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1. Synthesis 

1.1 High mountain grassland 

High mountain ecosystems and their services are of global economic and ecologic importance 

(Gret-Regamey et al., 2012). Covering about 20 % of the terrestrial surface, high mountains provide 

habitat for 386 million people and supply freshwater to almost half of the human population 

(Körner, 2004; Körner et al., 2017; Messerli et al., 2004; Woodwell, 2004). At the same time they 

are unique sanctuaries for flora and fauna, with almost half of the global biodiversity hot-spots and 

one third of the terrestrial diversity being associated to high mountain ecosystems (Körner, 2004; 

Myers, 2003; Barthlott et al., 2005). Interactions of geographic isolation and fragmentation of 

habitats, the short succession of heterogeneous climatic zones and a high variability of 

microhabitats, caused by the terrain, lead to high species richness and a high number of endemic 

species in high mountain regions (Körner, 2004). A species-rich, undamaged vegetation layer is a 

prerequisite for the provision of multiple high mountain ecosystem functions, such as mitigation 

of erosion events, a high biodiversity and grassland yield, as the nutritional basis for local dairy and 

livestock production (Körner, 2004; O’Mara, 2012; Pohl et al., 2009).  

High mountain ecosystems are sensitive to global change, which strongly affects their functioning 

through social change, land-use change and climatic change (Cocca et al., 2012; Klimek et al., 2007; 

Watson and Haeberli, 2004). Social changes, such as instability and rural migration, are leading to 

the economic marginalization of  high mountain regions and are the main drivers of  the 

abandonment of  agricultural practices (Benayas et al., 2007; Gracheva et al., 2012). Since large parts 

of  high mountain regions are embedded in low-income countries, with half  of  their population 

depending on regional food supply, high mountain agriculture is urgently needed for food security 

(Messerli et al., 2004). In the former member states of  the Soviet Union the effects of  rural 

migration and land abandonment are enhanced by the economic transformation process (Baumann 

et al., 2011). Substantial changes, with the economical and agricultural structure shifting from state-

organized, intensive agriculture to private subsistence agriculture, are part of  the transformation 

process and affect the land-use pattern and the functioning of  the landscape itself  (Heiny et al., 

2017; Waldhardt et al., 2011).  

Abandonment of traditional agricultural practices has been a major trend in Central European 

mountainous landscapes in the past decades (MacDonald et al., 2000), affecting the biodiversity, 

the productivity and the functionality of the grasslands of the mountainous landscape in complex 

ways (e.g. Marini et al., 2008; Peco et al., 2012; Tasser and Tappeiner, 2002), with strong impacts 

on low yielding and distant areas (Prishchepov et al., 2013). The abandonment of the traditional 
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mowing regime potentially leads to a loss of plant species richness in mountain hay meadows 

(Marini et al., 2007; Maurer et al., 2006; Tasser and Tappeiner, 2002). Moreover, traditionally used, 

species-rich meadows and pastures show a lower erodibility, because of their diversified root 

system (Tasser and Tappeiner, 2002).  

Abandonment of  high mountain grassland is often followed by shrub encroachment processes and 

reforestation (Cocca et al., 2012). Shrub encroachment is characterized by increasing shrub 

biomass, cover, and abundance and is expected to significantly alter high mountain ecosystems 

(Camarero and Gutiérrez, 2004; Holtmeier and Broll, 2007; Smith et al., 2009). An increase in shrub 

cover can strongly influence an ecosystem’s surface energy exchange (Sturm et al., 2001), nutrient 

cycling (DeMarco et al., 2011), and carbon storage (Knapp et al., 2008), as well as the floristic 

composition and services provided (Wilson and Nilsson, 2009). In the Alps, experimental grazing 

enclosure results in a significant change in plant functional groups, especially an increase in tall, 

competitive grass species (Mayer et al., 2009), which might further enhance snow gliding and 

erosion (Tasser et al., 2003).   

In order to counteract abandonment of  high mountain grassland use and its consequences future-

orientated land-use concepts, considering sociological and ecological relationships are needed in 

high mountain regions, especially in countries under transition (Gurung et al., 2012). Ecological 

data, including detailed spatial information of  key ecosystem properties, such as species 

composition, productivity and plant functionality, as well as ecosystem processes, for instance 

shrub encroachment, are often scarce in remote high mountain regions and difficult to collect with 

resasonable efforts and expenses. Thus, remote sensing techniques could be beneficial for mapping 

and monitoring the highly diverse but also vulnerable grassland vegetation in mountainous regions 

(Peroni et al., 2000; Rocchini et al., 2010). 
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1.2 Remote sensing concepts  

Optical remote sensing of  grasslands is based on the reflectance signature of  photosynthetically 

active vegetation (green vegetation), which is affected by the absorption of  light by pigments, 

mainly chlorophyll a and b (Curran et al., 2001; Fillela and Penuelas, 1994; Horler et al., 1983; 

Thenkabail et al., 2000). The blue and red parts of  the electromagnetic spectrum in the visible light 

are absorbed and used by the plant for photosynthesis, whereas the green light is reflected (green 

peak between 500-600 nm, see Fig. 1).  

The strong increase of  reflectance at approximately 700 nm, called the red edge, is strongly related 

to leaf  chlorophyll content and a well-known indicator for stressed vegetation (Dawson and 

Curran, 1998; Mohd Shafr et al., 2006; Thenkabail et al., 2011). In the near-infrared (NIR, 700-

1500 nm) reflectance is mainly influenced by the water content and leaf  chemistry within the leaf  

and on canopy level by leaf  structure, leaf  area index and leaf  position (Curran, 1983; Ustin and 

Gamon, 2010). The reflectance signal of  vegetation types itself  can be recorded by different 

sensors. Those are either multispectral, recording commonly between five to ten discrete bands 

over a certain range of  wavelengths, or hyperspectral, recording reflectance almost continuously 

throughout the spectrum (see Fig. 1). 

 

Fig. 1: Hyperspectral reflectance of  Hordeum brevisubulatum and Astragalus captiosus 
grassland types compared to multispectral sensor bands (RapidEye). 



1. Synthesis 

 

15 
 

The sensors can be attached to different carriers, such as satellites, airplanes or humans / tripods 

in the case of  field spectrometers and cameras. To enhance the reflectance signal of  vegetation, so 

called vegetation indices are calculated, by using the strong increase in reflection between the red 

and NIR. Vegetation indices are commonly used to assess biomass, vegetation cover, leaf  area 

index, insufficient plant nutrient status or other signs of  plant stress. leaf  area index or vegetation 

cover (Biewer et al., 2009; Boschetti et al., 2007; Diker and Bausch, 2003; Huete et al., 1999; Jordan, 

1969; Qi et al., 1994; Rouse et al., 1973). However, vegetation indices tend to saturate at high yields. 

Therefore, their relationship with biomass rich grassland, such as hay meadows is challenging. In a 

semi-natural landscape, with low farming intensity species composition and biomass are closely 

linked, so that species composition is a promising predictor for biomass. 

In common vegetation mapping, discrete boundaries of  vegetation types are depicted, even though 

standardized approaches defining vegetation types are rare (De Cáceres and Wiser, 2012) and 

consistency between classified vegetation maps is often low. In the last decades a quite new concept 

of  vegetation maps, based on remotely sensed data, was introduced, emphasizing the continuous 

character of  vegetation changes, examples for this method are given in Feilhauer et al., 2011, 

Schmidtlein et al., 2007, and Schmidtlein, 2005. 

The common high mountain landscape is characterized by the absence of  sharp boundaries like 

field- and meadow edges, typical for the fragmented, hessian agricultural landscape (Simmering et 

al., 2001; Waldhardt et al., 2011). Since discrete boundaries, or so called ‘sharp edges’ are mostly 

missing in grassland dominated high mountain regions, a non-classificatory approach, depicting 

the floristic composition, biomass and plant functional groups by means of  remote sensing was 

chosen for the first and second study (chapter two and three).  

As Schmidtlein, 2005 states: the challenge of  classifying vegetation traces back to the long and 

ongoing discussion about the organization of  vegetation and antagonism between perceiving 

vegetation types as interdependent species forming communities with homogeneous, discrete and 

recognizable units, following the community concept (Clements, 1916) or as individual species that 

simply co-occur in a certain area, individually following along environmental gradients (Gleason, 

1926). The individualistic view is apprehended in the continuum concept and discussed in the light 

of  niche-theory (Austin and Smith 1989). Vegetation boundaries change in space and time and are 

perceived either as sharp edges, the so called limes convergens or a smooth gradient, the limes 

divergens (van Leuwen, 1966).  

Modelling gradual transitions is mostly technically implemented by relating either ordination axes 

or the gradient itself, such as biomass, or plant functional group coverage to a predictor dataset. 
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The gradual change of  species composition of  grasslands, Ellenberg indicator values, or plant 

strategy types (Feilhauer et al., 2011; Magiera et al., 2013; Schmidtlein et al., 2012), has already been 

successfully modelled. Plant functional groups were already successfully predicted by hyperspectral 

data, as pollination types (Feilhauer et al. 2016), and directly by MODIS data (Sun et al. 2008). 

Moreover, Lehnert et al. (2013) used hyperspectral data to discriminate grass from non-grass pixels, 

whereas studies using multispectral data to model plant functional types are rather scarce. Those 

techniques are mostly successful, since the growth forms of  single plant species are adapted to 

local resource constraints and stress levels. These adaptive mechanisms are often linked to 

biochemistry and physiology as well as to the structure and phenology of  a plant or vegetation 

type. Further, biophysical characteristics such as leaf  inclination and canopy structure (especially 

the coverage of  open soil, bare rock or biomass) determine a unique reflectance pattern (Tappeiner 

and Cernusca, 1989). The plants' characteristic growth forms, further result in a characteristic 

reflectance signature or ‘optical type’, which can be utilized for mapping based on remote sensing 

methods (Ustin and Gamon, 2010). However, only few studies have considered the potential to 

distinguish plant species by their reflectance signature (Buddenbaum et al., 2005; Cochrane, 2000) 

and the capability of  different sensors for species separation, as well as the influence of  acquisition 

date are still under discussion. 

The rapid development in remote sensing technology in general, as well as the recent availability 

of  open source remote sensing data facilitate grassland research on landscape level. Especially in 

the isolated high mountain regions with harsh terrain, remotely sensed data could be a useful tool 

to map and monitor species composition, biomass, plant functional groups or shrub encroachment.  
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1.3 Objectives 

Since the unique species composition of high–mountain grassland and their related services, for 

example biomass productivity, are most likely to change with the ongoing abandonment in high 

mountain regions, mapping and monitoring of high mountain grassland properties and key 

ecosystem processes is highly needed. The assessment of species composition, productivity and 

functionality of grassland, as well as the separation of encroaching shrub species by means of 

remote sensing was thus the main focus of this study. The general objectives of this dissertation 

were: 

i to analyse the species composition and main environmental gradients of the subalpine grassland, 

ii to test the predictability of species composition, aboveground biomass and plant functional 

groups, as cover fractions of grass, herb, and legume by remotely sensed data and subsequently 

map them, and  

iii to test the possibility of identifying encroaching shrub species in remotely sensed data, with 

respect to sensor characteristics and acquisition time. 

Modelling biomass by including species composition (chapter two): 

A spatially detailed yield assessment helps to identify possible meadows or, on the contrary, areas 

with a low carrying capacity in a region, making it easier to manage these sites. Consequently, the 

main objectives of this study were to model a spatially explicit grassland yield map and to test 

whether saturation issues, often occurring in high yielding grassland can be tackled by consideration 

of plant species composition in the modelling process. The aims of this study were: 

i to describe the main vegetation and topographic gradients and their relationships to biomass 

yield, 

ii to accurately and spatially explicit predict above ground biomass as continuous fields, and 

iii to test, whether remotely sensed patterns of species composition are suitable predictor 

variables for a yield model. 
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Mapping plant functional groups (chapter three): 

Plant functional groups (PFG), in our case grass, herbs and legumes and their spatial distribution 

hold information on key ecosystem functions such as species richness, nitrogen fixation and 

erosion control. The present study thus aims at describing and mapping the distribution of grass, 

herb, and legume coverage. To test the applicability of new sensors, the predictive power of 

simulated hyperspectral canopy reflectance, simulated multispectral reflectance, simulated 

vegetation indices and topographic variables for modelling PFGs was compared. The aims of this 

study were: 

i to model and subsequently map grass, herb, and legume coverage, and 

ii to test if the data of new hyperspectral sensors improve the model quality. 

Reflectance signatures of shrub species (chapter four): 

Shrub encroachment has been observed in many alpine and arctic environments and is expected 

to significantly alter these ecosystems. Mapping shrub encroachment on species level with remote 

sensing is a powerful tool for monitoring purposes. Thus, in this study the main objective was to 

test the distinctiveness of the reflectance signature of the target species: Betula litwinowii, 

Hippophae rhamnoides, Rhododendron caucasicum, and Veratrum lobelianum. Further aims of this study 

were:  

i to test which multispectral sensor produces the best separability, and 

ii to assess the influence of the timing of data acquisition in the vegetation period.  
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1.4 Study area 

The study area, a part of the Kazbegi region (between 1.200 – 5.033 m a.s.l) is located on the 

northern slope of the central Greater Caucasus, Georgia and covers a total area of 155 km2. The 

river Tergi drains the Kazbegi valley towards the north. In parallel run, the Georgian Military 

Highway, an old south north trade route. Many small villages are scattered along this transport 

corridor, often on alluvial fans of small side streams. The administrative center of the sparsely 

populated district (3.5 inhabitants per km2 in 2016) is Stepantsminda (2016 approximately 1300 

inhabitants, National Statistics Office of Georgia 2016a).  

The parent rock in our study region is mainly of vulcanic origin and embraces tertiary and 

quarternary andesite and dacite (Ministry of Geology of the USSR, 1983, Hanauer et al., 2017). 

Moreover, terrigeneous flysch, clay shist and marl sandstone of the Jurrasic period as well as 

limestone from the lower Cretaceous period build up the parent material (Ministry of Geology of 

the USSR, 1983, Hanauer et al., 2017). Overall nutrient poor soils with a high content of humic 

acids in the top soil, originated out of the parent rock (Hanauer et al., 2017). The dominant soil 

types include shallow leptosols on south exposed steep slopes, stone rich regosols, and deep 

moderately nutrient rich cambisols and umbrisols (Hanauer et al., 2017). In the floodplain of the 

Tergi river and its tributaries fluvisols and gleysols prevail. 

Because of its central location in the Greater Caucasus the climate in the study area is relatively 

continental (Lichtenegger et al., 2006). The mean annual temperature is about 4.7°C, and the mean 

annual rainfall amounts to 806 mm (mainly between July and August). The short vegetation period 

is a challenge even for a moderate intensification of the local agriculture (Kikvidze et al., 2011; 

Nakhutsrishvili, 1999; Nakhutsrishvili et al., 2006). However, the microclimate of north and south 

exposed slopes varies strongly, even influencing the sequence of the elevational belts. The 

overshadowed and therefore cooler, north facing slopes exhibit a shorter vegetation period than 

the sun exposed, south facing slopes of more than three weeks. The subalpine belt thus starts at 

1800 m a.s.l. and 1900 m a.s.l., respectively and extends to the alpine belt starting at 2400 / 2500 

m a.s.l. and reaching up to 2960 / 3000 m a.s.l. (Nakhusrishvili, 2013). The alpine belt is followed 

by the subnival belt up to 3600 / 3740 m a.s.l. and the nival belt, which includes the elevations 

above 3740 m a.s.l. (Nakhusrishvili, 2013). 

Due to the presence of a research station (Kazbegi High-Mountain Research Station), the flora of 

the Kazbegi region has been thoroughly studied during the last decades (Akhalkatsi et al., 2006; 

Kikvidze, 1996; Nakhutsrishvili and Gagnidze, 1999; Nakhutsrishvili, 1976; Pyšek and Šrutek, 

1989; Tephnadze et al., 2014). The whole Caucasus ecoregion is one of the global biodiversity hot 

spots because of its species richness and high content of endemic plants and animals (Myers, 2003). 
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About 1100 plant species can be found in the study area, 595 in the subalpine belt, 33% of them 

are counted as endemic (Nakhutsrishvili et al., 2006).  

The landscape is dominated by grassland, covering about 50% of the study area. Remnants of birch 

forests (Betula litwinowii), which are part of the potential natural vegetation in the subalpine belt, 

grow on steep, north-facing slopes (Akhalkatsi et al., 2006). In the vicinity of forest patches young 

birches encroach and form dense stands of birch shrubbery. During the Soviet times Scotts pine 

(Pinus sylvestris) was planted in close proximity to the villages, as a supply for firewood 

(Nakhutsrishvili et al., 2006).  

Up until today agriculture, especially dairy cattle, is an important factor for the livelihoods of the 

local people (Heiny et al., 2017). However, since the independence of the Republic of Georgia 

in 1991 the pasturing system changed rapidly. The overuse of the pastured grasslands, mainly in 

the upper subalpine to alpine belt, by intensive sheep grazing in the Kazbegi region ceased 

(Didebulidze and Plachter, 2002). Until the 1980s it was a common pasturing practice to move 

large flocks of sheep from Azerbaidjan, along the Georgian Military Highway to summer pastures 

in the high mountains (transnational transhumance). From central villages like Stepantsminda or 

Gudauri herdsmen on horseback herded the sheep (up to 1000 animals per herd) to their subalpine 

and alpine pastures (up to 3000 m a.s.l., Didebulidze and Plachter, 2002). After the collapse of the 

Soviet Union, the sheep numbers dramatically declined in Georgia (Fig. 2). The traditional 

transhumance system of shepherding was abandoned. In the Kazbegi region, until today small 

herds of cattle pasture the slopes of the mountains (Nakhutsrishvili et al., 2005). However, they are 

often linked to overgrazing, deforestation and thus erosion. Even though the influence of pastured 

animals is often discussed, very little is known about the exact locations of pastures and the 

pathways of the cattle. 

 

Fig. 2: Cattle and sheep numbers in Georgia between 1940 and 2015 in thousands, 
National Statistics Office of Georgia 2016b.  



1. Synthesis 

 

21 
 

The pastures in the subalpine belt are of poor soil quality with a high stone content, signs of erosion 

and low nutritive value (Sakhokhia, 1983). Moreover, pasturing early in the year when the 

vegetation cover is still low, stands for the ongoing land degradation (Sakhokhia, 1983). Caused by 

strong trampling, gaps appear in the vegetation cover, which foster erosion. This becomes highly 

visible along the pasturing trails (Wiesmair et al., 2017). 

The meadows in the subalpine belt are mown once or partly twice per year. The first cut generally 

happens late in the vegetation period mainly towards the end of July. Some farmers integrate arable 

land use (potato fields) and grassland use (meadows) in a form of crop rotation. Moreover, most 

of the productive hay meadows are pastured in early spring and autumn (Sakhokhia, 1983, 

Tephnadze et al., 2014). 

The traditional management of the local pastures and meadows in the vicinity of villages is an 

important factor for the dairy production and consequently helps to assure food security. Only 

small areas are suitable for hay making, even though hay is the main winter fodder. Consequently 

hay is a tradeable and scarce good in the region, limiting the amount of pastured cattle 

(Nakhutsrishili et al., 2005). Dairy farming as well as horticulture practiced in home and field 

gardens in the Kazbegi region are within the limits of subsistence farming (Heiny et al., 2017). 

Therefore, traditional grassland management ceases and large areas distant to the settlements were 

abandoned recently. The abandonment of agricultural practices combined with a strong migration 

of the younger generation, hits mostly remote high mountain villages, which were part of the 

transnational transhumance system. 
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1.5 Material and methods 

1.5.1 Sampling design of the subalpine grasslands (chapter two and three) 

For mapping biomass (chapter two) and plant functional types (chapter three) of the subalpine 

grasslands (1800 – 2100 m a.s.l.) in the Kazbegi region the same vegetation dataset, including 

90 relevés on 5 x 5 m plots sampled by Anja Magiera, Natalia Tephnadze and Prof. Dr. Dr. 

habil.  Dr. h. c. (TSU) Otte, was analyzed. The subalpine grassland around the villages 

Stepantsminda, Gergeti, Pansheti, Sioni, Phkelsche and Goristhikhe was sampled in a stratified 

random design, covering a large productivity gradient in summer 2014 (see Fig 3).  

 

Fig. 3: Map of the study area, Magiera et al. 2017. 

Only widely homogeneous grassland areas were sampled in order to avoid edge effects, mixtures 

of vegetation types, and problems with positional errors. Next to each village, 15 plots were 

sampled for vegetation composition, reflectance and biomass.  

Besides proportions of plant species coverage (according to the modified Braun-Blanquet scale), 

total vegetation cover, coverage of open soil, bare rock, and the upper and lower vegetation layer 

were estimated. Additionally, the cover fraction of the functional groups of broad-leafed herbs and 
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grasses were estimated and the average height of the upper and lower herb layer were measured. 

Nomenclature was generally based on The Plant List 1.1 (The Plantlist, 2010) and Gagnidze 2005 

(chapter four), though Hordeum violaceum, named according to the taxonomy of (Gagnidze, 2005) in 

chapter two, is regarded as Hordeum brevisubulatum in chapter three, since the nomenclature changed. 

