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1 Introduction

Linear arrays of finite automata can be regarded as models for massively
parallel computers. Mainly they differ in how the automata are inter-
connected and in how the input is supplied. Various types have been
studied for a long time [1, 2, 3, 4, 5, 8, 11, 14, 15, 16, 17, 19, 21]. Here
we are investigating arrays with a very simple interconnection pattern.
Each node is connected to its right immediate neighbor only. They are
usually called one-way cellular automata (OCA).

Although deterministic and nondeterministic finite automata have the
same computing capability, nondeterminism can strengthen the power
of OCAs under some time resource bounds.

Nondeterministic OCAs have been investigated e.g. in [8], where
Z(NOCA) = Z(NCA) was proved, and in [12], where it was shown
in terms of homogeneous trellis automata that .Z.,(NOCA) contains
the e-free context-free languages as well as a NP-complete language,
and is an AFL closed under intersection.

Here we consider arrays with restricted nondeterminism. We limit the
number of allowed nondeterministic transitions. Moreover, all non-
deterministic transitions have to appear before the deterministic ones.
The main object of the present paper is to investigate arrays that are
limited to exactly one nondeterministic transition step.

The paper is organized as follows: In section 2 we define the basic
notions in terms of formal language processing. Section 3 is devoted
to speed-up results and the possibility to reduce the number of non-
deterministic transitions. FEspecially, it is shown that for one guess
OCAs real-time is as powerful as linear-time. In section 4 comparisons
are made to deterministic one-way and two-way devices. In section 5
various closure properties of the real-time one-guess OCA languages are
shown.

2 Basic notions

We denote the integers by Z, the positive natural numbers {1,2,...} by
N, the set N U {0} by Ny and the powerset of a set S by p(S).

A nondeterministic one-way cellular automaton is a linear array of non-
deterministic finite automata, sometimes called cells, each of them is
connected to its nearest neighbor to the right. For our convenience we
identify the cells by natural numbers. The state transition depends on
the actual state of each cell and the actual state of its neighbor. The
transition function is applied to all cells synchronously at discrete time
steps. More formally:



Definition 1 A nondeterministic one-way cellular automaton (NOCA )
is a system (S, 0, #), where

a) S is the finite, nonempty set of states,

b) #¢€ S is the boundary state,

c) §:8% — p(8) is the local transition function satisfying
V1,82 €S :(0(s1,82) #0) and (6(s1,82) = {#} < s1=#).

Let M be an NOCA with n cells. A configuration of M at some time
1 > 0 is a description of its global state, which is actually a mapping
¢ :[1,...,m] = S. During its course of computation an NOCA steps
nondeterministically through a sequence of configurations. The con-
figuration ¢g at time 0 is defined by the initial sequence of states in
an NOCA, while subsequent configurations are chosen according to the
global transition A:

Let n € N be an arbitrary natural number and c resp. ¢ be defined by
S1y...,8y € S 1esp. si,...,8h, €S.

d €A(c) < s €d(s1,82),85 € 6(s2,83),...,5, € (sn, #)

The i-fold composition of A is defined as follows:
A%c) = ¢
A e) = U A(d)

ceAi(c)

mi(s1 -+ 8p) := 8; selects the ith component of sy - -- s,. If the state set
is a Cartesian product of some smaller sets S = Sy x S1 X --- X S, we
will use the notion “register” for the single parts of a state. Accordingly
we define cf () := m(mj(ci)).

If the flow of information is extended to two-way, the resulting device
is a nondeterministic two-way cellular automaton (NCA). Le. the next
state of each cell depends on the state of the cell itself and the states of
its both immediate neighbors (to the left and to the right).

An NOCA (NCA) is deterministic if §(s1, s2) (6(s1, 82, 83)) is a singleton
for all states s1, 9,583 € S. Deterministic cellular arrays are denoted by
OCA resp. CA.

