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Abstract
Leaf rust, caused by the pathogenic biotrophic rust fungus Puccinia triticina (Pt), is one of the most destructive wheat dis-
eases worldwide; its negative impact on crop yields is exacerbated by increasing temperatures due to climate change. Ascaro-
sides are nematode pheromones that induce resistance to microbial pathogens and pests in a wide range of crops, making them 
valuable components in biocontrol scenarios. We investigated the effect on infection of various wheat (Triticum aestivum) 
genotypes with the virulent Pt race 77W × R by ascr#18, the major ascaroside secreted into the rhizosphere by plant-parasitic 
nematodes. Spraying the leaves with ascr#18 24 h before inoculation with fungal uredospores slowed disease development 
and resulted in a reduction of the number of rust pustules on treated compared to untreated leaves. Dose–response analysis 
over the nano- and micromolar range revealed a broad optimum concentration down to 0.01nM ascr#18. Microscopic analysis 
showed very early arrest of the fungus at the appressorial stage, with associated enhanced local accumulation of  H2O2 and 
abortive stoma penetration. Similarly, ascr#18 also induced strong resistance to Pt race PKTTS, confirming its race-unspecific 
biocontrol activity. The results of this study are consistent with and extend previous research that has shown that ascr#18 
activates plant immunity and thus protects plants from pathogens even at very low doses.
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Introduction

In the face of climate change, political crises, and a grow-
ing population, there is an urgent need to secure and even 
increase wheat production to ensure sustainable food 
security (Poore and Nemecek 2018; OECD 2020). Leaf 
rust caused by Puccinia triticina (Pt) is one of the most 
common diseases affecting wheat worldwide (Bolton et al. 
2008; Huerta-Espino et al. 2011; Kolmer 2013) and is 
exacerbated by temperature increases (Helfer 2014; Junk 
et al. 2016;Caubel et al. 2017). Although widely successful 
in the past, control of leaf rust using conventional meas-
ures involving resistance genes (R genes) and/or synthetic 
pesticides becomes ineffective over time because of strong 
selection pressures on fungal populations in intensive agri-
cultural production systems to overcome R gene function 
or develop resistance or tolerance to pesticides (Andersen 
et al. 2018; Hawkins et al. 2019; van Esse et al. 2020).

Modern integrative crop protection strategies include 
methods that rely on the plant’s natural immune system 
(Galli et  al. 2024). Plants, like animals, have evolved 
various innate and acquired immune strategies to combat 
microbial diseases (Sharrock and Sun 2020; Mermigka 
et al. 2020). Plants depend primarily on two intercon-
nected layers of the innate immune system to recognize 
and respond to pathogens (Jones and Dangl 2006; Spoel 
and Dong 2012; Han 2019). Firstly, pattern-recognition 
receptors (PRRs) recognize microbe-associated molecu-
lar patterns (MAMPs) from a wide spectrum of microbes, 
resulting in pattern-triggered immunity (PTI). A second 
layer involves disease resistance (R) proteins that recog-
nize pathogen effector molecules or their activities on host 
targets, resulting in effector-triggered immunity (ETI). In 
addition, plants can acquire disease resistance by previous 
encounters with microbes or natural compounds such as 
plant hormones resulting in systemic acquired resistance 
(SAR) or induced systemic resistance (ISR), depending 
on whether the salicylic acid or jasmonate defense path-
way is activated (Ryals et al. 1996; Pieterse et al. 2014; 
Klessig et al. 2018). This knowledge has led to the com-
mercial development of synthetic resistance inducers such 
as Benzothiadiazole (BTH) or Probenazole that mimic 
the activity of a natural inducer and help to protect plants 
against various diseases (Nakashita et al. 2002; Kogel 
et al. 1994; Görlach et al. 1996; Vlot et al. 2021). More 
recently, it was discovered that some synthetic resistance 
inducers and natural compounds such as salicylic acid, 
β-aminobutyric acid (BABA), or acyl-homoserine lactones 
(AHLs) at low concentrations trigger induced resistance 
via defense priming in plants leading to a physiological 
state that enables plants to respond more rapidly and/or 
more robustly to a challenge inoculation after exposure to 

