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Abstract
The current state-of-the-art analysis of central nervous system (CNS) tumors
through DNA methylation profiling relies on the tumor classifier developed
by Capper and colleagues, which centrally harnesses DNA methylation data
provided by users. Here, we present a distributed-computing-based approach
for CNS tumor classification that achieves a comparable performance to cen-
tralized systems while safeguarding privacy. We utilize the t-distributed neigh-
borhood embedding (t-SNE) model for dimensionality reduction and
visualization of tumor classification results in two-dimensional graphs in a dis-
tributed approach across multiple sites (DistSNE). DistSNE provides an intui-
tive web interface (https://gin-tsne.med.uni-giessen.de) for user-friendly local
data management and federated methylome-based tumor classification calcu-
lations for multiple collaborators in a DataSHIELD environment. The freely
accessible web interface supports convenient data upload, result review, and
summary report generation. Importantly, increasing sample size as achieved
through distributed access to additional datasets allows DistSNE to improve
cluster analysis and enhance predictive power. Collectively, DistSNE enables a
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simple and fast classification of CNS tumors using large-scale methylation
data from distributed sources, while maintaining the privacy and allowing easy
and flexible network expansion to other institutes. This approach holds great
potential for advancing human brain tumor classification and fostering collab-
orative precision medicine in neuro-oncology.
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1 | IMPORTANCE OF THE STUDY

Diagnosing brain tumors requires a delicate balance
between histological and molecular methods, with the lat-
ter requiring vast datasets for accurate classification. This
need for extensive datasets is challenged by rising con-
cerns around digital privacy. We have developed Dis-
tSNE as a timely response, offering researchers a secure
platform to share and pool DNA methylation data of
brain tumors in compliance with strict privacy standards.
Simultaneously, this tool facilitates the comparison and
classification of novel samples with an extensive, pooled
database from various participating institutions. Beyond
just refining current diagnostic techniques, DistSNE aims
to catalyze collaborative research, paving the way for the
discovery of new molecular subgroups, improving CNS
tumor classification, and supporting superior patient care
in neuro-oncology.

2 | INTRODUCTION

Molecular genetics and high-throughput genomics have
gained increasing importance in tumor diagnostics and
therapy in recent years [1]. Specifically, the classification
of central nervous system (CNS) tumors relies on
genome-wide DNA methylation analysis, a state-of-art
high-throughput epigenome profiling technique, that
complements macroscopic, histological examinations, as
well as somatic mutation analyses for improved diagnos-
tic, therapeutic, and prognostic performance [2].

Methylation microarray platforms by Illumina have
now become widely established standard methods for sub-
typing CNS tumors [3, 4]. Moreover, these platforms can
also identify copy number variations (CNV) [5]. Computa-
tional analysis of the methylome profiles using a large ref-
erence dataset allows highly accurate determination of
CNS tumor methylation classes [6], with the Heidelberg
Classifier as one of the most widely used tumor classifica-
tion tools in neuro-oncology [7]. More than 130,000 cases
have been analyzed so far and more than 98,000 cases were
used for the development of the classification according to
www.molecularneuropathology.org/mnp/ (accessed on
October 27, 2023). To enhance interpretability and com-
plement the random-forest classification, visualizations of
the methylation data by dimensionality reduction can be

utilized. The t-distributed neighborhood embedding
(t-SNE) model is such a method, that reduces the high-
dimensional methylation data to 2D projections, facilitat-
ing the grouping and visualization of tumor clusters based
on their shared methylation profile.

While such methods enable efficient and standardized
tumor classification, the computational setup is currently
centralized. Moreover, strict privacy regulations sur-
rounding patient datasets restrict institutes from sharing
their patient data with the scientific community for
research purposes [8]. While raw data remains local, pro-
cessed information can be shared and aggregated from
different institutes to refine models based on much larger
patient cohorts. The Medical Informatics Initiative (MII)
was launched to develop infrastructure for the integration
of clinical data from patient care and medical research
and facilitate data sharing among university hospitals
while conforming to privacy regulations [9]. One widely
used operating platform for distributed computing is
DataSHIELD (Data Aggregation Through Anonymous
Summary-statistics from Harmonized Individual-level
Databases), employed also by MIRACUM, one out of
four MII consortia [10–12]. It has since been extended to
facilitate deep learning-based analyses and Big Data ana-
lyses from distributed individual patient data [13, 14].
Recent demonstrations of DataSHIELD‘s usability in
large medical informatics projects emphasize its value for
the analysis of patient data in a data protection-
compliant way [15, 16]. As a federated meta-analysis pro-
gramming library, it has been developed at Newcastle
University in cooperation with the Research Institute of
the McGill University Health Centre. Used by the
EUCAN-CONNECT project (https://eucanconnect.com)
it handles 173 European population-based cohort studies
allowing the investigation of �2.5 M participants across
30 sites and consortia. Thus, it provides an ideal platform
to develop a distributed computing-based solution for a
collaborative, privacy-compliant CNS tumor classifica-
tion approach using t-SNE (DistSNE).