Definition 2 Let A be an Alphabet and M = (S, 6, #) be an NOCA
with A C S.

a) A wordw € A" is accepted by M with final states F C S int time
steps if there exists a top < t such that there exists a configuration
¢ty € Al(cy) where 1(ct,) € F.

b) L(M) = {w € A" | w is accepted by M} is the formal language
accepted by M.

c) Let t : N — N, ¢t(n) > n, be a mapping. If all w € L(M) are
accepted within t(|w|) time steps, then L is said to be of time
complexity t.



The family of all languages which can be accepted by an NOCA with
time complexity ¢ is denoted by %,y (NOCA). If ¢ equals the identity
function id(n) := n acceptance is said to be in real-time and we write

Z.+(NOCA).

There is a natural way to restrict the nondeterminism of the arrays.
One can limit the number of allowed nondeterministic state transitions
of the cells.

For the following let us suppose the local transition consists of a de-
terministic and nondeterministic part d4 and 4,4, where d4(s1,s2) C
Ond(s1,82). At a whole § = d,4 remains nondeterministic, but with
this distinction the restriction is easily defined. A, 4 denotes the global
transition based on d,4 and A, the deterministic one based on d4.

Let g : N — N be a mapping for which g(n) < t(n) holds. g gives the
number of allowed nondeterministic transitions. An NOCA of length n
for which the i-fold global transition A’ is defined as

Al — Aéd ifi < g(n)
= Az—g(n) (Ai&")) otherwise

is denoted by gG-OCA (g guess OCA). Observe that all nondetermin-
istic transitions have to be applied before the deterministic ones. In the
sequel we are mainly interested in NOCAs allowed to guess constant
times (i.e. g(n) =k, k € Np).

3 Speed-up and guess reduction

It is known [4] that deterministic OCAs can be sped-up by a constant
amount of time as long as the remaining time complexity does not fall
below real-time. For constructions it is sometimes convenient to have
a corresponding result for 1G-OCAs: For example, after the first non-
deterministic step a deterministic ¢(n)-time OCA can be simulated and
subsequently the resulting (¢(n) + 1)-time 1G-OCA can be sped-up to
a t(n)-time 1G-OCA again. Observe that in case of real-time it is not
possible to speed-up the deterministic OCA by 1 time step before its
simulation.

Lemma 3 Let t : N — N, ¢(n) > n, be a mapping and k € Ny be a
constant number. Then £,y 41 (1G-OCA) = Z(,,)(1G-OCA) holds.

Proof. Let M be an 1G-OCA with time complexity t(n) + k& which
passes through the configurations ¢y to ¢y - An 1G-OCA M’ which
simulates M in time t(n) works as follows. Each cell consists of k£ + 1
registers each may contain a state from S, thus S’ := S¥*1. k of the
registers are initially empty.



The rightmost cell “knows” its input in advance (i.e. the border state).
Therefore it can compute the states c1(n), ..., ck11(n) in the first trans-
ition and store them in its registers. Subsequently it simulates one step
of cell n of M in every time step. At the second time step cell n — 1
observes the filled registers of its neighbor and can compute the states
co(n — 1),...,¢ckyr2(n — 1) in one time step. Again, subsequently it
simulates one transition per time step. The behavior of cells n — 1
to 1 is identical. Thus at time n the first cell computes the states
cn(1),-- -, cntk(1), and at time £(n) the state c;(n) 44 (1)- O

Deterministic OCAs can be sped-up from (n + t(n))-time to (n + @)—
time [1, 13]. Thus linear-time (i.e. £ times real-time, k£ > 1) is close by
real-time. By the way, it is not the same, since the inclusion .%,,(OCA) C
Z14¢)-id(OCA) = Z4(CA) is a proper one [20, 4]. For 1G-OCAs we
have the following stronger result, from which follows that real-time is
as powerful as linear-time.

Theorem 4 Let t : N — N, ¢(n) > n, be a mapping and k € N be a
constant number. Then Z.;(,)(1G-OCA) = Z,,)(1G-OCA) holds.

Proof. From the definition we obtain the inclusion .Zj(,,)(1G-OCA) C
fk.t(n)(lG—OCA).
It remains to show that Z}.4,)(1G-OCA) C &, (1G-OCA).