Shortly before mowing at the end of July we recorded canopy reflectance with a HandHeld ASD 

field spectrometer and clipped biomass out of four regularly placed squares. To determine dry-

matter yield the biomass was oven dried at 60 °C for 48 hours and weighed. 

The research design aims at the quantification of the standing crop as an approximation of the hay 

yield. Since the subalpine grassland in the Kazbegi region is intensively grazed in early spring and 

contains almost no tussock grass, only the standing biomass of the recent year was harvested. 

1.5.2 Statistical analysis of subalpine grassland vegetation 

Ordination is a frequently used means in vegetation science to reduce the dimensionality of a 

vegetation data set towards an analysis of gradual changes in species composition, the so-called 

floristic gradients. By employing two different ordination methods, isomap (isometric-feature 

mapping, chapter two) and NMDS (non-metric multidimensional scaling, chapter three), the n-

dimensional vegetation dataset was reduced to lower dimensional floristic gradients. 

Isomap is a powerful but rarely tested ordination technique for non-linear reduction of vegetation 

datasets with a high variability in species composition, such as high mountain grasslands 

(Tenenbaum et al., 2000). It has already been applied for gradient mapping in peatlands (Harris et 

al., 2003) and heathlands (Feilhauer et al., 2011). The benefit of isomap lies in the maintenance of 

the intrinsic geometry of the data. Isomap takes the longer geodesic distances for k nearest 

neighbours of each data point into account. Other common multidimensional scaling algorithms 

consider only the pairwise linear distances between data points. To avoid noise in the dataset 

species with less than three occurrences were excluded from the isomap analysis, using k = 87 

neighbours based on Bray Curtis distances for the final solution.  

NMDS was chosen as an ordination method in chapter two, since it is a robust and frequently used 

technique, which is known to display the ordinal scaled vegetation data accurately, without being 

dependent on an optimal k. A three dimensional solution, based on Bray-Curtis distances, was 

calculated, using the monoMDS function of the R package vegan 2.4-1 (Bray and Curtis, 1957; 

Oksanen, 2015). The NMDS axes were rotated by Principal component–rotation, so that the new 

axis one points to the direction of the largest variance (Clarke, 1993). 

For interpretative purposes, the vegetation dataset was clustered, using the isopam clustering 

algorithm (Schmidtlein et al. 2010) to group the vegetation relevés by their plant species 
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composition. The vegetation clusters were used as a grouping variable in chapter two and three to 

test for significant differences by using a Kruskal Wallis ANOVA with subsequent Nemenyi test 

for pairwise multiple comparisons in yield, as well as for grass, herb and legume coverage and 

connected properties. Isopam is a brute-force approach to detect patterns in noisy vegetation data 

based on the partitioning of an optimized isomap ordination space (Schmidtlein et al., 2010). Its 

main purpose is to overcome the differences between phytosociological vegetation tables, which 

are based on expert knowledge, and numerical analysis, in order to find species with a high fidelity 

to groups in a data driven way (Schmidtlein et al., 2010).  

1.5.3 Spatial data as co-variables for yield and plant functional group modelling 

For the purpose of modelling species composition (chapter two) and plant functional groups 

(chapter three) remotely sensed imagery in combination with topographical data as predictors was 

used.  

Space borne imagery was acquired on the 21st of June 2014 by the Rapid Eye sensor with five 

multispectral bands at a spatial resolution of 5 m x 5 m. The data were delivered with 

orthorectification in the product level 3-A and converted to top-of-atmosphere reflectance. 

Moreover, we accounted for differences in illumination caused by the exposition of the surface by 

using a cosine topographical correction (Teillet et al., 1982). Besides the original sensor bands 

vegetation indices (see chapter two Tab. 1) were included in the analysis. The topographical 

parameters were extracted from a Digital Elevation Model with 20 m resolution. Eastness, 

northness, slope as well as plan curvature, mean curvature, profile curvature and solar radiation 

were calculated with the Arc Map 10.2.1 tool box. CTI (Compound Topographic Index), TRI 

(Topographic Ruggedness Index), HLI (Heat Load Index) and SRR (Surface Relief Ratio) were 

calculated with the Geomorphometry and Gradient Metrics Toolbox version 1.1 (Evans et al. 

2014). 

1.5.4 Modelling of main floristic gradients and biomass  

Instead of a discrete classification our approach was based on the continuous change of species 

composition, which was represented by a three dimensional ordination space with the plot scores 

as the three main floristic gradients. These gradients were used as the three response variables in 

three random forest models to be related to multispectral and topographic information to gain 

three separate floristic gradient maps (Fig. 5a). The resulting scores on the metrically scaled 

ordination axes were then related to aboveground biomass with a second random forest model, 

resulting in a grassland yield map.  
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In order to compare the species composition based model to a model relating multispectral 

reflectance, vegetation indices and topographical parameters directly to biomass, without including 

species composition as a proxy variable, a random forest model with biomass as a response variable 

and the multispectral bands, vegegtation indices, and topographic parameters as predictors was 

calculated (see Fig. 4b).  

Fig. 4: Flow-chart of our modelling approach. The biomass modelling includes a) a 
species-composition based model and b) a bootstrapped comparative common model. 

As a modelling technique random forest regression models were used (Breiman, 2001). Random 

forests belong to the bagged machine learning algorithms of ensemble modelling (a forest contains 

many classification or regression trees) and can be used for classification and regression. Being a 

non-parametric technique, random forest is able to cope with skewed data distributions as present 

in our study (Liaw and Wiener, 2002). As described by Liaw and Wiener 2002, a bootstrapped 

training sample of about one third of the data is first drawn from the input data, which resulted in 

500 unpruned regression trees for our case. At every node of every tree, a subset of the ten predictor 

variables is tested for the best split. An average vote of all trees is then generated for the regression. 

The model out of bag error is calculated for every tree and finally aggregated for the forest.  

In order to compare the biomass model based on species composition to a comparative common 

model based on vegetation indices and topographic variables, the full dataset was used to calculate 
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the predicted versus observed R² and the root mean square error of prediction (RMSEP) for a 100 

time, bootstrapped dataset. 

In order to derive the yield map, the whole data-set was then randomly stratified and equally 

separated into a calibration (with 7 samples in the low and high yield ranges) and a validation 

dataset. The predicted versus observed R² and root mean square error of prediction were calculated. 

The random forest model was used to predict the biomass map, by using the three isomap axes 

maps as predictors. Validation was performed with the validation dataset by correlating the 

observed ground truth with the predicted biomass values.  

From the biomass map, areas with a low NDVI (<0.2) were masked out to exclude bare rocks as 

well as elevations above 2100 m a.s.l. in order to limit the spatial prediction to areas covered by the 

field sampling. All analyses were performed in the R statistical environment using the packages 

vegan (version 2.2.1, Oksanen, 2015), isopam (version 0.9-13, Schmidtlein et al., 2010), 

randomForest (version 4.6-10, Liaw and Wiener, 2002) and PMCMR (version 4.1, Pohlert 2014). 

1.5.5 Mapping of plant functional groups 

Hyperspectral field spectrometric data and multispectral satellite imagery, including vegetation 

indices and topographic data were tested as predictors for the modelling of grass, herb, and legume 

coverage. Compared to the coarse spectral resolution of multispectral data, commonly including 

three to ten discrete bands, the high spectral resolution of hyperspectral data, in our case including 

118 discrete bands, allows for a higher flexibility in the selection of spectral features (Feilhauer et 

al., 2013). Vegetation indices are either ratios or linear combinations of sensor bands that aim to 

enhance the vegetation signal and allow to draw conclusions on the status and condition of 

vegetation (Jackson and Huete, 1991).  

In mid-July 2014, at the time of the highest biomass, we acquired hyperspectral field spectrometric 

canopy reflectance using a hand-held field spectrometer (ASD HH2), covering the range between 

325-1075 nm (750 wavelengths) of the solar electromagnetic spectrum. The measurements were 

taken from the same 5 m x 5 m plots as the vegetation relevés. To cover the entire plot, four 

measurements per plot were recorded with five repetitions (each measurement with an internal 

averaging of 50 spectra), totaling up to 20 spectra per plot. The measurements were collected close 

to the solar noon, on days with clear sky and low wind speed. Atmospheric changes were accounted 

for by measuring relative to a white standard panel (Spectralon®, Labsphere Inc.), with a 

recalibration at least every five minutes. During pre-processing, the 20 spectra sampled per plot 

were averaged and filtered. A Savitzky-Golay filter with a quartic polynom and a filter length of 51 

nm was used to smooth the spectra (Savitzky and Golay, 1964). The filtered field spectrometric 
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reflectance measurements were used to test the applicability of hyperspectral sensors compared to 

multispectral sensors for modelling PFGs by simulating the bands of the sensors AISA Eagle 

(hyperspectral, 400-970 nm) and RapidEye (multispectral, 440-840 nm).  

Both sensors were chosen because they cover a similar spectral range and offer a high spatial 

resolution. In order to calculate the spectral signal of the AISA Eagle sensor, the specific 

wavelengths were cut out, whereas the function simulatoR (Feilhauer et al., 2013) and the spectral 

response curve were used to simulate RapidEye reflectance. 

1.5.6 Separation of shrub reflectance  

In order to assess the separation of reflectance signatures of shrub species (chapter four), which 

are currently expanding in the Kazbegi region, the floristic composition was analyzed for 

similarities. Field spectrometric data was used for sensor comparison and assessment of the 

influence of accession date, whereas, satellite imagery was analyzed to test separability under real 

conditions (see Fig. 5).  

Altogether, the floristic composition of 52 relevés either containing Betula litwinowii, 

Rhododendron caucasicum, Hippophae rhamnoides or Veratrum lobelianum on plot sizes ranging from 

5 x 5 m to 10 x 10 m, sampled in 2009, 2010, and 2011 by Erich Hübl, Annette Otte, Georg 

Nakhutsrishvili, and Nato Tephnadze, was analyzed. The vegetation data originate from the 

Caucasus Vegetation Database, registered as AS-GE-001 under the Global Index of Vegetation-

Plot Databases (Dengler et al. 2011). It was analyzed using clustering, NMDS ordination and 

Indicator Species Analysis.  

Hyperspectral field spectrometric measurements were conducted at research sites located between 

1,600 m and 2,600 m above sea level, from mid-June to mid-July 2011, using an ASD Hand Held 

2 Field Spec ® portable spectrometer (325 - 1075 nm). Altogether, on 48 plots reflectance 

Fig. 5: Flow chart of the statistical analysis. 
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measurements were taken. For each target species 12 plots of approximately 1 m² were measured 

with five regularly placed repetitions. The total number of spectra hence amounted to 240, 

including five repetitions per plot with 12 plots per species and the four target species 

Betula litwinowii, Hippophae rhamnoides, Rhododendron caucasicum, and Veratrum lobelianum. From the field 

spectrometric data multispectral sensor bands (IKONOS, Quickbird 2, RapidEye, WorldView-2), 

directly taken from the target species, were simulated using the simulatoR function and the 

respective response curves (Feilhauer et al., 2013).  

The sites of the hyperspectral reflectance measurements are mostly in proximity to the vegetation 

relevés but are not the exact locations. The vegetation relevés were selected as a proxy of the 

vegetation types and species occurrences on a larger scale. The coordinates of the vegetation relevés 

were used to extract the reflectance signatures of the corresponding pixels from two multispectral 

RapidEye images taken on 27.06.2011 and 08.09.2011. The images were delivered with 

orthorectification and radiometric correction (product level 3-A). The size of a pixel after 

resampling was 5 x 5 m. At sensor reflectance was calculated from the images to roughly account 

for the solar angle and a cosine topographical correction was used (Teillet et al. 1982). For all 

datasets the Jeffries-Matusita Distance (JMD), a separability measure commonly used in remote 

sensing (Adam and Mutanga, 2009; Schmidt and Skidmore, 2003) was calculated. The reflectance 

signature of the single bands was tested for differences, using a Kruskall-Wallis ANOVA and post 

hoc pairwise testing for homogeneous groups using Bonferroni corrected pairwise Wilcox Rank 

test comparisons (see chapter four). 
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1.6 Main results and discussion 

1.6.1 Floristic composition and structure of the subalpine grassland 

The analysed grassland vegetation was grouped in three main types (chapter two): 

Hordeum brevisubulatum-meadow, Gentianella caucasea-grassland and Astragalus captiosus-grassland 

(see Fig. 6).  

 

Fig. 6: a) Hordeum brevisubulatum meadow, b) Gentianellea caucasea grassland and 

c)  Astragalus captiosus grassland. 

Their distribution in the high mountain study area is mainly determined by the slope exposition to 

the east, curvature and elevation. A strong gradient in yield and related properties, such as the 

height of the upper and lower herb layer, and vegetation cover characterizes the vegetation 

structure. Generally, all tested grassland was species-rich but differed in grass, herb, and legume 

content (chapter three Tab. 1).  

The grassland types can be floristically described by typical species (see Tab. 1), as well as by 

Indicator Species (see Appendices Tab. 1).  

Tab. 1: Typical species of the grassland types according to the isopam analysis. 

Vegetation type Typical species 

Hordeum brevisubulatum meadow Phleum pratense, Hordeum violaceum, Silene vulgaris, 
Rumex acetosa, Carum caucasicum, Festuca pratensis, Bunias 
orientalis, Poa trivialis, Vicia tenuifolia subsp. variabilis, 
Poa pratensis, Rumex obtusifolius 

Gentianella caucasea grassland Alchemilla sericata, Gentianella caucasea, Primula algida, 
Seseli alpinum 

Astragalus captiosus grassland Astragalus captiosus, Potentilla crantzii, Silene linearifolia 

The typical grass-rich, productive Hordeum brevisubulatum meadow belongs to the mesophilous 

grassland with many typical species forming the Central European grassland, too. But the 

distribution of the main characteristic species Hordeum brevisubulatum does not reach Central 

Europe. It ranges from temperate Asia to India, Nepal and Pakistan, as well as to European Russia 

(The IUCN Red List of Threatened Species, 2017). It further shows a strong bond to young 

mountain hay meadows (habitat type 6520), listed under the European Habitats Directive Annex 

I. It is fertilized only by spring pastured cattle and scythed once per year. According to 



1. Synthesis 

 

30 
 

phytosociological units it could be associated with the Molinio-Arrhenaretalia, however Caucasian 

high mountain meadows with Hordeum brevisubulatum are up to now not described in the European 

Vegetation Survey (Dengler et al., 2013), which covers parts of the Greater Caucasus. But the 

French system eVeg opens up a possibility to group them in a class Hordeeta brevisubulati with 

different associations as described by Mirkin et al. 1992.  

The species and herb rich Gentianella caucasea grassland can be classified as semi-natural dry 

grassland as described in the European Habitats directive. This type needs to be further partitioned 

in subalpine to alpine calcareous grasslands (6170) and the siliceous alpine and boreal grasslands 

(6150) with Nardus stricta occurring in few plots. There further is a strong correspondence between 

the semi-natural dry grasslands (Festuco-Brometalia, 6210), which includes different subtypes 

belonging to the Mesobromion and the subalpine to alpine calcareous grassland. The Astragalus 

captiosus grassland due to its low vegetation cover and distribution on steep slopes with shallow soil 

can be associated to vegetation types of rock and scree. Nakhutsrishvili 2012 classifies this type 

under the Astragaleta captiosus. All three vegetation types are characterized by broad, gradual 

transitions, which become apparent in the isomap analysis (chapter two) and are also inherent to 

the vegetation classification systems, where a clear classification in types and communities, as in 

the case of the Gentianella caucasea grassland is often a challenge. In the Kazbegi region the gradual 

transition, as well as grassland floristic diversity is partially caused by the alternating land use as 

meadow, spring pasture and pasture. 

Abandonment, succession, afforestation, as well as severe grazing are identified as main threats for 

semi-natural dry grasslands in Central Europe (García-González et al., 2008). Maintaining the local, 

extensive livestock practice of spring pasturing is thus highly recommended to counteract those 

main threads. Moreover, the Hordeum brevisubulatum meadows, similar to the Central European 

mountain meadows depend on the light fertilization by cattle manure and regular cuttings 

(Calaciura and Spinelli, 2008). The highest species diversity, caused by the presence of many herb 

species, was found in the Gentianella caucasea grassland. Due to its moderate biomass, the Gentianella 

caucasea grassland has been mown whenever winter fodder was scarce and was pastured in spring. 

This low-intensive grassland use probably has significantly contributed to its high species diversity 

(Maccherini et al., 2011; Peco et al., 2012; Tasser and Tappeiner, 2002). An abandonment of this 

management practice would lead to a considerable loss of high mountain plant diversity (Maurer 

et al., 2006). The legume dominated, relatively species poor Astragalus captiosus grassland, 

characterized by typically low vegetation coverage, occurs mostly on south-east exposed slopes and 

indicates areas potentially prone to erosion (Wiesmair et al., 2016). Due to selective conditions, 

such as nutrient-poor soil conditions and desiccation at the erosion edges, only few species are able 
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to establish and keep the vegetation cover (Caprez et al., 2011). This highlights the importance of 

single species, especially the dominant, deep-rooting Astragalus captiosus (approximately 90 cm root 

length), to mitigate erosion processes (Caprez et al., 2011). Mineral fertilization of legume-rich 

swards slopes could thus lead to a decline in legume coverage, followed by a lower vegetation cover, 

enabling erosion on steep slopes. Management of the legume dominated Astragalus captiosus 

grassland, with its typically low vegetation coverage should be adapted to its erosion sensivity, 

especially on the drier south-east exposed slopes, which are characterized by low vegetation cover 

(Wiesmair et al., 2016).  

1.6.2 Modelling floristic composition, biomass and plant functional groups 

Chapter two and three was aimed at modelling and subsequently mapping species composition, 

biomass and plant functional groups. Species composition, in the form of three isomap ordination 

axes was successfully predicted by random forest regression. Relating multispectral satellite 

imagery, vegetation indices and topographical parameters to floristic composition resulted in an R² 

of 0.64, 0.32 and 0.46, respectively, indicating a good representability of floristic composition (for 

further references of the applicability of this method see chapter two). 

Biomass was modelled by multispectral satellite imagery, vegetation indices and topographical 

parameters, as a benchmark model with an R² = 0.42 in validation. The model based on species 

composition, using the three modelled scores along the ordination axes as predictors, resulted in a 

R² = 0.55 in validation. However, high yields were generally difficult to predict with both models 

at yields above 6 Mg *ha-1. The saturation effect and other non-linear relationships between 

vegetation indices and canopy properties, especially biomass are known to decrease model accuracy 

(Glenn et al., 2008). 

However, index saturation depends on the grassland under study, modelling techniques and the 

indices used (Hancock and Dougherty, 2007; Vescovo and Gianelle, 2008). Vescovo and Gianelle 

(2008) noticed the saturation effect of NIR based vegetation indices for yields above 1.5 Mg*ha-1, 

whereas Hancock and Dougherty (2007) detected the saturation point in blue and red based NDVI 

and wide range indices above 3.74 Mg*ha-1. Moreover, the upper limit of the predicted range of 

the yield map (0.43 - 8.68 Mg *ha-1) is comparable to the yields reported in literature for 

Hordeum brevisubulatum meadows (7.5 Mg*ha-1) on a test site above shallow soil. A minor advantage 

of using species composition to model the biomass distribution lies in the close connection of 

species composition and yield. Ecological patterns such as the clear appearance of the high standing 

Hordeum brevisubulatum meadows, were sustained within the yield map and can be easily interpreted. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7: Insert map of the village Phkelsche for a) Species composition in isomap Axis scores, b) yield in Mg*ha-1, and c) cover of 

plant functional groups in %, and d), e), f) the respective maps of the research area (HB = Hordeum brevisubulatum meadow, 

GC = Gentianella caucasea grassland, AC = Astragalus captiosus grassland). 
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Models for plant functional groups i.e. grass, herb and legume coverage explained 36%, 25%, 37% 

of the respective variance and their root mean square errors varied between 12% - 15% (chapter 

three). When comparing simulated multispectral and hyperspectral data, the best model fits were 

achieved with a combination of multispectral reflectance, vegetation indices and topographic 

variables as predictors, indicating that a finer spectral resolution does not necessarily produces 

better model fits. In particular, the topographic parameters showed a strong predictive power, since 

they are the main influential factors for species composition (Tephnadze et al., 2014). Open source 

multispectral imagery as delivered by Sentinel 2 could improve the model quality since it offers 

three red edge, two NIR and two SWIR bands and a high revisiting rate between five to ten days, 

allowing for phenological observations (Drusch et al., 2012). The capability of multispectral 

reflectance to model floristic composition (Feilhauer et al., 2013), as well as aboveground biomass 

and vegetation cover, is generally high (Meyer et al., 2017; Wiesmair et al., 2016). In the high 

mountain context topographical parameters can significantly improve model fits. The results 

further indicate, that biomass, as well as species composition, are easier to model than plant 

functional groups, probably because of the low variance inherent to the distribution of grass, herb 

and legume coverage. 