biotic or abiotic stress (detailed reviews see Conrath et al. 
2015; Balmer et al. 2015; Baccelli and Mauch-Mani 2016; 
Cooper and Ton 2022). An early response of primed plants 
is their production of reactive oxygen species (ROS) at 
the site of attack when they recognize a pathogen or pest, 
which is associated with the termination of the invasion or 
infestation (Balmer et al. 2015). Since a primed plant has 
only a very limited part of its defense system activated, 
priming could be an approach to protecting plants from 
diseases and pests while minimizing energy expenditure 
and thus yield losses (Westman et al. 2019; Schenck et al. 
2014; Jung and Cecchini 2023).

Several recent studies have shown that a family of nema-
tode-derived pheromones called ascarosides induces resist-
ance in many plants against a broad spectrum of pathogens 
and pests by upregulating specific defense signaling path-
ways (Manosalva et al. 2015; Ali et al. 2018; Klessig et al. 
2019; Ning et al. 2020). The term ascaroside originally 
referred to a distinct type of lipid first detected in parasitic 
roundworms of the family Ascaridia more than 100 years 
ago (Flury 1912). Ascarosides serve a wide range of bio-
logical functions which is facilitated by a great diversity 
of ascaroside chemical structures (Ludewig and Schroeder 
2013). These are based on the sugar ascarylose, which is 
linked to fatty acid-like side chains of varying lengths and 
often decorated further with building blocks derived from 
amino acids, folate, and other primary metabolites. Plants 
can metabolize ascarosides and thereby change their chemi-
cal message, generating ascaroside mixtures that repel dis-
eases and pests and reduce infection (Manohar et al. 2020; 
Yu et al. 2021).

Here, we report on the biocontrol effect of ascr#18, the 
most abundant ascaroside secreted by plant-parasitic nema-
todes into the plant rhizosphere (Manosalva et al. 2015), on 
P. triticina infections of various wheat (T. aestivum) geno-
types. Importantly, ascr#18 was effective in the nano- and 
micromolar range, indicating a broad optimal concentration 
for controlling Pt. Our finding identifies a novel mode of 
ascr#18-induced resistance by triggering the accumulation 
of  H2O2 at attacked stomata, a characteristic also observed 
with other resistance inducers (Schenck et al. 2015).

Materials and methods

Plant material, fungal inoculation, and ascr#18 
treatment

The P. triticina-susceptible wheat varieties T. aestivum 
cv. Chinese Spring (spring wheat) and winter wheat Arina 
LR (both provided by the Julius Kuehn Institute (JKI) 
Kleinmachnow, Germany), Zentos, Chinofuz (provided 
by the JKI Quedlinburg, Germany), and Boolani (Seed 
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and Plant Improvement Institute, Karaj, Iran) were used. 
The leaf rust Pt race 77W × R (Serfling et al. 2013) was 
a gift of the JKI Quedlinburg. The virulence/avirulence 
profile of race 77W × R used in field trials and seedling 
test is found in Rollar et al. (2021). The wheat cv. Boolani 
is susceptible to Pt race PKTTS (Delfan et al. 2022). The 
profile of virulence/avirulence of race PKTTS is shown 
in Table S1.