Let L be a language belonging to Z}.4(,)(1G-OCA) and let M be an
1G-OCA that accepts L with time complexity & -t(n). We construct an
1G-OCA M’ that simulates M in time ¢(n). The underlying technique
will later be referenced as pack-and-check technique.

The idea is as follows: on an input of length n each cell ¢ with 1 <14 <
n/k, of M’, guesses the initial states of the cells k(s — 1) + 1,k(: — 1) +
2,..., ki and additionally what each cell of M might have guessed with
respect to these initial states. (For simplicity here we assume that n is
a multiple of k. The other cases are omitted since their handling is only
a technical challenge.) Based on this compressed representation M’
can simulate k time steps of M per time step which yields the required
speed-up.

In parallel M’ has to check whether the guesses of the initial states were
correct. Therefore each cell (n/k)j+iwithl <7 <n/kand0 < j < k-1
guesses the initial states of the cells (1—1)n/k+1, (i—1)n/k+2,...in/k,
too. So we are concerned with an interim configuration of the form
T1T2 - - . Tpp, Where |z;| = k and each z; might contain the compressed
initial input. Now M’ subsequently verifies — the first checking task —
that the initial states guessed in the cells corresponding to z; and z;1,
are the same, 1 < j < n/k. Additionally it checks — the second one
— whether the guessed initial states z,/; are really the packed initial
states of all cells. So in total it can be ensured that the simulation of
M is based on the correct data.
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Figure 1: Example to the proof of theorem 4 with k = 2

To complete the proof we have to show how the two checking tasks
can be realized. For the first task w.l.o.g. we may assume that k = 2.
Further it is convenient to assume that the first n/2 cells and the last
n/2 cells are distinguishable which can be provided by allowing each cell
to guess whether it belongs to the first or last part and subsequently
checking in n time steps that no cell which guessed ‘last’ occurs left
from a cell which guessed ‘first’ and vice versa. Further it can easily be
checked that the numbers of cells in the left and right part are identical.

The first checking task is then performed as follows. The last n/2 cells
shift there guessed initial states in some register with maximum speed
to the left. Each of the first n/2 cells are equipped with some 2 registers
that are initially empty and work as a queue in a first-in first-out man-
ner through which the arriving symbol stream is successively piped (cf.
figure 1). Additionally in the rightmost cell a signal is generated in the
first time step which moves leftward with maximum speed. If it enters
one of the first n/2 cells it checks whether the cell’s guessed initial states
which were stored in some register are equal to the initial states that are
currently in the position to leave the queue next. If they are not equal
the signal prohibits the cell and the cells left from this cell to become
final.

To perform the second checking task each cell is equipped with a counter
modulo k£ which is initialized to kK — 1 and decremented by one at each
time step. Further at each time step a cell takes over the guessed packed
input symbols of its right neighbour if its counter differs from k¥ — 1
such that they are shifted through the cells. Otherwise a cell holds the
packed input symbols which it actually contains (cf. figure 2). Again
in the rightmost cell a signal is generated in the first time step which
moves leftward with maximum speed. If it enters a cell it checks whether
the symbol in the packed representation at position r + 1 equals to the
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Figure 2: Example to the proof of theorem 4 with £k = 3

(real) initial state of that cell where r denotes the value of its counter.
Similarly if there exists some cell where the equality check fails this
signal prohibits this cell and the cells left from this cell to become final.

O

The next result shows that k 4 1 guesses per cell are not better than &
guesses.

Theorem 5 Let g : N — N, g(n) < t(n), be a mapping and k € Ny
be a constant number. Then Z;,)((g + k)G-OCA) = Z(,)(9G-OCA)
holds for all mappingst: N — N, t(n) > n.

Proof. It suffices to show the theorem for £ = 1. Since an application
to gx = g+ k yields gx—1 = g + k — 1, a subsequent application to gx—1
yields g, o =g+ k —2 and so on to g;_r = g.