1.6.3 Spectral separability of encroaching shrub species  

The great importance to separate birch encroachment, from other shrubs becomes highly apparent 

in Hansen et al. n.d., stating that Betula litwinowii forest increased between 2005 and 2010 by 

approximately 25%, possibly triggered by reduced grazing pressure and to a minor extend climate 

change. Betula litwinowii is the only shrub tested, that can develop the life-form of  a tree and thus 

lead to reforestation in the Kazbegi region. 

The analysis of  the floristic composition mainly revealed that the three targeted shrub species 

revealed a strong co-occurrence of  the shrub species. The highest abundance of  Betula litwinowii 

was found in birch shrubbery but Betula litwinowii also appeared in Rhododendron shrubbery along 

the treeline and in Hippophae rhamnoides shrubbery at lower abundances. In contrast, 

Hippophae rhamnoides only emerged in its own habitat near rivers and in depressions with rock and 

scree. Rhododenron caucasicum and Veratrum lobelianum also typically grow in the understory of  

Betula litwinowii forest.  
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Fig. 8: Shrub encrachment in the Kazbegi region. Photo by Anja Magiera. 

The distances (JMD) calculated for simulated satellite bands (IKONOS, Quickbird 2, RapidEye, 

WorldView-2) showed a good to moderate spectral separability with distances varying from 1.58 to 

2 between the different species. The shortest distances (1.58, 1.59) were observed for the satellites 

IKONOS and Quickbird 2, which only comprise four spectral bands. The red edge band of  the 

RapidEye sensor and the NIR II of  WorldView-2 add additional information, increasing the overall 

separability between the classes. This is especially the case for the separation between Rhododendron 

caucasicum and Veratrum lobelianum, which increased with the increasing number of  bands. Besides 

these findings, the distances between Betula litwinowii and Rhododenron caucasicum as well as between 

Betula litwinowii and Veratrum lobelianum generally featured a similar spectral signal across all tested 

satellites, indicating difficulties in spectrally separating these species. The JMDs for the vegetation 

clusters indicated a moderate separability of  the classes with JMD ranging between 1.24 - 1.55 in 

June. The image taken in September produced an improved overall separability of  JMD 1.56 - 1.9. 

The largest spectral differences were observed between the Betula and Hippophae clusters, and the 

least pronounced ones between the Betula and Rhododendron clusters. 

Separating reflectance signatures of  plant species assumes a classificatory approach, with sharp 

vegetation boundaries and a high homogeneity in species composition. In the tree line ecotone, 

where most of  the research was located, this is only partly applicable. Even though forest and large 

shrubberies exhibit sharp boundaries, smaller shrubs such as Rhododendron caucasium do not. A 

possibility to map the above mentioned gradually expanding shrub types (excluding 

Hippophae rhamnoides, since it shows a good seperability from Betula litwinowii) is shown in Hansen et 

al., n.d. Here, structural vegetation types were derived from vegetation relevés, closely related to 

shrub coverage, which was subsequently mapped using the random forest algorithm and 
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topographical parameters as well as satellite imagery as predictors. Further, a quite distinct, species-

rich floristic composition in birch shrubs and forests, closely related to site conditions, as well as 

tree and shrub coverage is described.  

Due to the ceasing impact of  land use, mainly reduced grazing pressure, further encroachment of  

shrubs is expected and will greatly alter the high mountain ecosystem in the Kazbegi region 

(Hansen et al., n.d.). The impacts of  shrub encroachment and possible forest regeneration on 

species composition, productivity and functionality of  high mountain grassland are widely 

unknown. Mapping and monitoring of  shrub encroachment in a timely and cost-effective manner 

is thus urgently needed. 

1.6.4 Implications for mapping and monitoring 

A central question of this dissertation was to test if species composition, aboveground biomass and 

plant functional groups, as well as shrub encroachment can be assessed by remotely sensed data 

with reasonable errors to supply base maps in a cost-effective way. It could be shown in chapter 

two, that species composition and aboveground biomass (yield) in high mountainous regions can 

be mapped accurately with acceptable errors. Both parameters are under consideration for global 

monitoring approaches of  biodiversity and ecosystem functions (Pereira et al., 2013). Recently, a 

set of remotely sensed Essential Biodiversity Variables has been developed to globally monitor 

changes in biodiversity and ecosystem functioning, including net primary productivity and 

community composition (Pettorelli et al., 2016). The selected variables allow for a global, periodic 

and standardized monitoring system (Paganini et al., 2016), even though in high yielding ecosystems 

challenges of the saturation effect might prevail.  

Plant functional groups, were difficult to assess compared to species composition and biomass (see 

discussion in chapter three). Even though up until today remote sensing based studies on plant 

functional groups in grassland are scarce, discriminant analysis as in Lehnert et al., 2013 and 

Paganini et al., 2016 is proposed as a promising tool. Moreover, sensor characteristics, especially 

the inclusion of the shortwave infrared, play an important role (Paganini et al., 2016). However, 

close cooperation between vegetation ecology and the remote sensing community is necessary in 

order to express satellite observation requirements to detect meaningful changes (Paganini et al., 

2016).  

Even though the obtained results (chapter four) indicate that shrub encroachment can be separated 

and mapped on species level based on remotely sensed data, plant species composition and 

diversity is largely related to structural types, especially in the tree line cotone (Hansen et al., n.d.). 

In order to monitor changes in forest and shrub expansion and their effects on the ecosystem, 
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structural parameters are recommended, which can be modelled using connectivity analysis, as well 

as texture and radar data (Petrou et al., 2015).  

Global and large scale monitoring approaches in biodiversity and ecosystem functioning become 

more and more likely with new sensor development, the construction of freely-available 

biodiversity databases and consistent classification schemes, such as the European Vegetation 

Survey (Dengler et al., 2013). In Europe the availability of remotely sensed data, for the whole 

globe has significantly risen with the Sentinel satellites in the Copernicus - programme of the 

European Comission and the European Space Agency. Already operating sensors are Sentinel 1a 

and b (radar imaging) and the twin optical sensors, Sentinel 2a and Sentinel 2b, with a revisiting 

rate between five to ten days (Drusch et al., 2012). However, influences of the fast phenological 

development in high mountain regions challenge the transferability of models in time, thus 

development of regional algorithms for different phenological stages is needed (Magiera et al., 

2013).  

This highlights both the importance and the possibility for future global monitoring schemes 

including biomass and species composition as remotely sensed Essential Biodiversity Variables. 

This opens up the possibility to monitor changes in biodiversity, as well as key ecosystem functions 

in remote high mountain regions on a regular basis. Transitional countries, like Georgia, and 

especially the Kazbegi region could benefit from this large scale monitoring approach. 
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1.7 General conclusions 

The grassland in the high mountainous Kazbegi region was under low-intensity and continuous 

use in the past, it is therfore species and herb rich and characterized by a unique structure. The 

high biodiversity of the high mountain grassland is amongst other factors caused by the traditional 

practice of pasturing. Thus, the conservation of floristic diversity is intrinsically linked to the 

conservation of the traditional land use. Shrub encroachment, as a consequence of  reduced land 

use intensity, has already been observed in considerable quantity in the Kazbegi region and is 

expected to significantly alter ecosystem functions.  

Mapping and monitoring of species composition, biomass, plant functional groups or shrub 

encroachment is thus of  high importance. Remote sensing based techniques for the assessment of 

diversity, productivity and functionality of grassland supply important information on multiple 

scales. For remote areas, where data availability is particularly scarce, easily obtainable remotely 

sensed data such as multispectral satellite imagery and digital elevation models can be beneficial as 

a basis for modelling, even though the calibration data, such as biomass clippings and vegetation 

relevés still have to be acquired, the workload compared to common mapping approaches is 

considerably less. Throughout this thesis it has been demonstrated, that species composition, 

biomass and to a minor degree plant functional groups can be mapped with the aid of  remotely 

sensed data. Based on the results of  separating shrub reflectance signatures it can be concluded 

that remote sensing, with high spatial resolution sensors, is capable of  providing the necessary 

information to differentiate, classify and in return monitor the encroachment in subalpine and 

alpine environments, which is identified as a major thread to species diversity in Central European 

mountainous grassland. Even though, saturation effects, as well as the fast phenological 

development in the study region remain challenging for remote sensing applications.  

The obtained data and base maps offer important information for the development of sustainable 

land use concepts in remote high mountain regions, where innovative approaches, including 

sociological, economical and ecologial aspects, to sustain the agricultural practice are urgently 

needed. 
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Abstract 

High mountain grasslands offer multiple goods and services to society but are severely threatened 

by improper land use practices such as abandonment or rapid intensification. In order to reduce 

abandonment and strengthen the common extensive agricultural practice a sustainable land use 

management of high mountain grasslands is needed. A spatially detailed yield assessment helps to 

identify possible meadows or, on the contrary, areas with a low carrying capacity in a region, making 

it easier to manage these sites. Such assessments are rarely available for remote and inaccessible 

areas. Remotely sensed vegetation indices are able to provide valuable information on grassland 

properties. These indices tend, however, to saturate for high biomass. This affects their applicability 

to assessments of high-yield grasslands. 

The main aim of this study was to model a spatially explicit grassland yield map and to test whether 

saturation issues can be tackled by consideration of plant species composition in the modelling 

process. The high mountain grassland of the subalpine belt (1,800 - 2,500 m a.s.l.) in the Kazbegi 

region, Greater Caucasus, Georgia, was chosen as test site for its strong species composition and 

yield gradients. 

We first modelled the species composition of the grassland described as metrically scaled gradients 

in the form of ordination axes by random forest regression. We then derived vegetation indices 

from Rapid Eye imagery, and topographic variables from a digital elevation model as predictive 

variables. For comparison, we performed two yield models, one excluding the species composition 

maps and one including the species composition map as predictors. Moreover, we performed a 

third individual model, with species composition as predictors and a split dataset, to produce the 

final yield map. 

Three main grassland types were found in the vegetation analysis: Hordeum violaceum-meadows, 

Gentianella caucasea-grassland and Astragalus captiosus-grassland. The three random forest regression 

models for the ordination axes explained 64%, 33% and 46% of the variance in species 

composition. Independent validation of modelled ordination scores against a validation data set 

resulted in an R² of 0.64, 0.32 and 0.46 for the first, second and third axes, respectively. The model 

based on species composition resulted in a R² = 0.55, whereas the benchmark model showed 

weaker relationships between yield and the multispectral reflectance, vegetation indices, and 

topographical parameters (R²= 0.42). The final random forest yield model used to derive the yield 

map resulted in 62% variance explained and an R² = 0.64 between predicted and observed biomass. 

The results further indicate that high yields are generally difficult to predict with both models. 
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The benefit of including a species composition map as a predictor variable for grassland yield lies 

in the preservation of ecologically meaningful features, especially the occurrence of high yielding 

vegetation type of Hordeum violaceum meadows is depicted accurately in the map. Even though we 

used a gradient based design, sharp boundaries or immediate changes in productivity were visible, 

especially in small structures such as arable fields or roads (Fig. 6b), making it a valuable tool for 

sustainable land use management. The saturation effect however, was mitigated by using species 

composition as predictor variables but is still present at high yields.  

2.1 Introduction 

High mountain grasslands offer multiple ecosystem services to society (Gret-Regamey et al., 2008). 

The high mountain grassland vegetation regulates water flows and prevents erosion events with its 

root system (Körner, 2004; Pohl et al., 2009), whereas the grassland yield supplies the nutritional 

basis for local dairy and livestock production (O’Mara, 2012). High mountain grasslands further 

provide important cultural services, such as recreation or scenic beauty (Schirpke et al., 2013). As 

a result of a long term agricultural use as meadow or pasture, the high mountain grassland features 

a high biodiversity and unique plant species composition, significantly influencing the functioning 

of the mountainous ecosystem (Körner et al., 2006). 

The species diversity of high mountain grassland and thus the functioning of the mountainous 

ecosystem with its provision of services is strongly affected by land-use changes, such as the 

abandonment of low-intensity agricultural practices (Cocca et al., 2012; Klimek et al., 2007). In 

order to prevent farmers from abandoning agricultural practices, the mode of production needs to 

be economically viable. Including spatially explicit information about the productivity or yield of 

the grassland into the land use management can help to determine the carrying capacity, livestock 

stocking rates and the amount of available fodder in a region, aiding in avoiding over use or 

abandonment. 

The estimation of aboveground biomass or related variables, such as leaf area index, is a key topic 

in many remote sensing studies that is addressed with either multispectral (Anderson et al., 1993; 

Liu et al., 2007; Wu et al., 2007) or hyperspectral vegetation indices (Boschetti et al., 2007; Cho and 

Skidmore, 2009; Fillela and Penuelas, 1994; Psomas et al., 2011). Vegetation indices use the strong 

contrast between the absorption features of chlorophyll in the visible light and the high reflectance 

in the near–infrared region (NIR) to quantify the vegetation condition (Jackson and Huete, 1991). 

However, vegetation indices in general tend to saturate in areas of a high biomass or leaf area, even 

though the exact saturation point varies between the indices. In the past, vegetation indices were 

used to model pasture yields, which cover a gradient from low to moderate standing biomass 
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(Boschetti et al. 2007; Hancock and Dougherty, 2007; Vescovo and Gianelle, 2008; Chen et al., 

2009). These studies are limited by the fact that saturation of vegetation indices mainly occurs at 

high yields. Therefore, their relationship with high yield grassland, such as hay meadows still 

remains challenging. Moreover, Dusseux et al. (2015) found that biophysical variables (leaf area 

index and fractional vegetation cover) derived from remotely sensed imagery showed better 

correlations to biomass than the tested vegetation indices. 

High mountain grasslands are an ideal research object, providing strong gradients of grassland 

productivity within gradually transitioning grassland types, offering a good example of the gradual 

change of species composition along topographic, and especially altitudinal gradients (Gleason, 

1926). Modelling the gradual change of species composition of grasslands was already successfully 

performed (Feilhauer and Schmidtlein, 2011; Magiera et al., 2013; Schmidtlein and Sassin 2004). 

Although the relationship between biomass productivity and species richness is controversially 

discussed (Adler et al., 2011; Grace et al., 2012), both are clearly linked to each other (Guo, 2007). 

In a semi-natural landscape, with low farming intensity, the environmental conditions such as 

nutrient availability, soil depth or water content determine both species composition and the yield.  

The primary aim of this study was to derive a spatially explicit grassland yield using remotely sensed 

data, in order to obtain a base map for sustainable land–use management. Our main objectives 

were: 

i) to describe the main vegetation and topographic gradients and their relationships to biomass 

yield; 

ii) to accurately and spatially explicitly predict above ground biomass as continuous fields; 

iii) to test, whether remotely sensed patterns of species composition are suitable predictor variables 

for a yield model.  

In order to meet these objectives, we first modelled the species composition of the diverse 

subalpine grassland by employing a random forest model between species composition and 

vegetation indices together with topographical parameters. We then related these gradients to 

biomass data and generated a yield map. We compared the yield model based on the species 

composition maps to a model, which only related multispectral reflectance, vegetation indices and 

topographical parameters to yield. The high mountain region of Kazbegi, Greater Caucasus, 

Georgia, was chosen as our test site since it offered ideal research opportunities with species-rich 

and structurally diverse subalpine grassland types.  
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2.2. Material and methods 

2.2.1 Study area  

The study area (Fig. 1) is located in the Kazbegi district in the Republic of Georgia, which lies in 

the central part of the Greater Caucasus, a high mountain range that is characterized by high 

elevations, steep slopes, as well as harsh and continental climatic conditions (Akhalkatsi et al. 2006).  

Fig. 1: Map of the study area with yields observed in the sampling plots. 

The main village Stepantsminda (1800 m a.s.l.) stretches next to the banks of the river Tergi, which 

flows in a northern direction. The land cover of the Kazbegi region is dominated by different 

grassland types, which are used as meadow or pasture with low-intensity (Waldhardt et al., 2011). 

In spring, from the snow melt until the mid of May, the first shoots of the productive hay meadows 

of the valley bottom are grazed by cattle. There is no application of fertilizer on the meadows, 

besides the cow dung from the spring pasturing. A high proportion of the actual hay meadows 

were used as arable land decades ago. After May, the cattle are moved to either higher elevations 

or less productive low land pastures (1700 m a.s.l.). A system of fences is then installed to protect 

the subalpine meadows from free ranging cattle. In the summer these meadows are mown once 

between the end of July and the end of August, which is late in the vegetation period but 

precipitation poor (Sakokhia, 1983). For a detailed description of the study region we refer to 

Magiera et al. (2013) and Tephnadze et al. (2014). 
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2.2.2. Data sampling and analysis 

In order to model the grassland yield, we related species composition, in the form of three Isomap 

axes to multispectral reflectance, vegetation indices and topographic information. The general 

approach is visualized in Fig 2. 

 

Fig. 2: Flow-chart of our modelling approach. The biomass modelling includes a) a 
species-composition based model and b) a bootstrapped comparative common model. 

Instead of a discrete classification our approach was based on the continuous change of species 

composition, which was represented by a three dimensional ordination space with the plot scores 

as the three main floristic gradients. Ordination is a frequently used means in vegetation science to 

reduce the dimensionality of a vegetation data set towards an analysis of gradual changes in species 

composition, the so-called floristic gradients. These gradients were used as the three dependent 

variables in three random forest models to be further related to topographical and multispectral 

information to gain a species composition map. The resulting scores on the metrically scaled 

ordination axes were then related to aboveground biomass with a second random forest model, 

resulting in a grassland yield map. In order to compare our species composition based model to a 

model relating multispectral reflectance, vegetation indices and topographical parameters directly 

to biomass, without including species composition as a proxy variable, we further calculated a 

random forest model with biomass as a response variable and the topographic parameters as 

predictors (see Fig. 2 b).  
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2.2.2.1 Assessment of species composition and biomass sampling  

In order to cover the whole biomass gradient of grassland in the valley bottom and on the lower 

slopes, we sampled the surrounding grassland of six villages (Stepantsminda, Gergeti, Pansheti, 

Sioni, Phkelsche and Goristhikhe) in the Kazbegi region. These grasslands are in use either as hay 

meadow or pasture. The exact locations of sampling plots were chosen in a stratified random design 

and covered a productivity gradient. Only large homogeneous grassland areas were sampled in 

order to avoid edge effects, mixed pixels, and problems with positional errors. Moreover, a 

minimum distance of approximately 50 m between the plots was kept. The position was recorded 

with a common GPS (Garmin 64s) with a positioning accuracy of approximately 3 m. Next to each 

village, 15 plots of 25 m² each (90 plots in total) were sampled for vegetation composition analysis 

and biomass clippings. In June and July 2014, at peak biomass, vascular plant species composition 

and cover were visually estimated by using the modified Braun Blanquet scale and were later 

transformed into ordinal values for the statistical analysis (Braun-Blanquet, 1964; van der Maarel, 

1979). Nomenclature was generally based on The Plant List 1.1 (The Plantlist, 2010) in chapter two 

and three, only in the case of Hordeum violaceum the taxonomy of Gagnidze et al. 2005 was kept. 

The nomenclature of chapter four is based on Gagnidze et al. 2005. As explanatory variables we 

further recorded the total vegetation cover, as well as the cover of open soil and bare rocks. For 

the upper and lower herb layers we separately assessed their cover percentage and height. 

Additionally, we estimated the cover fraction of the functional groups of broad-leafed herbs and 

grasses. In the last week of July 2014 at the time of regular mowing we clipped the aboveground 

biomass in four regularly placed squares with a size of 0.1 m², 2 cm above ground on the same 

plots. To determine dry-matter yield the biomass was oven dried at 60 °C for 48 hours and weighed. 

Our research design aims at the quantification of the standing crop as an approximation of the hay 

yield. Since, the subalpine grassland in the Kazbegi region is severely grazed in early spring and 

contains almost no tussock grass, only the standing biomass of the recent year was harvested. 

To reduce the multidimensional vegetation dataset to three main floristic gradients we used isomap 

ordination (Tenenbaum et al., 2000). Isomap is a powerful ordination technique for non-linear 

reduction of vegetation datasets with a high variability in species composition, such as high 

mountain grasslands. It has already been applied for gradient mapping in peatlands (Harris et al. 

2015) and heathlands (Feilhauer et al. 2011). The benefit of isomap lies in the maintenance of the 

intrinsic geometry of the data. Isomap takes the “longer” geodesic distances for k nearest 

neighbours of each data point into account. Other common multidimensional scaling algorithms 

consider only the pairwise linear distances between data points. To avoid noise in the dataset we 

excluded species with less than three occurrences from the isomap analysis using k = 87 neighbours 

based on Bray Curtis distances for the final solution.  
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For interpretative purposes, the vegetation dataset was clustered, using the isopam clustering 

algorithm (Schmidtlein et al. 2010) to group the vegetation relevés by their plant species 

composition. The vegetation clusters were used as a grouping variable in the Isomap analysis and 

for box plotting the average yield per type, in order to give some general overview of yields and 

typical species. Isopam is a brute-force approach to detect patterns in noisy vegetation data based 

on the partitioning of an optimized isomap ordination space. Its main purpose is to overcome the 

differences between phytosociological vegetation tables, based on expert knowledge and numerical 

analysis, in order to find species with a high fidelity to groups in a data driven way (Schmidtlein et 

al. 2010). As a distance metric we used the Bray Curtis distances (Bray and Curtis, 1957). The cluster 

tree was pruned after visual inspection at the first level resulting in three main grassland types. 

