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Abstract. Model checking is a fruitful application of computational logic with high
relevance to the verification of concurrent systems. While model checking is capable
of automatically testing that a concurrent system satisfies its formal specification,
it can not precisely locate an error and suggest a repair, i.e., a suitable correction,
to the system. In this paper, we tackle this problem by using principles from Al.
In particular, we introduce the abstract concept of a system repair problem, and
exemplify this concept on repair of concurrent programs and protocols. For the
development of our framework, we formally extend the concept of counterexample,
which has been proposed in model checking previously, and provide examples which
demonstrate the need for such an extension. Moreover, we investigate into optimiz-
ation issues for the problem of finding a repair, and present techniques which gain
in some cases a considerable reduction of the search space for a repair.
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1 Introduction

Model checking, which has been first proposed by Clarke and Emerson [9, 10], is an ap-
proach to automated verification of finite-state concurrent systems such as circuit designs
and communication protocols. In this approach, specifications are expressed in a propos-
itional temporal logic, and the concurrent system is modeled as a state transition graph,
which amounts to a Kripke structure for this logic. Checking whether the system satisfies its
specification, given by a logical formula, reduces then to test whether the Kripke structure
is a model of the formula.

Model checking has several important advantages over other methods for verification of
circuits and protocols, like mechanical theorem provers or proof checkers. The most relevant
one is that it is efficient and highly automatic. Recent advances in model checking by using
special data structures and algorithms, known as symbolic model checking, some of which
have more than 10'2° states [8]. A number of major companies including Intel, Motorola,
Fujitsu, and ATT have started using symbolic model checkers to verify actual circuits and
protocols. Thus, (symbolic) model checking is nowadays considered to be one of the most
fruitful and promising applications of computational logic.

On the other hand, various techniques for diagnostic reasoning on systems have been
developed in the field of Al, including logic-based approaches like model-based diagnosis
and repair [27]. These approaches utilize general AI principles and are successfully used in
different application domains. Our work approaches a new and promising field for application
of Al techniques, which is in particular attractive for knowledge representation and reasoning
methods, and thus adds to the application perspective of this field [1].

In this paper, we study the enhancement of model checking by abductive reasoning, which
is a major technique in AI and knowledge representation, cf. [40, 16, 31, 3, 29, 19, 42, 4].
The work presented does not exhaustively treat this issue, and further work is necessary;
however, it is a first step towards an integration of model checking with AI techniques, and
may stimulate other work in this direction.

The main contributions of the present paper can be summarized as follows.

e We study the integration of (symbolic) model checking and Al principles. In particular,
we introduce the system repair problem in the context of Computational Tree Logic
(CTL) (a temporal logic used to express the specifications of concurrent systems to be
checked), which is formal framework for repairing a concurrent system, described by
a Kripke model, at the semantical level. Notice that in a different context, repair was
introduced in [23, 24, 41].

The system repair problem amounts to an interesting abductive model revision problem:
Determine by abductive reasoning a suitable change of the system (i.e., of its Kripke
model) such that the specification is satisfied upon this change. Interestingly, this
problem is an intermingled abductive reasoning and theory revision problem, which is
best understood as an abductive theory revision problem. In fact, the system repair
problem can be modeled as an abductive theory revision problem in the frameworks
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of [33, 29]. Note that the close relationship between abduction and revision is well-
recognized, and its investigation received increasing interest more recently, e.g., [5, 29,
33, 34].

e We show that the proposed framework for system repair can be profitably used, by
providing an application to the repair of concurrent programs and protocols. In par-
ticular, we describe a program repair problem, in which repair of a concurrent program
in terms of changes at the syntactical level (i.e., modifications of the program code) is
mapped to changes at the semantical level. As dealing with all possible modifications
is clearly unfeasible, we restrict in our approach to some types modifications which
seem to be relevant in practice. A repair is then a sequence @ = oy --- oy of basic
corrections «; on the program, such that the modified program satisfies the specifica-
tion ¢. Applying Al principles and, in particular, Occam’s principle of parsimony, we
provide also a notion of minimal solution, that prunes solutions which are not free of
redundancy.

e We face the problem of searching for a program repair. In general, the search space
for this problem is large, and might still contain a number of candidates, even if only
elementary corrections such as inverting the value of an expression or exchanging the
name of a variable in a Boolean assignment statement are adopted as repairs.

In order to alleviate this problem, we develop optimization techniques which sensibly
reduce the search space for a repair by exploiting structural information about the
failure of the system provided by a counterexample. In particular, we formulate two
pruning criteria referred to as correction execution and correction exploitation, which
can be evaluated efficiently. In fact, given the program, a collection of candidate repairs,
and a counterexample, the candidates violating these principles can be discarded in
linear time. As we demonstrate, this may yield considerable savings, and thus applying
correction execution and exploitation is an effective pruning method which comes at
low computational cost.

e We formally extend the notion of counterexample from [11], which is a heuristically
selected computation path from a conceptual counterexample tree (i.e., an evolving
branching computation) that gives a hint at the failure of the system. As shown by
examples, there are cases in which no single path is a counterexample. We therefore
introduce the concept of a multi-path, which enables representation of nested paths.
Multi-paths turn out to be a suitable tool for expressing full counterexample trees,
which is needed for our purposes.

To give the flavor of theory and application developed in this paper, we discuss a motiv-
ating example.

Consider the concurrent program P in Figure 1. It consists of processes P, and Pg,
which share two common boolean variables x and y. To ensure mutual exclusion of the
assignments to x and y, some control variables, flags and turns, are introduced, following the
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Process P4 Process Pp
1. flaglA := true; 1. flaglB := true;
2: turnlB := false; 2: turnlB := false;
3: if flag1B & turn1B then 3: if flagl A & not turn1B then
4: goto 3; 4: goto 3;
5. =2 &y 5: z:=z & vy,
6: flag1A := false; 6: flag2B := true;
7: if turn1B then 7 turn2B := false;
8: begin flag2A := true; 8: if flag2A & not turn2B then
9: turn2B := true; 9: goto §;
10: if flag2B & turn2B then 10: y := not y;
11: goto 10; 11: z: =z or y;
12: y := false; 12: flag2B := false;
13: flag2A := false; 13: flag1B := false;
end; 14: goto 1;
14: goto 1;

Figure 1: A concurrent program P

classical Peterson scheme [38], in which each critical section is executed obeying an entry and
exit protocol. There are then two critical sections in each process, one for the assignments
to = (statements 5 in P, and statements 5-11 in Pg), and another one for the assignments
to y (statements 12 in P4 and 10 in Ppg, respectively); notice that in Pg, the critical section
for y is nested into the critical section for y. Each variable flagiV indicates the request of
process V' to enter critical section 7, and turniB tells whether such a request by process B
in case of simultaneous requests should be granted.

The critical sections have been set up for the purpose of fulfilling some part of the
system specification. The complete specification prescribes that P satisfies mutual exclusion
for assignments to x and y, respectively, and absence of starvation. For example, P, must
not, execute instruction 5, if P executes instruction 5 or 11 at the same time. Absence of
starvation requires that a request of a process for a resource (by setting a flag) must eventually
be granted. Clearly, this makes sense only under the hypothesis that the underlying scheduler
is fair; absence of starvation cannot be ensured if the scheduler always dispatches the same
process.

Careful inspection of P shows that the program is not correct, even under fair schedules;
instruction 2 of P4 should be turnlB := true. Even in this small example, however, detect-
ing the error is not immediate for the nonexpert. Model checking allows for checking the
correctness of P (and of much larger programs) in a fully automatic way. The specification
of the system, mutual exclusion and absence of starvation, can be expressed in the temporal
logic ACTL [26]; fair schedules are specified my means of fairness constraints [11]. Then,
an automatic procedure verifies whether the program meets the specifications or not. If the
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program is incorrect, however, model checkers usually can not single out the error precisely,
and are far from fixing a bug.

By using abductive reasoning, our method goes beyond error checking: it tries to locate
a bug and proposes a repair for the program, such that the modified program meets the
specification. Our approach considers possible errors both in the left and right side of an
assignment as well as the interchange of two successive assignments.

Like abduction, program repair comes at computational cost. Even if we assume the
case of a single error in the program and we plausibly restrict in Figure 1 attention to
the assignments of control variables, we must consider 12 assignments (1,2,6,8,9,13 in P,
and 1,2,6,7,12,13 in Pg) and 6 control variables. Thus, 77 attempts of repair (by a single
assignment modification or by interchanging two assignments) should be done, each of which
requires a call of the model checker to see if it works.

Towards more efficient program repair, we have designed optimization techniques, based
on counterexamples [11], for the case of a single error in the program, which is often con-
sidered in practice. By applying these techniques, our procedure makes only 17 (instead of
77) attempts in the worst case.

The remainder of this paper is structured as follows. In Section 2, we recall the syntax
and the semantics of the logic CTL. In Section 3, we address the problem of modifying a
system, given in terms of a Kripke structure, such that a given formula holds on it. In
the course of this, we introduce the notion of system repair problem, which provides a
general framework for the problem of properly changing a system at the semantical level
in order to meet a formal specification, given in CTL. A system repair problem constitutes
a kind of abductive model revision problem, and we outline how such a problem can be
represented in the frameworks for abductive theory change proposed in [33, 29]. After that,
we consider in Section 4 the corresponding problem at the syntactical level, in particular
the one of correcting concurrent programs and protocols. The program repair problem,
which is addressed there, resorts at the semantical level to a system repair problem. In
Section 5, we then address the problem of finding repairs. For this purpose, we suitably
generalize the notion of counterexample described in [11], and show that counterexamples
characterize errors. In the subsequent Section 6, we address optimization techniques which,
by use of counterexamples, may allow to considerably reduce the number of possible repairs
that have to be considered. In particular, we formulate correction execution and correction
exploitation, investigate their computational feasibility and show the effectiveness of the
techniques on an example. The final Section 7 concludes the paper and states some issues
for further work.

In order to increase readability, proofs of technical results except a few short ones have
been moved into the appendix.

2 Computational Tree Logic

Computational Tree Logic (CTL) is a propositional branching-time temporal logic [9]; see
[20, 12] for a rich background on this and further such logics. The semantics of CTL is given
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by Kripke Structures which model finite-state systems. CTL is used to represent specification
in reactive systems. Linear-time features of CTL are useful to capture ordering of events in
time. Branching time operators allow to take into account the existence of multiple possible
future scenarios, starting from a given point of a computation. Indeed, in a branching frame
the temporal order defines a tree which branches toward the future. Thus, every point of time
has a unique past, but, in general, more than one future. Branching time operators allow us
to deal with this form of non-determinism. Using these operators, we will express the truth
or falsehood of a certain property as being relative to a given branch of the computation
tree, such that we can express both possible properties (true in a possible evolution of time
in the future) and necessary ones (true in all possible computation branches).

CTL is a fragment of the more general logic CTL* [21], which combines both branching-
time and linear-time operators. The branching time operators are A and E, which intuitively
say “for every resp. some computation path”, and the basic linear-time operators are X (next
time), U (until), and 'V (unless, releases); further operators are derived from them.

Definition 2.1 Let A be a set of atomic propositions. CTL is the set of state formulas on
A inductively defined as follows:

(1) any atomic proposition a € A is a state formula.
(2) if ¢ and ¢ are state formulas, then —¢, ¢ V 9, and ¢ A ¢ are state formulas;
(3) if ¢ and ¢ are state formulas, then X¢, ¢Uy and ¢V are path formulas;
(4) if ¢ is a path formula, then E(¢) and A(¢) are state formulas.

Any formula ¢ which is formed only by (1)—(2) is called pure state formula. a

Intuitively, path formulas describe properties of paths because they use temporal oper-
ators next time, until and unless, looking forward in a computation path.

For a formal definition of the semantics of CTL, special Kripke structures are used.
Informally, a Kripke structure consists of a labeled finite transition graph.

Definition 2.2 A Kripke structure is a quintuple M = (A, Sy, S, R, L) such that:

e A is a finite set of atomic propositions;

S is a finite set of states;

So C S is a finite set of initial states;

R C S x S is a transition relation;

L : S — 2% is a mapping assigning each state of S the set of atomic proposition true
in that state; L is called label function.
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Given a Kripke structure M, we denote by A(M) its set of atomic propositions, by So(M)
the set of initial states, by S(M) the set of states, by R(M) the transition relation, and,
finally, by L(M) the label function. O

Starting from initial states, R generates the (infinite) computation paths.

Definition 2.3 A path 7 of a Kripke structure M is an infinite sequence [sg, s1, -« -, Si,* * ]
such that for each i > 0 (s;, s;41) € R. Given an integer ¢ > 0 and a path m we denote by
7(i) the i-th state of 7. Given an integer j > 0 and a path =, the j-suffix 77 of 7 is the path
[7(5),m(5 + 1), -] (clearly, 7 = 7 and 7 (i) = 7*(0)). O

The semantics of CTL is defined through an entailment relation |=, which can be applied
on states s and paths 7 for evaluating state or path formulas, respectively.

Definition 2.4 The entailment relation |= for state and path formulas on a Kripke structure
M is as follows (s and 7 is a generic state and path in M, respectively):

1. M,s =p,if pe L(M)(s), for any atomic proposition p € A

2. M,s = —¢,if M,s ~= ¢ (¢ is a state formula)

3. M,s = ¢1V o, if M,s = ¢y or M,s = ¢y (¢1, o are state formulas)

4. M,s = ¢1 A ¢o, if M,s = ¢ and M, s |= ¢o (01, ¢2 are state formulas)
5. M, s = E(1), if there exists a path = with 7(0) = s such that M, 7 = ¢
6. M,s = A(v), if M,n |=1 for all paths 7 with 7(0) = s

7. M,m = ¢, it M,7(0) = ¢ where ¢ is a state formula

8. M,n X, if M,7' = ¢

9. M, 7 |= ¢;Uds, if there exists an integer k > 0 such that M, 7* = ¢ and M, 77 = ¢4,
forall 0 <j <k

10. M, 7 = ¢V s, if for every k > 0, M, 77 [ ¢, for all 0 < j < k implies M, 7% = ¢,

We write M = ¢ if M, sy = ¢, for every initial state sg € So(M), a

Intuitively, a state formula holds along a path, if it is true at its first state; ¢;U¢, is
true, if ¢, is true along the path until some stage is reached at which ¢, is true; and ¢V,
is true, if there is no stage such that ¢, is false and ¢, is false at all previous previous stages.
Note that U and V are dual operators: ¢;U¢, is true precisely if —¢; V-, is false.