Let M be a (g+1)G-OCA. We construct a gG-OCA M’ which simulates
M without any loss of time.

In its first (nondeterministic) step M’ simulates the first step of M and,
additionally, another nondeterministic step of M for all possible pairs
of states of M. The second result is stored in an additional register.
It is a table S? x S, which contains one row for every (si,s2) € S2.
After g(n) time steps the first deterministic step of M’ is as follows.



Every cell takes the actual state of itself and its neighbor and selects the
corresponding row in the table. The next state is the third component of
that row. Since the third components were nondeterministically chosen
a nondeterministic transition is simulated deterministically. From time
g(n) + 2 to t(n) M’ simulates M directly. O

4 Comparisons with deterministic
cellular arrays

In order to compare the real-time computing power of 1G-OCAs to the
well-investigated deterministic devices we prove the following lemma.

Lemma 6 Let A be an arbitrary alphabet.
L={w"|weAt} e Z,(1G-OCA).

Proof. For each symbol a in A we introduce a new symbol a and
denote the resulting alphabet by A, i.e. A = {a | a € A}, by h we
denote the homomorphism that maps a + a for alla € A and a — a
for all a € A.

On input w an 1G-OCA M might work as follows to accept L in time
n + 1. Due to lemma 3 we can speed-up M to real-time subsequently.
In the first time step each cell is allowed to nondeterministically stay
in its initial state or to switch into its barred analogue. At time step
2 there might be a (guessed) configuration z = z1z2 ...z where the
odd indexed words belong to AT and the even indexed ones to A or
vice versa. Now obviously w € L if and only if h(z;) = z;41 for all
i=1,...,k—1and |z1] = k. M is constructed to accept if and only if
z is of that form.

Therefore M performs two tasks in parallel. The first is to check
whether h(z;) = ;41 for all 4 = 1,...,k — 1. Therefore it uses the
queue technique which was described as first task in the proof of the-
orem 4 (see also figure 1). The second task is to verify that |z;| = k.
This can be realized as follows (cf. figure 3): in the second time step
the rightmost cell and each cell in a state from A with a neighbor in a
state from A or vice versa generates signals that moves leftward with
maximal speed. They can be active or passive. If such an active signal
enters an (unmarked) cell it marks that cell as being visited exactly
once and becomes passive remembering whether or not the state of the
cell was from A. As long as it subsequently passes through cells with
states belonging to the same alphabet it remains passive. Otherwise
it becomes active again and remains active as long as it enters marked
cells which are additionally marked as being visited more than once.
One can easily verify that the leftmost cell is marked as being visited
once exactly if the number of generated signals is equal to the number
of symbols in z1, i.e. if and only if |z1| = k. O
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Figure 3: Checking whether |z1| = k.

The following theorem states that the computing power of real-time
OCAs is strictly increased by adding one nondeterministic step to that
device.

Theorem 7 .%,;(0OCA) C .%,(1G-OCA)

Proof. Obviously, we have an inclusion between the families since
the nondeterministic part of the state transition can be designed to be
deterministic. The language from lemma 6 belongs to .Z;:(1G-OCA). In
[18] it was shown that it does not belong to .Z,,(OCA): L intersected
with the regular language {a}™ is the unary language {a"" | n € N}
which is not regular and thus not a real-time OCA language. Thus the
inclusion is a proper one. O

It is known that .£(OCA) is closed under inverse homomorphism [16],
injective length multiplying homomorphism [6, 7] and inverse determ-
inistic gsm mappings [12] but is not closed under e-free homomorphism
[16]. There is another relation between .%+(OCA) and .%+(1G-OCA).
If we build the closure under e-free homomorphisms of .%;(OCA) we
obtain exactly the family .%;(1G-OCA). To prove the assertion we
need the result that .%,,(OCA) is closed under another weak kind of
homomorphism.

Definition 8 Let h : A* — B* be an e-free homomorphism. h is
structure preserving if for every two a,a’ € A with h(a) =by---by, and
h(a') = b} ---bl, the sets {b1,...,by,} and {b},... b} are disjoint if
a#a



Lemma 9 .%,;,(OCA) is closed under structure preserving homomorph-
ism.