Here, we introduce the DistSNE framework which
leverages local, scalable data warehouses from participat-
ing sites to gather, normalize, and analyze methylation
array data from CNS tumor samples. This synergistic
approach enables t-SNE plot computation for visualiza-
tion and classification of CNS tumor samples based on
DNA methylation data while maintaining high privacy
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standards for patient data. To facilitate usability, we
offer a user-friendly two-tier web interface (https://gin-
tsne.med.uni-giessen.de/). Participating institutes can per-
form t-SNE visualization for their individual tumor sam-
ple based on methylome data from all participating
institutes (tier-1). Non-participating institutes can also
classify individual tumor samples by t-SNE but are
restricted to the publicly available reference CNS tumor
methylome data (tier-2). The ability to analyze and inter-
pret large-scale data from distributed sources while pro-
tecting patient privacy holds great promise for the future
of precision medicine. We believe that the DistSNE
framework will contribute to a better understanding of
CNS tumor biology and enable the development of new
therapeutic strategies, leading to improved patient
outcomes.

3 | METHODS

3.1 | DNA methylome datasets
of CNS tumors

DNA methylome datasets of CNS tumors were collected
from three sources. The first sample cohort (n = 3905)
was retrieved from the publicly available GSE109381
SuperSeries with 450 k methylation array data (Illumina
HumanMethylation 450 BeadChip) from patients. The

Giessen Institute of Neuropathology provided 850 k
methylation array data (Illumina Infinium Methylatio-
nEPIC 850 k) (n = 1056), while the Edinger Institute
in Frankfurt provided 850 k methylation array data
(n = 180) (Figure 1A). For sample preparation, DNA
was extracted and analyzed using the respective DNA
methylation array following the manufacturer’s instruc-
tions. The methylome data was initially classified using
the Heidelberg Classifier v11b4 (Frankfurt) or v11b6
(Capper et al., Giessen), respectively, to obtain reference
information on methylation class and probability score
for each sample.

To ensure that the distributed dataset encompasses a
broad variety of tumor subgroups, we analyzed the data-
sets at each location for their distribution. The Heidelberg
Classifier v11b4/v11b6 has 82 tumor subgroups and nine
additional subgroups such as Inflammatory microenviron-
ment, totaling 91 subgroups. The public dataset covered
all 91 subgroups, while the Giessen dataset included 69 dif-
ferent tumor subgroups and the Frankfurt dataset covered
28 different tumor subgroups.

3.2 | Data preprocessing

We executed the following steps to preprocess
methylome array data for t-SNE computation at each
site. (1) Only the intersecting CpGs from the 450 and

F I GURE 1 Overview of CNS tumor methylome data and the computational setup (A). Capper et al. data (GSE109381) were deposited in
Marburg (n = 3905) and in-house datasets were provided by Giessen (n = 1056) and Frankfurt (n = 180). The most frequent subgroups are color-
coded. (B) R Shiny web application for distributed t-SNE plotting. Upon user login, raw data can be uploaded to the analysis server via the R Shiny
interface. The client portal automatically requests the aggregated data from each data warehouse in the background. After successful data retrieval,
the t-SNE plot is displayed on the right site of the interface, available for download. A zoom-in of the area of interest provides a detailed view of the
sample (marked with an asterisk) and its surrounding area. (C) Structure of the distributed t-SNE across the three sites. A central R client portal
manages the computation of the distributed datasets in Frankfurt, Marburg, and Giessen.
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850 k methylation arrays were considered. (2) Beta values
were computed from the raw signals using normaliza-
tion references [17]. (3) X and Y chromosomes were
excluded from further processing. (4) The 10,000 CpGs
with the highest methylation variability across all
patient samples and all three datasets were chosen for
further computation. These steps were necessary to
reduce the dimensionality of the data and to focus on
the CpGs that were most informative for the analysis.
Data analysis with a login as a tier-2 client enables
tumor classification using the publicly available refer-
ence CNS tumor methylome data.

