
A general first-passage-time model for

multivariate credit spreads

and a note on barrier option pricing

Inaugural-Dissertation

zur Erlangung des Doktorgrades
an den Naturwissenschaftlichen Fachbereichen

(Mathematik)

der Justus-Liebig-Universität Giessen

vorgelegt von
Stefanie Kammer

12. September 2007



ii

Dekan:
Prof. Dr. Bernd Baumann

Gutachter:
Prof. Dr. Ludger Overbeck (Justus-Liebig-Universität Giessen)
Prof. Dr. Winfried Stute (Justus-Liebig-Universität Giessen)

externer Betreuer:
Prof. Dr. Wolfgang Schmidt (Frankfurt School of Finance & Management)

Disputation: November 2007



Für meine Omas und Opas



ii



Preface

After finishing my diploma in mathematics in November 2002 I was not
totally sure about doing a PhD, so I started working with KPMG as a
quantitative advisor where my main task was to price any financial product.
There I was more and more convinced that I needed deeper theory for my
understanding. I went back to the university of Giessen and got a research
position within a project that is financed by BMBF (Bundesministerium für
Bildung und Forschung) which I gratefully acknowledge. With this disser-
tation I never went back to pure mathematics, but at least I found my place
– somewhere in between deep theory and pure application.

I have to thank many people who helped me to come this far and made my
time so enjoyable with workshops, winterschools, coffee breaks and cock-
tails:
I want to thank my supervisors Prof. Dr. Ludger Overbeck, Prof. Dr.
Wolfgang Schmidt, and Prof. Dr. Winfried Stute for many discussions and
advices. Prof. Stute, thanks for accompanying me through my whole uni-
versity life! Three years ago, I had to promise my grandma that she can
come to my disputation in order to meet you! I further want to thank all
my colleagues and friends at the university of Giessen, the Frankfurt School
of Finance & Management, and the university of Ulm; in particular Rolf
Klaas, Swantje Becker, Christina Niethammer, Natalie Packham, and last
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Introduction

A first-passage time (FPT) is defined as the first time point a stochastic
process crosses some threshold level , default boundary or critical barrier
that is usually a constant, but can be a random variable or even a stochastic
process itself. When we aim at general results for first-passage times we will
call this stochastic process the first-passage process or underlying process.
This model approach – ‘a first-passage process falling below some threshold’
– is called threshold model/approach. A first-passage time will be a stopping
time with respect to a filtration that holds the necessary information to
answer the question whether a first passage happened. In this dissertation
we will introduce a new class of first-passage processes: Brownian motion
time-changed with a continuous stochastic non-decreasing process.

Our main application will be in credit risk , where the first-passage pro-
cess will be interpreted as firm-value process, asset-value process or ability-
to-pay process - depending on one’s particular interest. The threshold level
will be a function of the firm’s liabilities. The threshold approach thus con-
nects equity and debt of a firm. In this context the threshold model is also
called structural model , see Definition 1.8, and the first-passage time is called
default time because it indicates a company’s default event. A default event
may not imply a total default (liquidation of the firm) but can also indicate
a rating downgrade1. As literature on credit risk and credit derivatives we
suggest Bluhm & Overbeck (2006), Schönbucher (2003) and Martin,
Reitz & Wehn (2006).

There is another application in barrier option pricing. Here the under-
lying process is the option’s underlying. The threshold level is the barrier
value and the first-passage time indicates a certain knock-in or knock-out
event.

Our focus is on models that yield a first-passage-time distribution which

1 Rating systems measure the creditworthiness of borrowing companies. The borrowers
are ranked in ratings. External ratings are assigned by rating agencies - the most famous
ones are Standard & Poor’s (S&P), Moody’s and Fitch - and internal ratings are estab-
lished by the credit institute itself. An improving creditworthiness turns into a rating
upgrade and a worsening creditworthiness into a rating downgrade. The transition prob-
abilities are given by a migration matrix. Compare Bluhm et al. (2003) and Bluhm &
Overbeck (2006).

xiii



xiv INTRODUCTION

can be represented by an integral and/or series. We will call this an ana-
lytical distribution. In the mentioned applications, credit risk and barrier
option pricing, this allows for a simpler calibration of the model to given
market data, either a default-probability curve or barrier option prices.

In the following we summarize the advances of the structural model:
The classical structural approach, introduced by Merton (1974), considers
a geometric Brownian motion as asset-value process and assumes that the
firm’s debt consist of only one issued zero-coupon bond with some face value.
This classical approach allows for a default only at one date, the maturity
T of the bond, and default happens when the asset value at maturity is
less than the face value K. This is illustrated in Figure 1. In order to

Figure 1: Classical structural approach: default happens at a fixed time T
when the firm value at that time, YT , lies below the pre-specified default
threshold K, that is when YT < K.

determine the default distribution Merton applied the well-known option
pricing result by Black & Scholes (1973). We name a few extensions of
Merton’s classical approach: Geske & Johnson (1984) considered coupon-
bearing bonds. Leland (1994) and Leland & Toft (1996) applied a
generalized geometric Brownian motion and examined an optimal capital
structure, i.e. maturity and amount, of corporate debt. Their model is
able to predict various credit-spread term structures.2 Shimko, Tejima
& van Deventer (1993) introduced stochastic interest rates following a
Vasicek process, see Vasicek (1977). Regarding Lévy processes3 a default-
time distribution under the classical approach can be determined when a
closed-form probability density is available. This is for example the case for

2We introduce credit spreads in Chapter 3 and analyze them in Chapter 4, 5 and 6.
3A Lévy process is defined by independent and stationary increments and stochastic

continuity, see Def. 1.3 and cf. Sato (1999), Kyprianou (2006b) or Applebaum (2005).
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the jump-diffusion model, see Zhou (1997a) and Subsection 1.2.6, and for
some subordinated Lévy processes, see Subsections 1.2.8 and 1.2.10.

Black & Cox (1976) extended the classical approach to the first-
passage approach: They considered a geometric Brownian motion as ability-
to-pay process continuously in time, an exponentially time-dependent de-
fault boundary and allowed for default at any time, whenever the threshold
has been hit. Their approach yields an analytical first-passage-time distri-
bution; compare Harrison (1985) and see Section 1.2.1. There are several
extensions of this original first-passage approach. A first survey on first-
passage times was given by Abrahams (1986). An overview of more recent
first-passage models can be found in Bielecki & Rutkowski (2002) and
Elizalde (2005) - among these are the following: Kim, Ramaswarny &
Sundaresan (1993) introduced stochastic interest rates following a Cox-
Ingersoll-Ross (CIR) process; see Cox, Ingersoll & Ross (1985). There
is a positive probability of default at maturity. Longstaff & Schwartz
(1995b) used Vasiceck interest rates. Nielsen, Saà-Requejo & Santa-
Clara (1993) applied stochastic interest rates modeled by a Hull & White
process, and introduced a stochastic default barrier. Both papers, however,
show that introducing a stochastic process for the risk-free interest rate has
only a small effect on credit spreads. Briys & de Varenne (1997) an-
alyzed correlated asset-value and interest-rate processes. Regarding Lévy
processes an analytical FPT formula is not available. But, at least Kypri-
anou (2006a) and Alili & Kyprianou (2005) were able to determine over-
shoot and undershoot densities for some specific, time-changed Lévy pro-
cesses at first-passage, see Subsections 1.2.8 and 1.2.9. For a jump-diffusion
model with double-exponentially distributed jumps, Kou & Wang (2003) de-
rived the Laplace transform of the FPT distribution, see Subsection 1.2.7,
in our terms it is not an analytical FPT distribution.

The structural models mentioned above assume that the asset-value pro-
cess is adapted to the market filtration. In reality this is not true; see Buf-
fett (2002). For this Duffie & Lando (2001) and Giesecke (2004),
(2006) analyzed the role of information in structural models and introduced
models with incomplete (accounting) information about the firm assets, as
well as about the liability-dependent threshold barrier. These models be-
long to the class of hybrid models because they combine the advantages of
reduced-form models and structural models, that is, tractability to market
data and economic intuition. For completeness, one more word about the
class of reduced-form models. They are also called intensity-based models or
hazard-rate models because default probabilities are modeled through a pos-
sibly random intensity or hazard rate (process). Default time is an exogenous
random variable and the cause of default is not further specified (through
a firm value or asset value). These two main model classes, structural and
reduced-form models, are compared in Jarrow & Protter (2004). Other
hybrid models where default intensity explicitly depends on firm value were
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considered by Madan & Unal (1998) or Ammann (1999). Ammann herein
analyzed counterparty risk in a Merton-type framework.

We also want to name some literature of the more recent class of credit-
barrier models, where the focus lies on an influencing factor other than the
firm value. Hull & White (2001) and Avellaneda & Zhu (2001) mod-
eled the distance-to-default in a structural framework with time-dependent
threshold boundary. They assumed that the distance-to-default is not observ-
able; instead it is used to build a risk-neutral measure that leads to realistic
spread curves. Gordy & Heitfield (2001) modeled the distance-to-default
through a one-factor model and focus on the changes in distance-to-default
over time, in order to model rating transitions. They found that the pro-
cess of rating transitions is not closely tied to a default-indicating process
such as the distance-to-default process. Therefore they suggested to incor-
porate through-the-cycle ratings. The credit-barrier model by Albanese et
al. (2003) and Albanese & Chen (2007) considered the credit rating as
driving process which was calibrated to migration rates4 and credit spreads.
It captures all important firm information. Models with jumps or stochastic
volatility are necessary in order to fit the whole matrix of migration rates,
that is, not only the probabilities of retaining the same rating level, but also
the transition probabilities of ratings changes.

With the just given overview of one-dimensional structural models, in-
cluding the classical approach, the first-passage approach, hybrid models
with incomplete information and credit-barrier models, we have seen that
there are structural models, even with jumps, where a classical default-time
distribution can be obtained. When regarding first-passage-time models
those based on Brownian motion can lead to analytical FPT distributions.
But when including jump processes, as far as we know, analytical FPT dis-
tributions are not available. But, at least, there are some examples where
a numerical approximation for the FPT distribution can be yielded, when
a Laplace transform or Fourier transform of the FPT distribution is avail-
able. These will be said to have a numerical FPT distribution, in order to
differentiate from the analytical FPT distribution.

We also want to focus on multivariate structural models and desire ana-
lytical joint first-passage time distributions that yield joint default probabil-
ities. Naturally, we also restrict ourselves to processes based on Brownian
motion. For two correlated Brownian motions and an exponentially time-
dependent barrier, Zhou (1997b) derived a joint FPT distribution by apply-
ing results of Cox & Miller, Harrison (1985) and Rebholz (1994). In
this context Rebholz and Fischer (2003) also considered the two-dimensional
Brownian motion with drift. Overbeck & Schmidt (2005) extended the
result of Zhou by applying a deterministic time change5 on each Brow-

4See footnote 1.
5A deterministic time change is a positive non-decreasing function; see Definition 1.1.



INTRODUCTION xvii

nian motion and determined the joint survival probability for two corre-
lated processes. In addition, their model perfectly fits the marginal default-
probability term structures.

Still, an ability-to-pay process given by a Brownian motion or a deter-
ministically time-changed Brownian motion does not have enough degrees
of freedom to adapt marginal default probabilities, joint default probabil-
ities, and credit-spread dynamics (the evolution of the credit-spread term
structure in time)6. Furthermore the dependence between two asset-value
processes relies on only one correlation parameter. We analyze the Merton
model and the Overbeck & Schmidt model in the Chapters 4 and 5.

In this dissertation we will consider first-passage-time models that have
a continuous stochastic time-change. For this we here give a short history
of the time change:
Bochner (1949) first introduced a time-changed Brownian motion. Feller
(1966) first presented subordinators as a time change to Markov processes.
Clark (1973) introduced Brownian motion with an independent time change
as a price process in finance. Monroe (1978) showed that a very general
semi-martingale can be embedded in Brownian motion via a time change.
Ikeda & Watanabe (1981) studied time-change models for solving SDEs.
Øksendal (1990) studied when a stochastic integral can be represented as
a time change of a diffusion. Geman, Madan & Yor (2000) and Carr
& Wu (2003) introduced subordinated Lévy process. Schoutens (2003),
(2004) and Cariboni & Schoutens (2007) used these in derivative pricing.

As the second part of the introduction we here give the structure of this
doctoral thesis:

Chapter 1 starts with an introduction to the framework for modeling first-
passage times and gives definitions that are used in all the chapters. For the
first time we introduce a general continuous stochastic time-change model
on Brownian motion in a FPT-setting and derive analytical formulas for the
FPT distribution in one and several dimensions. The multivariate model in-
troduces a dependence structure via the time change. Our two-dimensional
model allows for an additional dependency of correlated Brownian motions,
the so-called Brownian correlation, and also yields an analytical FPT distri-
bution. We give time-change examples that are close at hand and that yield
numerical time-change distributions (in terms of a Laplace transform) and,
as a consequence, numerical FPT distributions. Furthermore we give less
obvious time-change examples for which we derive an analytical time-change
distribution. Whenever a conditional time-change distribution is necessary,
which is the case when we determine credit-spread dynamics, numerical ap-
proximations are not practical. Our general time-change model can also

6See Conclusion 3.5.
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be used across assets in order to model dependence structures on the one
hand and to model dynamics on the other hand. Up to now, multivariate
processes for dependency modeling include only either correlation between
the driving processes or a time change. Our bivariate model contains both;
see Section 1.3.4.

Chapter 2 analyzes one specific time-change model where the time change is
given by the integral over an independent squared Brownian motion. This
is the simplest model in our general model class. We refer to it as the simple
time-change model. We calibrate the model to default-probability curves
and yield a good fit for non-investment-grade companies. Using these cali-
brated model parameters we simulate and plot joint and multivariate default
probabilities or survival probabilities, respectively. We analyze the influence
of the time change on the joint survival probability and furthermore the re-
lationship between default correlation and event correlation.

Chapter 3 introduces the basic credit product, the credit default swap
(CDS), which is a contract between a protection seller and a protection
buyer. We determine the CDS spread under annual and under continuous
protection payments following Hull & White (2000) and Schmidt (2004b),
respectively. Then we introduce the credit-spread dynamics. In order to
show that it is reasonable and moreover necessary to consider credit-spread
dynamics when modeling credit-spread curves, we empirically study credit-
spread volatility of five years markets CDS spreads.

In Chapter 4 we determine the credit spread and the credit-spread dynamics
under the FPT approach of the Merton model. The model has no degrees
of freedom to influence these credit-spread dynamics. At the end of the
chapter we review some extensions of the Merton model. The extensions
add randomness to the default barrier (CreditGrades model), the interest
rates, or the business clock. Other extensions assume incomplete account-
ing information or include jumps into the first-passage process. The main
advantages of these models are that they can yield a positive instantaneous
credit spread and also other credit-spread shapes than the hump-shaped
term structure under the Merton model.

Chapter 5 studies the deterministic time-transformation model by Overbeck
& Schmidt. The model perfectly fits the default-probability curve and thus
the survival-probability term structure. We make an additional assumption
of an available default-probability density (derivative of the given default-
probability curve) which implies an analytical formula for the credit-spread
dynamics. Again credit-spread dynamics are a function of asset value and
threshold and cannot be influenced.
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In Chapter 6 the general stochastic continuous time-change model is ap-
plied to credit-spread modeling. With the time change arbitrarily many
degrees of freedom can be included. Furthermore, when choosing a time
change with start above zero the model is of incomplete information and
yields non-zero instantaneous credit spreads. The time change has several
interpretations e.g. as economic time or amount of information flow. The
extension of the stochastic time-change model to a multivariate model is
straightforward and inserts a dependency via a joint time change. The
model is applicable for multivariate products, especially multi-credit prod-
ucts. A time change should not always be chosen all the same for the
underlying credits. Instead, the credit-spread dynamics of each underlying
have to be studied and the time change should be chosen accordingly. We
derive an analytical formula for the continuously-paid credit spread. As-
suming an absolutely continuous business clock we can also determine an
analytical formula for the credit-spread dynamics. Credit-spread dynamics
should in particular be considered when credit contracts have a long time
to maturity and when credit products are credit-spread sensitive. We name
a few examples: constant-to-maturity (CMS) swaps, credit-spread options,
credit baskets, k-th-to-default swaps, collateralized-debt obligations (CDOs),
(credit-spread) variance swaps and leveraged credit products; cf. for example
Schönbucher (2003) or Hunt & Kennedy (2004). We take the first-to-
default swap as an example to show that our multivariate model can be used
to yield closed formulas for more complex credit products. This is due to the
analytical formula for the joint default probability. For all these formulas
the conditional time-change density is needed. For this we give two explicit
examples, the simple time change of Chapter 2 and a CIR-type time change.

Chapter 7 shows how our stochastic time-change model can be applied to
option pricing, especially pricing of barrier options. The time-change model
is a stochastic volatility model, and we give the time-change model that is
equivalent to the Heston model which is well-known for option pricing. Un-
der stochastic volatility models the risk-neutral measure is not unique and
we choose to price under the minimal martingale measure. Assuming the
general time-change model, allowing for correlation between spot and time
change, we derive a closed pricing-formula for the European call. Under no
correlation and zero interest rates we show how to derive pricing formulas
for barrier options applying our FPT results of Chapter 1. The degrees of
freedom of the time change can be used to produce desired volatility features.
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Chapter 1

First-passage times under a

general continuous stochastic

time-change model

This chapter introduces the general stochastic framework which will be the
basis throughout this thesis. For definitions and notations from stochas-
tic calculus we follow Protter (2004) when considering stochastic pro-
cesses in general, Karatzas & Shreve (1991), Steele (2001) and Kle-
baner (2005) for processes based on Brownian motion and Schoutens
(2003), Cont & Tankov (2004) and Kyprianou (2006b) for Lévy pro-
cesses.

In a structural setting with underlying process (Yt)t≥0 and a pre-specified
threshold level K, the first-passage time (FPT) is given by the time point the
process Y first touches or crosses the threshold. In credit risk the underlying
process is the asset-value process. The first-passage time will be a stopping
time with respect to a filtration that holds the necessary information – only
then we can observe whether a first-passage event happened or not. In
general the threshold boundary can be a stochastic process itself, see Figure
1.1, but in that case the asset-value process Y can be adjusted so that the
new threshold K is a constant. Note that then the adjusted model has a
different interpretation.

We introduce a general continuous time-change model, a process that
lives in a transformed time, under another clock, see Definition 1.1. Under
this time-change model we derive analytical formulas for first-passage-time
distributions. We start with the first-passage model in one dimension, then
extend the model to two and higher dimensions. Joint first-passage-time
distributions are derived under the following asset dependencies:

• independent Brownian processes but identical time change,

• correlated Brownian processes and identical time change,

1
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Figure 1.1: Structural FPT approach: default happens at the first-passage
time τ , where the firm value process first crosses the default threshold K.

• correlated Brownian processes under separate time changes.

At the end of this chapter we give some time-change examples. Table 1.1
lists Laplace transforms of distributions of time changes close at hand. These
lead to numerical FPT distributions. For one thing it is not clear whether
there are indeed time-change processes with an analytical distribuition such
that an analytical FPT distribution can be obtained. We give examples.
These are listed in Table 1.3. In Chapter 6 we analyze the evolution of credit
speads under the stochastic time-change model. In order to obtain analytical
conditional survival probabilities, analytical first-passage-time distributions
and herewith also analytical time-change distributions become necessary.

1.1 First-passage-time framework

We assume a probability space (Ω,F , IP), where Ω represents the states of
the world, F is the σ-algebra containing all possible events of interest and
IP : F → [0, 1] is the probability measure. The probability space is assumed
to be equipped with a filtration IF = (Ft)t≥0. A filtration is a nondecreasing
family of sub-σ-algebras of F , that is, Fs ⊂ Ft ⊂ F for all 0 ≤ s ≤ t.
In this thesis any stochastic process X will live on Ω × [0,∞), sometimes
only on Ω × [0, T ], T < ∞, and will be adapted to IF, i.e. for all t ≥ 0,
Xt will be Ft-measurable. The underlying process will throughout be de-
noted by (Yt)t≥0 and generates the filtration IFY = (FY

t ), FY
0 := {∅,Ω} and

FY
t := σ(Ys : s ≤ t), that is the smallest filtration holding all the informa-

tion about Y , and is called natural filtration of Y . Brownian motions will
be denoted by W and B and it is assumed that they start in zero.
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Definition 1.1 (Time change)
A deterministic time change is a positive, non-decreasing function and a
stochastic time change a positive, non-decreasing stochastic process.

The non-decreasing property of the time transformation can be understood
as saying that information that has been obtained once, will never be lost.
Thus a stochastic time change can contain neither a pure Brownian motion
nor negative jumps. A stochastic time change adds stochastic volatility to
a process. The original clock will sometimes be called normal clock and the
new clock will be called business clock . The time change may be interpreted
as experienced time, that runs faster when the information flow is bigger (or
speeds up). In other words, experienced time is a measure of the amount of
information arrival.1

Definition 1.2 (Absolute continuity)
A stochastic processX is called absolutely continuous if there exists a process
(ht) such that

Xt = h0 +

∫ t

0
hs ds .

If X is a positive, increasing process we can substitute the positive process
(ht) by a process (gt) with g2

t = ht.

Definition 1.3 (Lévy process)
A real-valued càdlàg2 IF-adapted stochastic process L with independent,
stationary increments that is stochastic continuous, i.e.

∀t ≥ 0, ∀ǫ > 0 : lims→t IP(|Lt − Ls| > ǫ) = 0 ,

is said to be a Lévy process.

Every Lévy process (Lt)t can be associated with an infinitely divisible3 ran-
dom variable, through L1. Any infinitely divisible distribution is specified

1Geman, Madan & Yor (2000) show that a time change (of a Lévy process) represents
a measure of activity in the economy and therefore is a speed of the economy.

2Càdlàg is the abbreviation for continu à droite et limites à gauche (right continuous
paths with left limits).

3The distribution of a random variable X is said to be infinitely divisible if for all
n ∈ IN there exist iid random variables X

(n)
1 , . . . , X

(n)
n such that

X
L
= X

(n)
1 + · · · + X

(n)
n .
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by its characteristic triplet (b, A, ν) with b ∈ IR, A ∈ IR+ and a Borel mea-
sure ν satisfying ν({0}) = 0,

∫

IR(1 ∧ x2)ν( dx) < ∞, where the so-called
characteristic exponent

ψ1(u) = iub− u2A

2
+

∫

IR
(eiux−1 − iuxII{|x|<1})ν( dx)

yields the characteristic function

IE
[
eiuL1

]
= eψ1(u) .

Thus also Lt is identified through (b, A, ν) (called Lévy triplet) and the so-
called Lévy exponent

ψt(u) ≡ tψ1(u)

describes the characteristic function

IE
[
eiuLt

]
= eψt(u) .

ν is said to be the Lévy measure, and its density, when this exists, the
Lévy density . A linear drift is the simplest Lévy process. Brownian motion
(with drift) is the only non-trivial Lévy process with continuous paths. A
Lévy process may have small (< 1) infinite-variation jumps and large (≥ 1)
finite-variation4 jumps. A Lévy process can be split up in the just-mentioned
descriptive components:

Lt = bt+
√
AWt +

∫ t

0

∫

IR
x(J L − ν)( ds, dx)

=
(

b−
∫

|x|≥1
xν( dx)

︸ ︷︷ ︸

≡ b′

)

t+
√
AWt

︸ ︷︷ ︸

continuous martingale

+

∫ t

0

∫

|x|≥1
xJ L( ds, dx)

︸ ︷︷ ︸

Compound poisson process

+

∫ t

0

∫

|x|<1
xJ L( ds, dx) − t

∫

|x|<1
xν( dx)

︸ ︷︷ ︸

pure jump martingale

where J L is the jump measure (or Poisson measure), a random measure
counting the jumps of magnitude ≥ 1 resp. < 1. The Lévy measure ν is its
compensator, in that the integral over the small jumps under the compen-
sated jump measure J L − ν is a martingale. This decomposition is called
Lévy-Itô decomposition.

4A process X is said to be of finite variation if almost all paths are of finite variation on
each compact interval, i.e. for any decreasing partition Πm of this interval that is tending
to zero (for m → ∞, w.r.t. the maximum-norm) it is true that

limm→∞
∑

Πm
|Xtk − Xtk−1 | < ∞ .

Otherwise the process is said to be of infinite variation.
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As literature on Lévy processes we suggest Papapantoleon (2005),
Sato (1999), Kyprianou (2006b), Cont & Tankov (2004) and Apple-
baum (2005).

Definition 1.4 (Subordinator)
A subordinator is an increasing Lévy process, that is it has a nonnegative
drift, no diffusion and only positive jumps that are of finite variation.

Subordinators (without drift) are fully characterized through their jump
measure ν. Since subordinators are positive non-decreasing processes they
can be used as time-change processes. Examples are the gamma process or
the inverse Gaussian process, whose corresponding Lévy densities are given
in Table 1.1.

Definition 1.5 (Stopping time)
On a measurable, filtered space (Ω,F , IF) a random variable T is called
stopping time of the filtration IF = (Ft)t≥0, if {T ≤ t} ∈ Ft for all t ≥ 0.

Definition 1.6 (Laplace transform)
The Laplace transform of a positive random variable T is given by

lT (u) := IE
[
e−uT

]
=

∫ ∞

0
e−ut IP(T ∈ dt) , u ≥ 0 .

Integration by parts yields the following equivalence for the Laplace trans-
form:

lT (u) = u

∫ ∞

0
e−ut IP(T ≤ t) dt . (1.1)

Definition 1.7 (Default time under the classical structural approach)
Given the underlying process (Yt)t≥0, a threshold level K, and a fixed time
T ∈ [0,∞) the classical default time is defined by

τ :=

{

T if YT < K

∞ otherwise ,

a discrete random variable on IR ∪ {∞} whose distribution is specified by
IP(τ = T ).

Definition 1.8 (First passage time (FPT) under the structural approach)
Given the underlying process (Yt)t≥0 and a threshold level K, the first-
passage time (or default time) is defined by

τ := inf{s ≥ 0 : Ys < K} .

The first-passage-time distribution, also called default probability, is denoted
by IP (τ ≤ t) and for u ≥ t the conditional default probability density given
the information FY

t is given by IP(τ ∈ du | FY
t ).
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Since {τ ≤ t} = {inf0≤s≤t Ys < K} ∈ FY
t for all t, Definition 1.5 tells us

that the first-passage time τ is a IFY -stopping time. Considering a FPT is
only interesting, when the first-passage event has not already occurred at
time zero; so we will always assume K ≤ Y0.

Definition 1.9 (Multivariate first-passage-time distribution)
Given underlying processes (Y i

t )t≥0, threshold levels Ki and default times
τi = inf{s ≥ 0 : Ys < K}, i = 1, . . . , n, the joint first-passage-time distribu-
tion (or joint default probability (JDP)) is given by

IP (τ1 ≤ t, . . . , τn ≤ t) .

Furthermore

IP (τ1 > t, . . . , τn > t)

is called joint survival probability (JSP).

The two-dimensional JDP, JSP and marginal probabilities are in the follow-
ing relation:

IP(τ1 ≤ t, τ2 ≤ t) = IP(τ1 > t, τ2 > t) + IP(τ1 ≤ t) + IP(τ2 ≤ t) − 1 .

(1.2)

The following definitions characterize the dependencies in a multivariate
model.

Definition 1.10 (Asset correlation)
The correlation between two asset value processes Y 1 and Y 2,

ρAt := Corr
(
Y 1
t , Y

2
t

)
=

Cov(Y 1
t , Y

2
t )

√

Var(Y 1
t )Var(Y 2

t )
,

is called asset correlation.

Asset correlation does not display the whole dependence between two stochas-
tic processes, as it does not totally specify the joint distribution. We will
say that the joint distribution is described by the asset dependence. Con-
cerning our processes, asset dependence will be due to correlated driving
Wiener processes on the one hand and a joint (or dependent) time change
on the other. Therefore the next definition is to distinguish the cause of de-
pendence. Assume the Brownian motions W 1 and W 2 are correlated with
constant correlation parameter ρ. Then there exists a Brownian motion
W⊥, independent of W 1, such that W 2 can be written in terms of W 1 and
W⊥:

W 2
t = ρW 1

t +
√

1 − ρ2 W⊥
t ∀t .
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Definition 1.11 (Brownian correlation)
A constant correlation between Brownian motions will be called Brownian
correlation. If there is zero correlation we say there is Brownian indepen-
dence.

Definition 1.12 (Event correlation / default correlation)
The correlation between the default events {τ1 ≤ t} and {τ2 ≤ t},

ρEt := Corr
(
II{τ1≤t}, II{τ2≤t}

)
=

Cov
(
II{τ1≤t}, II{τ2≤t}

)

√

Var
(
II{τ1≤t}

)
Var

(
II{τ2≤t}

)

=
IP(τ1 ≤ t, τ2 ≤ t) − IP(τ1 ≤ t)IP(τ2 ≤ t)

√

IP(τ1 ≤ t)(1 − IP(τ1 ≤ t))IP(τ2 ≤ t)(1 − IP(τ2 ≤ t))
.

is called event correlation or default correlation.