Proof. Let A = {aj,...,a;} be an alphabet, . C A* be a language
belonging to .Z,,(OCA) and h : A* — B* be a structure preserving
homomorphism:

h(a1) =b11 *brag,s-- s Mam) =bm1 O,

where b; ; € B.

A deterministic generalized sequential machine (gsm) [10] is defined as
follows: The input alphabet is B, the output alphabet is A and the set
of states is § = {s;; | 1 <3 <mand 2 < j < n;} U {so, s} where sg
is starting and final state. The gsm does its computation according to
the local transformation § : S x B — § x A*.

For all 1 <4 <m and sg; € S\ {s0, Se}:

sig,€) ifj=1andn; >1
(5(80,1),‘7]') = { So,ai) ifj =1 and n; = 1
Se,€)  otherwise

Ski+1,€) ifk=dandl=jandn; >1
6(3k,labi,j) = { So,ai) ifk=1and! :j and n; = l
Sey €) otherwise

5(367 bZ,J) = (361 E)

(
(
(
(
(
(

The gsm reads an input word w’ from B* and emits an output word
w from A*. If additionally gsm stops in a final state we write formally
gsm(w') = w. For a given language L;, C B* it defines the language
gsm(Liy,) = {w € A* | 3w’ € L, : gsm(w') = w}.

Since .Z,1(OCA) is closed under inverse deterministic gsm mappings
with final states the language gsm (L) = {w' € B* | 3w € L :
gsm(w') = w} belongs to Z(OCA), too. Now it suffices to show
h(L) = gsm~Y(L).

For an arbitrary w = a;---a, € L we have h(w) = b1 byy, -
by 1--+byy,. Since h is structure preserving the b;; are all different,
thus, if started in state so the computation path of gsm under input
h(a;), 1 < i < m, is (So,bi,1) 2 so if n; = 1. The output is written
on top of the arrow. If n; > 1 we obtain (sg,b; 1) 5 (8i,2,042) 5
(8i,3,0i3) 5.5 (Sin;s Ding) 2 s0. In both cases gsm maps h(a;) —
a;. Since starting and final states are identical we have gsm(h(w)) = w
and therefore h(w) € gsm™1(L).

Now let w' be a word in gsm~*(L). It must exist a word w = a; -+ a, €
L such that gsm(w') = w. We consider an arbitrary symbol in w, say a;.
The possible transition steps of gsm that emit a; are (;n,,bin,) 2 50
and (sg, b 1) 2 5. Note that these steps result in the state so respect-
ively. Since n; is uniquely defined by h we have for n; = 1 the transition

10



(50,bi,1) —% s and since h is structure preserving (i.e. b; 1 is uniquely de-
termined) gsm™!(a;) = b;1. For n; > 1 the transition (s; 5;,bin;) 2 0
must take place to emit the symbol a;. The only way to enter state
Sin,; is from state s;p,,—1 with input b;,,_1 whereby the empty word
is emitted. We can trace back the computation until we reach state
so again. The only way to enter sy is by transition steps that emit
nonempty symbols. Therefore gsm!(a;) = b; 1+ bjp,. Since starting
and final states are identical we obtain the unique word gsm*(w) which
must be w': w' = gsm™'(w) = b1 big,  -bp1c-bpy,. It follows
w = b1,1 cee bl,n1 cee bp,l v bp,np = h(al) cee h(ap) = h(w) (S h(L) O

Theorem 10

a) Let L be a language belonging to .£,,(OCA) and h be an e-free
homomorphism. Then h(L) belongs to %,+(1G-OCA).

b) Let L be a language belonging to .4,(1G-OCA). Then there exist
an e-free homomorphism and a language L' € %,;(OCA) such that
h(L') = L holds.

Proof.
a) Let L be a language over the alphabet A = {ai,...,an,} and a
homomorphism A : A* — B* be defined according to

h(al) = b171 e bl,nla ey h(am) = bm,l e bm,nma

where b;; € B.