3.3 | Distributed t-SNE computation

DataSHIELD [14] was installed on server instances at
each partner site (Giessen, Frankfurt, Marburg), which
were integrated into local Data Integration Center
(DIC) environments to enable privacy-protected and
distributed data storage and analysis. The Marburg
data warehouse hosted the public dataset, while the
Giessen and Frankfurt warehouses provided in-house
data. A client portal with a web interface (Figure 1B)
aggregated the information, requested from the differ-
ent instances (Figure 1C), and computed the t-SNE
visualization.

To accelerate t-SNE computation and reduce input
data dimensionality [18], we used principal component
analysis (PCA) [19], which involves singular value
decomposition (SVD). The implementation of the
approach of Iwen and Ong [20] facilitated distributed
SVD through DataSHIELD, ensuring that only non-
reversibly transformed data were shared across sites. To
ensure a high-quality assessment, we restricted the sam-
ples of each cluster to those with a classification score
above 0.9. A fixed seed (42) was used in the experiments
to enable reproducible visualization and analysis. The
classification of a new sample was determined by match-
ing it with its nearest neighbor as measured by Euclidean
distance.

3.4 | Computational analyses and statistics

To identify similar samples belonging to the same sub-
group it is important to achieve a low intra-cluster vari-
ance as a tight clustering signifies closely similar or
related samples. Ideally, a high-quality cluster should
have a low intra-cluster-variance, which signifies that
similar or related points are closely gathered. The intra-
cluster-variance describes the area a cluster occupies.
Therefore, when increasing the sample size within a clus-
ter while maintaining the intra-cluster variance, we
achieve a higher cluster density and quality. The intra-
cluster-variance of each cluster was calculated by averag-
ing the Euclidean distance of every point in the cluster to

the center. The mean intra-cluster-variance over all
clusters was computed as follows:

1
C

XC
c¼1

1
mc

Xmc

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xc,i�xcð Þ2þ yc,i�yc

� �2
:

q

Here, C is the number of clusters and mc is the num-
ber of samples of the cluster c. xc=yc being the center of
cluster c.

To evaluate the performance of our approach we
compared the classification obtained from the random
forest algorithm of the Heidelberg classifier with the
nearest neighbor classification for each sample from
Giessen and Frankfurt within the distSNE. In the first
experiment, we calculated the mean accuracy from
100 runs with varying random initialization. Accuracy
was computed as the fraction of correctly assigned classi-
fications (in relation to the random forest classification of
Heidelberg) relative to the total number of samples. In
the second experiment, we calculated the mean accuracy
for all newly added samples in each run. The results were
averaged over 100 runs, each varying by the sequence of
sample inclusion. We tested for significance between the
different approaches using a paired t-test with Bonferroni
correction.

3.5 | Hard- and software requirements

The central computing instance and participating
instances hosting utilized a server instance with four
Cores and 64 GB RAM running on Ubuntu 18.04. The
preprocessIllumina function of the minfi [17] package as
the gold standard was used for raw data normalization
from Infinium MethylationEPIC arrays, Ggplot2 [21] for
t-SNE visualization, an R shiny server for the web appli-
cation, ds.SVD from dsMLpackage [19, 20] for left singu-
lar value computation and Rtsne package [18] for t-SNE
computation.

3.6 | Data availability

Data will be made available upon reasonable request. To
demonstrate the usability of the web interface, we pro-
vide two sample datasets for upload under https://doi.
org/10.5281/zenodo.10048012.

3.7 | Ethics approval

The experimental studies were authorized by the
ethics committee of Justus-Liebig-University Giessen
(AZ 138/18 and 07/09) and the ethics committee of
Goethe-Universität Frankfurt (UCT-Project-No: SNO-
19-2020).
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4 | RESULTS

4.1 | Distributed t-SNE computation
on the DistSNE web interface

We developed the user-friendly, two-tier R shiny web-
based analysis suite, DistSNE, enabling users to upload
individual samples for t-SNE analysis (Figures 1B, S1,
and S2). Tier-1 institutes, which actively participate in
the distributed network, share their data via a local
DataSHIELD instance. Non-participating Tier-2 insti-
tutes have access only to the publicly available reference
CNS tumor methylome data. The DistSNE analysis
results are displayed within 2 min (Figures 1B, S1, and
S2), and the web interface offers a close-up of the region
for a more detailed view of the surrounding classes with
the uploaded sample marked with an asterisk for easy
identification. The resulting images are available for
download. Upon uploading the two coupled *.idat files
from a sample to the DistSNE web-based application.
Each instance computes SVD over local datasets and
returns aggregated information to the central instance
in Giessen, which computes the t-SNE, including the
uploaded sample. We established a web application that
offers an intuitive environment for collaborative, visually
assisted CNS tumor analysis.