We define mt := min(IP(τ1 ≤ t), IP(τ2 ≤ t)) and Mt := max(IP(τ1 ≤
t), IP(τ2 ≤ t)). Then 0 ≤ IP(τ1 ≤ t, τ2 ≤ t) ≤ mt, and some simple al-
gebraic transformations lead to the following natural bounds for the event
correlation:

−IP(τ1≤t)IP(τ2≤t)√
IP(τ1≤t)(1−IP(τ1≤t))IP(τ2≤t)(1−IP(τ2≤t))

≤ ρEt ≤
√

mt(1−Mt)
Mt(1−mt)

. (1.3)

The next lemma connects the stochastic integral (w.r.t. Brownian motion) to
a time-changed Brownian motion. We will need this relationship in order to
determine dynamics under our stochastic time-change model in Section 6.3.
The remark following the lemma considers the special case where the time
change is deterministic. This will be applied to derive the dynamics under
the Overbeck & Schmidt model in Section 5.4. First of all we introduces the
quadratic variation.

Definition 1.13 (Quadratic variation)
LetX be a continuous martingale. The quadratic variation process (〈X〉t)t≥0

is defined by

〈X〉t := X2
t − 2

∫ t

0
Xs dXs .

IfX is in addition square-integrable, i.e. IE[X2
t ] <∞ ∀t, the quadratic varia-

tion process 〈X〉 is the unique adapted, increasing process for which 〈X〉0 =
X2

0 = 0 and X2 − 〈X〉 is a martingale. Then also, if Πm = {t0, . . . , tm} are
partitions of [0, t] tending to zero (for m → ∞) in terms of the maximum-
norm |Πm| = max1≤k≤m |tk − tk−1|, we have that the so-called realized
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quadratic variation or sample quadratic variation
∑m

k=1

(
Xtk −Xtk−1

)2
tends

to the quadratic variation5, i.e.
∑

Πm

(
Xtk −Xtk−1

)2 |Πm|→0−→ 〈X〉t in probability.

Furthermore, for two stochastic processes X and Y the realized covariation
is given by

m∑

k=1

(
Xtk −Xtk−1

) (
Ytk − Ytk−1

)
.

Lemma 1.14 6 (Time-changed Brownian motion)
Let (gt) be a stochastic process on (Ω,F , IP) that is adapted to the filtration
IF = (Ft), has càglàd7 paths and satisfies IE[

∫ t
0 g

2
s ds] < ∞ for every t ≥ 0.

Furthermore (Wt,Ft) be a Brownian motion. Then the stochastic integral
∫ t
0 gs dWs is a continuous local martingale with quadratic variation

〈
∫ ·

0
gs dWs

〉

t

=

∫ t

0
g2
s ds =: Gt ,

mean zero and variance

Var
[∫ t

0 gs dWs

]

= IE

[(∫ t
0 gs dWs

)2
]

= IE
[〈∫ ·

0 gs dWs

〉

t

]
= IE[Gt] .

Furthermore

G−1
t = inf

{

u ≥ 0 :

〈∫ ·

0
gs dWs

〉

u

> t

}

is a IF-stopping time. Then there exists a Brownian motion
(

Bt,FG−1
t

)

such

that, a.s.,
∫ t

0
gs dWs = BGt , 0 ≤ t <∞ .

Remark 1.15 (Deterministically time-changed Brownian motion)
In particular the last lemma holds for a deterministic time change Gt =
∫ t
0 g

2
s ds. In fact, then

(∫ t
0 gs dWs

)

t
and (WGt)t are both Gauss-processes

having the same covariance structure i.e.
∫ t

0
gs dWs

L
= WGt .

This will be used in Chapter 5.

5Cf. Karatzas & Shreve (1991), Section 1.5.
6Cf. Karatzas & Shreve (1991), Section 3.4, B.
7Càglàd is the abbreviation for continu à gauche et limites à droite (left continuous

paths with right limits).
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Remark 1.16 (Quadratic variation of time-change processes)
Geman, Madan & Yor (2002) considered the composite process of a Brow-
nian motion W time changed with a right-continuous process A,

Yt = WAt ,

and analyzed whether the time change can be observed under the informa-
tion of the underlying process IFY . This is important because if the time
change is known to all market participants continuously in time, then it is
useable for hedging and martingale models are available for pricing. Oth-
erwise pricing under the filtration IFY is critical. If the time change is con-
tinuous and square integrable, i.e. IE[A2

t ] < ∞, it is given by the quadratic
variation of the time-changed process (cf. Geman, Madan & Yor (2000)):

At = 〈Y 〉t .

Geman, Madan & Yor showed that a discontinuous time change cannot be
recovered by the observed composite process (i.e. by its realized quadratic
variation). For a general discontinuous time change they obtained

IE
[
([Y, Y ]t −At)

2
]

= IE [2[A,A]t] > 0 ,

so the time change is not determined by the quadratic variation.8 They
considered a variety of discontinous time changes, analyzed whether the
realized quadratic variation is (at least) a sufficient statistic for the time
change and found that this is only the case for the Gamma time change.

1.1.1 The aim of this chapter and our application

We aim for a structural first-passage-time model τ that leads to an analytical
first-passage-time distribution, in one and more dimensions. We will assume
a constant threshold level K ≤ 0 and for the underlying process Y we search
a model class that, in the multivariate model, inherents some dependency
structure.

In our application to modeling credit-spread curves, the structural ap-
proach has a realistic interpretation of the default event and the available
analytical FPT distributions simplify calibrations. Moreover, dependencies
in our multivariate model, i.e. business time and asset correlation, can be
explained. Last but not least our model yields credit-spread dynamics and
allows for input on the credit-spread volatility. This is especially necessary
and important for long-term and leveraged credit products.

When it comes to calibrating a specific model (see Chapter 2 and 5)
we sometimes assume that the market provides us with a FPT distribu-
tion (F (t))0≤t≤T . Usually, for simplicity, we will assume it is given by the

8[Y, Y ]t denotes the quadratic variation for a semimartingale, in general. Our Def. 1.13
is well-defined because in case Y is continuous we have [Y, Y ]t = 〈Y 〉t.
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exponential distribution

F (t) = 1 − e−λt , λ > 0. (1.4)

Then on a discrete grid {t0 = 0, . . . , tm = T} we want to fit the model
exactly at least at two points,

F (ti)
!
= IP (τ ≤ ti) ,

e.g. the liquid credit spread points t1 = 5 years and t2 = 7 years.

1.2 Survey: default-time and first-passage-time mod-

els

In this chapter we want to keep the results as general as possible and there-
fore do not focus on the interpretation in credit risk and the link to equity
and debt. This we postpone to the Chapters 3, 4, 5 and 6, where we give
an introduction to credit risk, especially to the credit spread, and analyze
the Merton model, the Overbeck & Schmidt model and our stochastic time
change model in detail.

1.2.1 Brownian motion with drift

Merton (1974) introduced the classical threshold model to finance, where
the considered underlying process is given by geometric Brownian motion
and the threshold level is supposed to be constant. At a fixed point in time
T , one is interested in whether at that time the underlying process crossed
the threshold or not. This model is called the Merton model . It is equiva-
lent to considering Brownian motion (with volatility and drift parameter),
Yt = σWt + µt, and a constant threshold barrier K (given by the natural
logarithm of the original threshold value). Please note that throughout this
thesis W denotes a Brownian motion starting at zero, µ a constant drift,
σ a constant volatility, K ≤ 0 a constant threshold level, Φ the standard
normal cumulative distribution function and φ its density. The default-time
distribution for the classical approach (see Definition 1.7) is specified by

IP (τ = T ) = IP (σWT + µT < K) = Φ

(
K − µT

σ
√
T

)

. (1.5)

Black & Cox (1976) started to consider the Merton model in a first-
passage time (FPT) approach. So again geometric Brownian motion was
chosen to be the underlying process, and the threshold was assumed to be
exponentially time dependent. Equivalently, we consider the first-passage-
time problem for Brownian motion with drift and a constant threshold bar-
rier. The FPT distribution can be derived via the reflection principle9 (since

9See Harrison (1985) or Karatzas & Shreve (1991), Section 2.6.
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K ≤W0), and yields

IP (τ ≤ t) = IP

(

min
0≤s≤t

[σWs + µs] < K

)

= Φ

(
K − µt

σ
√
t

)

+ e2µK

σ2 Φ

(
K + µt

σ
√
t

)

. (1.6)

1.2.2 Joint survival probability - Brownian motion

Zhou (2001) determined the JSP of the two-dimensional Brownian motion
(σ1W

1, σ2W
2), with correlation parameter ρ, not crossing the upper bound

(K1,K2) by considering the equivalent problem of solving a partial differen-
tial equation (PDE). Let

F̃ (K1,K2, t) = IP

(

max
0≤s≤t

σ1W
1
s < K1, max

0≤s≤t
σ2W

2
s < K2

)

(1.7)

be the joint survival probability and f(x1, x2, t) the corresponding transition
probability density satisfying

F̃ (K1,K2, t) =

∫ K1

−∞

∫ K2

−∞
f(x1, x2, t) dx1 dx2 .

That is, f is the probability density that a particle being at (x1, x2) at time
zero and not having yet crossed the boundary (K1,K2) will not reach that
boundary in the time interval [0, t]. The transition probability satisfies the
Kolmogorov forward equation10,

σ2
1

2

∂2f

∂x2
1

+ ρσ1σ2
∂2f

∂x1∂x2
+
σ2

2

2

∂2f

∂x2
2

=
∂f

∂t

x1 < K1 , x2 < K2 ,

subject to specific boundary conditions:

f(x1,K2, t) = f(K1, x2, t) = 0 , t > 0 ,
∫ K1

−∞

∫ K2

−∞
f(x1, x2, t) dx1 dx2 ≤ 1 , t > 0 ,

f(−∞, x2, t) = f(x1,−∞, t) = 0

f(x1, x2, 0) = δ(x1)δ(x2) ,

where δ is the Dirac delta function. The first three conditions are due to the
fact that f is a density and the last one displays the starting value of the
process. Zhou derived the solution by various transformations of the PDE,

10See for example Cox & Miller (1972), Karatzas & Shreve (1991).
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in particular by transforming the (x1, x2) coordinates into polar coordinates
(r, θ), yielding the PDE

1

r2
∂2f

∂θ2
+

1

r

∂f

∂r
+
∂2f

∂r2
= 2

∂f

∂t
.

As a solution he obtained the transition probability density:

f(r, θ, t) = 2

σ1σ2

√
1−ρ2αt

e−
r2+r2

0
2t

∑∞
n=1 sin

(
nπθ0
α

)

sin
(
nπθ
α

)
Inπ

α

(
rr0
t

)
,

(1.8)

where the abbreviations r0, θ0 and α are given in Theorem 1.17 and Iν
denotes the modified Bessel function of the first kind with order ν11. The
JSP F̃ of equation 1.7 is yielded by integrating f .

We will always consider the contrary problem of not crossing a lower
barrier. Thus before applying Zhou’s solutions for the JSP F̃ and transition
probability density f we have to reflect our first-passage processes at the x-
axes. Therefore the next theorem states the JSP result in our terms where
surviving means not crossing a lower barrier. We will apply Zhou’s results
various times.

Theorem 1.17 (Zhou; JSP of a two-dimensional Brownian motion not
crossing a lower barrier)
Let Y 1 = σ1W

1 and Y 2 = σ2W
2 be correlated Wiener processes with corre-

lation parameter ρ and K1 < 0, K2 < 0 the threshold levels. Then Y 1 and
Y 2 have the following joint survival probability:

IP (τ1 > t, τ2 > t)

≡ IP

(

min
0≤s≤t

σ1W
1
s > K1, min

0≤s≤t
σ2W

2
s > K2

)

=
2r0√
2πt

e−
r2
0

4t

∑

n=1,3,5,...

1

n
sin

(
nπθ0
α

)[

I 1
2
(nπ

α
+1)

(
r20
4t

)

+ I 1
2
(nπ

α
−1)

(
r20
4t

)]

,

where

θ0 =







tan−1

(

σ1K2

√
1−ρ2

σ2K1−ρσ1K2

)

if
σ1K2

√
1−ρ2

σ2K1−ρσ1K2
> 0

π + tan−1

(

σ1K2

√
1−ρ2

σ2K1−ρσ1K2

)

otherwise,

r0 =
Y 2

0 −K2

σ2 sin(θ0)
,

α =







tan−1

(

−
√

1−ρ2
ρ

)

if ρ < 0

π + tan−1

(

−
√

1−ρ2
ρ

)

otherwise.

11The Bessel function is given in Def. A.3, Borodin & Salminen (2002) and studied
in more detail in Revuz & Yor (2005).
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1.2.3 Joint survival probability - Brownian motion with drift

We proceed much as in the previous subsection (for Brownian motion with-
out drift). Denote the JSP of the two-dimensional Brownian motion with
drift and correlation parameter ρ by

F̃µ(K1,K2, t) = IP

(

max
0≤s≤t

(
σ1W

1
s + µ1s

)
< K1, max

0≤s≤t

(
σ2W

2
s + µ2s

)
< K2

)

.

(1.9)

The corresponding transition probability density for a particle being at
(x1, x2) in time zero and not reaching the boundary (K1,K2) in the time
interval [0, t] will be denoted by fµ(x1, x2, t). The solution for the tran-
sition probability density in polar coordinates can be derived by changing
the measure so that the considered Brownian motion with drift becomes a
Brownian motion without drift under the new measure, and then using the
result for f in equation (1.8). Compare e.g. Fischer (2003). The solution is
the following:

fµ(r, θ, t) =
2

σ1σ2

√

1 − ρ2αt
e

A3t
2

+A1r cos θ+A2r sin θ− r2+r2
0

2t

·
∞∑

n=1

sin

(
nπθ0
α

)

sin

(
nπθ

α

)

Inπ
α

(rr0
t

)

. (1.10)

The JSP F̃µ is yielded when integrating the transition probability density
in equation (1.10) and is stated in the (2001) paper by Zhou - an update
of Zhou (1997b). The derivation can be found in Fischer (2003) resp.
Rebholz (1994).

Again we give the JSP result in the way that is suitable for us, i.e. for
the contrary problem of not crossing a lower barrier. Thus before applying
the JSP F̃µ and transition probability density fµ we have to reflect our
first-passage processes at the x-axes. The result, the JSP for not crossing a
lower barrier, is given by the next theorem.

Theorem 1.18 (JSP of a two-dimensional Brownian motion with drift not
crossing a lower barrier)
Let Y 1 = σ1W

1 and Y 2 = σ2W
2 be correlated Wiener processes with corre-

lation parameter ρ and K1 < 0, K2 < 0 the threshold levels. Then Y 1 and
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Y 2 have the following joint survival probability:

IP (τ1 > t, τ2 > t)

≡ IP

(

min
0≤s≤t

(
σ1W

1
s + µ1s

)
> K1, min

0≤s≤t

(
σ2W

2
s + µ2s

)
> K2

)

=
2

αt
e

A3t
2

− r2
0

2t

∞∑

n=1

sin

(
nπθ0
α

)

∫ α

θ=0

∫ ∞

r=0
sin

(
nπθ

α

)

r eA1r cos θ+A2r sin θ− r2

2t Inπ
α

(rr0
t

)

dθ dr ,

where r0, θ0 and α are as in Theorem 1.17 and

A1 =
µ1σ2 − ρµ2σ1

(1 − ρ2)σ2
1σ2

,

A2 =
µ2σ1 − ρµ1σ2

(1 − ρ2)σ1σ2
2

,

A3 =
µ2

1σ
2
2 − 2ρµ1µ2σ1σ2 + µ2

2σ
2
1

(1 − ρ2)σ2
1σ

2
2

.

1.2.4 Deterministically time-changed Brownian motion

Let (Tt) be a continuous deterministic time change with regard to Definition
1.1. Then, by continuity, the first-passage time of the time-changed process
(WTt) has distribution

IP

(

min
s≤t

WTs < K

)

= IP (mins≤Ts Ws < K) = 2Φ

(
K√Tt

)

(1.11)

This FPT will be applied in Chapter 5 to calibrate the Overbeck & Schmidt
credit-spread model.

1.2.5 Joint survival probability - deterministically time-changed

Brownian motion

Hull & White (2001) fitted a Merton-type default model on a discrete
time grid to the default probability curve of CDS spreads. Therefore the
threshold value had to be adapted at each grid point to the given default
probability value. In a next step, considering two firms, they calculated the
default correlation, as in Def. 1.12, by simulating the instantaneous corre-
lation through proxies such as the company’s equity returns and calculating
the joint default probabilities.

Overbeck & Schmidt (2005) introduced a continuous-time model by ap-
plying a deterministic time change to a Wiener process. Their model yields
an analytical first-passage-time distribution and can be perfectly fitted to
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a given default-probability curve. In Chapter 5 we analyze the so-called
Overbeck & Schmidt model in more detail. At this point we want to state
their result of an analytical joint survival probability for a deterministic
time-change model.

Theorem 1.19 (Overbeck & Schmidt extended12; Joint survival probabil-
ity)
Let W 1 and W 2 be correlated Wiener processes with correlation parameter
ρ and K1, K2 < 0 the threshold levels. For deterministic time changes T 1

and T 2 with T 1
0 = 0 = T 2

0 and default times τi, i = 1, 2 defined through
the asset-value processes Y 1

s = W 1
T 1

s
and Y 2

s = W 2
T 2

s
we have the following

expression for the joint survival probability:

IP (τ1 > t, τ2 > t)

=
2

αT
e−

r2
0

2T

∞∑

n=1

sin

(
nπθ0
α

)

∫ α

θ=0

∫ ∞

r=0
sin

(
nπθ

α

)

r e−
r2

2T Inπ
α

(rr0
T

)

(

−1 + 2Φ

(

r
IIT 1

t ≤T 2
t

sin θ + IIT 1
t >T

2
t
[
√

1 − ρ2 cos θ + ρ sin θ]
√

∆

))

dθ dr,

where

T = min(T 1
t , T

2
t ) ,

∆ = max(T 1
t , T

2
t ) − min(T 1

t , T
2
t ) ,

θ0 =







tan−1

(

K2

√
1−ρ2

K1−ρK2

)

if
K2

√
1−ρ2

K1−ρK2
> 0

π + tan−1

(

K2

√
1−ρ2

K1−ρK2

)

otherwise,

r0 =
−K2

sin(θ0)
,

α =







tan−1

(

−
√

1−ρ2
ρ

)

if ρ < 0

π + tan−1

(

−
√

1−ρ2
ρ

)

otherwise.

Note that if T ≡ T 1
t = T 2

t , the expression simplifies to the formula that

12The survival probability stated in O&S (2005) is correctly given under the assumption
T 2 ≥ T 1 that is applied in their proof. It is not correct for T 2 < T 1 since then, following
the lines of Zhou (1997b), another coordinate transform has to be done to solve the
corresponding PDE. As a consequence, for general T 1 and T 2, the indicator functions had
to be included in the integrand of the general O&S result.
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directly follows from Zhou’s Theorem 1.17:

IP (τ1 > t, τ2 > t)

=
2r0√
2πT

e−
r2
0

4T

∑

n=1,3,5,...

1

n
sin

(
nπθ0
α

)[

I 1
2
(nπ

α
+1)

(
r20
4T

)

+ I 1
2
(nπ

α
−1)

(
r20
4T

)]

.

In the following sections we give a short overview about which FPT results
can be reached when including jumps in the underlying process. The jump
part makes it difficult to study the distribution of the first-passage time τ
because the process does not necessarily hit the boundary K exactly - there
can be an overshoot Yτ −K > 0 or undershoot K − Yτ > 0.

1.2.6 Classical jump-diffusion approach

Zhou (1997a) developed a new structural approach by modeling the firm-
value process through a jump-diffusion process:

Yt = µt+ σWt +

Nt∑

i=1

Zi , (1.12)

Nt ∼ Pois(λt) , Zi iid ∼ N (µZ , σZ) ,

where (Nt) determines the number of jumps and Zi the amplitude of the
i-th jump. The advantage of including jumps into a diffusion model is that
this allows an instantaneous default of the firm. Furthermore a jump dif-
fusion model can generate various credit-spread shapes including upward-,
downward-sloping, flat and hump-shaped. Zhou determined a closed-form
default time distribution under the classical approach:

IP (τ = T ) ≡ IP(YT < K) =
∞∑

n=1

exp−λt(λt)i
i!

Φ




K − µT − iµZ
√

σ2T + iσ2
Z



 .

1.2.7 First-passage jump-diffusion approach

Kou & Wang (2003) analyzed the FPT of the jump diffusion process in
equation (1.12) hitting or crossing an upper13 barrier K,

τ = inf{s ≥ 0 : Ys ≥ K} ,

where the Zi are iid double exponentially distributed, i.e.

fZi(z) = p · η1 e−η1z II{z≥0} + q · η2 eη2z II{z<0} ,

13Note that this is the contrary problem since we consider the FPT distribution of
crossing a lower barrier.
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with p, q ≥ 0, p+ q = 1 and η1, η2 > 0. The FPT distribution has to be split
up:

IP(τ ≤ t) = IP(τ ≤ t, Yτ −K = 0) + IP(τ ≤ t, Yτ −K > 0) ,

that is, the overshoot distribution is necessary, in particular IP(Yτ −K = 0)
and IP(Yτ −K > x), x > 0. In the case of double exponentially distributed
jumps the overshoot distribution can be derived because it is conditionally
memoryless, i.e.

IP(Yτ −K ≥ x | Yτ −K > 0) = e−η1x .

Furthermore overshoot and FPT are conditionally independent:

IP( τ ≤ t, Yτ −K ≥ x | Yτ −K > 0)

= IP(τ ≤ t | Yτ −K > 0) IP(Yτ −K ≥ x | Yτ −K > 0) .

When we want to determine the FPT distribution via the reflection principle,
the dependence structure between overshoot and terminal value Yt is needed,
but not known:

IP(τ ≤ t) = IP(τ ≤ t, Yτ −K = 0, Yt ≥ K) + IP(τ ≤ t, Yτ −K > 0, Yt ≥ K)

+ IP(τ ≤ t, Yτ −K = 0, Yt < K) + IP(τ ≤ t, Yτ −K > 0, Yt < K) .

As a consequence, an explicit FPT distribution is not available. But Kou and
Wang were able to compute the Laplace transform14 of the FPT τ and hence
could retrieve the FPT distribution from equation (1.1) by applying the
Gaver-Stehfest algorithm, that numerically inverts the Laplace transform on
the real line. Further numerical methods for first-passage of jump-diffusion
processes can be found in Atiya & Metwally (2005).

1.2.8 Subordinated Lévy processes

In Definition 1.3 and 1.4 we introduced Lévy processes and subordinators,
non-decreasing Lévy processes that can be used as a time change. Cari-
boni & Schoutens (2007) considered a subordinated Wiener process as
asset-value process, where the subordinator was given by a pure jump pro-
cess and interpreted as new business clock. Let us consider a general sub-
ordinator J independent of W and the resulting first-passage process

Yt = σWJt + µ Jt .

Then Y is again a Lévy process.15 A subordinator has independent incre-
ments, that is, the arriving information is not affected by the amount of

14See Definition 1.6.
15This even holds when we substitute W by another Levy process independent of J ; see

Kyprianou (2006b), Lemma 2.15.
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information that has already arrived. If the subordinator yields a Laplace
transform, then also a Laplace transform is available for the whole process Y .
This is for instance the case for the gamma subordinator or inverse Gaussian
subordinator (see Table 1.1), which lead to the variance gamma model or to
the normal inverse Gaussian model. Under the classical approach (Def. 1.7),
a closed-form default time distribution is obtained:

IP (τ = T ) = IP(YT < K) = IE [ IP(YT < K | JT ) ]

=

∫ ∞

0
IP(YT < K | JT = x) IP(JT ∈ dx)

=

∫ ∞

0
Φ

(
K − µx

σ
√
x

)

IP(JT ∈ dx) ,

where the corresponding result for Brownian motion with drift, equation
(1.5), was applied. That is, the default-time distribution is explicit whenever
an explicit density of the subordinator fJt(x) dx = IP(JT ∈ dx) is available.
Examples are the already mentioned gamma process and the inverse Gaus-
sian process, see Table 1.1. As mentioned when we defined subordinators,

subordinator Lévy measure probability density Laplace transform
Jt ν(x) fJt

(x) IE[e−uJt ]

gamma c e−λx

x IIx>0
λct

Γ(ct)x
ct−1 e−λx (1 − u

λ )−ct

inv. Gaussian c e−λx

x3/2 IIx>0
ct

x3/2 e2ct
√

πλ−λx−π c2t2

x e−2ct
√

π(
√

λ−u−
√

λ)

Table 1.1: Gamma subordinator and inverse-Gaussian subordinator,
c > 0 accounts for the overall jump intensity (i.e. it determines the time-
change speed) and λ > 0 for the decay rate of big jumps. The denominator
x3/2 of the inverse Gaussian Lévy measure increases the importance of small
jumps, compared to the gamma denominator x.

J is only continuous in the trivial case of a deterministic drift. Interesting
subordinators are jump processes and thus lead to a noncontinuous pro-
cess Y . Then at first-passage, overshoots or undershoots are possible. As a
consequence, an explicit formula for the FPT distribution is not available.
Compare Cont & Tankov (2004). Furthermore compare Alili & Kypri-
anou (2005) and Kyprianou (2006b) for the first-passage of Lévy processes
and an analysis of overshoot and undershoot distributions of (independently)
exponentially time changed respectively subordinated Lévy processes (espe-
cially when the Lévy process is spectrally one-sided or a subordinator itself)
via the Wiener-Hopf factorization.
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The multivariate model is given by

Y i
t = σiW

i
Jt

+ µiJt , i = 1, . . . ,m , (1.13)

ρij = Corr(W i
t ,W

j
t ) ∀t ,

where the subordinator inserts a dependency structure - in addition to a pos-
sible Brownian correlation through the ρij ’s. Luciano & Schoutens (2006)
introduced the corresponding exponential model, in particular assuming a
gamma subordinator (see Table 1.1), for modeling multivariate financial as-
sets:

Ait = Ai0 exp
{
σiW

i
Jt

+ µiJt
}
, i = 1, . . . ,m ,

see also Section 4.6.2 and Chapter 7. One possible interpretation is that
the asset-value processes are influenced by the same external, economic in-
formation and thus run under the same business clock. This is one of the
ideas we adopt to yield dependence, while considering another time-change
process.

1.2.9 Stable processes at first passage

A (strictly) stable process X is a special Lévy process. Its distribution is
characterized by a constant α ∈ (0, 2] and the following property:

Xt
L
= t1/αX1 ∀t ≥ 0 .

Kyprianou (2006a) determined the overshoot and undershoot distributions
of X at first passage. Furthermore he was able to derive the first-passage-
time distribution for the reflected strictly stable process

{

(z ∨ sup
0≤s≤t

Xs) −Xt : t ≥ 0

}

, z ≥ 0 .

This is not possible for the stable process X itself.

1.2.10 Time-changed Lévy processes

Carr & Wu (2003) considered a Lévy process L time changed by an inte-
grated jump process

Gt =

∫ t

0
v(s−) ds ,

that is normalized so that IE[Gt] = t. The local intensity v is interpreted as
instantaneous (business) activity rate and can be correlated with innovations
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in L (e.g. due to leverage effects). Being an integral, G is a continuous
process. Carr & Wu determined the characteristic function of

Yt = LGt ,

when L and G are independent and when they are dependent. Under inde-
pendence this is straightforward and yields:

IE
[
eiuYt

]
= lGt(ψL(u)) ,

where lGt is the Laplace transform of the time change and ψL is the Lévy ex-
ponent; see eq. (1.1). This is useful for option pricing under the correspond-
ing exponential model, and reduces calculation compared to characteristic
functions.

Classical default time distribution and FPT distribution are only avail-
able when L is a diffusion process. The formulas are explicit only if the
distribution of G is explicit. This is exactly the model of our interest; see
Section 1.3 and Chapter 6.

