Ishiwata, HitoshiHitoshiIshiwataAcremann, YvesYvesAcremannScholl, AndreasAndreasSchollRotenberg, EliEliRotenbergHellwig, OlavOlavHellwigDobisz, ElizabethElizabethDobiszDoran, AndrewAndrewDoranTkachenko, Boryslav A.Boryslav A.TkachenkoFokin, Andrey A.Andrey A.FokinSchreiner, Peter R.Peter R.SchreinerDahl, Jeremy E. P.Jeremy E. P.DahlCarlson, Robert M. K.Robert M. K.CarlsonMelosh, NickNickMeloshShen, Zhi-XunZhi-XunShenOhldag, HendrikHendrikOhldag2023-06-022013-08-222023-06-022012http://nbn-resolving.de/urn:nbn:de:hebis:26-opus-98879https://jlupub.ub.uni-giessen.de/handle/jlupub/16401http://dx.doi.org/10.22029/jlupub-15781Diamondoids are unique molecular nano-materials with diamond structure and fascinating properties such as negative electron affinity and short electron mean free paths. A thin layer of diamondoids deposited on a cathode is able to act as an electron monochromator, reducing the energy spread of photo-emitted electrons from a surface. This property can be applied effectively to improve the spatial resolution in x-ray photoemission electron microscopy (X-PEEM), which is limited by chromatic aberration of the electron optics. In this paper, we present X-PEEM measurements reaching the technological relevant spatial resolution of 10?nm without the need of expensive and complex corrective optics. Our results provide a simple approach to image surface chemical and magnetic information at nanometer scales by employing diamondoids.enIn Copyrightaberrationscoatingsdiamondelectron affinityelectron mean free pathmonochromatorsddc:530Diamondoid coating enables disruptive approach for chemical and magnetic imaging with 10nm spatial resolution