The ascaroside ascr#18 was a gift from Ascribe Bio-
sciences, 95 Brown Rd, Ithaca, NY, USA. For all experi-
ments, wheat plants were grown in a pot containing 
fine-structured soil (Fruhstorfer Erde type T; HAWITA 
Gruppe GmbH, Vechta, Germany) in a growth chamber 
under controlled conditions with the temperature set to 
18/20 °C (night/day), light period of 16 h, and 65% rela-
tive humidity. Ten-day-old seedlings were sprayed with 
ascr#18 in an aqueous solution containing 0.1% ethanol 
until run-off using a hand sprayer (Carl Roth, Germany); 
control plants were sprayed with 0.1% ethanol. After 24 h, 
leaves were inoculated by brushing with two-week-old Pt 
uredospores isolated from T. aestivum cv. Kanzler, using 
a mix of rust uredospores and talcum powder (Alliance 
Chemical, Germany) in a concentration of 1:4 (McIn-
tosh et al. 1995). The inoculated seedlings were grown 
at 18/20 °C (night/day) with 16 h of photoperiod and 
95% relative humidity for three days, followed by 65% 
relative humidity for seven days. The number of uredinia 
was evaluated on one leaf per plant in an area of 0.5  cm2 
after 10 days post-inoculation (dpi) by use of a binocular 
(Leica Microsystems GmbH, Wetzlar, Germany).

Test on direct toxicity of ascr#18

To test whether there is a direct effect of ascr#18 on the 
germination of P. triticina, 9-cm petri dish plates of water 
agar (3% w/v agar) were pretreated with 2 mL of 1 µM 
ascr#18 dispensed in 0.1% v/v ethanol using a sprayer 
(Preval, Art.-Nr. YC44.1). Subsequently, a suspension of 
Pt isolate 77W × R (5 mg of uredospores in 25 mL 0.1% 
w/v agar) was sprayed onto the agar plates either 15 min 
or 24 h after ascr#18 application. Inoculated plates were 
incubated in dark at 25  °C for 10  h at 100% relative 
humidity. Three plates were prepared for each treatment, 
and 100 uredospores were examined for germination on 
each plate. Uredospores were rated as germinated when 
germ tubes were visible and at least five times the size of 
the uredospore.  Ethanol (0.1%) was used in the absence 
of ascr#18 as control. Water agar with 0.16 g/L prothio-
conazole  (Proline©, Bayer CropScience) was used as posi-
tive control for inhibition of Pt germination.

Statistics

For statistical analysis, data were checked for normality. 
The t test for normalized data and Mann–Whitney test for 
unnormalized data were performed in experiments with two 
groups to compare. For dose effect experiments, the analysis 
was done by one-way ANOVA, and multiple comparisons 
were carried out using Tukey’s post‐hoc test (p < 0.05). All 
statistical analyses and graphs were done with GraphPad 
Prism 8 software. For the germination test, data were fit-
ted to a linear model using the function aov (Chambers 
et al.1992) in R. Tukey honest significant difference test was 
conducted on the fitted model using the TukeyHSD function 
(p < 0.05; Miller 1981).

Microscopy

Pt-infected leaves (10 dpi) of ascr#18-treated and mock-
treated (0.1% ethanol) control plants were fixed in 4% para-
formaldehyde (in PBS buffer) or 0.15% trichloroacetic acid 
(in chloroform:ethanol 20:80, v/v). Fungal structures were 
visualized using chitin-specific staining with WGA-AF488 
(wheat germ agglutinin; Molecular Probes, Karlsruhe, Ger-
many). Leaves were investigated under an epifluorescence 
microscope (Axio Imager.A2, Carl Zeiss, Oberkochen, Ger-
many) and a confocal laser scanning microscope (CLSM; 
TCS SP8, Leica Microsystems GmbH, Wetzlar, Germany) 
by use of ZEISS ZEN 3.8 and Leica LAS X software, 
respectively. WGA-AF488 was visualized at λexc 494 nm, 
λem 515, and fluorescence control settings were set to λexc 
631 nm, λem 642. For  H2O2 detection, Pt-infected leaves of 
ascr#18- and mock-treated plants were collected: 12 hpi, 
24 hpi, 48 hpi, and 96 hpi, and samples were stained with 
3,3′-diaminobenzidine (DAB)-tetrahydrochloride (Hückel-
hoven et al. 1999) and subsequently kept in 0.15% trichloro-
acetic acid (in chloroform:ethanol 20:80, v/v). To evaluate 
the DAB-stained area, the average size of precipitates on the 
attacked stomata was quantified using ImageJ free software 
(https:// imagej. net/ ij/).

