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a b s t r a c t 

Sharing imaging data and comparing them across different psychological tasks is becoming increasingly possible 
as the open science movement advances. Such cross-paradigm integration has the potential to identify common- 
alities in findings that neighboring areas of study thought to be paradigm-specific. However, even the integration 
of research from closely related paradigms, such as aversive and appetitive classical conditioning is rare – even 
though qualitative comparisons already hint at how similar the ‘fear network’ and ‘reward network’ may be. We 
aimed to validate these theories by taking a multivariate approach to assess commonalities across paradigms em- 
pirically. Specifically, we quantified the similarity of an aversive conditioning pattern derived from meta-analysis 
to appetitive conditioning fMRI data. We tested pattern expression in three independent appetitive conditioning 
studies with 29, 76 and 38 participants each. During fMRI scanning, participants in each cohorts performed an 
appetitive conditioning task in which a CS + was repeatedly rewarded with money and a CS- was never rewarded. 
The aversive pattern was highly similar to appetitive CS + > CS- contrast maps across samples and variations of 
the appetitive conditioning paradigms. Moreover, the pattern distinguished the CS + from the CS- with above- 
chance accuracy in every sample. These findings provide robust empirical evidence for an underlying neural 
system common to appetitive and aversive learning. We believe that this approach provides a way to empirically 
integrate the steadily growing body of fMRI findings across paradigms. 
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. Introduction 

Comparing paradigms and results across research areas is necessary
o advance knowledge in basic and translational neuroscience. But even
ery closely related areas of research are often studied in parallel, accu-
ulating data with little cross-fertilization between areas and their re-

pective paradigms. Two such areas are the neural basis of fear learning
nd reward learning - conceptualized as aversive and appetitive con-
itioning, respectively. When these intrinsically adaptive learning pro-
esses become excessive, they can become the basis for psychological
isorders such as anxiety, depression and addiction ( Duits et al., 2015 ;
artin-Soelch et al., 2007 ). This conceptual distinction is reflected in
∗ Corresponding author at: University of Giessen, Otto-Behaghel-Str. 10 H, 
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he Research Domain Criteria (RDoC) framework, with ‘fear learning’
nd ‘reward learning’ belonging to the separate domains of negative
nd positive valence systems ( Insel, 2014 ). However, possible common
nderlying or interacting factors in these disorders ( Destoop et al., 2019 ;
iverant et al., 2014 ; Xie et al., 2021 ) can be easily overlooked when we
nly examine these domains separately. Thus, shedding light on com-
onalities regarding their basic neural processes is essential going for-
ard. Some efforts have been made to translate neuroimaging evidence

rom aversive to appetitive conditioning paradigms, but limited to qual-
tative comparisons and narrative reviews (e.g. Brooks and Berns 2013 ,
oscarello and LeDoux 2013 , Stefanova et al. 2020 ). Only very recently,
 meta-analysis on prediction errors also included a look at appetitive
nd aversive stimuli at a global level ( Corlett et al., 2022 ). So far, no em-
irical integration of neuroimaging data from specifically aversive and
ppetitive conditioning studies has been attempted, although a lot of
maging data – especially on aversive conditioning – already exists and
 2022 
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Table 1 

A detailed overview of regions reported in meta-analyses as well as theoretical models of aversive and appetitive learning. Common 
regions between aversive and appetitive CS + are amygdala, NAcc, caudate nucleus, putamen, insula and thalamus. 

Aversive conditioning Appetitive conditioning 

Theoretical models amygdala, mPFC, hippocampus 
Tovote et al. (2015) 

amygdala, OFC, dACC, vACC, NAcc, 
caudate nucleus, putamen 
Martin-Soelch et al. (2007) 

amygdala, mPFC, dmPFC Herry and 
Johansen (2014) 

amygdala, NAcc Averbeck and 
Costa (2017) 

Empirical meta-analytic evidence dACC, thalamus, anterior insular cortex, 
amygdala, OFC, putamen, 
midbrain/substantia nigra Etkin and 
Wager (2007) 

amygdala, NAcc, caudate nucleus, 
putamen, midbrain, thalamus, frontal 
operculum, insula Chase et al. (2015) 

amygdala (smaller effects, only in 
uninstructed studies), anterior insula, 
putamen, caudate nucleus, dmPFC, dACC, 
preSMA, thalamus, pallidum 

Mechias et al. (2010) 
anterior insular cortex, NAcc, caudate, 
SMA/preSMA, dlPFC, precuneus, 
cerebellum Fullana et al. (2016) 

Abbreviations: Nucleus Accumbens (NAcc), prefrontal cortex (PFC), medial PFC (mPFC), dorsomedial PFC (dmPFC), dorsolateral PFC 
(dlPFC), supplementar motor area (SMA), orbitofrontal cortex (OFC), dorsal/ventral anterior cingulate cortex (dACC/vACC) 
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ualitatively, activation patterns seem similar. Therefore, our general
ims were, first, to attempt the empirical integration of data across the
aradigms of aversive and appetitive conditioning. Second, we wanted
o demonstrate the feasibility of integrating findings from these two
aradigms in order to enable further research across a multitude of other
aradigms of varying similarity. 

The differential aversive or appetitive conditioning paradigms that
re employed in fMRI research in humans are highly alike. An initially
eutral stimulus becomes a conditioned stimulus (CS + ) after repeated
airing with an aversive or appetitive unconditioned stimulus (UCS, e.g.
lectric shock or money). A second stimulus (CS-) is never paired with a
CS ( Mackintosh, 1975 ). On the one hand these are striking similarities,
n the other hand reward and fear seem diametrically opposed lead-
ng to separate investigations into brain regions constituting a fear net-
ork or a reward network. The neural correlates of aversive condition-

ng have been researched extensively in human neuroimaging, which
as led to a large body of fMRI results on the topic as well as meta-
nalyses (for reviews see Etkin and Wager 2007 , Fullana et al. 2016 ,
echias et al. 2010 , Sehlmeyer et al. 2009 ). In parallel, fMRI studies

n appetitive conditioning have begun to accumulate (for reviews see
verbeck and Costa 2017 , Chase et al. 2015 , Martin-Soelch et al. 2007 ).

