Mφ = 1075.36 MeV.

Test calculations we performed were done with the model masses without QED ex-
tension realized by fm = 0, the standard masses used for the baseline results with
QED extension, and the full model. The results for relevant bound states are listed
in table VIII. In the first column, we see how the split quark masses lower Muu

and raise Mdd compared to the baseline masses. The recombined neutral rho mass
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3.3 Discussion of the results

mu = 2.45 mu = 3.7 mu = 2.45
md = 4.61 md = 3.7 md = 4.61
ms = 84.88 ms = 85.0 ms = 84.88
fm = 0 fm = 1.3 fm = 1.3

Muu 738.95 745.82 739.43
Mdd 749.89 745.43 750.02
Mρ0 744.44 745.63 744.74
Mρ± 744.46 746.12 745.26
Mφ 1074.93 1075.83 1075.41

Table VIII: Bound state masses in the vector channel. All test cases produce a
splitting less than 0.6 MeV for the rho mesons. The phi meson also only
changes marginally. Considering the general numerical accuracy, changes
in the vector channel are basically nonexistent.

however does not show any splitting to the charged ρ, similar to the pseudoscalar
channel without electromagnetic model extension. The φ only experiences a slightly
lowered s mass, so Mφ is lowered minimally.

Second column shows the impact of the electromagnetic component in DSE and
BSE simultaneously. Compared to the pion, ρ and φ are significantly less influenced
by the extra terms. Changes around 0.5 MeV in the φ, and a ρ mass splitting of
the same magnitude in a system that is numerically less stable than its pseudoscalar
counterpart cannot give any deeper insights.

The last column shows results for the full model. In the pion case, we were able
to cover the full 5 MeV splitting, but here we see almost no change in splitting and
φ mass. The changes in Muu and Mdd for different u and d mass in column one and
three are way lower than what the pseudoscalar channel would produce. The vector
bound states generate their mass to a higher extend by their structure and depend
less on the current masses. Interpreting our model in a way of effectively changing
current masses in DSE and BSE with a defined prescription, does not have a huge
impact in the more ’stagnant’ vector masses.

It is essential to consider the fact, that the averaging of ’pure’ vector channel bound
states does not cover the well known problem of ρ − ω mixing [59]. The analysis
present in this thesis restricts itself in an analogous way of looking at the ρ to the
pion and does not incorporate any corrections in this direction. The reproduction of
the measured nonexistent ρ mass splitting can in this light only be seen as a hint in
the right direction and not much more.
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3 Isospin in the meson sector

It is hard to define a proper error to results calculated in our framework. We know
that the for HVP most important physics lie in the vector mesons, and thus want to
set up a quark mass set, which allows us to compute ρ and φ. Fixing the masses

Mρ = 775 MeV Mφ = 1020 MeV, (3.28)

with averaged u and d mass and without QED corrections, we find

mūd = 9.74 MeV ms = 69.54 MeV. (3.29)

Because of the above explained uncertainties in the rho channel, we cannot set up
the model directly by fixing it to the vector channel. Instead we take the deviation
between our model calculations to calculations using this quark set as our systematic
error.
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4 Application to the anomalous
magnetic moment of leptons

Chapter 4 summarizes the first application of our isospin symmetry breaking model.
We motivate the general interest in the anomalous magnetic moment of leptons al
and give an overview over the development of our understanding of this particular
observable, with separate focus on theoretical and experimental extraction. Next
we explain the functional approach to the hadronic vacuum polarization function.
Finally we single out the changes our model induces, and conclude with a discussion
of our results for µ and τ lepton.

4.1 Magnetic moments

As mentioned in the introduction, out group already spend some effort and achieved
respectable results concerning the analysis of anomalous magnetic moments of the
muon aµ [25–29]. The hadronic vacuum polarization in particular was shown to give
results comparable to dispersive calculations, while being derived from first princi-
ple calculations. The used polarization function ΠR is, in this attribute, superior to
most other approaches, since we do not need to separate high and low energy QCD
contributions. One logical step to extend our approach is to combine the existing
HVP calculations with our isospin symmetry breaking model from chapter 3.

The main reason why the leptonic anomalous magnetic moment is considered a
’smoking gun’ observable is the fact that it includes all given interactions of the
standard model. By logical extension, any new physics following a similar quantum
field description, would show up as well. These contributions are calculated sepa-
rately and by this distinction, it was possible to determine al as one of the most
precisely calculated property of particle physics. At the same time, extensive efforts
on the experimental side made this precision necessary to compete with measured
results [60]. Even now, a new experiment for the muon anomalous magnetic moment
is on its way at J-PARC [61]. The traditional setup is also still used at Fermilab to
further reinforce and improve the experimental value [62].
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4 Application to the anomalous magnetic moment of leptons

The following general overview over history, standard model results and experimen-
tal progress are mainly based on refs. [63, 64]. While we might quote some specific
references, not all original sources will be listed here, especially ones that are old or
hard to access. The affected references can be found in the listed summaries in this
case.

As for most leptonic observables, the first experimental approach was targeted at the
electron. In 1924, the Stern-Gerlach experiment was the first step in the measure-
ment of magnetic moments of leptons. Shortly after Goudsmith and Uhlenbeck [65]
postulated the electron magnetic dipole moment as

µe =
e

2me

, (4.1)

following the study of the anomalous Zeemann effect. While Pauli left the gyromag-
netic factor g in