Results

Ascr#18 induces resistance against Puccinia triticina 
in all tested wheat cultivars

The effect of ascr#18 on wheat against leaf rust was first 
tested with the four cultivars (cvs.): Zentos, Chinese 
Spring, Arina LR, and Chinofuz. Leaves of 10-day-old 
seedlings were sprayed with 1µM ascr#18 and, 24 h later, 

https://imagej.net/ij/
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inoculated with uredospores Pt race 77W × R. Ascr#18 
significantly reduced the number of Pt uredinia on all four 
wheat genotypes as compared to mock treatment (t test 
for normalized data, Mann–Whitney test for unnormal-
ized data; p < 0.05): Zentos (70%), Chinese Spring (71%), 
Arina LR (77%), and Chinofuz (81%) (Fig. 1; Supplemen-
tary Fig. 1). To exclude the possibility that the effect on Pt 
development was due to direct toxic effects of ascr#18, we 
exposed the fungus to 1 µM ascr#18 on water agar plates 
for 10 h. Consistent with previous reports on other fungal 
pathogens (Manosalva et al. 2015; Klessig et al. 2019), 
Pt’s germination rate was unaffected by ascr#18 and was 
comparable to the control treatments (Table 1). We con-
cluded that ascr#18 induces resistance to leaf rust fungus 
in the wheat cultivars tested.

Ascr#18 induces resistance against Puccinia triticina 
in the nM range

Next, we conducted a dose–response experiment in the 
concentration range between 0.000001 and 10 µM ascr#18. 
Leaves of 10-day-old seedlings of cvs. Chinese Spring and 
Zentos were sprayed with the respective concentrations of 
ascr#18 and, 24 h later, inoculated with Pt race 77W × R. 
Ascr#18 significantly reduced the number of uredinia on 
both wheat genotypes down to a concentration of 0.01 nM 
(one-way ANOVA, Tukey’s post‐hoc test; p < 0.05) (Fig. 2).

To broaden the agronomic relevance, we extended our 
investigation to the wheat cv. Boolani, which is susceptible 
to Pt race PKTTS. Ten-day-old seedlings were sprayed with 
ascr#18, and the dose effect on the number of uredinia at 10 
dpi was analyzed. As expected, the number of uredinia was 
greatly reduced over a wide range of concentrations, sug-
gesting that the effect of ascr#18 on Pt is not race-specific 
(Supplementary Fig. 2).

Ascr#18 induces impaired appressorial stoma 
penetration

Next, we examined microscopically how fungal growth was 
inhibited in response to ascr#18 treatment. To this end, cv. 
Chinese Spring was inoculated with Pt race 77W × R and, 
10 days later, stained with chitin-specific WGA-AF488 
to detect fungal hyphae and infection structures. Fluores-
cence microscopy at low magnification showed that fungal 
mycelium formation was greatly reduced and the density 
of uredinia on the examined leaf section was consistently 
very low after treatment with ascr#18 (Fig. 3a, b). Moreover, 
hyphae on the leaf surface were much shorter and barely 
branched (Fig. 3c, d). Further analysis using confocal laser 
microscopy (CLSM) showed that penetration of the fungus 
from an appressorium into the substomatal cavity often 
failed. Examples of the penetration failure on ascr#18-
treated leaves are shown in Fig. 3e–h. Either the fungus did 
not penetrate the leaf at all (Fig. 3e, f) or, in rare cases, 
was arrested at the stage of substomatal vesicle formation 
(Fig. 3g, h). In agreement with this, 3D analysis of leaves 
using CLSM at 10 dpi showed a strong fungal invasion in the 
mesophyll of the control plants (Fig. 3i), whereas hardly any 
fungal structures were found in the mesophyll after ascr#18 
treatment (Fig. 3j).