t has become increasingly apparent that the findings from aversive and
ppetitive conditioning are qualitatively similar. The same regions of-
en emerge from separate meta-analyses of responses to a CS + com-
ared to a CS- in aversive ( Etkin and Wager, 2007 ; Fullana et al., 2016 ;
echias et al., 2010 ) and appetitive ( Chase et al., 2015 ) conditioning,

ee Table 1 for details. Seminal theoretical models of aversive con-
itioning focus mainly on the amygdala ( Herry and Johansen, 2014 ;
ovote et al., 2015 ) while appetitive conditioning models also include
triatal regions such as the Nucleus Accumbens (NAcc; Averbeck and
osta 2017 , Martin-Soelch et al. 2007 ). In summary, the amygdala,
Acc, caudate nucleus, putamen, insula and thalamus seem to be in-
olved in both aversive and appetitive learning, based on qualitative
omparison of empirical data as well as theoretical models (see Table 1 ).
he cerebellum has been reported in the most recent meta-analysis of
versive learning ( Fullana et al., 2016 ) and since then in another aver-
ive conditioning study in humans ( Ernst et al., 2019 ). This region may
e crucial for many different types of outcome prediction ( Popa and
bner, 2018 ) and has been shown associated with appetitive predic-
ion in animal data ( Heffley and Hull, 2019 ), so cerebellar activity
ight be another possible commonality between human aversive and

ppetitive learning. Based on these apparently overlapping regions, it
s assumed that the concepts ‘fear network’ and ‘reward network’ share
2 
esolimbic dopamine pathways and thus may share a common basis
n an anticipatory motivational system related to learning in general
 Menon and Uddin, 2010 ; Moscarello and LeDoux, 2013 ; Seeley et al.,
007 ; Stefanova et al., 2020 ). However, these assumptions are mostly
ased on qualitative literature reviews. Only few neuroimaging studies
ave systematically compared aversive and appetitive learning in the
ame experiment and even then mostly focused on differences instead of
imilarities (e.g. Breiter et al. 2001 , Carter et al. 2009 , Lake et al. 2019 ,
ankar et al. 2019 ). While elucidating the differences between these
echanisms remains important, quantifying cross-paradigm similarities
ight provide an even greater opportunity. 

In this paper, we adopt a multivariate analysis approach to quanti-
atively integrate previously published evidence across paradigms and
amples in order to better understand the commonalities of aversive
nd appetitive processes. With the help of machine learning classifi-
ation algorithms, we can test whether whole-brain patterns of acti-
ation are present in a dataset and whether they distinguish between
onditions ( Weaverdyck et al., 2020 ; Woo et al., 2017 ). Multivariate
pproaches have already been used to great success in finding and val-
dating whole brain response patterns associated with cognitive and af-
ective states, e.g. the experience of pain ( Wager et al., 2013 ), emotions
 Kragel and LaBar, 2014 ; Saarimäki et al., 2016 ) or perceiving sexual
ictures ( van ’t Hof et al., 2021 ; for a review on neural signatures see
ragel et al. (2018) based on data from the same kind of paradigm.
ere, instead of developing an activation model from similar paradigms,
e apply an already existing meta-analytic response pattern from one
aradigm (aversive conditioning) to data from a similar paradigm (ap-
etitive conditioning) to empirically identify activation commonalities.
sing a meta-analytical pattern instead of training a new aversive con-
itioning pattern enables us to investigate similarity of our current ap-
etitive conditioning data with the summarized data of numerous past
versive conditioning studies, gathered over many years of research. 

In this study, we aim to identify commonalities of a differential ac-
ivation pattern related to aversive conditioning, based on the meta-
nalysis by Fullana et al. (2016) , with activation patterns in appetitive
onditioning paradigms. In order to assess generalizability of the sim-
larities, we carry out the same tests in three independent appetitive
onditioning datasets with varying features regarding sample charac-
eristics and procedural details ( Kruse et al., 2018 , 2020 ; Tapia León
t al., 2019 ). First, we expect that the brain activation difference be-
ween aversive CS + (avCS + ) and aversive CS- (avCS-) will be similar to
he activation difference between appetitive CS + (appCS + ) and appet-
tive CS- (appCS-), measured by a pattern expression score. We expect
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his for differential activation over the whole brain as well as for a priori
natomical regions of interest (ROIs: NAcc, caudate nucleus, putamen,
mygdala, thalamus, insula, cerebellum), which have been implicated
n both forms of learning empirically and theoretically but may have
raditionally been associated with one paradigm more than the other.
econd, we hypothesize that the separate appCS + and appCS- activation
ata will differ in their similarity to the avCS + > avCS- pattern. We ex-
ect to accurately discriminate whether a pattern expression score stems
rom whole brain appCS + or appCS- data based on the score’s size via
orced-choice classification. With these analyses, we aim to provide em-
irical evidence for the neural commonalities of aversive and appetitive
onditioning at whole brain and region level. 

. Materials and methods 

.1. Sample descriptions 

We used three previously published datasets on appetitive condi-
ioning. All studies were approved by the local ethics committee and
ere conducted in accordance with the 1964 declaration of Helsinki
nd its later amendments. Participants gave written informed consent
nd received 10 € per hour or course credit for their participation plus
onetary gains from the tasks. 

.1.1. Active learning/homogeneous sample 

The Active Learning/Homogeneous Sample included only male sub-
ects and a between-person acute stress condition ( Kruse et al., 2018 , see
lso Kruse et al. (2017) . For our analysis, we included only the no-stress
ontrol group ( n = 29, control group from Kruse et al. (2018) for this
nalysis. The mean age was M = 23.83 (SD = 2.80). Because this sample
as the control group in a strictly timed stress experiment, the overall
rocedure was more rigorously controlled and standardized than in the
ther two samples. 

.1.2. Active learning/heterogeneous sample 

The Active Learning/Heterogeneous Sample was larger ( n = 76,
ruse et al. 2020 ) and included 36 men and 40 women with a mean
ge of M = 23.76 (SD = 3.73). 

.1.3. Passive learning/heterogeneous sample 

The Passive Learning/Heterogeneous Sample ( n = 38, Tapia León
t al. 2019 ) also included men as well as women (22 men, 16 women)
ith a mean age of M = 23.50 (SD = 3.54). 