~µl = gl
e

2ml

~S (4.2)

as a free parameter, Dirac presented the treatment of the relativistic electron with
gtheoe = 2 in 1928 [66]. Six years later Kinster and Houston measured gexpe = 2 and val-
idated Diracs prediction. Continuous improvement in the experimental measurement
techniques [67] and the growing theoretical understanding of QED renormalization
led to the agreement that the magnetic moment actually contains an anomalous part.
The famous lepton flavor independent Schwinger result from 1948 [68]

al =
α

2π
, (4.3)

which contributes around 99% of the electrons anomalous magnetic moment, was
at the time one of the most influential results, sparking interest and acceptance of
quantum field theories in the physicists community. With the refinement of mea-
surement, the theoretical calculations soon became dependent on the inclusion of
weak and strong contributions to achieve comparable precision [60]. While the elec-
tromagnetic parts strongly dominate the overall results, other parts were no longer
negligible, especially in the case of the muon. This was analyzed first by Berestetskii
in 1956, who reported an enhanced sensitivity for anomalous magnetic moments. His
finding was a proportionality

δal ∼
m2
l

M2
, (4.4)

where δal is the contribution to al of a quantum fluctuation with the given scale M
of the fluctuations theory. In the case of e.g. the weak interaction, this would be
the W-boson mass, for the strong interaction the scale ΛQCD. This statement has
two important implications. It shows that the muon has much bigger contributions
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4.2 Standard model contributions to g − 2

of non-QED theories than the electron, since the mass ratio(
mµ

me

)2

' 4 · 104 (4.5)

strongly favors the muon. As a side note, any measurement of the τ lepton would
outshine the muon, but by nature of the τ lifetime no reliable results have been
agreed upon yet. The second implication is the obvious decrease of impact in the
result with growing scale M . This means that we have an exceptionally precise tool
to investigate ’new physics’ in the direct proximity of the standard model.

Theoretical and experimental results for the muon are

aSMµ = 116591827(64) · 10−11, (4.6)

aExpµ = 116592089(63) · 10−11. (4.7)

An overview of different sources can be found in [63]. The general confidence in
the respective results and correlating errors poses an inquiring situation: using the
results that were calculated and measured for the muon, we find deviations well out
of the error range. It shows that research in the field of the anomalous magnetic
moment of the muon is far from being concluded. In the next two sections we give
compilation of theoretical and experimental approaches to the anomalous magnetic
moments of leptons with focus on the muon..

4.2 Standard model contributions to g − 2

The information of the magnetic moment is found in the lepton-lepton-photon vertex
Γµl . It is defined by

= ū (p′) Γαu (p) = ū (p′)

[
γαF1

(
k2
)

+
i

2mµ

σαβq
βF2

(
k2
)]
u (p) (4.8)

F1 and F2 are the Dirac and Pauli formfactors, the ū, u spinors describe the scattered
on-shell muon and q the external photon momentum which will eventually be set to
zero. Also, we use the notation σαβ = i [γα, γβ] /2.

We consider the matrix element

M = e ū (p′) Γµu (p)Aclµ (~k), (4.9)
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4 Application to the anomalous magnetic moment of leptons

with the momentum representation of the classical background field

Aclµ (x) =
(

0, ~A (~x)
)
. (4.10)

In the nonrelativistic limit the lepton spinors can be approximated by

u(p) '
√
ml

(
(1− ~p · ~σ/2ml) ξ

(1 + ~p · ~σ/2ml) ξ

)
. (4.11)

With vanishing photon momentum q → 0 and by expressing the photon via a mag-
netic field

Bk(~k) = −iεijkkiAj(~k), (4.12)

we get the following result

M = 2ml
e

ml

[F1(0) + F2(0)]

〈
σk

2

〉
Bk(~k), (4.13)

which identifies as a Born approximation with potential

V (~x) = −〈~µ〉 ~B(~x), (4.14)

〈~µ〉 =
e

ml

[F1(0) + F2(0)]

〈
~σ

2

〉
. (4.15)

Charge renormalization additionally gives us

F1(0) = 1, (4.16)

which lets us postulate

gl = 2 [F1(0) + F2(0)] = 2 + 2F2(0), (4.17)

leading finally to

al = F2(0) =
gl − 2

2
. (4.18)

More detailed derivations can be found in most quantum field theory text books, e.g.
in [69].

While it is possible to project F2 directly by applying

Pµ =
m2
l

q2 (q2 + 4m2
l )
γµ − i

ml (2m
2
l − q2)

q2 (q2 +m2)2 (p+ p′)µ (4.19)
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4.2 Standard model contributions to g − 2

to Γµ and taking the limit q → 0 afterwards, the numerical treatment is quite in-
volved. A more elegant alternative [70, 71] uses a linear expansion of the vertex in
the photon momentum q

Γµ (P, q) ' Γµ (P, 0) + qν
∂

∂qν
Γµ (P, q)∣∣

q=0

. (4.20)

This allows to directly work in the limit q → 0 and gives

al =
1

48ml

Tr

[(
/p+ml

)
[γα, γβ]

(
/p+ml

)( ∂

∂qα
Γβ

)]∣∣
q=0

. (4.21)

The standard model result for al is now constructed by identifying, calculating, and
adding up contributions from vertex corrections. By far dominant is the electromag-
netic correction It includes the Schwinger result 4.3 mentioned before. Because of the
perturbative nature of QED, its terms are understood, but by no means trivial to cal-
culate. Starting from second order, al includes lepton mass dependent contributions,
breaking lepton universality

ae 6= aµ 6= aτ . (4.22)

The Schwinger result represents lowest order in only one diagram, but second order
already consists of nine parts. We will from now on focus on aµ with explicit numbers.
The systematics however do not change for electron and τ . Diagrams 7,8 and 9 in
figure 4.2 show the QED photon vacuum polarization which is the equivalent of the
hadronic vacuum polarization we are interested in. The number of relevant diagrams
grows fast. Order three consists of 72 terms while fourth order already includes
around a thousand contributions. In 2012 even fifth order has been calculated [72].
Table I shows the different contributions of QED by loop order.

Figure 4.1: The Schwinger result dominates corrections to the magnetic moment of
leptons. Its origin is the QED one loop correction diagram to the muon
vertex.
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4 Application to the anomalous magnetic moment of leptons

Figure 4.2: The complexity of QED loop diagrams is perturbatively under control,
but the sheer amount of of diagrams rises fast. Second order already has
nine diagrams, including vacuum polarization diagrams.