Two important additional operators, F (finally) and G (globally) are expressed through
U and V.
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Definition 2.5 Given a state formula ¢, the operators F and G are defined as follows:
e F¢ =truelop
e Go = falseV¢ (= —~F-9)

where true is a boolean tautology and false is a boolean contradiction. O

Thus, coherent with the intuition, M, 7 = F¢ means that there exists an integer k£ > 0
such that M, 7% = ¢, while M, = G¢ means that for every k > 0, M, 7% = 6.

EX, EG and EU (or, dually, AX, AF, and AV) can be seen as basic time operators of
CTL. The following equivalences are well-known (see e.g. [12]).

Proposition 2.1

AX¢ = ~EX(~¢) A(UY) = ~E(~pU(~¢ A 1)) A ~EG—)
AGo = ~EF(~9) A($VY) = ~E(~¢U—)
AFp=-EG(-¢) —A(~6U-v) = B($V)

For modeling fair computations, Kripke structure with fairness constraints (FC-Kripke
structure, for short) have been proposed.

Definition 2.6 An FC-Kripke structure M is an expansion of a Kripke Structure K =
(A, So, S, R,L) by a finite set F' of CTL formulas, called fairness constraints, i.e, M =
(A, So, S, R, L, F). a

For any FC-Kripke structure M, we denote by F'(M) its set of fairness constraints; the others
components of M are denoted as for ordinary Kripke structures.

The semantics of CTL formulas is adapted to fairness constraints by restricting the path
quantifiers to those paths along which every fairness constraint holds infinitely often, which
are called fair paths. More formally,

Definition 2.7 A path 7 in a FC-Kripke structure M is fair, if for every ¢ € F and i > 0
there exists an integer j > i such that M, 7 (j) = ¢. a

Entailment of state and path formulas from an FC-Kripke structure M is defined analog-
ous to entailment from a Kripke structure, with the only difference that path quantifiers A
and E evaluate to “for all fair paths in M” and “there exists a fair path in M,” respectively.
Since the notion of entailment will be clear from the context, we will use for both entailment
from a Kripke and a FC-Kripke structure the same symbol “E=.”
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3 Abductive Model Revision

In this section, we present an approach for changing a Kripke structure such that it satisfies
a given formula ¢. Our approach is in spirit of methods in the field of theory revision and
abductive reasoning, and can be viewed as a semantical approach to changing a system which
is represented by some Kripke model; typical such systems are concurrent programs and
protocols. This semantical approach can be utilized as the underlying basis of an approach
for change at the syntactical level of a system, i.e., its description in some formal specification
language. This will be exemplified with the problem of repairing concurrent programs and
protocols in the next section.

3.1 System Repair Problem

Given a CTL formula ¢ and an FC-Kripke structure M, a model checking technique can be
applied for verifying whether ¢ is satisfied by M or not. Actually, Symbolic Model Checking
(8, 36] gives as the result the set of states where ¢ holds or provides a counterexample, which
outlines a case in which ¢ does not hold.

This is, in general, very useful to the protocol or circuit designer, because it aids him or
her in understanding which part of the system fails, and is a clue for finding a modification
of the system such that the specification, given by formula ¢, holds. However, symbolic
model checking does not provide any methods for repairing the system. That is, there is
no component which suggests, given that the system does not satisfy the specification ¢, a
possible modification to the system upon which it satisfies ¢. Clearly, such a component
would be desirable in practice. Notice that the notion of repair (or therapy) in the context
of model-based diagnosis was introduced in [23, 24] and independently in [41].

For this purpose, we formalize the system repair problem as a problem, given by an FC-
Kripke structure M and a formula ¢, whose solution consists of a set of modifications to
the transition relation R (additions or deletions of tuples in R), such that ¢ is true in the
modified system. As shown by examples later on, a solution of an SRP may give a useful
clue of how to properly modify the system.

In what follows, we assume that M = (A, Sy, S, R, L, F') is an FC-Kripke structure and
¢ is a CTL formula.

We start with the elementary concept of a simple modification of the transition relation,
which is addition or a deletion of a state transition.

Definition 3.1 Let R C S x S. Every pair 6 = {(s1,2),®), where s; € S, s € S,
and @& € {—,+}, is a simple modification. The application of 6 on R, denoted 6(R), is
RU{(s1,89)},if & =+, and R\ {(s1, s2)} otherwise. O

A modification of the system M is a consistent set of simple modifications of its transition
relation R, where consistent means that no simultaneous addition and deletion of a given
pair of states is allowed. More precisely,
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Definition 3.2 A modification for M is a set [' of simple modifications for R such that I"
contains no tuples ((s}, s5),+), ((s],s5),=). Let I'" = {(s1,82) | (s1,82,+) € [} and I~ =
{(s1,52) | (s1,82,—) € I'}. The set of all modifications for M is denoted by mod(M). The
result T(M) of T is the FC-Kripke structure (A, Sy, S, R, L, F) where Rl = Nsep- 6(R) U
(User+ 6(R) \ R). O

Now we introduce the system repair problem. Intuitively, it represents the problem of
finding a system modification I" for M, such that I'(M) satisfies ¢. In general, I" must be
implemented on a formal description of the system (i.e., the code of concurrent programs
and protocols), and not every I" might be actually feasible; therefore, we add a function ),
which tells whether a particular modification I' is admissible.

Definition 3.3 A system repair problem (SRP) is a triple S = (M, ¢,)) where M is an
FC-structure, ¢ is a formula on A(M), and ) is a computable boolean function on mod(M).
Any modification I' such that Y(T") = true is called admissible. O

A SRP (M, ¢,)) is also called the repair problem of M w.r.t. ¢ under ). The admiss-
ibility function )’ is domain-dependent; e.g., in case of a concurrent program, ) is derived
from possible changes to the code of the processes.

A solution of an SRP states how the original system, which does presumably not satisfy
¢, has to be modified by means of a set I' of admissible modifications of its transition relation.

Definition 3.4 Given an SRP S = (M, ¢,)), a solution for S is an admissible modification
[ for M such that I'(M) = ¢. A solution I' for S is minimal, if there exists no solution I"
for S such that I' is properly contained in I'. O

The restriction of arbitrary solutions to minimal ones is natural and implements Occam’s
principle of parsimony. In general, a solution preference could be used to select preferred
solutions as customary in e.g. abductive reasoning, cf. [18].

Example 3.1 Consider the SRP § = (M, ¢,)), where M is the FC-Kripke structure
as obvious from Figure 2 with unique initial state sq and no fairness constraints, ¢ =
AGAFa, and Y = true, i.e., each modification I' is admissible. (Note that R(M) =
{(s0, 50), (S0, 51), (51,51)}.) It holds that M = ¢: For the path m = [sq, s1, 51, ...}, we have

2s0) = {0} (Jo———=4 ) Lsn) = (1)

S0 s1

Figure 2: Labeled transition graph

M, %= GAFa, as it can be easily seen that M, 7! = EG—a. A solution of S is the modific-
ation I'y = {(so, s1, —)}, i.e., delete the transition from sq to s;. Indeed, then m = [sy, so, . . .]
is the unique infinite path starting at an initial state, and a is true at each stage of 7. Further
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solutions are e.g. I'y = {(s1, 51, —), (51, 80, +)} and I's = {{s¢, $1, —), (S0, S0, —) }. Notice that
I'; is minimal, while I’y and I'y are not. In fact, I'; and T’y = {(s1,s1,—)} are all minimal
solutions of S. O

Comparing system repair to problems in Al it appears that an SRP is an interesting
kind of abductive model revision problem, which involves both theory revision and abductive
reasoning. From the definition, an SRP can neither be viewed as a pure theory revision
problem (cf. [30, 25]), nor as a pure abductive reasoning task as e.g. in [40, 16, 31, 3, 19, 42, 4];
rather, it is a combined problem and can be best understood (and modeled) as an abductive
theory revision problem [33, 29].

On the one hand, an SRP is similar to a theory revision problem. Indeed, the FC-Kripke
structure M can be viewed as the set Th(M) of all formulas true on it, and we have to
revise this knowledge base by incorporating the formula ¢ (the specification) into it. Here,
the revised knowledge base M o ¢ must amount to a modified FC-Kripke structure M’ such
that M’ entails ¢.

On the other hand, an SRP involves abductive reasoning: given M and ¢, we want to
find a particular modification I' € mod(M) such that applying I' to M yields a structure
M' =T(M) in which ¢ is true; thus, we abduce a solution I' for the SRP in terms of changes
to the transition relation. This can be formalized in a proper logical language. However,
this does not mean an SRP is a genuine abductive reasoning task; in fact, abduction is
applied in case of incomplete knowledge, which is in this view about the suitable changes
for transforming M into M’'. This is a somewhat unnatural state-oriented view, though,
since like in planning, we proceed from one state (M) to another (M’), and the transition is
specified in the domain theory using frame axioms.

3.2 System repair and abductive theory revision

More naturally, a SRP can be viewed as an abductive theory revision problem. We outline
in the following how this is possible in the frameworks of [33] and [29].

SRP in Lobo and Uzcategui’s framework. In [33], the following scenario is considered.
Given an abductive domain theory X, a knowledge base K, a formula w (all in a finite
language), and a revision operator o, a suitable formula v is an explanation for w (w.r.t.
K, ¥ and o), if the knowledge base K o (X A7) entails w. Suitability of v means that -~ is
formed over a specified set Ab of abducible atoms. An explanation ~ can be seen as a proper
abductively inferred revision for incorporating w into the knowledge base.

An SRP § = (M, ¢,)) can be modeled in this framework as follows. It is possible to
express the entailment problem M |= ¢ as an inference problem K = f(¢) of a formula
f(¢) from a knowledge base K in a suitable logic £, where K, describes M and f(¢) is
a translation of ¢ into £; e.g., £ could be transitive closure logic if M is serial (i.e., each
state has a successor) and no fairness constraints are present [28], or a similar extension of
first-order logic with generalized quantifiers in the general case. Following [28] and similar
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translations of propositional modal logic into first-order logic, K,; can be constructed as
a set of literals describing the components of M; the states are constants, ground literals
+R(s,s') describe the transition relation, and ground literals £P,(s) represent the label
function, where P,(s) means that a € L(s), for each atom a € A(M).

Now choose Ab to be the set of all ground atoms on R, and let the domain theory X be
empty. Furthermore, let us restrict acceptable abductive explanations to formulas v which
are conjunctions of literals.

Then, an acceptable abductive explanation 7 for the formula f(¢) according to Kj, and
any reasonable revision operator o (see [30, 25]), is a conjunction of ground literals on R.
Any such 7 corresponds to a set I' € mod(M) as follows: For each positive literal R(s, s') in
7, the tuple (s,s’,+) is in I', and for each negative literal —=R(s,s’) in =, the tuple (s,s’, —)
is in I'. If I' is admissible, then it is a solution of §; call v admissible in this case. Vice
versa, each solution I' of the SRP S corresponds to an admissible explanation 7 in the same
way. Thus, there is a one-to-one logical correspondence between admissible explanations v of
f(¢) and solutions I" of S. In particular, modulo ) the minimal solutions of S correspond to
the most general admissible explanations v, i.e. any admissible explanation 7' with v = +/
satisfies v/ = 7. The disjunction of all these v is an abductive explanation, provided o
satisfies some property [33], and amounts to the collection of all minimal solutions of S.

Thus, an SRP can be modeled as (slightly constrained) abductive revision problem as
described in [33].! We remark that in the above modeling, the domain theory ¥ is empty.
Of course, we could have set X to the part of K, not involving R, but this would not make
a difference. Moreover, in some cases the admissibility function ) can be easily expressed in
the domain theory.

SRP in Inoue and Sakama’s framework. In [29], an extended form of abduction is
proposed, which is employed for an abductive framework of nonmonotonic theory change.
The framework is detailed for autoepistemic logic, but it can be analogously based on other
logics as well. In this approach, an abductive framework is a pair (T, H) of theories T" and
H, where T is the background theory (containing domain and factual knowledge) and H is
a set of generic hypotheses; an explanation for a formula v given (T, H) is a pair (I, O) such
that I and O are instances of formulas in H, (T'U )\ O logically entails y, and (T UI)\ O
is consistent. An explanation (7, O) is minimal, if every explanation (I’,O’) with I' C I and
O’ C O is identical to (I, 0).

The salient point in Inoue and Sakama’s concept of abductive explanation is that formulas
may also be removed from the background theory T, rather than only added. This is
motivated by their observation that in a nonmonotonic context, it may be necessary to
remove formulas from 7" in order to find an explanation for a formula ~.