Every plot was then assigned to a cluster. The dry matter yield, in the respective clusters, was tested 

for significant differences by using a Kruskal Wallis ANOVA with subsequent Nemeneyi test for 

pairwise multiple comparisons. 

2.2.2.2 Spatial data as co-variables for modelling 

For the purpose of modelling species composition we used the three isomap axis scores of each 

plot as dependent variables and remotely sensed imagery in combination with topographical data 

as predictors. Space borne imagery was acquired on the 21st of June 2014 by the Rapid Eye sensor 

with five multispectral bands at a spatial resolution of 5 m x 5 m (see Tab. 1). The data were 

delivered with orthorectification in the product level 3-A and converted to top-of-atmosphere 

reflectance. Moreover, we accounted for differences in illumination caused by the exposition of 

the surface by using a cosine topographical correction (Teillet et al., 1982). Besides the original 

sensor bands we further included vegetation indices (see Tab. 1) into the analysis.  

The topographical parameters were extracted from a Digital Elevation Model with 20 m resolution. 

Eastness, northness, slope as well as plan curvature, mean curvature, profile curvature and solar 

radiation were calculated with the Arc Map 10.2.1 tool box. CTI (Compound Topographic Index), 

TRI (Topographic Ruggedness Index), HLI (Heat Load Index) and SRR (Surface Relief Ratio) 

were calculated with the Geomorphometry and Gradient Metrics Toolbox version 1.01 (Evans et 

al. 2014). All predictors were standardized prior to analysis. 
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Tab. 1: Vegetation indices and topographical parameters used in the random forest 
vegetation modelling. 

Abbreviation Full name Definition Reference 

Vegetation Indices 

Blue band  440-510 nm 
(Weichelt et al., 
2011) 

Green band  520-590 nm 
(Weichelt et al., 
2011) 

Red band  630-685 nm 
(Weichelt et al., 
2011) 

Red edge band  690-730 nm 
(Weichelt et al., 
2011) 

NIR band  760-850 nm 
(Weichelt et al., 
2011) 

Red edge / red 
Ratio 695/670 
Carter5 

𝑅𝑒𝑑 𝑒𝑑𝑔𝑒

𝑅𝑒𝑑
 

 
(Carter, 1994; 
Carter et al., 2005; 
le Maire et al., 
2004) 

NIR / red edge Simple Ratio 760/695 
𝑁𝐼𝑅

𝑅𝑒𝑑 𝑒𝑑𝑔𝑒
 (Carter, 1994) 

Red edge / NIR 
Simple Ratio 695/760 
Carter2 

𝑅𝑒𝑑 𝑒𝑑𝑔𝑒 

𝑁𝐼𝑅
 

(Carter, 1994; 
Carter et al., 2005; 
le Maire et al., 
2004) 

NIR / red 
Simple Ratio 801/670 
NIR/Red 

𝑁𝐼𝑅

𝑅𝑒𝑑 
 

(Daughtry et al., 
2000) 

NIR /green Simple Ratio 800/550 
𝑁𝐼𝑅

𝐺𝑟𝑒𝑒𝑛
 

(Buschmann and 
Nagel, 1993) 

NDVI 
Normalized 
Difference Vegetation 
Index 

 𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 
 

Kriegler et al., 
1969, Rouse et al. 
1973).  

Red edge NDVI 
Normalized 
difference red edge 
index 

 𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒 
 

(Herrmann et al., 
2010)  

EVI 
Enhanced Vegetation 
Index 

2.5 
𝑁𝐼𝑅 − 𝑅𝑒𝑑

(𝑁𝐼𝑅 +  6 𝑅𝑒𝑑 − 7.5 𝐵𝑙𝑢𝑒) + 1 
 

(Huete et al., 1999) 

ARVI 2 
Atmospherically 
Resistant Vegetation 
Index 2 

−0.18 + 1.17 (
𝑁𝐼𝑅 − 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒

𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒
) 

(Kaufman and 
Tanre, 1992) 

BWDRVI 
Blue-wide dynamic 
range vegetation 
index 

0.1 𝑁𝐼𝑅 − 𝐵𝑙𝑢𝑒

0.1 𝑁𝐼𝑅 + 𝑅𝑒𝑑 𝑒𝑑𝑔𝑒
 (Gitelson, 2004) 

WDRVI 
Wide Dynamic Range 
Vegetation Index 

0.1 𝑁𝐼𝑅 − 𝑅𝑒𝑑

0.1 𝑁𝐼𝑅 + 𝑅𝑒𝑑
 

(Ahamed et al., 
2011; Gitelson, 
2004; Hancock 
and Dougherty, 
2007) 

SAVI05 
Soil Adjusted 
Vegetation Index 

𝑁𝐼𝑅 − 𝑅𝑒𝑑

𝑁𝐼𝑅 + 𝑅𝑒𝑑 + 0.5
 (1 + 0.5) 

(Huete, 1988) 

MSAVI 
Modified Soil 
Adjusted Vegetation 
Index 

2 𝑁𝐼𝑅 + 1 − √(2 𝑁𝐼𝑅 + 1)28( 𝑁𝐼𝑅 − 𝑅𝑒𝑑) 

2
 

(Qi et al., 1994) 
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Topographical Parameters 
Abbreviation Full name Definition Reference 

EAST Eastness sin(𝑎𝑠𝑝𝑒𝑐𝑡) (Zar, 1999) 

NORTH Northness cos (𝑎𝑠𝑝𝑒𝑐𝑡) (Zar, 1999) 

ELEVATION Elevation [m a.s.l.]   
PRO CURV Profile curvature  Arc Map 10.2.1 
PLA CURV Planform curvature  Arc Map 10.2.1 
CURV Mean curvature  Arc Map 10.2.1 

TRI 
Topographic 
Ruggedness Index 

 
(Riley et al. 1999) 

HLI Heat Load Index  
(Mc Cune and 
Keon, 2002) 

CTI 
Compound 
Topographic Index 

 
(Gessler et al., 
1995) 

SRR Surface Relief Ratio  
(Pike and Wilson, 
1971) 

SOLRAD 
Solar radiation 
[Wh/m²] 

 
Arc Map 10.2.1 

 

2.2.3 Modelling of main floristic gradients and biomass 

In order to model the main floristic gradients as represented by the three isomap axes we used 

three random forest regression models. Random Forests (Breiman, 2001) belong to the bagged 

machine learning algorithms of ensemble modelling and can be used for classification and 

regression. Being a non-parametric technique, random forest is able to cope with skewed data 

distributions as present in our study. The random forest algorithm is described by Liaw and Wiener 

(2002). A bootstrapped training sample of about one third of the data is first drawn from the input 

data, which resulted in 500 unpruned regression trees for our case. At every node of every tree, a 

subset of the ten predictor variables is tested for the best split. An average vote of all trees is then 

generated for the regression. The model out of bag error is calculated for every tree and finally 

aggregated for the forest. All three floristic gradients were predicted by the models and three 

separate maps were produced. The measured biomass values were transformed by taking the 4th 

root in order to achieve a Gaussian distribution.  

In order to compare the biomass model based on species composition to a comparative common 

model based on vegetation indices and topographic variables, we used the full dataset and 

calculated the predicted versus observed R² and the root mean square error of prediction (RMSEP) 

for a 100 time, bootstrapped dataset. 

The root mean square error of prediction (RMSEP) was calculated using the following equation: 

𝑅𝑀𝑆𝐸𝑃 = √∑ ((𝑋𝑖 − 𝑌𝑖)2 𝑛⁄ )𝑛
𝑖=0   

with 𝑋 being the predicted yield, 𝑌the observed yield, and 𝑛 the number of predictions. 

In order to derive the yield map, the whole data-set was then randomly stratified and equally 

separated into a calibration (with 7 samples in the low and high yield ranges) and a validation 
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dataset. We calculated the predicted versus observed R² and root mean square error of prediction. 

The random forest model was used to predict the biomass map, by using the three isomap axes 

maps as predictors. Validation was performed with the validation dataset by correlating the 

observed ground truth with the predicted biomass values. For a better understanding, the results 

were later reconverted from transformed values to Mg per ha.  

From the biomass map we masked out areas with a low NDVI (<0.2) to exclude bare rocks as well 

as elevations above 2100 m a.s.l. in order to limit the spatial prediction to areas covered by the field 

sampling. All analyses were performed in the R statistical environment using the packages vegan 

(version 2.2.1), isopam (version 0.9-13), stats (version 2.3-40), randomForest (version 4.6-10) and 

PMCMR (version 4.1). 

2.3. Results 

2.3.1 Analysis of the vegetation data 

The sampled data set included a total of 177 plant species. 125 species had three or more 

occurrences and were included in the isomap ordination. Species richness ranged from 15 to 45 

species per plot with an average of 28 species per plot (25 m²). The analysis of the vegetation data 

revealed typical species for the main grassland vegetation communities; as well as species 

occurrence along the main topographic gradients. The ordination diagram shows the three main 

grassland types derived by the isopam clustering (see Fig. 3).  

We found Hordeum violaceum hay meadows, characterized by the typical species Phleum pratense, 

Hordeum violaceum, Silene vulgaris, Rumex acetosa, Carum caucasicum, Festuca pratensis, Bunias orientalis, Poa 

trivialis, Vicia tenuifolia subsp. variabilis, Poa pratensis, and Rumex obtusifolius. These meadows are mown 

once per year and are highly productive. We also found a second vegetation community used as a 

meadow or pasture with the typical species Alchemilla sericata, Gentianella caucasea, Primula algida and 

Seseli alpinum. The third grassland type detected by the clustering algorithm is characterized by the 

typical species Astragalus captiosus, Potentilla crantzii, and Silene linearifolia. On the first axis of the 

isomap ordination diagram the Astragalus pastures transition gradually to the Hordeum violaceum 

meadows. The second axis, however, depicts the change from Gentianella caucasea meadows to either 

Astragalus pastures or Hordeum violaceum meadows.  
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Fig. 3: Isometric feature mapping of the 

three main grassland types: where  

AHH = Average Height High Herbs, 

AHLH = Average Height Lower Herbs, AP 

= Alluvial Deposit,  

CBR = Cover Bare Rocks,  

CLI =Cover Litter,  

COS = Cover Open Soil,  

CTOT = Total Cover,  

CUH = Cover Upper Herbs,  

DC = Dilluvial Deposit,  

DEM = Elevation,  

East = Eastness,  

SRR = Surface Relief Ratio,  

PD = Proluvial Deposit, and  

YIELD = Dry Matter, p<0.01.  
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The isomap ordination transferred 79% variation in the vegetation data to the ordination space. 

The first ordination axis explained 53% of the initial variation. Along the first axis, we found a 

separation by yield (R² = 0.54), average height of the lower herb layer (R² = 0.4), cover of the upper 

herb layer (R² = 0.35) and total vegetation cover (R² = 0.29). The second axis correlated with R² = 

0.22 to the initial variation and showed a differentiation of the plots by average height of the upper 

herb layer (R² = 0.2), eastness (R² = 0.17), and elevation (R² = 0.1). The third axis did not cover 

much of the initial variation with R² = 0.13, with only little relation to northness (R² = 0.12). The 

average yield was highest in the Hordeum violaceum stands, followed by the Gentianella caucasea 

grassland and the Astragalus captiosus grassland.  

 

Fig. 4: Box whisker plots of the three vegetation types, with dots representing outliers, 

which are 1.5 times outside of the interquartile range. Whiskers represent minimum and 

maximum of the data except from the outliers, the box boundaries upper and lower 

quartiles, and the black line the median value. Letters indicate homogeneous groups in 

pairwise comparisons using the Nemenyi test, with Chi-squared approximation, after a 

Kruskall Wallis test. 

The biomass yield differed significantly between the Hordeum violaceum meadows and 

Gentianella caucasea and Astragalus captiosus grassland, however no significant yield differences were 

found between Gentianella caucasea and Astragalus captiosus grassland (see Fig. 4.). 
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2.3.2 Vegetation and yield modelling 

Modelling the three isomap axes with a random forest resulted in 64% of variance explained by the 

first axis model, 33% of the variance explained by the second axis model and 46% variance 

explained by the third axis model. Table 2 illustrates the variable importance for the random forest 

models, depicting the main predictor variables, with a variable importance higher than 0.1. SAVI 

05, the NIR band and the MSAVI were decisive predictors to model the vegetation change between 

Astragalus captiosus grassland and Hordeum violaceum meadows (axis one). To model the vegetation 

change on the second isomap axis, besides the red edge band, eastness and elevation played a 

crucial role. As predictors for the third isomap axis, elevation and northness were most important. 

Tab. 2: Variable importance as Increment Node Impurity > 0.1 for the three random 
forest models. 

Axis one Axis two Axis three 

SAVI 05 0.91 Red edge band 0.31 ELEVATION 0.25 

NIR band 0.60 EASTNESS 0.17 NORTHNESS 0.10 

MSAVI 0.57 ELEVATION 0.16     

NIR/red 0.28 GREEN band 0.14     

NDVI 0.27 SRR 0.10     

NIR/green 0.25         

BWDRVI 0.21         

rededge_NIR2 0.15         

NIR/red edge 0.11         

Red edge NDVI 0.11         

Sol Rad 0.11         

 

The model based on species composition (Fig. 5a) showed a higher R² of 0.55 and a lower RMSEP 

(1.76 Mg*ha-1) than the comparative model, including only multispectral reflectance, vegetation 

indices, and topographical parameters as predictors (see Fig. 5b) (R² = 0.42, RMSEP = 1.91 Mg*ha -

1). Moreover, when the observed biomass exceeds 6 Mg*ha-1 both models exhibit high residuals. 

This indicates that high yields are generally difficult to predict with both models. However, the 

model based on multispectral reflectance, vegetation indices and topographic variables showed 

high residuals even for biomass values below 6 Mg*ha-1 and had thus a weaker performance. The 

final random forest model combined the modelled isomap scores of the three axes as predictor 

variables resulting in the biomass map (see Fig. 6). A moderate relationship (variance explained = 

62.32%) between isomap scores and yield, was found in the calibration of the model, whereas the 

external validation, comparing the observed yield of the validation dataset to the modelled one 

exhibited an R² = 0.64 with a RMSEP of 1.6 Mg*ha-1. The yield covered by our model ranged from 

0.43 to 8.68 Mg*ha-1 (see Fig. 6). 
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Fig. 5: a) Predicted versus observed biomass yields of the subalpine grassland in the 

Kazbegi region of a) the yield model, including species composition 

and b) the common comparative model. 

 

Fig. 6: a) Yield map in Mg*ha-1, resulting from modelled isopam axis scores, which 
represent the species composition of the high mountainous grassland in the Kazbegi 
region and b) an insert map of the village Pkhelsche. 
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2.4. Discussion 

2.4.1 Grassland types and main predictor variables 

The main objective of our study was to model a spatially explicit, gradual representation of the 

above ground biomass of the subalpine grassland of the Kazbegi region by including species 

composition to test whether remotely sensed patterns of species composition are suitable predictor 

variables for a yield model.  

Since the vegetation composition of high mountain grassland is closely related to topography and, 

thus, environmental conditions, strong vegetation gradients are present in our study area (Körner, 

2004; Tephnadze et al., 2014). This relationship between yield, vegetation composition and the 

topographic factors was employed to model the yield map. 

In our analysis the grassland was classified into three main grassland types, Hordeum violaceum 

meadows, Gentianella caucasea grasslands, and Astragalus captiosus pastures, which transition gradually 

to each other. Since the grassland of the Kazbegi region has been under study for decades, 

descriptions of the subalpine grassland already exist (Lichtenegger et al., 2006; Nakhutsrishvili, 

1999; Tephnadze et al., 2014). However exact statements for grassland yield are rare and, if available 

relate to higher elevations. 

Lichtenegger et al. (2006) reported for the Hordeum violaceum grassland a yield of 7.5 Mg*ha-1 on a 

test site above shallow soil. In general, Hordeum violaceum prefers humid and moderately deep soils 

(Lichtenegger et al., 2006). Such conditions can be found on the dilluvial deposits, where villages 

are established. Moreover, in early spring cattle and horse grazing fertilizes the meadows near the 

villages, additionally increasing plant productivity (Lichtenegger et al. 2006, Sakhokia, 1983). Parts 

of theses meadows may have been used as arable land and potentially fertilized with dung in former 

times (Seifriz, 1931; Tephnadze et al., 2014). These nutrient sources explain the comparably high 

productivity of the Hordeum violaceum grassland, in rare cases even above 8 Mg*ha-1, where tall-herb 

stands develop.  

The Gentianella caucasea grassland is often dominated by Agrostis vinealis / capillaris and 

Bromus variegatus, which can be related to the nutrient rich pastures of the high-montane belt 

(Lichtenegger et al., 2006). This grassland type occurs on the skeleton rich soils of proluvial deposits 

up to 2700 m a.s.l. (Nakhutsrishvili, 1999). The yield in our dataset did not exceed 5 Mg*ha-1, 

whereas Nakhutsrishvili et al. (1980) found up to 6 Mg*ha-1 for a similar vegetation type in late 

summer. The discrepancy might have arisen from the different research design used in 

Nakhutsrishvili et al. (1980), with smaller plots sizes at different elevations as well as the fact that 

the Gentianella caucasea grassland might have reached even higher yields under more growth 

enhancing weather conditions. Moreover, our datasets included few plots of the Gentianella caucasea 
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vegetation type, which were dominated by Nardus stricta, a species with very low yield, explaining a 

low average yield. Nardus stricta indicates in our case the influence of the acidic dacite base rock 

(Lichtenegger et al., 2006).  

The Astragalus captiosus grassland was largely used as pasture, except for a few plots, which exhibited 

moderate yields and were used for hay making as well. This vegetation type is characterized by high 

herb content, low vegetation cover and a habitat preference on shallow soils with high stone 

content on flat to steep, south exposed slopes (Magiera et al., 2013; Nakhutsrishvili, 2012; 

Tephnadze et al., 2014).  

The vegetation composition of the above discussed grassland types could be explained by the 

vegetation structural gradients, which were represented by the multispectral vegetation indices and 

the topographic gradients by using random forest models. The good performance of those models 

related to the strong connection between species composition, reflectance and topographic 

conditions, has been successful in other modelling approaches (Feilhauer and Schmidtlein, 2011; 

Magiera et al., 2013). However, the relationship between species composition and reflectance in a 

semi natural landscape is enhanced by co-factors contributing to the spectral signal, such as a high 

stone content or soil moisture (Feilhauer et al. 2011, Harris et al. 2015, Verrelst et al. 2009). Our 

dataset shows a moderate relation of biomass to the topographic gradients elevation and eastness, 

which are consequently important predictor variables in the random forest models (see Fig. 3). 

Tephnadze et al. (2014) found similar relationships, especially for eastness. This can be explained 

by the different soil conditions on eastern and western slopes. The high importance of elevation is 

not surprising, since it is the dominant gradient in high mountain systems (Körner, 2004). However, 

structural vegetation factors, such as total vegetation cover and vegetation height formed equally 

strong gradients in our dataset. This is further confirmed by the strong influence of the single bands 

(NIR, red edge) and the vegetation indices on the random forest models. The influence of the 

spectral predictors even outperformed the topographic gradients in the random forest models. This 

can be caused by the strong relationship between canopy reflectance and canopy structure (Ustin 

and Gamon, 2010). The high importance of SAVI and MSAVI for the isomap model of the first 

axis supports this finding. The first isomap axis displayed the gradient of total vegetation cover and 

vegetation composition between the Astragalus captiosus grassland and the Hordeum violaceum 

grassland. SAVI 05 and MSAVI were both designed to correct for soil brightness, which was 

beneficial for the influence of low vegetation cover. The second isomap axis, covered a shorter 

vegetation structural gradient based on the transition between the Gentianella caucasea-grassland and 

both Hordeum violaceum- and Astragalus captiosus-grassland. This gradient was mainly related to 

eastness, which was further confirmed by the high importance of eastness and elevation in the 
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random forest model. The influence can be explained by the micro climatic conditions of the 

slightly warmer slopes, exposed to the east, as well as the different soil conditions east and west to 

the valley. A prior study in the Kazbegi region, Greater Caucasus, using hyperspectral field 

spectrometric data to relate canopy reflectance to vegetation composition resulted in R² values 

ranging from 0.6 to 0.83 in validation (Magiera et al. 2013). However, it needs to be considered, 

that the strength of the model coefficients is dependent on the length of the floristic gradient 

(Schmidtlein et al. 2007). In our study the floristic gradient is comparably short. Enlarging the 

floristic gradient by considering the vegetation of steep slopes as in Magiera et al. (2013) would 

presumably enhance the quality of the species composition model and allow an application of the 

yield model to steep slopes.  