Loop order aQEDµ [·1011]

2 413217.621(14)
3 30141.902(1)
4 380.807(25)

5 753.29(1.04)(α/π)5 ' 5

Table I: Results for the QED contributions to aµ up to fifth order loop diagrams.
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4.2 Standard model contributions to g − 2

Figure 4.3: Weak correction diagrams can also be treated perturbatively. The over-
all yield is so small that less than full third order is enough to satisfy
accuracy. This figure shows first order diagrams.

Weak interaction diagrams are also perturbative. Thus, calculations are again straight
forward, but we already know because of Berestetskii that any results are suppressed
by the heavier scale. Considering this, it is not surprising that already second or-
der, complemented by dominant third order diagrams are enough to arrive at an
acceptable precision. Figure 4.3 shows the lowest order weak diagrams. The weak
contribution to aµ is given by [73]

aweakµ = 153.5(1.0) · 10−11. (4.23)

Finally arriving at QCD, we find two distinct sorts of contributions shown in figure
4.4. The dominant part is the hadronic vacuum polarization. We will discuss it later
in in this chapter. For now, it is important to know that this part can be related
to experimental data [74,75]. With growing experimental precision, the result aHV Pµ

will as well get more reliable.
The second part is the hadronic light-by-light (HLbL) scattering. While our group
did a considerable amount of research on this topic, the present thesis does not focus
on it. We will therefor restrict ourself to general considerations. Light-by-light is

Figure 4.4: QCD contributions consist of hadronic vacuum polarization (a) and
hadronic light-by-light scattering (b).
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4 Application to the anomalous magnetic moment of leptons

QCD aµ[·1011]

HVP, LO 6949.1(58.2)
HVP, HO -98.4(1.0)

HLbL 105(26)

Table II: Results for the hadronic vacuum and hadronic light-by-light contributions
to aµ, as agreed upon in the community. Although the error in the HVP
result is the largest in calculating aµ, the connection to experimental data
will eventually resolve the uncertainty. HLbL on the other hand, is a topic
of continuous discussion.

contrary to HVP not yet relateable to experimental data. Thus, the accepted present
value was calculated using effective field theories giving rise to an error driven by
estimates. The debatable treatment of this contribution and its error marks it as an
interesting field of study right now. The results for hadronic contributions separated
in HVP leading order, higher order and HLbL [74,76] are listed in table II.

The standard model result for aµ is the sum of all present contributions. We ar-
rive at

aSMµ = 116591827(64) · 10−11, (4.24)

where the error is dominated by hadronic contributions.

4.3 Experiment

The main requirement,and also problem in earlier experimental approaches to mea-
sure the anomalous magnetic moment of the muon, is the production of polarized
muons. Parity violation in pion decays [77] however lead to the current predominant
experimental setup to measure aµ.

At CERN, measurements of the anomalous magnetic moment were conducted with
the CERN cyclotron (1958-1962), and a muon storage ring from 1962 until 1968 [78].
The measurements with the storage ring produced a deviation 1.7 σ between theory
and experiment, which made it necessary to include higher QED loop orders in the
calculation. A second muon storage ring at CERN [79], operation during 1969-1976,
was precise enough to measure the first hadronic contribution to aµ, the hadronic
vacuum polarization. With the experiment E821 at Brookhaven [80], running until
2003, the precision reached a point where even weak interaction contributions needed
to be included. The Brookhaven ring is nowadays used at Fermilab for the experi-
ment E989 [62] which aims to further reduce uncertainties.
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4.3 Experiment

Figure 4.5: Schematic view of experiments of the type of the former Brookhaven
experiment E821 and the new Fermilab experiment E989. The anomalous
magnetic moment of the muons in the storage ring can be detected by
measuring decay products after numerous circulations in the ring. [63]

The concept of this type of experiment is based in spin precession. To begin with,
protons hitting a target produce pions. These pions decay weak by

π → µ+ νµ, (4.25)

where the fixed neutrino handedness ensures a highly polarized muon beam. Figure
4.5 is taken from [63] and shows the experimental setup of the Brookhaven experiment
schematically. The trapped muons now move in a relativistic cyclotron motion with
frequency

ωc =
eB

mµγ
, (4.26)

γ being the Lorentz factor. The spin axis however changes according to the Larmor
precession. The angular frequency of the spin is given by

ωs =
eB

mµγ
+ aµ

eB

mµ

, (4.27)

which gives us direct access to the anomalous magnetic moment via

ωa = ωs − ωc. (4.28)
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4 Application to the anomalous magnetic moment of leptons

In reality this setup required an additional electric field to focus muons in the storage
ring. This field adds an extra term to the frequency

~ωa =
e

mµ

(
aµ ~B −

[
aµ −

1

γ2 − 1

]
~v × ~E

)
, (4.29)

where ~v is the muon velocity. Specific tuning of the beam energy to Emag = γm '
3.098 GeV allows to completely negate the term depending on the field ~E. This
“magic Energy” is the basis of the described type of experiment.

The resulting relativistic muons have the additional advantage that their lifetime
in the ring drastically rises. While the muon typically decays after ' 2.2 µs, it can
survive ' 64.4 µs in the ring. This allows many laps making for a more precise
measurement. The decay finally happens as

µ→ e+ νµ + νe, (4.30)

with the corresponding neutrino and anti-neutrino. The direction of positron emis-
sion is strongly determined by the muon spin direction. This correlation is used to
extract ωa from the counting rate, distribution and energy of the emitted positrons.
More detailed informations and additional sources can be found in [62,63,80].

Using this method the experimentally extracted value for aµ is

aExpµ = 116592089(63) · 10−11. (4.31)

The only known disadvantage of the explained treatment is also quite obvious. By
using the “magic Energy”, any experimental setup uses the exact same energy. This
could theoretically allow systematic uncertainties the different experiments share and
thus cannot be compensated by cross checking.