An SRP § = (M, ¢,Y) can be modeled in Inoue and Sakama’s framework as follows. As
described above, the entailment problem M = ¢ can be expressed as an inference problem
Ky = f(¢) in a suitable logic £ (e.g., transitive closure logic). If we take K, as background

'Tn fact, Lobo and Uzcitegui work in a finite propositional language; their framework can be extended
for the slightly more general setting here.
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theory T and the set {R(x,y), R(z,y)} as generic hypotheses H, then the solutions of S
naturally correspond to the explanations of v = f(¢) obtained from (T, H) as follows.
If T is a solution of S, then the pair (Is,Og) is an explanation of v, where

Is = {R(s,s")|(s,8)eTT}U{=R(s,5) | (s,8) e},
Os = {-R(s,8)|(s,s) e TT}U{R(s,s) | (s,8) €T}

On the other hand, if (I, O) is an explanation of 7, then the set I'; o) = {(s, s', +) | R(s, ") €
I\ O} U {(s,s",=) | 7R(s,s") € I\ O} is a solution of S, provided I'(; o) is admissible in
terms of )). Notice that this establishes a natural one-to-one logical correspondence between
minimal solutions and minimal admissible explanations, where the admissible explanations
(I,0) are those such that I'(; oy is admissible. As in the previous case, the admissibility
function ) may be expressed in some cases in the background theory 7'

4 Repair of Concurrent Programs

In this section, we apply the model from above to concurrent programs and protocols. A
concurrent program consists of a number of processes running in parallel. In [39], proposi-
tional temporal logic is used for representing specifications for concurrent programs and for
defining a technique to verify such a specification. We adopt Pnueli’s model [39] for repres-
enting concurrent programs, in order to have a clear and synthetic way of representing the
semantics of concurrent programs. We then define the FC-Kripke structure of a concurrent
program under the assumption that shared variables have a boolean domain. The transition
relation is defined referring to an asynchronous model with interleaving [36]. Specifications
for the program are described by using both CTL formulas and fairness constraints. Fair-
ness constraints allow to express properties that must be verified infinitely often along paths
(which are not expressible in CTL). Such properties are frequently required in the context
of concurrency, e.g., for the fair scheduling of processes.

Consider then the FC-Kripke structure of a concurrent program P; denote this structure
by Mp(P). Let ¢ be a CTL formula comprising all specifications required for P. Suppose
that ¢ is not satisfied, that is Mp(P) & ¢. The problem of modifying the original program
in order to make ¢ true is nontrivial.

In this section, we deal with this issue under particular assumptions about error types.
In particular, we address the cases in which errors are faulty assignments and disordered
successive assignments. We show that this problem has a direct mapping into the system
repair problem from the previous section. Determining a program repair and optimization
issues will be dealt with in subsequent sections.

4.1 Concurrent programs and FC-Kripke structures

A concurrent program P is composed of a finite collection P, ..., P, of processes running
in parallel. We refer to a model with shared memory; hence, all variables z1, x5, ..., z; in P,
which we denote by x, are accessible to all processes.
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According to Pnueli’s model [39], each process P; can be represented by a directed labeled
graph G(P;) = (N;, E;), the graph of P;, where N; is the set of nodes and E; is the set of
labeled directed edges.

The nodes N; are an initial segment 1,2,...,m; of the integers. They represent the
break points in the code of P;, which are the points before the code and between successive
statements in ascending order. We denote by stmnt” (i,b) the statement immediately after
break point b in the code of P;; if clear from the context, P and i are omitted. The code
between two subsequent break points is considered atomic in the parallel execution.

We suppose that the following types of statements are available:

(1) empty statement, denoted by ¢;

(2) assignment statement: z; := g(x), where g(x) is an expression over variables in x
compatible with the type of z;;

(3) jump statement: goto break_point,

(4) conditional statement: ifc(x) then stmnt, where c(x) is a boolean expression over
variables in x; and,

(5) compound statement: begin stmnt-1; ... stmnt-n end.

In order to assure that each process P; is nonterminating (that is usual in this framework),
we assume that the last statement of P; is an unconditional jump. An infinite loop b : goto
b can easily be added at the end of a process.

The arcs F; correspond to the possible execution flow of the program. From every
break point b, there is at least one arc leading to another break point, depending on the
type of stmnt(b). Moreover, each arc a is labeled with a command [(a), which is a pair
(c(x), stmnt) of a boolean condition ¢(x) (the guard) and a statement stmnt, which is either
€ or an assignment.

e if stmnt(b) is € or an assignment, an arc b — b+1 is present, labeled with (true, stmnt(b));

o If stmnt(b) is a jump statement goto p, then an arc b — p is present, labeled with
(true,e);

o If stmnt(b) is a conditional statement if c(x) then p: stmnt, where p is a break point,
then arcs b — p and b — ¢ are present, where ¢ is the first break point after stmnt (note
that p = b+ 1). The labels of the arcs are [(b,p) = (c(x),€) and (b, q) = (—c(x)), €),
respectively:;

o If stmnt(b) is a compound statement begin stmnt-1; by: stmnt-2; ...b,:stmnt-n end,
then consider by: stmnt-1; ...b,: stmnt-n, where stmnt-1 inherits its break point by = b
from stmnt(b).



IFIG RR 9701 15

—~
-~

Figure 3: Graph G(P,) for the process P, from Figure 1

Thus, more than one arc may leave from a node in the graph, reflecting the different
execution paths of a process. For convenience, we sometimes omit true and € in commands;
in particular, () is (true,€). An example of a process graph is shown in Figure 3.
Remark. The above language for programs is elementary, but can be easily enriched by fur-
ther types of statements. E.g., conditional statements with else-branches of the form “if ¢(x)
then stmnt-1 else stmnt-2” or while-loops “while ¢(x) do stmnt’ may be added. Such state-
ments are straightforward translated into equivalent sequences of elementary statements
using jump-statements as usual. The graph of a process in such a syntactically enriched
language is then given by the graph of the transformed program. Alternatively, the process
graph could be defined directly, without resorting to a low level transformation; however,
the definition becomes more involved. In order to keep the treatment simple, we refrain from
explicitly considering an enriched syntax.

If the program contains also synchronization primitives such as semaphores, the syn-
chronization statement can be easily represented by using guards. For instance, if s is a
semaphore, the wait primitive P(s) corresponds to the command (s > 0,s := s—1), and the
signal primitive V' (s) corresponds to (true,s:= s+ 1).

Note that for this kind of statement, the disjunction between guards of all arcs leaving
a node, i.e., the exit condition from this node, is not necessarily true (different from the
previous statements); because of synchronization statements, a process can remain trapped
in a node until some condition is verified. O

Now we provide a formal representation of the execution of a concurrent program. In-
tuitively, the execution of a single process corresponds to a traversal of the process graph
driven by the result of the evaluation of the guards and involving all the actions (assign-
ments) defined in the commands labeling arcs. The concurrent execution can be represented
as the interleaved execution of all processes under the assumption that any single command
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is atomic. If we want to faithfully model a possible interference between the fetching and
storing of operands, we may have to replace an assignment statement by a chain of assign-
ments [39]. For example, an assignment z := 7 V x9, where the evaluation of z; V x5 should
be not atomic, can be modeled by z; := z1, 25 := x9; * := 21 V 29, where z; and 2, are
temporary variables and evaluating z; V 2o is atomic (see [39] for a detailed discussion on
this topic).

Formally, a concurrent program P = P, ..., P, can be modeled using FC-Kripke struc-
tures as follows. Let x = z4,...,2, be the variables of P, which range over the domains
D, ..., Dy, resp. For each process P;, let N; = {1,2,...,m;} be the set of its break points.

Note that specifications for the program are expressed both by CTL formulas and by
fairness constraints.

In what follows, we assume that all variables x; are Boolean. Clearly, the general case of
finite domains D; can be modeled with Boolean variables. For each x;, an atomic proposition
x? for each value d € D; can be used, corresponding to “z; = d;” alternatively, [log|D;|]
many Boolean variables x; ; allow for a binary representation of the value of z;. As observed
in [11], automatic techniques of model checking can be applied only in the case of small
finite domains, due to the resulting size of the state space. E.g., in programs which encode
concurrent, protocols, variables usually represent control flags, switches, and similar objects
whose values are from small discrete domains. Hence, such programs are suitable candidates
for verification and repair as developed in the sequel.

Definition 4.1 Let P be a program. The FC-Kripke structure Mp(P) = (A, S, So, R, L, F),
(the Kripke structure of P, if F' is understood), is as follows:

— set of atomic propositions A. A = Vars U BU E, where

e Vars = {x1,...,2,} is the set of all variables in P.

e B={bF|1<i<n,1<k<m}. Foreach process P; and possible break point
k€ {1,...,m;} of P, an atomic proposition b¥ exists, which is intuitively true if
P; is currently at break point £.

e £ ={ey,...,e,}. The atomic proposition e; tells whether process i was executed
in the latest execution step in the system.

— set of states S. S =Ny x -+ X N, x Dy x---xD,x{l,...,n}. Hence, a state is a tuple
of break points (one for each process, i.e., a state of its execution flow), an assignment
to the program variables, and process number. As defined later, the process number
tells which process was executed in the last step before reaching this state.

Given a state s € S, we denote by b(s) the n-tuple of break points appearing in s, by
v(s) the p-tuple of values of variables appearing in s, and by ex(s) the last component,
of s. Given a tuple ¢, we denote by t; the i-th element of ¢. Hence, b(s); is the break
point of P; at s, and v(s); is the value of variable z; at s.
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— set of initial states Sy. The set Sy contains only states s such that v(s); = 1, for all 4, i.e.,
all processes are at their entry break points, and ex(s) = 1. (We arbitrarily choose
process number 1, since it is, by the meaning of ex(s), not relevant.)

— transition relation R. Intuitively, at state s;, one of the processes P, is enabled for
traversing the next arc in G(P) in the computation.

A pair (s1,s2) € S x S belongs to R iff:

e there exists an arc a in G(Pex(s,)) directed from break point b(s;)ex(s,) to break
point b(s2)ex(ss);
e b(s1); = b(sy);, for each 1 <i < n, i # ex(sy);

e for the label I(a) = (c(x), stmnt) of arc a, c(v(sy)) is true and (i) if stmnt = e,
then v(s1) = v(sq); (it) if stmnt is an assignment z; := g(x), then v(s2); = v(s1);,
for all j # i, and v(s2); = g(v(s1)); denote this by v(ss) = g(v(s1)).

We say that (s1, s2) ezecutes the command (c(x), stmnt), and that s, is reached from s,
by evecuting stmnt(ex(sz), b(51)ex(s)); NOtice that for each Py, a unique s, is reached
from s; by executing stmnt(k, b(s;)z).>

— label function L. The label function associates with every state s the set of atomic pro-
positions
L(s) = Lx(s) U Lp(s) U Lex(s),

where Ly(s) = {z; € x,| v(s); = true}, Lp(s) = {07 € B |1 < n}, and Lex(s) =
{ee;c(sz)} g E.

— fairness constraints F. F' is a set of fairness constraints. O

Example 4.1 Let us reconsider program P in Figure 1 and see how an FC-Kripke structure
Mp(P) for it looks like.

The set of states is S = {1,...,14}x {1,...,14} x{true, false}® x{1,2}, since both P,
and Pp have 14 break points, there are eight variables z; in x (x,y, flagiV and turniB,
where i = 1,2 and V = A, B), and two process numbers (A = 1 and B = 2, say). Thus,
|S| =142-28-2 =100, 352, i.e., there are roughly 10° states; among these, there are 2® = 256
potential initial states. If we assume that all program variables are false at the beginning of
a computation, there is a unique initial state.

The set A contains 8 + 2 - 14 + 2 = 38 atomic propositions: the eight variables of x, the
28 variables b, and two variables e4 and eg.

The transition relation R and the label function L can be readily defined from this and
the process graphs for P4 (cf. Figure 3) and Pg. For example, the pair (s1, $2) is in R, where
sy is such that v(s;) = (7,8), all variables are false, and ex(s;) = B, and s» is such that

2Tf semaphores would be allowed, no such s, might exist for Py, which means that stmnt(m, k) is not
executable at s;.
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v(s2) = (8,8), all variables except turn2B are false, and ex(sy) = A. The labels of the states
s1 and sy are L(s;) = {b], b5, ep} and L(sy) = {b%, b3, turn2B, e,}, respectively.

Plausible fairness constraints for P are F' = {e4, ep}, which guarantee fair scheduling.
(Recall that a path 7 satisfies a fairness constraint ¢ iff ¢ is true infinitely often on that
path. For instance, because of e4 process A will be scheduled infinitely often.)

In the rest of our running example, we adopt this set of constraints for P. O

4.2 The repair problem

In this section, we consider the problem of repairing a concurrent program P = Py, ..., P,.
We assume that P with its variables x, a set of fairness constraints F' (pure state formulas),
the Kripke structure Mp(P), and a CTL formula ¢ on A(Mp(P)) are given.

The correctness of program P refers to My (P), where the formulas in F' encode assump-
tions on the program execution; “unfair” computation paths are excluded.

Suppose a formula ¢ is a formal specification for P, and we have fairness constraints F'
for P. Then, P fulfills ¢ iff Mp(P) = ¢. If P does not fulfill ¢, we are interested in a change
to the code of P such that the modified program P’ fulfills ¢. This amounts to a (mostly
nontrivial) SRP.

Example 4.2 (continued) For P in Figure 1, define

¢ = ¢flags A ¢crit7
where  @fiags = A AG(flagiV — AF-flagiV),

1=1,2,V=A,B

Serit = AG(=(br” A b)) AAG(=(b] A (05 V b))

Informally, ¢ says that in every computation, P, must eventually exit the critical section ¢
after entering it, and that the two processes cannot be simultaneously in a critical section.
(E.g., AG(=(b}? A b3°)) in i requires that the processes A and B do not execute the
assignments to the variable y, namely instruction 12 of A and instruction 10 of B, at the
same time.)

For F = {e4, ep} (fair scheduling), Mp(P) = ¢; this is not immediate. O

Since we assumed that errors are present in terms of incorrect assignments or assignments
in wrong order, a solution of the program repair problem will be a sequence of assignment
modifications and assignment interchanges. An assignment modification may affect each side
of an assignment. In particular, it will either

e replace the right hand side of an assignment by a constant (true or false), or
e replace the variable on the left hand side of an assignment by another one.