We introduce an alphabet B := {b11,...,b1m;,b21,...,bmn, } of dif-
ferent symbols and a structure preserving homomorphism A’ : A* — B*:

h'(al) = b1’1 tee Bl,nl, ey h'(am) = Bm,l e Bm,nm-

Since .%+(OCA) is closed under structure preserving homomorphism
R'(L) is a real-time OCA language. Define an e-free length preserving
homomorphism A" : B* — B*: h"(b11) =b1,1,..., A" (Omnm) = bmnm-
Obviously, we have h(L) = h"(h'(L)).

An 1G-OCA M’ that accepts h(L) in n+ 1 time steps works as follows.
Since h"” is length preserving, in the first time step every cell can guess
the inverse image of its initial state under A”. During the next n time
steps M’ simulates a real-time OCA M that accepts h'(L). As shown
in lemma 3 we can speed-up M by one time-step.

b) Let M be an 1G-OCA accepting L in real-time. M can be simu-
lated by another 1G-OCA M’ which works in (n + 1)-time as follows.
In the first step M’ guesses the state of each cell of M at time 2. In the
second step M’ verifies its guess. During the steps 3 to n+1 M’ works
exactly as M during the steps 2 to n. Now let M"” be an OCA which
simulates the computation of M’ during the time steps 2 to n + 1 and

11
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Figure 4: An 1G-OCA can be simulated by an OCA and a homomorph-

1S1m.

h be the e-free homomorphism that maps a pair of states of M to the
first component h(s1,s2) = s;. Thus h(L(M")) = L. 0

Adding two-way communication to deterministic cellular arrays yields
more powerful real-time devices. It is well known that .2,(CA) is a
proper superset of .Z,;(OCA) [16]. The following two theorems relate
both augmentations.

Theorem 11 .£,,(CA) C £.(1G-OCA)

Proof. 1In [4, 20] it has been shown that L € %.,(CA) if and only if
LE € %,4(OCA), where L% denotes the reversal of L. From theorem
4 we know %;4(1G-OCA) = Z+(1G-OCA). For structural reasons
Z5i4(0OCA) C %;q(1G-OCA) must hold. In theorem 16 the closure of
Z+(1G-OCA) under reversal is shown what proves the assertion. O

Theorem 12 .%,,(1G-OCA) C Z(CA)

Proof. The idea is to construct a brute-force CA which tries all possible
choices of the .Z;(1G-OCA). In order to realize such a behavior we need
two mechanisms. One has to select successively all possible choices. The
other mechanism is the simulation of the .%;;(1G-OCA) on the actual
choice.

To control the mechanisms we use synchronization by a modified fssp. If
the synchronization is started at both border cells simultaneously it can
be done in exactly n time steps, where n is the length of the array. This
process can be repeated such that the array fires every n time steps.

In the .£+(1G-OCA) computation every cell can nondeterministically
choose a state in the first time step. Let S denote the state set. To
generate all possible choices of the whole array it suffices to set up a |S|-
ary counter. At most every possible number on the counter corresponds

12



to one choice. Actually, it may happen that some of the numbers are
invalid choices since the nondeterministically step of a cell may depend
on its input symbol. But such cases are detectable by the cells themself
which can set up an error flag that prevents the array to accept. To
increment the counter a signal is send from the border cell containing
the least significant digit to the opposite. It needs n time steps.

Subsequently n time steps of the .%+(1G-OCA) are simulated in a
straightforward manner. The input is accepted if one of the choices
leads to an accepting simulation. Otherwise it is rejected when the bor-
der cell containing the most significant digit generates a carry-over.

O

5 Closure properties

The family .%,:(1G-OCA) has strong closure properties.

Lemma 13 .%,;(1G-OCA) is closed under union, intersection and set
difference.

Proof. Using the same two channel technique of [17] and [8] the
assertion is easily seen. Each cell consists of two registers in which
acceptors for both languages are simulated in parallel. O

Theorem 14 %, (1G-OCA) is an AFL (i.e. is closed under intersection
with regular sets, inverse homomorphism, e-free homomorphism, union,
concatenation and positive closure).