1.2.11 Summary and conclusion

In this last review section we have summarized models that are important to
understand our further proceeding. We have seen models based on Brownian
motion that lead to an analytical classical default-time distribution as well
as a first-passage-time distribution. We have learnt that the classical diffu-
sion model with jumps has a closed-form default-time distribution and that,
in case the jumps are double exponentially distributed, a Laplace transform
of the FPT can be derived and the FPT distribution can be retrieved nu-
merically. There is even a so-called reflected strictly stable process - a very
specific Lévy process - where a FPT distribution is available. We aim at an
analytical FPT distribution, always having in mind our application of mod-
eling credit spread and credit-spread dynamics. The survey on first-passage
processes and first-passage times teaches us that it seems very reasonable
to stay with a model based on Brownian motion. Therefore Chapter 4 ana-
lyzes Merton’s threshold model. We will learn that the Merton model fails to
produce realistic credit-spread curves and credit-spread dynamics. Chapter
5 then considers the deterministic time-transformation model. We will find
that, while it perfectly fits a given default-probability curve, it has only one
parameter - the correlation parameter - to describe dependencies for two-
dimensional default probabilities. Furthermore, the model can not influence
multivariate default probabilities of more than two dimensions and it has
no degrees of freedom to influence credit-spread dynamics. Therefore, as an
extended approach, we apply a stochastic time change on Brownian motion.
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1.3 Stochastic time-change model

Consider a Wiener process with drift

σWt + µt

and substitute the normal time t by some experienced time Gt as in Defini-
tion 1.1. This leads to the first-passage process of our interest:

Yt = σWGt + µ Gt . (1.14)

By definition Y is adapted to the filtration IFY . The corresponding first-
passage time is given by

τ = inf{s ≥ 0 : Ys < K} = inf{s ≥ 0 : σWGs + µ Gs < K}

and is a IFY stopping time in terms of Definition 1.5. Considering a FPT
makes only sense when a first-passage (or default) has not already occurred
in the past, i.e. when we have not already crossed the barrier K at time
zero, that is, we will always assume that

K < σWG0 + µ G0.

We interpret the stochastic clock as a business clock that measures the
amount of (stochastic) information arrival . The extension to a multivariate
model is straightforward:

Y i
t = σiW

i
Gi

t
+ µiG

i
t , i = 1, . . . ,m , (1.15)

ρij = Corr(W i,W j) .

Each underlying process Y i has an individual driving Wiener process W i,
drift µi and uncertainty parameter σi. Dependencies are possible between
the Brownian motions, between the time changes and between Brownian
motions and time changes. We will not allow for the last mentioned de-
pendence between Brownian motion and time change, since then our proofs
will not work. In detail, as mentioned already in the introduction of this
chapter, we will consider the following dependence structures between the
first-passage processes:

• independent Brownian processes but identical time change,

• correlated Brownian processes and identical time change,

• correlated Brownian processes under separate time changes.

When applying the same time change to each process, one can think of un-
derlyings that reach the same (business) information at the same time, with



22 CHAPTER 1. FIRST-PASSAGE TIMES

the same speed. If the (external) information is different, independent time
changes could be suitable. The correlation parameter ρij , of the untrans-
formed Brownian motions, could describe any other dependence structure,
some basic joint dependence that does not change with time. In unison
with the general time change Definition 1.1 comes the assumption for our
stochastic time change model:

Assumption 1.20 (Continuous time change)
Let G be a non-decreasing process with continuous paths and starting value
G0 = g ≥ 0. Furthermore G be independent of the Wiener process W .

Assumption 1.20 accompanies our model (1.14) and will be assumed through-
out this thesis. When the starting value g is truely positive the business clock
speeds up at the very first moment and thus enables an instant jump of the
underlying process. In credit risk this enables an instantaneous default .
When we slightly change the model by defining the asset-value process and
the default barrier

Ỹt := WGt−g ,

K̃ := K −Wg , (1.16)

then the threshold level K̃ is a random variable (see Figure 4.9) and the
CreditGrades model by Finger et al. (2002) is a special case of the model.
We give a detailed introduction to the CreditGrades model in Section 4.5.1.

1.3.1 What does a continuous stochastic time change look

like?

There are two main approaches in order to get a positive, non-decreasing,
continuous time change process. The first possibility is to apply an integral
to a positive process (gs):

Gt = g +

∫ t

0
gs ds g ≥ 0 . (1.17)

Here gs can be understood as the increase of information or default speed.
A positive process is for instance the square or absolute value of some other
process. There are also stochastic processes that are already positive such as
the Cox-Ingersoll-Ross process or the generalized Ornstein-Uhlenbeck pro-
cess with positive jumps, see Section 1.3.6. The integral representation
(1.17) makes G an absolutely continuous process (Definition 1.2) with start-
ing value g. Conversely, if G is an absolutely continuous process there exists
a non-negative process (gs) and a starting value g such that (1.17) holds.16

16Cf. Protter (2004).
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The second possibility is to define the time change by the supremum of
a positive continuous process (which is actually its maximum):

Gt = sup
0≤s≤t

gs = max
0≤s≤t

gs .

Note that our results in the remainder of this chapter are general and thus
independent of any particular time-change expression.

1.3.2 First-passage-time distribution

In the following we will abbreviate the time change distribution as follows:

IPGt( dx) ≡ IP(Gt ∈ dx) .

Theorem 1.21 (First-passage time for stochastic continuous time change)
Let G be a time change fullfilling Assumption 1.20. Then the default prob-
ability for the first-passage process Yt = σWGt +µ Gt and threshold barrier
K ≤ σWg + µ g is given by

IP (τ ≤ t) =

∫ ∞

g

[

Φ

(
K − Y0

σ
√
x− g

− µ

σ

√
x− g

)

+ e2 µ

σ2 (K−Y0) Φ

(
K − Y0

σ
√
x− g

+
µ

σ

√
x− g

)]

IPGt( dx) .

Proof. We use Assumption 1.20, i.e. continuity of the time change and
independence of time change and Wiener process. Note that G0 = g and
Y0 = σWg + µg. Then

IP (τ ≤ t)

= IP

(

min
0≤s≤t

[σWGs + µGs] < K

)

= IP

(

min
0≤s≤t

[

WGs +
µ

σ
Gs

]

<
K

σ

)

Gt cont.
= IP

(

min
g≤s≤Gt

[

Ws +
µ

σ
s
]

<
K

σ

)

=

∫ ∞

g
IP

(

min
g≤s≤Gt

[

Ws +
µ

σ
s
]

<
K

σ
| Gt = x

)

IPGt( dx)

Gt⊥(Ws)
=

∫ ∞

g
IP

(

min
g≤s≤x

[

Ws +
µ

σ
s
]

<
K

σ

)

IPGt( dx)

=

∫ ∞

g
IP

(

min
0≤s≤x−g

[

Wg+s +
µ

σ
(g + s) − Y0

σ

]

<
K − Y0

σ

)

IPGt( dx) .

The value of the integrand is now given by the FPT formula (1.6) for Brow-
nian motion with drift and start at zero. �

In the following we apply this result for the multi-dimensional model.
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1.3.3 Multivariate first-passage-time distribution under Brow-

nian independence

In equation (1.15) we introduced the multivariate model. In this section
it is assumed that the driving Wiener processes of the the m first-passage
processes are uncorrelated (Brownian independence, see Def. 1.11). They
are only dependent through the same time change, and thus experience
identical information at the same time. This is the simple extension to
a multi-dimensional default probability and deriving the FPT formula is
straightforward: Conditioning on G, we use the independence of the Wiener
processes W i and apply the result for the one-dimensional case (Theorem
1.21).

Corollary 1.22 (Multi-dimensional default probability under Brownian in-
dependence)
The joint default probability for the multivariate model Y i

t := σiW
i
Gt

+µiGt,
i = 1, . . . ,m, with threshold levels Ki ≤ Y i

0 and uncorrelated Wiener pro-
cesses is given by

IP (τ1 ≤ t, . . . , τm ≤ t)

=

∫ ∞

g

m∏

i=1

[

Φ

(
Ki − Y i

0

σi
√
x− g

− µi
σi

√
x− g

)

+ e
2

µi(Ki−Y i
0 )

σ2
i Φ

(
Ki − Y i

0

σi
√
x− g

+
µi
σi

√
x− g

)]

IPGt( dx) .

Proof. Using the conditional independence of the processes Y i yields

IP (τ1 ≤ t, . . . , τm ≤ t) =

∫ ∞

g
IP (τ1 ≤ t, . . . , τm ≤ t | Gt) IPGt

⊥
=

∫ ∞

g

m∏

i=1

IP (τi ≤ t | Gt) IPGt

Insert the conditional one-dimensional FPT distribution derived in the proof
of Theorem 1.21. �

1.3.4 Joint survival probability under Brownian correlation

Applying the same time transformation to each underlying process is one
way to insert a dependence structure into a multivariate model. Another
possibility is to correlate the driving Wiener processes in addition. For de-
riving the joint survival probability under Brownian correlation, we restrict
ourselves to the two-dimensional case because as a main step of our proofs
we will use Zhou’s result stated in Theorem 1.17. Note that equation (1.2)
then yields the joint default probability.
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Theorem 1.23 (JSP for correlated Brownian motions with drift under a
joint time change)
Let W 1 and W 2 be correlated Wiener processes with correlation parameter
ρ. Furthermore let G be the joint time change satisfying Assumption 1.20
and having starting value G0 = g. Then the default times τi, i = 1, 2 of the
processes Y 1

t := σ1W
1
Gt

+µ1Gt and Y 2
t := σ2W

2
Gt

+µ2Gt have joint survival
probability

IP (τ1 > t, τ2 > t)

=

∫

[g,∞)2

2

α(x− g)
e

A3(x−g)
2

− r2
0

2(x−g)

∞∑

n=1

sin

(
nπθ0
α

)

∫ α

θ=0

∫ ∞

r=0
sin

(
nπθ

α

)

r e
A1r cos θ+A2r sin θ− r2

2(x−g) Inπ
α

(
rr0
x− g

)

dθ dr

IPGt( dx) ,

where Iν denotes the modified Bessel function17 of the first kind with order
ν and

θ0 =







tan−1

(

σ1(K2−Y 2
0 )
√

1−ρ2
σ2(K1−Y 1

0 )−ρσ1(K2−Y 2
0 )

)

if
σ1(K2−Y 2

0 )
√

1−ρ2
σ2(K1−Y 1

0 )−ρσ1(K2−Y 2
0 )
> 0

π + tan−1

(

σ1(K2−Y 2
0 )
√

1−ρ2
σ2(K1−Y 1

0 )−ρσ1(K2−Y 2
0 )

)

otherwise,

r0 =
Y 2

0 −K2

σ2 sin(θ0)
,

α =







tan−1

(

−
√

1−ρ2
ρ

)

if ρ < 0

π + tan−1

(

−
√

1−ρ2
ρ

)

otherwise.

A1 =
µ1σ2 − ρµ2σ1

(1 − ρ2)σ2
1σ2

,

A2 =
µ2σ1 − ρµ1σ2

(1 − ρ2)σ1σ2
2

,

A3 =
µ2

1σ
2
2 − 2ρµ1µ2σ1σ2 + µ2

2σ
2
1

(1 − ρ2)σ2
1σ

2
2

Proof. For each process we follow the first steps of the proof of Theorem
1.21, yielding

IP (τ1 > t, τ2 > t)

=

∫ ∞

g
IP

(

min
g≤s≤x

(
σ1W

1
s + µ1s

)
> K1, min

g≤s≤x

(
σ2W

2
s + µ2s

)
> K2

)

IPGt( dx) .

17See footnote 11.



26 CHAPTER 1. FIRST-PASSAGE TIMES

Then with the integrand we proceed as in the proof of Theorem 1.19 given
in the (2005) paper by Overbeck & Schmidt:

=

∫ ∞

g
IP
(
σ1W

1
s + µ1s > K1, σ2W

2
s + µ2s > K2, g ≤ s ≤ x

)
IPGt( dx)

=

∫ ∞

g
IP
(

σ1W
1
g+s + µ1(g + s) > K1, σ2W

2
g+s + µ2(g + s) > K2,

s ≤ x− g
)

IPGt( dx)

=

∫ ∞

g
IP
(
− σ1W

1
g+s − µ1(g + s) + Y 1

0 < −K1 + Y 1
0 ,

−σ2W
2
g+s − µ2(g + s) + Y 2

0 < −K2 + Y 2
0 , s ≤ x− g

)
IPGt( dx)

=

∫ ∞

g
Fµ(Y 1

0 −K1, Y
2
0 −K2, x− g) IPGt( dx) ,

where Fµ is the JSP of the two-dimensional Brownian motion with drift
(−σ1W

1
g+s − µ1(g + s) + Y 1

0 ,−σ2W
2
g+s − µ2(g + s)), not crossing the upper

barrier (Y 1
0 −K1, Y

2
0 −K2) by time x−g, stated in equation 1.9. The corre-

sponding proper JSP of not crossing the lower barrier is given in Theorem
1.18, in polar coordinates. �

Corollary 1.24 (JSP for correlated Brownian motions)
Let W 1 and W 2 be Wiener processes with correlation ρ. The default times
τi, i = 1, 2 of the processes Y 1

t := σ1W
1
Gt

and Y 2
t := σ2W

2
Gt

have joint
survival probability

IP (τ1 > t, τ2 > t)

=
2r0√
2π

∫ ∞

g

1√
x− g

e
− r2

0
4(x−g)

∑

n=1,3,5,...

1

n
sin

(
nπθ0
α

)

[

I 1
2
(nπ

α
+1)

(
r20

4(x− g)

)

+ I 1
2
(nπ

α
−1)

(
r20

4(x− g)

)]

IPGt( dx) ,

where the θ0, r0, α and Iν are as in Theorem 1.23.

The proof for the corollary follows directly from the proof of Theorem 1.23
when inserting F , the JSP for two-dimensional Brownian motion without
drift (given in Zhou (2001)), instead of Fµ, the JSP for two-dimensional
Brownian motion with drift.
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Remark 1.25 Note the following equivalences for α, θ0 and r0:
18

α = arccos(−ρ)

θ0 = π − arccos




σ2K̃1 − ρσ1K̃2

√

σ2
2K̃1

2 − 2σ1σ2K̃1K̃2 + σ2
1K̃2

2





r0 =

√

σ2
2K̃1

2 − 2σ1σ2K̃1K̃2 + σ2
1K̃2

2

(1 − ρ2)σ2
1σ

2
2

,

where we abbreviated K̃i ≡ Ki − Y i
0 .

1.3.5 Joint survival probability under Brownian correlation

and separate time changes

In this section we derive the JSP for the two-dimensional model with Brown-
ian correlation, but different time transformations, that might be dependent
or independent. When choosing independent time changes, calibration is
very much simplified because then at a first step each underlying process Y i

can be calibrated separately (by adapting its volatility σi, drift µi and time
change Gi). A constant dependence between the two underlying process can
afterwards be introduced via the Brownian correlation parameter ρ and the
relation (1.3).

Theorem 1.26 (JSP under correlated Brownian motions with drift and
separate time changes)
Let W 1 and W 2 be correlated Wiener processes with correlation parameter
ρ, and G1 and G2 be time changes satisfying Assumption 1.20 and having
joint starting values G1

0 = g = G2
0. Then the default times τi, i = 1, 2 of the

processes Y 1
t := σ1W

1
G1

t
+µ1G

1
t and Y 2

t := σ2W
2
G2

t
+µ2G

2
t have joint survival

probability

IP (τ1 > t, τ2 > t)

=

∫

[g,∞)2

2

α(T (x, y) − g)
e

A3(T (x,y)−g)
2

− r2
0

2(T (x,y)−g)

∞∑

n=1

sin

(
nπθ0
α

)

∫ α

θ=0

∫ ∞

r=0
sin

(
nπθ

α

)

r e
A1r cos θ+A2r sin θ− r2

2(T (x,y)−g) Inπ
α

(
rr0

T (x, y) − g

)

(

−1 + 2Φ

(

r
IIx≤y sin θ + IIx>y[

√

1 − ρ2 cos θ + ρ sin θ]
√

∆(x, y)

))

dθ dr

IP(G1
t ,G

2
t )( dx× dy) ,

18These definitions for α, θ0 and r0 as well as A1, A2 and A3 as stated in Theorem 1.23
were introduced by Fischer (2003) in order to determine the JSP. Note that we corrected
the sign within the arccos of θ0, added a missing square for K1 in the denominator of r0

as well as a factor 2 in the nominator of A3.
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where θ0, r0, α, A1, A2 and A3 are as given in Theorem 1.23 and the minimal
time T and the time difference ∆ are defined by

T (G1
t , G

2
t ) = min(G1

t , G
2
t ) ,

∆(G1
t , G

2
t ) = max(G1

t , G
2
t ) − min(G1

t , G
2
t ) .

Proof. For the proof we furthermore define the index i, indicating the
faster time change,

i ≡ i(G1
t , G

2
t ) =

{
1 if G1

t > G2
t

2 otherwise

and follow the first steps as in the proof of Theorem 1.21 for each time change
separately. We use the definitions of T , ∆ and i and apply the conditional
Markov property of Y i, as in the proof of Overbeck & Schmidt (2005):

IP (τ1 > t, τ2 > t)

= IP

(

min
0≤s≤t

σ1W
1
G1

s
+ µ1G

1
s > K1, min

0≤s≤t
σ2W

2
G2

s
+ µ2G

2
s > K2

)

Gt cont.
= IP

(

min
g≤s≤G1

t

σ1W
1
s + µ1s > K1, min

g≤s≤G2
t

σ2W
2
s + µ2s > K2

)

Gt⊥(W i
s)

=

∫

[g,∞)2
IP

(

min
g≤s≤x

σ1W
1
s + µ1s > K1, min

g≤s≤y
σ2W

2
s + µ2s > K2

)

IP(G1
t ,G2

t )( dx× dy)

=

∫

[g,∞)2
IE
(

II{σ1W 1
g+s>K1, σ2W 2

g+s>K2, s≤T−g}

IP
(
σiW

i
s + µis > Ki, T ≤ s ≤ T + ∆ | W i

s , s ≤ T
) )

IP(G1
t ,G2

t )( dx× dy)

Markov
=

∫

[g,∞)2
IE
(

II{σ1W 1
g+s+µ1(g+s)>K1, σ2W 2

g+s+µ2(g+s)>K2, s≤T−g}

IP
(
σiW

i
s + µis > Ki, T ≤ s ≤ T + ∆ | W i

T

) )

IP(G1
t ,G2

t )( dx× dy)

=

∫

[g,∞)2
IE

(

II{−σ1W 1
g+s−µ1(g+s)+Y 1

0 <−K1+Y 1
0 }

II{−σ2W 2
g+s−µ2(g+s)+Y 2

0 <−K2+Y 2
0 ,s≤T−g}

(

1 − 2Φ

(
Ki − σiW

i
T − µiT

σi

√
∆

)))

IP(G1
t ,G2

t )( dx× dy)

=

∫

[g,∞)2

∫ Y 1
0 −K1

−∞

∫ Y 2
0 −K2

−∞
fµ(x1, x2, T − g, ρ)

(

1 − 2Φ

(
Ki − Y i

0 + xi

σi

√
∆

)))

dx1 dx2 IP(G1
t ,G2

t )( dx× dy) ,

where fµ is the transition-probability density of (−σ1W
1
g+s − µ1(g + s) +

Y 1
0 ,−σ2W

2
g+s−µ2(g+s)+Y 2

0 ) not hitting the barriers Y 1
0 −K1 and Y 2

0 −K2
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by time T − g. fµ was given in equation (1.10). �

Remark 1.27 In the last theorem we put the constraint that the time
changes have the same starting value. We now show why this is a necessary
requirement in order to obtain an analytical formula. Assume G1

0 ≡ g1 6=
g2 ≡ G2

0 and define

g = max(g1, g2) ≡ g1 ∨ g2 ,

∧ =

{
1 if g1 < g2

2 otherwise
i.e. g∧ ≡ g1 ∧ g2

δ = max(g1, g2) − min(g1, g2) ≡ g1 ∨ g2 − g1 ∧ g2 ,

i ≡ i(G1
t , G

2
t ) =

{
1 if G1

t > G2
t

2 otherwise
.

Then the survival probability can be decomposed as follows

IP (τ1 > t, τ2 > t)

= IP

(

min
0≤s≤t

σ1W
1
G1

s
> K1, min

0≤s≤t
σ2W

2
G2

s
> K2

)

=

∫

[g,∞)2
IE
(

II{σ1W 1
g1+s

>K1, σ2W 2
g2+s

>K2, s≤T−g}IE
(

II{σ∧W∧
g∧+s

>K2, T−g≤s≤T−g∧}

II{σiW i
gi+s

>Ki, T−gi≤s≤T−gi+∆} | W 1
g1+s, W

2
g2+s, s ≤ T − g

))

IP(G1
t ,G

2
t )( dx× dy) .

Now one has to distinguish two cases for the inner conditional expectation
(where G1

t and G2
t are fixed):

In case ∧ and i are not the same, we have W∧ ⊥ W i and gi = g which for
the inner conditional expectation implies (using the Markov property)

IE
(

II{σ∧W∧
g∧+s

>K∧, T−g≤s≤T−g∧} | W∧
g∧+T−g

)

· IE
(

II{σiW i
gi+s

>Ki, T−gi≤s≤T−gi+∆} | W i
gi+T−g

)

= IE
(

II{σ∧W∧
g∧+s

>K∧, T−g≤s≤T−g∧} | W∧
T−δ
)

· IE
(

II{σiW i
g+s>Ki, T−g≤s≤T−g+∆} | W i

T

)

=

(

1 − 2Φ

(
K∧ − σ∧W∧

T−δ
σ∧

√
δ

))(

1 − 2Φ

(
Ki − σiW

i
T

σi
√

∆

))

In case ∧ and i coincide, we have W∧ ≡ W i and gi = g∧, which for the
inner conditional expectation implies

IE
(

II{σ∧W∧
g∧+s

>K∧, T−g≤s≤T−g∧+∆} | W∧
g∧+T−g

)

= 1 − 2Φ

(
K∧ − σ∧W∧

T−δ
σ∧

√
∆ − δ

)

.
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So the inner equation depends on whether G1
t ≥ G2

t or not. Since this event
is random we won’t have an analytical formula unless we further require
G1 ≥ G2 or G1 ≤ G2 for all t. Then the time changes are not independent
and a separate calibration for each asset-value model to its credit-spread
curve is not possible.

The last two sections of this chapter give explicit examples for possible time
changes. We distinguish between so-called numerical time-change distribu-
tions and so-called analytical time-change distributions:
The next section concentrates on examples where a numerical approxima-
tion of the time-change distribution is available through a Laplace transform.
These time change distributions and the resulting FPT distributions are said
to be numerical. By contrast, the last section of this chapter gives examples
that have an explicit time-change density, in terms of an integral and/or
series representation. Then, time-change distribution and FPT distribution
are said to be analytical.

1.3.6 Numerical time-change densities

The distribution of Gt is uniquely determined by its characteristic function
φGt(u) = IE[eiuGt ] and also – since Gt is a positive random variable – by its
Laplace transform lGt(u) = IE[euGt ]19, which we prefer to consider because
it is a transformation on the real line. The time-change distribution can be
retrieved numerically, via Laplace inversion20, when applying equation (1.1)
for Gt:

lGt(u) = u

∫ ∞

0
e−ut IP(Gt ≤ t) dt .

As we mentioned already there are two main approaches to obtaining a pos-
itive continuous time change, the integral over a positive process Gt = g +
∫ t
0 gs ds or the supremum of a positive continuous process Gt = sup0≤s≤t gs.

Time-change examples close at hand follow the integral approach and are
given by integrated positive and mean-reverting processes such as Cox-
Ingersoll-Ross (CIR) or generalized Ornstein-Uhlenbeck (OU), where the
Lévy component is given by a subordinator21. The corresponding driving
processes (gt)t are given by

dgCIRt = κ(θ − gCIRt ) dt+ σ̂
√

gCIRt dBt , (1.18)

dgOUt = −κgOUt dt+ dJt ,

19See Definition 1.6.
20The fastest method for retrieving a distribution is by direct integration, which is

possible whenever a characteristic function is explicitly known, confer Kilin (2007).
21A subordinator is a special time change. It is an increasing Lévy process and therefore

needs to have a nonnegative drift, no diffusion and only positive jumps of finite variation.
See Definition 1.4.
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where κ > 0 is the mean-reversion speed to the long-term mean θ ≥ 0
(in the CIR case) respectively 0 (in the OU case). σ̂ > 0 is the volatility
of the Brownian motion B and J denotes the jumping subordinator. For
the gamma and inverse-Gaussian subordinator, the Lévy measure ν(x) and
Laplace transform lJt(u) = IE[e−uJt ] were given in Table 1.1. Table 1.2
lists the Laplace transforms of the time change Gt = g +

∫ t
0 gs ds, that is

lGt(u) = IE[e−uGt ], where the driving process is given by a CIR, general-
OU and OU-gamma process, respectively. The Laplace transform of the
OU-gamma time change is given when the Laplace transform of the gamma
subordinator is inserted into the Laplace transform of the general-OU time
change (second row of the table).

time change Laplace transform

Gt = g +
∫ t

0
gs ds IE[e−uGt ]

CIR
exp

(
κ2θt
σ̂2

)

(cosh γt
2 + κ

γ sinh γt
2 )

2κθ
σ̂2

exp
(

− 2gu

κ+γ coth γt
2

)

gCIR γ =
√
κ2 + 2σ̂2u

general OU exp
(

gu
κ (1 − e−κt) +

∫ t

0
lJt

(
u
λ (1 − eκ(s−t)) ds

))

gOU

OU-gamma exp
(

gu
κ (1 − e−κt) + utκc

λκ−u + λκc
λκ−u ln

(
1 − u

λκ (1 − e−κt)
))

Table 1.2: Time-change examples that yield a Laplace transform and thus
a numerical time-change distribution.

1.3.7 Explicit time-change densities

Sometimes it is not sufficient to have a numerical approximation of a time-
change density, for example when one is interested in an analytical credit-
spread formula and wants to derive credit-spread dynamics. In general,
whenever a conditional time-change density w.r.t. some filtration ĨF (that is
IPGt|F̃t

(dx)) is needed, it is not enough to have an approximation of IPGt(dx).
Examples for time changes with analytical density are not obvious!
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CIR-type time change

Our first idea is to consider the integrated Cox-Ingersoll-Ross process GCIRt =
g +

∫ t
0 g

CIR
s ds. The integrand process (1.18) has explicit solution:

gCIRt = e−κt
[

gCIR0 + 2
√

gCIR0 σ̂

∫ t

0
e

1
2
κs dBs + σ̂2

[ ∫ t

0
e

1
2
κs dBs

]2
]

= e−κt
[√

gCIR0 + σ̂

∫ t

0
e

1
2
κs dBs

]2

. (1.19)

But the time change GCIRt has no analytical distribution. Therefore we
multiply the integrand gCIRt with the factor eκt and define the time change
as follows:

Definition 1.28 (CIR-type time transformation) For g ≥ 0, gCIR0 ≥ 0,
σ̂ > 0, κ > 0, the CIR-type time change is defined by

Ĝt = g + σ̂2

∫ t

0
eκr
[

√

gCIR0

σ̂
+B∫ r

0 eκs ds

]2
dr .

Because of Remark 1.15 Ĝ is equivalent in distribution to22

Ĝt
L
= g +

∫ t

0
e2κr gCIRr dr . (1.20)

Now we will show that Ĝ indeed yields a density. We first introduce the
abbreviation Gt ≡ Ĝt − g and the notation IPx for the probability measure
where the underlying process starts in x. Thus

IP
√

v0
σ̂ (·) ≡ IP

(

· | B0 =

√
v0
σ̂

)

.

Theorem 1.29 The time change Ĝt has density

fĜt
(x) =

1√
2πσ̂2

∞∑

k=0

(
gCIR0

2σ2

)k (
x− g

σ̂2

)−1+ k
2

∞∑

j=0

Γ(1
2 + k + j)

Γ(1
2 + k)j!

· exp







−

(

(1
2 + 2k + 2j) 1

κ(eκt−1) +
gCIR
0
2σ2

)2

2x−g
σ̂2







·
∑

0≤l≤ k+1
2

(−)j+l2
1
2
+k−l (k + 1)

l!(k + 1 − 2l)!




(1
2 + 2k + 2j) eκt −1

κ +
gCIR
0
2σ2

√
x−g
σ̂





k+1−2l

22Cf. Kammer (2002).
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where Γ denotes the Gamma function23. In particular the distribution of
the time transformation is given by

IP(Ĝt ≤ x) =

∫ x−g

σ̂2

−∞
fĜt

(y) dy .

Proof. We determine IP(Ĝt ≤ x). The density follows by derivation w.r.t.
x. For the proof we set g0 ≡ gCIR0 . Then

IP(Ĝt ≤ x) = IP(Gt ≤ x− g) = IP

(
∫ t

0
eκr
[√g0
σ̂

+B∫ r
0 eκs ds

]2
dr ≤ x− g

σ̂2

)

= IP√
g0
σ̂

(
∫ t

0
eκr
[

B∫ r
0 eκs ds

]2
dr ≤ x− g

σ̂2

)

.

Substitute w =
∫ r
0 eκs ds = 1

κ(eκr −1), i.e. dw
dr = eκr, then

IP(Gt ≤ x− g) = IP√
g0
σ̂

(
∫ 1

κ
(eκt −1)

0
B2
w dw ≤ x− g

σ̂2

)

=

∫ x−g

σ̂2

−∞
IP√

g0
σ̂

(
∫ 1

κ
(eκt −1)

0
B2
w dw ∈ dy

)

.