4.2 | The DistSNE classification accuracy is
comparable to the classification accuracy of a
centralized approach

To validate the efficacy of a t-SNE computation through
a federated approach we compared the accuracy of the
DistSNE subgroup classification with a centralized classi-
fier in a three-stage setup using all study samples and the
public reference data. Performance was evaluated by
comparing the classification results from the t-SNE
(nearest neighbor) with the random forest algorithm of
the Heidelberg classifier. The mean accuracy was calcu-
lated by dividing the number of correctly assigned sam-
ples by the total number of samples across 100 runs.
First, we establish a performance baseline by testing the
t-SNE algorithm locally on a single data server in a cen-
tralized approach. Second, we applied the distributed
approach in a real-world setting across three locations.
Third, we scaled up the analysis to six virtual servers to
determine the impact of a distributed analysis (DistSNE)
on classification performance (Figure 1C). In all setups,
we observed a consistent mean accuracy of ≈82.9% sub-
stantiating that the ability of DistSNE to maintain classi-
fication performance when accessing data in a distributed
manner.

We further conducted a more detailed analysis of the
variability introduced by the seed, that is, the randomly
selected sample that initiates the DistSNE computation.
Through 100 runs with random seed using all collected

data we measured a ±0.29% standard deviation, demon-
strating the robustness and reliability of the DistSNE
approach. The performance most concordant with the
results from the Heidelberg classifier was an accuracy of
84.9%. This accuracy is comparable with the reported
performance of other predictive algorithm such as the
Heidelberg classifier with 88% accuracy for samples with
a score above 0.9 [7], further attesting to the efficacy of
DistSNE.

4.3 | DistSNE improves cluster density
and accuracy

The computation of the DistSNE across all sites in the
2nd stage yielded a comprehensive and densely distrib-
uted map of data points, where the public reference data
laid the foundation and was effectively complemented by
the additional datasets from Giessen and Frankfurt
(Figure 2A). This denser mapping combined with the
enriched visualization facilitated more distinct demarca-
tion of existing groups, enhancing the resolution and dis-
tinction of subgroups. These findings underscore the
potential of DistSNE to boost the quality of visual map-
ping but also to potentially uncover previously unidenti-
fied clusters. To show that the increased cluster density
achieved through DistSNE indeed resulted in a higher
classification performance we compared the classification
accuracy between the reference data set and the expanded
collective data set of a federated approach. We per-
formed a t-SNE incorporating the data provided
by Gießen and Frankfurt either individually (fixed
approach) or incrementally (incremental approach). The
classification accuracy of this projection was determined
by the nearest neighbor classification. We ran the analy-
sis using a Monte Carlo method with 20 permutations
and a random order of addition to account for any poten-
tial influence of the order of sample addition. The results
show that the incremental approach improves classifica-
tion performance compared to the fixed approach, which
in contrast displays saturation (Figure 2B), highlighting
that a higher sample number achieved through the feder-
ated approach improves classification performance.

Similarly, the lower intra-cluster-variance (see methods)
of ≈60.20 for the collective methylome data across all
three sites as compared to ≈61.28 for the Capper et al.
data indicates that with increasing sample size, as achieved
through distributed access to additional datasets, the clus-
ter density concurrently increases. This is essential as a
tight clustering is pivotal for obtaining high-quality clus-
ters and enhanced predictive strength which facilitates
the precise identification of similar or related samples by
nearest-neighbor.

The significance of the DistSNE approach in
enhancing cluster quality can be further exemplified by
the improved distinction of the IDH-mutated astrocy-
toma and oligodendroglioma groups. As an example,
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we plotted the density map of those subgroups from the
dataset (A_IDH, A_IDH_HG, O_IDH, Figure 3A–C).