Proof. Closure under intersection with regular sets and union have
been shown in lemma 13.

Assume there is a language L' € %(1G-OCA) and an e-free homo-
morphism b’ such that L" := h/(L') ¢ £,+(1G-OCA). From theorem 10
follows that there exists a language L € .Z+(OCA) and an e-free ho-
momorphism A such that h(L) = L'. Therefore we have L" = h'/(h(L)).
Since h' o h is an e-free homomorphism too, theorem 10 is contradicted.
The closure under e-free homomorphism follows.

Let L € £.(1G-OCA) be a language over A and h : B* — A* be
a homomorphism. From theorem 10 we obtain a real-time OCA lan-
guage L' over A’ and a length preserving homomorphism A’ : A™* — A
with h/(L') = L. Let hy be the homomorphism with hy((z,z')) = &'
for every z € B, ' € A’ with h(z) = h'(z'). Further let p; be an
e-free homomorphism with pi((z,2')) = = for z € B, 2/ € A’. Then
pi(hy 1 (L) = B 1 (W(I))) = h~(L). Since .Z;(OCA) is closed under
inverse homomorphism [16], A7 (L) belongs to .%,;(OCA). Now the-
orem 10 implies h~1 (L) € .%+(1G-OCA) which proves the closure under
inverse homomorphism.

13



Now let L1, Ly € £1(1G-OCA) and M;, M5 be acceptors for L; and
Ly. We construct a 2G-OCA M’ that accepts the concatenation LiLo
in n + 1 time steps. To accept an input wywsy, wy € L1, wo € Ly, M'
guesses in its first time step the cell in which the first symbol of wq
occurs. In the remaining time steps 2 to n +1 M’ simulates M in
the left part on w; and Ms in the right part of the array on ws. Due
to theorem 5 we can construct an 1G-OCA that accepts LqLs in time
n + 1 which according to lemma 3 can be sped-up to work in real-time.

The closure under positive closure follows analogously. O

Corollary 15 .%4(1G-OCA) is closed under e-free substitution.

Proof. In [9] it has been shown that an AFL that is closed under
intersection is also closed under e-free substitution. Thus the assertion
follows from lemma 13 and theorem 14. O

Theorem 16 .%,:(1G-OCA) is closed under reversal.

Proof. Let A be an arbitrary alphabet. In [8] it has been shown that
the language
Lp={we A" |w=wf}

belongs to .Z,(OCA).

Let M be an .Z,;(1G-OCA) that accepts a language L C A* in real-
time.

An %(1G-OCA) M’ that accepts L% in n + 1 time steps works as
follows. On input w = wy---w, every cell 1 < i < n of M’ guesses
the symbol w,_; 1 and stores it in an additional register. If the guesses
are correct then M’ has the symbols wpw,_1---wow; = w? on its
additional track. Furthermore the cell in the center of the array is
nondeterministically marked (if n is even the two cells in the center).

Altogether, after the first time step M’ performs three tasks in parallel.
One is to simulate M on w’ because w € L% iff w® € L = L(M).

The second task is to verify that the cell(s) in the center is (are) marked.
It is realized by a signal which moves with speed % from the marked
cell(s) to the left. Since accepting is in real-time it can only be done
at the time step the signal arrives at the left border. In this case the
center was marked.

The last task is to check that the guessed word wf was correct. Note
that every cell can remember its original input. Therefore, the input as
well as its (guessed) reversal could be stored on different tracks at time
step 1. Since the center is marked M’ can simulate two real-time OCAs
for the language L where the input is the left half of one track and the
right half of the other track respectively. O

14



It has been shown that .%;(1G-OCA) is closed under reversal and that
there is the inclusion .Z;(1G-OCA) C Z(CA). Up to now it is not
known whether the family is closed under complement. A negative
answer would imply that there exists a CA language which is not a
real-time CA language.
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