2.4.2 Applicability of the yield map  

The high spatial resolution of the Rapid Eye Imagery (5 m x 5 m) resulted in a very detailed yield 

map, depicting small scale yield heterogeneity and its gradual transition along topographic 

conditions. Whereas in a mosaic landscape grassland yield is often assessed on a patch scale, our 

grassland dominated high mountain study region lacked sharp vegetation or anthropogenic 

boundaries, making the yield assessment even more challenging. However, a further advantage of 

the high spatial resolution of the yield map is an increased visibility of small features such as 

shrubbery, dirt paths or small arable lands (<100 m²) (Fig. 6). The biomass distribution indirectly 

followed the species composition, so that ecological patterns such as the clear appearance of the 

high standing Hordeum violaceum meadows, were sustained within the map. It is important to note 

for interpretation and usage of the resulting map that the model was only trained for grassland. 

Post processing procedures such as masking out areas not covered by the field sampling is needed 

for a fine scale assessment of the grassland potential. Further, we only included training data from 

moderately steep terrain and below 2100 m a.s.l., we thus restricted the prediction areas. For our 

purposes the yield map, assessing the yield of meadows near the villages is highly sufficient. 

2.4.3 Mitigating effects of index saturation through maps of species composition  

In the present study, yield was estimated by modelled species composition showing a generally 

good agreement with the validation data. We were able to depict gradual changes in yield estimates, 

with R² of 0.64 in validation, which is comparable to other studies. Todd et al. (1998) tested 

multispectral vegetation indices (Landsat TM Tasseled Cap green vegetation index, brightness 

index, wetness index, the normalized difference vegetation index and the red waveband) on a 

biomass gradient between 0.8-1.5 Mg*ha-1 in the Rocky Mountains. They found good correlations 

between reflectance and biomass with an R² ranging between 0.62-0.67 for pastured sites. However, 
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if test sites within grazing exclosures (high biomass) were included into the analysis the R² values 

declined.  

For the yield assessment of alpine pastures Boschetti et al. (2007) covered a yield range between 

0.61 Mg*ha-1 for Nardus stricta-grassland and 2.797 Mg*ha-1 for Deschampsia caespitosa- grassland. The 

authors used multispectral vegetation indices with log transformed regression analysis, resulting in 

a model for soil adjusted vegetation indices with an R² > 0.6. Another study of alpine meadows 

shrubs in the Tibetan Plateau, dominated by sedges and dwarf shrubs with a yield gradient between 

1.5841 Mg*ha-1 and 3.5675 Mg*ha-1 (mean vegetation height 12 cm) showed moderate correlations 

with an R2 = 0.27 in regression analysis with vegetation indices (Chen et al., 2009). Hyperspectral 

vegetation indices tested by Fava et al. (2009) on a gradient between 3.95 – 13.37 Mg*ha-1, with the 

best models including the NIR and red edge, resulted in an R² = 0.73 (Fava et al., 2009). However, 

Vescovo and Gianelle (2008) noticed the saturation effect of NIR based vegetation indices for 

yields above 1.5 Mg*ha-1, whereas Hancock and Dougherty (2007) detected the saturation point in 

blue and red based NDVI and wide range indices above 3.74 Mg*ha-1. All quoted studies focus on 

moderate yields, even though full canopy cover was reported in most cases.  

The saturation effect and other non-linear relationships between vegetation indices and canopy 

properties, especially biomass may decrease model accuracy (Glenn et al., 2008). This problem is 

highly relevant for the biomass rich meadows. However, including the intermediate step of 

calculating a species composition map, proved to be successful for our dataset. In a bootstrapped 

comparative model we directly related the vegetation indices and topographic variables to yield and 

noticed a higher RMSE, as well as higher residuals even below an observed biomass of 6 Mg*ha-1. 

We were able to accurately model a quite long yield gradient, even though the highest residuals 

were observed for high yields. A possible alternative to estimate the residuals would be to project 

the final model directly into the ordination space (Neumann et al. 2015, Luft et al. 2016). Since 

vegetation composition is closely related to the biophysical vegetation variables, using an 

intermediate step of species composition maps might help to improve the model quality.  

2.5 Conclusions and outlook 

Yield maps give additional information beside species composition for sustainable land use 

planning and nature conservation, since they can help to estimate yields over a larger area giving 

local farmers and authorities a tool in hand to plan an economically viable and ecologically 

meaningful grassland management. The resulting yield map further allows to generate integrative 

land-use scenarios in the Kazbegi region and to give practical recommendations to the local farmers 

for a sustainable land-use management. We could show that floristic gradients serve well as 
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predictors for grassland yield modelling by including easily obtainable, remotely sensed data. The 

question of how to enhance the quality of models estimating the yield of productive grasslands is 

still under discussion. For remote areas where data availability is particularly scarce, easily 

obtainable remotely sensed data such as multispectral satellite imagery and digital elevation models 

can be beneficial as a basis for modelling, even though the calibration data such as biomass 

clippings and vegetation relevés still have to be acquired, the workload compared to common 

mapping approaches is considerably less. It is, however, based on the close relationship between 

topographic conditions and species composition which is typical for a high mountain region. 

Future studies with larger datasets in different habitat types, such as agricultural landscapes are 

needed to get better knowledge and understanding of this observation.  
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Abstract 

Plant functional groups (PFG), in our case grass, herbs and legumes and their spatial distribution 

hold information on key ecosystem functions such as species richness, nitrogen fixation and 

erosion control. Spatial knowledge about the distribution of PFGs provide valuable information 

for grassland monitoring and management. The present study thus aims at describing and mapping 

the distribution of grass, herb and legume coverage of the subalpine grassland in the high mountain 

region Kazbegi, Greater Caucasus, Georgia. To test the applicability of new sensors, we compared 

the predictive power of simulated hyperspectral canopy reflectance, simulated multispectral 

reflectance, simulated vegetation indices and topographic variables for modelling PFGs.  

Generally, all tested grassland was species-rich but differed in grass, herb and legume content and 

connected properties, such as yield. Dominance of grass (Hordeum brevisubulatum) was found in 

biomass-rich hay meadows. Herb-rich grassland featured the highest species richness and evenness, 

whereas legume-rich grassland was accompanied by a high coverage of open soil and showed 

dominance of species such as Astragalus captiosus. Models for grass, herb and legume coverage 

explained 36%, 25%, 37% of the respective variance and their root mean square errors were 

between 12-15%. The best model fits were achieved with a combination of multispectral 

reflectance, vegetation indices and topographic variables as predictors. Hyperspectral and 

multispectral reflectance as predictors resulted in similar models. We thus conclude that the 

combination of multispectral and topographical parameters suits best for modelling grass, herb and 

legume coverage. However, overall model fits were merely moderate and further testing, including 

stronger gradients and the addition of shortwave infrared wavelengths, is needed.  
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3.1. Introduction 

Worldwide, high mountain grassland is a species-rich habitat, which includes numerous endemic 

species (Körner, 2004), but is commonly highly affected by natural and land-use supported erosion, 

land-degradation and land-use changes (e. g. Lehnert et al., 2014; Tasser and Tappeiner, 2002; 

Wiesmair et al., 2016). 

The high species richness of subalpine to alpine grassland results from and is affected by its long 

term agricultural use. During the last decades, the central European mountain grassland 

communities were altered by the introduction of modern farming practices in grassland 

management on the one side and the abandonment of agricultural use on the other (Tasser and 

Tappeiner, 2002). Traditional high mountain land use systems with low input of system-specific 

organic fertilizers have greatly contributed to a distinct floristic pattern up to the introduction of 

mineral fertilizers and more effective agricultural techniques. Consequently, more intensive 

management regimes became applicable to large grassland sites and thus modified the traditional 

mowing and grazing regimes by homogenization of the floristic pattern (Homburger and Hofer, 

2012). The introduction of mineral nitrogen and phosphorus fertilizers caused the greatest change 

in the floristic composition of grassland and resulted in an increased abundance of grass species. 

In contrast, the subalpine grassland in our study region, the Kazbegi region, Greater Caucasus, 

Georgia, has up to now been traditionally managed without any mineral fertilizer application 

(Tephnadze et al., 2014). Thus, near-natural, species-rich and quite distinct grassland types with a 

strong relation to topography and land-use type dominate the subalpine and alpine landscape of 

the Kazbegi region (Nakhutsrishvili, 1999; Pyšek and Šrutek, 1989; Tephnadze et al., 2014). 

Species-rich grassland, characterized by a dense and vertical structured vegetation layer and a 

diverse, deep root system, contribute to the functioning of the high mountain ecosystem, especially 

to erosion control (Körner, 2003, Pohl et al., 2009). Both, species richness and erosion control – 

the latter being mainly determined by the root system – are interrelated and indicated by grass, herb 

and legume coverage (Lehnert et al., 2014; Tasser and Tappeiner, 2002; Wiesmair et al., 2017). Plant 

functional group (PFG, i.e. grass, herb, and legume) proportions shift if land-use management is 

intensified (e.g. through mineral fertilization, irrigation or the establishment of sown grassland), 

which in return destabilizes ecosystem functions (Voigtlaender et al., 1987). Therefore, detailed 

spatial knowledge about the distribution of grass, herb and legume coverage provides valuable 

information for grassland monitoring and management. 

Previous studies indicate the feasibility to use remotely sensed imagery as well as topographic 

information to model grass, herb and legume content (Biewer et al., 2009a, 2009b; Himstedt et al., 

2009; Psomas et al., 2011; Zha et al., 2003). However, studies using grass, herb and legume content 
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as a target variable are so far limited to controlled systems achieving best results at a homogenous 

yield. In contrast, our study is based on semi-natural mountain grassland with varying yields and 

cover.  

In our study, we briefly characterize the grassland composition with respect to PFGs and dominant 

species of the researched grassland types and, subsequently, model and map their spatial 

distribution. We further test if hyperspectral reflectance, in our case from field spectrometric data, 

enhances the model quality. We thus aim: 

i) to model and map grass, herb and legume coverage and 

ii) to test if simulated hyperspectral reflectance improves the model quality. 

3.2 Study area 

Steep slopes and a harsh continental climate characterize the high mountain range of the Central 

Greater Caucasus, Georgia and especially the environmental conditions of the isolated Kazbegi 

region (Fig.1).  

Fig. 1: The study area in the Kazbegi region, Greater Caucasus, Georgia.  
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The Tergi river runs in northern direction, at its banks, the main village Stepantsminda stretches 

(1700 m above sea level (a. s. l.)). West of the river, the Mount Kazbeg elevates (5033 m a. s .l) as 

the highest summit in the region (Ketskhoveli et al., 1975). The climate of the valley is relatively 

continental with long, cool summers and winters with low snow cover. The mean annual 

temperature is 4.7 °C with a vegetation period of five to six months. The mean annual precipitation 

at 1850 m a. s. l. amounts to 806 mm (Lichtenegger et al., 2006; Nakhutsrishvili, 1999). The bedrock 

of the study area comprises Jurassic sediments (clay shists), quaternary volcanic rocks (andesite and 

dacite) as well as quaternary pyroclastic deposits and fluvial sediments. Younger, pleistocenic glacial 

sediments as well as holocenic peats can also be found (Akhalkatsi et al., 2006). The main soil types 

of the top slopes are shallow leptosols, mainly used as pastures, whereas on the lower slopes and 

accumulation areas, depending on the bedrock, moderately deep cambisols can be found in the 

surroundings of the villages, which are used as meadows or even potato fields (Tephnadze et al., 

2014). 

The landscape is characterized by large, low-productive, pastured grassland alternating with small 

remnants of birch forests (Betula litwinowii) and shrubberies. The latter are dominated by Elaeagnus 

rhamnoides in the lowlands and Betula litwinowii and Rhododendron caucasicum in the northern-exposed 

tree-line ecotone (Magiera et al., 2013, 2016). In contrast, grassland of north-facing slopes exhibits 

a relatively high biomass, but is often characterized by unpalatable plant species such as Veratrum 

lobelianum or Festuca varia (Nakhutsrishvili, 2012). On alluvial fans and in close vicinity to the villages, 

young hay meadows occur on former organicly fertilized arable fields characterized by Hordeum 

brevisubulatum (Tephnadze et al., 2014). Old, non-fertilized and species-richer hay meadows grow at 

steeper slopes and further away from the villages. However, we found no indication for the 

application of mineral fertilizers in our study region. For a detailed description of the study area, 

we refer to Magiera et al., 2013; Nakhutsrishvili, 1999; Tephnadze et al., 2014. 

3.3. Material and Methods 

3.3.1 Vegetation data 

In summer 2014, the grassland vegetation within walking distance of six selected villages in the 

Kazbegi valley (Stepantsminda, Gergeti, Pansheti, Sioni, Phkehlshe and Goristhikhe) was sampled 

in a stratified random design including low, medium and high productivity sites (strata). Exact 

locations of the plots, however, were chosen randomly. In order to avoid edge effects, we sampled 

only large homogeneous grassland patches at a minimum inter-distance of 50 m to each other. The 

vegetation composition of 90 plots, each covering 25 m², was assessed using the modified Braun-

Blanquet scale and including all vascular plant species.  
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The nomenclature follows The Plant List 1.1. Furthermore, we recorded the total vegetation cover 

as well as the cover of open soil and bare rocks. The cover percentage and height of the upper and 

lower herb layers were assessed separately. In order to estimate the cover fractions of the functional 

plant groups (grass (Poaceae, Juncaceae, Cyperaceae), legume (Fabaceae), herb (all other species)), the 

Braun-Blanquet scale was transformed to cover percentages (r = 0.6%, + = 1.2%, 1 = 2.5%, 2m 

= 5%, 2a = 10%, 2b = 20%, 3 = 40%, 4 =80%, 5 = 160%). We summarized the coverage of all 

species belonging to each functional group and used this as 100% coverage for comparison (van 

der Maarel, 2007). We further identified the most dominant and frequent species for the three 

grassland types. Those include all species with a mean coverage of 5% per vegetation type and a 

presence in at least 30% of the vegetation relevés.  

To depict the main floristic gradients, we performed a non-metric multidimensional scaling 

(NMDS, Kruskal, 1964) ordination. Ordination is a commonly used tool to reduce the n-

dimensional vegetation dataset to lower dimensional floristic gradients. NMDS was chosen as an 

ordination method since it is a robust, distance-based method, which displays the ordinal-scaled 

vegetation data accurately. We calculated two NMDS ordinations with three dimensions using the 

monoMDS function of the R package vegan 2.4-1 (Oksanen, 2011). A NMDS was calculated for 

the plant species composition of the plots based on Bray-Curtis distances as a distance measure 

(Bray and Curtis, 1957). The NMDS axes were rotated by principal component-rotation, so that 

the new axis one points to the direction of the largest variance (Clarke, 1993). 

Moreover, we tested structural vegetation parameters for significant differences between the three 

grassland vegetation types (Hordeum brevisubulatum meadow, Gentianella caucasea grassland and 

Astragalus captiosus grassland), using a Kruskal-Wallis ANOVA and Nemenyi-tests for multiple 

comparisons of rank sums implemented in the R package PMCMR 4.1. 

3.3.2 Pre-processing of hyperspectral field spectrometric data, satellite imagery and 
topographic data 

We tested hyperspectral field spectrometric data and multispectral satellite imagery, including 

vegetation indices and topographic data for the modelling of grass, herb, and legume coverage. 

Compared to the coarse spectral resolution of multispectral data, commonly including three to ten 

discrete bands, the high spectral resolution of hyperspectral data, in our case including 118 discrete 

bands, allows for a higher flexibility in the selection of spectral features (Feilhauer et al., 2013). 

Vegetation indices are either ratios or linear combinations of sensor bands that aim to enhance the 

vegetation signal and allow to draw conclusions on the status and condition of vegetation (Jackson 

and Huete, 1991).  
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In mid-July 2014, at the time of the highest biomass, we acquired hyperspectral field spectrometric 

canopy reflectance using a hand-held field spectrometer (ASD HH2), covering the range between 

325-1075 nm (750 wavelengths) of the solar electromagnetic spectrum. The measurements were 

taken from the same 5 m x 5 m plots as the vegetation relevés. To cover the entire plot, we took 

four measurements per plot with five repetitions (each measurement with an internal averaging of 

50 spectra), totaling up to 20 spectra per plot. The measurements were collected close to the solar 

noon, on days with clear sky and low wind speed. Atmospheric changes were accounted for by 

measuring relative to a white standard panel (Spectralon®, Labsphere Inc., North Sutton, NH), 

with a recalibration at least every five minutes. During pre-processing, the 20 spectra sampled per 

plot were averaged and filtered. A Savitzky-Golay filter with a quartic polynom and a filter length 

of 51 nm was used to smooth the spectra (Savitzky and Golay, 1964). The filtered field 

spectrometric reflectance measurements were used to test the applicability of hyperspectral sensors 

compared to multispectral sensors for modelling PFGs by simulating the bands of the sensors 

AISA Eagle (hyperspectral, 400-970 nm) and RapidEye (multispectral, 440-840 nm). Plant 

functional groups were already successfully predicted by AISA dual as pollination types (Feilhauer 

et al. 2016) and by MODIS data (Sun et al. 2008). Moreover, Lehnert et al. (2013) used 

hyperspectral data to discriminate grass from non-grass, whereas studies using multispectral data 

to model plant functional types are rather scarce. Both sensors were chosen because they cover a 

similar spectral range and offer a high spatial resolution. In order to calculate the spectral signal of 

the AISA Eagle sensor, we cut out the specific wavelengths, whereas the function simulatoR 

(Feilhauer et al. 2013) and the spectral response curve were used to simulate RapidEye reflectance.  

Multispectral, space borne imagery was acquired on the 21st of June 2014 by the RapidEye sensor. 

The sensor provides information on the canopy reflectance in five bands (blue 440 – 510 nm, green 

520 – 590 nm, red 630 – 685 nm, red edge 690 -730 nm and NIR 760 – 850 nm, Weichelt et al., 

2011). The imagery was orthorectified (product level 3-A) and converted to top-of-atmosphere 

reflectance. Differences in illumination due to the topography were corrected by a cosine 

topographical correction (Teillet et al., 1982). Besides the five original bands, we included a set of 

previously published vegetation indices in the analysis (Magiera et al., 2017). We used simple ratios 

including red edge / red, NIR / red edge, red edge / NIR, NIR / red, NIR /green. Moreover, we 

included the Atmospherically Resistant Vegetation Index 2 (ARVI, Kaufman and Tanre, 1992), the 

Blue-wide dynamic range vegetation index (BWDRVI, Gitelson, 2004), the Modified Soil Adjusted 

Vegetation Index (MSAVI, Qi et al., 1994), the Enhanced Vegetation Index (EVI, Huete et al., 

1999), the Normalized Difference Vegetation Index (NDVI) and the red edge NDVI (Herrmann 

et al., 2010). All indices were calculated by using the R raster package Version 2.5-8. 
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Topographic data were included from a digital elevation model (DEM) with a 20 m x 20 m 

resolution. Derivatives from that DEM, eastness, northness (Zar, 1998), slope (Horn, 1981) as well 

as plan curvature, mean curvature, profile curvature, solar radiation, CTI (Compound Topographic 

Index, Gessler et al., 1995), HLI (Heat Load Index, Mc Cune and Keon, 2002) and SRR (Surface 

Relief Ratio, Pike and Wilson, 1971) were calculated with the Arc Map 10.2.1 tool box and the 

Geomorphometry and Gradient Metrics Toolbox version 1.0. The topographic data were used to 

estimate the impact of the environmental conditions, mostly the roughness of the terrain on the 

vegetation structure. We extracted the vegetation indices and topographic variables for the 

positions of the vegetation relevés. 

3.3.3 Modelling the vegetation structure 

We tested the predictive power of hyperspectral canopy reflectance, multispectral reflectance, 

vegetation indices and topographic variables for modelling plant functional groups.  

As modelling technique, we chose random forest regression (Breiman, 2001), an ensemble method 

belonging to the bagged machine learning as implemented in the R package randomForest version 

4.6-12 (Liaw and Wiener, 2002). The random forest regression algorithm requires no assumptions 

on data distributions, thus transformations are not necessarily needed (Breiman, 2001; Liaw and 

Wiener, 2002). It can capture non-linear data structures, which are often inherent when it comes 

to analyzing vegetation data. Moreover, it is robust towards outliers and can handle 'noise' 

introduced by many predictor variables. The error rate of a random forest is assessed by out-of-

bag estimation. The importance of a variable is assessed as % Increment MSE by permuting the 

out-of-bag data and the resulting error increase when one variable is left out (Liaw and Wiener, 

2002). Models were validated by a 100 times bootstrapping procedure, because of the relatively 

small sample size. All three resulting maps were stacked and plotted in the red green blue (rgb) - 

colour code with r = legume coverage, g = grass coverage, and b = herb coverage. 
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3.4. Results 

3.4.1 Grassland  

The 90 vegetation relevés contained 177 plant species belonging to 35 families (26 graminoid 

species, 125 herbaceous species, 22 fabaceous species and 4 sedge species). 

 

Fig. 1: NMDS ordination diagram of the two main floristic gradients. The arrows point in 

the direction of the strongest change in topographical gradients (eastness, surface relief 

ratio (SRR) and elevation (DEM)) as well as vegetation based gradients (grass (G), herb 

(H), legume (L), legume species number (LSN), species number, Shannon Index and 

Evenness). The length of the arrow represents the relation between ordination and gradient 

with a significance level of p ≤ 0.01. Point size is fitted to grassland biomass (maximum 

biomass = 13.4 t*ha-1, minimum biomass = 0.25 t*ha-1). 