4.4 | Improvement of cluster quality and
meningioma subclassification with DistSNE

We next wanted to test whether DistSNE can identify
new molecular subgroups apart from recognizing existing
molecular subtypes. We used meningioma as our test case
due to the limitations of the V11 classifier in distinguish-
ing meningioma subtypes (meningioma subclassification
was only introduced in the V12 classifier). On integrating
federated meningioma data into the reference dataset, we
noticed the formation of visually distinct groups sugges-
tive of potential new meningioma subtypes by unsuper-
vised clustering (Figure 4A–C). Notably, these emerging
clusters aligned well with the known subtypes from the
V12 classifier (see color legend in Figure 4B, C). When

we incorporated data from all contributing locations, the
clusters exhibited increased density and delineation and
continued to overlap with the V12 classification. We
want to especially highlight the benign-2 subclass, where
a larger dataset closes the gap in the cluster of benign-2
(Figure 4B), when compared to the Capper reference
dataset (Figure 4C). Concomitantly, the intermediate-A
subclass becomes clearly delineated as a cluster. These
findings underscore the efficacy of DistSNE in not only
validating established molecular subtypes but also its
potential to discover novel ones, in particular with access
to additional federated datasets.

Next, we evaluated the impact of database expansion
via DistSNE on classification accuracy using the fixed or
incremental approach for the large cohort of meningioma
samples. The incremental approach, which gradually adds
more samples to the analysis, improved the projection
modestly across all meningioma samples (0.9%). However,
a marked improvement (6.3%) was observed when

F I GURE 2 DistSNE analysis of the collective data and accuracy measurements. (A) Distributed t-SNE of the three locations Giessen (blue),
Frankfurt (orange), and Marburg (Capper data) (grey). The clusters of IDH mutated gliomas (bottom) and of meningiomas (left lower) are marked
with rectangles. (B) Accuracy of the fixed model (gray) and the incremental model (blue) for all gathered samples. The number of samples is
visualized on the right y-axis by the dotted lines for the fixed and incremental approach. Classification accuracy for all groups significantly improves
with a higher sample number (incremental vs. fixed; p < 0.001, paired t-test with Bonferroni correction).

F I GURE 3 The DistSNE approach enhances cluster analysis quality. Two-dimensional kernel density estimations and corresponding scatter
plots of selected glioma classes reveal the qualitative advantage of using the federated dataset. Samples from Giessen and Frankfurt are labeled blue
and from Capper et al. in gray. (A) The projection with the collective data (B) displays a higher group density than the Capper et al. dataset
(C) analysis allowing for better subclass distinction.
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determining the subgroup Intermediate A (Figure 4D, E),
which partially overlaps with the benigns 1 and 2 clusters
(see Figure 4A–C).

Collectively, these results show that increasing overall
cohort size through the federated DistSNE computation
significantly enhances classification accuracy, for groups
with fewer sample numbers. Coupled with the improved
classification accuracy and visualization quality, Dis-
tSNE has the potential to identify new subgroups
through federated database expansion.

5 | DISCUSSION

In this study, we present a distributed t-SNE analysis
(DistSNE) framework for DNA methylation-based clas-
sification of CNS tumors, aiming to improve cluster qual-
ity and potentially identify novel tumor subgroups.
DistSNE effectively visualizes tumor samples across sites
and offers a user-friendly web interface for researchers to
perform distributed t-SNE analysis on DNA methylation
data while preserving data privacy. This approach

addresses the growing need for privacy-preserving
methods in cancer research, particularly in multi-center
studies and collaborative projects. Importantly, the Dis-
tSNE method has the potential to facilitate the discovery
of new molecular subgroups and improve CNS tumor
classification by allowing researchers to pool their data,
benefiting the neuropathology community.

The analysis of DNA methylation patterns has
emerged as a powerful tool for the reliable classification
of CNS tumors, as evidenced by the inclusion of genome-
wide DNA methylation profiling as essential or desirable
diagnostic criteria for classifying various CNS tumors
in the WHO Classification of Tumors of the Central
Nervous System (CNS) 5th edition [2]. The aim of our
study was to develop a distributed t-SNE analysis frame-
work for DNA methylation-based classification of CNS
tumors that allows better visual mapping and potentially
higher subgroup resolution by accessing additional meth-
ylation data from various sites. Our study demonstrates
that the federated DistSNE computation improves
classification with higher sample numbers and improves
cluster quality and density when compared to datasets