To provide such a cross check, an alternative setup was proposed and is currently
build and tested in Japan at J-PARC as experiment E34 [61]. Again, a proton beam
is used on a target to produce muons. In this case, interest lies on so called surface
muons, which are produced by decaying pions at rest. These muons are collected
to form Mu, an electron-muon muonium. With the help of lasers, thermal muons
can be extracted from exited Mu states, retaining sufficient polarization to proceed.
These muons are re-accelerated to an energy of 300 MeV and injected into a stor-
age ring. The main difference to conventional experiments is that these muons have
a very small transverse momentum dispersion. Effectively, the need for an electric
focusing field vanishes and the restriction of using Emag is lifted.
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4.4 Hadronic vacuum polarization

Figure 4.6: Schematic view of the setup of J-PARC experiment E34, [61]. The new
experimental setup is a great chance to allow an analysis of potentially
unknown systematic errors in the commonly used measurement method.

Some notes concerning efficiency should be mentioned. Compared to fast muons,
polarization is significantly lower. At the same time lower energy in the storage ring
directly correlates with muon lifetime and thus with spin precession. On the other
hand, lower energy allows a smaller diameter of the ring. Overall, already the promise
of the alternative systematics for measurements of anomalous magnetic moments
makes pursuing this approach worthwhile. A schematic view of the experiment is
shown in figure 4.6, which was published in [61].

4.4 Hadronic vacuum polarization

The QCD contribution we concentrate on is the hadronic vacuum polarization. To
get this specific part, we need to calculate the al projection of the diagram depicted
in figure 4.7, respectively solve the equation

aHV Pl =
α

π

∫ 1

0

dx(1− x)

[
−e2ΠR

(
x2

1− x
ml

)]
(4.32)

where ΠR is the renormalized hadronic polarization function [81]. This object con-
tains the physical behavior and is the focal point of the application of our model.
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4 Application to the anomalous magnetic moment of leptons

Figure 4.7: The hadronic vacuum polarization contribution to aµ is the main object of
interest in this thesis. The hadronic corrections to the photon propagator
in turn modify the photon correction to the muon vertex.

In the DSE/BSE approach, the hadronic polarization function is defined by the
hadronic self energy term of the photon DSE. We start from the QED Lagrangian

LQED = ZQED
ψ ψ̄

(
/∂ +m

)
ψ + ieZQED

ψA ψ̄ /Aψ + ZQED
A

FµνFµν
4

(4.33)

where Aµ is now the U(1) gauge field of a photon and F µν the field strength tensor. As
a part of the standard model, QED is renormalizable. Commonly the scale is chosen
to ensure physical electron mass and electric charge at the physical pole masses.

m
(
µ2 = m2

e

)
= mphys e

(
µ2 = 0

)
= ephys. (4.34)

The photon DSE is constructed in an analogous way to the quark DSE, using LQED
and applying functional derivatives with respect to the photon field. In euclidean
momentum space the inverse dressed photon propagator can be evaluated by

D−1
µν (p) = ZQED

A p2

(
δµν −

pµpν
p2

)
+ Πµν(p) (4.35)

diagrammatically shown in figure 4.8, with the explicit expression

Πµν(p) = −eZ2

∫
q

dq

(2π)4
Tr[S (q+) γµS (q−) Γν (p, q)] (4.36)

for the hadronic self energy tensor (q± = q ± p/2). Z2 is the quark renormalization.
At this point we need to insert quark propagators S (q±), as well as the quark-photon
vertex Γµ (p, q), which we already introduced in chapter 3. As with the quark, in
theory this equation is exact. By the insertion of our quark propagators and the
calculation of the photon vertex, we inherit truncations applied earlier. Figure 4.9
shows the self energy tensor in rainbow-ladder truncation. The self energy is cal-
culated for each quark flavor separately and joined in the end with its appropriate
charge factors.
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4.4 Hadronic vacuum polarization

Figure 4.8: The photon DSE gives us access to the hadronic photon self energy. In
the DSE/BSE framework, the self energy consists of a dressed quark loop
coupled to the photon with one bare and one fully dressed quark-photon
vertex.

Figure 4.9: The hadronic vacuum polarization of the photon is the self energy part
of the photon DSE. In Rainbow-Ladder truncation, it can be understood
as a summation of all planar diagrams emitting and absorbing gluons in
the quark loop. Gluon exchanges that go across the vertex contribute to
the dressed vertex, all other exchanges to the two dressed quarks.

Before we can concentrate on the extraction of the renormalized vacuum function
from the tensor, we need to explain the photon vertex. The general setup was
already mentioned in chapter 3. We have again twelve dressing functions Γi with
corresponding tensor structures Bµ

i separated in Lµi and T µi , spanning a basis of the
space

{γµ, pµ, qµ} ⊗
{
1, /p, /q,

[
/p, /q
]}
. (4.37)

We use this separated basis system allowing to identify the four Ball-Chiu structures
as Lµ1 to Lµ4 while the elements T µi cover the transversal part of the vertex. Explicitly
the basis reads [82]
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4 Application to the anomalous magnetic moment of leptons

Figure 4.10: The quark-photon vertex BSE generates a system of twelve coupled
integral equations. Compared to the meson BSE, additionally to the
increased size of the system, also an inhomogeneous bare vertex term is
included. This term allows to numerically solve it straight forward with
a fixed point iteration.