The NMDS ordination accurately depicts the two main floristic gradients with a stress level of 0.14 

(see Fig. 2). Most of the original variation in the data (61%) is explained by the first NMDS axis, 

the second and third axis represent 26% and 0.5%, respectively. The colour scheme represents the 

distribution of grass, herb, and legume in the rgb colour space, i.e. greenish points represent a high 

grass content. The grassland vegetation is characterized by broad transitions, which explains the 

high species richness but makes it difficult to delineate grassland vegetation types. 
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The high grass coverage of the Hordeum brevisubulatum meadow is accompanied by a significantly 

higher total cover and yield (see Tab. 1). Dominated by Hordeum brevisubulatum and in the drier and 

stonier parts by Agrostis vinealis, Trifolium repens, Ranunculus caucasicus and Ranunculus ampelophyllus, 

they occur on deep soils. The high herb coverage as detected in the Gentianella caucasea grassland is 

caused by species richness – mainly of herb species – and a coverage more evenly distributed among 

single species, i.e. many species exhibit an average coverage below 15%. In contrast, dominance is 

mainly established by grassland matrix species, shared with the Astragalus captiosus grassland, such 

as Trifolium repens, Trifolium ambiguum, Bromus variegatus and Poa alpina. A high number of legume 

species and coverage (e.g. Medicago glutinosa as a dominant species) characterize the 

Astragalus captiosus grassland connected to open soil, bare rock, and litter. 

Tab. 1: Structural variables of the grassland types. Letters indicate homogeneous groups 
after a Kruskal Wallis ANOVA and Nemenyi-tests for multiple comparisons of rank sums 
p ≤ 0.01. 

  

Hordeum 

brevisubulatum 

meadow 

Gentianella caucasea 

grassland 

Astragalus captiosus 

grassland 

 n=23   n=36   n=31   

  Median 

25 

Perc. 

75 

Perc. Median 

25 

Perc. 

75 

Perc. Median 

25 

Perc. 

75 

Perc. 

Yield [Mg*ha-1] 5.97 4.80 7.98 2.61a) 1.81 3.17 2.66a) 2.13 3.16 

Cover total [%] 100 98 100 95.5a) 93.5 98 95a) 90 96 

Coverage litter [%] 0 0 0 0.5a) 0 2 0a) 0 2.5 

Open soil [%] 0 0 2 2.5a) 1 5 4a) 2 5 

Bare rock [%] 0a) 0 0 0a) b) 0 0 1b) 0 4.5 

Grass coverage 39a) 31 54 21b) 15 29 22b) 19 29 

Herb coverage [%] 43a) 32 54 59 50 68 43a) 32 50 

Legume coverage [%] 12a) 8 16 16a) 9 23 35 18 43 

Species number 28a)b) 25 32 31a) 28 35 27b) 21 32 

Shannon index 2.78a) 2.49 2.92 2.99 2.82 3.18 2.69a) 2.62 3.02 

Evenness 0.83a) 0.76 0.86 0.88a)b) 0.86 0.91 0.84b) 0.81 0.89 
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3.4.2 Modelling PFGs  

The random forest models explained 36% of the variance in the data and had an root mean square 

error (RMSE) = 13% for grass coverage, a 25% explained variance with an root mean square error 

RMSE = 12% for herb coverage and a 37% explained variance and a RMSE = 11% for legume 

coverage in calibration, using multispectral reflectance and -vegetation indices and topographic 

parameters as predictors. The most important predictor variables include the red edge / NIR ratio, 

the ARVI and the WDRVI for grass coverage, the elevation a.s.l., the red edge band and the profile 

curvature for herb coverage as well as the elevation a.s.l., the NIR band and the MSAVI for legume 

coverage. 

Fig. 2: Modelled grass, herb and legume content in the villages a) Stepantsminda, b) 

Gergeti, c) Pansheti, d) Goristhikhe and Phkelsche and e) Sioni as well as for f) the whole 

Kazbegi region. 
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The grassland matrix is characterized by a high herb content, whereas grass and legume content 

differ in the vegetation types. Grass dominated patches are only small and established in close 

proximity to the settlements (Fig. 3 see b, c, d). In contrast, those dominated by legumes (mainly 

Astragalus captiosus) cover larger areas mainly in the floodplains or on steep, south exposed slopes, 

which are characterized by open soil and bare rock (Fig. 3 see c).  

We further tested if simulated hyperspectral field spectrometric reflectance, which matches the 

spectral characteristics of the AISA sensor, enhances the model quality compared to simulated 

multispectral reflectance (RapidEye) or a mix of simulated multispectral reflectance, simulated 

vegetation indices and topographic variables as predictor variables.  

Tab. 2: Adjusted R² of the random forest models as determined by correlation between 
predicted and observed values in calibration and validation (bootstrapping) for simulated 
hyperspectral reflectance (HR, AISA), simulated multispectral reflectance (MR, 
RapidEye) and simulated vegetation indices (VI), topographic parameters (TP) and the 
PFGs. 

  HR in cal. HR in val. 

  Adj. R ² RMSE [%] Adj. R²  RMSE [%] 

Grass coverage [%] 0.07 14.16 0.05 14.39 

Herb coverage [%] 0.17 14.06 0.18 13.90 

Legume coverage [%] 0.30 11.71 0.28 11.84 

  MR in cal. MR in val. 

  Adj. R²  RMSE [%] Adj. R²  RMSE [%] 

Grass coverage [%] 0.04 14.36 0.03 14.48 

Herb coverage [%] 0.15 14.18 0.15 14.14 

Legume coverage [%] 0.25 12.16 0.25 12.10 

  MR, VI, TP  in cal. MR, VI, TP in val. 

  Adj. R²  RMSE [%] Adj. R²  RMSE [%] 

Grass coverage [%] 0.18 13.19 0.19 13.20 

Herb coverage [%] 0.21 13.69 0.24 13.51 

Legume coverage [%] 0.32 11.52 0.33 11.48 

 

The best fitting models resulted from a mixed set of simulated multispectral reflectance, vegetation 

indices and topographic variables, whereas simulated hyperspectral reflectance performed equally 

well to the simulated multispectral reflectance (see Tab. 2).  
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Fig. 3: Variable importance calculated as % Increment MSE using a) simulated 

multispectral reflectance (RapidEye), b) simulated multispectral reflectance (RapidEye, 

MR), simulated vegetation indices and topographic parameters (MR, VI, TP) and c) 

simulated hyperspectral reflectance (HR, AISA) as predictors for grass, herb and legume 

cover. 
 

For the prediction of grass coverage, the blue and green band played a key role when only MR was 

used as predictor. Eastness, elevation and profile curvature were most successful predictors in MR, 

VI and TP. Considering simulated AISA reflectance, wavelengths of 722-727 nm (red edge) 

resulted in the strongest increase in MSE. Wavelengths in the green part of the electromagnetic 

spectrum of the light (511 nm) were strong predictors, too. Herb coverage was mostly predicted 
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by the MR blue, green and red band, whereas elevation, eastness, profile curvature and the red 

edge/red ratio contributed most to the MR, VI and TP model. The variable importance for 

predicting legume coverage shows a high predictability of the blue band, the green band and the 

NIR band in MR. Strong predictors in MR, VI and TV were elevation, BWDRVI and the 

NIR/green ratio. In HR, strong predictors were found in the blue (405 nm) region of the spectrum 

and the red edge (731 nm).  

3.5 Discussion 

3.5.1 Composition of grassland swards and management implications 

The tested high mountain grassland exhibited a vegetation structure which is common for 

unfertilized high mountain grassland (Rudmann-Maurer et al., 2008). Within all vegetation types, 

herbs and legumes achieve comparably high coverages with special regard to farmed grassland that 

typically is composed of 45% grass, 10% legume and 45% herb coverage (Voigtlaender et al., 1987). 

Grass coverage is significantly higher in Hordeum brevisubulatum meadows, but is still within the range 

of unfertilized farmland, which are almost lost in central Europe due to intensive farming practices, 

but is in parts conserved in high mountain systems. Moreover, many central European grassland 

species with a deep growing root system such as Rumex obtusifolius, Festuca pratense and 

Geranium sylvaticum are frequent. 

A higher herb coverage characterizes the species-rich Gentianella caucasea grassland (Ø species 

number: 31), which is mostly influenced by the environmental factors soil type, geology, 

topography and land use (Tephnadze et al., 2014). Even due to its moderate biomass, the Gentianella 

caucasea grassland has been mown whenever winter fodder was scarce and was pastured in spring. 

This low-intensive grassland land use has contributed to its high species diversity. An abandonment 

of this management practice would lead to a considerable loss of high mountain plant diversity 

(Maurer et al., 2006). Due to its species richness, the Gentianella caucasea grassland is regarded to 

supply an erosion mitigating vegetation cover on shallow, nutrient-poor soils, even though many 

shallow rooting species are typical for its composition (Leontodon hispidus, Anthoxanthum odoratum 

and Lotus corniculatus).  

Low species diversity, as analyzed for the legume dominated Astragalus captiosus grassland, and the 

typically low vegetation coverage indicate potential areas prone to erosion mostly on south-east 

exposed slopes (Wiesmair et al., 2016). Due to nutrient-poor soil conditions and drought at the 

erosion initials, only few species are able to establish and keep the vegetation cover. This highlights 

the importance of single species, especially the dominant Astragalus captiosus with its immense (90 

cm) root length, to mitigate erosion processes (Caprez et al., 2011). Mineral fertilization of legume-
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rich swards could thus lead to a decline in legume coverage, followed by a lower vegetation cover, 

enabling erosion on steep slopes.  

3.5.2 Modelling and mapping of PFGs 

Even though overall model quality was moderate, compared to the results of Biewer (2009a) in 

sown swards, errors (11-15 %) compared to the errors of visual field estimations. Moreover, the 

resulting map depicts clear patterns of grass, herb and legume coverage. The moderate model fits 

could be explained by the overall low variability in the dataset with a standard deviation for grass 

coverage of 14.74, for herb coverage of 15.05 and for legume coverage of 14.15. The mixed set of 

multispectral reflectance, vegetation indices and topographic variables resulted in the most accurate 

predictions, with elevation and profile curvature being the most important topographic variables 

since near-natural vegetation mainly follows topographic gradients. The characteristic biophysical 

features of grass, herb and legume-species such as leaf angle and orientation, stems, stalks and litter 

content further add to a characteristic reflectance pattern (Pfitzner et al., 2006).  

We compared modelling results for predicting PFGs with hyperspectral reflectance and simulated 

multispectral data to test the potential of hyperspectral imagery for modelling PFGs. Using the 

resampled field spectrometric data minimizes the effects of illumination differences in multi-date 

comparisons (Nilson and Peterson, 1994). Moreover, both datasets originate from the same spectra 

unlike in a comparison of real satellite imagery, where images are often recorded weeks apart. 

Therefore, we avoided inaccuracies introduced by the fast phenological development in high 

mountain regions (Körner, 2003). However, spatial scale as a crucial sensor characteristic is not 

taken into account. The field of view of the spectrometer covers areas below 1 m², depending on 

the average height above ground, whereas the rescalable, airborne AISA Eagle imagery has varying 

pixel sizes (< 5 m x 5m) and the spaceborne RapidEye sensor delivers imagery with a pixel size of 

5 m x 5m. The number of species in a pixel size increases with pixel size, even though we 

counteracted this problem by averaging spectra on 5 m x 5 m plots. Using actual imagery might 

result in different model qualities (Magiera et al., 2016; Meyer et al., 2017).  

Hyperspectral reflectance outperformed the multispectral reflectance by only 2-3%, whereas 

vegetation indices and topographic parameters explained another 10% of variance. In particular, 

the topographic parameters showed a strong predictive power. The capability of multispectral 

reflectance to model floristic composition (Feilhauer et al., 2013) as well as aboveground biomass 

and vegetation cover (Meyer et al., 2017) is generally high. It may, however, be enhanced by 

including topographic variables, especially in a high mountain study area. In addition, spectral 

information from the short-wave infrared range, which is sensitive to the water and dry matter 

content of the leaves, may add valuable information to the models (Feilhauer et al. 2013). Such 
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information is, however, only available for few sensors with a high spatial resolution (e.g., the 

commercial WorldView-3). Free multispectral imagery as delivered by Sentinel 2 could improve 

the model quality since it offers three red edge, two NIR and two SWIR bands. However, the main 

pitfall of Sentinel 2a data is the rather coarse spatial resolution (20 m x 20 m pixel size) compared 

to RapidEye (5 m x 5 m pixel size). Further testing while using a broader spectral range, as delivered 

by Sentinel 2, is thus needed. 

3.6. Conclusions 

The high mountain grassland of the Kazbegi region displays a unique species diversity with a high 

coverage of herbs and legumes, resulting in a typical structure and vegetation cover. Mapping grass, 

herb and legume content revealed the spatial limitation of grass-rich swards for agricultural 

grassland use and the erosion vulnerability of large areas currently dominated by legumes. 

Sustainable, economically and ecologically viable case sensitive grassland management, which is 

highly needed in remote high mountain regions, can be enhanced by implementing grass, herb and 

legume cover maps derived from multispectral imagery and topographic parameters. In order to 

enhance model fits, further testing, including even stronger vegetation gradients and the addition 

of shortwave infrared wavelengths, is needed. 
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Abstract 

Questions: Shrub encroachment has been observed in many alpine and arctic environments and 

is expected to significantly alter these ecosystems. Mapping these processes with remote sensing is 

a powerful tool for monitoring purposes. Thus, we aim to test the distinctiveness of  the reflectance 

signature of  target species relative to their co-occurring shrub species using uni- and multivariate 

analyses for an alpine ecosystem. We ask: i) Is it possible to differentiate shrub species with a unique 

growth form by their reflectance signature? ii) Which of  the tested multispectral sensors produces 

the best separability? and iii) How are the results affected by the timing of  data acquisition in the 

vegetation period? 

Location: We analyzed three shrub (Betula litwinowii, Rhododendron caucasicum, Hippophae rhamnoides) 

and one tall forb species (Veratrum lobelianum) occurring in the subalpine to alpine belt of  the 

Kazbegi district, Central Greater Caucasus, Georgia.  

Method: The vegetation of  52 relevés was analyzed using Non-Metric Multidimensional Scaling 

(NMDS) and Indicator Species Analysis (ISA). From field spectrometric data we simulated 

multispectral sensor bands (IKONOS, Quickbird 2, RapidEye, WorldView-2) directly taken from 

the target species. We analyzed the reflectance signature in RapidEye data from June and September. 

For all datasets we calculated the Jeffries-Matusita Distance (JMD) as a separability measure and 

tested the reflectance signature of  the single bands for differences.  

Results: Betula litwinowii and Veratrum lobelianum always co-occured in our data. A high abundance 

of Betula litwinowii could also be found in the Rhododendron cluster and vice versa; whereas the 

Hippophae cluster was more homogeneous. Simulated bands showed a good overall separability 

(JMD 1.58 - 2) of  the target species. The separability increased with the increase of  the number of  

bands and the inclusion of  the red edge band. There was a general trend in which the reflectance 

from satellite images produced a lower separability (JMD 1.2 - 1.55) than the simulations, with the 

best separability in the late vegetation period.  

Conclusion: Our results showed the possibility to spectrally separate encroaching shrub species 

with a unique growth form in a high mountain environment by using simulated multispectral data 

and satellite imagery. 
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4.1. Introduction 

Shrub encroachment processes such as increasing shrub biomass, cover and abundance are 

currently being reported from many alpine (Camarero & Gutiérrez 2004, Holtmeier & Broll 2007) 

and arctic environments (Jia et al. 2003, Tape et al. 2006). Moreover, the arctic and alpine tree lines, 

conventionally defined as the lines connecting the highest forest patches within a given slope or 

series of  slopes, are expanding (Körner 1998). These changes are expected to significantly alter the 

structure and functioning of  alpine and arctic ecosystems (Myers-Smith et al. 2011). An increase 

in shrub cover can strongly influence an ecosystem’s surface energy exchange (Sturm et al. 2001), 

nutrient cycling (DeMarco et al. 2011), and carbon storage (Knapp et al. 2008), as well as the 

floristic composition and the services provided (Wilson & Nilsson 2009). 

Three main trends can be observed regarding shrub encroachment. First, shrub recruitment or 

recolonization seems to increase over the years. Second, single shrubs are spreading, leading to a 

denser canopy cover. Third, gaps within stands are filled (Tape et al. 2006). Climatic and land use 

changes are often mentioned as drivers for these processes. Generally, milder winters and springs 

increase the chances of  survival for seedlings and saplings. De-intensified land use with reduced 

grazing intensities and abandonment of  remote pastures lead to initial successional stages of  shrub 

encroachment (Holtmeier & Broll 2007).  

As an example of  shrub encroachment in a high montane to alpine region, the present study aims 

to analyze the phenomenon of  shrub encroachment in Kazbegi, Georgia. In this study region, 

forests are limited to steep, north facing and inaccessible slopes and the landscape is mainly 

characterized by grassland communities (Ketskhoveli et al. 1975). Up to the 1990s, a very strong 

grazing pressure and illegal cutting of  firewood were hampering any establishment of  woody 

species (Akhalkatsi et al. 2006). However, a visual comparison of  aerial images of  the region from 

1975, 1980, and 2005 based on expert knowledge and field visits already revealed a trend towards 

reforestation and initial succession of  birch (Betula litwinowii) in the Kazbegi district (Waldhardt et 

al. 2011). 

Besides Betula litwinowii (B. litwinowii), the dominant shrub species in this region, Hippophae rhamnoides 

(H. rhamnoides), Rhododendron (R. caucasicum) and a representative of  a tall herb Veratrum (V. lobelianum) 

are forming larger thickets. The latter was chosen based on its shrub-like growth form as it was 

expected to be easily confused with a low shrub (< 100 cm) in remote sensing data. All four species, 

chosen as the target species of  this study, exhibit very unique growth forms. B. litwinowii, forms 

small stands, which are commonly located at high altitudes, as well as on very steep and remote 

slopes. It often grows as crook-stemmed form due to heavy snow load (> 2000 m a.s.l.). Individual 

trees form the tree line at about 2500 m a.s.l. (Akhalkatsi et al. 2006). In contrast, the thorny H. 
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rhamnoides with its silvery lanceolate leaves forms dense shrubs (up to 350 cm height), which occur 

mainly on disturbed sites such as areas of  landslide or fluvial deposits of  the small streams and 

rivers in the valley (Tephnadze et al. 2014). R. caucasicum grows to a lower height (< 100 cm) but 

develops a closed canopy with its evergreen, planophile leaves. It is typically distributed in the upper 

subalpine belt around 2200 m above sea level (Nakhutsrishvili & Gagnidze 1999). V. lobelianum is 

a tall herb with large leaves, and grows patchy with a low cover. The growth forms of  these plant 

species are adapted to the local resource constraints and stress levels. These adaptive mechanisms 

are often linked to biochemistry and physiology as well as to the structure and phenology of  a 

plant or vegetation type. Further, biophysical characteristics such as leaf  inclination and canopy 

structure may determine a unique reflectance pattern (Tappeiner & Cernusca 1989). The plants' 

characteristic growth forms, thus, result in a characteristic reflectance signature or ‘optical type’, 

which can be utilized for mapping based on remote sensing methods (Ustin & Gamon 2010).  

A remote sensing based mapping and monitoring of  shrub encroachment, in which encroaching 

species can be readily separated, is important for various questions related to land use management, 

policy, and decision-making processes. However, a clear distinction of  plant species based on 

remote sensing is difficult since the reflectance signal of  vegetation itself  is influenced by multiple 

factors such as the water content of  the vegetation, which is influenced by phenology and 

seasonality, the atmospheric influences, and the illumination geometry, all of  which must be 

considered for a long term monitoring (Nilson & Peterson 1994, Pottier et al. 2014). 

The multispectral signal in satellite images commonly includes five to ten discrete spectral bands 

covering a broad range of  the solar electromagnetic spectrum. Multispectral satellite imagery is 

easy to obtain and globally available. Moreover, it is already applied in combination with various 

modeling techniques for vegetation type mapping. Feilhauer et al. (2013) showed that multispectral 

data provide sufficient information for detailed vegetation mapping. Univariate testing was 

successfully applied to hyperspectral field spectrometric data, aiming to distinguish maquis tree 

species from shrubs (Manevski et al. 2012). However, only few studies have considered the 

potential of  remote sensing to assess encroaching shrubs in arctic or alpine environments (e.g. 

Gould et al. 2002). 

We aim to test the distinctiveness of  the multispectral response of  the target species relative to 

their co-occurring shrub species using uni- and multivariate analyses. We simulated the signal 

measured by the multispectral satellite sensors IKONOS, Quickbird 2, RapidEye, and WorldView-

2 to test the applicability of  different sensors for this purpose. The tested sensors all offer a high 

spatial resolution required for shrub detection. This was enabled by simulating the data based on 

hyperspectral field spectrometric data directly taken from the target species. Further, we used 
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already existing vegetation relevés and RapidEye data of  two different dates in the vegetation 

period to determine the reflectance signature of  the vegetation types and to assess the importance 

of  timing in data acquisition. 