F I GURE 4 Meningioma subclassification and accuracy improvement with DistSNE. (A) Two-dimensional kernel density estimation.
Meningioma samples from Giessen and Frankfurt are labeled blue and from Capper et al. in gray. (B) Corresponding scatter plot with all data from
the federated approach or (C) Capper et al. On integrating federated meningioma data, three distinct clusters can be observed that align with the V12
classification of meningioma subtypes (see color legend). (D) Classification accuracy for all meningioma samples and (E) of the meningioma
subgroup intermediate A. The growing number of samples is visualized on the right y-axis by the dotted lines for the fixed and incremental approach.
Classification accuracy improves with a higher sample number (incremental vs. fixed; p < 0.001, paired t test with Bonferroni correction). See text for
details.
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achieved from public sources [7]. Importantly, DistSNE
maintained classification accuracy equivalent to that of a
centralized method while preserving data privacy in line
with previous studies on other medical datasets [22, 23].
The increased resolution could lead to the discovery of
novel clusters and a deeper understanding of tumor biol-
ogy [24–27]. This suggests that our federated DistSNE
computation approach may be beneficial in large-scale
studies and consortium-based research projects where
data privacy and protection, became a major concern in
the era of big data especially in medical research [28, 29].
Researchers often face challenges in sharing sensitive
patient data due to ethical and legal constraints. The Dis-
tSNE framework offers a viable solution for researchers
to perform distributed t-SNE analysis on DNA methyla-
tion data in a privacy-preserving manner across multiple
locations using DataSHIELD [30].

The DistSNE web interface provides an accessible
platform for researchers to submit their samples for analy-
sis and receive t-SNE visualizations and classifications, or
interactively explore t-SNE plots and identify tumor sub-
groups. This user-friendly interface enables rapid visuali-
zation and analysis of individual tumor samples, aiding in
the diagnosis and treatment of CNS tumors. The DistSNE
method can be further improved and extended to support
more participating institutes and datasets, increasing the
overall dataset’s diversity, and potentially revealing novel
molecular subgroups. Importantly, by maintaining their
own DataSHIELD server, institutes can ensure full data
autonomy and adherence to strict data protection stan-
dards, as sample data stays within their IT framework.
This approach has the potential to facilitate collaborative
research efforts and lead to new discoveries in the field of
CNS tumor classification and molecular subgroup identi-
fication as previously achieved through centralized
approaches both in the field of CNS and other tumors
(e.g., TCGA [31], ICGC [32]). Thus, the DistSNE method
may be a valuable tool for the neuro-oncology commu-
nity, as it provides a privacy-preserving, accurate, and effi-
cient way of analyzing and classifying CNS tumors. By
enabling researchers and clinicians to visualize and classify
tumors without sharing sensitive patient data, DistSNE
can facilitate multicentric clinical studies and promote col-
laboration across institutions [33].

In addition to these benefits of the DistSNE frame-
work, there are potential limitations to consider. While
the DistSNE approach preserves data privacy, the compu-
tation of large-scale molecular data as obtained in cancer
studies may require significant computational resources
and coordination between participating sites [34, 35].
Moreover, potential issues related to data harmonization
and standardization may need to be addressed to ensure
accurate and consistent results across different datasets.
However, as opposed to patient data that has been gath-
ered in an unstructured manner in clinical routine, large-
scale molecular data are usually present in a highly struc-
tured manner which will ease a high-throughput analysis

as presented by DistSNE. Future work may focus on
extending this framework to other large-scale, but highly
structured omics data types, such as transcriptomics [36],
proteomics [37], and genomics [38], to further enhance our
understanding of cancer biology and improve patient
stratification for personalized treatments [39, 40].

6 | CONCLUSION

Here, we have developed a new privacy-compliant
method for analyzing diagnostic DNA methylation
array data. Our approach enables sharing the informa-
tion content of large-scale data without disclosing the
data itself, facilitating the calculation of a distributed
t-SNE across multiple sites. By pooling data from mul-
tiple sources, the resulting dataset is much larger and
provides a more precise assessment of new cases. This
approach can identify new cases that cannot be confi-
dentially assigned to known subtypes, potentially unco-
vering new subgroups. Involving additional institutes
and sites can further enhance the power of this analysis
in a simple and collaborative manner, making it an
effective tool for brain tumor classification through fed-
erated computing and advancing precision medicine in
neuro-oncology.
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