Lµ1 = γµ

Lµ2 = −
(
/p1

+ /p2

)
(p1 + p2)µ

Lµ3 = −i (p1 + p2)µ

Lµ4 = −iσµν (p1 + p2)ν

T µ1 = i (pµ1 (p2 · p3)− pµ2 (p1 · p3))

T µ2 = (pµ1 (p2 · p3)− pµ2 (p1 · p3))
(
/p1

+ /p2

)
T µ3 = /p3

pµ3 − p2
3γ

µ

T µ4 = −i
(
p2

3σ
µν (p1 + p2)ν + 2pµ3σλνp

λ
1p

ν
2

)
T µ5 = iσµνp3ν

T µ6 =
(
p2

1 − p2
2

)
γµ + (p1 + p2)µ /p3

T µ7 =
i

2

(
p2

1 − p2
2

) ((
/p1

+ /p2

)
γµ − (p1 + p2)µ

)
− i (p1 + p2)µ σλνp

λ
2p

ν
1

T µ8 = −γµσλνpλ2pν1 − /p2
pµ1 + /p1

pµ2

Here we use the notation p3 = p2 − p1 and σµν = (γµγν − γνγµ) /2, as written in the
reference. The vertex equation itself is a Bethe-Salpeter equation, given by

Γµ(p, q) = Z2γ
µ − 4

3
Z2

2

∫
dk

(2π)4
Dαν (q − k) γαS (q+) Γµ(p, k)S (q−) γν , (4.38)

where we went back to our previous notation for momenta. Mathematically, it is a
vector meson BSE with an inhomogeneous bare vertex term. Numerically, solving
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4.4 Hadronic vacuum polarization

Figure 4.11: The QED model extension to the DSE/BSE framework needs to be
implemented in the vector BSE as well. The procedure is analogous as
in the meson BSE before, by adding the photon correction diagram with
1BC motivated model vertex.

for the dressings Γi is even more straight forward, since the inhomogeneous term
renders the eigenvalue convergence obsolete. The projectors P µ

i needed to extract
the separate dressings satisfy

Tr[P µ
i B

µ
j ] = δij. (4.39)

They were calculated analogous to the projectors in the meson BSE using standard
linear algebra methods.
As before, we insert the extended model at the effective interaction level, treating

the antiquark-quark content as in the case of the mesons.

This gives us everything we need to work on the polarization tensor Πµν . As a
photon self energy, it is transversal. Thus we are able to define a unique dressing
function Π, by writing

Πµν (p) =

(
δµν −

pµpν
p2

)
p2Π

(
p2
)
. (4.40)

The transverse projector

P µν
Π (p) =

1

3

(
δµν −

pµpν
p2

)
(4.41)

applied to equation 4.36 gives us an explicit result for

p2Π
(
p2
)

= P µν
Π (p) Πµν

(
p2
)
. (4.42)

The vacuum polarization itself is logarithmically divergent and needs to be renor-
malized by adjusting renormalization constants in the photon DSE. Additionally, the
numerical treatment of calculating in hyperspherical coordinates, and introducing a
hard cutoff for the squared momentum, generates another unphysical quadratic cutoff
dependency. This artifact can be projected out using a Brown-Pennington projec-
tor [83]. Alternatively we can subtract it at p2 = 0. While we use the latter, both
methods were tested and agree very well. The explicit treatment is as follows. First
we take care of the quadratic term by subtracting the whole diagram at p2 = 0.[

p2Π
(
p2
)]
R

=
[
p2Π

(
p2
)]
−
[
p2Π

(
p2
)]∣∣

p2=0

(4.43)
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4 Application to the anomalous magnetic moment of leptons

Since the logarithmic divergence is unaffected by this subtraction, we need to apply
a second renormalization

ΠR

(
p2
)

=
[p2Π (p2)]R

p2
−
[

[p2Π (p2)]R
p2

]∣∣
p2=0

(4.44)

The resulting polarization function is finally cutoff independent. Further explana-
tions and considerations concerning numerical stability can be found in [50].

4.5 Results in HVP

Joining all previously explained parts together we have a way to implement our elec-
tromagnetic extension to the hadronic vacuum polarization by inserting the modified
quark propagators and photon vertex. Otherwise the calculation proceeds as before.

All in all, we performed HVP calculations with five distinguished set. We wanted to
investigate the influence of quark masses and electromagnetic corrections, and esti-
mate a model uncertainty. The results we refer to from now on, are listed in table
III for muon and IV for the τ lepton.

First, we take a look at our baseline set, standard masses without QED in the
effective coupling. Compared to previous calculations, e.g. in [50], our results are
generally ∼ 7% lower, which is in the estimated error range. As we noted in chapter
2, we use different quark systematics, and slightly different MT parameter, which
generate these deviations.

aHV Pµ in ·10−10 u d s c b (disc.)
∑

DSE/BSE error 455.5 113.9 57.7 11.0 0.0 638.1
DSE/BSE base 501.3 125.3 50.4 11.0 0.0 687.7
DSE/BSE baseQED 500.3 125.2 50.4 10.8 0.0 686.4
DSE/BSE ∆mq 511.8 123.4 50.5 11.0 0.0 696.3
DSE/BSE ∆mQED

q 510.9 123.4 50.4 10.8 0.0 695.1
BMWC 674.5 - 53.7 14.7 -12.8 711.0
Disp. - - - - - 694.9

Table III: HVP contributions to the anomalous magnetic moment of the µ lepton.
Lattice data was published by the Budapest-Marseille-Wuppertal collabo-
ration [84]. It does not add up, since numerous corrections were adminis-
tered to the final result, which are not listed for separate quark masses. In
the b quark column, we list disconnected lattice contributions, that need
to be subtracted. The dispersion relation result was taken from [63].
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4.5 Results in HVP

Our error set, which we set up to reproduce correct rho and phi massen in chapter
3, gives lower results for u and d, and higher for s flavor. The summed up result for
muon leads to ∼ 8− 9% difference to the full model. We use this to assume a moel
uncertainty of the order of 10% for our absolute values aHV Pµ .

When we turn on QED without quark mass splitting, we find corrections less than
0.2% to u, d and the overall result. The same can be observed when we compare
results for our model masses with and without electromagnetic contributions. Since
we already found similar behavior in the vector meson channel, these results are a
confirmation of our previous reflections.