4.2. Material and Methods 

4.2.1 Study area 

The study area is located in the Republic of  Georgia in the northern part of  the Central Greater 

Caucasus close to the Russian border (see Fig. 1). The high mountain study area belongs to the 

rural Kazbegi district (1082 km², 1200 - 5033 m a.s.l., 4.5 inhabitants per km² in 2013), which is 

part of  the administrative region Mtskheta-Mtianeti (www.geostat.ge). The largest settlement is the 

small town Stepantsminda (1700 m a.s.l.; 1,800 inhabitants in 2013). The Georgian Military Road 

connects the remote valley to Tbilisi via the Cross pass in the south and to Vladikavkas (Russia) 

via the Dariali Gorge in the north. Parallel to the Georgian Military Road, the river Tergi runs 

through the valley from south to north, bordered by Mount Kazbeg (5035 m a.s.l.) on the west and 

Mount Elia on the east.  

The study site comprises of  young quaternary glacial and fluvial sediments, clay slate sedimentary 

rocks from the Lower Jurassic period, as well as quaternary rocks of  volcanic (andesit / dacit) and 

pyroclastic (tuff  and lava) origin (Nakhutsrishvili 2012). The soil types are closely related to the 

geology and topography of  the region. On the upper slopes shallow, stone rich regosols prevail, 

followed by shallow to moderately deep cambisols on the mid to lower slopes. The fluvial sediments 

of  the floodplains are characterized by fluvisols and gleysols. The related soil chemical parameters 

show acidic conditions with a moderate to low level of  soil nutrients (Tephnadze et al. 2014). Mud 

and debris flows occur frequently in this area (Keggenhoff  et al. 2014). 

The climate in this high mountain region is comparably harsh. The mean annual temperature is 

4.7 °C and the mean annual precipitation reaches not more than 800 mm in the subalpine (1800 / 

1900 – 2400 / 2500 m a.s.l) zone (Lichtenegger et al. 2006). A snow cover of  20-40 cm in average 

persists from November to May (Akhalkatsi et al. 2006). The microclimatic conditions vary with 

the exposition of  the slopes and the altitudinal belts. Under the relatively continental climatic 

conditions of  the study area, the subalpine belt ranges from 1800 / 1900 to 2400 / 2500 m a.s.l., 

(see Fig. 1) followed by the alpine belt from 2400 / 2500 to 2960 / 3000 m a.s.l., the subnival belt 

from 2900 / 3000 to 3600 / 3750 m a.s.l., and the nival belt above 3700 m a.s.l. (Nakhutsrishvili 

2012).  
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Fig. 1: Map of the study area with the altitudinal boundaries according to Nakhutsrishvili 
2012 and the research sites, based on the positions of the reflectance measurements and 
the vegetation relevés. 

The flora of  the study area is known for its high percentage of  endemic species. Altogether 1100 

vascular plants have been recorded, 26% of  which are endemic (Nakhutsrishvili 1999, Gagnidze 

2005). The subalpine to alpine belt of  the study area is dominated by open grasslands, which have 

been extensively researched for decades (Nakhutsrishvili 1976, 1990, 1999, Pyšek and Šrutek 1989, 

Nakhutsrishvili & Gagnidze 1999, Kikvidze et al. 2005, Lichtenegger et al. 2006, Tephnadze et al. 

2014). In the valley bottom herb-rich hay meadows with Hordeum violaceum are typical. On the mid 

slopes, stony, and species poor pastures with characteristic species such as Bromopsis variegata and 

Astragalus captiosus occur. In the upper subalpine to alpine belt, grasslands dominated by Festuca varia 

occur on northerly exposed slopes and rock and scree vegetation on southerly exposed steep slopes.  

  



4. Reflectance signatures of shrub species 

 

100 
 

4.2.2 Data acquisition and research design 

The existing vegetation data were taken from the Caucasus Vegetation Database, registered as AS-

GE-001 under the Global Index of  Vegetation-Plot Databases (Dengler et al. 2011, 

http://www.givd.info). From this database a total of  52 vegetation relevés, which included the 

target species B. litwinowii (occurrences 34), H. rhamnoides (occurrences 20), R. caucasicum 

(occurrences 8) and V. lobelianum (occurrences 15), were selected (see Fig. 2).  

 

Fig. 2: Photographs of the four target species (a) Betula litwinowii, (b) 

Hippophae rhamnoides, (c) Rhododendron caucasicum, (d) Veratrum lobelianum in 
summer 2011. 

All relevés were recorded in the years 2009, 2010, and 2011 by Erich Hübl, Annette Otte, Georg 

Nakhutsrishvili, and Nato Tephnadze, using the Braun-Blanquet Scale (Braun-Blanquet 1964). The 

different relevés had plot sizes of  25 m², 50 m², and 100 m².  

The geographic coordinates of  the vegetation relevés were used to extract the reflectance 

signatures of  the corresponding pixels from two multispectral RapidEye images taken on June 27th, 

2011 and September 8th, 2011. These images were delivered with orthorectification and radiometric 

correction (product level 3A). The size of  a pixel after resampling was 5 m x 5 m on the ground. 

The RapidEye sensor, a multispectral pushbroom imager, provides spectral information in the blue, 

green, red, red edge, and NIR spectral region in five broad bands. The red edge band particularly 

provides valuable information on the status of  vegetation (Weichelt et al. 2011). The pixel values 

were converted into at-sensor-reflectance and a cosine topographical correction was used to 

mitigate illumination differences due to the steep terrain (Teillet et al. 1982). 

Hyperspectral field spectrometric measurements were conducted at research sites located between 

1600 m and 2600 m a.s.l., from mid-June to mid-July 2011, using an ASD Hand Held 2 Field Spec 

® portable spectrometer (325 - 1075 nm, ASD Inc. Boulder, CO). Canopy reflectance was 

measured relative to a white reference panel (Spectralon). To account for atmospheric and 
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illumination changes, a white reference was taken at every plot and at least every five minutes. 

Internal averaging of  the spectrometer was set to 100 measurements for reflectance, dark current 

and white reference. The spectrometer was positioned in nadir view 110 cm above the target species 

aiming to get pure spectra of  the target species.  

Altogether, 48 reflectance samples were taken. For each target species 12 plots of  approximately 1 

m² were measured with five regularly placed repetitions. The total number of  spectra, hence, 

amounted to 240, including five repetitions per plot with 12 plots per species and the four target 

species B. litwinowii, H. rhamnoides, R. caucasicum, and V. lobelianum (see Fig. 2.). The sites of  the 

hyperspectral reflectance measurements were mostly in proximity to the vegetation relevés, but 

were not identical. The vegetation relevés were selected as a proxy of  the vegetation types and 

species occurrences on a larger scale. 

4.2.3 Statistical analyses 

The statistical analyses consisted of  two parts. First, with the analysis of  the vegetation data we 

aimed to describe the floristic composition of  the tested shrub types, in order to assess their 

floristic homogeneity by using ordination and ISA, as a detailed description of  the ground truth. 

Second, we aimed to test the spectral separability of  the shrub species based on reflectance 

signatures of  different sensors derived from field spectrometric data as well as from real Rapid Eye 

imagery by using the Jeffries-Matusita distance (JMD) and significance testing (see Fig. 3). All 

statistical analysis were performed in the R statistical environment using the packages vegan version 

2.2-1 for ordination and clustering techniques, labdsv version 1.6-1 for Indicator Species Analysis 

(ISA), as well as the package stats 2.15.3 for the multivariate analysis. As a first step, we transformed 

the original cover values of  the Braun-Blanquet scale into ordinal values ranging from 1-7 (Braun-

Blanquet 1964, van der Maarel 1979).  

Fig. 3: Flowchart of the statistical analysis. 

This plot based vegetation data was then used to calculate a Bray - Curtis distance matrix (Bray & 

Curtis 1957) using the vegan package. Subsequently, this distance matrix was subjected to Ward 
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Clustering in order to recover the shrub species (Ward 1963). The clusters were further used in an 

ISA (Dufrene & Legendre 1997) as vegetation types, in order to characterize the vegetation 

patterns. For the ordination Non-Metric Multidimensional Scaling (NMDS, Kruskal 1964) was 

chosen, since it is a distance based technique, which is known to be able to cope with the ordinal 

scaled vegetation data (Oksanen 2015).  

To test the applicability of  different sensors for the separation of  the shrub species we derived 

simulated spectral bands of  the sensors IKONOS, Quickbird 2, RapidEye and WorldView-2 from 

the unfiltered field spectrometric reflectance measurements (see Tab. 1). These multispectral 

sensors were chosen because they offer a high spatial resolution and cover the visible and NIR 

region of  the light spectrum. In order to calculate the corresponding spectral signal we used the 

function simulatoR (Feilhauer et al. 2013) and the spectral response curves of  the respective 

sensors. The simulated signals were log transformed in order to achieve a normal distribution of  

the reflectance values. To assess the separability of  the target species we derived the JMD (Davis 

et al. 1978) with the package fpc version 2.1-9 (Hennig 2014), first calculating the Bhattaryachrya 

distance (BD, equation (1)) with i and j as the two normal distributions, mi and mj,  as the average 

reflectance values and the covariance matrixes 
∑
i

,∑
j . The BD was the converted to the JMD 

using the equation (2): 
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𝐽𝑀𝐷 = 2 ∗ (1 − 𝑒−𝐵𝐷)                                                                                                            (2) 

The JMD is scaled from 0 – 2, with 2 representing perfectly separable classes (Richards 1993).  

Significance between the target species within the bands was tested with a Kruskall-Wallis ANOVA 

and post hoc pairwise testing for homogeneous groups using Bonferroni corrected pairwise Wilcox 

Rank test comparisons at p = 0.001. 

From the corrected RapidEye images we extracted the reflectance values at the position of  the 

vegetation relevés. The JMD was calculated and the test for significance described above was 

applied. The analysis was performed for both acquisition dates in June and September. 
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Tab. 1: Specifications of the four tested satellites with ground sampling distance (GSD), 
band names, band width and quotation. 

Satellite GSD at nadir Band names Band width Quotation 

IKONOS  3.28 m blue 445 - 516 nm (Dial et al. 2003) 

  green 506 - 595 nm  

  red 632 - 698 nm  

  NIR 757 - 853 nm  

Quickbird 2 2.8 m  blue 450 - 520 nm https://www.digitalglob

e.com/sites/default/file

s/QuickBird-DS-QB-

Prod.pdf 

  green 520 - 600 nm  

  red 630 - 690 nm 

  NIR 760 - 900 nm 

RapidEye 6.5 m blue 440 - 510 nm 

(Weichelt et al. 2011) 

  green 520 - 590 nm 

  red 630 - 685 nm 

  red edge 690 - 730 nm 

  NIR 760 - 850 nm 

WorldView-2  1.85 m coastal 400 - 450 nm 

https://www.digitalglob

e.com/sites/default/file

s/DG_WorldView2_DS

_PROD.pdf 

  blue 450 - 510 nm 

  green 510 - 580 nm 

  yellow 585 - 625 nm 

  red 630 -690 nm 

  red edge 705 - 745 nm 

  NIR I 770 - 895 nm 

  NIR II 860 - 1040 nm 

4.3. Results 

4.3.1 Vegetation data 

In this study, we analyzed 52 vegetation relevés of  the Caucasus Vegetation database, including a 

total of  136 species with more than three occurrences. The Ward clustering revealed three different 

clusters of  vegetation named after their most abundant species as Betula cluster (n = 22), Hippophae 

cluster (n = 20), and Rhododendron (n = 10) cluster. Vegetation relevés with V. lobelianum formed a 

cluster together with the B. litwinowii relevés, because they shared many species. The analysis of  the 

similarity pattern by NMDS ordination (Fig. 4) showed that the first NMDS axis separated the 

Hippophae cluster (with NMDS axis scores from -2 to -0.5) from the Betula and Rhododendron clusters 

(NMDS axis scores ranging from -0.5 to 1.5). Along the second NMDS -axis, a differentiation 

between the Betula cluster (second NMDS axis scores ranging from -1.5 to -0.5), and Rhododendron 

cluster (second NMDS axis scores ranging from -0.5 to 1) was determined. Interpreting 

compositional similarity in combination with the abundance of  the target species (B. litwinowii, H. 

rhamnoides, R. caucasicum, and V. lobelianum) revealed that the vegetation clusters were not discrete. 

Figure 4 shows the abundance of  the target species in the clusters. Most surprisingly, the highest 
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abundance of  B. litwinowii was found in the Betula cluster (red). B. litwinowii also appeared in the 

Rhododendron and Hippophae clusters at lower abundances. In contrast, H. rhamnoides was only present 

in its own cluster at high abundance. R. caucasicum and V. lobelianum also typically grow in the 

understory of  B. litwinowii forest, which was the reason for their presence in the Betula cluster.  

The results of  the ISA revealed a more differentiated pattern. Altogether 29 species were identified 

as significant indicator species (Tab. 2). The Betula cluster contained eight indicator species. Some 

of  the indicator species such as Rubus saxatilis, Sorbus aucuparia, and Polygonatum verticilliatum or tall 

herb communities (V. lobelianum) indicated a late succession stage and can be linked to forest. The 

eleven indicator species of  the Hippophae cluster are associated with ruderal habitats of  debris and 

scree (Cerastium arvense, Phleum phleoides, Galium spurium) and base-rich, xeric grasslands (Galium verum, 

Trisetum flavescens, Trifolium campestre). The eleven indicator species, of  the Rhododendron cluster were 

mostly dwarf  shrubs (e.g., Vaccinium vitis- idaea, Daphne glomerata, Empetrum caucasicum) and are 

adapted to the harsh conditions of  the upper belt of  the tree line ecotone.  

 

Fig. 4: NMDS Ordination of 52 vegetation releves with a stress level of 0.12 and a non-

metric fit of R² = 0.98. A priori derived clusters: red = Betula cluster (n = 22), black = 

Hippophae cluster (n = 20), green = Rhododendron cluster (n = 10). Point size was fitted 

to the cover abundance of (a) Betula litwinowii, (b) Hippophae rhamnoides, (c) 

Rhododendron caucasicum, (d) Veratrum lobelianum. 
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Tab. 2: Indicator species analysis with relative abundance values, a species was 
considered an indicator species if  the indicator value was ≥ 0.40 and p ≤ 0.001. 

Species name Indicator 

value 

Relative 

Abundance 

 p value 

Betula cluster ( B )  B H R  

Rubus saxatilis 0.85 0.94 0.00 0.06 0.0001 

Sorbus aucuparia 0.77 1.00 0.00 0.00 0.0001 

Veratrum lobelianum 0.68 1.00 0.00 0.00 0.0001 

Betula litwinowii 0.65 0.65 0.02 0.33 0.0001 

Alchemilla laeta 0.55 1.00 0.00 0.00 0.0001 

Polygonatum verticilliatum 0.64 1.00 0.00 0.00 0.0002 

Calamagrostis arundinacea 0.51 0.81 0.00 0.19 0.0005 

Hippophae cluster ( H )      

Hippophae rhamnoides 1.00 0.00 1.00 0.00 0.0001 

Poa pratensis 0.69 0.08 0.92 0.00 0.0001 

Galium album 0.55 0.00 1.00 0.00 0.0001 

Cerastium arvense 0.58 0.08 0.83 0.09 0.0002 

Galium verum 0.55 0.00 1.00 0.00 0.0002 

Phleum phleoides 0.50 0.00 1.00 0.00 0.0002 

Achillea millefolium 0.55 0.00 1.00 0.00 0.0003 

Galium spurium 0.50 0.00 1.00 0.00 0.0003 

Trisetum flavescens 0.50 0.00 0.90 0.10 0.0006 

Pastinaca armena 0.48 0.12 0.88 0.00 0.0009 

Trifolium campestre 0.40 0.00 1.00 0.00 0.0010 

Rhododendron cluster ( R )      

Vaccinium vitis-idaea 0.84 0.00 0.07 0.93 0.0001 

Daphne glomerata 0.75 0.00 0.16 0.84 0.0001 

Trifolium canescens 0.70 0.00 0.00 1.00 0.0001 

Anthoxanthum alpinum 0.63 0.00 0.09 0.91 0.0001 

Helictotrichon adzharicum 0.60 0.00 0.00 1.00 0.0001 

Polygonum viviparum 0.60 0.00 0.00 1.00 0.0001 

Empetrum caucasicum 0.50 0.00 0.00 1.00 0.0001 

Scabiosa caucasica 0.46 0.00 0.07 0.93 0.0002 

Carex tristis 0.50 0.00 0.00 1.00 0.0003 

Carex caucasica 0.40 0.00 0.00 1.00 0.0010 

Gentiana pyrenaica 0.40 0.00 0.00 1.00 0.0010 

Rhododendron caucasicum 0.39 0 0.21 0.79 0.0026 

Even though the indicator species analysis focused on finding typical species for each cluster, 

there are many shared species amongst the vegetation clusters due to their spatial proximity.  
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4.3.2 Spectral separability 

The JMDs calculated for simulated satellite bands (IKONOS, Quickbird 2, RapidEye, WorldView-

2) showed a good to moderate spectral separability with distances varying from 1.58 to 2 between 

the different species. The shortest distances (1.58, 1.59) were observed for the satellites IKONOS 

and Quickbird 2, which only comprise four spectral bands. The red edge band of  the RapidEye 

sensor and the NIR II of  WorldView-2 add additional information, increasing the overall 

separability between the classes. This is especially the case for the separation between R. caucasicum 

and V. lobelianum, which increased with the increasing number of  bands. Besides these findings, the 

distances between B. litwinowii and R. caucasicum as well as between B. litwinowii and V. lobelianum 

generally featured a similar spectral signal across all tested satellites, indicating difficulties in 

spectrally separating these species. 

 

Fig. 5: Jeffries Matusita distances for simulated multispectral bands. JMD = 2 indicates 

perfect separability. B = Betula litwinowii,H= Hippophae rhamnoides,R= Rhododendron 

caucasicum, V= Veratrum lobelianum. 

The simulated reflectance in Fig. 5 shows that significant differences between the species occur in 

all bands and in all tested satellites.  
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The significance pattern was very similar across the tested sensors. B. litwinowii and H. rhamnoides, 

which exhibited a good separability in Fig. 5 also exhibited significant differences in the blue and 

green bands (Fig. 6). B. litwinowii and R. caucasicum, as well as B. litwinowii and V. lobelianum, featured 

a moderate separability, exhibiting significant differences especially in the red to NIR region. 

 

Fig. 6: Simulated reflectance of the satellites IKONOS. Quickbird 2, RapidEye and 
WorldView-2 subjected to Kruskall–Wallis ANOVA and post hoc significance testing for 
homogeneous groups using Bonferroni corrected pairwise Wilcox Rank Sum tests. 
P = 0.001. Homogeneous groups per band are indicated by letters (a) and (b). 

The JMDs for the vegetation clusters indicated a moderate separability of  the classes with JMD 

ranging between 1.24 - 1.55 in June (see Fig. 7). The image taken in September produced an 

improved overall separability of  JMD 1.56 - 1.9. The largest spectral differences were observed 

between the Betula and Hippophae clusters, and the least pronounced ones between the Betula and 

Rhododendron clusters. 

Fig. 7: Jeffries Matusita distances for the vegetation clusters derived in the vegetation 

analysis, dominated by Betula, Rhododendron, Hippophae in (a) June and (b) September 
for original Rapid Eye satellite imagery. 
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Fig. 8: Reflectance from the RapidEye satellite for the vegetation clusters derived in the 

vegetation analysis, dominated by Betula, Rhododendron, Hippophae in (1) June and (2) 
September, subjected to Kruskall–Wallis ANOVA and post hoc significance testing for 
homogeneous groups using Bonferroni corrected pairwise Wilcox Rank Sum tests. P = 
0.001. Homogeneous groups per band are indicated by letters (a) and (b). 

The reflectance pattern for the vegetation clusters showed no significant differences in the red edge 

band and the NIR band of  the June image. Furthermore, no significant differences were found in 

the NIR band of  the September image. The Betula cluster differed significantly from the Hippophae 

cluster in the blue, green and red bands of  the June image, as well as in the blue, green, red and red 

edge bands of  the September image, resulting in the strongest JMD (see Fig. 8). The Betula and 

Rhododendron clusters, however, formed homogeneous groups except in the blue band of  the 

September image, resulting in a weak separability. 
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4.4 Discussion 

4.4.1 Implications and limitations of evaluating spectral separability 

The aim of  our study was to test the spectral separability of  four encroaching shrub species, each 

with a unique growth form in the high mountain environment of  the Greater Caucasus. A species 

based spatial analysis of  shrub encroachment is applicable for monitoring and evaluating the 

ecosystem functions of  arctic and alpine treelines as well as for landuse planning purposes. Even 

though our tested species are not the same as in the arctic treeline, our results highlight the 

importance of  the plant species growth form for spectral separability. In this study, simulated bands 

resulted in a much better separability than the original RapidEye image data. This can partly be 

explained by various disturbances, such as atmospheric influences and the illumination geometry, 

which affect the original RapidEye images (Nilson & Peterson 1994, Pottier et al. 2014). Despite 

the applied cosine topographical correction, the reflectance pattern might still be influenced by 

those factors. Furthermore, with increasing pixel size the species number included in the pixel 

increases, leading to mixed pixels. The floristic homogeneity of  the encroaching species’ stands 

should be considered a crucial factor. This is even more important when the spatial resolution of  

the image increases.  