With Borodin, Salminen (2002) (p. 168, 642) and their notations the
integrand can be determined as follows:

IP√
g0
σ̂

(
∫ 1

κ
(eκt −1)

0
B2
w dw ∈ dy

)

= ecy(0,
1

2
,
eκt−1

κ
, 0,

g0
2σ2

) dy

=
∞∑

k=0

1

k!

( g0
2σ2

)k
cy

(

k,
1

2
+ k,

eκt−1

κ
,
g0
2σ2

+
k

κ
(eκt−1)

)

dy

=
1√
2π

∞∑

k=0

1

k!

( g0
2σ2

)k
∞∑

j=0

Γ(1
2 + k + j)

Γ(1
2 + k)j!

y−1+ k
2

· exp

{

−
(
(1
2 + 2k + 2j) 1

κ(eκt−1) + g0
2σ2

)2

2y

}

·
∑

0≤l≤ k+1
2

(−)j+l2
1
2
+k−l (k + 1)!

l!(k + 1 − 2l)!

(

(1
2 + 2k + 2j) eκt −1

κ + g0
2σ2√

y

)k+1−2l

dy

≡ f(y) dy .

23Cf. e.g. Borodin & Salminen (2002).
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Now note that with the fundamental theorem of calculus

d

dx
IP(Ĝt ≤ x) =

d

dx
IP(Gt ≤ x− g) =

1

σ̂2
f

(
x− g

σ̂2

)

.

�

Remark 1.30 (Drawback of the CIR-type time change)
With the proof of the theorem we have

IEGt ∼ IE

[
∫ 1

κ
(eκt −1)

0
B2
w dw

]

=

∫ 1
κ
(eκt −1)

0
w dw =

1

2κ
(eκt−1)2 ,

that is, on average, for κ > 0 the business time speeds up as x 7→ ex and
does not slow down again.

Remark 1.31 (Another time-change idea)
The drawback can be eliminated by defining another time change:

G̃t := f(t)Gt
L
=

∫ t

0
f(t) e2κr v(r) dr ,

where e.g. f(t) = e−2κt, f(t) = 1
t e−2κt or anything such that IE[G̃t] ∼ t.

The equivalence in distribution follows by (1.20). Note that G̃ is a positive
non-decreasing process. Then the first-passage process

Yt = σWf(t)Gt
,

has default probability

IP (τ < t) = 2

∫ ∞

0
Φ

(

K − Y0

σ
√

f(t)x− g

)

IP(Gt ∈ dx) .

Example 1.32 (CIR-type sample paths)
Figure 1.2 and 1.3 show sample paths for the Brownian motions W and
B, the resulting time-change paths G and the first-passage (or asset-value)
paths WG. The parameters were chosen to be κ = 2, σ̂ = 1 and σ̂ = 2,
respectively. The time-change paths have an exponential form. For σ̂ = 2
the business time is much faster than for σ̂ = 1. In Figure 1.2 it reaches 30
and 8, respectively, in a normal unit of time. That is in the same normal time
t, Gt with σ̂ = 2 runs faster through the W -path of the first plot (leading
to the sixth plot) than with σ̂ = 1 (leading to the fourth plot). Figure 1.3
also illustrates this nicely: In one unit of real time, the slower time change
(σ̂ = 1) just reaches the top of the Brownian path (where the time change
slows down), whereas for the faster time change (σ̂ = 2) we run over the
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Brownian hill which appears like a peak (last plot). The distributions for
the two considered time changes, and other values for the speed to mean-
reversion κ, are shown in the boxplots of Figure 1.4. Boxplots visualize a
distribution by its median, quartiles and extreme values. We see that the
parameters of a CIR-time change can yield various distributions for Gt.

Example 1.33 (Multivariate asset-value paths dependent on the same CIR-
type time change)
In Figure 1.5 five time-changed Brownian motions are plotted. Thereby, the
original Brownian motions are uncorrelated (Brownian independence). All
are time-changed with the same CIR-type process having parameters κ = 2
and σ̂ = 1. Dependence is thus introduced only by the business time. We
derived the corresponding multivariate default-probability formula in Sub-
section 1.3.3, Corollary 1.22. Figure 1.5 shows that as long as the time
change is slow (i.e. generates small values), the asset-value paths W i

Gt
are

not volatile. Vice verca when the time change speeds up we find a lot of
variation in the asset-value paths. Note that because of the independence
between the W i’s the paths are independent in their up-and-down move-
ments.

Further analytical time-change examples

When inserting gCIR0 = 0, κ = 0 and σ̂ = 1 into the CIR-type time change
it reduces to Gt =

∫ t
0 B

2
u du. That is said to be the simple time change.

Table 1.3 states analytical densities for this time change24, furthermore for
the so-called Dufresne time change25, the time-change process defined by the
supremum of Brownian motion26 and the supremum of the n-dimensional

Bessel process27 R
(n)
s =

√

(B1
s )

2 + · · · + (Bn
s )2, n ∈ IN. We derived the

time-change densities with the help of the ‘Handbook of Brownian Motion’
by Borodin & Salminen (2002). We refer to them for the notation and
definition of the functions Γ, m, J and j.28 Note that m is a Laplace inverse
having an analytical form. B and B1, . . . , Bn denote independent Brownian
motions starting at zero. Note that the formulas can be extended for Brow-
nian motions not starting at zero. The parameters σ̂, κ are constants and
n = 2ν + 2 and ν are natural numbers.

24The formula for the conditional density is derived in the proof of Theorem 6.7. For
the unconditional density insert B0 = 0 instead of Bt leading to the formula in Table 1.3.

25Our name comes from the Dufresne identity, cf. Borodin & Salminen (2002).
26For differentiating the integral of the time change distribution in Table 1.3 apply the

following equivalence (see Appendix A.1):

d

dx

∫ x

−x

f(u, x) du = −f(−x, x) + f(x, x) +

∫ x

−x

d

dx
f(u, x) ds

27For Bessel processes we refer to Revuz & Yor (2005).
28The definitions of Γ, m, J and j are given in Borodin & Salminen (2002); see A.2.
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Figure 1.2: Asset-value paths for CIR-type time changes
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Figure 1.3: Other asset-value paths for CIR-type time changes
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Figure 1.4: CIR-type time-change distributions for different speeds to mean-
reversion κ (x-axes)
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Figure 1.5: Multivariate asset-value process (κ = 2, σ̂ = 1)
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Gt fGt
(x)

squared
∫ t

0
B2

s ds 1
π
√

π

∑∞
j=0(−)j Γ( 1

2+j)

j!

BM · exp
(( 1

2
+2j)t)2

2y
( 1
2+2j)t

x
3
2

CIR-type Ĝt fĜt
(x)

(Thm. 1.29)

Dufresne
∫ t

0
eσ̂Bs+σ̂2κs ds, σ̂2κ+1xκ− 1

2 2−κ− 1
2 e−κ2σ̂2 t

2− 1
σ̂2x

σ̂ > 0, κ > −1 · mσ̂2t/2

(
κ− 1

2 ,
1

σ̂2x

)

sup BM sup0≤s≤t |Bs| d
dx

1√
2πt

∑∞
k=−∞

∫ x

−x
(e−(u+4kx)2/2t

− e−(u+2x+4kx)2/2t) du

sup Bessel sup0≤s≤tR
(n)
s , d

dx

∑∞
k=1

2b−νJν(jν,k
b
x )

jν,kx−νJν+1(jν,k) e−j2
ν,kt/2x2

R
(n)
s =

√

(B1
s )2 + . . . (Bn

s )2

n = 2ν + 2, R
(n)
0 = b

Table 1.3: Examples for time changes with analytical density



Chapter 2

Analyzing the time-change

model with Gt = σ̂
2
∫

t

0 B
2
s ds

In this chapter we consider the simple time change Gt = σ̂2
∫ t
0 B

2
s ds and

analyze its density while varying the parameter σ̂. We calibrate the model
to several default probability curves by fitting two points exactly, which
yields a good fit for non-investment-grade ratings. Applying the calibrated
parameters we determine the joint default probabilities for two respectively
three names, regarding the setting as in Corollary 1.22, that is under zero
correlation between the Brownian motions. (Remember our Definition 1.11
of Brownian independence and Brownian correlation.) We also study joint
survival-probability curves under asset correlation, regarding Corollary 1.24.
Asset dependence is due to a common time change and/or Brownian correla-
tion. We analyze the asset dependence produced by the time change and find
that it cannot be substituted by adapting the Brownian correlation. Finally
we consider the correlation between default events, the so-called event cor-
relation or default correlation. The relationship to the Brownian correlation
is studied and the evolution of default correlation in time is visualized. Note
especially that a constant Brownian correlation does not imply a constant
default correlation.

Later on in Chapter 6 we analyze this particular simple time change with
regard to credit-spread modeling.

2.1 Calibration to a default-probability curve

We calibrate the time-change model with the simple time change Gt =
σ̂2
∫ t
0 B

2
s ds to a given default-probability curve. Therefore we discretize the

time grid and determine the discretized density

IP (Gt ∈ [y, y + ∆)) = IP (Gt < y + ∆) − IP (Gt < y) , (2.1)

41
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using the default-probability distribution

IP (Gt < y) = IP

(∫ t

0
B2
s ds <

y

σ̂2

)

=
2
√

2√
π

∞∑

j=0

(−1)j
Γ(1

2 + j)

j!

[

1 − Φ

(
(4j + 1)σ̂t

2
√
y

)]

. (2.2)

Regarding the default-probability formula of Theorem 1.21, we find that
the model has two degrees of freedom for calibration, K−Y0

σσ̂ and µσ̂
σ . Thus

we can fit two points of the curve exactly, which allows us to solve from
the analytical FPT formula, Theorem 1.21, for the model parameters easily.
Especially in most applications concerning credit spreads (see Chapters 3,
6), it is more important to fit the liquid credit-spread points (usually five and
seven years) of the term structure exactly instead of a best fit of the whole
curve. The parameter sets of Table 2.1 lead to the same default-probability
curve, with fitted points IP(τ ≤ 0.5) = 0.0064 and IP(τ ≤ 5) = 0.0734.
Thereby we fix g = 0 and Y0 = 0. The parameter σ̂ influences the shape of

σ̂ σ µ K

1 1 0.781724 −1.60449

2 0.5 0.195431 −1.60449

5 0.2 0.031269 −1.60449

10 0.1 0.007817 −1.60449

2 1 0.390862 −3.20898

5 1 0.156345 −8.02245

Table 2.1: Parameter sets calibrated to IP(τ ≤ 0.5) = 0.006 and IP(τ < 5) =
0.073 (g = 0 and Y0 = 0)

the time-change density: Higher values for σ̂ lead to a flatter density curve
with fatter tails. Figure 2.1 shows the densities for G5 and σ̂-values 1, 2 and
5. Note that the scales of the lower plots differ. As we just argued and have
seen in Table 2.1, different values of σ̂ may still lead to the same (marginal)
default-probability curve when adapting at the same time the parameter
values of K, σ and µ. Thus σ̂ can be used to influence the joint default
probability or credit-spread dynamics, see Chapter 6.

Example 2.1 In Figure 2.2, 2.3 and 2.4 we show default-probability curves
coming from the model calibrated to the assumed market default-probability
curve that is, for simplicity, given by F (t) = 1 − e−λt with λ = 1%, λ = 7%
respectively λ = 10%. For this we decided to fix g = 0, Y0 = 0, σ = 1 as well
as σ̂ = 1, leading to the simple time change Gt =

∫ t
0 B

2
s ds. The parameters
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Figure 2.1: Densities of the time change Gt = σ̂2
∫ 5
0 B

2
s ds for σ̂ = 1 (black),

σ̂ = 2 (red) and σ̂ = 5 (blue)
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µ and K are calibrated to two points, F (t1) and F (t2). The parameter
sets that lead to the curves in Figure 2.2, 2.3 and 2.4 are given in Table
2.2. The curves calibrated to F (2), F (5) respectively F (3), F (5) respectively
F (5), F (7) respectively F (5), F (10) are quite acceptable. Please note that
the finally chosen parameter set should emphasize one’s personal view on
more or less important (liquid) market data points.

Example 2.2 Standard & Poor’s publishes average default probabilities
(cumulative default rates) for different rating classes, see Table 2.3. The
average term structures for the years 1981 to 2002 for ratings AAA, BBB,
BB, B and CCC are plotted in Figure 2.5 respectively Figure 2.6. Due to the
different shapes (concave, linear or convex) of the default-probability curves
for different rating classes, we find that our model with the simple time
change Gt =

∫ t
0 B

2
s ds gives an astonishingly good fit for speculative grade

default curves (BB, B and CCC), but not such a good fit for investment-
grade default curves (AAA, AA, A and BBB). Figure 2.6 shows calibrations
to the CCC-curve at different time horizons. All these fits are good. Table
2.4 gives the corresponding calibrated parameters.

λ = 1% λ = 7% λ = 10%

F (t1) F (t2) µ K µ K µ K

F (.5) F (5) 0.9207 −1.5981 0.3802 −1.3489 0.2663 −1.2947

F (1) F (5) 0.8753 −1.6732 0.3895 −1.3270 0.2837 −1.2503

F (2) F (5) 0.6626 −2.1291 0.3001 −1.5624 0.2164 −1.4346

F (3) F (5) 0.5346 −2.5265 0.2290 −1.7989 0.1564 −1.6329

F (4) F (5) 0.4520 −2.8601 0.1800 −1.9938 0.1135 −1.7973

F (5) F (7) 0.3207 −3.5837 0.0995 −2.3821 0.0422 −2.1162

F (5) F (10) 0.2469 −4.1458 0.0342 −2.7687 −0.0107 −2.3910

Table 2.2: Model parameters µ and K calibrated to F (t) = 1 − e−λt in two
points for λ = 1%, λ = 7% resp. λ = 10% (for σ = 1, σ̂ = 1).

2.2 Multivariate default probabilities under Brow-

nian independence

As we mentioned already, σ̂ influences the dependence in a joint default
probability. We assume the multivariate model as of Corollary 1.22. Figure
2.7 shows the one-dimensional default curve and the resulting joint default
probabilities for two respectively three names for the parameter set σ̂ = 1,
σi = 1, µi = 0.781724 and Ki = −1.60449 where i = 1, 2 resp. i = 1, 2, 3.
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Figure 2.2: Calibration of the simple time change at two points of F (t) =
1 − e−λt (black curve) with λ = 1%
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Figure 2.3: Calibration at two points of F (t) = 1 − e−λt with λ = 7%
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Figure 2.4: Calibration at two points of F (t) = 1 − e−λt with λ = 10%
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years 1 2 3 4 5 6 7 8 9 10

rating
AAA 0.00 0.00 0.03 0.06 0.10 0.17 0.25 0.38 0.43 0.48
AA 0.01 0.03 0.08 0.16 0.27 0.39 0.53 0.65 0.75 0.85
A 0.05 0.15 0.28 0.44 0.62 0.81 1.03 1.25 1.52 1.82

BBB 0.37 0.94 1.52 2.34 3.20 4.02 4.74 5.40 5.99 6.68
BB 1.38 4.07 7.16 9.96 12.34 14.65 16.46 18.02 19.60 20.82
B 6.20 13.27 19.07 23.45 26.59 29.08 31.41 33.27 34.58 35.87

CCC 27.87 36.02 41.79 46.26 50.46 52.17 53.60 54.36 56.16 57.21

Table 2.3: Average S&P default rates [in %]

CCC at CCC at µ K
t1 t2

1 5 0.4389 −0.6965

2 5 0.3829 −0.7689

3 5 0.3069 −0.8882

4 5 0.2331 −1.0336

5 7 0.3330 −0.8442

5 10 0.2413 −0.9947

Table 2.4: Calibration to an average CCC default-rate curve at two points,
t1 and t2 [in years] (for σ = 1 and σ̂ = 1)
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Figure 2.5: Cumulative default-rate curves by S&P

Here unfortunately the influence of σ̂ on the joint default probabilities is very
low. For example, when choosing the parameter set with σ̂ = 10 the dashed
curves in Figure 2.8 are obtained and plotted against the curves where σ̂ = 1.
Actually, it is rather difficult to compare these default-probability curves
at all because for different parameter sets we have to use different grid
points for approximation due to the oscillating default-probability integrand.
Regarding Corollary 1.22 we conclude that one should choose a time change
other than that in Table 1.3, having more degrees of freedom to strengthen
the time-change impact.

2.3 Joint survival probabilities under Brownian cor-

relation

We will instead analyze the joint survival probability (JSP) under asset cor-
relation and joint time change Gt = σ̂2

∫ t
0 B

2
s ds, i.e. under the conditions

of Theorem 1.24. We fix the parameters g = 0, Y0 = 0, σ = 1 and vary
σ̂ = 1 respectively 5, K = −1.4 respectively −0.5 and ρ = 0.9, 0.5, 0.1,−0.5.
The resulting JSP curves are shown in Figure 2.9 where the curves with
different correlation parameters are plotted against each other, and Figure
2.10, where the curves with different time-change densities, i.e. parameter
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σ̂, are plotted against each other. We see that the higher the correlation
the higher the JSP. Furthermore with a higher time-change volatility (in-
fluenced by σ̂), the JSP curves become steeper (that is, the JSP decreases
more rapidly). Also a threshold level of K = −1.4 leads to instantaneous
survival probabilities of one, whereas a threshold level of K = −0.5 only
leads to 0.6 (for σ̂ = 1) respectively 0.4 (for σ̂ = 5). Figures 2.9 and 2.10
have shown that both ρ and σ̂ influence shape and, especially, steepness of
the JSP curves. We want to analyze whether the influence is identical, that
is, whether the time change is redundant. Therefore we compare five years
JSPs under the following two assumed models:
1) two asset-value processes W 1

G and W⊥
G having same time change but un-

correlated Brownian motions, i.e. Corr(W 1,W⊥) = 0 (as in Corollary 1.22),
2) two asset-value processes without time change, W 1 and W 2, but corre-
lated, Corr(W 1,W 2) = ρ (as in Zhou’s Theorem 1.17).
We choose different parameters σ̂ and solve the following equation for ρ:

IP

(

min
0≤s≤t

σW 1
Gs
> K1, min

0≤s≤t
σW⊥

Gs
> K2

)

(2.3)

= IP

(

min
0≤s≤t

σW 1
s > K1, min

0≤s≤t
σW 2

s > K2

)

, (2.4)

Gs = σ̂2

∫ s

0
B2
u du , W 1 ⊥W⊥ , Corr(W 1,W 2) = ρ .

Thereby we keep the marginals in (2.3) constant at IP(τi ≤ 5) = 0.378 (by
fixing Ki = −2.39 and adapting σ = 1

σ̂ ). Table 2.5 gives the calculated
JSPs and corresponding Brownian correlation parameters and marginal de-

fault probabilities of (2.4) that are given by IP(τi ≤ 5) = 2Φ
(
Ki

σ
√

5

)

. With

increasing time-change factor σ̂ the JSP increases and the Brownian corre-
lation decreases, which is due to the decreasing marginals in (2.4). We con-
clude that the dependence structure from the time change and the Brownian
correlation parameter differs. The parameter ρ should be used to include a
basic (constant) dependence and the time change should be introduced for
stochastic dependence in addition.

2.4 Event correlation versus Brownian correlation

The correlation between the asset-value processes Y1 and Y2 is called asset
correlation, or rather asset dependence, because it may not only be due to
the correlation between the Brownian motions but also due to a joint (or at
least dependent) time change, see Definition 1.10. In order to differentiate
the cause of dependence we also introduced the term Brownian correlation
in Definition 1.11. Event correlation, also called default correlation, is the
correlation between the default events {τ1 < t} and {τ2 < t}, see Definition
1.12. Recall that the formulas in Theorem 1.23 and Theorem 1.26 for the
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Figure 2.9: Joint survival-probability curves for Brownian correlation pa-
rameter ρ = 0.9 (red), 0.5 (pink), 0.1 (blue) and −0.5 (turquoise)

IP(τi ≤ 5)
σ̂ JSP ρ of (2.4)

0.9 0.4186 0.3853 0.3359

1.2 0.4258 −0.0796 0.1994

1.5 0.4292 −0.3802 0.1087

1.8 0.4311 −0.5669 0.0543

Table 2.5: Varying time-change parameter σ̂, resulting JSPs and correspond-
ing Brownian correlation parameters for constant marginals in (2.3) and
marginals in (2.4) as stated.
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Figure 2.10: Joint survival-probability curves for several Brownian correla-
tions ρ and σ̂ = 1 (dashed) resp. σ̂ = 5 (solid)
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joint default probability IP(τ1 ≤ t, τ2 ≤ t) depend on the Brownian correla-
tion ρ. Thus event correlation and Brownian correlation are related through
the joint default probability. For this relationship we want to show some
numbers. In Example 2.1 we calibrated the model with the simple time
change Gt = σ̂2

∫ t
0 B

2
s ds to a given default-probability curve and thereby

fitted two points of the term structure exactly. Now let F1(t) and F2(t) be
given default-probability curves and t a point of exact fit for both curves.
Then the event correlation can be written as follows:

ρE =
IP(τ1 ≤ t, τ2 ≤ t) − F1(t)F2(t)

√

F1(t)(1 − F1(t))F2(t)(1 − F2(t))
. (2.5)

Table 2.6 gives Brownian correlations corresponding to event correlation
values of 0.1, 0.3, 0.5, 0.7 and 0.9 for default curves Fi(t) = 1 − e−λit with
default rate λi = 0.07 respectively λi = 0.1 (i = 1, 2) being exactly fitted at
the points t = 5 and t = 10. We chose default curves for non-investment-
grade rating classes because we saw that they yielded the best fit. The empty
cells in the second tabular for 0.9 are due to the upper bound (omitting the
argument)

ρE ≤
√

min(F1, F2)(1 − max(F1, F2))

max(F1, F2)(1 − min(F1, F2))
,

coming from condition (1.3). We summarize the numbers as follows: When
fixing time, Brownian correlation increases with default correlation. When
fixing event correlation, Brownian correlation increases with time.

2.4.1 Event correlation against time

When we consider a constant Brownian correlation parameter over time, this
does not necessarily mean that the event correlation is also constant over
time. Figure 2.11 shows event-correlation term structures for time-change
factors σ̂ = 1 (dashed curves) respectively σ̂ = 5 (solid curves), thresh-
old levels K = −0.5 respectively K = −1, and Brownian correlation levels
ρ = 0.1 (blue curves), 0.3 (red curves) and 0.5 (pink curves). For ρ = 0.1
and ρ = 0.5 corresponding survival-probability term structures were shown
in Figure 2.9. We find that the default-correlation term structure is hump-
shaped. The curve level increases with increasing threshold level (i.e. for
worsening names) and its steepness grows with the time-change factor σ̂.
Note that there are different time scales for σ̂ = 1 and σ̂ = 5.
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λ1 = .07
λ2 = .07 t = 5 t = 10

ρE ρ JDP ρ JDP

0.1 0.4467 0.1080 0.7097 0.2784

0.3 0.5900 0.1496 0.8598 0.3284

0.5 0.7190 0.1913 0.9552 0.3784

0.7 0.8277 0.2329 0.9971 0.4284

0.9 ∼ 1 0.2745 ∼ 1 0.4784

λ1 = .07
λ2 = .1 t = 5 t = 10

ρE ρ JDP ρ JDP

0.1 0.3544 0.1384 0.5319 0.3423

0.3 0.5214 0.1830 0.7342 0.1906

0.5 0.6743 0.2276 0.8817 0.4388

0.7 0.8044 0.2722 0.9711 0.4870

0.9

λ1 = .1
λ2 = .1 t = 5 t = 10

ρE ρ JDP ρ JDP

0.1 0.2633 0.1787 0.3627 0.4228

0.3 0.4520 0.2264 0.6022 0.4693

0.5 0.62678 0.2744 0.7881 0.5158

0.7 0.7765 0.3219 0.9158 0.5624

0.9 0.8917 0.3696 0.9844 0.6089

Table 2.6: Event correlation and corresponding Brownian correlation for five
resp. ten years JDPs under marginal default-rates of 0.07 and 0.1



2.4. EVENT CORRELATION 57

5 10 15 20
t

0.1

0.2

0.3

Ρ
E

Σ
`
=1, K=-1

5 10 15 20
t

0.1

0.2

0.3

0.4

Ρ
E

Σ
`
=1, K=-0.5

2 4 6 8 10
t

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ρ
E

Σ
`
=5, K=-1

2 4 6 8 10
t

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Ρ
E

Σ
`
=5, K=-0.5

5 10 15 20
t

0.02

0.04

0.06

0.08

0.1

Ρ
E

Ρ=0.1, K=-1

5 10 15 20
t

0.05

0.1

0.15

0.2

Ρ
E

Ρ=0.1, K=-0.5

Figure 2.11: Event correlation versus time, for fixed Brownian correlation
ρ = 10% (blue), 30% (red) resp. 50% (pink)
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Chapter 3

Credit spread: structural

modeling approach and

empirics

This chapter introduces in general the structural or threshold approach for
modeling credit-spread curves and its dynamics in time. The dynamics will
be described via a stochastic differential equation (SDE). Here we first define
the default event of an entity, the corresponding survival probability and the
credit spread. Then we explain what we mean by credit-spread dynamics and
credit-spread volatility. The second part of this chapter empirically analyzes
the credit-spread volatility with market data from IBM and General Motors.

Under a structural approach, the default event is triggered by an asset-
value or firm-value process falling below some pre-specified default boundary
(depending on the firm’s debt). The default time equals the first-passage
time – this is the link to the previous chapter – and we will apply the previous
general results on modeling credit spreads in Chapter 6. Asset-value process
and default barrier of a threshold model link equity (stocks) and debt (bonds)
of a firm’s capital structure and provide equity-based default probabilities
and credit spreads. The difficulty of the structural model is its calibration
to a market-given term structure of default probabilities. But, extensions
for multiply correlated credits are straightforward, as we have seen in the
preceding chapter when we introduced our multivariate model.

In the subsequent Chapters 4, 5 and 6, we will analyze the dynamics of
the credit-spread term structure under the so-called Merton model, Overbeck
& Schmidt model and our stochastic time-change model (introduced in the
previous chapter). We will not focus on these models here.

59
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3.1 Credit-risk framework

In credit risk a first-passage process Y is interpreted as ability-to-pay process
or asset-value process and we assume it is observed at the market.1 Thus
the filtration IFY = (FY

t ) with FY
0 = {∅,Ω} and FY

t = σ(Ys : s ≤ t)
holds the available market information. In Definition 1.8 we introduced the
first-passage time (FPT),

τ = inf{s ≥ 0 : Ys < K} .
When Y falls below the threshold K, τ indicates a default event or credit
event of an entity and is therefore called default time. Note that for us it
does not matter whether a credit event indicates a credit-rating downgrade
(e.g. due to the company’s failure to pay some outstanding credit amount
in time) or a total default (liquidation of the firm). Furthermore τ is a IFY -
stopping time. The first-passage-time distribution IP(τ ≤ t) is called default
probability. We assume that the market provides us with a whole default
probability curve

F (t) = IP (τ ≤ t) , t ≥ 0 ,

which was introduced in equation (1.4). The entity’s actual survival proba-
bility will be denoted by

Q(0, t) = IP(τ > t) , t ≥ 0.

Definition 3.1 (Conditional or future survival probability)
For 0 ≤ t ≤ T the conditional or future survival probability given the infor-
mation FY

t , or for short just survival probability, is defined as

Q(t, T ) := IP
(
τ > T | FY

t

)
.

The term structure of survival probabilities is obtained when considering all
T ≥ t. Note that Q(0, T ) is a number, whereas Q(t, T ) is a random variable.
Q(t, T ) is well-defined in the sense that inserting t = 0 into Definition 3.1
leads to

Q(0, T ) = IP(τ > T | FY
0 ) = IP(τ > T ) ,

because FY
0 is the trivial σ-algebra.

In Definition 1.8 we introduced the conditional default-probability density
given the information FY

t - there is the following relation to the survival
probability:

Q(t, T ) = 1 −
∫ T

t
IP(τ ∈ du | Ft) du . (3.1)

1For estimating a company’s asset value from market data compare e.g. Jones, Mason
and Rosenfeld (2004) and Hull, Nelken and White (1984) - both papers suggest
implementations for the Merton model. See also Chapter 4.
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Remark 3.2 (Survival probability)
The indicator function II{τ>t} is FY

t -measurable, therefore we can write

Q(t, T ) = IE
(

II{τ>T} | FY
t

)

= II{τ>t} IE
(

II{τ>T} | FY
t

)

.

Furthermore we determine the expectation of Q(t, T ):

IE
(
Q(t, T )

)
= IE

(

IE
(

II{τ>T} | Ft
))

= IE
(

II{τ>T}
)

= Q(0, T ) .