Next, we will formally define the notion of program correction. To this end, we introduce
some preliminary notation.
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Definition 4.2 For any assignment statement y, we denote by var(x) the variable of the
left hand side of x and by expr(x) the expression of the right hand side of x.
An assignment y is called simple if either expr(x) = true or expr(x) = false. a

The next definition formalizes the notion of single program correction, which is an atomic
change to the program. A (general) program correction will be then obtained as a sequence
of single corrections (which are applied one by one in the specified order).

Definition 4.3 A single (program) correction for P is a 3-tuple (k, b, ), where k € {1,...,n}
is a process number, b € N; is a break point of the process Py, and v € {swap, r-change} U
{l-change(x;) | x; € x}, is a modification such that the following holds:

e if v = r-change, i.e., it is a right side modification, then stmnt(k,b) is a simple
assignment;

o if v = l-change(z;), for some variable z; € x, i.e., a left side modification, then
stmnt(k,b) is an assignment with var(stmnt(k,b)) # x;; and

e if v = swap, i.e., an assignment interchange, then both stmnt(k,b) and stmnt(k,b+1)
are assignments.

The modification of P by a single correction o = (k, b, v), denoted by P?*, is the concurrent
program obtained from P by changing the code of process P in the following way:

e if ¥ = r-change (i.e., it is a right side modification), the assignment stmnt” (k,b) is
replaced by the assignment var(stmnt” (k,b)) := not(expr(stmnt” (k,b)));

o if v = [-change(x;) (i.e., it is a left side modification with variable z;), the assignment
stmnt® (k,b) is replaced by the assignment z; := expr(stmnt® (k,b));

e if ¥ = swap (i.e., it is an interchange modification), the assignment stmnt? (k,b) is
replaced by the assignment stmnt”(k,b+ 1) and the assignment stmnt” (k,b+ 1) is
replaced by the assignment stmnt” (k,b). O

Some remarks about the kinds of corrections we consider here are in order. In general, a
change on the right hand side of an assignment may involve a new variable or any expres-
sion; in lack of any information about which of those changes are meaningful in a particular
context, and considering the in general tremendously large number of functionally differ-
ent expressions, we do not consider such changes here. However, our framework could be
extended to handle such modifications as well.

Furthermore, a disordering of two statements which are not assignments seems to be
a programming error which is less frequent in practice; moreover, considering respective
corrections is more involved and restricts the use of optimization techniques we develop
later. Therefore, we do not consider the interchange of arbitrary statements.
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Example 4.3 The modification of the program P of Figure 1, with the single program
correction oy = (2,12, l-change(flaglA)) is the program obtained from P by replacing the
statement 12 of Process B by the assignment flaglA := false. The 3-tuple (1,2, swap) is
not a correction for P, since the statement 3 of P4 is not an assignment. O

A complex correction for P is a sequence of single corrections. The modification of P by a
complex correction is obtained by applying the single corrections in order.

Definition 4.4 Let @ = oy ---a4 be a sequence of single corrections for P. Then, the
modification P® of P by the complex correction @ is recursively defined as the program
Pperes = (Perra-1)e if ¢ > 1 and as PY = P if ¢ = 0. The length of the correction @,
denoted length(a@), is the number ¢ of single corrections in it. O

Note that a modification of P by a single correction (k, b, v) affects the code of process Py.
It induces a change of the graph G(P;) and, as a consequence, of the FC-Kripke structure
associated with P. In case of an assignment correction, the only change in G(Py) is the label
corresponding to the assignment stmnt(b). In case of an assignment interchange, both labels
corresponding to stmnt(b) and stmnt(b+ 1) are changed. This merely affects the transition
relation R of Mp(P). The following proposition is therefore easily derived by an inductive
argument.

Proposition 4.1 For any correction @, the FC-Kripke structures Mp(P) and Mp(P%) co-
wncide on A, Sy, S, L, and F.

(Recall that fairness constraints are fixed.) Since a correction @ on P only affects R, @ can
be viewed, according to Definition 3.2, as a modification of the system Mp(P); there exists
a modification T for Mp(P) such that R* = R". On the other hand, given a modification
[ of Mp(P), in some cases R" can be obtained by a correction @ and considering the new
transition relation R®.

Definition 4.5 A correction @ for P induces a modification I' € mod(Mg(P)), if R* = R'.

Let Yp : mod(Mp(P)) — {true, false} be the boolean function such that for every
I' € mod(Mp(P)), we have Yp(I') = true if there exists a correction @ for P such that @
induces I', and Yp(I') = false otherwise. O

Note that, by our assumptions, the function Vp is clearly computable.
Next we define a repair problem P and show how it can be solved in terms of the abductive
solution of a SRP from the previous section.

Definition 4.6 A program repair problem (PRP) is a triple R = (P, F, ¢), where P is a
concurrent program, F' is a set of fairness constraints on A(M(P)), and ¢ is a formula on
A(M(P)). O

A PRP R = (P, F, ¢) is also called the program repair problem for P w.r.t. ¢ under F.
The solution of a PRP can be given in terms of a solution to a SRP as follows.
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Definition 4.7 Given a PRP R = (P, F, ¢), a solution for R is a solution I' for the SRP
S = (Mp(P),¢,Vp). A repair for R is any correction @ for P that induces a solution I' for
R. a

The following proposition is immediate from Definitions 3.4 and 4.7.

Proposition 4.2 For any PRP problem D = (P, F,$), a program correction @ is a repair
for D if and only if Mp(P®) = ¢.

The process of finding an abductive solution is commonly guided by some rationality
principle which aims at pruning solutions that are less plausible. In particular, following
Occam’s principle of parsimony, solutions are pruned which are not free of redundancy, i.e.,
if it is possible to remove hypotheses while preserving the solution property.

This criterion is often strengthened by further restricting the preferred solutions to those
which have a minimal cost (or, dually, a highest probability); if no cost information is
available, solutions containing a smallest number of hypotheses are often selected.

Following this lead, we adopt as rationality criterion the length of a complex correction.

Definition 4.8 Given a PRP R = (P, F, ¢), a repair @ for R is minimal, if there is no
repair 3 for R such that length(5) < length(a@). a

Of course, alternative notions of minimal repair could be acceptable. For example, if we
view the PRP as the underlying system repair problem, we could have accepted those cor-
rections @ as minimal repairs such that the system modification I' induced by @ is minimal
in the sense of Definition 3.4. This would require, however, that the user is aware of the
formal representation of programs by means of FC-Kripke structures, in order to interpret
minimality of repairs in the right terms; moreover, statements in a program are the atomic
units of the user language, which suggests that repairs should be understood on the basis
of this language. And, finally, notice that the semantical level, some complex repair might
be minimal, while it is not at the syntactical level (e.g., if it contains a sequence of opera-
tions which cancel in their effects). Therefore, adopting the notion of minimal repair as in
Definition 4.8 is preferable in this particular application.

Example 4.4 Consider the PRP R = (P, F, ¢), where P is the program of the running
example (Figure 1) and ¢, F are as in Example 4.2. As pointed out in Example 4.2, Mp(P) W
¢. It is possible to verify that, in this case, there is an error occurring in the second statement
of process P,. Indeed, it should read turnlB := true. Hence, the single correction o =
(1,2, r-change) is a repair for D. Clearly, since length(a) = 1, it is also minimal. O

Regarding complex corrections, we note that the case of a single error in a program is very
relevant in practice. It is frequent and is usually examined first by human trouble shooters
as well as many diagnostic systems. And, many such systems are not capable of handling
complex errors at all. In the case of a single error, a minimal repair will be a sequence @ = o
of length 1, since a single program correction will be sufficient to fix the single error in the
program. Hence, we focus with respect to practice on such minimal repairs. Our results for
optimization in finding a repair are tailored for this case; they hold, suitably generalized, in
the context of complex repairs, but are naturally weaker in effect.
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5 Repairs and Counterexamples

After having defined the concepts of repair problem and solution, the upcoming issue is how
to find a solution for a given problem; a suitable algorithm for this task is desired.

There is a simple brute force algorithm for solving the repair problem: check for each
possible correction @ whether it is a repair, i.e., whether Mz(P%) = ¢, in a systematic
enumeration of all possible corrections until such a @ is found; by respecting cancellation
effects of single corrections in complex corrections, the search space is finite.

Clearly, this algorithm is inefficient in general. Even if we restrict to single correction
solution candidates @ = a1, quite a number of different tests may have to be made until the
desired answer is obtained.

In order to reduce the number of cases that have to be considered, we develop techniques
which restrict the search space by exploiting counterexamples. Informally, a counterexample
for a PRP R = (P, F, ¢) is a portion of a branching computation tree which witnesses that
¢ fails. Given a counterexample, our technique identifies corrections o under which the
counterexample is invariant, i.e., still apply if « is implemented. Such «’s are useless as
corrections and can be discarded. It happens that this way, the space of candidate repairs
may be drastically reduced.

Our concept of counterexample extends the one presented in [11] for the purpose of
symbolic model checking in the logic ACTL, which is a fragment of CT'L. There, a procedure
for counterexample construction is outlined (see also [14]), which returns as a result a single
path in M. This path is in general not a counterexample per se, but rather a heuristically
selected path from a counterexample tree which gives some intuition why the formula fails.
The main reason for restricting the return value to a single path is that understanding
counterexample trees (and to represent them graphically) seems to be difficult.?

As shown below, there are simple formulas in ACTL for which no single path is a counter-
example. This is due to the possible presence of nested path quantifiers and disjunction in a
formula ¢. A single path from the counterexample tree, as returned by the symbolic model
checking procedure, or even the full counterexample tree, if it is represented in the custom-
ary way, might not be much instructive why a formula fails. The reason is that important
structural information about the paths in a simple tree representation is missing, namely
how they are nested.

For our purposes, a full counterexample tree is needed, because otherwise a repair of the
program may not be found. In order to overcome the representational problem with counter-
example trees, we introduce the concept of a multi-path, which allows for a structured rep-
resentation of paths. Counterexamples are then particular multi-paths. Our formalization of
counterexamples seems to be an appropriate extension of path counterexamples as described
in [11]. In fact, while an ACTL formula may lack a path counterexample, there always exists
a multi-path counterexample if it fails on a Kripke structure.

In the remainder of this paper, we restrict our attention to the fragment ACTL of CTL. In
this fragment, only universal path quantifiers are allowed, and negation is restricted to pure

3K. McMillan, personal communication.
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state formulas.* For instance, the specification ¢ in our running example (see Example 4.2)
is an ACTL formula; however, the formula ¢ = E F(turnlB A —turn2B), which states that
there is some computation such that turnlB is true and turn2B false at some point, is not
an ACTL formula. Notice that ACTL is considered to be an important and highly relevant
fragment of CTL, as it allows for abstraction and compositional reasoning [13, 26]. Moreover,
we assume in the following that fairness constraints in FC-Kripke structures are pure state
formulas.

5.1 Counterexamples

Informally, a multi-path represents an infinite tree 7', by using a vertical axis rather than the
usual recursion from a node to its descendants. The branches of T" are infinite paths; the axis
is a distinguished main path of the tree, from which other paths spring off. These paths are
main paths of subtrees of 7. This view gives rise to an inductive definition of multi-paths.
The main advantage of this concept is preservation of the nesting of paths, which is lost
in the usual tree definition. Moreover, for a class of multi-paths which is sufficient for our
purposes, effective finite representations exist.
Preliminary to the formal definition of multi-paths, we introduce multi-sequences.

Definition 5.1 Let S be the set of states. Then,
e for every state s € S, II = s is a finite multi-sequence in S

o if Iy, II;, ... are countably infinite many multi-sequences in S, then IT = [IIy, Ty, .. .]
is a multi-sequence in S.

For any multi-sequence TII, its i-th element is denoted by II(%), for all i > 0; moreover,

. . 0, if IT = s,
its depthis d(II) = { sup;so d(I1(i)) +1, otherwise,
. L I1(0), if Il = s,
and its origin is or(Il) = { 0r<(l_)[(0)) otherwise.

|

Next we introduce the notion of main sequence of a multi-sequence. Informally, it is the
sequence formed by the origins of all elements in a multi-sequence.

Definition 5.2 Given a multi-sequence II, the main sequence of II, denoted by p(II), is

e s, if Il = s is finite;

4Some authors restrict negation to atoms, which yields formulas in negation normal form (NNF) [26].
While semantically equivalent, the syntactically larger class is more convenient. Moreover, conversion into
NNF is simple.
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e the sequence [or(I1(0)), or(II(1)), or(I1(2)),...], otherwise. O
Multi-paths are multi-sequences which model nested paths in M.

Definition 5.3 A multi-sequence II is a multi-path in M, if either II is finite, or u(II) is a

path in M and for every i > 0, II(i) is a multi-path in M. A multi-path II is fair, if 1T is

finite or if IT is infinite and u(II) is a fair path and every II(7) ¢ > 0, is a fair multi-path.
The main sequence of a multi-path II is called the main path of 1I. O

Here, a single state is considered as a fair multi-path, which turns out to be technically
convenient later.

Note that multi-paths generalize paths. Indeed, a path can be seen as an infinite multi-
path II such that each element II(7) is a state. Fairness of paths is generalized accordingly.

An infinite multi-path I represents intuitively an evolving computing tree, whose branches
are the main path p(II) and all paths of form mym; where my = p(I1)(0), ..., u(II)(i —1) is a
finite prefix of p(II) and 7 is a branch of the multi-path I1(z), where II(7) must be infinite.