Ascr#18‑mediated resistance is associated 
with enhanced early  H2O2 accumulation at stomata

A previous study on the priming activities of AHLs showed 
that N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-
HSL) primed plants for accumulation of phenolic com-
pounds, lignification of cell walls and promoted closure 

Fig. 1  The ascaroside ascr#18 reduces the number of uredinia in 
wheat leaves inoculated with the leaf rust fungus Puccinia triticina. 
Leaves of 10-day-old wheat cvs. Zentos, Chinese Spring, Arina LR, 
and Chinofuz were sprayed with 1 µM ascr#18 in 0.1% ethanol and, 
24  h later, inoculated with uredospores of Pt race 77W × R. Con-
trols (Con) were treated with 0.1% ethanol. The number of uredinia 
was counted at 10 dpi. Per experiment, 15 seedlings were treated, 
each represented by a single dot in the boxplot. The experiment was 
repeated twice. Minimum/maximum values are represented by whisk-
ers, and center represents the median in the boxplot. Statistics was 
performed with t test for normalized data and Mann–Whitney test 
for unnormalized data (p < 0.05). Asterisks indicate significant differ-
ences to the control group (***p ≤ 0.0001).
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Table 1  Pt uredospore 
germination in percent (%) of 
all uredospores per  treatment1

1 Evaluation, 10 h after inoculation with Pt;.2treatments with the same letter did not have significantly dif-
ferent germination rates (p < 0.05). Application of ascr#18 at 24  h3and 15  min4 before inoculation  with Pt

Treatment Experiment Rep 1 Rep 2 Rep 3 Mean Significance 
 groups2

31µM ascr#18 in 0.1 EtOH 1 73.64 71.00 78.85 74.49 a
2 72.82 71.00 72.17 72.00
3 70.87 76.00 65.55 70.81

41µM ascr#18 in 0.1 EtOH 1 86.51 84.91 78.51 83.31 ab
2 77.00 73.58 70.30 73.63
3 77.00 73,58 71.00 73.86

0.1% EtOH 1 72.07 77.88 75.70 75.22 ab
2 77.45 78.64 75.00 77.03
3 74.07 77.00 74.00 75.02

H2O dest 1 82.20 76.47 78.10 78.92 ab
2 74.00 76.00 76.00 75.33
3 79.00 76.00 71.15 75.38

H2O dest  + 0.16 g/L prothioconazol 1 0 0 0 0 c
2 0 0 0 0
3 0 0 0 0

Fig. 2  Dose–response analysis of the effect of ascr#18 on the forma-
tion of uredinia in wheat. Leaves of 10-day-old seedlings of cvs. Chi-
nese Spring and Zentos were sprayed with the indicated concentration 
of ascr#18 dissolved in 0.1% ethanol and, 24 h later, inoculated with 
uredospores of Puccinia triticina race 77W × R. Control seedlings 
were treated with 0.1% ethanol. The number of uredinia was counted 

at 10 dpi. Treatments were done on 15 seedlings, each represented by 
a single data point in the boxplot. The experiment was repeated twice. 
Minimum/maximum values are represented by whiskers, and center 
represents the median in the boxplot. Statistics was performed with 
one-way ANOVA, and boxplots with different letters are significantly 
different according to Tukey’s post‐hoc test (p < 0.05).
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of stomata in response to Pseudomonas syringae infection 
(Schenck et al. 2014). For wheat leaf rust, R gene-mediated 
prehaustorial resistance in Triticum monococcum was also 
reported to be associated with  H2O2 accumulation at sites of 
attempted infection (Serfling et al. 2016). Since we did not 
detect a hypersensitive reaction (HR) of epidermal or meso-
phyll cells, nor papillae formation in ascr#18-treated leaves 
at sites of attempted stomata penetration, we tested the possi-
bility that the arrest of the fungus at this early stage of infec-
tion is associated with enhanced  H2O2. Indeed, DAB-stained 
leaf samples collected at different times after inoculation 
with race 77W × R uredospores showed much more  H2O2 
accumulation as revealed by brown precipitate at attacked 
stomata of plants treated with 1 µM ascr#18 than at stomata 

of control plants at 12, 24, and 48 hpi (Table 2). Notably, at 
later time points (96 hpi), little  H2O2 was detected by DAB 
staining only, suggesting that the accumulation of hydrogen 
peroxide is only transient and limited to the site of attempted 
penetration (Fig. 4).