The expected survival probability of the time interval [t, T ] is given by the
actual survival probability of the time interval [0, T ] . Especially the expec-
tation does not depend on t.

Definition 3.3 (Discount factor)
The present value (at time t) of one unit of currency received at u ≥ t is
called discount factor and denoted D(t, u). Under constant interest rates r
and continuous discounting it is given by

D(t, u) = e−r(u−t) .

Remark 3.4 (Defaultable zero bond)
A zero bond B pays one unit of currency at maturity T , i.e. B(T, T ) = 1,
in case of no-default of the reference entity. Let τ denote the default time
(classic approach). Assuming that the bond is a liquid market instrument,
then it is a martingale under the real measure IP, and under no-arbitrage
and constant interest rates we have

B(t, T ) = IE
(

e−r(T−t)B(T, T )|Ft
)

= e−r(T−t) IE
(

II{τ>T}|Ft
)

= e−r(T−t)Q(t, T ) .

That is the zero bond price is given by the survival probability of the refer-
ence entity.

3.2 Credit-default-swap spread

With the definitions of the last section we now can define the credit-default-
swap spread or simply just credit spread. First of all we explain the credit
default swap (CDS):

A CDS is a contract between a protection seller and a protection buyer.
The protection seller offers protection against default of a reference entity
during a certain time period, say between t and maturity T . Therefore the
protection buyer regularly pays an insurance fee, the credit spread s(t, T ),
but only as long as the entity is not defaulted. In case of a default before
maturity of the CDS the protection seller pays a claim amount as agreed in
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the contract to the protection buyer, which depends on the recovery rate2

R of the entity. We call M = T − t the contract’s time to maturity .

In order to determine a formula for the credit spread, one can make several
assumptions about payment times and amounts in case of default (of the ref-
erence entity as well as of each contract holder) and also in case of no-default.
We summarize the Hull & White approach (2000) for annually spread pay-
ments and the Schmidt approach (2004b) for continuous spread payments.
Both assume no counterparty default risk. The Schmidt approach is the
basis for our studies.

3.2.1 Annual credit-spread payments

Hull & White (2000) determined the fair credit spread in case of annual
insurance payments. Therefore they introduced the value U(t, T ) of pay-
ments at the rate of one unit currency per year, starting at contract start
t and ending at contract maturity T . They assumed that in case of default
at τ the recovery value of the entity is determined by the face value plus
accrued interest A(t, τ) and is given by (1+A(t, τ))R. This is realistic (with
regard to bankruptcy laws) for the claim of a defaultable bond, according to
J.P. Morgan (1999) and Jarrow & Turnbull (1995). Under no default
up to t, the credit spread s(t, T ) is fair when the present value of the credit-
spread payments equals the present value of the recovery payment in case
of default between t and T . So on the one hand, there is the claim amount
of the protection buyer, 1− (1+A(t))R, that is assumed to be paid directly
at default and has present value

∫ T

t

(
1 −R−A(t, u)R

)
IP(τ ∈ du | Ft)D(t, u) du .

And on the other hand, there are the spread payments by the protection
buyer, in case of no default. The corresponding present value is determined
by the survival probability Q(t, T ) and the rate of annual payments U(t, T ),
and is given by

s(t, T )Q(t, T )U(t, T ) .

In case of default at time τ , let t⋆ be the last payment date before default,
then the protection buyer makes the annual spread payments till t⋆, U(τ) ≡
U(t⋆). And in addition he pays the accrual of the spread payment for the

2The recovery rate is that part of the underlying face value that is regained after
default. The conditional probability distribution of the recovery rate (meaning conditional
on default) describes the recovery risk , that is the uncertainty about the severity of a loss
upon default. Cf. Schönbucher (2003).
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outstanding period τ − t⋆. The accrual we denote by E(τ). The present
value of the spread payments in the default event is

s(t, T )
∫ T
t IP(τ ∈ du | Ft)

(
U(u) + E(u)

)
du .

This yields

s(t, T ) =

∫ T
t

(
1 −R−A(t, u)R

)
D(t, u)IP(τ ∈ du | Ft) du

∫ T
t IP(τ ∈ du | Ft)

(
U(t, u) + E(u)

)
du+Q(t, T )U(t, T )

.

With equation (3.1) this equals

s(t, T ) =

∫ T
t

(
1 −R−A(t, u)R

)
D(t, u)IP(τ ∈ du | Ft) du

U(t, T ) +
∫ T
t IP(τ ∈ du | Ft)

(
U(t, u) − U(t, T ) + E(u)

)
du

.

3.2.2 Continuous credit-spread payments

Schmidt (2004b) assumed continuous credit-spread payments. In case of
default before maturity the protection seller pays 1 − R at default, that is
his payment leg has present value

(1 −R)

∫ T

t
D(t, u)IP(τ ∈ du | Ft) du .

Therefore the protection buyer continuously pays the credit spread as long
as no credit event occurs, but only till contract maturity, that is until τ ∧T .
His payment leg has present value

−s(t, T )

∫ τ∧T

t
D(t, u)Q(t, u) du .

Under no default until t, the fair credit spread is obtained when the present
value of the two payment legs are equal:

−s(t, T )

∫ τ∧T

t
D(t, u)Q(t, u) du = (1 −R)

∫ T

t
D(t, u)IP(τ ∈ du | Ft) du .

Note that
∫ τ∧T
t Q(t, u) du =

∫ T
t Q(t, u) du, since Q(t, u) = 0 for u ≥ τ .

Then, conditional on τ > t, the continuously paid credit spread is given by

s(t, T ) =
(1 −R)

∫ T
t D(t, u)IP(τ ∈ du | Ft) du
∫ T
t D(t, u)Q(t, u) du

. (3.2)
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3.2.3 Continuous credit-spread payments in discrete time

Consider the discrete time grid t0 = t, t1, . . . , tn = T . In case of no credit
event, the protection buyer pays the credit spread at each time step, leading
to the present value:

s(t, T )(ti − ti−1)

n∑

i=1

D(t, ti)Q(t, ti) .

In case of default, say between ti−1 and ti, we assume that the credit spread
is paid until the middle of the time interval (ti−1, ti], that is 1

2(ti−1 + ti).
The probability of default in that time interval is given by

IP(τ ∈ (ti−1, ti] | Ft) = Q(t, ti−1) −Q(t, ti) .

Herewith the payment leg of the protection buyer has present value

s(t, T )
n∑

i=1

(ti − ti−1)D(t, ti)Q(t, ti)

+ s(t, T )
n∑

i=1

(ti − ti−1)D

(

t,
ti−1 + ti

2

)

[Q(t, ti−1) −Q(t, ti)] ,

which leads to the following discretization of the credit-spread formula (3.2):

s(t, T ) = (3.3)

(1 −R)
∑n

i=1(ti − ti−1)D(t, ti) [Q(t, ti−1) −Q(t, ti)]
∑n

i=1(ti − ti−1)
[
D(t, ti)Q(t, ti) +D(t, 1

2(ti−1 + ti))[Q(t, ti−1) −Q(t, ti)]
] .

When the time grid is equidistant the spread formula becomes

s(t, T ) =
(1 −R)

∑n
i=1D(t, ti) [Q(t, ti−1) −Q(t, ti)]

∑n
i=1

[
D(t, ti)Q(t, ti) +D(t, 1

2(ti−1 + ti))[Q(t, ti−1) −Q(t, ti)]
] .

3.2.4 Credit-spread formula

We assume that the payoff is contingent on default by the reference entity
only, that is there is no counterparty default risk. For simplicity we do not
consider discount factors and make the following assumption:

Assumption 3.5 (CDS credit spread)

• The credit spread is paid continuously in time.

• There is no counterparty default risk

• Riskless interest rates are zero.
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Under no default until t, the fair continuously-paid credit spread is given by
equation (3.2). That is, under Assumption 3.5 we have

s(t, T ) =
(1 −R)(1 −Q(t, T ))
∫ T
t Q(t, u) du

. (3.4)

Usually a CDS spread is considered in terms of time to maturity M , i.e.
T = t+M and

s(t, t+M) =
(1 −R)(1 −Q(t, t+M))

∫ t+M
t Q(t, u) du

. (3.5)

Note that when the CDS starts at a future time point t, the spread s(t, T )
is called forward credit spread.

3.3 Credit-spread curve and its dynamics

A credit-spread term structure (credit-spread curve) at time t contains vari-
ous time to maturities M : (s(t, t+M))M ,
for example one, three and six months as well as one up to ten years. The
credit-spread curve varies in shape and level when moving on in time t.
There is a so-called credit-spread dynamic. We are going to model credit-
spread dynamics via a stochastic differential equation (SDE). For this we
have to specify drift factor and volatility term, the so-called credit-spread
volatility.

The remainder of this chapter analyzes market histories of CDS spreads in
order to estimate credit-spread volatility. Furthermore the relation credit-
spread versus credit-spread volatility is studied.

3.4 Estimating credit-spread volatility

We use histories of five years CDS spreads from IBM and General Motors
(GM), respectively, in order to determine estimates for the credit-spread
volatility (short: vol). The credit-spread histories are shown in Figure 3.1.
Both data sets have a time period where credit-spread volatility is high,
which leads to a ‘peak’. The estimation of the credit-spread volatility is
done in the same way as stock volatility is estimated. Hereto we refer to
Hull (2003). Say we have n+1 credit-spread observations si, i = 0, 1, . . . n,
and let ∆t be the time in years between two observations. At the market,
for liquid data, there are about 260 mid-day quotes per year, so we set
∆t = 1

260 and further choose n = 130, that is, data of half a year, for
estimating credit-spread volatility.
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3.4.1 Volatility estimate of a log-normal spread process

Assuming a geometric Brownian motion for the spread process s,

ds = sσLN dWi , (3.6)

the increments of geometric Brownian motion, i.e. the spread yields, at
ti, i = 1, . . . , n are given by

ui = ln

(
si
si−1

)

,

and yield the standard deviation

S =
√

1
n−1

∑n
i=1(ui − ū)2 =

√
1

n−1

∑n
i=1 u

2
i − 1

n(n−1) (
∑n

i=1 ui)
2 ,(3.7)

where ū ≡ 1
n

∑n
i=1 ui abbreviates the mean. Geometric Brownian motion

has standard deviation σ
√

∆t; thus the volatility estimate is given by

σ̂LN =
S√
∆t

.

The volatility estimates of IBM and GM 5-years credit spreads, for the
time period 2002 to 2005, are shown in Figure 3.2. The first two plots
show the credit-spread volatility estimates against time. Using independent
data sets for estimation leads to the blue step functions. Each step level
indicates the credit-spread vol estimate that was computed with the 130
credit spread data corresponding to the underlying trading days. The change
in the credit-spread volatility can be better seen when an estimate at each
trading day is computed. For an estimate at each time point we take the
credit-spread data of the corresponding last 130 trading days, i.e. when
we use the data overlapping. The daily estimates are plotted in pink. In
our examples, under the log-normal model, credit-spread vol ranges between
20% and 90%. The volatility of the credit-spread vol (vol of vol) is quite high.
For comparison, stock volatility lies between 10% and 90% and FX (foreign
exchange) volatility between 2% and 20%. The last two plots of Figure 3.2
illustrate that there is a relation between credit spread and credit-spread
vol. Increasing IBM credit spreads yield increasing spread volatility. The
relationship for the GM data is not so clear, but this might be due to a
rating change within this time period.

3.4.2 Volatility estimate of a normal spread process

Assuming a normally distributed spread process,

dsi = σN dWi , (3.8)
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the yield spread equals the difference of the spreads

ui = si − si−1 .

Computing the standard deviation of the ui’s as in equation (3.7) and di-
viding it by the square of the time increment leads to the volatility estimate
σ̂N of the normal spread model. The corresponding computed credit-spread
volatilities of the IBM and GM data are shown in Figure 3.3. The first two
plots show spread volatility against time and the last two against spread.
Again the blue step levels (in the first two plots) are estimates coming from
independent data sets and the pink paths show the credit-spread vol evo-
lution when the data was used to generate moving averages (always taking
credit-spread quotes of the previous 130 trading days) for estimation. As
under the log-normal model, the plots the last two plots of Figure 3.3 show
a relationship between credit spread and credit-spread vol, now on another
scale.

Remark 3.6 (Comparing log-normal and normal vol)
Comparing equation (3.6) and (3.8) leads to the following relationship be-
tween log normal and normal vol:

s · σLN = σN .

This is why the credit-spread volatility estimates are on a different scale.

3.5 Conclusion

At the beginning of this chapter we introduced our aim, to model credit-
spread curves and their dynamics in time. We want to do this via a SDE.
In the previous section we estimated and analyzed the historical volatilty
of 5-years credit spreads. We found that, clearly, credit-spread volatility is
a process itself and furthermore it depends on the spread level, although
the mode of dependence seems to be different for different data sets. The
IBM data shows a leverage effect, that is, the credit-spread vol increases
with the credit-spread level. We find that a local-volatility model seems to
be appropriate in order to model the credit-spread process and especially
its volatility. We aim for a geometric Brownian motion SDE in order to
describe the spread dynamics:

dst = s(t) [µ(t, st) dt+ σ(t, st) dWt] .

Goals of the next Chapters 4, 5 and 6 are to derive the credit-spread SDEs
under the Merton model, the Overbeck & Schmidt model and our stochastic
time-change model. For this the simple credit-spread formula (3.4) will be
assumed and our tool will be Itô’s Lemma.
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Figure 3.1: 5-years credit-spread histories of IBM and GM
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Figure 3.2: Credit-spread vol estimation under the log-normal model
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Figure 3.3: Credit-spread vol estimation under the normal model



Chapter 4

Credit spread under the

Merton model

Merton (1974) proposed a model for assessing a company’s credit risk by
characterizing its equity as a call on its assets. The firm value or asset value
is modeled by geometric Brownian motion. The firm’s outstanding debt
specifies a constant default level or threshold level. Then under the classical
approach a credit event occurs at one fixed point in time T , when the value
of the asset value lies below the threshold, i.e. YT < K. The model thus
links credit risk to equity and debt of a firm’s capital structure. We will
call this classical approach the classical Merton model. The extension of the
classical default makes a default possible continuously in time and happens
the first time the asset value (i.e. geometric Brownian motion) falls below
the pre-specified barrier. A model that allows for a default at any time is
called first-passage-time model or just first-passage model. In this chapter
we analyze credit spread and credit-spread dynamics under the so-called
Merton first-passage model or simply Merton model. It is well-known that
the model implies hump-shaped credit-spread curves with zero spread at
zero maturity. That is, in contrast to reality, no instantaneous default is
possible. We determine the model-implied credit-spread dynamics of the as-
sumed credit-spread formula (3.4) via the Itô rule and find that it is given in
terms of the asset value, i.e. Brownian motion, that is assumed to be given
by the market. Especially, the Merton model has no degree of freedom to
influence the spread dynamics.

Implementations for the Merton model were suggested by Jones, Mason
and Rosenfeld (1984), who estimated the company’s assets and asset
volatilities from the market value of equity and instantaneous equity volatil-
ity, and more recently by Hull, Nelken and White (2004), who estimated
the parameters based on the implied volatility of options on the company’s
stock.

71
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4.1 Model framework

We just described the first-passage approach under the Merton model where
default happens when geometric Brownian motion falls below the debt level
D:

τ = inf{s ≥ 0 : A0 eWs < D} .

Equivalently and instead, we consider a Wiener process W as the asset
value process that indicates a default whenever it falls below the constant
threshold K (where D ≡ A0 eK). That is, we are interested in the default
time

τ = inf{s ≥ 0 : Ws < K} . (4.1)

Under the Merton model the filtrations IFY is the natural filtration generated
by the Wiener process Wt,

FY
t = σ (Ws : s ≤ t) .

We determine the survival probability defined in 3.1:

Theorem 4.1 (Survival probability under the Merton model)
The survival probability is given by

Q(t, T ) = II{τ>t}

[

1 − 2 Φ

(
K −Wt√
T − t

)]

,

and for fixed time to maturity M ,

Q(t, t+M) = II{τ>t}

[

1 − 2 Φ

(
K −Wt√

M

)]

.

Note that Q(t, T ) is a FY
t -measurable random variable!

Proof. The filtration was chosen such that II{τ>t} is FY
t measurable. With

Remark 3.2) the survival probability of the entity is determined by

Q(t, T ) = II{τ>t}IE
(

II{inft≤s≤T Ws>K}| FY
t

)

.

In the following we consider the case where τ > t. Then the Markov property
of (W, IF) yields

Q(t, T ) = IP
(

inf
t≤s≤T

Ws > K | Wt

)

= IP
(

inf
t≤s≤T

(Ws −Wt) > K −Wt | Wt

)

.
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For s ≥ t set W̃s−t = Ws−Wt. Then (W̃u)u>0 is a Brownian motion starting
in zero. Furthemore set K̃(Wt) = K −Wt; then

Q(t, T ) = IP
(

inf
0≤u≤T−t

W̃u > K̃(Wt) | Wt

)

= 1 − 2 Φ

(

K̃(Wt)√
T − t

)

,

where for the last equality we used that K̃(Wt) < 0 (since τ > t) and
applied the well-known result for the exit time of Brownian motion, derived
in Harrison (1985), see (1.6). The general result for Brownian motion
starting at any value Wt is stated in Borodin, Salminen (2002), page 251.

�

4.1.1 Speed-of-default probability

For fixed K and M and under the assumption that τ > t (which especially
means that we must have W0 > K), we determine the derivative of the
distribution of inft≤s≤T Ws in Wt, that is of

IP
(

inf
t≤s≤t+M

Ws ≤ K | Wt

)

= 2 Φ

(
K −Wt√

M

)

,

yielding

fMK (Wt) = − 2√
M

φ

(
K −Wt√

M

)

.

The derivative fMK can be interpreted as default speed, depending on the
actual asset value level Wt. It describes how fast the default probability
increases or decreases. Figure 4.1 shows the default speed for K = −8.1,
which corresponds to a starting survival probability of Q(0, 10) = 99%. The
default speed is fast when the starting value Wt is close to the threshold K.
This impact is bigger when maturity is closer.

4.2 Calibration - threshold level

For calibrating the Merton model to market data there is only one degree
of freedom and that is in the threshold level K. How to choose the K?
One can do this by fixing today’s survival probability for one time horizon
T , that is Q(0, T ), because then, under W0 > K, Theorem 4.1 implies the
following threshold level:

K = Φ−1
(1

2
(1 −Q(0, T ))

)

·
√
T +W0 ,

which in turn fixes the whole term structure of survival probabilities
(
Q(0, t)

)

t≥0
,

Q(0, t) = 1 − 2 Φ

(
K −W0√

t

)

.
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Figure 4.1: Default speed for K = −8.1

Example 4.2 Figure 4.2 shows survival-probability term structures for T =
10 and the models with K = −1, . . . , K = −5. The instantaneous survival
probabilities (in each model) equal one, so the instantaneous credit spreads
are zero. The second plot of Figure 4.4 shows the corresponding credit-
spread curves at time t = 0.

4.3 Credit spread

Corollary 4.3 (Credit spread under the Merton model)
Conditional on no-default up to t, the spread is given by

s(t, T ) =
2 (1 −R) Φ

(
K−Wt√
T−t

)

T − t− 2
∫ T
t Φ

(
K−Wt√
u−t

)

du
,

and for fixed time to maturity M ,

s(t, t+M) =
2 (1 −R) Φ

(
K−Wt√

M

)

M − 2
∫ t+M
t Φ

(
K−Wt√
u−t

)

du
.

We will sometimes abbreviate sMt ≡ s(t, t+M).

Proof. Insert the Merton survival probability into the spread formula (3.4)
and (3.5), respectively. �
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4.3.1 Instantaneous spread

The instantaneous credit spread is the short-end maturity spread where
T = t, that is M = 0. We determine the instantaneous credit spread by
taking the limit M → 0. We assume no default before t, so especially
Wt > K. Applying the rule of de L’Hospital and the fundamental theorem
of calculus leads indeed to an instantaneous credit spread of zero:

lim
M↓0

s(t, t+M) = 2 (1 −R)
limM↓0 Φ

(
K−Wt√

M

)

limM↓0
(

M − 2
∫ t+M
t Φ

(
K−Wt√
u−t

)

du
)

= 2 (1 −R)
limM↓0 φ

(
K−Wt√

M

)

(K −Wt) ·
(
−1

2

)
1

M3/2

limM↓0
(

1 − 2Φ
(
K−Wt√

M

))

= 2 (1 −R)(K −Wt) ·
(

−1

2

) limM↓0 φ
(
K−Wt√

M

)
1

M3/2

1 − 0

= 0 ,

since e−
1
2

1
x converges faster for x ↓ 0 than 1

x3/2 . So the instantaneous spread
vanishes in the Merton model. Note that the limit for Wt ↓ K exists and is
finite for M > 0:

lim
Wt↓K

s(t, t+M) = 2 (1 −R)
Φ(0)

M − 0
=

1 −R

M
.

4.3.2 Simulations

We divide the time interval [0, T ] into n = 200 equidistant intervals of length
T
n and set t0 = 0, t1 = T

n , . . . , ti, . . . , tn = T . Simulating

∆Wtj ∼ Φ
(
0, T

n

)
(4.2)

yields a discrete Brownian path (Wti)i with

Wti = W0 +

i∑

j=1

∆Wtj .

Then with Theorem 4.1 the survival probability at ti is determined by

Q(ti, T ) = II{inf0≤j≤i Wtj>K}

[

1 − 2 Φ

(
K −Wti√
T − ti

)]

and for fixed time to maturity T = ti +M by

Q(ti, ti +M) = II{inf0≤j≤i Wtj>K}

[

1 − 2 Φ

(
K −Wti√

M

)]

.
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The discrete formula for the continuous credit spread was given in equation
(3.3). For zero interest rates it simplifies to

s(ti, T ) =
(1 −R)(1 −Q(ti, T ))
T
n

∑n
k=i+1Q(ti, tk)

, (4.3)

where

Q(ti, tk) = II{inf0≤j≤i Wtj>K}

[

1 − 2 Φ

(
K −Wti√
tk − ti

)]

.

For a constant time to maturity M , we fix the number of grid points that
lie in the interval [ti, ti+M ], say m. Then the equidistant grid intervals are
of length M

m , which yields the following credit-spread formula

s(ti, ti +M) =
(1 −R)(1 −Q(ti, ti +M))

M
m

∑i+m
k=i+1Q(ti, tk)

.

Figure 4.3 shows two possible survival probability paths (left-hand side)
and the corresponding credit-spread paths (right-hand side). The Brownian
motion underlying the upper plots survives the time interval [0, 1], and the
Brownian motion underlying the lower plots defaults since it crosses the
threshold shortly before t = 1. That is why the corresponding credit-spread
path is not plotted till t = 1.

Dynamics of credit-spread curves in time

We are interested in the evolution of the credit-spread curves in time. Figure
4.4 illustrates this evolution under the Merton model by considering the term
structure (s(t, t+M))M for several threshold levels K (i.e. several models)
at five consecutive points in time, t = 0, 2.5, 5, 7.5 and 10. The underlying
simulated Brownian path is drawn in the first plot. The other plots show the
credit-spread term structures resulting from the actual state of the Brownian
motion. A credit-spread curve of a model (specified by K) is only plotted
as long as no default happens. Thus in the first term structure plot (t = 0)
all curves for all K are shown. At t = 2.5 the Brownian motion has already
crossed the border K = −1, that is the asset value process under the model
K = −1 (black curve) is defaulted and therefore not drawn. And so on.
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Figure 4.2: Survival-probability term structures for K = −1,−2,−3,−4,−5
and T = 10.
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Figure 4.3: Survival-probability paths (left-hand side) and corresponding
credit-spread paths (right-hand side) from a surviving (upper plots) and a
defaulting (lower plots) Brownian motion.
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Figure 4.4: Brownian path and corresponding credit-spread term structures
for K = −1,−2,−3,−4,−5 at t = 0, 2.5, 5, 7.5, 10
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4.4 Credit-spread dynamics

In Corollary 4.3 we derived the credit-spread formula under the Merton
model,

s(t, T ) =
2 (1 −R) Φ

(
K−Wt√
T−t

)

T − t− 2
∫ T
t Φ

(
K−Wt√
u−t

)

du
.

When we fix T , as in the next subsection, we simply write s(t). Now we
want to determine the spread dynamics in terms of a SDE. We do this by
applying Itô’s Lemma on the credit-spread formula.

4.4.1 Spread dynamics for fixed maturity T

The spread formula is a function f of time t and the value of Brownian mo-
tion x = Wt, that is f(t, x) = s(t). We introduce the following abbreviation
for the partial derivatives:

ft ≡ ∂f
∂t , fx ≡ ∂f

∂x , fxx ≡ ∂2f
∂x2 .

By Itô’s Lemma we determine the credit-spread dynamics (under τ > t):

dst =

(

ft +
1

2
fxx

)

dt+ fx dWt

= s(t)

[(
ft + 1

2fxx
)

s(t)
dt+

fx
s(t)

dWt

]

= s(t) [µ dt− σ dWt] , (4.4)

with µ :=

(
ft+

1
2
fxx

)

s and σ := −fx

s .
Then µ and σ can be interpreted as drift and volatility (vol) of credit spread.
The volatility is defined with a negative sign because –as we will see– the
derivative fx is always negative. In our next step we determine the partial
derivatives ft, fx and fxx:

Proposition 4.4 (Partial derivatives under the Merton model, fixed T )
The credit-spread dynamics under the Merton model are given through the
following partial derivatives:

ft(t,Wt)

1 −R
=

K−Wt

(T−t)3/2 φ
(
K−Wt√
T−t

)

T − t− 2
∫ T
t Φ

(
K−Wt√
u−t

)

du
− 2

Φ
(
K−Wt√
T−t

)

[

T − t− 2
∫ T
t Φ

(
K−Wt√
u−t

)

du
]2

+ 2
(K −Wt)Φ

(
K−Wt√
T−t

) ∫ T
t

φ
(

K−Wt√
u−t

)

(u−t)3/2 du
[

T − t− 2
∫ T
t Φ

(
K−Wt√
u−t

)

du
]2 ,
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fx(t,Wt)

−2(1 −R)
=

φ
(

K−Wt√
T−t

)

√
T−t

T − t− 2
∫ T
t Φ

(
K−Wt√
u−t

)

du
+ 2

Φ
(
K−Wt√
T−t

) ∫ T
t

φ
(

K−Wt√
u−t

)

√
u−t du

[

T − t− 2
∫ T
t Φ

(
K−Wt√
u−t

)

du
]2

fxx(t,Wt)

−2(1 −R)
=

K−Wt

(T−t)3/2 φ
(
K−Wt√
T−t

)

T − t− 2
∫ T
t Φ

(
K−Wt√
u−t

)

du
− 8

Φ
(
K−Wt√
T−t

)
[

∫ T
t

φ
(

K−Wt√
u−t

)

√
u−t du

]2

[

T − t− 2
∫ T
t Φ

(
K−Wt√
u−t

)

du
]3 ,

+
−4

φ
(

K−Wt√
T−t

)

√
T−t

∫ T
t

φ
(

K−Wt√
u−t

)

√
u−t du+ 2(K −Wt)Φ

(
K−Wt√
T−t

) ∫ T
t

φ
(

K−Wt√
u−t

)

(u−t)3/2 du
[

T − t− 2
∫ T
t Φ

(
K−Wt√
u−t

)

du
]2 .

Note that fx is always negative!

Proof. In order to determine the partial derivatives of the credit-spread
formula given in Corollary 4.3, we use the following derivatives of standard
normal density and standard normal distribution

d

dx
φ(x) = −x · φ(x)

d

dt
Φ

(
K −Wt√
T − t

)

= φ

(
K −Wt√
T − t

)

· 1

2

K −Wt

(T − t)3/2
.

Furthermore we need to differentiate a time-dependent integral and apply
(A.1) (Appendix)

d

dt

∫ T

t
f(s, t) ds = −f(t, t) +

∫ T

t

d

dt
f(s, t) ds .

We obtain the following main components for the partial derivatives:

d

dt

∫ T

t
Φ

(
K −Wt√
u− t

)

du = − lim
u→t

Φ

(
K −Wt√
u− t

)

+

∫ T

t
φ

(
K −Wt√
u− t

)

· 1

2

K −Wt

(u− t)3/2
du

= −1 +
1

2

∫ T

t
φ

(
K −Wt√
u− t

)

· K −Wt

(u− t)3/2
du

d

dWt

∫ T

t
Φ

(
K −Wt√
u− t

)

du =

∫ T

t

d

dWt
Φ

(
K −Wt√
u− t

)

du

= −
∫ T

t
φ

(
K −Wt√
u− t

)

· 1√
u− t

du ,

which lead to the stated expressions of the proposition. �
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Corollary 4.5 (Spread dynamics under the Merton model, fixed T)
Under the Merton model the credit spread has the following dynamics:

dst
2(1 −R)

=

(−Φ
(
K−Wt√
T−t

)

+ 2
φ
(

K−Wt√
T−t

)

√
T−t

∫ T
t

φ
(

K−Wt√
u−t

)

√
u−t du

[

T − t− 2
∫ T
t Φ

(
K−Wt√
u−t

)

du
]2

+ 4

Φ
(
K−Wt√
T−t

)
[

∫ T
t

φ
(

K−Wt√
u−t

)

√
u−t du

]2

[

T − t− 2
∫ T
t Φ

(
K−Wt√
u−t

)

du
]3

)

dt

−
( φ

(
K−Wt√

T−t

)

√
T−t

T − t− 2
∫ T
t Φ

(
K−Wt√
u−t

)

du
+ 2

Φ
(
K−Wt√
T−t

) ∫ T
t

φ
(

K−Wt√
u−t

)

√
u−t du

[

T − t− 2
∫ T
t Φ

(
K−Wt√
u−t

)

du
]2

)

dWt .