Example 5.1 Assuming proper M, the multi-sequence II = [[sg, s1, s1,...], S2,59,...] is a
multi-path, which represents two paths m = [sg, $1, 81, ...] and m = [sq, S2, S, . . .] starting
at so (Figure 4). mo is the main path p(II) of II. The multi-path II = [[so, s1, 51, -],
S92, [0, $1, 81, - - -], S2, [0, S1, S1, - - -], - - -] has main path p(IT) = [sg, s2, o, S2, - - -] and represents
the computation tree in which from u(IT) at every even state number a path [so, s1, s1, - -]
branches off; hence, IT contains besides u(II) all paths of form [(sg, s2)°, s¢, S1, 81, ...]. O

S0

S1 ED)
S1 S2

S1 52

m T2

Figure 4: Branching paths

An important note is that in general, a multi-path II may not directly reflect in its
structure a truly branching computation tree. In fact, the definition allows fake branching,
in the sense that two nested branching paths may amount to the same path in the structure.
For example, in the multi-path IT = [sg, s1, [s2, S3, S4, - - .]S3, S4, - . .|, the branch sy, s3, 84, ...
is identical to the remainder of the main path s, s3, s4,.... This is not a shortcoming of our
definition, but an important feature; it allows to express that a particular path is a subpath
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of another one. In an extended vocabulary for multi-paths, this could be expressed more
elegantly; however, we disregard such an extension here.

We are now prepared to formalize the notion of counterexample. Intuitively, a counter-
example for a formula ¢ is a multi-path II originating at an initial state such that ¢ is not
true along II. Since counterexamples are defined inductively, we need the concept of a local
counterexample, which may origin at an arbitrary state rather than only at an initial state.
For the technical definition of local counterexamples, we use an operation for merging two
multi-paths into a single one.

Definition 5.4 Let I1; and II; be two multi-paths such that or(Il;) = or(Ily). The merge
of II; and Il,, denoted by II; * Iy, is the multi-path recursively defined as follows:

I1;, if I, is finite;
H1 * HQ = [Hb Hg(l), HQ(Q), .. .], if H2 is infinite and HQ(O) is ﬁnlte,
[IT; * I15(0), II5(1), [15(2),...], otherwise. a

Intuitively, the trees represented by II; and I, are merged at their common root.

Example 5.2 Merging II = [[so, $1,, S155 - - -}, S2,, S25, - - -] and II' = [so, s3,, S3,, . . .] yields

O« = [I0,83,,83,---] = [[[S0, 5115 810s---]5 5215525, - - -]s 831, 835, - - -], While
HI *II = [HI * [80, 8115819y -+ .], 8215825y - ]
[[HI, 8115519y - - .], 8215825y - - ]
= [[[SO, 5315835, - - ']7 S115 5135 - - ']7 5215 82 - - ]
These merges essentially represent the same branching of three paths m; = [sq, Sy, Sigs - - -
for i = 1,2, 3, starting from s,. O

Note that merging II; and I, by adding II; as first element to II; does not work, since in
general, this leads to a set of paths different from those in II; and Ily; the result may even
not be a multi-path.

Definition 5.5 Let M be a FC-Kripke structure and ¢ be an ACTL formula on A(M). A
multi-path IT in M is a local (I-) counterezample for ¢ if, depending on the structure of ¢,
the following holds:

e if ¢ is a pure state formula: II = s is a state and M, s [~ ¢;

e otherwise, if

1. ¢ = A($1Ugy): II is an infinite fair multi-path and either

1.1 there exists £ > 0 such that II(k) is an l-counterexample for ¢, V ¢o, I1(7) is
an l-counterexample for ¢, for each 0 < i < k, and I1(j) is a state, for j > k;
or
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1.2 TI(4) is a l-counterexample for ¢q, for each i > 0;

2. ¢ = A(¢1Vo): 11 is an infinite fair multi-path and there exists a k such that
every I1(j), 0 < j < k, is an l-counterexample for ¢, II(k) is an l-counterexample
for ¢o, and every II(¢) is a state, for £ > k;

3. ¢ = AX¢y: Il is an infinite fair multi-path, II(1) is an l-counterexample for ¢,
and I1(7) is a state, for each i # 1;

4. ¢ = ¢1 V ¢g: II =111 x Iy, where II;, 7 = 1,2, is an l-counterexample for ¢;;
5. ¢ = ¢1 A ¢o: 11 is an l-counterexample for either ¢; or ¢s. O

Recall that M [~ ¢ if there exists an initial state sy at which ¢ is false. Hence, we
introduce a notion of “global” counterexample.

Definition 5.6 Let M be a FC-Kripke structure and ¢ be a formula on A(M). Any l-
counterexample II for ¢ in M such that or(Il) € So(M) is called a counterezample for ¢ in
M. O

Let us consider some examples. (A more involved example appears in Section 6.4.)

Example 5.3 Let M be the FC-Kripke structure that amounts to the labeled transition
graph in Figure 5, where sq is the unique initial state, A = {a1, a2}, and F = (), and consider
the formula ¢ = AFa;.

51 L(s1) = {a2}

S0

s9 L(s2) = {a1}

Figure 5: Labeled transition graph

It holds that M [~ ¢: Along the path m = [sq, s1, $1,...], the atom a; is false at each
state, which means M, 7 = —a,, for every i > 0, i.e., M, 7 = G—a;. Thus, 7 witnesses the
failure of ¢ in M. As easily checked, 7 is a counterexample of ¢.

Consider next the formula v = AGAFa,. Also this formula is false on M. Intuitively,
this is witnessed by path 7 again. However, from the formal definition, 7 is not a counter-
example of v, as it does not respect witness paths for the subformula AFa; of 1. The
multi-path IT = [[sg, s1,...],51,81,...] is a proper counterexample for 1) according to the
definition, as well as any multi-path [(s1,)’, ..., [s1, 81, - -], 81, 51, - - -], where 7 > 0.

Finally, also the formula p = AFAGa;, is false in M, and again the path © = [sq, s1, 51, . . .]
shows this. Formally, the multi-path [[so, s1, s1,--.], [$1,51,--.], [$1,51,--.],...] is a counter-
example for p; in fact, it is the unique counterexample. O
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As mentioned above, in many cases a counterexample for a formula is (essentially) a
single path. However, there are cases in which a true computation tree is required.

Example 5.4 Consider the FC-structure M from Example 5.3, but now the formula ¢ =
AFa; vV AFa,.

Clearly, M = ¢: For every a;, i = 1,2, there is an infinite path m; = sq,s;,Si, . ..
which never reaches a state at which a; is true; hence, every disjunct AFa; in ¢ is false.
A counterexample for ¢ is the multi-path IT = [[sq, s1, $1,. . .], S2, S2, . ..], which results by
merging the m;’s into II = (m; * m3). Notice that no counterexample for ¢ exists that is
an ordinary path, and that m; * 7o, 7o % m; are the only (isomorphic) counterexamples.
In this spirit, examples of concurrent programs P can be given which do not satisfy ¢ =

AFa,; V AFa, and such that no single path is a counterexample. O
L(s1) =0
L(so) = {a} =0 L(s2) = {a}
(Or————4)

Figure 6: Another labeled transition graph

Example 5.5 Let M be the FC-Kripke structure that amounts to the labeled transition
graph in Figure 6, where sy is the unique initial state and F = (). Consider the formula
¢ = AFAGa. It is easy to verify that M = ¢. Indeed, there is a path 7 = [so, so, - - ]
starting from the initial state where always the nested formula AGa does not hold, as, for
each i > 0, there exists a path starting at (i) where sometimes a is not true (e.g., on the
path [so, 81, S2, S2, - - -] @ is never true).

The multi-path IT = [[so, s1, S2, S2, - - -], [S0, S1, S2, S2, - . -], - - -] is a counterexample for ¢.

Note that no single path is a counterexample for ¢. Indeed, for each ¢ > 0, the suffix
7t of a counterexample path 7 for ¢ must be a witness of ~AGa = EF—a. Thus, s; must
occur in 7. Now, every (single) path in M has a suffix cycle which involves either sy or s,.
Therefore, for each path 7 there exists £ > 0 such that either 7(i) = s¢ for each i > k, or
7(i) = sq for each i > k. Because a is true in both sy and sy, no path can witness the falsity
of AGa. O

Besides the above very simple examples, many other cases can be found in which any
counterexample is a truly branching computation tree. They include formulas of form
AF(AG¢ vV AG—¢), which informally state that any computation must commit at some
point about a condition ¢, and AF (¢ VvV AGv)), which state that at some stage ¢ is true or,
regardless of how the computation proceeds, 1 holds.

Our next result states that the existence of an l-counterexample for a formula ¢ at a
state s in a FC-Kripke structure M implies that ¢ is not true at s in M and vice versa. As
a consequence, ¢ is not true in M if and only if there exists a counterexample for ¢. In fact,
a counterexample has as its origin an initial state of the FC-Kripke structure.
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Theorem 5.1 Let M be a FC-Kripke structure, ¢ a formula on A(M), and s € S(M).
Then, M, s = ¢ if and only if there exists an l-counterexample I1 for ¢ such that or(Il) = s.

An immediate consequence of the previous proposition is the following.

Corollary 5.2 For any FC-Kripke structure M and formula ¢ on A(M), M ¥ ¢ if and
only if there exists at least one counterexample 11 for ¢ in M.

5.2 Representation and computation of counterexamples

Counterexamples are infinite objects, and therefore it is not a priori clear that there is a finite
representation for them. Fortunately, it is possible to finitely represent a relevant class of
multi-path counterexamples that is sufficient for our purposes, in a similar way as a relevant
class of path counterexamples.

If a path counterexample exists for an ACTL formula ¢, then a path counterexample m
exists for ¢ which is finitely representable [14]. In particular, it is easy to see that if a path
counterexample exists for an ACTL formula ¢, then a path counterexample 7 exists for ¢
which consists of a finite prefix 7(0),...,7(k — 1) and a finite cycle w(k), ..., m(k+m), such
that w(¢) = w(k + fi,m(()) for all £ > k, where fi () = ({ — k) mod m [14]. Each fairness
constraint must be satisfied at least once on this cycle. Thus, such a path counterexample
can be represented as a simple expression of the form Prefix(Cycle)®™ over the alphabet of
all states.

For example, the path m = [sq, $2, 2, S2, - - -], which loops at state sy, can be represented
by the expression [sg, (s2, )], and the path o = [so, s1, So, 51, S3, S2, S0, S1, S2, S0, S1, * - -], which
loops between s, 59, and s, can be represented by [sq, s1, So, S1, 3, (S2, So, 51, )™ (if we omit
the redundant square brackets and commas, simply by s¢s1505153(525051))-

Similarly, if a multi-path counterexample exists for an ACTL formula ¢, then a multi-
path counterexample 7 exists for ¢ which is finitely representable. To see this, first note
that each counterexample is, from its definition, a multi-path whose depth is finite. Using
an inductive argument, it can be seen that if a counterexample of certain depth d exists,
then a counterexample II of depth less or equal d exists which consists of a finite prefix
I1(0), - - -, II(k — 1) and a (finite) cycle II(k), ..., [I(k +m) = II(k) such that I1(¢) = II(k +
frm(£)) for all £ > k, where again fi,,(¢) = (¢ — k) mod m. This counterexample can
be represented as an expression of form Prefiz(Cycle)* over the alphabet of states and
counterexamples of depth smaller d; thus, if we bottom out the representation, it can be
represented as a nested expression built over an alphabet of states and paths (or even states
alone, if we wish).

For example, the counterexample IT = [[sg, $1, 51, - - -], $2, S2, . . .] in Example 5.4 can be
represented by [so(s1)%, (s2,)%], and the counterexample IT = [[sq, s1, S2, S2, . - -], [S0, S1, S2,
Sy ...],...] in Example 5.5 by [(sgs1(s2)%, )] (here so(s1)> and sgs1(s9)> are the simplified
path expressions [sy, (s1, )] and [so, s1, (s2, )], respectively).

We face now the problem of computing counterexamples and provide a method, based
on a procedure of [14], for constructing a counterexample. Briefly, given an ACTL formula



IFIG RR 9701 29

¢ and a state s (which is usually an initial state of the FC-Kripke structure), the procedure
described in [14] produces a single path, starting from s, which demonstrates or hints at
the failure of ¢. In our framework, for most ACTL formulas this single path corresponds
to the main path of a counterexample; the structure of a counterexample itself depends on
nestings of A in ¢. For instance, if ¢ is a pure state formula, then a counterexample for
¢ in M is simply an initial state; a counterexample for a formula AG¢ is a path; and, a
counterexample for a formula AG(¢; V AGgs) consists of two nested paths: the first starts
from an initial state, and the second branches off at a certain point of the first.

Therefore, if the ACTL formula ¢ has only one (universal) quantifier, then it admits path
counterexamples that can be correctly (and efficiently) computed by using the procedure
designed in [14].°

Formulas with more than one universal quantifier do not admit, in general, path counter-
examples (see Examples 5.4 and 5.5) and the procedure of [14] cannot be employed to
compute counterexamples of such formulas (as it computes simple paths; while branching
multi-paths are required). A suitable extension of the algorithm of [14] is needed for com-
puting multi-path counterexamples in the general case.

Examples 5.4 and 5.5 show the two basic sources that imply the need of multi-paths
in counterexamples: disjunction and nested quantifiers. Multi-path counterexamples of a
formula consisting of the disjunction of atomic (i.e., with one quantifier) ACTL formulas,
say ¢ = AFa; V AFay, can be computed very easily: (i) compute an initial state, say sq, on
which ¢ = AFa; V AFa, is false (e.g., by computing the suitable fixpoint for the negation
of ¢, i.e., EG—a; A EG—ay); (ii) call the procedure of [14] on AFa; and on AFay with
so as the initial state; (iii) create the multi-path counterexample for ¢ by merging the two
path counterexamples for AFa; and AFas, respectively, returned by the procedure. The
computation of multi-path counterexamples of ACTL formulae with nested quantifiers is
harder and requires a recursive extension of the procedure of [14]. A naive way to make this
extension is to recursively call (top-down on the structure of the formula) the procedure of
[14] to build the counterexamples of the nested ACTL subformulas. For instance, a (multi-
path) counterexample of the formula ¢ = AFAGa of Example 5.5 can be computed as
follows. Call first the procedure of [14] on ¢; this procedure returns a fair path 7 such that,
for each integer i, (i) is a state where EF—a is true (i.e., AGa is false). Then, for each
integer 7, call the procedure again to compute a path counterexample, for AGa starting from
7(i) (i.e., with 7(7) as the initial state), say m;. The multi-path IT such that I1(i) = 7; is a
multi-path counterexample for ¢ = AFAGa.® Other nested ACTL formulae can be treated
in a similar way.