.2. Conditioning paradigms 

.2.1. Active learning/homogeneous sample and active 

earning/heterogeneous sample 

The same uninstructed differential conditioning paradigm was used
n both the Active Learning/Homogeneous Sample ( Kruse et al., 2018 )
nd Active Learning/Heterogeneous Sample ( Kruse et al., 2020 ). In each
rial, the subject was presented with a CS + or CS- (blue or yellow rect-
ngle) and then with a target (white square), upon which they were in-
tructed to press a button as quickly as possible. Reactions within target
resentation time were rewarded with 50 cents (UCS) only if a CS + was
resented before the target (timing of the target was predetermined, so
hat approx. 62% of all CS + trials were rewarded). Fast reactions after
 CS- were never rewarded. Participants were instructed to pay atten-
ion to possible contingencies before the task and received the money
hey won after scanning. The paradigm included 21 CS + and 21 CS- tri-
ls. The first two trials (always one CS + and one CS-) were excluded
rom further analyses, since learning could not have taken place yet,
eaving 20 CS + and CS- trials each per subject. For more detailed infor-
ation about the paradigm please see the original publications for the
ctive Learning/Homogeneous Sample ( Kruse et al., 2018 ) and the Ac-

ive Learning/Heterogeneous Sample ( Kruse et al., 2020 ). See also Fig. 1
or graphical representation of the task. 
3 
.2.2. Passive learning/heterogeneous sample 

In the Passive Learning/Heterogeneous Sample ( Tapia León et al.,
019 ), an instructed differential conditioning paradigm without any be-
avioral reaction component was used. Participants were presented with
 CS + or CS- (blue or yellow rectangles) followed by feedback about re-
ard/no reward. Half of the CS + trials were rewarded with 50 cents

UCS) while the CS- was never rewarded. Participants were instructed
bout the relationships between CS and UCS before the task and received
he money from the experiment after leaving the scanner. The paradigm
ncluded 20 CS + trials and 20 CS- trials. For more detailed information
bout the paradigm see the original publication for the Passive Learn-
ng/Heterogeneous Sample ( Tapia León et al., 2019 ). See also the right
alf of Fig. 1 for graphical representation of the task. 

.3. Appetitive sample data 

MRI images for all samples were acquired using the same 3 T whole-
ody tomograph (Siemens Prisma). Preprocessing and first level anal-
ses were performed using Matlab and Statistical Parametric Mapping
 SPM 12 ) implemented in Matlab R2012a (The MathWorks Inc.). Event-
elated general linear models in each sample included appCS + and
ppCS- in addition to other task and nuisance regressors. All follow-
ng analyses use appCS + , appCS- as well as appCS + > appCS- first
evel contrast images from these models. For detailed information on
ata acquisition, preprocessing and first level analysis, please see the
upplementary information (S1 and S2) or the original sample publi-
ations (Active Learning/Homogeneous Sample: Kruse et al. 2018 ; Ac-
ive Learning/Heterogeneous Sample: Kruse et al. 2020 ; Passive Learn-
ng/Heterogeneous Sample: Tapia León et al. 2019 ). 

For this study, we additionally created group level con-
rast maps using paired t-tests on CSF-scaled and winsorized
ppCS + and appCS- maps with custom code available from the
uthors’ website ( https://canlab.github.io ; CANlab, code used
or this publication available from https://github.com/s-kline/
versive- appetitive- conditioning ). These were only used for visualiza-
ion purposes (see Fig. 2 ) and not part of any subsequent analysis. 

Finally, to judge how well activation data can be distinguished be-
ween appCS + and appCS- condition without the aversive pattern, we
erformed multivariate predictive modeling analyses on the appetitive
ata only using custom code ( https://canlab.github.io ; CANlab, 2020 ,
ttps://github.com/s- kline/aversive- appetitive- conditioning ). In each
onditioning sample, a classifier was trained and tested to distinguish
etween appCS + and appCS- using whole-brain Support Vector Ma-
hines ( Burges, 1998 ; Gramfort et al., 2013 ). We used 5-fold cross-
alidation blocked by subject (i.e., leaving out all images from a par-
icular participant together), which allows every subject to serve as
oth training and test data at one point. The classifiers were trained
n whole-brain appCS + > appCS- first level contrast images masked
ith a gray matter mask. Each SVM model resulted in a pattern of
eights of each voxel predicting the appCS + or appCS- stimulus pre-

entation (appCS + > appCS- predictive weight map) and an intercept
offset) value. Bootstrap resampling (with 5,000 bootstrap samples; see
lso Wager et al. 2013 ) was used to estimate voxel-wise p-values for
ach predictive weight map. We tested for significant clusters in the
redictive weight maps thresholded at P = .05, FDR (false discovery
ate)-corrected. 

.4. Aversive conditioning pattern 

For the aversive conditioning pattern, we used a whole brain pat-
ern which discriminates within aversive conditioning paradigms be-
ween CS + (avCS + ) and CS- (avCS-). This avCS + > avCS- pattern was
he result of a meta-analysis of 27 independent fear conditioning data
ets (total subjects N = 677, 54% male; Fullana et al. 2016 ). Specifi-
ally, Fullana et al. computed functional activation differences between
vCS + and avCS- for each study, either from original contrast maps or

https://canlab.github.io
https://github.com/s-kline/aversive-appetitive-conditioning
https://canlab.github.io
https://github.com/s-kline/aversive-appetitive-conditioning


S. Klein, O. Kruse, I. Tapia León et al. NeuroImage 263 (2022) 119594 

Fig. 1. Methods Summary 
Note: Both active samples underwent the same active appetitive conditioning task. In each trial, subjects could win 50 cents with a fast reaction to the target only 
if a CS + was shown before. The Passive Sample underwent a passive appetitive conditioning task. Subjects were shown CS + and CS- and subsequent wins of 50 
cents or nothing. Activation maps related to appetitive CS + and CS- presentation averaged over the whole task were computed for each subject in each sample. 
The aversive conditioning pattern was applied to these subject-specific maps using cosine similarity metric. The pattern expression values reflect the magnitude of 
similarity between two normalized image vectors. 
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he peak coordinates reported in the studies. They then created a brain
ap of the effect size of the difference between the two conditions for

ach study using AES-SDM software ( www.sdmproject.com/ ) and with
hese maps conducted a voxel-wise random-effects meta-analysis with
eighting for sample size and variance. Fullana et al. (2016) found sev-

ral large bilateral clusters demonstrating consistently significant func-
ional activations during aversive conditioning (avCS + > avCS-) includ-
ng anterior insular cortex, NAcc, caudate nucleus, dACC and lateral
erebellum. Most of the included studies used electric shocks as UCS
nd simple geometric shapes as CS. The whole brain map of z -values
ssociated with the difference between avCS + and avCS- is available
n Neurovault ( https://identifiers.org/neurovault.collection:2472 ). We
btained this map of z-values from Neurovault and used it as the pattern
ssociated with avCS + > avCS- in our similarity analysis. 