There is no need to discuss quark mass splitting effects isolated, since QED seems
to be negligible in HVP anyway. When we compare our baseline results to the full
model, we find isospin corrections of ∼ 1.9% for the u flavor, ∼ 1.5% for d, and
∼ 1.1% for the full result.

Our results show a reasonable agreement with lattice data [84]. The lattice result
does not add up in the result tables, since corrections that were administered to the
full result were not listed for the flavor separate values. Some of these corrections
try to compensate for isospin symmetry breaking effects. There are some, in ref. [84]
labeled ’exploratory’ investigations [85], which report isospin effects of 1.5(4)% from
direct calculations. They perform a rescaling, reducing current mass dependency in
aµ, which gives a final result od 0.4(4)% for isospin symmetry breaking. These first
results and our calculations agree in the order of the effects and in the dominant role
of quark mass splitting as the reason for observed effects. We take this as a hint, that
our phenomenological model covers most of the relevant physics concerning hadronic
vacuum polarization.

The agreement with dispersive results is excellent [63]. Considering the estimated
error in our calculations, we have to admit that this precision is probably a lucky
coincidence, though.
The τ lepton hadronic vacuum polarization has not been calculated in the DSE/BSE
framework yet. We find ∼ 0.5% isospin corrections to the full result. Our agreement
with lattice results is even better than for the muon. Also, the estimated model error
leads to only ∼ 5% deviation between full model and error set results.

As full results for the hadronic vacuum polarization contribution to the anomalous
magnetic moment of µ and τ leptons, we report

aHV Pµ = 695.1 · 10−10 (4.45)

aHV Pτ = 350.2 · 10−8.
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4 Application to the anomalous magnetic moment of leptons

aHV Pτ in ·10−8 u d s c b (disc.)
∑

DSE/BSE error 219.8 54.9 38.1 23.7 0.7 337.3
DSE/BSE base 230.9 57.7 35.4 23.7 0.7 348.5
DSE/BSE baseQED 230.7 57.7 35.4 23.6 0.7 348.1
DSE/BSE ∆mq 233.4 57.3 35.4 23.7 0.7 350.5
DSE/BSE ∆mQED

q 233.2 57.3 35.4 23.6 0.7 350.2
BMWC 281.4 - 36.1 22.6 -2.4 341.1

Table IV: HVP contributions to the anomalous magnetic moment of the τ lepton. As
in table III, we compare to lattice data from [84]. The lattice overall result
is again only almost the sum of all contributions. Disconnected lattice
contributions are still listed in the b quark column.
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5 Corrections to couplings and the
weak mixing angle

We know that any process in particle physics, if it is observed precisely enough,
is subject to hadronic contributions as we analyzed before. Besides the anomalous
magnetic moments of leptons, we looked into corrections to αQED and sin2(θW ), the
weak mixing angle, following the lead of [30]. These lattice calculations focus on
quark-connected hadronic corrections in leading order in a Nf = 2 + 1 + 1 ensemble.
We apply our method to implement hadronic corrections in isospin limit as well as
separately for u- and d-quark, and compare our findings to referred lattice results
and if available to experimental findings collected in [86]. Chapter 5 summarizes this
analysis.

5.1 Electromagnetic coupling

We start with corrections to the electromagnetic coupling constant αQED. So far,
these corrections have been investigated mostly by lattice [87–89] and dispersive ap-
proaches [63,86]. With the tools, we acquired by calculating the anomalous magnetic
moment, we are well equipped to take a look ourselves.

The general form of radiative corrections of αQED is [90]

αQED
(
Q2
)

=
α0

1−∆αQED (Q2)
,

resumming the photon propagator. As usually, α0 ' 1/137.036 at zero momentum
transfer Q2 = 0. The treatment of the photon propagator is now exactly as in the
hadronic corrections to aµ, where all physical information is included in ΠR (Q2).
Leading order effects on αQED are identified [86] as

∆αHV PQED

(
Q2
)

= 4πα0ΠR

(
Q2
)
,

and can immediately be calculated. At this point we stress out again that our
polarization function is neither extracted from dispersion relations nor piece wise
constructed as most other approaches require. As the whole approach is based on
quark-connected contributions, different flavors can be treated separately.
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5 Corrections to couplings and the weak mixing angle

Table I shows results for ∆αHV PQED (Q2) in a momentum range between 0 and 10 GeV2

from lattice, dispersive analyses and our baseline calculations. Figure 5.1 shows the
same results for better overview. It seems that the our result closes in on lattice
and dispersive results for higher momenta, but in the lower energy region we clearly
overshoot the available data. Contrary to aµ, where we clearly see a influence of at
least the quark mass splitting, all results with our different sets produce basically
the same results. We show these in Table II.

Q2 [GeV2] DSE/BSE lattice disp. relation

0.02 0.175 0.163(05)(09) 0.174(02)
1 3.899 3.721(96)(145) 3.651(40)
2 5.278 4.993(102)(144) 4.916(61)
3 6.062 5.800(111)(151) 5.725(74)
4 6.565 6.396(108)(156) 6.333(84)
6 7.632 7.264(114)(159) 7.223(98)
8 7.934 7.906(124)(151) 7.850(107)
10 8.371 8.419(130)(159) 8.420(114)

Table I: DSE/BSE corrections to the electromagnetic coupling compared to lattice
calculations and dispersive results for baseline quark masses. Dispersive
results were taken from [86]. All results are listed in [·10−3].

Q2 [GeV2] base, noQED base, QED ∆mq, noQED ∆mq, QED

0.02 0.175 0.175 0.178 0.177
1 3.899 3.895 3.926 3.922
2 5.278 5.274 5.307 5.303
3 6.062 6.057 6.091 6.086
4 6.565 6.561 6.595 6.590
6 7.632 7.627 7.662 7.656
8 7.934 7.929 7.964 7.958
10 8.371 8.366 8.401 8.396

Table II: DSE/BSE corrections to the electromagnetic coupling in various settings.
We compare standard masses without QED extension, standard masses
with QED model, model masses without QED and the full model. All
results are listed in [·10−3].
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5.2 SU (2)L coupling and the weak mixing angle
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Figure 5.1: Leading order HVP contributions to αQED. We show a comparison be-
tween the data we calculated without any model extensions to the base-
line setting, lattice data and results from a dispersive approach.