It is worth noting that several optimizations are possible in the computation of counter-
examples. Relevant optimizations can be designed by singling out cases of nested ACTL
formulas where paths are sufficient to witness the falsity. For instance, AFAFy, AGAFv,

5Note that this procedure is applicable here, as the Kripke structure of a program has always a total
transition relation by construction.

6Note that the path 7 returned by [14] is finitely represented as a prefix and cycle (see above). Con-
sequently, a finite number of calls to the procedure is sufficient, and the multi-path II is finitely represented.
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AXAGY, AGAG (which is equivalent to AGw), where 1 is a propositional formula, ad-
mit path counterexamples. A detailed analysis of the (nested) formulas that admit path
counterexamples leads beyond this paper, and is carried out elsewhere [7].

6 Optimization Techniques for Repair

In the previous sections, we have introduced the problem of program repair and the concept
of counterexample. In this section, we present some optimization techniques which allow to
cut the search space for a repair. The techniques utilize counterexamples from above, and
are most effective in the case of single correction repairs; an important aspect is that they
are efficiently (linear time) applicable.

The basic observation underlying our techniques is that a counterexample must contain
certain transitions which prove the failure of a formula ¢. Any repair must remove these
transitions, i.e., avoid that such transitions take place. Thus, if a correction leaves these
transitions unchanged, then it can not amount to a repair. By determining such corrections
from a counterexample at hand, a number of useless corrections might be excluded.

Before we present the particular techniques that we have developed in this spirit, we have
to introduce a suitable notion of equivalence between multi-paths. In the rest of this section,
P =P,..., P, is a concurrent program on variables x having a set F' of pure state formulas
as fairness constraints, and ¢ is an ACTL formula.

6.1 Equivalent multi-paths and weak corrections

Definition 6.1 For any formula ¢, we denote by ap(¢) the set of atomic propositions in ¢.
For any set I’ of formulas, we denote ap(F) = User ap(e). a

Definition 6.2 Let M and M’ be two FC-Kripke structures such that F(M) = F(M'), and
let A" C A(M)n A(M'). Then,

(i) states s € S(M) and s’ € s(M') are equivalent on A', denoted s ~4 ¢, if L(M)(s) N
A'=L(M'")(s")n A;

(77) multi-paths IT in M and II' in M’, are equivalent on A’, denoted II =~ 4 IT', if either

(ii.1) both IT = s and II' = &' are states and s &4/ §', or
(ii.2) both II and II" are infinite and II(7) a4 II'(i), for every i > 0. O

Intuitively, if IT and II' are equivalent on A’ then, for every formula ¢ with ap(¢) C A’,
we have that ¢ is true on II if and only if ¢ is true on IT'.

The next proposition is the basis of later results. It states a transfer results for counter-
examples between structures: Given a counterexample II for a formula ¢ in M, any multi-
path in a structure M’ that is equivalent to IT on the variables of ¢ is a counterexample for
¢ in M'. As a consequence, if M’ is the result of a repair to the FC-Kripke structure of
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a program M w.r.t. ¢, it is impossible to find in M’ a “pattern of behavior” equivalent on
ap(¢) to any counterexample in M. This is captured formally by the next propositions.

Proposition 6.1 Let M and M’ be two FC-Kripke structures which coincide on S, Sy, L,
and F. Let II be an l-counterexample in M for a formula ¢ on ap(¢) C A(M). IfII' is a
fair multi-path in M' such that II R4y I, then II' is an I-counterezample for ¢ in M'.

We next introduce the concept of a weak correction for a counterexample, that singles out
corrections that are certainly useless to fix the error (i.e., modifying the concurrent program
by any set of weak corrections would not allow to entail the CTL formula at hand). Prior
to this, we fix a notation for the variables which are touched by a single correction.

Definition 6.3 For any single correction o = (k,b,v) for P, V(«) is the following set of
variables:
{z;,var(stmnt(k,b))}, if v = l-change(x;);
V(a) =< {var(stmnt(k,b))
{var(stmnt(k,b))

} if v = r-change;
;var(stmnt(k,b+ 1))}, if v = swap.

For any complex correction @ = a; - - - a, let V(@) = UL, V(). O
Definition 6.4 Let IT be a fair multi-path in Mg(P) such that or(I1) € Sy. A correction @
for P is called weak w.r.t. 11, if there exists a fair multi-path I in M’ = Mp(P%) such that
or(Il") € Sp and IT ~ 4 IT' for A’ = A(M) — V(@). O

Intuitively, a weak correction for Il does not modify the set of formulas holding on IT
(if we see II' as the "image” of II under the correction @), apart from formulas involving
propositions in V(@) (i.e., that are explicitly modified by @).

The next proposition states that a program repair not involving variables from ¢ cannot
be a weak correction w.r.t any counterexample of ¢. In fact, if a repair is a weak correction
for some counterexample, the modified program will produce the same counterexample for
the formula in the modified system. Roughly speaking, counterexamples have to be modified
by a correction if we hope to repair the system through it. This result will be utilized later.

Proposition 6.2 Let @ be a repair for the PRP R = (P, F, ¢), such that V(@) Nap(p) = 0.
Then, for every counterezample 11 for ¢ in Mp(P), @ is not weak w.r.t. IL.

Proof. Towards a contradiction, suppose @ is a weak correction w.r.t. [I. Hence, there
exists a fair multi-path II' in M’' = Mz(P*) such that II ~4 II' where A’ = A\ V(a). By
hypothesis on ¢, ap(¢) C A’, and thus Proposition 6.1 implies that IT' is a counterexample
for ¢ in M'. Hence, by Corollary 5.2, @ is not a repair for R, which is a contradiction. O

The consequences of this proposition will be exploited in Section 6.3 for optimization
issues (where the result is used to prove the main theorem). Intuitively, if we know that a
correction is weak w.r.t. a counterexample, then we can discard it from the ”candidates*
repair, unless it touches explicitly the atomic propositions in ap().
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6.2 Correction execution

The first optimization method respects whether the counterexample passes through a state-
ment that has been modified; if not, then it is still valid, and the respective correction is
ruled out as a repair.

Informally, given a counterexample IT and a single correction oo = (k, m, ), we say that
IT executes v if there exists some path in I along which process P, passes through the break
points affected by «. Here, we must take into account that a computation path may pass
only through part of them, due to jumps; it could pass break point m but not m + 1.

We next prove formally that if a correction is a repair, then it must be executed by any
counterexample. For that, we must formalize correction execution.

Definition 6.5 Let o = (k,m,~y) be a correction. A path 7 ezecutes «, if there exists i > 0
such that ex(w(i + 1)) = k (i.e., the transition from i to i + 1 executes Py) and, further

o v € {r-change, l-change(x;)} and b(m (7)), = m, or
e v = swap and b(7(i)), € {m,m+ 1}.

A multi-path TT ezecutes , if II is infinite and, further, either the main path u(IT) of II
executes o, or there exists an integer ¢ > 0 such that I1(7) executes a.

A path 7 (resp. multi-path II) ezecutes a correction @ = ay - - - a, if it executes «;, for
some i =1,...,q. O

We note a couple of simple lemmas, which are useful in the proof of the next result.
Lemma 6.3 Let a = (k,m,v) be a single correction, and let (s1,s9) € R. If (i) v €
{r-change,l-change(x;)} and b(s1)y # m, or (ii) v = swap and b(s1), ¢ {m, m + 1}, then
(81, 82) € R*.

Proof. Observe that the effect of changes to G(Fy) by « is restricted to labels of arcs which
are leaving m in case (i) and leaving m or m + 1 in case (4i). O

Lemma 6.4 Let @ be a correction for P, and let ™ be a path in Mp(P) which does not
ezecute &. Then 7 is also a path in Mp(P%).

Proof. If m does not execute @ = a; - - - g, then 7 does not execute any of a, ..., oy. Thus,
by Lemma 6.3, we obtain that 7 is a path in P*'. By a repeated argument, we obtain that
7 is a path in P*% for every i =1,...,q. O

Lemma 6.5 Let R = (P, F, ¢) be a PRP for which some repair exists. Then, every counter-
example I1 for ¢ in Mp(P) is infinite.

The next theorem states that, given a PRP R and a repair @ for it, every counterexample
executes a.
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Theorem 6.6 Let @ be a repair for the PRP R = (P, F, ¢). Then, every counterexample I1
for ¢ in Mp(P) is infinite and executes @.

This result is intuitive; if a counterexample does not touch the statements which have
been corrected, the same multi-path will be present in the Kripke structure of the corrected
program. As a consequence of Theorem 6.6, while looking for possible repairs, we can rule
out a priori any correction that is not executed on a counterexample.

An important observation is that correction execution can be tested efficiently. In fact,
this is possible in linear time if counterexamples are properly represented, e.g. in the scheme
of Section 5.2.

Proposition 6.7 Given a concurrent program P, a collection C of complex corrections @ =
o - - -y, and a counterezample 11, the corrections in C which are not executed by II can be
discarded in linear time.

Thus, checking for correction execution is a low cost pruning principle which can benefit
in reduction of the search space.

6.3 Correction exploitation

We can identify another important property that repairs must verify, and exploit it for
further optimization.

Recall that a correction @ involves a set of variables, denoted by V(@). Then, only
computations that evaluate some variable in V(@) can be influenced by the correction @.
Indeed, the values of variables not in V(@) and guards of labels in the process graphs can
change only if variables whose values are affected by the correction @ are referenced. A
path that does not evaluate variables of V(@) will be transformed by the correction into an
equivalent path on A\ V(@); the same happens to a multi-path. Hence, a further property
that a repair @ must satisfy is that all counterexamples have to evaluate some variable in
V(@). We formalize this intuition next.

Definition 6.6 A path 7 exploits a correction o = (k, m,~), if there exists an integer i > 0
such that the command executed in (7 (i), 7 (i + 1)) evaluates 7 some variable in V().

A multi-path IT ezploits a correction o = (k,m, ), if II is infinite and, furthermore, either
w(II) exploits « or there exists an integer ¢ > 0 such that I1(7) exploits a.

A path 7 (resp. multi-path II) ezploits a correction @ = ay - - - o, if it exploits a; for some
1=1,...,q. O

The next result states that under certain conditions, any counterexample must exploit
a given repair. It is based on the fact that if a path m does not exploit a single correction
«, then we can find a path 7 in the modified structure which is modulo V(«) equivalent to
7 and starts from any given state equivalent to the initial state of 7 (see Lemma 7.1 in the
appendix).

"Note that an assignment statement evaluates the variables appearing in its right side; a conditional
statement evaluates the variables appearing in its if condition.
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Theorem 6.8 Let @ be a repair for the PRP R = (P, F,¢) such that V(@) N (ap(¢) U
ap(F)) = 0. Then, every counterezample I1 for ¢ in Mp(P) exploits @.

Notice that the condition V(@) N ap(F) = @ is not much restrictive, since F should
be concerned about fair executions (and speak about processes and break points) rather
than the value of program variables, which should be done in the specification ¢. On the
other hand, the condition V(@) Nap(¢) = 0 is more restrictive, but cannot be removed in
general. For example, if ¢ says that some variable ok must always be committed to true in
a computation (AFAGok), a correction of ok := false to ok := true might eliminate all
counterexamples, even if no computation references the value of ok.

An important point is that like correction execution, correction exploitation is a pruning
principle which can be applied efficiently. In fact, in the setting of Section 6.2, it is possible
to implement correction exploitation in linear time.

Proposition 6.9 Given a concurrent program P, a collection C of complex corrections & =
ay -0y, and a counterexample 11, the corrections in C which are not exploited by II can be
discarded in linear time.

6.4 Example for optimization

Let us consider an example which demonstrates that by the optimization techniques in
Sections 6.2 and 6.3, quite some savings can be gained in finding a repair.

Example 6.1 Reconsider the concurrent program P in Figure 1, and let ¢ and F' be as in
Example 4.2, viz. ¢ = ¢fiags A Perit, Where dpiags = Nic12 v—n.p AG(flagiV — AF=flagiV)
and @eir = AG(—=(bI2 A D)) A AG(=(B] A (b5 V BY))), and F = {es,ep}. As already men-
tioned, the program is not correct. Therefore, Mp(P) = ¢ must hold and a counterexample
for ¢ must exist.

It can be verified that indeed Mp(P) = ¢: there is a path 7 from an initial state, leading
to a state at which flaglB = true, and where another path n’ starts along which flaglB
is always true. Thus, the formula EF(flaglB A EG flaglB) is true, which means that the
formula AG(flaglB — AF-flaglB) is false; since the latter is a conjunct of ¢, also ¢ is
false. This should give rise to a counterexample.