.5. Similarity analysis 

We followed the same analysis steps in each sample, using cus-
om code available from the authors’ website ( https://canlab.github.io ;
ANlab; code used for this publication available from https://github.
om/s- kline/aversive- appetitive- conditioning ): (i) First, we computed
attern expression scores in the whole brain appCS + > appCS- contrast
mages. (ii) Second, we computed the pattern expression in each of the
4 
OIs NAcc, caudate nucleus, putamen amygdala, thalamus, insula and
erebellum. (iii) Finally, we computed pattern expression scores in the
eparate appCS + and appCS- activation maps, which were then used in a
lassification analysis to test if we can distinguish appCS + from appCS-
ondition based on these scores. The significance threshold for all tests
as P < .05. 

(i) To apply the pattern to our data, we initially resampled the pat-
ern map to the space of the functional data using trilinear interpolation.
hen, we used cosine similarity metric to assess the degree of similarity
etween the avCS + > avCS- pattern and the individual unthresholded
ppCS + > appCS- contrast image of each subject: For every subject of
ach of the three appetitive conditioning samples, we calculated a pat-
ern expression score, which measures the similarity of the contrast im-
ge to the aversive conditioning pattern. As pattern expression score,
e used the cosine similarity metric, which indicates to what extent the
attern image vector and the data image vector from one participant
oint in the same direction ( Bisandu et al., 2019 ; Bobadilla-Suarez et al.,
020 ; van Oudenhove et al., 2020 ). For each appetitive sample partici-
ant, we calculated the dot product between the avCS + > avCS- pattern
mage and their appCS + > appCS- contrast image and divided it by the
roduct of the two image vectors length, normalizing the result. Cosine
imilarity can range from 1 (indicating exact similarity, i.e. exactly the
ame direction of the vectors) over 0 (indicating no relation, orthogonal

http://www.sdmproject.com/
https://identifiers.org/neurovault.collection:2472
https://canlab.github.io
https://github.com/s-kline/aversive-appetitive-conditioning
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Fig. 2. Brain maps of aversive conditioning pattern and appetitive conditioning data 
Note: Pattern related to aversive conditioning from meta-analysis (A). Weight map consisting of z-values is displayed on 4 coronal slices and two central cutaways 
showing the basal ganglia with region labels (SMA: supplementary motor area). The pattern is thresholded at P < .005, cluster size > 10, see Fullana et al. (2016) for 
details. Main effects of appetitive CS + versus appetitive CS- in Samples (B, C, D). Contrast maps are the result of a paired t-test between CSF-scaled and winsorized 
activation maps of appCS + and appCS- conditions, thresholded at P < .05 FDR-corrected. Midline sagittal and two rows of axial slices are shown for each sample, 
black outlines indicating NAcc and caudate nucleus. Anatomical images were adapted from the 7T high-resolution atlas of Keuken et al. (2014). 
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ectors) to -1 (indicating complete inversion, exactly opposite vector di-
ection). Thus, in our analysis, positive cosine similarity (between 0 and
) results when positive contrast values (appCS + > appCS-) are found in
oxels that are also positive in the aversive conditioning pattern. In ac-
ordance with that, positive cosine similarity also results when negative
ontrast values (appCS + < appCS-) are found in voxels that are also neg-
tive in the aversive conditioning pattern. Equivalently, negative cosine
imilarity (between 0 and -1) results when positive contrast values are
ound in voxels that are negative in the aversive conditioning pattern
nd vice versa. Using this approach resulted in one pattern expression
core per participant, which indicated the similarity between individual
ppetitive conditioning contrast images and the aversive conditioning
attern. Finally, we tested whether the appetitive conditioning contrast
mages were significantly similar to the aversive conditioning pattern
sing standard binomial tests with t-statistics, i.e. if cosine similarity
as significantly different from 0. 

(ii) For the ROI analysis, we masked the appCS + > appCS- contrast
mages with anatomical masks for the NAcc (from the SPM anatomy
oolbox), caudate nucleus, putamen (both from striatum parcellation
y Pauli et al. 2016 ), amygdala (from the SPM anatomy toolbox), tha-
5 
amus, insula (both from Harvard Oxford Atlas) and cerebellum (from
iedrichsen et al. 2009 ). This resulted in seven new images that only
ontained data in the voxels encompassed by the respective ROI. We
hen calculated the pattern expression scores in these images, which
estricts the analysis to only the voxels within the ROI for both con-
rast image and pattern. Otherwise, we employed the same steps, cosine
imilarity metric and significance test as for the whole brain analysis
escribed under (i). 

(iii) We also computed cosine similarity of the avCS + > avCS- pat-
ern to the separate appCS + and appCS- activation maps of each sub-
ect to use for classification analysis. This resulted in two pattern ex-
ression scores per participant, one indicating similarity of the pattern
ith appCS + and the other one indicating similarity of the pattern with
ppCS-. To assess how the pattern expression scores for appCS + and
ppCS- images differed from each other, we tested whether they could
ccurately predict the condition label appCS + or appCS-. For this pur-
ose, we computed forced-choice classification performance where the
mage with the higher avCS + > avCS- pattern expression scores is la-
eled as appCS + and the image with the smaller pattern expression score
s labeled as appCS- using receiver operating characteristics (ROC; for
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Fig. 3. Similarity between Aversive Conditioning Pattern and Appetitive Conditioning Data 
Note: Results of similarity analysis for appetitive conditioning data in A) whole brain, and B) Regions of Interest NAcc, caudate nucleus, putamen, amygdala, 
thalamus, insula and cerebellum. For each region, the aversive conditioning pattern is shown mapped onto canonical anatomical sections (axial slice indicated by 
the line on mid-sagittal slice) and for the whole brain also onto respective brain cutaways adapted from the 7T high-resolution atlas of Keuken et al. (2014). The 
pattern is thresholded at P < .005, cluster size > 10, see Fullana et al. (2016) for details. Bar plots show the cosine similarity between aversive conditioning pattern 
and appetitive conditioning contrasts with each subject as a dot, violin plots illustrating the data distribution and error bars indicating standard error of means. ∗ ∗ ∗ 

indicates P < .001, ∗ ∗ indicates P < .01. 
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n introduction see Tharwat, 2021 ). We report accuracy measures and
tatistics of this classification based on the pattern expression values. 

.6. Control analyses 

To support our assumption that similarity between aversive and ap-
etitive conditioning is not solely driven by a common level of cognitive
6 
emand or emotional arousal features of both tasks, we performed con-
rol analyses. Specifically, pattern expression of other published whole
rain multivariate patterns related to these concepts in the appetitive
onditioning data were assessed. These were multivariate signatures re-
ated to cognitive control ( Kragel et al., 2018 ), cognitive demand in
 stroop task ( Silvestrini et al., 2020 ), negative affect induced by pic-
ures ( Chang et al., 2015 ), as well as fearfulness and surprise induced
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Table 2 

Mean cosine similarity of avCS + > avCS- pattern to appCS + > appCS- contrast for whole brain and ROIs with standard error, statistics and 
effect size. 