Proof. Insert the partial derivatives of Proposition 4.4 into equation (4.4).
The first and third terms of ft cancel out with terms of fxx. �

With Corollary 4.5 the spread st = s0 +
∫ t
0 dsu can be computed.

Remark 4.6 (Local volatility of the credit spread)
Credit spread and credit-spread vol are functions of time and Brownian
motion: st = f(t,Wt) and σ(t,Wt). For fixed t, under the general credit-
spread condition of no pre-default, in particular Wt ≥ K, the derivative of
the default probability (see equation 4.2 and Figure 4.1 ) shows that the
default probability is monotone in Wt (and has a maximum at Wt = K).
Then, this also holds for the credit spread. By the theorem of the inverse
function, for each t, f(t, ·) yields an inverse g(t, ·) in Wt. Then the spread
volatility σ(t, ·) can be written as a function of spread:

σ(t,Wt) = −fx(t,Wt)

f(t,Wt)
= −fx(t, g(t, s(t)))

s(t)
=: σ̄(t, s(t)) .

In the literature σ̄(t, ·) is referred to as local volatility or instantaneous
volatility. See for example Rebonato (1999).

4.4.2 Spread dynamics for fixed time to maturity M

As in the last section, we here derive the spread dynamics when time to
maturity M is fixed (instead of T = t +M) while we move in time t. The
credit-spread formula was determined in Corollary 4.3:

s(t, t+M) =
2 (1 −R) Φ

(
K−Wt√

M

)

M − 2
∫ t+M
t Φ

(
K−Wt√
u−t

)

du
.
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Again the spread is a function in t and Wt, that is, there is a function
fM such that fM (t,Wt) ≡ sMt ≡ s(t, t + M). We abbreviate the partial
derivatives of fM as for those of f . Via Itô’s rule we derive the spread
dynamics for fixed M :

dsMt = s(t)
[
µM (t,Wt) dt− σM (t,Wt) dWt

]
, (4.5)

with µM :=
(fM

t + 1
2
fM

xx)
sM and σM := −fM

x

sM .

Proposition 4.7 (Partial derivatives under the Merton model, fixed M)
Under the Merton model the partial derivatives for fixed time to maturity
M are given by

fMx = fx |T=t+M ,

fMxx = fxx |T=t+M ,

fMt (t,Wt)

1 −R
= 4

Φ
(
K−Wt√

M

)2
− Φ

(
K−Wt√

M

)

[

M − 2
∫ t+M
t Φ

(
K−Wt√
u−t

)

du
]2

+ 2
Φ
(
K−Wt√

M

)

(K −Wt)
∫ t+M
t

φ
(

K−Wt√
u−t

)

(u−t)3/2 du
[

M − 2
∫ t+M
t Φ

(
K−Wt√
u−t

)

du
]2 .

Proof. The derivatives with respect to x coincide with those in Proposition
4.4; we just insert t+M instead of T . That is, fMx = fx and fMxx = fxx. For
the derivative with respect to t we need the derivative of the time-dependent
integral (see (A.2) of the Appendix)

d

dt

∫ t+M

t
f(s, t) ds = −f(t, t) + f(t+M, t) +

∫ T

t

d

dt
f(s, t) ds .

This leads to the main component of fMt :

d

dt

∫ t+M

t
Φ

(
K −Wt√
u− t

)

du

= Φ

(
K −Wt√

M

)

− lim
u→t

Φ

(
K −Wt√
u− t

)

+

∫ t+M

t
φ

(
K −Wt√
u− t

)
1

2

K −Wt

(u− t)3/2
du

= Φ

(
K −Wt√

M

)

− 1 +
1

2

∫ t+M

t
φ

(
K −Wt√
u− t

)

· K −Wt

(u− t)3/2
du .

The partial derivative is then given by

fMt (t,Wt)

1 −R
= 4 Φ

(
K−Wt√

M

)

·
Φ
(

K−Wt√
M

)

−1+ 1
2

∫ t+M
t φ

(
K−Wt√

u−t

)

· K−Wt

(u−t)3/2
du

[

M−2
∫ t+M

t Φ
(

K−Wt√
u−t

)

du
]2 ,

which is the stated expression. �
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Corollary 4.8 (Spread dynamics under the Merton model, fixed M)
Under the Merton model the spread dynamics for fixed time to maturity M
are described by

ds(t)

2(1 −R)
=

(

1

2

K−Wt

M3/2 φ
(
K−Wt√

M

)

M − 2
∫ t+M
t Φ

(
K−Wt√
u−t

)

du
+ 4

Φ
(
K−Wt√

M

)
[

∫ t+M
t

φ
(

K−Wt√
u−t

)

√
u−t du

]2

[

M − 2
∫ t+M
t Φ

(
K−Wt√
u−t

)

du
]3

+ 2
Φ
(
K−Wt√

M

)2
− Φ

(
K−Wt√

M

)

+
φ
(

K−Wt√
M

)

√
M

∫ t+M
t

φ
(

K−Wt√
u−t

)

√
u−t du

[

M − 2
∫ t+M
t Φ

(
K−Wt√
u−t

)

du
]2

)

dt

−
( φ

(
K−Wt√

M

)

√
M

M − 2
∫ t+M
t Φ

(
K−Wt√
u−t

)

du
+ 2

Φ
(
K−Wt√

M

) ∫ t+M
t

φ
(

K−Wt√
u−t

)

√
u−t du

[

M − 2
∫ t+M
t Φ

(
K−Wt√
u−t

)

du
]2

)

dWt .

Proof. We insert these partial derivatives of Proposition 4.7 into the Itô
dynamics of equation (4.5). The second summand of fMt cancels out with a
term in fMxx . �

The spread vol (omitting the arguments) is then given by the term in front
of the Brownian increment, divided by the spread:

σ = 2(1−R)
st






φ

(
K−Wt√

M

)

√
M

M−2
∫ t+M

t Φ
(

K−Wt√
u−t

)

du
+ 2

Φ
(

K−Wt√
M

) ∫ t+M
t

φ

(
K−Wt√

u−t

)

√
u−t

du
[

M−2
∫ t+M

t Φ
(

K−Wt√
u−t

)

du
]2




 .(4.6)

4.4.3 Simulation: spread dynamics and spread paths

For R = 0, T = 10 and Q(0, T ) = 99% (i.e. K = −8.145 and s(0, T ) =
0.001), a Brownian path is simulated at n = 40 grid points. Figure 4.5
shows the Brownian path, the resulting survival probability path (applying
Theorem 4.1), the spread path (Corollary 4.3), the spread increments (Theo-
rem 4.8) and the resulting spread path. Note that, indeed, the spread paths
determined by the two approaches coincide (up to numerical differences).
Numerical reasons lead to small errors in the integral approximation which
can imply slightly negative spreads when using the Itô approach. These
errors can be reduced by using other integral approximations such as the
Euler approximation. Refining the grid by considering n = 400 grid points
yields Figure 4.6. Again slightly negative spreads are obtained by the Itô
approach!
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4.4.4 Simulation: spread volatility

We have already argued in Remark 4.6 that under the Merton model, spread
volatility is not only a function of the actual value Wt, but (for fixed t) can
be seen as a function of the actual spread value st. Empirically we studied
the relation between credit spread and spread volatility in Section 3.4. We
found that historical data displays a dependence between the two (at least
for liquid data). Now we want to visualize the dependence implied by the
Merton model:
We consider the future time point t = 1 and choose the threshold level K

such that Q(0, t+M) ≡ IP
(

inf0≤s≤t+M Ws > K |W0 = 0
)

= 99%. Further-

more we assume τ > t and consider future values Wt = a that lie within the
3σ-distance of W0 = 0 (i.e. a ∈ [−3

√
t, 3

√
t]). For time to maturities M = 1

and M = 5, respectively, Figure 4.7 and 4.8 plot the derivative fx(Wt), the

survival probability Q(t, t + M) = IP
(

inft≤s≤t+M Ws > K | Wt = a
)

, the

corresponding spread s(t,Wt), the spread vol σt(Wt), and the local spread
vol σ̄t(st). For increasing time to maturity M both spread level and spread
vol decrease. The fourth plot of Figure 4.7 shows that spread vol strongly
rises when Wt gets close to the default level K. The last plots of each Figure
show that the Merton model implies a positive dependence between spread
and spread vol (except for very small spreads), but in a way that does for
example not fit to the IBM and GM data of Section 3.4.

The next section gives an overview of extensions of the Merton model by
adding randomness to the default barrier, interest rates, business clock, or
including jumps.

4.5 Survey: extensions of the Merton model

4.5.1 CreditGrades model

The CreditGrades (2002) paper by Deutsche Bank, Goldman Sachs, JP Mor-
gan and RiskMetrics Group suggests a generalization of the Merton model
by choosing a random default barrier (a random variable not a process),
which depends on the amount of assets remaining for the debt holders in
case of default. The model is illustrated in Figure 4.9; default happens if
the random barrier is crossed. By adding randomness to the default barrier
the model becomes incomplete: a default cannot be predicted the moment
before. This leads to a non-zero instantaneous credit spread. Let L de-
note the random average recovery on debt, having mean L̄ and an extreme
variance, because the recovery value strongly depends on whether default is
triggered by operational or financial difficulties, i.e. whether the company
will be restructured or liquidated. Let D be the firm’s debt per share. As in
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Figure 4.9: CreditGrades model: default happens at T if the random barrier

K̃ ≡ L̄D eλZ−
λ2

2 lies within the green area, otherwise the firm survives.

the Merton model, the asset value process is given by geometric Brownian
motion; furthermore the default barrier is assumed to be log-normal:

dVt
Vt

= µ dt+ σ dWt ,

K̃ ≡ LD = L̄D eλZ−
λ2

2 , Z ∼ N (0, 1) , Z ⊥W .

Default does not occur as long as the asset value process does not fall below
the threshold, that is as long as

V0 eσWt+µt−σ2 t
2 ≥ L̄D eλZ−

λ2

2

⇔ σWt + µt− λZ − σ2t

2
︸ ︷︷ ︸

≡Yt

≥ ln
( L̄D

V0

)

− λ2

2
︸ ︷︷ ︸

≡K

.

The first-passage process Y and the constant threshold K yield the first-
passage time τ with regard to Definition 1.8. Expectation and variance of
Y are given by

IEYt = µt− 1
2σ

2t , VarYt = σ2t+ λ2 .

The CreditGrades paper approximates ability-to-pay process and random
barrier by introducing a new process starting in the past. This approx-
imation makes a default in the past possible! For an assumed zero drift
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(µ = 0) the survival probability of the approximated process is given by the
one-dimensional standard normal distributions as follows:

Q(0, t) ≈ Φ
(

− At
2

+
ln(d)

At

)

− d · Φ
(

− At
2

− ln(d)

At

)

,

where d and At are as in the next theorem. Veraart (2005) found that the
CreditGrades default probability approximation might not be good enough
for a highly leveraged debt value D. We will not explain the CreditGrades
approximation; instead we determine the exact survival probability formula
for the original process Y :

Theorem 4.9 (Survival probability under the CreditGrades model)
Assume µ = 0. Under Y0 ≥ K (no default at time zero), the survival
probability is given by

IP(τ > t | Y0 ≥ K) =
1

Φ( ln(d)
λ − λ

2 )

[

Φ2

(

−λ
2

+
ln(d)

λ
,−At

2
+

ln(d)

At
,
λ

At

)

− d · Φ2

(
λ

2
+

ln(d)

λ
,−At

2
− ln(d)

At
,− λ

At

)]

,

where Φ2 is the two-dimensional standard normal distribution and

d := V0

L̄D
eλ

2
, A2

t := σ2t+ λ2 .

Proof. In order to determine the survival probability conditional on sur-
vival until t = 0, abbreviate z0 = −K

λ , note that IP(Z ≤ z0) > 0, condition
on Z and use the independence of W and Z and then apply the FPT result
for Brownian motion with drift, equation (1.6):

IP
(

min
0≤s≤t

Ys ≥ K | Y0 ≥ K
)

= IP

(

min
0≤s≤t

[

σWs −
σ2

2
s
]

≥ K + λZ | Z ≤ −K
λ

)

=
1

IP(Z ≤ z0)
IP

(

min
0≤s≤t

[

σWs −
σ2

2
s
]

≥ K + λZ , Z ≤ z0

)

=
1

Φ(z0)
IE

[

IE

[

II{min0≤s≤t[σWs−σ2

2
s]≥K+λZ}II{Z≤z0} | Z

]]

=
1

Φ(z0)
IE

[

II{Z<z0}IE

[

II{min0≤s≤t[σWs−σ2

2
s]≥K+λZ} | Z

]]
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Z⊥W
=

1

Φ(z0)

∫ z0

−∞
IP

(

min
0≤s≤t

[

σWs −
σ2

2
s
]

≥ K + λz

)

φ(z) dz

=
1

Φ(z0)

∫ z0

−∞

[

Φ
(−K − λz − σ2

2 t

σ
√
t

)

− e−K−λz Φ
(K + λz − σ2

2 t

σ
√
t

)
]

φ(z) dz

=
1

Φ(z0)

[

Φ2

(

z0,
−K − σ2

2 t√
σ2t+ λ2

,
λ√

σ2t+ λ2

)

− e−K+λ2

2 Φ2

(

z0 + λ,
−λ2 +K − σ2

2 t√
σ2t+ λ2

,− λ√
σ2t+ λ2

)]

,

where in the last step we applied the following equality
∫ z0

−∞
evz φ(z)Φ(az + b) dz = e

v2

2 Φ2

(

z0 − v,
av + b√
1 + a2

,− a√
1 + a2

)

,

confer for example Ikeda et Al. (1996). Inserting K = − ln(d)+ λ2

2 yields
the stated result. �

4.5.2 Longstaff and Schwartz: CIR interest rates

Longstaff & Schwartz (1995b) generalized the Merton model by intro-
ducing stochastic interest rates r that follow a mean-reverting CIR-process
and are correlated with the asset-value process Y (through the Brownian
motions W and B). The risk-neutral dynamics are given by

dYt = (rt − δ − σ2

2
) dt+ σ dWt

drt = κ(θ − rt) dt+ η dBt ,

where δ is the constant dividend rate and σ respective η are constant volatil-
ity rates.

4.5.3 Collin-Dufresne and Goldstein: mean-reverting inter-

est rates and barrier

The extension of the Longstaff & Schwartz model by Collin-Dufresne &
Goldstein (2001) lies in choosing a random mean-reverting barrier process
that depends on the asset value Y . The interpretation: Firms adjust out-
standing debt levels in response to changes in firm value. The log-threshold
level follows the process

dKt = λ(Yt − ν − φ(rt − θ) −Kt) dt ,

for some constants λ, ν and φ. So if indeed Kt is less than Yt− ν−φ(rt− θ)
the firm acts to increase Kt, and vice versa.
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Both models, Longstaff & Schwartz and Collin-Dufresne & Goldstein, pre-
dict negligible credit spreads for very short maturities, which contradicts
reality. Comparing the models:
For investment-grade1 firms the extended model leads to higher spreads for
longer maturities, and thus performs better. For speculative-grade firms the
model extension generates credit spreads that are larger and less sensitive
to changes in firm value, which is more consistent with empirical studies.

4.5.4 Jacobs and Li: two-factor model

Jacobs & Li (2004) modeled the dynamics of credit spreads on corporate
bonds with stochastic volatility. They used a two-factor affine model for
the credit spread λt. The first factor, st, can be interpreted as the level of
the spread and the second, vt, as volatility of the spread. The stochastic
volatility model consists of two mean-reverting processes

λt = c+ st + δ1(f1t − f̄1t) + δ2(f2t − f̄2t) ,

dst = α(s̄− st) dt+
√
vt dWt ,

dvt = κ(v̄ − vt) dt+ σ
√
vt dBt .

Here f1t and f2t are the factors from the two-factor affine model for the
riskfree interest rate, each following an independent square-root diffusion
process, and f̄1t, f̄2t are the resulting means. So δ1 and δ2 determine the
dependence on the riskless interest rate!
The dynamics of credit spreads are determined in two steps: First the pa-
rameters of the riskless interest rate are estimated using U.S. Treasury bond
prices and running an extended Kalman filter (EKF). In the second step
these estimates for the interest rate are assumed to be true and an EKF is
run using corporate bond prices of one firm to estimate the parameters of
the corresponding credit-spread process. The EKF estimates an unobserv-
able state vector ξt using some observable vector yt that is a function of the
unobservable vector, i.e.

ξt+1 = Fξt + ǫt+1 ,

yt = H(ξt) + ωt

where ǫt, ωt are white noise. The advantage of the EKF approach is that it
uses cross-sectional and time-series information.

4.5.5 Duffie and Lando: incomplete accounting information

Duffie & Lando (2001) studied credit-spread term structures on corporate
bonds under perfect and imperfect accounting information, see Figure 4.10.

1See Example 2.2.
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Incomplete information models yield credit-spread curves with positive in-
stantaneous spread. Classical structural models with complete (investors)
information yield a predictable default time, leading to a zero credit spread
at maturity zero. There is no short-term credit risk. In reality investors
only receive imperfect information, in the Duffie and Lando case periodi-
cally through accounting reports. That is they do not have a precise view
on default risk, particularly for short time horizons. Just before a company’s
default, the reported asset values in a balance-sheet can differ enormously
from the actual asset values. We say that investors cannot anticipate the
default and the default time is totally inaccessible2. Duffie and Lando derive
a distribution of the company’s assets conditional on imperfect accounting
information. This approach yields the existence of a default-arrival intensity
process and thus combines the structural and the reduced-form approach.

Figure 4.10: Credit-spread term structure under complete (dashed curve)
and incomplete (solid curve) information (from Duffie & Lando (2001))

4.5.6 Giesecke and Goldberg: incomplete default-barrier in-

formation

Giesecke & Goldberg (2004) introduced the first-passage model in which
investors cannot observe the time-invariant random default barrier (that is
a random variable not a process) before default (as in the CreditGrades
model). But investors observe the asset value. Therefore the running min-
imum of the asset value process is a natural upper bound for the random

2Totally inaccessibilty is for example defined in Meyer (1966), D42.
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barrier. Concerning the instantaneous credit spread, it is zero when the as-
set process is above its minimum and infinity when it is below its minimum.
In contrast to the model by Duffie & Lando, this model does not yield an
intensity process.
Giesecke (2006) introduced the so-called trend of a default model in order
to analyze incomplete-information models (incomplete information about
asset-value process, barrier level or both) and thus was able to put them
into a generalized reduced-form approach. Whenever this generalization co-
incides with the classical intensity model, the trend can be interpreted as
cumulative intensity.

4.5.7 Zhou: jump-diffusion model

Zhou (1997a) added a compound Poisson process to Merton’s diffusion
model. We introduced his so-called jump-diffusion model in Subsection
1.2.6, equation (1.12):

Yt = µt+ σWt +

Nt∑

i=1

Zi ,

Nt ∼ Pois(λt) , Zi iid ∼ N (µZ , σZ) ,

Zhou analyzed size of credit spreads and shapes of credit-spread curves.
In contrast to a usual diffusion approach (such as the Merton model), his
model is able to match a positive instantaneous default probability and
thus an positive instantaneous credit spread. Furthermore it can reproduce
various shapes of credit-spread curves including upward-, downward-sloping,
flat and hump-shaped.

4.5.8 Comparing structural and reduced-form models

Duffie & Singleton (2003) compared model-implied spreads from a reduced-
form model, a structural model and a model mixture. There are differ-
ent shapes of spread curves at short and long maturities. A Merton style
structural model leads to a hump-shaped spread curve starting at zero.
The reduced-form model is based on an exogeneously specified square-root
default-intensity process. The resulting spread curve starts above zero and
is increasing to a certain level, where it becomes flat at the end. The Collin-
Dufresne & Goldstein mixture model combines a target leverage ratio for the
distance-to-default process and a first-passage model. The resulting spread
curve starts again at zero but is only slightly hump-shaped.
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4.6 Survey: multivariate extensions of the Merton

credit-spread model

Often multivariate dependencies within multi-credit products are modeled
via a copula3, especially under the reduced-form approach. A copula has
a static dependency structure and does not show any dynamics. That is,
asset dependence does not have any volatility risk and neiter do joint credit
spreads.

Our multivariate model, equation (1.15), does show dependency risk :
The common time change is a stochastic process. Also the time-change
volatility and the time change derivative (the so-called default speed) are
stochastic processes themselves. A time change (distribution) can be con-
structed to fit the spread dynamics according to one’s imagination.

4.6.1 Brownian correlation in bivariate models

In Subsection 1.2.5 we introduced the two-dimensional models with Brown-
ian correlation: Hull & White (2001) (in discrete time) and Overbeck
& Schmidt (2005) (in continuous time). Both approaches fit the market’s
marginal default-probability curves at each grid/time point. The corre-
sponding correlation parameter is matched to the (market) joint default
probability at a fixed time horizon.

Our two-dimensional model of Theorem 1.23 adds to the Brownian cor-
relation the dependence inserted by a joint time change. Asset dependencies
by the Brownian correlation lead to a default correlation which is not nec-
essary very strong. The time change can be used to strengthen the default
correlation and also to influence the dependence structure at any other time
horizon.

4.6.2 Cariboni and Schoutens: variance-gamma model

Luciano & Schoutens (2006) considered the multivariate variance-gamma
model (equation 1.14) as a multi-firm default model. So far, they calibrated
the one-dimensional model to CDS spreads by applying a numerical method
that solves partial integro-differential equations and is used in pricing dig-
ital barrier options. Positive instantaneous credit spreads are yielded. Un-
der the variance-gamma model and other (non-trivial) subordinated Lévy
processes explicit credit-spread dynamics cannot be derived via the Itô ap-
proach (because the credit-spread formula has no analytical form, see the
introduction to Subsection 1.3.6). The dependence intensity varies stochas-
tically (through the gamma time change), but is the same between every
two firms.

3An introduction to copulas is given by Nelsen (1999).
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4.7 Conclusion: Merton-type models

This chapter analyzed the Merton model and Merton-alike models with re-
gard to modeling the credit-spread curve and its dynamics. These models
yield a credit-spread volatility that is a function of the actual spread and
asset value (which is assumed to be observed). They leave no free-space for
giving input on the behavior of the credit-spread curve. In Chapter 6.3 we
will therefore introduce our stochastic time-change model.



Chapter 5

Credit spread under the

Overbeck & Schmidt model

The Overbeck & Schmidt (2005) approach is an extension of the Merton
model. The extension consists of a deterministic time change of the Wiener
process. We defined the time change in general in Definition 1.1. We inter-
pret it as an indication of the available amount of information. The ability-
to-pay process lives in an experienced time instead of normal time. The so-
called Overbeck & Schmidt model or deterministic time-change model yields
an analytical FPT distribution, so the time change can be used to perfectly
fit a market given default-probability curve. We determine survival prob-
ability, credit spread and credit-spread dynamics, especially credit-spread
volatility. The credit-spread dynamics are a deterministic function of the
actual values of underlying process and credit spread. Credit-spread volatil-
ity can not be influenced.

5.1 Model framework

Overbeck & Schmidt (2005) assumed that a continuous default probabil-
ity function (F (t))0≤t<∞ with F (0) = 0 is given by the market. They aimed
at a default time τ that satisfies (1.4),

F (t) = IP (τ ≤ t) ∀t ≥ 0 .

Therefore they set

τ̂ = inf{s ≥ 0 : ŴTs < K} , (5.1)

Tt =




K

Φ−1
(
F (t)

2

)





2

.

97
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Then indeed, for t ≥ 0 the FPT formula (1.11) for the deterministic time
change yields

IP(τ̂ ≤ t) = 2Φ
(

K/
√

Tt
)

= 2Φ



K /
K

Φ−1
(
F (t)

2

)



 = F (t) . (5.2)

In the following, in order to determine credit-spread dynamics, we start
with another Brownian motion W , assume that the distribution function F
admits a density f = F ′, and define the time of default as follows:

τ = inf{t ≥ 0 :

∫ t

0
σs dWs < K} (5.3)

σs =

√
√
√
√
√−




K

Φ−1
(
F (s)

2

)





3

f(s)

Kϕ
(

Φ−1
(
F (s)

2

)) ,

where again K ≤ 0 (no pre-default). σs can be interpreted as default speed
and specifies the speed with which one runs through the Brownian path W .
Since F admits a density it is especially continuous. Since, furthermore,
F (0) = 0 the zero maturity default speed is infinite:

lim
s↓0

σ2
s = −




K

Φ−1
(
F (s)

2

)





3

︸ ︷︷ ︸

→0

1

K · ϕ
(

Φ−1

(
F (s)

2

)

︸ ︷︷ ︸

→−∞

) = ∞ , (5.4)

since the exponential function in ϕ(x) converges faster (in x = Φ−1(F (s)/2) )
to zero than x3 to infinity. This enables a default at the very next time step.

By Remark 1.15 the stochastic integral underlying the default time (5.3)
yields a Brownian motion Ŵ such that

∫ t

0
σs dWs = ŴTt ,

Tt =

∫ t

0
(σs)

2 ds =




K

Φ−1
(
F (t)

2

)





2

. (5.5)

That is, the asset-value process Yt =
∫ t
0 σsdWs is equal to a Brownian motion

with an absolutely continuous time change. Then also (5.3) and (5.1) are
the same default times.



5.1. MODEL FRAMEWORK 99

Example 5.1 (Default speed and deterministic time change)
Assume F (t) = 1 − e−λt , with density f(t) = λ e−λt . Furthermore let
K = −2.578, which yields the time change T1 = 1. We want to visualize the
default speed σs and the time transformation Tt. Note that the time-change
integral in (5.5) should not be approximated simply by the sum T

n

∑n
i=1(σi)

2

because of property (5.4). Applying the analytical formula in (5.5) leads to
Figure 5.1.
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Figure 5.1: Default speed (σt)t and analytical time change (Tt)t

In Subsection 1.2.5 we stated the joint survival probability under the Over-
beck & Schmidt model (at time zero). Now we want to determine the
conditional survival probability (Definition 3.1). Therfore we have to spec-
ify a filtration. As in the general situation of Chapter 3, we assume the
information flow is given by the underlying process Yt = ŴTt :

FY
t = σ

(

ŴTs : s ≤ t
)

. (5.6)

Then for every t, {τ > t} is FY
t -measurable. That is, τ is a IF-stopping

time.

Theorem 5.2 (Survival probability under the Overbeck & Schmidt model)
Under τ > t, the survival probability is given by

Q(t, T ) = 1 − 2 Φ

(

K − ŴTt√TT − Tt

)

= 1 − 2 Φ




K −

∫ t
0 σs dWs

√
∫ T
t (σs)2 ds



 .
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For fixed time to maturity M (under τ > t) this leads to

Q(t, t+M) = 1 − 2 Φ

(

K − ŴTt
√
Tt+M − Tt

)

.

Proof. We follow the same steps as in the Merton case (Theorem 4.1) and
use the Markov property of (ŴTt ,FY

t ). Under τ > t, Definition 3.1 of the
survival probability yields

Q(t, T ) = IE
(

II{inft≤s≤T ŴTs>K} | FY
t

)

= IP
(

inf
t≤s≤T

ŴTs > K | ŴTt

)

= IP
(

infTt≤s≤TT
Ŵs > K | ŴTt

)

= 1 − 2 Φ

(

K − ŴTt√TT − Tt

)

,

where for the last equality we used that K < ŴTt (since τ > t) and the FPT
result for Brownian motion, equation (1.6). �

5.2 Calibration - threshold level

We have seen in equation (5.2) that the deterministic time-change model fits
any default-probability curve F (which yields a density). The model yields
one more degree of freedom, in the threshold K. It can be used to require
TT = T , which (with (5.5)) leads to

T =

∫ T

0
(σs)

2 ds =




K

Φ−1
(
F (T )

2

)





2

,

that is, a strike level of

K = Φ−1
(F (T )

2

)

·
√
T . (5.7)

Example 5.3 (Survival probability term structures)
For simplicity we set F (t) = 1−e−λt and fix the threshold as in (5.7). Figure
5.2 shows survival probability curves for λ = 1%, . . . , 5% and T = 10, i.e.
for K = −5.3,−4.2,−3.6,−3.1,−2.7.
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Figure 5.2: Survival-probability term structure for K = −5.3, −4.2, −3.6,
−3.1, −2.7 and T = 10.