Indeed, consider the following path 7 (we show of each state s;, left to right, the break
points for P, and Pg, the program variables that are true, and the process lastly executed;
in the initial state sq, all variables are false):

7T( ) = S0 — 1 1 PA
m(l)=s1= 2 1 flaglA Py
m(2) =s9= 2 2 flaglA, flaglB Pp
m(3)=s3= 3 2 flaglA, flaglB Py
71'(4) =s,= 3 3 flaglA, flaglB Pg
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At s4, where flaglB is true, the path 7’ starts:

©'(0) = sy

(1) =ss 5 3 flaglA, flaglB Py
©(2) =s¢ = 5 4 flaglA, flaglB Pg
©(3) =s; = 5 3 flaglA, flaglB Pg
w'(4) =sg = 6 3 flaglA, flaglB Py
©'(5) =s9 = 6 4 flaglA, flaglB Pg
©'(6) =sio= 6 3 flaglA, flaglB Ppg
(7)) =su= T 3 flaglB Py
7TI(8) = S12 = 14 3 flang PA
©9) =s3= 1 3 flaglB Py
7(10) =s14= 2 3 flaglA, flaglB Py
(1) =s15= 3 3 flaglA, flaglB Py
©(12) =s5 = 5 3 flaglA, flaglB Py
©(13)=ss = 5 4 flaglA, flaglB Ppg
w'(14)=s; = 5 3 flaglA, flaglB Pg
7'(15) = sg

T["(i) = S15

where flaglB is always true. The computation goes on such that Pg loops between break
points 3 and 4, and P4 loops between break points 1-3, 5-7, and 14.
Notice that starting from s;, not all computation paths are wrong. Indeed, for each state
in which flaglA is false, Pg could go beyond break point 3 into the critical section.
Suppose then an oracle for a counterexample (e.g., a call to a procedure) returns the
following multi-path II, which formally represents the intuitive computation from above:

[SOa 51, 82, 83, [54) 85.--,514,515,55,-- -, 514, - ']7 85,++-,514, 515, 855 - - -5, S14, - - ]

here, the branching path and the remaining main path are identical; i.e., the branching
path is a subpath of the main path, and thus II intuitively amounts to a single path. Note
that IT can be represented, using the scheme in Section 5.2, by the expression [sg, s1, S2, S3,
S4(85 -+ 515)%, (S5, .., 515,)%].

Now let us look for a repair for this program, where we assume that a single error
is present and thus focus on single correction repairs, with possible further restriction to
particular correction types.

Then, the naive repair approach considers in P, the assignments after break point 7 €
{1,2,6, 8,9,13} and in Pp after break point j € {1,2,6,7,12,13}.

For simplicity, let us first consider single statement repairs which change right hand sides
of assignments. Then, our optimization technique allows us to restrict attention in P4 to
i € {1,2,6} and in Pg to j € {1,2}. Indeed, the variables referenced along II are flaglA,
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flaglB, turn1B. Hence, even if the assignment turn2B := true after break point 9 in P,
is executed by II, no correction of it has to be considered, since turn2B is not evaluated in
I1. Thus, only 5 out of 12 candidate repairs remain. In case of arbitrary single assignment
repairs, 15 out of 72 candidate repairs remain. Finally, if also assignment interchange is
considered, then 17 out of 77 candidate repairs remain.

Apparently, a single correction repair for P is the correction oo = (A, 2,v) where v = r-
change, i.e., statement 2 in P, is changed to turnlB := true. Indeed, the modified program
P does not enable Pg to loop forever between 3 and 4. O

6.5 Further optimization

Of course, further and stronger optimization techniques are imaginable, but they may come
at a higher computational price which must be paid for analyzing the structure of P, ¢, and
the counterexample II.

For example, the exploitation technique from Section 6.3 can be sharpened by incorpor-
ating that the counterexample must actually “see” the effect of a single correction «, rather
than only referencing a variable x; in V(a); it might well happen that the value of z; is
overwritten before it is referenced, and thus the correction is not useful, provided that it
does not directly affect the program specification or fairness constraints.

For an illustrating, simple example, consider the following (part of a) process:

1: x:=true;
2: y:= false;
3: xi=y;

4: z:=not z;

Here, a correction of stmnt(1) to z := false is not “seen” by the program; likewise, a
correction of stmnt(1) to y := true is not seen by the program. Thus, these corrections
of the program are useless and can be discarded (provided that they do not directly affect
the specification or fairness constraints).

For a single right side modification, we can say that a computation path sees this correc-
tion, if

1. it evaluates at some point k£ the variable, say x, of the left hand side of the corrected
statement,

2. at some point j < k the corrected statement was executed, and,
3. between j and k£ no assignment to x was made.

Thus, it is guaranteed that at point k& after the execution of the corrected statement, the
computation path experiences the effect of the correction (either by evaluating z in an if
condition or by using it in the right side of an assignment). If no path of a counterexample
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sees the correction, than it is useless (if it does not interfere with the specification or the
fairness constraints).

Importantly, the test whether a counterexample sees a correction is efficiently possible,
given the counterexample representation that we have outlined in Section 5.2. For assignment
swaps and complex corrections, the formalization of strong exploitation is similar, but it is
more involved and also may have higher evaluation cost.

Another important optimization issue is the investigation of more sophisticated tech-
niques for pruning the search space by using counterexamples. Connected with this is an
optimized procedure for counterexample construction. So far, we were satisfied by having
any counterexample which proves that a formula fails on a structure. However, in order
to locate an error and to find a suitable repair, some counterexamples are obviously more
useful than others. For example, if a counterexample II references a single variable dur-
ing its execution and another counterexample II' references all variables, then II might be
preferable since it allows to attribute the error to fewer statements than II'. Thus, a formal,
comparative notion of quality of counterexamples has to be developed, and an optimized
counterexample procedure which finds as good counterexamples as possible. This may turn
out to be difficult and computationally complex, which calls for appropriate heuristics.

7 Conclusion

Model checking, which is successfully used in verifying concurrent systems, appears to be an
area which has high potential for applying Al principles. In this direction, we have presented
an approach to combine model checking with repair, which has been considered in the area
of automated diagnosis. In the course of the formalization of this approach, theory revision
and abductive reasoning play an important role.

To our knowledge, our approach to integrate repair into model checking is novel. Notice
that automated diagnosis and repair of programs was investigated e.g. in [15, 44, 45]. The
framework and setting in [15] (logic programs) is quite different; the approach of [44, 45]
is developed for functional programming languages and generates out of a (faulty) program
an instance of a model-based diagnosis problem. This is quite different from our approach,
which aims at using techniques and concepts from model checking and combining them with
AT principles.

For a successful integration of repair into the model checking paradigm, we had to extend
the notion of a counterexample as described in [11] formally such that it is technically
available on the whole language of ACTL formulas. For this purpose, we have introduced
the concept of multi-paths as a suitable formal of counterexample trees.

We then have presented optimization techniques which, as demonstrated on an example,
may allow for a considerable reduction of the search space for a program repair. These op-
timization techniques, correction execution and correction exploitation, can be implemented
to run efficiently.

Naturally, not all interesting and relevant issues can be addressed in this paper which
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introduces our approach, and a number of them must be left for further work.

We have already discussed some interesting optimization issues in Section 6.5. Another
important direction of research concerns the extension of the framework by further types
of corrections. The current framework allows for right modifications and left modifications
of assignments, as well as the interchange of assignments. Further corrections, e.g. more
complex right hand side modifications, could be desirable. Connected with this, an analysis of
common errors in concurrent programming or protocol specification would be acknowledged
in order to identify relevant errors which our framework should be able to handle.

Furthermore, it remains to be analyzed how abstract principles for abductive reasoning
[34] can be exploited in this specific application domain, as well as whether abductive al-
gorithms and computational devices developed in Al (e.g., truth maintenance systems) are
fruitfully applicable.
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Appendix

Theorem 5.1 Let M be a FC-Kripke structure, ¢ a formula on A(M), and s € S(M).
Then, M, s = ¢ if and only if there exists an l-counterexample I1 for ¢ such that or(Il) = s.

Proof. The statement clearly holds for pure state formulas, as Il = s is the desired
counterexample. We prove that it holds also for non-pure state formulas ¢ by structural
induction, starting from a pure state formula.

(<=) Suppose then ¢ is a non-pure state formula, and that II is an l-counterexample for ¢
such that or(II) = s. We have to show that M, s = ¢. Consider the following possible cases:

1. ¢ = A(¢1U¢y). Itholdsthat M, s = A(¢pUgs,) if and only if either M, s = E(—¢,U(—¢1A
“¢y)) or M, s = EG(—¢2) (cf. Proposition 2.1). II is an infinite multi-path and either

1.1 there exists an integer & > 0 such that II(k) is an l-counterexample for ¢; V ¢o,
I1(7) is an l-counterexample for ¢q, for each 0 < i < k, and II(j) is a state, for
j>k,or

1.2 II(7) is an l-counterexample for ¢o, for each i > 0;

Let # = p(II) be the main path of II; 7 is a fair path. In the case 1.1, M 7 |=
=9 U(—¢1 A —¢p9). Indeed, for the state w(k) = or(Il(k)) in =, we have M, w(k) [~
¢1V ¢o: either ¢y V ¢y is a pure state formula, which means II(k) = w(k), or ¢1 V ¢
is not a pure state formula and II(k) = II' * II" is the merge of two counterexamples
for ¢y and ¢, respectively. By the induction hypothesis, M, 7(k) & ¢, for i = 1,2; it
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follows M, (k) = —¢1 A —¢o. Moreover, for every i such that 0 < i < k, the induction
hypothesis implies M, 7(i) |= —¢2. This implies the claim M, 7 = —¢2U(=¢1 A —¢2).
As a consequence, M = E(=¢.U(=¢1 A =¢s), which means M, s = A(p;Udps).

In the case 1.2, we have M, 7 = G-¢. Indeed, the induction hypothesis implies
M, (i) |E —¢o, for every i > 0, since (i) is the origin of an l-counterexample for ¢,.

2. = A($1 Vo). Then, II is infinite and there exists a k£ > 0 such that II(j) is
a counterexample for ¢;, for every 0 < j < k, and II(k) is a counterexample for
¢2. Hence, by the induction hypothesis, M, or(Il(j)) ¥ ¢1, for 0 < j < k and
M,or(II(k)) = ¢2. Let m = p(II) be the main path of II. Since or(Il(i)) = =(i),
for every 0 < 7 < k, and —¢;, —¢, are state formulas, it follows that M, 7 &= —¢y,
for 0 < j < k and M, u* E —¢,. Consequently, M,y = —¢;U—¢s, which implies
M, 7(0) E E(=¢1U—¢y). Since w(0) = s and E(—¢;U—¢,) is equivalent to —¢, it
follows M, s i~ ¢.

3. ¢ = AX¢;. Ilis an infinite multi-path, such that II(1) is an l-counterexample for ¢.
Let 7 = u(IT) be the main path of II. 7 is a fair path. By the induction hypothesis,
M, (1) = ¢1. Hence, M, s = ¢.

4. ¢ = ¢1 V ¢o. There exist two multi-paths II; and II; such that IT = II; = Iy, II; is an
l-counterexample for ¢, Ily is an l-counterexample for ¢, and or(Il;) = or(Ily) = s.
Hence, by the induction hypothesis, M, s = ¢ and M, s & ¢o. Therefore, M, s = ¢.

5. ¢ = ¢1 Apo. W.lo.g, Il is a counterexample for ¢; with or(Il) = s. By the induction
hypothesis, M, s = ¢1, hence M, s i~ ¢.

(=) Consider a non-pure state formula ¢, and suppose that M, s = ¢. We have to show
that an l-counterexample II for ¢ exists such that or(Il) = s.

1. ¢ = A(¢1U¢o). It holds that M, s & ¢ if and only if either (i) M, s = E(=¢2U(=¢1 A
o)) or (17) M, s = EG(—¢s) (cf. Proposition 2.1).

In the case (i), there exist a fair path 7 and an integer £ > 0, such that 7(0) = s,
M,7(i) = ¢o (ie., M,m(i) = —¢2), for each 0 < i < k, and M, w(k) = ¢1 V ¢2 (ie.,
M, (k) = —¢1 A —py). Thus, by the induction hypothesis, for each 0 < i < k, there
exists an l-counterexample II; for ¢o such that or(Il;) = w(i), and by the induction
hypothesis and an argument as in case 4., there exists an l-counterexample 11, for ¢ Voo
such that or(Il;) = m(k). Consider now the multi-sequence II = [IIg, Iy, - - -, Iy, 7(k +
1),7(k +2),---]. Clearly, II; is a fair multi-path and or(Il;) = s. Indeed, u(II) =,
and each element I1(7) is a multi-path. It is easily seen that II is a l-counterexample
for ¢ such that or(IT) = s.

In the case (i), there exists a path = such that 7(0) = s and M, 7 = G(—¢s); since ¢
is a state formula, this means M, (i) & ¢, for every ¢ > 0. Hence, by the induction
hypothesis, there exists an l-counterexample II; for ¢, such that or(Il;) = =(i), for
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every ¢ > 0. Consider the multi-sequence IT = [IIg, Iy, Iy, - - -]. Clearly, II is a fair
multi-path with or(Il) = s, and is a l-counterexample for ¢.

2. ¢ =A(p1Vgy). We have M, s = E(—¢1U—¢y) by duality of V and U. Hence, there
exists a fair infinite path 7 such that 7(0) = s and M, 7 = —¢; U—¢. The latter means
that there exists a k such that M, 77 &= =g, for every 0 < j < k and M, 7% | —¢,.
Since ¢; and ¢ are state formulas, it follows that M, 7 (j) = ¢1 for every 0 < j < k
and M, (k) & ¢2. By the induction hypothesis, there exist an l-counterexample II;
for ¢; at m(j), 0 < j < k and a l-counterexample II; for ¢ at 7(k). Let then II be
the multi-sequence IT = [y, [Ty, ..., I, 7(k+1),7(k+2),...]. Clearly, II is an infinite
fair multi-path and or(II) = s. Hence, II is an l-counterexample for ¢ at s.

3. ¢ = AX¢y. If M,s = AX¢, then there exists a fair path 7 such that 7(0) = s and
M, (1) = ¢1. By the induction hypothesis, there exists an l-counterexample IT' for
¢1 such that or(I') = w(1). Hence, the multi-path II = [7(0),II', 7(2),7(3),- - -] is an
l-counterexample for ¢ such that or(Il) = s.

4. ¢ = p1Vdo. M, s = ¢ implies that M, s [~ ¢;, for i = 1,2; therefore, by the induction
hypothesis, there exists an l-counterexample II; for ¢; such that or(I;) = s, i =1, 2.

Consequently, IT = IT; * II, is an l-counterexample for ¢ such that or(Il) = s.