Region Dataset Cosine similarity SE T p Cohens d 

Whole 
Brain 

Active Learning/Homogen. 0.304 0.028 10.85 < .001 2.02 
Active Learning/Heterogen. 0.184 0.021 8.76 < .001 1.01 
Passive Learning/Heterogen. 0.160 0.039 4.13 < .001 0.67 

NAcc Active Learning/Homogen. 0.452 0.071 6.40 < .001 1.19 
Active Learning/Heterogen. 0.274 0.054 5.08 < .001 0.58 
Passive Learning/Heterogen. 0.360 0.077 4.68 < .001 0.76 

Caudate 
Nucleus 

Active Learning/Homogen. 0.459 0.048 9.53 < .001 1.77 
Active Learning/Heterogen. 0.179 0.041 4.39 < .001 0.50 
Passive Learning/Heterogen. 0.294 0.060 4.90 < .001 0.79 

Putamen Active Learning/Homogen. 0.444 0.052 8.52 < .001 1.58 
Active Learning/Heterogen. 0.159 0.049 3.24 .002 0.37 
Passive Learning/Heterogen. 0.191 0.072 2.66 .012 0.43 

Amygdala Active Learning/Homogen. 0.278 0.068 4.08 < .001 0.76 
Active Learning/Heterogen. 0.131 0.045 2.93 .005 0.34 
Passive Learning/Heterogen. 0.158 0.065 2.43 .020 0.40 

Thalamus Active Learning/Homogen. 0.443 0.064 6.93 < .001 1.29 
Active Learning/Heterogen. 0.212 0.048 4.42 < .001 0.51 
Passive Learning/Heterogen. 0.339 0.069 4.94 < .001 0.80 

Insula Active Learning/Homogen. 0.450 0.053 8.56 < .001 1.59 
Active Learning/Heterogen. 0.297 0.042 7.03 < .001 0.81 
Passive Learning/Heterogen. 0.229 0.064 3.55 .001 0.58 

Cerebellum Active Learning/Homogen. 0.309 0.031 9.82 < .001 1.82 
Active Learning/Heterogen. 0.247 0.030 8.28 < .001 0.95 
Passive Learning/Heterogen. 0.197 0.053 3.74 < .001 0.61 
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y music and films ( Kragel and LaBar, 2015 ) available from the authors’
ebsite ( https://canlab.github.io ; CANlab). We computed expression of

hese patterns in each sample and tested for significance same as for
he aversive pattern (see Section 2.5 ). If the similarity between aver-
ive conditioning pattern and appetitive conditioning data is at least
omewhat specific to conditioning, the similarity to these control pat-
erns should be smaller in comparison. To test this, we performed paired
-tests to compare control pattern similarity and aversive conditioning
attern similarity with the appetitive conditioning data. 

. Results 

.1. Aversive pattern expression in appetitive contrast data 

In line with our expectations, the aversive pattern was expressed
ignificantly in the contrast images of every sample (all p < .001). Pat-
ern expression was largest in the Active Learning/Homogeneous Sam-
le with a mean cosine similarity of 0.304 (SE = 0.028, t = 10.85)
nd a very large effect size (Cohens d = 2.02). In the Active Learn-
ng/Heterogeneous Sample, pattern expression was moderate (cosine
imilarity = 0.184, SE = 0.021, t = 8.76, d = 1.01), but statistics and ef-
ect size of the similarity were still high; higher than in Passive Learning/
eterogeneous Sample (cosine similarity = 0.160, SE = 0.039, t = 4.13,
 = 0.67). 

As expected, pattern expression scores were also significantly large
n all a priori ROIs. We found the highest scores in the striatal regions,
halamus and insula, moderately high scores in the cerebellum and mod-
rate scores in the amygdala (for detailed statistics, see Table 2 ). Cosine
imilarities between avCS + > avCS + pattern and the appCS + > appCS-
ontrasts in the independent datasets are presented in Fig. 3 for whole
rain and ROI data. For visual comparison, the aversive pattern as well
s group contrast maps are shown in Fig. 2 . 

.2. Classification of appCS + versus appCS- by pattern expression 

We computed pattern expression scores for the avCS + > avCS- pat-
ern in the separate appCS + and appCS- conditions (see Fig. 4 A and
upplemental Table 1) to use for classification analysis. Classification
esults indicated that the aversive conditioning pattern could distin-
7 
uish appCS + from appCS- images accurately in every sample (clas-
ification performance in all three samples is presented in Fig. 4 B).
orced choice classification effect size was largest in the Active Learn-
ng/Homogeneous Sample (100% accuracy, d = 2.08). The effect was
lso large in the Active Learning/Heterogeneous Sample (84% accuracy,
 = 1.05) and moderate in the Passive Learning/Heterogeneous Sample
74% accuracy, d = 0.80). Importantly, the classification accuracies of
he pattern for appCS + versus appCS- were significantly above chance
n all samples (all p < .05, see Table 3 ). These results are in line with
he previous appCS + > appCS- pattern expression results. Mean pattern
xpression scores were high in the appCS + condition, supporting the no-
ion that appCS + activation data and avCS + > avCS- pattern are highly
imilar. The pattern was also significantly expressed in the appCS- con-
ition in every sample, likely due to basic similarities of CS + and CS-
onditions in both aversive and appetitive conditioning. 

.3. Control pattern expression in appetitive contrast data 

As expected, all control patterns showed lower pattern expression
n the appetitive sample data than the aversive conditioning pattern
ith all mean cosine similarity values < 0.08 (see Table 4 for de-

ailed results). Only the pattern related to cognitive demand in a stroop
ask ( Silvestrini et al., 2020 ) was significantly expressed in the appet-
tive sample data. This is probably because the stroop task has basic
isual features and reaction demands in common with the appetitive
onditioning paradigms. The pattern related to fearfulness ( Kragel and
aBar, 2015 ) was significantly negatively expressed in the Active Learn-
ng/Homogenous Sample. In line with our expectations, the aversive
onditioning pattern was expressed more strongly in appetitive condi-
ioning data than any pattern related to cognitive demands and emotion
rocessing (all p < .05 in paired t-tests, see Table 4 ). 