Discussion

Here, we demonstrate broad and highly efficient resistance-
inducing activity of the currently best-studied and most 
active ascaroside, ascr#18, using a representative set of 
wheat cultivars and two P. triticina races with very different 
virulence spectra. Recording Pt infection on infected leaves 
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Substomatal
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Fig. 3  Pt structures on leaves of wheat cv. Chinese Spring as visu-
alized by WGA-AF488 staining. Plants were treated with 0.1% eth-
anol (a, c: control) or 1  µM ascr#18 in 0.1% ethanol (b, d, e, g, f, 
and h) and, 10 days later, harvested for microscopic investigation. On 
ascr#18-treated leaves, only a few or no uredinia were formed; hyphal 
development was impaired, and germ tubes were short and barely 
branched (b, d). Many appressoria in ascr#18-treated leaves were not 
able to penetrate the stomata as revealed by CLSM inspection of the 
fungal infection structures in different layers under the appressorium 

(e, g, f, and h). In the rare cases, penetration of stomata in ascr#18-
treated leaves was successful; substomatal vesicles were visible in 
layers below the appressorium, but formation of primary infection 
hyphae was not seen (g, h). Three-dimensional analysis of infected 
leaves by CLSM revealed heavily infected mesophyll tissue in control 
plants (i), while in ascr#18-treated leaves, barely any fungal struc-
tures were found in the mesophyll tissue (j). White arrows: uredinia 
on control leaf.
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showed that spray-pretreatment with ascr#18 significantly 
reduced the number of uredinia as compared to mock-pre-
treated Pt-inoculated plants. A dose–response analysis over 
the nano- and micromolar concentration range revealed a 
unusually broad optimum concentration down to 0.01 nM 
for the control of wheat leaf rust indicating that ascr#18 
is a very potent resistance inducer. Moreover, microscopic 
analysis showed very early abortion of the fungus in the 
prepenetration stage. This was associated with local accu-
mulation of  H2O2 as visualized by DAB staining at attacked 
stomata. It is noteworthy that no papilla formation or HR 
of epidermal or mesophyll cells could be detected at the 
site of the attempted penetration. Instead, the fungus did not 
overcome the appressoric stage in many penetration attempts 
with the formation of substomatal vesicles in only rare cases. 
Overall, our results are consistent with the current view that 
 H2O2 accumulation and the resulting strengthening of the 
cell wall and regulation of stomata play a key role in the 
very early defense responses of plants triggered by resistance 
inducers (Schenck et al. 2014; for review Balmer et al 2015).

Previous reports showed the strong resistance-inducing 
effect of ascr#18 in plant protection against a virus (Tur-
nip Crinkle Virus), a bacterium (P. syringae pv. tomato), a 
fungus (e.g., Blumeria graminis f. sp. hordei), an oomycete 
(Phytophthora infestans), and two nematodes (Heterodera 
schachtii and Meloidogyne incognita) in four plant species 
(barley, potato, tomato, and Arabidopsis) (Manosalva et al. 
2015). In another report, ascr#18 was shown to induce resist-
ance to four crops (wheat, soybean, rice, and tomato) against 
eight pathogens/pests, including one virus, bacteria, fungi, 
an oomycete, and a nematode (Klessig et al. 2019), overall 
suggesting that ascarosides are effective tools that can be 
used in crop production. References Hoogkamp et al. (1998), 
Schabdach et al. (2014), Schmittgen and Livak (2008), Yan-
dell (1997). are given in list but not cited in text. Please cite 
in text or delete them from list. corrected