5.3 Credit Spread

Corollary 5.4 (Credit spread under the Overbeck & Schmidt model)
Conditional on no-default up to t, the spread is given by

s(t, T ) = 2 (1 −R)

Φ

(
K−ŴTt√
TT−Tt

)

T − t− 2
∫ T
t Φ

(
K−ŴTt√
Tu−Tt

)

du

,

and for fixed time to maturity

s(t, t+M) = 2 (1 −R)

Φ

(
K−ŴTt√
Tt+M−Tt

)

M − 2
∫ t+M
t Φ

(
K−ŴTt√
Tu−Tt

)

du

.

For t > 0 this is the forward credit spread.

Proof. Insert the survival probability from Theorem 5.2 into the spread
formula (3.4) and (3.5), respectively. �

5.3.1 Instantaneous spread

We determine the zero maturity spread limM↓0 s(t, t + M) for an assumed
default-probability curve F with density f under no default until t (espe-
cially WTt > K). First of all we determine the derivative of the time change
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(5.5):

d

dM
Tt+M = 2

K

Φ−1
(
F (t+M)

2

) · −K
Φ−1

(
F (t+M)

2

)2 · d

dM
Φ−1

(
F (t+M)

2

)

d

dM
Φ−1

(
F (t+M)

2

)

=
d

dM
F (t+M)

2

Φ ′
(

Φ−1
(
F (t+M)

2

)) =
1
2 f(t+M)

ϕ
(

Φ−1
(
F (t+M)

2

)) ,

and thus

d

dM
Tt+M = − K2

Φ−1
(
F (t+M)

2

)3 · f(t+M)

ϕ
(

Φ−1
(
F (t+M)

2

)) . (5.8)

Applying the rule of de L’Hospital and the fundamental theorem of calculus
yields a zero instantaneous credit spread:

lim
M↓0

s(t, t+M)

1 −R

= 2

limM↓0 Φ

(
K−ŴTt√
Tt+M−Tt

)

limM↓0M − 2
∫ t+M
t Φ

(
K−ŴTt√
Tu−Tt

)

du

= 2

limM↓0 ϕ

(
K−ŴTt√
Tt+M−Tt

)

(K − ŴTt) ·
(
−1

2

) d
dM

Tt+M

(Tt+M−Tt)3/2

limM↓0

(

1 − 2Φ

(
K−ŴTt√
Tt+M−Tt

))

= − (K − ŴTt) ·
limM↓0 ϕ

(
K−ŴTt√
Tt+M−Tt

)
d

dM
Tt+M

(Tt+M−Tt)3/2

1 − 0

= (K − ŴTt)
K2

Φ−1
(
F (t)

2

)3

f(t)

ϕ
(

Φ−1
(
F (t)

2

)) · lim
M↓0

ϕ

(
K−ŴTt√
Tt+M−Tt

)

(Tt+M − Tt)3/2

= 0 ,

since e−
1
2

1
x converges faster to zero for x ↓ 0 than 1

x3/2 .

5.3.2 Simulations

We discretize the time grid t0 = 0, t1 = T
n , . . . , tn+1 = t + M and simulate

the survival probability of Theorem 5.2 as follows:

Q(ti, ti +M) = II{inf0≤j≤i ŴTtj
>K}

[

1 − 2 Φ

(

K − ŴTti
√
Tti+M − Tti

)]

,
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and analogously the survival probabilityQ(ti, tk) needed for the credit spread
simulation (see (4.4)). We simulate Brownian increments that depend on
the time change (and indirectly on the threshold K),

∆ŴTtj
∼ Φ

(
0, Ttj − Ttj−1

)
,

in order to get a path of the time transformed Brownian motion

Ŵti = Ŵ0 +
i∑

j=1

∆Ŵtj .

Dynamics of credit-spread curves in time

In Subsection 4.3.2 we have shown possible credit-spread dynamics under the
Merton model. Here we show two possible credit-spread evolutions under the
deterministic time-change model, assuming the simplified default probability
curve F (t) = 1 − e−λt with λ = 1% and 5%, respectively. We let T =
10, M = 10 which implies a barrier level of K = −5.28 (and a survival
probability of Q(0, T ) = 90.48%), and K = −2.69 (Q(0, T ) = 60.65%),
respectively. The simulated Brownian path in Figure 5.3 crosses the barrier
at time t = 2.75 and thus implies a default. The default point is shown as a
red dot in the Brownian path of the first plot. credit-spread term structures
are only shown up to the default time. The Brownian motion simulated
with λ = 5% is shown in Figure 5.4. It does not cross the barrier, that is, it
does not default. In the first plot the red dots on the Brownian path mark
the Brownian levels for which credit-spread curves are plotted.

5.4 Credit-spread dynamics

For determining the dynamics we keep the CDS maturity T fixed an write
s(t) instead of s(t, T ). Furthermore we consider the spread as a function
f of time t and state variable x = ŴTt , that is f(t, x) = s(t). We use the
same abbreviations ft, fx, fxx for the partial derivatives as in the Merton
Subsection 4.4.1. Conditional on τ > t we determine the spread dynamics
with Itô’s formula:

dst = s(t)
[

µ̂(t, ŴTt) dt− σ̂(t, ŴTt) dŴTt

]

, (5.9)

where µ̂ :=

(
ft+

1
2
fxx

)

s and σ̂ := −fx

s . In terms of the original Brownian
motion W , this is equivalent to

dst = s(t)

[

µ̂

(

t,

∫ t

0
σs dWs

)

dt− σ̂

(

t,

∫ t

0
σs dWs

)

σt dWt

]

.
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Figure 5.3: Time-transformed Brownian path (first plot) and corresponding
credit-spread term structures till default for the threshold K = −5.28
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Figure 5.4: Time-transformed Brownian path and corresponding credit-
spread term structures for the threshold K = −2.69
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µ̂ can be interpreted as drift and σt · σ̂ as local volatility of credit spread.
The default speed σt is the main difference to the credit-spread vol of the
Merton model. The negative sign in the definition of σ̂ makes sense because
we will find that fx is a negative function. In the next proposition we de-
termine the partial derivatives ft, fx and fxx.

Proposition 5.5 (Partial derivatives under the Overbeck&Schmidt model)
The spread dynamics under the Overbeck&Schmidt model Yt = ŴTt are
determined by the following partial derivatives:

ft(t, ŴTt)

1 −R
= 2

(K − ŴTt)Φ

(
K−ŴTt√
TT−Tt

)

dTt
dt ·

∫ T
t

ϕ

(
K−ŴTt√
TT −Tt

)

(Tu−Tt)3/2 du

[

T − t− 2
∫ T
t Φ

(
K−ŴTt√
Tu−Tt

)

du

]2

+

dTt
dt · K−ŴTt

(TT−Tt)3/2 ϕ

(
K−ŴTt√
TT−Tt

)

T − t− 2
∫ T
t Φ

(
K−ŴTt√
Tu−Tt

)

du

− 2
Φ
(
K−Wt√
T−t

)

[

T − t− 2
∫ T
t Φ

(
K−ŴTt√
Tu−Tt

)

du

]2

fx(t, ŴTt)

−2(1 −R)
=

ϕ

(
K−ŴTt√
TT−Tt

)

/
√TT − Tt

T − t− 2
∫ T
t Φ

(
K−ŴTt√
Tu−Tt

)

du

+ 2

Φ

(
K−ŴTt√
TT−Tt

)
∫ T
t

ϕ

(
K−ŴTt√
Tu−Tt

)

√
Tu−Tt

du

[

T − t− 2
∫ T
t Φ

(
K−ŴTt√
Tu−Tt

)

du

]2

fxx(t, ŴTt)

−2(1 −R)
=

K−ŴTt

(TT−Tt)3/2 ϕ

(
K−ŴTt√
TT−Tt

)

T − t− 2
∫ T
t Φ

(
K−ŴTt√
Tu−Tt

)

du

− 8

Φ
(
K−Wt√
TT−Tt

)




∫ T
t

ϕ

(
K−ŴTt√
Tu−Tt

)

√
Tu−Tt

du





2

[

T − t− 2
∫ T
t Φ

(
K−ŴTt√
Tu−Tt

)

du

]3

+
−4

ϕ

(
K−ŴTt√
TT −Tt

)

√
TT−Tt

∫ T
t

ϕ

(
K−ŴTt√
Tu−Tt

)

√
Tu−Tt

du+ 2(K −Wt)Φ
(
K−Wt√
TT−Tt

) ∫ T
t

ϕ

(
K−ŴTt√
Tu−Tt

)

(Tu−Tt)3/2 du
[

T − t− 2
∫ T
t Φ

(
K−ŴTt√
Tu−Tt

)

du

]2 ,

where d
dtTt in ft is given by:

d

dt
Tt = − K2

Φ−1
(
F (t)

2

)3 ·
d
dtF (t)

ϕ
(

Φ−1
(
F (t)

2

)) .
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Proof. We only give the basic derivatives needed to derive the partial
derivatives:

d

dt
Φ

(

K − ŴTt√TT − Tt

)

= ϕ

(

K − ŴTt√TT − Tt

)

· 1

2

K − ŴTt

(TT − Tt)3/2
· d

dt
Tt ,

where d
dtTt is given by (5.8) for M = 0. Applying (A.1) (Appendix) yields

d
dt

∫ T
t Φ

(
K−ŴTt√
Tu−Tt

)

du = − limu→t Φ

(
K−ŴTt√
Tu−Tt

)

+
∫ T
t

d
dtΦ

(
K−ŴTt√
Tu−Tt

)

du

= −1 + 1
2

dTt
dt

∫ T
t ϕ

(
K−ŴTt√
Tu−Tt

)

· K−ŴTt

(Tu−Tt)3/2 du ,

d

dŴTt

∫ T

t
Φ

(

K − ŴTt√Tu − Tt

)

du = −
∫ T
t ϕ

(
K−ŴTt√
Tu−Tt

)

· 1√
Tu−Tt

du .

The stated partial derivatives follow directly. �

Theorem 5.6 (Spread dynamics under the Overbeck & Schmidt model)
Under the Overbeck & Schmidt model Yt = ŴTt , the credit spread has the
following dynamics:

dst
2(1 −R)

=

(

−
(

K2

Φ−1
(
F (t)

2

)3 ·
d
dtF (t)

ϕ
(

Φ−1
(
F (t)

2

)) + 1

)

·
(

1

2

K−ŴTt

(TT−Tt)3/2 ϕ

(
K−ŴTt√
TT−Tt

)

T − t− 2
∫ T
t Φ

(
K−ŴTt√
Tu−Tt

)

du

+

Φ

(
K−ŴTt√
TT−Tt

)
∫ T
t

ϕ

(
K−ŴTt√
Tu−Tt

)

√
Tu−Tt

du

[

T − t− 2
∫ T
t Φ

(
K−ŴTt√
Tu−Tt

)

du

]2

)

+

−Φ

(
K−ŴTt√
TT−Tt

)

+ 2
ϕ

(
K−ŴTt√
TT −Tt

)

√
TT−Tt

∫ T
t

ϕ

(
K−ŴTt√
Tu−Tt

)

√
Tu−Tt

du

[

T − t− 2
∫ T
t Φ

(
K−ŴTt√
Tu−Tt

)

du

]2

+ 4

Φ

(
K−ŴTt√
TT−Tt

)



∫ T
t

ϕ

(
K−ŴTt√
Tu−Tt

)

√
Tu−Tt

du





2

[

T − t− 2
∫ T
t Φ

(
K−ŴTt√
Tu−Tt

)

du

]3

)

dt

−
( ϕ

(
K−ŴTt√
TT −Tt

)

√
TT−Tt

T − t− 2
∫ T
t Φ

(
K−ŴTt√
Tu−Tt

)

du

+ 2

Φ

(
K−ŴTt√
TT−Tt

)
∫ T
t

ϕ

(
K−ŴTt√
Tu−Tt

)

√
Tu−Tt

du

[

T − t− 2
∫ T
t Φ

(
K−ŴTt√
Tu−Tt

)

du

]2

)

dŴTt .
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Proof. We insert the partial derivatives and dTt
dt of Proposition 5.5 into

equation (5.9). The first and second term of ft coincide with terms of fxx
apart from the term dTt

dt . The stated expression follows. �

Remark 5.7 (credit-spread volatility)
The spread volatility under the Overbeck & Schmidt model is given by

σ̂ · σt = 2(1 −R)σt
st

·








ϕ

(

K−
∫ t
0 σs dWs√
TT −Tt

)

√
TT −Tt

T−t−2
∫ T

t Φ

(
K−

∫ t
0 σs dWs√
Tu−Tt

)

du
+ 2

Φ

(
K−

∫ t
0 σs dWs√
TT −Tt

)
∫ T

t

ϕ

(

K−
∫ t
0 σs dWs√
Tu−Tt

)

√
Tu−Tt

du

[

T−t−2
∫ T

t Φ

(
K−

∫ t
0 σs dWs√
Tu−Tt

)

du

]2








.

As in the Merton model (Remark 4.6), for fixed t (under no pre-default)
there exists an inverse ĝ such that the spread volatility can be transformed
into a local volatility ¯̂σ (a function in st):

σt · σ̂(t, ŴTt) = −σt
fx(t, ŴTt)

f(t, ŴTt)
= −σt

fx(t, ĝ(t, s(t)))

s(t)
=: ¯̂σ(st) .

5.4.1 Simulation: spread dynamics and spread path

We assume F (t) = 1 − e−λt with λ = 1%, R = 0 and T = 10 (Q(0, T ) =
90.48% and K = −5.277), and divide the time interval into n = 400 grid
points. Figure 5.5 shows a defaulting time-transformed Wiener process,
corresponding survival probability and credit-spread path (Corollary 5.4).
The two last plots show the spread increments calculated with Theorem
5.6 (where some slightly negative spreads were obtained), and the result-
ing spread path. Just before the time of default, the survival probability
jumps to zero and the spread increases enormously (and is not plotted after
default). Figure 5.6 shows another simulation where Q(0, T ) = 99% and
K = −8.145 and no default happens. Both Figures show that the spread
paths determined by the two simulation approaches basically coincide.

5.4.2 Simulation: spread volatility

We choose the threshold level K (and thus the default intensity λ) such that

Q(0, t+M) = IP
(

inf
0≤s≤Tt+M

Ŵs > K | Ŵ0 = 0
)

= 99%

for M = 5. Assuming τ > t and ŴTt = a > K, where a lies within the
3σ-distance of Ŵ0 = 0, we determine the derivative fx(ŴTt), the survival

probability Q(t, t+M) = IP
(

inft≤s≤t+M Ŵs > K | ŴTt = a
)

, corresponding
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spread and spread vol. Graphs of spread and spread vol are plotted in Figure
5.7 and 5.8 for t = 1 and t = 5, respectively. We received simulation errors
when the time-transformed Wiener process was close to the threshold level
and also when it was so big that the spread was basically zero. In the
fourth plot of Figure 5.8 the error is plotted. In the other plots we therefore
restricted the x-axis.

5.5 Conclusion

This chapter analyzed the deterministic time-change model for modeling
credit-spread curves and spread dynamics. The deterministic time change
can be chosen such that the actual credit-spread curve is perfectly fitted.
Credit-spread volatility is more than twice as big as under the Merton model.
The main difference in the spread volatility originates from the default speed
σt. Still credit-spread volatility is a deterministic function in the actual
spread and actual asset value. Credit-spread volatility and the here inherent
risk can not be influenced by the model. Therefore we will consider the
stochastic time-change model in the next chapter.
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Figure 5.5: Defaulting time-transformed Brownian motion, survival proba-
bility, spread dynamics and resulting credit-spread paths
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Chapter 6

Credit spread under the

stochastic continuous

time-change model

We apply the general continuous stochastic time-change model, introduced
in Chapter 1, to credit-spread modeling. When using a positive starting
value for the time change, G0 > 0, the model includes incomplete informa-
tion, as in the CreditGrades model. We derive an analytical formula for
the survival probability and herewith for the credit spread. Under the ad-
ditional assumption that the time change is absolutely continuous (i.e., has
an integral representation) we can also derive credit-spread dynamics. Our
tool is again Itô’s rule.

6.1 Model framework

In Section 1.3 we introduced our stochastic time-change model: the first-
passage process (1.14)

Yt = σWGt + µ Gt ,

where the time change G satisfies Assumption 1.20, and the default time

τ = inf{s ≥ 0 : Ys < K} .
We derive the survival probability under the information given by the asset
value process Y (Definition 3.1): FY

t = σ (Ys : s ≤ t).
So {τ > t} is FY

t -measurable and we know whether a default happens or not.

The next theorem states that the probability of surviving the time interval
[t, T ] is given by the integral over the conditional time-change distribution.
The conditional normality of Y yields that the integrand is given by the
FPT expressions for Brownian motion with drift.

115
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Theorem 6.1 (Survival probability under continuous stochastic time change)
Under survival up to t (i.e. τ > t), the probability of surviving T is given by

Q(t, T ) = 1 −
∫ ∞

0

[

Φ

(
K − Yt
σ
√
z

− µ

σ

√
z

)

+ e2 µ

σ2 (K−Yt) Φ

(
K − Yt
σ
√
z

+
µ

σ

√
z

)]

IP(GT −Gt ∈ dz| FY
t ) .

Proof. Under τ > t, by Remark 3.2 and continuity of G, the survival
probability is determined by

Q(t, T ) = IE
(

II{inft≤s≤T [σWGs+µGs]>K} | FY
t

)

Gt cont.
= IE

(

II{infGt≤s≤GT [Ws+
µ
σ
s]>K

σ
} | FY

t

)

= IE
(

II{inf0≤s≤GT −Gt [WGt+s+
µ
σ

(Gt+s)]>K
σ
} | FY

t

)

.

We consider the Brownian motion with drift µ
σ and start at Yt

σ

W̃s :=
Yt
σ

+Ws +
µ

σ
s = WGt +Ws +

µ

σ
(Gt + s) .

Conditional on Gt, we have equivalence in distribution to

W̃s
L|Gt
= WGt+s +

µ

σ
(Gt + s) .

So we condition on the larger filtration FY
t ∨Gt ∨GT and use that then W̃

only depends on the actual value Yt and not on the whole information FY
t

(‘conditional Markov property’):

Q(t, T ) = IE
(

IPYt
σ

(

inf
0≤s≤GT−Gt

W̃s >
K

σ
| FY

t ∨Gt ∨GT | FY
t

)

= IE
(

IPYt
σ

(

inf
0≤s≤GT−Gt

W̃s >
K

σ
| Yt ∨ (GT −Gt)

)

| FY
t

)

= IE

(

1 −
[

Φ

(
K
σ − Yt

σ√
GT −Gt

− µ

σ

√

GT −Gt

)

+ e2 µ
σ

(K
σ
−Yt

σ )Φ

(
K
σ − Yt

σ√
GT −Gt

+
µ

σ

√

GT −Gt

)]

| FY
t

)

.

In the last step we inserted the FPT result for Brownian motion with drift
(formula (1.6)) which holds because Yt ≥ K. The expression claimed follows.

�
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Remark 6.2 (Survival probability under FY
t -measurable Gt)

By Remark 1.16, the continuous time change Gt is FY
t -measurable since it

is given through the quadratic variation of the underlying process, 〈Y 〉t =
σ2Gt. Thus the survival probability can be determined by

Q(t, T ) = 1 −
∫ ∞

0

[

Φ

(
K − Yt

σ
√
z −Gt

− µ

σ

√

z −Gt

)

+ e2 µ

σ2 (K−Yt) Φ

(
K − Yt

σ
√
z −Gt

+
µ

σ

√

z −Gt

)]

IP(GT ∈ dz| FY
t ) .

6.2 Credit spread

We give the credit-spread formula for an underlying process with zero drift.
The general formula is attained when inserting Q(t, T ) of Theorem 6.1 into
the general spread formula (3.4).

Corollary 6.3 (Credit spread under continuous stochastic time change)
The credit spread for the underlying process Yt = WGt conditional on no
default up to t is given by

s(t, T ) = 2(1 −R)

∫∞
0 Φ

(
K−Yt√

z

)

IP(GT −Gt ∈ dz | FY
t )

T − t− 2
∫ T
t

∫∞
0 Φ

(
K−Yt√

z

)

IP(Gu −Gt ∈ dz | FY
t ) du

,

and for fixed time to maturity M when inserting T = t+M .

Proof. Insert the survival probability formula of Theorem 6.1 with µ = 0
and σ = 1 into the spread formula (3.4). �

6.2.1 Simulations

We discretize the credit-spread formula for Yt = WGt on the equidistant
time grid t0 = t, t1 = t + T−t

n , . . . , tn = T . Conditional on no default up to
t, the discretization of the simplified spread formula was given in (4.3):

s(ti, T ) =
(1 −R)(1 −Q(ti, T ))
T
n

∑n+1
k=i+1Q(ti, tk)

.

Under the stochastic time-change model we have

Q(ti, tk) = 1 − 2
∑

y=0,∆,2∆,...

Φ

(
K − Yti
σ
√
z

)

IP(Gtk −Gti ∈ [y, y + ∆) | FY
ti ) .
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Furthermore we apply the simple time change Gt =
∫ t
0 B

2
s ds with discretiza-

tion

IP(Gtk −Gti ∈ [y, y + ∆) | FY
ti )

= IP(Gtk −Gti < y + ∆ | FY
ti ) − IP(Gtk −Gti < y | FY

ti )

and default probability distribution (2.2). We apply the model parameters
calibrated in Chapter 2 to F (t) = 1 − e−λt and to the average CCC-curve
(speculative-grade), respectively, at t = 5 and t = 10. These parameters
were stated in the last rows of Table 2.2 and Table 2.4. The simulations
yield the default probability curves and credit spread curves in Figure 6.1.
In Figure 6.2 we show the influence of a starting value G0 = g > 0 when
applying the time change Gt = g +

∫ t
0 B

2
s ds and using the same calibra-

tion parameters as before. Of course, in applications each model must
be calibrated, but here we just want to analyze the influence of g. Sim-
ulated default-probability curves and credit-spread curves for various levels
g = 0, 1, 10, 20, 50 are shown in Figure 6.2. g > 0 leads to non-zero in-
stantaneous credit spreads on the one hand, and to steeper curves on the
other.
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Figure 6.1: Default-probability curves and credit-spread curves under Gt =
∫ t
0 B

2
s ds for model parameters calibrated to F (t) = 1 − e−λt at F (t5) and

F (t10), with λ = 1% (black), λ = 7% (blue), λ = 10% (red) and to the
average CCC-curve (green).
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6.3 Credit-spread dynamics

The goal of this section is to determine credit-spread dynamics under the
continuous stochastic time-change model Yt = WGt , where W is specified
below. As under the previous models we will therefore apply Itô’s rule on
the credit-spread formula of Corollary 6.3 where T = t+M and M is fixed.
We therefore abbreviate sM (t) = s(t, t+M). As in the previous chapters we
introduce the spread function f that is a function in t and the state variable
y = Yt, i.e. f(t, y) = sM (t), and its partial derivatives ft, fy, fyy. Then Itô’s
rule yields the following dynamics:

dsMt = sMt [µs(t, Yt) dt− σs(t, Yt) dYt] ,

with drift µs :=
ft+

1
2
fyy

sM and σs := − fy

sM . σs is not the term that can
be interpreted as credit-spread volatility. Therefore we desire dynamics in
terms of some Browninan motion W̃ :

dsMt = sMt

[

µs(t, Yt) dt− σsv(t, Yt) dW̃t

]

,

and then σsv can be interpreted as credit spread volatility.

In contrast to the Overbeck & Schmidt model the time change is now
stochastic. As a consequence, Yt does not in general have a representa-
tion in terms of a stochastic integral w.r.t. Brownian motion. Therefore we
make the following assumption:

Assumption 6.4 (Absolute continuity)
We assume that there is a stochastic process (gt) with IE[

∫ t
0 g

2
s ds] < ∞ for

all t ≥ 0 such that the time change (Gt) is given by

Gt = g2
0 +

∫ t

0
g2
s ds ,

that is by Definition 1.2, G is absolutely continuous.

By Lemma 1.14 the stochastic integral
∫ t
0 gs dW̃s is a continuous local mar-

tingale with quadratic variation

〈
∫ ·

0
gs dW̃s

〉

t

=

∫ t

0
g2
s ds = Gt − g2

0 .

Furthermore there is a Brownian motion W , for which we define Yt = WGt ,
such that

dYt = gt dW̃t ⇐⇒ Yt = Y0 +

∫ t

0
gs dW̃s . (6.1)
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Then of course, Y is a continuous local martingale and has quadratic vari-
ation

〈Y 〉t = Gt − g2
0 .

Thus Assumption 6.4 and in particular (6.1) lead to the desired credit-spread
dynamics:

dsMt = sMt

[

µs(t, Yt) dt− σs(t, Yt)gt dW̃t

]

,

and in particular to the spread volatility σsv = σsg. In out next step we
determine the partial derivatives for the spread dynamics:

Proposition 6.5 (Partial derivatives under continuous stochastic time change)
We abbreviate

αt(Yt) = M − 2

∫ t+M

t

∫ ∞

0
Φ

(
K − Yt√

z

)

IP(Gu −Gt ∈ dz | FY
t )

βt(Yt) =

∫ t+M

t

∫ ∞

0

1√
z
ϕ

(
K − Yt√

z

)

IP(Gu −Gt ∈ dz | FY
t ) du .

Then, under the stochastic time-change model Yt = WGt , the partial deriva-
tives are given by

fMt
2(1 −R)

=

∫∞
0 Φ

(
K−Yt√

z

)
d
dt IP(Gt+M −Gt ∈ dz | FY

t )

αt(Yt)

− 2

∫∞
0 Φ

(
K−Yt√

z

)

IP(Gt+M −Gt ∈ dz | FY
t )

αt(Yt)2

+ 2

[∫∞
0 Φ

(
K−Yt√

z

)

IP(Gt+M −Gt ∈ dz | FY
t )
]2

αt(Yt)2

+ 2

∫∞
0 Φ

(
K−Yt√

z

)

IP(Gt+M −Gt ∈ dz | FY
t )

αt(Yt)2

·
∫ t+M

t

∫ ∞

0
Φ

(
K − Yt√

z

)
d

dt
IP(Gu −Gt ∈ dz | FY

t ) du ,

fMy
2(1 −R)

= −
∫∞
0

1√
z
ϕ
(
K−Yt√

z

)

IP(Gt+M −Gt ∈ dz | FY
t )

αt(Yt)

− 2

∫∞
0 Φ

(
K−Yt√

z

)

IP(Gt+M −Gt ∈ dz | FY
t )

αt(Yt)2
βt(Yt) ,
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fMyy
2(1 −R)

= −
∫∞
0

K−Yt

z3/2 ϕ
(
K−Yt√

z

)

IP(Gt+M −Gt ∈ dz | FY
t )

αt(Yt)

− 2

∫∞
0

1√
z
ϕ
(
K−Yt√

z

)

IP(Gt+M −Gt ∈ dz | FY
t )

αt(Yt)2
βt(Yt)

+ 2

∫∞
0

1√
z
ϕ
(
K−Yt√

z

)

IP(Gt+M −Gt ∈ dz | FY
t )

αt(Yt)2
βt(Yt)

+ 2

∫∞
0 Φ

(
K−Yt√

z

)

IP(Gt+M −Gt ∈ dz | FY
t )

αt(Yt)2

·
∫ t+M

t

∫ ∞

0

K − Yt

z3/2
ϕ

(
K − Yt√

z

)

IP(Gu −Gt ∈ dz | FY
t ) du

− 4

∫∞
0 Φ

(
K−Yt√

z

)

IP(Gt+M −Gt ∈ dz | FY
t )

αt(Yt)3
βt(Yt)

2 ,

Proof. The partial derivative fMt : Apply (A.2) from the Appendix,

d

dt

∫ t+M

t
f(s, t) ds = −f(t, t) + f(t+M, t) +

∫ t+M

t

d

dt
f(s, t) ds ,

in order to determine

d

dt

∫ t+M

t

∫ ∞

0
Φ

(
K − Yt√

z

)

IP(Gu −Gt ∈ dz | FY
t ) du

= −
∫ ∞

0
Φ

(
K − Yt√

z

)

IP(Gt −Gt ∈ dz | FY
t )

+

∫ ∞

0
Φ

(
K − Yt√

z

)

IP(Gt+M −Gt ∈ dz | FY
t )

+

∫ t+M

t

∫ ∞

0
Φ

(
K − Yt√

z

)
d

dt
IP(Gu −Gt ∈ dz | FY

t ) du

= −1 +

∫ ∞

0
Φ

(
K − Yt√

z

)

IP(Gt+M −Gt ∈ dz | FY
t )

+

∫ t+M

t

∫ ∞

0
Φ

(
K − Yt√

z

)
d

dt
IP(Gu −Gt ∈ dz | FY

t ) du .