5. ¢ = ¢1 N po. W.lo.g., M,s & ¢1; by the induction hypothesis, ¢; has a l-counter-
example IT such that or(II) = s, which is a l-counterexample for ¢ such that or(II) = s.
O

Proposition 6.1 Let M and M' be two FC-Kripke structures which coincide on S, Sy, L,
and F. Let II be an l-counterexample in M for a formula ¢ on ap(¢) C A(M). IfII' is a
fair multi-path in M' such that I1 m.p4) IU', then II' is an Il-counterezample for ¢ in M'.

Proof. We proceed by structural induction on ¢, where at the basis are pure state
formulas.

Basis. ¢ is a pure state formula. Then IT = s for some state s and M, s = ¢. Since
II" = 4 I1, by Definition 6.2, II' = s’ such that s &4 s’. Hence, L(s)N A’ = L'(s")N A’. Thus,
M, s = ¢ implies M', s’ = ¢ since ¢ is on A. Consequently, I’ is an l-counterexample for ¢
in M'.

Induction. Let ¢ be a non-pure state formula, let II be a l-counterexample for ¢, and let
IT" be a fair multi-path such that IT &4 II". We consider all possible cases for ¢:

1. ¢ = A(¢1U¢y). Either (1) or (2) must hold:

1. there exists an integer k£ > 0 such that:
a) IT'(k) ~ 4 II(k), where II(k) is a l-counterexample for ¢; V ¢, in M. Hence,
by Definition 5.5 II(k) is both an l-counterexample for ¢; and for ¢, in M.

Thus, by the induction hypothesis, II'(k) is both an l-counterexample for ¢;
and for ¢, in M', and hence also for ¢; V ¢ in M'.
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b) IT'(4) is fair and II'(d) a4 I1(7), where II(4) is an l-counterexample for ¢o in M,
for each 0 < i < k. By the induction hypothesis, II'(7) is an l-counterexample
for ¢y in M'.

c) IT'(j), for each j > k, is a state in M’ as II'(j) ~ 4 II(j).

2. II'(i) ~a II(i), where II() is an l-counterexample for ¢o, for each i > 0. By
induction hypothesis, I1'(i) is an l-counterexample for ¢, in M’.

Hence, by Definition 5.5, IT" is an l-counterexample for ¢ in M’.

2. ¢ = A(¢1 Vo). II'isinfinite, and there exists a & > 0 such that every I1(5), 0 < j < k,
is an l-counterexample for ¢1, II(k) is an l-counterexample for ¢, and every II({) is a
state, for £ > k. Since Il ~4 II' and ¢ is on A, by the induction hypothesis IT'(j) is
a l-counterexample for ¢; in M’, for every 0 < j < k, and IT'(k) is a l-counterexample
for ¢ in M'. Moreover, II'(¢) must be a state in M’ for every ¢ > k. Hence, II' is a
l-counterexample for ¢ in M'.

3. ¢ = AX¢;. Hence, IT'(1) is an l-counterexample for ¢;. By the induction hypothesis,
IT'(1) is an l-counterexample for ¢y in M’. Moreover, due to II(i) ~ 4 II'(7), [T’ is infinite
and IT'(7) is a state, for i # 1. Therefore, by Definition 5.5, IT" is an l-counterexample
for ¢ in M.

4. ¢ = ¢1 V ¢o. Suppose w.l.o.g. that ¢; is a non-pure state formula. Since II is an
l-counterexample for ¢ in M, Il = II; % II, where II; is an l-counterexample for ¢; in
M, i=1,2. II =4 II" implies that II' = II} * [T, such that II} & II;; hence, by the
induction hypothesis, II. is an l-counterexample for ¢; in M’, for i = 1,2. Consequently,
IT" is an l-counterexample for ¢ in M'.

5. ¢ = ¢1 A ¢9. Il is an l-counterexample in M for either ¢; or ¢,. Hence, by the
induction hypothesis, II’ is an l-counterexample in M’ for either ¢, or ¢,. Thus, by
Definition 5.5, IT" is an l-counterexample for ¢ in M'. a

Lemma 6.5 Let R = (P, F, ¢) be a PRP for which some repair exists. Then, every counter-
example I for ¢ in Mp(P) is infinite.

Proof. Towards a contradiction, suppose there exists a single state counterexample II = s
for ¢ in Mp(P). By Definition 5.6, or(Il) = s, and or(Il) € So(Mp(P)). Since My(P) and
Mp(P?%) for a repair @ coincide on Sy and L, clearly IT is also a counterexample for ¢ in
Mp(P*). Corollary 5.2 and Proposition 4.2 imply that @ is not a repair for R, which is a
contradiction. O

Theorem 6.6 Let @ be a repair for the PRP R = (P, F,$). Then, every counterezample I1
for ¢ in Mp(P) is infinite and executes @.
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Proof. Let II be a counterexample for ¢ in M = Mp(P). By Lemma 6.5, II is an infinite
fair multi-path. Towards a contradiction, suppose II does not execute @. We prove that II
is also a fair infinite multi-path in M’. Hence, IT is a counterexample for ¢ in M’, which
contradicts that @ is a repair.

In order to establish this, it suffices to show by induction on £ > 0 that every fair multi-
path IT of M of depth d(II) < k which does not execute @ is a fair multi-path in M. (Notice
that from the definition, counterexample multi-paths have finite depth.)

Basis. k = 0. In this case, I[I = s is a single state, and II is by Definition 5.3 a fair
multi-path in M’.

Induction. k > 0. Let II be such that d(II) = k. We have to show that (i) the main
path p(IT) is also a fair path in M’, and (i7) I1(7) is a fair multi-path in M’, for every i > 0.
For (i), we note that pu(II) is a fair path in M which does not execute @. Therefore, by
Lemma 6.4, u(II) is also a path in M'. As F(M) = F(M'), clearly u(II) is also fair in M’.
For (i7), we note that each II(i) is a fair multi-path in M which does not execute @ such
that d(I1(7)) < k, and apply the induction hypothesis. O

Lemma 7.1 Let o = (k,m,~) be a correction for P such that V(a)Nap(F) = 0. Let = be a
fair path in Mp(P) which does not exploit . Let sy be a state such that sg =~ 7(0), where
A" = A\V(a). Let the sequence m' in Mp(P®) be defined by 7'(0) = s, and ' (i+1) = si11,
for all i > 0, where s;y1 is the state reached from 7'(i) by executing stmnt(k;, ¢;) in P,
ki =ex(n(i+1))), t; = b(w(i+ 1)x,). Then, 7' is a fair path and 7 . .

Proof. By induction on i, we establish that 7(i) ~4 7'(i), for all i > 0, and (7'(i —
1),7'(i)) € R*, i > 1; this and the fact that ap(F) C A’ (as ap(F) N V(a) = 0) implies
7'(i) = F iff (i) E F, i > 0. This proves the lemma.

Basis. For i = 0, this holds by hypothesis on sy = 7’(0).

Induction. Assume the statement holds for i, and consider ¢ + 1. Since by the induction
hypothesis 7(i) ma 7'(i), we have b(w(i)) = b(n'(i)), i.e., the executions corresponding to
7' and 7 up to 7'(7) resp. 7(i) have reached the same break points in all processes. By
definition of R, m(i + 1) is reached from 7(i) by executing stmnt(k;, ¢;) (for short, stmnt)
in process Py, where k; = ex(n(i + 1)) and ¢; = b(n(i))s,. Consider the corresponding
statement stmnt(k;, ¢;) in P, denoted by stmnt’, and let s;;; be the state reached from
7'(7) by its execution.® There are two cases.

(I) stmnt’ = stmnt. If stmnt is an assignment, then, since 7'(i) &4 7(i) and stmnt may
only evaluate variables in A’, the transitions (7 (i), 7 (i + 1)) and (7'(i), 7'(i + 1)) amount to
assigning the same value to the same variable x;; hence, clearly s;.1 ~4 (i + 1); otherwise,
if stmnt is a conditional statement, for the same reason the expression ¢(x) evaluates to the
same at 7(7) and 7'(4), and hence ( (i), 7(i+ 1)) and (7'(),7'( + 1)) amount to executing
the branching to the same break point; again, s;11 &~ 7(i + 1).

(IT) stmnt # stmnt’. Then, stmnt’ is a changed statement, which is either due to an
assignment modification or an assignment swap. In any case, stmnt and stmnt’ are assign-

8Note that also if semaphores would be allowed, stmnt’ would be executable at 7' (i) as 7' (i) ~ar 7(4).
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ments x; := ¢'(x) and x; := g(x), respectively, where z;,z; € V(«), and their executions in
Py, and P2, respectively, lead to the same break points. Hence, clearly s;.; o 7(i+1). O

Proposition 6.7 Given a concurrent program P, a collection C of complex corrections
o = aj-- 0y, and a counterezample I1, the corrections in C which are not executed by 11 can
be discarded in linear time.

Proof. We sketch a possible algorithm with this property. In the first step, all distinct
pairs m(i), m(i + 1) are determined such that 7(i) and 7(i + 1) are successive states in the
computation tree represented by II. For each such pair, the statement stmnt(k,b) which is
executed by the transition from (i) to 7(i + 1) can be determined easily. In step two, all
these statements stmnt(k, b) from step one are marked in P. From the marked program, it
is for a single correction o = (k, m, ) easy to tell by looking up at most two statements in
P whether « is executed by II or not; for a complex correction @ = o - - - oy, this is possible
by a sequence of lookups for the single a;’s. This way, in step three all corrections @ in C
are examined.

It is not hard to see that computing all pairs (i), 7(i + 1) is possible by a recursive
procedure in linear time. Moreover, the lookup and marking of a statement stmnt(b, k) in P
can be done in constant time, provided the representation of P allows for random access to
its statements. (A random access structure can be built in linear time; alternatively, a two-
dimensional Boolean array T can be used where T'(k,b) tells whether statement stmnt(k,b)
was executed by some transition in I1.) Thus, also step two can be done in linear time. Since
determining whether @ = a; - - - o is executed by II takes at most 2-¢ lookups in P, it follows
that all complex corrections not executed by II can be discarded from C in linear time.

Note that in the case where C has few and small corrections, i.e., the total number of
simple component corrections «; occurring in C is bounded by a constant, a natural variant of
the algorithm is the following. Steps two and three are replaced by a test for each stmnt(k,b)
from step one and correction @ in CT'L whether @ is executed by II by virtue of stmnt(k,b).
Each such test is possible in constant time. Observe that the resulting algorithm does not
access P at all.

We finally remark that for inputs where P is not available, O(nlogn) algorithms for
correction execution are possible by using sorting techniques. a

Theorem 6.8 Let @ be a repair for the PRP R = (P, F,¢) such that V(@) N (ap(p) U
ap(F)) = 0. Then, every counterexample 11 for ¢ in Mg (P) exploits @.

Proof. Let II be a counterexample for ¢ in M = Mp(P). By way of contradiction,
suppose that II does not exploit @. We prove that @ is a weak correction w.r.t. I, i.e.,
there exists a fair multi-path II' in M" = Mp(P®) such that II and II' are equivalent on
A= A\ V(@). Thus, a contradiction arises by Proposition 6.2.

We show by induction on the depth d(II) of IT that if IT is a fair multi-path in M which
does not exploit @ and sg is a state such that sy &4 or(Il), then there exists a fair multi-
path II" in M’ such that IT x4 II" and or(Il') = so. (Notice that, from the definition, every
counterexample has finite depth.) In case of the counterexample, choose so = or(II).
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Basis. d(II) = 0. Then, IT = s is a state. Clearly, II' = s is the desired fair multi-path in
M.

Induction. Consider d(IT) > 0. Then, II = [IIy, II;,...] is an infinite multi-path such that
w(IT) is a fair path which does not exploit @ and every II; is a fair multi-path in M which
does not exploit @. By Lemma 7.1, there exists a path 7! for & = oy such that =(! RA;
70 = p(IT), where A, = A\ V(ay), 7 (0) = s¢, and 7 is fair in Mp(P*). By repeated
application of Lemma 7.1, we obtain that for every i = 1, ..., ¢ there exists a fair path 7( in
M (Porei) such that 7 a4 7071 where A} = A\ V() and 7 (0) = so. It follows that
7@ ~p 7 for B= A\ U; V(o). Since B = A’ and 7(® = y(I0), it follows that the states
7@ (3) and p(I)(i) satisfy 7@ (i) ~4 p(I1)(3), for every i > 0. Hence, by the induction
hypothesis, for every i > 0 there exists a fair multi-path IT} in M’ such that or(IT}) = 7(9 (1)
and II; ~ 4 II,. Let IT' = [IIg, I}, .. .]. It is easily verified that II' is a fair multi-path in M’
such that IT ~4 II" and or(Il') = 7(9(0) = so. This concludes the induction and the proof
of the theorem. |

Proposition 6.9 Given a concurrent program P, a collection C of complex corrections
o = oy -0, and a counterezample II, the corrections in C which are not exploited by II
can be discarded in linear time.

Proof. The algorithm is similar to the one sketched in the proof of Proposition 6.7.

As there, in the first step all distinct pairs 7(i), 7(i4 1) are determined such that 7 (i) and
m(i + 1) are successive states in the computation tree represented by II. In the second step,
by a scan through these pairs, the set of variables EV (IT) which are evaluated in at least
one transition 7 (i), 7(i + 1) can be easily determined by referring to the program P. From
EV(IT), it is easy to verify whether IT exploits a single correction a by checking whether
some z; € V(a) occurs in EV(II). For a complex correction @ = a; - - - o, this can be done
analogously by taking V(@) in place of V («).

Step one is possible in linear time, and also step two can be done in linear time if P is
suitably represented, such that random access to its statements stmnt(k, b) is possible; here,
multiple examination of a stmnt(k,b) in constructing EV(II) can be avoided by marking
stmnt(k,b) in P after the first access to it. Step three is also possible in linear time, by
considering the corrections @ in C one by one. The result follows. O
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