.4. Appetitive conditioning SVM classification 

For all conditioning samples, we obtained predictive weight maps
hrough support vector machine (SVM) classification (shown in sup-
lemental Fig. 1A–C). The classifier trained on the Active Learn-
ng/Homogeneous Sample performed with 100% accuracy and a large
ffect size ( d = 2.62), indicating that the cross-validated SVM scores

https://canlab.github.io
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Fig. 4. Classification of Appetitive Data by Aversive Pattern 
Note: (A) Bar plot showing cosine similarity between aversive pattern and appetitive sample conditions with each subject as a dot, violin plots illustrating the data 
distribution and error bars indicating standard error of means. (B) ROC plot showing aversive pattern performance on appCS + vs. appCS- classification of data from 

all three samples. The threshold for classification, calculated with optimal balanced error rate was 0.0 for all samples. ∗ ∗ ∗ indicates P < .001, ∗ ∗ indicates P < .01. 

Table 3 

Performance of avCS + > avCS- pattern classifying appCS + versus appCS- conditions in three datasets. Accuracy 
with standard error (SE), specificity and sensitivity with confidence interval (CI) are presented to demonstrate 
the performance of the patterns using forced choice classification. Effect size indicates Cohen’s d. ∗ ∗ ∗ indicates 
p < .001, ∗ ∗ indicates p < .01 

Dataset Accuracy (%) Specificity (%) Sensitivity (%) Effect Size 

SE CI CI 
Active Learning/Homogen. 100 ∗ ∗ ∗ 0.0 100 100-100 100 100-100 2.08 
Active Learning/Heterogen. 84 ∗ ∗ ∗ 4.0 84 76-91 84 76-91 1.05 
Passive Learning/Heterogen. 74 ∗ ∗ 7.1 74 58-86 74 59-88 0.80 
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ere higher for appCS + than appCS- in every subject. The classi-
er trained on the Active Learning/Heterogeneous Sample performed
oderately accurate (accuracy = 91%, d = 1.93) as did the clas-

ifier trained on the Passive Learning/Heterogeneous Sample (accu-
acy = 89%, d = 1.58). Accuracy was significantly above chance level
50%) as assessed with a binomial test for all classifiers ( P < .001). Speci-
city, sensitivity, effect size, and accuracy for all three samples are pre-
ented in supplemental Table 1 (see also Supplemental Fig. 1D). 

In the Active Learning/Homogeneous Sample predictive weight map,
lusters significantly predicting the appCS + versus appCS- condition
ere found. Clusters with positive effects (i.e. associated with the
ppCS + compared to appCS-) were located in the NAcc, caudate nu-
leus, putamen, brainstem, cerebellum and somatomotor cortex. The
eight maps of the Active Learning/Heterogeneous Sample and the Pas-

ive Learning/Heterogeneous Sample were predictive over the whole
rain. There were no clusters limited to specific brain regions, which
eached significance (all P > .05, FDR-corrected). All significant clusters
rom Active Learning/Homogeneous Sample are shown in supplemental
able 2. 

. Discussion 

The goal of this study was to integrate neuroimaging findings from
versive with appetitive conditioning paradigms to empirically identify
ommonalities, and to show the feasibility of cross-paradigm integration
ith this example. Similarity of these processes in the brain has already
een hypothesized but based mainly on qualitative literature reviews
 Menon and Uddin, 2010 ; Moscarello and LeDoux, 2013 ; Seeley et al.,
007 ; Stefanova et al., 2020 ). We wanted not only to quantitatively as-
ess the aversive pattern expression in an appetitive sample but also
8 
o determine if results would generalize across multiple appetitive con-
itioning datasets with differences in task, procedure, instruction, and
ample makeup. To address this question, we analyzed three indepen-
ent previously published appetitive conditioning datasets: The Active
earning/Homogeneous Sample ( Kruse et al., 2018 ), the Active Learn-
ng/Heterogeneous Sample ( Kruse et al., 2020 ) and the Passive Learn-
ng/Heterogeneous Sample ( Tapia León et al., 2019 ). The aversive con-
itioning pattern was expressed significantly in the activation maps of
ll three appetitive conditioning datasets. Furthermore, we were able to
ccurately classify appCS + from appCS- in all samples using the aversive
attern. These results provide robust empirical evidence for aversive and
ppetitive learning processes sharing common neural mechanisms. 

The results are in line with previous research ( Carter et al., 2009 ;
ake et al., 2019 ; Sankar et al., 2019 ) and we are now able to quan-
ify the long-assumed similarity of aversive and appetitive learning
rocesses at a neural level ( Menon and Uddin, 2010 ; Moscarello and
eDoux, 2013 ; Seeley et al., 2007 ; Stefanova et al., 2020 ). Our re-
ults suggests that the activation difference between avCS + and avCS-
ontains neural activation which is independent of UCS valence. This
ommon activation might represent the acquired salience of both CS +
 Ogawa et al., 2013 ; Treviño, 2015 ). Furthermore, our results are con-
istent with a regional overlap in activation related to both negative
nd positive affective processing ( Satpute et al., 2015 ) and appetitive
nd aversive prediction errors ( Corlett et al., 2022 ). Animal studies
ecording activity from single cells and neuron populations have also
hown that while appetitive and aversive CS + may evoke distinct neu-
al responses, they are often co-localized in the same anatomical ar-
as ( O’Neill et al., 2018 ; Shabel and Janak, 2009 ; Tye et al., 2010 ;
iu et al., 2014 ). Thus, the commonalities we found may also reflect
alence-specific activation in the same voxels. Finally, no pattern re-
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Table 4 

Mean cosine similarity of control patterns to appCS + > appCS- contrast for whole brain with standard error, statistics and effect size (columns 1-7). Comparison 
between similarity of the control pattern and similarity of the avCS + > avCS- pattern with the respective appCS + > appCS- contrast is shown with statistics (columns 
8-9). 

Comparison with mean cosine 
similarity of avCS + > avCS- pattern 

Pattern Dataset 
Cosine 
similarity SE T p Cohens d T p 

Cognitive Control, 
Kragel, Kano et al. (2018) 

Active Learn- 
ing/Homogen. 

-0.009 0.010 -0.91 0.371 -0.17 9.18 < .001 

Active Learn- 
ing/Heterogen. 

-0.002 0.005 -0.31 0.758 -0.04 8.38 < .001 

Passive Learn- 
ing/Heterogen. 

-0.007 0.009 -0.76 0.452 -0.12 3.99 < .001 

Cognitive Demand 
(Stroop; 
Silvestrini et al. 2020 ) 

Active Learn- 
ing/Homogen. 