Our methods (JMD and significance testing) were already successfully applied for assessing spectral 

separability (Feilhauer et al. 2013, Manevski et al. 2012). We thus assumed the applicability of  these 

statistical analyses for our approach. 

However, in comparison to the original spectral bands, the simulated bands differ in spatial 

resolution, sensor geometry, as well as signal to noise ratio (Feilhauer et al. 2013). The signal of  

simulated bands correspond directly to the target of  the hyperspectral reflectance measurements 

and is thus more suitable for comparison than real data sets that often feature uncertainties due to 

positioning errors and are seldom available for the same acquisition date. Simulation of  the sensor 

reflectance from hyperspectral field spectrometric data does, however, not include the varying pixel 

sizes. For the simulation of  sensors bands, we thus specifically chose space borne sensors with a 

high spatial resolution and the pixel size varying between 1.8 m – 6.5 m.  

The simulated band data were in our case only used to assess which sensor enables the highest 

spectral separability between the tested species. Earlier studies used band simulations of  different 

sensors and found that the bandwidths as well as the spectral response functions have a significant 

influence on the spectral separability of  tested species (Teillet et al. 1997, Herold et al. 2003, Steven 

et al 2003). Moreover, prior studies found that the simulated band data were comparable with the 

actual signal measured by Landsat ETM.   
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4.4.2 Spectral separability of the target species 

The NMDS and ISA revealed that the target species, besides their dominant forms, very often 

occurred with lower coverage in the other vegetation types. Consequently, our vegetation data 

exhibited a high co-occurrence of  the target species. B. litwinowii in particular invaded sites in which 

R. caucasicum and H. rhamnoides formed dominant stands. These results are consistent with other 

studies conducted in the Kazbegi region that found R. caucasicum to facilitate the growth of  B. 

litwinowii seedlings by enhancing the microclimate and nutrient availability of  the habitat (Akhalkatsi 

et al. 2006). A similar process can be assumed for the H. rhamnoides stands. H. rhamnoides benefits 

from a symbiotic relationship with nitrogen fixing Actinomyceta (Bolibok et al. 2009). In the 

vegetation relevés V. lobelianum always occurred in the presence of  B. litwinowii (see Fig. 4). This 

can be explained by the fact that the data were selected from a database that did not include 

vegetation relevés from pastures with dominant V. lobelianum stands. However, some studies report 

that B. litwinowii and tall herb communities with V. lobelianum grow in close proximity (Walter 1974, 

Nakhutsrishvili et al. 2006, Togonidze & Akhalkatsi 2015). The separability of  the reflectance signal 

extracted from the vegetation relevés was, thus, considerably lower than the separability achieved 

with the simulated data. Moreover, the simulated bands detected significant differences in the NIR, 

whereas no significant differences were found in the data derived from the real Rapid Eye imagery. 

This can be explained by the fact that the spatial resolution of  5 m was rather coarse. As a result, 

the R. caucasicum cluster included a high coverage of  B. litwinowii, as can be seen in Fig. 4. This 

influence leads to a less pronounced reflectance pattern. Thus, our results indicate a good overall 

separability only for floristically homogeneous stands, depending on the sensor chosen, as well as 

the date of  image data acquisition.  

The best spectral separability was achieved with RapidEye and WorldView-2 data. Both sensors 

offer more than four bands and include the red edge. Generally, adding more bands, i.e. 

information, to the distance metric increases the distance. The importance of  the red edge and its 

sensitivity towards plant specific biophysical properties was assessed in many studies (e.g. Curran 

1983, Filella & Penuelas 1994, Weichelt et al. 2011). It can thus be concluded that the increase of  

the JMD with the extra red edge band is mainly related to the biophysical properties such as 

chlorophyll content and leaf  inclination of  the shrubs, especially when, R. caucasicum (evergreen 

shrub) and V. lobelianum (tall herb) are compared.  

When comparing the two image acquisition dates, a better separability was achieved with the 

September image. The red edge band is sensitive to plant senescence, marked by the decrease of  

chlorophyll concentration, and coupled with an increasing amount of  cellulose (Curran 1983, 

Filella & Penuelas 1994). This characteristic influence of  phenology may explain the relevance of  
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the red edge for the differentiation of  the tall herb V. lobelianum from the H. rhamnoides shrubs. 

Many individuals of  V. lobelianum already showed brown foliage as a result of  senescence and 

damage due to the incoming irradiation in the ultra violet range. However, V. lobelianum and B. 

litwinowii, as well as V. lobelianum and R. caucasicum, exhibited an overall moderate separability. This 

indicates that the reflectance signals of  tall herbs and shrubs can easily be confused due to their 

similar growth forms. Further research and analyses of  other tall herbs will be needed to tackle this 

issue.  

4.5. Conclusions 

Shrub encroachment plays a key role in many alpine and arctic environments. To assess the 

influence of  encroachment on the ecosystem, spatial information about the encroaching species 

may be beneficial. The different growth forms of  the encroaching shrub communities in the 

Greater Caucasus provided an excellent opportunity to investigate spectral distinctness. 

Accordingly, the targeted shrub species exhibited a good overall spectral separability.  

Our results indicate that multispectral remote sensing, with high spatial resolution sensors, is 

capable of  providing the necessary information to differentiate, classify and in return monitor the 

encroachment in alpine environments. 

The encroachment patterns of  the target species, however, exhibited a high co-occurrence, which 

is also expected to occur in other arctic and alpine environments. This results in a moderate 

separability on vegetation type level considering actual RapidEye imagery and highlights the 

importance of  considering the small scale heterogeneity of  the vegetation types. 
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Summary 

High mountain ecosystems and their services are of global importance. They take 20 percent of 

the terrestrial surface, offer habitat to humans, a diverse fauna and flora, and play a key role for 

fresh water supply. But for all that, they are prone to global change. Remote, high mountain regions, 

especially from former Soviet Union States experience a strong change in the agricultural sector, 

mainly the abandonment of agricultural land use, which impacts socio economy, ecosystem 

functioning and biodiversity in the end.  

The unique species composition of high mountain grassland and the related ecosystem services, 

such as biomass or erosion mitigation are most likely to change with the ongoing abandonment in 

high mountain regions, mapping and monitoring of high mountain grassland properties and key 

ecosystem processes is therefore highly needed. Thus, this study focuses on modelling the 

vegetation composition, biomass and plant functional groups (content of graminoid, herbaceous 

and legume plants) of the subalpine grassland, as well as the recognition of shrub encroachment, 

by means of remote sensing. Shrub encroachment has already been observed in the study region 

and plays a key role in many arctic and alpine environments. The identification of species identity 

is of great importance to assess potential consequences.  

The species-rich, extensive grassland in the isolated Kazbegi region, Greater Caucasus, Georgia is 

the main winter fodder source and thus of importance for the local subsistence agriculture, based 

on pastured cattle for dairy production.  

The results of the vegetation analysis show that the subalpine grassland vegetation is closely related 

to the physical site conditions (elevation a.s.l. and exposition to the east), characterized by broad 

transitions between grassland types with distinct attributes, such as aboveground biomass, 

vegetation cover, species richness and plant functional groups. The shrub stands of Betula litwinowii, 

Rhododendron caucasicum and Hippophae rhamnoides are of distinct growth forms and species 

composition. However, Betula litwinowii, Rhododendron caucasicum and the tall herb Verartrum lobelianum 

co-occur in the tree line ecotone, challenging a clear delineation.  

The results of the gradual modelling approaches show that species composition, biomass and to a 

lesser degree plant functional groups can be modelled by multispectral imagery, vegetation indices 

and topographical parameters. Species composition is furthermore a good predictor for biomass, 

even though the saturation effect is present at high yields in both approaches. Moreover, 

hyperspectral and multispectral data result in similar model fits.  
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The separation of shrub reflectance indicated that Betula litwinowii and Hipopphae rhamnoides can be 

delineated in imagery, whereas Betula litwinowii and Rhododendron caucasicum, as well as Betula litwinowii 

and Veratrum lobelianum show a more similar reflectance pattern. However, overall separability was 

high, especially in simulated RapidEye and WorldView-2 reflectance. The satellite image taken in 

September further showed a better separability than the one acquired in July.  

Identification of species-rich grassland types with a high conservational value, from the resulting 

multi scale maps helps to apply site specific and case sensitive grassland management. At the same 

time the yield map can be used to identify the few highly productive sites in the landscape. The 

distribution of plant functional groups provides important information about the usability, such as 

hay meadow, and the erodibility. The encroaching shrub species and their distinct growth forms 

offered an excellent opportunity to study distinctiveness and the applicability of different sensors.  

A multi scale prognosis of grassland properties, as well as the delineation of shrub encroachment 

on species level, are important factors for sustainable land use planning in the high mountain 

landscape. They further allow an integrative analysis of the high mountain landscape for modified, 

site specific agricultural land use measures, with the help of normative scenarios.  
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Zusammenfassung 

Gebirgsökosysteme und ihre Ökosystemleistungen sind global von großer ökonomischer und 

ökologischer Bedeutung. Sie nehmen 20 Prozent der Landfläche ein und bieten somit Lebensraum 

für Mensch, Pflanze und Tier. Allerdings sind Gebirgsökosysteme stark durch den globalen Wandel 

betroffen. Dies gilt insbesondere für die peripheren Hochgebirgsregionen der vormaligen Staaten 

der Sowjetunion, welche einem weitreichenden Wandel in der Agrarstruktur unterliegen, der sich 

vor allem in der Aufgabe der Landnutzung zeigt und daher sowohl sozioökonomische als auch 

ökologische Konsequenzen hat.  

Die einzigartige Artenzusammensetzung des Hochgebirgsgrünlandes und die damit verbundenen 

Ökosystemleistungen, wie z. B. Biomasseertrag oder Erosionsminderung werden durch 

Landnutzungsaufgabe zumeist negativ beeinflusst, ihre Erfassung und Kartierung ist daher von 

großer Bedeutung. Aufgrund dessen stehen die Abbildbarkeit der graduellen Unterschiede von 

Grünlandeigenschaften wie z. B. der Artenzusammensetzung, der oberirdischen Biomasse und der 

funktionellen Artengruppen und auch die Erfassung von Verbuschungsprozessen, mithilfe von 

Fernerkundungsdaten im Fokus der Studie. Sukzession von Gebüschen spielt in einigen alpinen 

und arktischen Ökosystemen eine Schlüsselrolle, das Erkennen der Artidentität, um die möglichen 

Einflüsse auf das Ökosystem zu bewerten, ist hierbei von besonderer Bedeutung. 

Das artenreiche, großflächige Grünland der Untersuchungsregion Kazbegi im Großen Kaukasus 

Georgiens ist, aufgrund der Abgeschiedenheit der Region, die einzige Winterfutterquelle und daher 

von besonderer Bedeutung für die lokale Subsistenzlandwirtschaft, vor allem der Weidetierhaltung 

zur Milchgewinnung. 

Die Ergebnisse der Vegetationsanalysen zeigen, dass die primär durch die physischen 

Standortparameter (Höhe m NN, Ost-Ausrichtung) bedingte Grünlandvegetation in der 

subalpinen Höhenstufe in der Region Kazbegi durch breite Übergänge zwischen Wiesen- und 

Weidentypen gekennzeichnet ist und sich durch charakteristische Eigenschaften wie z.B. die 

Biomasse, Vegetationsdeckung, Artenreichtum, sowie funktionelle Gruppen (Anteil Grasartige, 

Krautige, Leguminosen) differenziert. Die Gebüsche von Betula litwinowii, Rhododendron caucasicum 

und Hippophae rhamnoides, zeigen deutlich unterschiedliche Wuchsformen und Artenspektren. 

Betula litwinowii, Rhododendron caucasicum und die Hochstaude Verartrum lobelianum treten allerdings in 

der Kampfzone gemeinsam auf, was eine Abgrenzung deutlich erschwert. 

Die Ergebnisse der fernerkundungsbasierten, graduellen Modellierungen zeigen, dass 

Artenzusammensetzung, Biomasse und mit Einschränkung die funktionellen Artengruppen der 
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Bestände anhand von multispektralen Satellitenbildern, Vegetationsindizes und 

Topographievariablen modellierbar sind. Die Artenzusammensetzung eignet sich desweiteren als 

Vorhersagevariable für Biomasse, kann den Saturationseffekt der Vegetationsindizes jedoch nicht 

umgehen. Hyperspektrale und multispektrale Daten erreichen zudem eine ähnliche Modellgüte in 

der Modellierung.  

Die Analyse der Reflexionseigenschaften von Gebüschtypen zeigt, dass Betula litwinowii und 

Hipopphae rhamnoides sich deutlich voneinander abgrenzen lassen, wohingegen Betula litwinowii und 

Rhododendron caucasicum sowie Betula litwinowii und Veratrum lobelianum eine ähnliche Reflexion 

aufweisen. Die beste Unterscheidung wurde mit den simulierten Reflexionen der Sensoren 

RapidEye und WorldView-2 erreicht. In der Satellitenbildaufnahme vom September unterscheiden 

sich zudem die Arten besser als in der Aufnahme vom Juli. 

Aus den erarbeiteten, multiskaligen Karten können die floristische Zusammensetzung des 

Grünlandes sowie artenreiche, schützenswerte Grünlandtypen identifiziert werden und somit in 

entsprechende Pflege- und Schutzmaßnahmen der Umweltplanung einfließen. Zugleich bietet die 

Biomassekarte die Möglichkeit, die wenigen ertragreichen Standorte in der weitläufigen Landschaft 

zu identifizieren. Die charakteristische Verteilung der Anteile von Grasartigen, Krautigen und 

Leguminosen in den Grünlandtypen liefert wichtige Informationen über die Nutzbarkeit z. B. als 

Heuwiese und auch über die Erosionsanfälligkeit. Die unterschiedlichen Wuchsformen der sich 

ausbreitenden Gebüsche boten eine günstige Möglichkeit, Reflexionseigenschaften zu untersuchen 

und die Anwendbarkeit verschiedener Sensoren zu testen.  

Eine multiskalige Prognose von Grünlandeigenschaften sowie die Identifizierung von 

Verbuschungsstadien sind ein integraler Bestandteil für die Planung der landwirtschaftlichen 

Nutzung in peripheren Gebirgsregionen, sie erlauben auch die integrative Analyse der 

Hochgebirgslandschaft für modifizierte, standortgemäße landwirtschaftliche Nutzungsverfahren 

mithilfe normativer Szenarien. 

 



Acknowledgements

 

121 
 

Acknowledgements 

This work would not have been possible without the great support of my supervisor 

Prof.  Dr.  Dr.  habil. Dr. h. c. (TSU) Annette Otte. She accepted me as doctoral student in her 

working group and gave me the opportunity to work in the high mountains of Georgia. Her trust, 

guidance and patience in all situations, encouraged me not to give up and helped me to complete 

this dissertation. I benefited from her broad knowledge, especially in phytosociology and species 

identification. It has always been a pleasure to work with her.  

Special thanks go to Prof. Dr. Honermeier for his willingness to support my study by agreeing to 

be my second supervisor and evaluating my thesis. 

Further, I would like to thank the Justus-Liebig University Giessen for the graduate scholarship, 

the Volkswagen Foundation and the DAAD for funding my dissertation and the RESA Science 

Archive for supplying the satellite imagery. 

If not for the many colleagues and friends, who supported me throughout the dissertation project, 

this thesis would not have been possible. I would thus like to express my sincere gratitude to all 

who contributed to the study and especially to: 

- Dr. Hannes Feilhauer for his great contributions to the remote sensing part, his help and 

advice, beginning from my masterthesis and continuing throughout the dissertation, and 

his gift to touch unerringly on sore points. Moreover, I would like to thank his working 

group at the Institute of Geography, Friedrich-Alexander University Erlangen-Nürnberg 

for their hospitality. 

- Prof. Dr. Rainer Waldhardt for his valuable scientific advice and guidance, as well as for 

always giving a last-minute, helping hand when needed.  

- Dr. Dietmar Simmering for teaching me vegetation analysis, his interest in my work, the 

manifold discussions about statistics and design, as well as the many cheerful coffee breaks. 

- Josef Scholz-vom Hofe for inventing airplane-proof cutting frames, his skillful help in the 

laboratory with preparing the biomass and all technical concerns. 

- My colleagues Dr. Martin Wiesmair, Dr. Sarah Harvolk, Dr. Kristin Ludewig for helpful 

comments on my manuscripts, fruitful discussions and the close cooperation. 

- Dr. Matthias Höher for his administrative support as managing director of the ZEU and 

project coordinator. 



Acknowledgements

 

122 
 

- Florence Tan for her manifold assistance during her RISE internship, as well as Corinna 

Klee, Wiebke Hansen, and Katja Beisheim for proof reading.  

- All people at the Division of the Landscape Ecology and Planning and ZEU for the kind 

and encouraging working atmosphere. 

- My Georgian colleagues, especially Natalia Tephnadze, Zezva Asanidze, Georg Arabuli, 

Nana Silakadze for excellent plant species identification and making the fieldwork time 

something I will always remember, and Nino Alibegashvili for giving me a Georgian home.  

- All Georgian farmers, who allowed me to work on their grasslands. 

However, this thesis would not have been finished without the moral support from my husband 

Tim Theissen, telling me that it is only a few more meters to the top of the mountain and my 

daughter Elsa Tamo Theissen, who let me work. 



Appendix 

 

123 
 

Appendix 

Table 1: Indicator Species Analysis (described in chapter four), species are considered as 
indicator species if the indicator value is >0.3 and p>0.05.  

 

Relative 
abundance   

Indicator 
Value p-Value 

Species HB GC AC   
Hordeum brevisubulatum meadow (HB)     
Hordeum brevisubulatum 0.76 0.13 0.11 0.73 0.001 
Carum caucasicum 0.84 0.14 0.02 0.69 0.001 
Festuca pratensis 0.85 0.12 0.03 0.67 0.001 
Rumex acetosa 0.74 0.22 0.04 0.65 0.001 
Silene vulgaris 0.68 0.24 0.08 0.62 0.001 
Phleum pratense 0.57 0.26 0.18 0.54 0.001 
Poa trivialis 0.78 0.09 0.12 0.51 0.001 
Vicia tenuifolia subsp. variabilis  0.78 0.14 0.08 0.47 0.001 
Bunias orientalis 0.71 0.1 0.18 0.47 0.001 
Poa pratensis 0.79 0.18 0.03 0.41 0.001 
Vicia alpestris 0.53 0.28 0.18 0.4 0.001 
Pastinaca armena 0.43 0.26 0.32 0.39 0.007 
Taraxacum spec 0.47 0.3 0.22 0.33 0.004 
Trifolium pratense 0.44 0.36 0.2 0.32 0.03 
Geranium sylvaticum 0.67 0.23 0.1 0.32 0.001 
Ranunculus ampelophyllus  0.8 0 0.2 0.31 0.002 
Rumex obtusifolius 1 0 0 0.30 0.001 
Ranunculus caucasicus 0.62 0.34 0.04 0.30 0.004 

Gentianella caucasea grassland (GC)     
Alchemilla sericata 0.1 0.63 0.27 0.63 0.001 
Gentianella caucasea 0.17 0.77 0.06 0.56 0.001 
Primula algida 0 0.81 0.19 0.54 0.001 
Ranunculus oreophilus 0.19 0.62 0.19 0.50 0.001 
Plantago atrata 0.15 0.45 0.4 0.41 0.001 
Leontodon hispidus 0.22 0.46 0.33 0.39 0.002 
Agrostis vinealis 0.4 0.52 0.07 0.36 0.008 
Seseli alpinum 0 1 0 0.36 0.001 
Cerastium arvense 0.4 0.39 0.21 0.36 0.023 
Lotus corniculatus 0.14 0.52 0.34 0.33 0.004 
Bupleurum polyphyllum 0.07 0.79 0.14 0.31 0.002 
Anthoxanthum odoratum 0.09 0.85 0.06 0.31 0.001 

Astragalus captiosus grassland (AC)     
Astragalus captiosus 0 0.04 0.96 0.83 0.001 
Silene linearifolia 0.04 0.11 0.84 0.60 0.001 
Potentilla crantzii 0.1 0.21 0.69 0.49 0.001 
Bromus variegatus 0.2 0.35 0.45 0.42 0.003 
Poa alpina 0.09 0.31 0.61 0.41 0.001 
Koeleria luerssenii 0.1 0.42 0.48 0.39 0.003 
Campanula sibirica subsp. hohenackeri 0 0.18 0.82 0.34 0.001 
Trifolium ambiguum 0.24 0.26 0.5 0.34 0.009 
Galium verum 0.16 0.32 0.52 0.34 0.002 
Minuartia oreina 0.03 0.43 0.54 0.31 0.017 
Euphrasia hirtella 0.11 0.43 0.46 0.31 0.042 
Medicago glomerata 0.17 0.11 0.72 0.30 0.002 

 


