Now showing items 1-1 of 1

    • Critical Points of Kirchhoff-Routh-Type Functions 

      Fiernkranz, Tim (2021)
      For $2\le N\in \N$ and $\G_i\in \R\setminus\{0\}$ we proof that functions of the form $$ H_\G (p_1,\dots, p_N) = \sum_{i\ne j} \G_i\G_j G(p_i,p_j) + \sum_{i=1}^N \G_i^2 R(p_i) , $$ admit critical points under various ...