0.076 0.011 7.03 < .001 1.31 8.87 < .001 

Active Learn- 
ing/Heterogen. 

0.050 0.007 7.07 < .001 0.81 7.53 < .001 

Passive Learn- 
ing/Heterogen. 

0.054 0.012 4.60 < .001 0.75 3.56 .001 

Fearful, Kragel and 
LaBar (2015) 

Active Learn- 
ing/Homogen. 

-0.029 0.008 -3.70 < .001 -0.69 12.26 < .001 

Active Learn- 
ing/Heterogen. 

-0.008 0.005 -1.63 .108 -0.19 8.81 < .001 

Passive Learn- 
ing/Heterogen. 

0.008 0.007 1.07 .291 0.17 3.87 < .001 

Surprise, Kragel and 
LaBar (2015) 

Active Learn- 
ing/Homogen. 

< 0.000 0.010 -0.02 .988 -0.00 11.32 < .001 

Active Learn- 
ing/Heterogen. 

< 0.000 0.007 -0.04 .968 -0.01 8.49 < .001 

Passive Learn- 
ing/Heterogen. 

0.010 0.009 1.13 .264 -0.18 3.77 < .001 

Picture Induced 
Negative Affect, 
Chang et al. (2015) 

Active Learn- 
ing/Homogen. 

0.002 0.004 0.56 .583 0.10 10.67 < .001 

Active Learn- 
ing/Heterogen. 

-0.001 0.003 -0.25 .805 -0.03 8.68 < .001 

Passive Learn- 
ing/Heterogen. 

0.005 0.004 1.33 .192 0.22 3.99 < .001 
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ated to cognitive task demands or affective processing was expressed
s highly in the appetitive conditioning data as the aversive condition-
ng pattern. This indicates that their similarity may be in part specific to
he underlying motivational learning processes and not exclusively due
o common task demands or basic sensory features. 

In addition to similarity over the whole brain, we also found high
imilarity in the NAcc, caudate nucleus, putamen amygdala, thalamus,
nsula and cerebellum ROIs. This fits well with the roles of NAcc in re-
ard and loss anticipation ( Oldham et al., 2018 ), caudate nucleus in pro-

essing motivational values of actions ( Balleine and O’Doherty, 2010 ),
utamen in stimulus-response associations ( Everitt and Robbins, 2013 ),
mygdala in representing the CS-UCS relationship ( Moscarello and
eDoux, 2013 ) and the cerebellum in predictive coding and motor re-
ponses ( Lange et al., 2015 ) found in past conditioning studies. The
halamus is likely important as a sensory input region for the amyg-
ala in both appetitive and aversive conditioning ( Gründemann, 2021 ;
ye et al., 2008 ) while the insula may be involved in learning under
ncertainty ( Gorka et al., 2016 ; Morriss et al., 2019 ). Co-localization of
versive and appetitive learning responses in amygdala ( O’Neill et al.,
018 ; Shabel and Janak, 2009 ; Tye et al., 2010 ) and striatal regions
 Xiu et al., 2014 ) have already been found in animal studies and
ore recently, in a human fMRI meta-analysis ( Corlett et al., 2022 ).
ere, similarity was most notably high in NAcc and caudate nucleus,

ndicating that these striatal regions especially may be crucial for
otivational salience learning. Further underpinning this interpreta-

ion, the SVM classifier trained on appetitive data only (Active Learn-
ng/Homogeneous Sample) also revealed clusters predicting appCS + vs.
ppCS- in the NAcc, caudate nucleus and cerebellum (see supplemen-
al Table 1). Importantly, while co-localized fMRI activation in these
egions points to them being involved in appetitive as well as aversive
earning, it may not necessarily indicate them performing the same func-
9 
ions during aversive and appetitive conditioning. For example, animal
vidence suggests that activation in the NAcc shell indicates the mo-
ivational valence of both an appCS + and an avCS + arranged along a
ostrocaudal gradient with more anterior activation indicating positive
alence (approach signal) and more posterior activation indicating neg-
tive valence (avoidance signal; Berridge and Kringelbach 2015 ). Acti-
ation in the NAcc core most likely indicates an unsigned motivational
alience signal based on the input it receives from the ventral tegmen-
al areal ( Bromberg-Martin et al., 2010 ). Thus, combined signals from
he NAcc may be important for approach behavior in appetitive condi-
ioning and avoidance behavior in aversive conditioning ( Gentry et al.,
019 ) but signal motivational salience of the CS + in both. 

Our findings are particularly relevant since altered aversive and ap-
etitive conditioning are considered the basis for psychological disor-
ers characterized by excessive avoidance and approach behavior, re-
pectively ( Duits et al., 2015 ; Martin-Soelch et al., 2007 ). As of yet,
ery little is known about commonalities and overlaps between these
isorder categories. Here, we have provided proof of concept for an ap-
roach which facilitates finding commonalities in such separate con-
epts. Further integration of data across more different affective learn-
ng paradigms and RDoC domains – and across patient samples - may
elp fill these knowledge gaps and pave the way towards transdiagnostic
iomarkers ( Insel, 2014 ; Woo et al., 2017 ). 

Our results support the practicability of quantitative cross-paradigm
ntegration. We found high whole brain similarity between aversive and
ppetitive CS + > CS- contrasts in all samples (see Fig. 3 ). Effects were
arger in some samples than others but present and significantly strong
n all of them. These results demonstrate how empirical knowledge can
e gained from disparate paradigms by quantifying their similarity. Us-
ng an existing software toolbox ( https://canlab.github.io ; CANlab), and
n openly available meta-analysis ( Fullana et al., 2016 ), we could effi-

https://canlab.github.io
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iently integrate our current appetitive data with a multitude of past
versive conditioning studies. Empirical cross-paradigm integration has
arely been done up until now – in this study, we could illustrate the fea-
ibility of our approach. Considering the exponential increase in fMRI
ublications over the last two decades and the difficulties to collect
arge datasets at single institutions, data integration across studies is
ecoming an increasingly essential analysis tool. Tools such as these
re much needed if we want to better understand the connections be-
ween the diverse published evidence and our own data. Here, using
his method, we found remarkably high neural similarity with the aver-
ive activation pattern in every appetitive sample included. This enables
s to make conclusions not only about the neural similarity of aversive
nd appetitive learning itself but also about the generalizability of this 
imilarity. 