There are only a few reports on the mode of action of 
resistance-inducing agents that are effective in controlling 
rust fungi on cereal crops. The bacterium Ensifer (syn. 
Sinorhizobium) meliloti induces resistance via priming 

against Puccinia hordei (Matros et al. 2023). Interestingly, 
the authors compared the priming activity of strain E. 
meliloti expR + chthat which produced large amounts of the 
AHL 3-oxo-C14-HSL with a transformed strain E. meliloti 
attM that does not accumulate AHL, suggesting an AHL-
induced P. hordei resistance. Interestingly, oxo-C14-HSL in 
Arabidopsis can induce the oxylipin/SA signaling pathway 
and thus a stomata defense response and cell wall strength-
ening, preventing pathogen invasion (Schenck and Schikora 
2015). This mode of action is similar to the effect of ascr#18 
in our analysis, although a more detailed molecular investi-
gation of the similarities and differences between AHL and 
ascr#18 is required.

7-oxo- and the 7-hydroxysterols also can induce resist-
ance toward Puccinia striiformis and P. hordei in barley 
and wheat when sprayed onto primary leaves using  10–4 M 
in 1% ethanol (Schabbach et al. 2014) two days prior to 
challenge inoculation with the pathogen. It was suggested 
that the sterol derivatives selectively activate plant defense 
mechanisms that impair the development or differentiation 
of infection structures. Thus, changes in the morphology or 
chemistry of the cuticle that prevent the formation of appres-
soria at the stomata could suppress the fungus.

Induced resistance against P. triticina has also been 
achieved by treating wheat (cv. Arina) with the beneficial 
bacterium Pseudomonas protegens CHA0 (by seed coat-
ing) and the compound β-aminobutyric acid (BABA) (soil 
drenching) (Bellameche et al. 2021). BABA was tested at 
high concentrations (10–20 mM), and a dose-dependent 
reduction of pustule formation was observed with greatest 
protection at 20 mM. In light of these results, previous and 
our current work shows that ascr#18 acts at many orders of 
magnitude lower concentrations (Fig. 4; Manosalva et al. 
2015; Klessig et al. 2019).

Similar to our study, accumulation of  H2O2 in both 
CHA0- and BABA-treated plants was mostly detected in 
host guard cells at penetration sites, and both treatments 
reduced fungus penetration and haustorium formation. The 
authors suggested that during recognition or formation of 
appressoria, generation of  H2O2 in guard cells is induced, 

Table 2  Area of brown 
precipitation due to the 
accumulation of  H2O2

The mean area represents the average area measured from up to 15 infection spots of 7–8 leaves from dif-
ferent plants per repetition. The experiment was repeated twice. SD indicates standard deviation. Statis-
tics was performed with t test for normalized data. Asterisks indicate significant differences to the control 
group (**p ≤ 0.001, ***p ≤ 0.0001)

Hours post-
infection

Control ascr#18 t test

Mean area (µm2) SD Mean area (µm2) SD p value

12 h 363.62 412.87 1371.96*** 597.74 4.8215E−06
24 h 780.20 1109.81 2039.48** 1080.48 0.00013
48 h 1130.82 920.19 1790.74 1309.43 0.0554
96 h 697.79 651.67 575.17 591.15 0.485
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possibly following secretion of rust effectors, and mechani-
cal forces during adhesion of appressoria over stomata may 
also elicit  H2O2 generation in guard cells (Bellameche et al. 
2021). In Arabidopsis,  H2O2 accumulation in guard cells 
was involved in signal transduction during ABA-mediated 
stomatal closing (Sun et al. 2017). Similarly, appressorium 
formation of P. triticina also caused stoma closure in wheat 
leaves (Bolton et al. 2008).

In conclusion, ascr#18 enables induction and modulation 
of different signaling pathways to activate immune responses 

in plants at very low concentrations. Thus, ascr#18 has an 
interesting potential as biological control agent to reduce 
disease damage and increase sustainable food security.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s41348- 024- 00950-w.
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