5.2 SU (2)L coupling and the weak mixing angle

Extracting the leading order hadronic corrections of the coupling α2 is not as straight
forward as the electromagnetic counterpart. Unlike the resummed photon, we have
to investigate a mixing between the bosons, namely the Z-γ mixing. To do so, we
have to define the relevant currents [86, 90].

Jγµ =
∑
f

qf ψ̄fγµψf

J3
µ =

1

4

∑
f

ψ̄fγµ (1− γ5)ψf

JZµ = J3
µ − sin2 (θW ) Jγµ
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5 Corrections to couplings and the weak mixing angle

The current Jγµ corresponds to the photon, J3
µ to the third component of the weak

isospin and JZµ as a mix of the two above to the Z-boson, thus the object of interest.
In all currents we sum over all quark flavors f . We already see that in leading order
the Z-boson can be treated as if there was no mixing, the problem at hand reduces
to a γ − 3 -mixing

ΠZγ ' Π3γ = 〈J3
µJ

γ
ν 〉 .

Indeed, we can go even further in simplifying by looking at the structure of the two
currents J3

µ and Jγν . We know that photons behave as vector currents. At the same
time the third isospin component has a part which behaves as a vector, and an axial-
vector part which gets subtracted. Since in our approach vector and axial-vector
currents are strictly orthogonal, we don’t even have to consider the axial-vector part
and end up at

〈J3
µJ

γ
µ〉 = 〈(V − A)V 〉 = 〈V V 〉 = Πγγ

µν , (5.1)

which is the electromagnetic polarization tensor. This means the leading order cor-
rection to the weak coupling α2, actually depends on the same function as ∆αQED,
we only have to take the different charges of the respective interaction into account,
the coupling g2 instead of the electromagnetic charge e2.

Connecting all findings above, we are able to look into hadronic corrections to the
mixing angle sin2 (θW ). This angle, defined by

sin2 (θW ) =
e2

g2
=
αQED
α2

(5.2)

connects electromagnetic and weak interaction via the electroweak unification condi-
tion stated above. Thus, having calculated corrections to αQED and α2 immediately
allows us to extract corrections to sin2 (θW ). To do so, we rely on the zero momentum
transfer values sin2 (θ0)ex = 0.2356(20), and sin2 (θ0)th = 0.23871(9) which are the
experimental [91] and standard model results [92, 93]. In leading order logarithmic
approximation we have [94]

sin2 (θW ) = sin2 (θ0)
1−∆α2 (Q2)

1−∆αQED (Q2)
= sin2 (θ0)

(
1 + ∆

(
Q2
))

(5.3)

with
∆
(
Q2
)

= ∆sin2 (θW ) = ∆αQED
(
Q2
)
−∆α2

(
Q2
)
. (5.4)

Calculating the final corrections is straight forward and is summarized in table III
and plotted in figure 5.2. As with αQED, the influence of our model corrections are
shown in the separate table IV.
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5.2 SU (2)L coupling and the weak mixing angle

The behavior of the results is analogous to the electromagnetic coupling corrections.
Our calculations now undershoot the lattice results, and start to close in for higher
Q2. The corrections to the weak mixing angle, as ∆αHV PQED only depend on the hadronic
vacuum polarization function, we are not unduly surprised. We actually experienced
similar findings in the case of the Adler function in [50]. Again, isospin symmetry
breaking effects are not in a numerically relevant range.

Q2 [GeV2] DSE/BSE lattice

0.02 -1.698 -0.158(05)(08)
1 -3.885 -3.706(83)(127)
2 -5.285 -5.021(96)(135)
3 -6.106 -5.801(104)(135)
4 -6.665 -6.398(102)(135)
6 -7.633 -7.251(111)(136)
8 -8.100 -7.867(112)(137)
10 -8.566 -8.352(119)(138)

Table III: Corrections to the sine squared of the weak mixing angle. We compare
our baseline calculation to lattice data. All results are listed in [·10−3].

Q2 [GeV2] base, noQED base, QED model, noQED model QED

0.02 -1.698 -1.696 -1.704 -1.702
1 -3.885 -3.883 -3.892 -3.889
2 -5.285 -5.283 -5.293 -5.289
3 -6.106 -6.103 -6.113 -6.110
4 -6.665 -6.662 -6.673 -6.669
6 -7.633 -7.629 -7.640 -7.636
8 -8.100 -8.096 -8.107 -8.103
10 -8.566 -8.563 -8.574 -8.569

Table IV: Comparison of the influence of model extension to the weak mixing angle.
Since dispersive approaches lack reliable data, a reasonable comparison
to experimental values is not possible right now. A list of experiments
possibly leading to relevant data is given in [30]. All results are listed in
[·10−3].
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Figure 5.2: Leading order hadronic corrections to the sine squared of the weak mixing
angle. We show lattice data and our baseline results.
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6 Summary

In this chapter, we summarize the motivation and implementation of the isospin sym-
metry breaking model extension we implemented in quark DSE, bound state meson
BSE and the quark-photon vertex. We add some final words about potential further
research.

Following a general presentation of the used method, we focused on giving an insight
in the motivation behind the modifications we developed. We identified the observed
behavior of quarks and bound state masses to find a phenomenological approach to
include isospin symmetry breaking effects in our calculations. The different contri-
butions from quark mass splitting and electromagnetic effects were tested against
each other and baseline values calculated with a standard RL-MT model.

We were able to confirm that the expected dominance of electromagnetic correc-
tions to the pion mass splitting is uphold in the DSE/BSE framework. Even with a
maximum value for a quark current mass splitting of ∆mq = 6.6 MeV the observed
pion masses varied only by a value of Mπ±−Mπ0 = 0.2 MeV which can be considered
to be in a range of numerical uncertainty.