To verify and examine generalizability of the results, we included
ifferent appetitive conditioning samples. The otherwise often trouble-
ome fact that many experiments on appetitive conditioning vary in
etails can be used to our advantage here. By including diverse stud-
es, we can quantify the variance between them and thus try to eval-
ate how much those details actually affect results while at the same
ime assessing the generalizability of cross-paradigm similarity. In our
nalysis, we included three different samples, to examine how gener-
lizable the integration results are. Results were significant across all
hree samples despite some small differences in effect sizes and clas-
ification accuracies. This variance in results may have been due to
everal reasons: (1) Smaller sample size and increased homogeneity
ay improve the estimation of experimental variance because of de-

reased noise. Some studies suggest that increased neural activation
ariance in conditioning paradigms can be due to hormone fluctuation
ifferences in subjects assigned female at birth, depending on whether
hey use hormonal birth control ( Merz et al., 2018 ). Thus, samples
ncluding mostly cis men may show especially low inter-subject vari-
nce. (2) A similar point can be made concerning a more standardized
nd strictly controlled study protocol – this likely reduces error vari-
nce. (3) Less instruction and increased action demands in an appetitive
ask may lead to it being more arousing overall and thus closer to the
presumably higher) arousal level in an aversive task. Both points (1)
nd (2) were given in Active Learning/Homogeneous Sample and (3)
as a notable difference between Passive Learning and Active Learn-

ng samples. The influence of active versus passive task design on the
imilarity remains to be examined more closely but recent findings
uggest that the common neurocircuitry between these types of tasks
irrors the commonalities we found here (mainly ventral and dor-

al striatum; Corlett et al. 2022 ). SVM classification based on the ap-
etitive data only also worked best in Active Learning/Homogeneous
ample, further illustrating how reduced inter-subject variance may
mprove modeling results generally. Thus, our results highlight the
rain activation differences between appetitive conditioning experi-
ents which vary only slightly in task and sample characteristics. At

he same time, by integrating over a diversity of methods and samples,
e could show that the similarities between patterns of activation asso-

iated with aversive and appetitive CS + can be generalized across this 
iversity. 

In all three samples, we also found the aversive pattern positively ex-
ressed in the appCS- condition to varying degrees (see Fig. 4 A). Possible
xplanations for this include: First, basic similarity of the conditions –
versive pattern as well as both appCS + and appCS- data likely contain
ctivation related to general visual processing, attention etc. leading to
 small baseline of similarity. Second, the appCS- may have acquired
versive properties since it signaled absence of a reward ( Matsumoto
nd Hikosaka, 2009 ; Mollick et al., 2021 ). This is supported by a post-
onditioning drop in appCS- valence ratings in the two Active Learning
amples ( Kruse et al., 2018 , 2020 ). Part of the appCS- activation data
ay then reflect these aversive properties. However, the appCS + condi-

ion was still more similar to the avCS + > avCS- pattern, indicating that
he pattern primarily codes acquired salience rather than valence. 
10 
.1. Limitations and future directions 

Human fMRI data has limited spatial resolution compared to animal
tudies utilizing methods like single-unit recording or optical imaging.
hus, while we found the BOLD responses to aversive and appetitive
S quite similar at a voxel level, neuronal responses could still be dis-
ociable at a much more precise spatial scale than possible to measure
ere (e.g. neuronal populations). Another limitation was that the appet-
tive samples differed in key details but were all collected at the same
ite. This may have made the overall procedures similar; the scanner it-
elf, other facilities and some of the data collection staff were identical
or all samples. Furthermore, while our appetitive learning paradigms
re intentionally held similar to classical fear conditioning, the major-
ty of appetitive learning paradigms used in human fMRI are more di-
erse than this (e.g. reinforcement learning with varying probabilities,
isk-taking; Averbeck and Costa 2017 , Sherman et al. 2018 ). The di-
ersity of paradigms out there is a considerable resource that presents
ountless possibilities for further study with our integration approach.
versive conditioning data could be integrated with a broader range of
ppetitive learning datasets that have more procedural and task vari-
nce between them. Doing this will enable us to more closely narrow
own the factors involved in their similarity. To better understand dis-
imilarities, integration could also be done with increasingly different
aradigms, for example starting with affectively neutral associative con-
itioning. This could also answer the open question, whether the similar-
ties found here are due to both paradigms involving learning contexts
r if the emotional context that they share is more important. Another
pen question is how the similarity between appetitive and aversive
onditioning is mediated by using primary versus secondary UCS. Fu-
ure studies could disentangle this effect from affective valence by re-
eating the analysis with more primary appetitive UCS such as food or
ater instead of money as a secondary reward. Further integration with
ore different paradigms may reveal how much of the similarity found
ere can be attributed to common basic features of most fMRI tasks,
uch as sensory processing, attention and motor action. We included
ontrol patterns related to basic cognitive and emotional processing as
 first step in this validation process. An alternative to using an aver-
ive meta-analysis pattern as we did here would be to train an aversive
onditioning classifier and testing it in appetitive data. Having a sam-
le where each participant performs an appetitive as well as aversive
onditioning paradigm would also enable to train aversive condition-
ng patterns individually for each participant and testing similarity with
ppetitive conditioning data in the same individual. Such finer-grained
versive patterns may be more precise predictors and also illuminate
ossible individual differences concerning the similarity between aver-
ive and appetitive learning. Finally, since there are different avenues of
ntegrating data (e.g. principal component analysis), future work could
lso expand the methods some more to see if more information can
e gained from other similarity metrics. Altogether, continuing rigor-
us cross-paradigm-integration may provide important clinical insights,
s it allows to build on existing transdiagnostic approaches to mental
ealth: For instance, the RDoC initiative seeks to characterize mental
isorders by impaired functioning in various domains (such as fear and
eward learning) rather than existing disorder categories ( Insel, 2014 ).
n this framework, fear and reward learning are separate domains, but
ross-paradigm-integration findings could demonstrate the benefits of
orking not only within those domains but across them as well. 

. Conclusion 

In conclusion, this study demonstrates the similarity of aversive and
ppetitive conditioning at fMRI pattern level across multiple indepen-
ent appetitive datasets. These commonalities may have important im-
lications for etiological models of fear- and reward-related disorders.
nabled by the open science movement and multivariate analysis meth-
ds, we could quantitatively integrate past evidence from one paradigm
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ith current data from another. Using the example of aversive and ap-
etitive conditioning, we have demonstrated that this approach is not
nly viable but extremely valuable when trying to connect data from
ifferent paradigms. It presents an opportunity to integrate rather than
ompare past findings with current studies and thus make better use of
he ever-growing body of fMRI studies. 
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