Including QED diagrams in quark and meson calculations on the other hand showed
promising behavior. By separately performing calculations with electromagnetic con-
tributions in DSE and/or BSE, we isolated the according influence on the bound state
masses. While quark corrections were implemented to always simulate an effectively
raised mass, the meson diagrams were used to favor final states with overall neutral
charge, by lowering their calculated mass. The used truncation of the quark-photon
vertex was influenced by the Ball-Chiu vertex, and models a 1BC-like vertex with
additional strengthening factor. This treatment allowed us to find a quark mass set
of mu = 2.45 MeV, md = 4.61 MeV and ms = 84.88 MeV which reproduce physical
masses for Mπ± , Mπ0 , MK± and MK0 simultaneously. The quadratic correlation be-
tween quark and pion mass is preserved. The almost quark mass independent mass
shift between charged and neutral pion mass is effectively a correction exclusively
induced by QED inclusion.

The influence of the model in the vector meson channel was found to be minimal.
We observe a similar picture to the pion case. Quark mass changes induce a rho
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6 Summary

aHV Pµ in ·10−10 u d s c b (disc.)
∑

DSE/BSE base 501.3 125.3 50.4 11.0 0.0 687.7
DSE/BSE ∆mq 510.9 123.4 50.4 10.8 0.0 695.1
BMWC 674.5 - 53.7 14.7 -12.8 711.0
Disp. - - - - - 694.9

Table I: HVP contributions to the anomalous magnetic moment of the µ lepton. We
show contributions by quark content, and the complete sum. Lattice data
was published by the Budapest-Marseille-Wuppertal collaboration [84]. The
lattice result does not sum up, since numerous corrections were administered
to the final result, which are not listed for separate quark masses. The
dispersion relation result was taken from [63].

aHV Pτ in ·10−8 u d s c b (disc.)
∑

DSE/BSE base 230.9 57.7 35.4 23.7 0.7 348.5
DSE/BSE model 233.2 57.3 35.4 23.6 0.7 350.2
BMWC 281.4 - 36.1 22.6 -2.4 341.1

Table II: HVP contributions to the anomalous magnetic moment of the τ lepton.

mass splitting below numerical accuracy. As a difference, the QED extension yields
only a mass difference of Mρ± −Mρ0 ' 0.5 MeV. While the experimental data does
indeed show no rho splitting, we are aware of crucial missing physical precesses as the
ρ−ω mixing which are not included in the model. We nonetheless see the result as a
small step to understanding the rho. Changes in the phi meson are negligible as well,
which further supports the understanding that the vector mesons are less dependent
on quark masses in general. To define a model error estimate, we set up a quark
mass set reproducing physical vector masses. The difference between calculations to
results acquired with this mass set was taken as uncertainty.

The main motivation to investigate isospin symmetry breaking was our ongoing re-
search on the anomalous magnetic moment of the muon. Implementing our extended
model via modified quark and quark-photon vertex let us analyze changes induced
by the different quark masses and QED contributions. We use different model pa-
rameters compared to prior results, amounting to a much better overall result for
the hadronic vacuum polarization. Though the calculation is essentially the same for
the other leptons, the numerical implementation was not stable enough to calculate
results for the electron. Results for muon and tau are summarized in tables I and II
and compared to lattice and dispersive calculations. As final overall results we give
for the hadronic vacuum polarization part of the muon anomalous magnetic moment
in the isospin limit and with isospin symmetry breaking model with an estimated
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model uncertainty of around 10%

aHV Pµ,isospin symm. = 687.7 · 10−10 (6.1)

aHV Pµ,isospin broken = 695.1 · 10−10. (6.2)

For the tau lepton, we report

aHV Pτ,isospin symm. = 348.46 · 10−8 (6.3)

aHV Pτ,isospin broken = 350.18 · 10−8. (6.4)

An alternative use of the hadronic polarization function is its role in the correction to
the electromagnetic coupling αQED and the weak mixing angle, which was brought
to our attention by [30]. The results for both observables agree reasonably well with
lattice and experiment, for a first try. While isospin breaking corrections lead to bet-
ter agreement to dispersive results in the case of magnetic moments, it seems that
any change to the isospin symmetric calculation is not reflected in the calculated
results.

Work on this topic is not, and probably will not be in near future, concluded yet. Fur-
ther research beyond the always interesting questions of applicable DSE truncations
and their corresponding bound state kernels, are for example different approaches
to the constructing of neutral states. A different construction of π0 will have some
impact on model parameters in our calculations. Already mentioned was ρ−ω mix-
ing, which is in itself an interesting topic. Similar to the truncation question, a more
sophisticated investigation on the quark-photon vertex in our model extension might
lead to new insights. Last but not least, we might be able to identify and calculate
additional observables using explicitly ΠR, as, with enhanced numerical stability the
electron anomalous magnetic moment ae.
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7 Appendix

7.1 Hyperspherical coordinates

Integration measure in hyperspherical coordinates to make use of symmetries∫
d4

(2π)4
→ 1

(2π)4

∫
d(k2)

k2

2

∫ 1

−1

dz
√

1− z2

∫ 1

−1

dy

∫ 2π

0

dφ (7.1)

and the parameterization of the integration momentum k

k =
√
k2


√

1− z2
√

1− y2 sinφ√
1− z2

√
1− y2 cosφ

y
√

1− z2

z

 (7.2)

In BSEs, it is convenient to chose the total momentum P in the rest-frame. The
parameterization can then be simplified as follows

P = (0, 0, 0,
√
P 2)T (7.3)

p =
√
p2 (0, 0,

√
1− z2

p , zp)
T (7.4)

k =
√
k2 (0,

√
1− z2

√
1− y2, y

√
1− z2, z)T (7.5)
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