The partial derivative fMy : Note that

d

dYt
IP(Gu −Gt ∈ dz | FY

t ) = 0 ∀ t ≤ u ≤ t+M .

The partial derivative fMyy : Use that

d

dx
ϕ(x) = −x · ϕ(x) .



6.4. FIRST-TO-DEFAULT SWAP 123

Furthermore note that βt(Yt) = − d
dYt
αt(Yt). �

Theorem 6.6 (Spread volatility under continuous stochastic time change)
Under Assumption 6.4 the credit-spread volatility for the time change pro-
cess Yt = WGt is given by

σs · gt =
2(1 −R)

sMt
gt ·

{∫∞
0

1√
z
ϕ
(
K−Yt√

z

)

IP(Gt+M −Gt ∈ dz | FY
t )

αt(Yt)

+ 2

∫∞
0 Φ

(
K−Yt√

z

)

IP(Gt+M −Gt ∈ dz | FY
t )

αt(Yt)2
βt(Yt)

}

,

with αt(Yt) and βt(Yt) as stated in Proposition 6.5.

Proof. Insert dYt = σsgt dW̃t into the dynamics (6.1) with the partial
derivatives from Proposition 6.5. �

6.4 First-to-default swap

We consider a basket of n credits and are interested in the first default of a
credit within this basket. The first-to-default (FTD) time is given by

τ [1] = min(τ1, . . . , τn)

and the FTD probability by

IP(τ1st ≤ t) = 1 − IP(τ1 > t, . . . , τn > t) . (6.2)

A first-to-default swap is a contract that offers protection against that first
credit event. Therefore the protection buyer pays the FTD spread s[1](t, T )
to the protection seller until contract maturity T , but only as long as the first
default has not happened. In case of default before maturity, the protection
seller pays an amount as agreed to the protection buyer. We assume he pays
1 −R[1], where R[1] is the recovery rate of the credit that is first defaulted.

6.4.1 First-to-default spread on two credits

In the case when the basket contains only two credits, we can derive an
analytical formula for the FTD spread under our two-dimensional stochastic
time-change model. The FTD time is given by τ1st = τ1 ∧ τ2 and the FTD
probability by

IP(τ1st ≤ t) = 1 − IP(τ1 > t, τ2 > t) .
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When using the same time change for both credits the joint survival prob-
ability is given by Theorem 1.23, and when using different time changes it
is given by Theorem 1.26. The conditional JSP corresponding to Theorem
1.23 is obtained when integrating over the conditional time-change density
IP(GT −Gt ∈ dz |FY

t ) instead of IPGt( dx) and substituting x− g by z. For
the recovery rates we assume R1 = R2 ≡ R. Then conditional on τ1st > t,
the formula for the FTD spread is determined similar to the spread formula
(3.2) and is given by

s1st(t, T ) =
(1 −R)

∫ T
t D(t, u)IP(τ1st ∈ du | FY

t )
∫ T
t D(t, u)Q1st(t, u) du

, (6.3)

where D(t, u) is the discount factor and

Q1st(t, T ) = IP
(
τ1st > T | FY

t

)
= IP(τ1 > t, τ2 > t | FY

t ) ,

the conditional survival probability.

6.4.2 First-to-default spread on n credits

When having a basket with n credits our multivariate model with Brownian
independence (1.15) can be applied. The JSP in (6.2) and the conditional
JSP needed for the FTD spread (6.3) can be derived analogously to the joint
default probability of Corollary 1.22. The conditional JSP is given by

Q1st(t, T ) = IP (τ1 > t, . . . , τm > t | FY
t )

=

∫ ∞

0

m∏

i=1

[

1 − Φ

(
Ki − Y i

0

σi
√
z

− µi
σi

√
z

)

− e
2

µi(Ki−Y i
0 )

σ2
i Φ

(
Ki − Y i

0

σi
√
z

+
µi
σi

√
z

)]

IP(GT −Gt ∈ dz| FY
t ) .

Assuming R1 = · · · = Rn ≡ R and τ1st > t, formula (6.3) then yields the
FTD spread for the n-credits basket.

The next section gives examples for analytical conditional time-change den-
sities that yield an explicit FTD spread. This makes calibration to market
prices easy.

6.5 Explicit conditional time-change densities

In this section we want to give two examples for explicit conditional time-
change densities IP(GT − Gt ∈ dz | FY

t ), the simple time change and the
CIR-type time change.
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6.5.1 The simple time change

The simple time change was introduced at the end of Subsection 1.3.7:

Gt =

∫ t

0
B2
u du .

We determine the conditional time-change density IP(GT − Gt ∈ dz| Bt)
and show that it is equal to IP(GT −Gt ∈ dz| FY

t ).

Theorem 6.7 (Conditional density of the simple time change)
The density of the simple time change increment conditional on the actual
information FY

t is given by

IP(GT −Gt ∈ dy | FY
t )

=
dy√
2π

∞∑

k=0

1

k!

(
B2
t

2

)k ∞∑

j=0

Γ(1
2 + k + j)

Γ(1
2 + k)j!

y−1+ k
2

· exp







−

(

(1
2 + 2k + 2j)(T − t) +

B2
t

2

)2

2y







·
∑

0≤l≤ k+1
2

(−)j+l2
1
2
+k−l (k + 1)!

l!(k + 1 − 2l)!

(

(1
2 + 2k + 2j)(T − t) +

B2
t

2√
y

)k+1−2l

.

Proof. First we determine IP(GT −Gt ∈ dz| Bt):
For this we insert the time change, modify the integral bounds and substitute
the original Brownian motionB by the Brownian motion B̃s := Bt+s starting
in B̃0 = Bt :

IP

(∫ T

t
B2
s ds ∈ dy | Bt

)

= IP

(∫ T−t

0
B̃2
s ds ∈ dy | B̃0

)

. (6.4)

The last probability is given in Borodin, Salminen (2002) (pages 168,
642). With their notation it is equal to

=
∞∑

k=0

1

k!

(

B̃2
0

2

)k

cy

(

k,
1

2
+ k, T − t,

B̃2
0

2
+ k(T − t)

)

dy ,

which is equal to the stated expression. Now we show that IP(GT − Gt ∈
dz| FY

t ) = IP(GT −Gt ∈ dz| Bt):
For this we note that the obtained expression only depends on B2

t , that is

IP(GT −Gt ∈ dy | Bt) = IP(GT −Gt ∈ dy | B2
t ) .



126 CHAPTER 6. STOCHASTIC TIME-CHANGE MODEL

By Remark 1.16 the continuous time change is equal to the quadratic vari-
ation of the asset-value process: Gt = 〈Y 〉t. Thus Gt is FY

t -measurable and
this is also true for B2

t = d
dtGt. Hence

IP
(
GT −Gt ∈ dy | FY

t

)
= IP

(∫ T

t
B2
u du ∈ dy | σ

(
Ys, Gs, B

2
s : s ≤ t

)
)

= IP

(∫ T

t
B2
u du ∈ dy | B2

t

)

,

since the integral is independent of the Brownian path W and the time
change Gs for s ≤ t, and a Markov process w.r.t. σ

(
B2
s : s ≤ t

)
. �

6.5.2 The CIR-type time change

Now we consider the CIR-type time change from Def. 1.28 with g = 0:

Ĝt = σ̂2
∫ t
0 eκr

[√
g0
σ̂ +B∫ r

0 eκs ds

]2
dr

L
=

∫ t

0
e2κr gCIRr dr .

(
gCIRr

)
is a positive process and the solution of the Cox-Ingersoll-Ross SDE,

given in (1.18). The next theorem determines the conditional density.

Theorem 6.8 (Conditional density of the CIR-type time change)

Let b = 1
σ̂ e

1
2
κt
√

gCIRt . The conditional density of the time-change increment
is given by

IP(ĜT − Ĝt ∈ dy | FY
t )

=
dy

σ̂2
√

2π

∞∑

k=0

(
b2

2

)k ∞∑

j=0

Γ(1
2 + k + j)

Γ(1
2 + k)j!

y−(1+ k
2
)

· exp







−

(

(1
2 + 2k + 2j) 1

κ(eκT − eκt) + b2

2

)2

2y







∑

0≤l≤ k+1
2

(−)j+l2
1
2
+k−l (k + 1)

l!(k + 1 − 2l)!

(

(1
2 + 2k + 2j) 1

κ(eκT − eκt) + b2

2√
y

)k+1−2l

.

Proof. We determine the density conditional on gCIRt and find that it only
depends on (gCIRt )2. By the same arguments as for the simple time change
this is equal to the density conditional on FY

t :

IP(ĜT − Ĝt ∈ dy | FY
t ) = IP(ĜT − Ĝt ∈ dy | (gCIRt )2)

= IP(ĜT − Ĝt ∈ dy | gCIRt ) .
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Now we determine IP(ĜT − Ĝt ∈ dy | gCIRt ):
It is derived analogously to the proof for the unconditional density of The-
orem 1.29. We set

Xt = σ̂ e
1
2
κt
[√

g0
σ̂ +B∫ t

0 eκs ds

] L
= eκt

√

gCIRt .

Then the time-change increment is given by

ĜT − Ĝt =

∫ T

t
X2
r dr .

For a given value gCIRt we have Xt = eκt
√

gCIRt and herewith

b =
Xt

σ̂
e−

1
2
κt =

√
g0

σ̂
+B 1

κ
(eκt −1) .

Then the conditional density of the time-change increment is given by

IP(ĜT − Ĝt ∈ dy | gCIRt )

= IP

(

σ̂2

∫ T

t
eκr
[√g0
σ̂

+B∫ r
0 eκs ds

]2
dr ∈ dy | Xt

)

.

Here we substitute w =
∫ r
0 eκs ds = 1

κ(eκr −1), change the integral bounds,

and introduce the Brownian motion B̃w =
√
g0
σ̂ +Bw+ 1

κ
(eκt −1) with start in

B̃0 = b, which leads to

= IP

(

σ̂2

∫ 1
κ
(eκT −1)

1
κ
(eκt −1)

[√g0
σ̂

+Bw

]2
dw ∈ dy | Xt

)

= IP

(

σ̂2

∫ 1
κ
(eκT − eκt)

0

[√g0
σ̂

+Bw+ 1
κ
(eκt −1)

]2
dw ∈ dy | Xt

)

= IP

(

σ̂2

∫ 1
κ
(eκT − eκt)

0
B̃2
w dw ∈ dy | B̃0 = b

)

.

The last probability can be computed analogously to the one in the proof
for the simple time change, equation (6.4). With the notation of Borodin,
Salminen (2002) (p. 168, 642) it is equal to

=
1

σ̂2

∞∑

k=0

1

k!

(
b2

2

)k

cy

(

k,
1

2
+ k,

1

κ
(eκT − eκt),

b2

2
+
k

κ
(eκT − eκt)

)

dy ,

which leads directly to the stated expression. �
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6.6 Conclusion

Under our stochastic time-change model with an absolutely continuous busi-
ness clock we derived an analytical formula for credit spread and credit-
spread dynamics. For the simple time change (that was deeply studied in
Chapter 2) and the CIR-type time change we explicitly derived the con-
ditional time-change density which is needed for the credit-spread model-
ing. There are various applications for our (still very general) credit-spread
model: For any credit product the underlying credit-spread dynamics should
be modeled, in addition to adapting the actual credit-spread curves. In par-
ticular the credit-spread volatility is important because it indicates the risk
of changes in the credit-spread curve. This is especially necessary for con-
tracts with long time to maturities and credit-spread sensitive products such
as the credit-spread option, the variance swap (on credit-spread) and credit
products with leverage effects. Our model has three advantages: It yields
an analytical credit-spread formula that can be easily calibrated to a given
credit-spread curve. A time change with arbitrarily many degrees of freedom
can be chosen and fitted to the desired dynamics, especially the credit-spread
volatility. Last but not least the time change, and in the two-dimensional
case in addition a Brownian correlation parameter, can be used to insert a
dependency structure into a multi-credit product. That dependency can be
explained as business time or amount of information flow or simply as as-
set dependence. The multi-dimensional models also yield analytical default
probabilities and thus ‘joint credit spreads’ such as the FTD spread.

One question remains that cannot be answered in general: How do the
credit-spread dynamics look like?
In our empirical analysis, in the second part of Chapter 3, we have seen that
this has to be studied separately for each credit underlying.



Chapter 7

Outlook: applications to

option pricing

In option pricing it is important that the underlying model displays historical
and implied volatility features: Historical data show price jumps, leverage
effects (i.e. past returns are negatively correlated with future volatility), and
volatility clustering (high/small absolute returns are followed by high/small
absolute returns). The model should be able to produce a volatility sur-
face, a smile (symmetric) or scew (asymmetric) along the moneyness axis,
and a term structure along the time axis. Stochastic volatility models with
(and without) jump components come into question. The Heston model, a
generalized geometric Brownian motion with a variance driven by a Cox-
Ingersoll-Ross process, is well-known – especially in foreign-exchange option
pricing. It does not include a jump part. Correlating the Brownian com-
ponents of spot and variance makes possible a volatility skew, smile and
leverage effect. The Heston model is of value because Heston (1993) de-
rived a semi-analytical pricing formula for the plain-vanilla call. So far no
closed formulas are available for exotic options, especially not for barrier
options.

Examples for stochastic volatility models that include jumps are the
Bates model (generalizing the Heston model by including a compound Pois-
son component into the spot process) and the Barndorff-Nielsen&Shephard
model (having an Ornstein-Uhlenbeck variance process and correlated jumps
in spot and variance). Both models are able to show all important volatility
features. But – to the best of our knowledge – no closed pricing formulas
are available for any kind of option.

As literature for option pricing we refer to Hunt & Kennedy (2004) in
general and to Cont & Tankov (2004) and Schoutens (2003) in partic-
ular with regard to Lévy processes.

In this chapter we are going to apply our stochastic time-change model to
option pricing. The time-change model is a stochastic volatility model that

129
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inserts stochastic volatility through the time-change process.1 For exempli-
fication, we determine the stochastic time-change model that is equivalent
(in distribution) to the Heston model. Stochastic volatility models lead to
an incomplete market because volatility is not (directly) tradable. For that
reason the pricing measure is not unique and we decide in favor of the min-
imal martingale measure. Under our general model, allowing for correlation
between spot and time change, we derive a closed formula for the price of a
European call. Under no correlation and zero interest rates we furthermore
derive pricing formulas for several barrier options, using our first-passage
time (FPT) results of Chapter 1. The time change can be used and adapted
to produce the desired volatility features. Certainly, because of continuity,
price jumps are not possible under our model.

7.1 Heston model

Heston (1993) introduced a stochastic volatility model where the spot pro-
cess is given by a generalized geometric Brownian motion and the variance
by a Cox-Ingersoll-Ross (CIR) process (see (1.18)):

dSt = St[µ dt+
√

gCIRt dWt]

dgCIRt = κ(θ − gCIRt ) dt+ σ̂
√

gCIRt dBt .

The Brownian motions W and B are correlated with correlation parameter
ρ. Furthermore, throughout this chapter r denotes a constant interest rate.

7.1.1 Revisited: original Heston call price

Heston derived a semi-analytical solution for the call price by solving a
partial differential equation. For this he assumed that the price of volatil-
ity risk, that is necessary for the pricing measure, is linear in v, that is,
λ(S, v, t) = λv. Defining the constants, u1 = 1

2 , u2 = −1
2 , a = κθ,

b1 = κ+ λ− ρσ, b2 = κ+ λ, he obtained the following call-price formula:

C(S, v, t) = SP1(ln(S), v, t) −K e−r(T−t) P2(ln(S), v, t) ,

1Geman, Madan & Yor (2000), Schoutens (2003), and Carr & Wu (2003) intro-
duced time-changed Lévy process to option pricing. The first two considered subordinators
as time changes and Carr & Wu assumed that the time change is locally deterministic, i.e.
has an integral representation and thus belongs to our general class of continuous time
changes.
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where for j = 1, 2,

Pj(x, v, T ) =
1

2
+

1

π

∫ ∞

−∞
Re

[

e−iφ ln(K)ϕj(x, v, T − t;φ)

iφ

]

dφ ,

ϕj(x, v, τ ;φ) = eCj(τ ;φ)+Dj(τ ;φ)v+iφx ,

Cj(τ ;φ) = rφiτ +
a

σ̂2

{

(bj − ρσφi+ dj)τ − 2 ln
[1 − gj edjτ

1 − gj

]}

,

Dj(τ ;φ) =
bj − ρσ̂aφi+ dj

σ̂2

[ 1 − edjτ

1 − gj edτ

]

,

gj =
bj − ρσ̂φi+ dj
bj − ρσ̂φi− dj

[ 1 − edjτ

1 − gj edτ

]

,

dj =
√

(ρσ̂φi− bj)2 − σ̂2(2ujφi− φ2) .

7.1.2 Revisited: analytical Heston call price

The filtered probability space (Ω,F , IP, IF) is endowed with the true prob-
ability measure IP and a filtration IF holding the information about the
Brownian motions W and B. We determine the minimal martingale mea-
sure lQ w.r.t. IF in order to derive plain-vanilla prices, following the lines of
Bingham & Kiesel (1998), first edition, Chapter 7:

Let St = S0 + Mt + At, t ∈ [0, T ] and T < ∞, be a continuous IP-
semimartingale2 with square-integrable IP-martingale M , finite variation
process At =

∫ t
0 αu d〈M〉u, and predictable process α. S will be the dis-

counted price process that shall become a martingale under the new measure
lQ.

Definition 7.1 (Minimal martingale measure)
A martingale measure lQ is called minimal if any square-integrable IP-martingale
which is orthogonal to M remains a martingale under lQ.

Theorem 7.2 (Bingham and Kiesel)
The minimal martingale measure lQ is unique. It exists if and only if the
likelihood process

Lt = exp

{

−
∫ t

0
αu dMu −

1

2

∫ t

0
α2
u d〈M〉u

}

is a square-integrable martingale under IP. In that case lQ is given by the
Girsanov density dlQ

dIP = LT .

2An adapted process (X, IF) is said to be a local semimartingale if it has the decompo-
sition Xt = Mt + At, where M is a local martingale and A is càdlàg, with path of finite
variation on compacts.
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Then in particular

IE lQ(ST |Ft) =
IEIP(STLT |Ft)

Lt
.

Back to the Heston model: In Kammer (2002) we derived an analytical
pricing formula for the European call under independent Brownian motions
W and B, and the information given by

Ft = σ((Bu)u≥0,Ws : s ≤ t) ,

containing all the information about the Brownian path B. The proof uses
the fact that the spot process has a closed-form solution (due to the closed-
form solution of the CIR variance; see (1.19)):

St = S0 exp

{

µt− 1

2

∫ t

0
gCIRs ds+

∫ t

0

√

gCIRs dWs

}

. (7.1)

The call price is determined under the minimal martingale measure and the
following likelihood process is derived for changing measures:

Lt = exp

{

−
∫ t

0

µ− r
√

gCIRu

dWu −
1

2

∫ t

0

(µ− r)2

gCIRu

du

}

. (7.2)

Remember that gCIRt > 0. The price for the European call with payoff
CT = (St −K)+ under the information Ft is then given by

Ct = StΦ(d+) −K e−r(T−t) Φ(d−) , (7.3)

where

d+ =
√

(T − t)
√

v̄ − 2(µ− r) + (µ− r)2V̄ + d ,

d− =
√

(T − t)(µ− r)
√

V̄ + d ,

d =
ln(St

K ) + (µ− 1
2 v̄)(T − t)

√

(T − t)v̄
,

v̄ =
1

T − t

∫ T

t
gCIRs ds ,

V̄ =
1

T − t

∫ T

t

1

gCIRs

ds .

The risk-neutral spot dynamics and thus the call price depend on µ. Choos-
ing µ gives us one degree of freedom, and of course µ can be set equal to r.

Now we show that the Heston model can be seen as a specific time-change
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model. Consider the Heston spot process (7.1) and the time change given
by the integrated CIR-process

GCIRt =

∫ t

0
gCIRs ds .

Since
∫ t
0

√

gCIRs dWs is an Itô integral and as such a continuous local mar-
tingale the spot process is equivalent in distribution to (cf. Lemma 1.14)

St
L
= S0 exp

{

µt− 1

2
GCIRt +WGCIR

t

}

– a special time-change model.

7.2 Stochastic time-change model

We consider the general exponential time-change model :

St = S0 exp

{

µt− 1

2
Gt +WGt

}

, (7.4)

and the exponent process

Yt = ln( St
S0

) = µt− 1

2
Gt +WGt , (7.5)

where the time change has an integral representation

Gt =

∫ t

0
gs ds , gs > 0 ∀s a.s. ,

that is dependent on a Brownian motion B and satisfies Assumption 1.20.
But for European option prices we allow for correlation between W and
B. Note that G0 > 0 enables a price jump at the very beginning (but only
there). We derive prices under the filtration given by the underlying process:

FY
t = σ(Ys : s ≤ t) = σ(Ss : s ≤ t) ,

and hereto also consider the larger filtration containing the whole path B:

FY
t ∨B = σ ((Bu)u≥0, Ys : s ≤ t) = σ ((gu)u≥0, Ys : s ≤ t) .

7.2.1 European call

We determine the likelihood process to change measures analogously to (7.2)
(cf. Kammer (2002)) by using Theorem 7.2. There is a Brownian motion
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B̂ independent of B (see (1.3), such that Wt = ρBt +
√

1 − ρ2B̂t for all t.
Then with (7.4) the discounted spot process has the integral representation

S̃t = e−rt St

= S0 + (µ− r)

∫ t

0
Su du+ ρ

∫ t

0
Su

√
gu dBu +

√

1 − ρ2

∫ t

0
Su

√
gu dB̂u

and martingale part Mt = ρ
∫ t
0 Su

√
gu dBu +

√

1 − ρ2
∫ t
0 Su

√
gu dB̂u (under

IFY ). Setting αt = µ−r
Stgt

and applying Theorem 7.2 yields the likelihood
process:

Corollary 7.3 (Likelihood process – minimal martingale measure)
The likelihood process for the general time-change model, for a change from
IP to the minimal martingale measure lQ under the filtration FY

t , is given by

Lt = exp

{

−
∫ t

0

µ− r√
gu

dWu −
1

2

∫ t

0

(µ− r)2

gu
du

}

.

With the likelihood process pricing formulas for plain-vanilla options can be
obtained. We give the formula for the European call, and to shorten the
expression we assume µ = r.

Theorem 7.4 (European call under the stochastic time-change model)
Let W and B be correlated Brownian motions with correlation parameter ρ
and assume µ = r. The price for the European call with strike K and matu-
rity T under the information FY

t , by changing measures with the likelihood
process Lt of Corollary 7.3, is given by

Ct =

∫

Ω

[

St e
−ρ2 1

2(T−t)
(GT−Gt)+ρ

∫ T
t

√
gu dBu Φ(d+) −K e−r(T−t) Φ(d−)

]

dIPFY
t

with

d+ =
√

(1 − ρ2)(GT −Gt) + d− ,

d− =
ln(St

K ) + r(T − t) − 1
2(GT −Gt) + ρ

∫ T
t

√
gu dBu

√

(1 − ρ2)(GT −Gt)
.

Proof. We apply the likelihood process of Corollary 7.3 to change mea-
sures. Using the tower property we consider the expectation w.r.t. the larger
filtration FY

t ∨B

er(T−t)Ct = IE lQ

[
(ST −K)+|FY

t

]
= IEIP

[
LT
Lt

(ST −K)+|FY
t

]

=IEIP

[

IEIP

[
LT
Lt

(ST −K)+|FY
t ∨B

]

|FY
t

]

,
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that is determined by following the lines of the proof of (7.3) and given in
A.3. �

For zero correlation this leads to an analytical call-price formula whenever
an analytical conditional time-change density is available:

Ct =

∫ ∞

0

[

StΦ(d+) −K e−r(T−t) Φ(d−)
]

IPGT−Gt|FY
t

( dz)

d± =
ln(St

K ) + r(T − t) ± 1
2z√

z
.

7.2.2 Barrier options

We aim at pricing formulas for the following barrier options:
one-touch and no-touch options, as well as knock-in and knock-out calls and
puts.

We assume µ = r. Then the spot price

St = S0 exp

{

rt− 1

2
Gt +WGt

}

(7.6)

is risk-neutral because the discounted spot process

S̃t = e−rt St = S0 exp

{

−1

2
Gt +WGt

}

is already a martingale. We do not need to change measure for pricing.
We assume that the Brownian motions W and B are uncorrelated (as in
Assumption 1.20) and interest rates are zero. Then S̃ = S. Note that indeed
interest rates might be zero (e.g. Japan). Furthermore this applies when in
a foreign-exchange market domestic and foreign interest rates coincide (rd =
rf ), or when in the equity market the interest rate equals the continuous
dividend yield (r = d).

We apply our first-passage time results of Chapter 1 in order to determine
prices for barrier options. The first-passage process is given by (7.5) where
µ = 0

Yt = −1

2
Gt +WGt ,

and the first-passage time by

τ = inf{t ≥ 0 : Yt < K̃} , K̃ = ln

(
K

S0

)

.
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Touch options

A one-touch option OT (digital-knock-in) respectively no-touch option NT
(digital-knock-out) has payoff

OTT = II{inft≤T St<K}
NTT = II{inft≤T St>K} = 1 −OTT .

Theorem 7.5 (One-touch option)
The price for a one-touch and no-touch option is given by the (conditional)
first-passage time distribution:

OTt =

{
1 if τ < t
IP
(
τ < T | FY

t

)
if τ ≥ t

NTt =

{
0 if τ < t
1 − IP

(
τ < T | FY

t

)
if τ ≥ t

,

where

IP
(
τ < t | FY

t

)
=

∫ ∞

0

[

Φ

(
K

σ
√
x

+
1

2σ

√
x

)

+ e−
1

σ2 (K−Y0) Φ

(
K

σ
√
x
− 1

2σ

√
x

)]

IP(GT −Gt ∈ dx| FY
t ) .

Proof. Interest rates are zero, so we do not have to consider discount
factors. We consider the digital-knock-in:
The payoff can be written in terms of the first-passage time

OTT = II{inft≤T Yt<K̃} = II{τ<T} .

Then

OTt = IE[II{τ<T} | FY
t ] ,

which is the conditional default probability given in Section 3.1.
The digital-knock-out follows directly because of NTT = 1 −OTT . �

Touch options on two assets

We here consider two assets S1 and S2 and two strike levels K1 and K2 on
which the digital payoff depends. A one-touch OT2 and a no-touch NT2 on
two assets have the following payoffs

OT2T = II{inft≤T (S1
t ,S

2
t )<(K1,K2)}

NT2T = II{inft≤T (S1
t ,S

2
t )>(K1,K2)} .
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As in the one-asset case, we introduce the first-passage processes

Y 1
t = −1

2G
1
t +W 1

G1
t
, Y 2

t = −1

2
G2
t +W 2

G2
t

and their first-passage times

τ1 = inf{t ≥ 0 : Y 1
t < K̃1} , τ2 = inf{t ≥ 0 : Y 2

t < K̃2} ,

where the threshold levels are given by

K̃1 = ln
(
K1

S1
0

)

, K̃2 = ln

(
K2

S2
0

)

.

Both τi are stopping times w.r.t.

Ft := σ(Y 1
s , Y

2
s : s ≤ t) = σ(S1

s , S
2
s : s ≤ t) .

Theorem 7.6 (One-touch option on two assets)
Let W 1 and W 2 be Wiener processes with correlation ρ. Furthermore let G1

and G2 be time changes that satisfy Assumption 1.20 with G1
t = g = G2

t and
that are independent of W 1 and W 2. The price for a one-touch respective
no-touch dependent on two assets is then given by the joint default respective
joint survival probability in that

OTt =

{
1 if τ1 < t and τ2 < t
IP (τ1 ≤ T, τ2 ≤ T | Ft) if τ1 < t or τ2 < t

NTt =

{
0 if τ1 < t or τ2 < t
IP (τ1 > T, τ2 > T | Ft) if τ1 < t and τ2 < t

where IP(τ1 > T, τ2 > T | Ft) is given by Theorem 1.26 when substituting
the unconditional time-change density IP(G1

t ,G
2
t )(dx× dy) by the conditional

density IP(G1
t ,G

2
t )|F̃t

( dx× dy) and

IP(τ1 ≤ T, τ2 ≤ T | Ft)
= IP(τ1 > T, τ2 > T | Ft) + IP(τ1 ≤ T | Ft) + IP(τ2 ≤ T | Ft) − 1 .

with IP(τi ≤ T | Ft), i = 1, 2, as in Theorem 7.5.

Barrier options

With the model (7.6) we can also derive a closed pricing form for barrier
options. A down-and-in call (DIC) respectively put (DIP) knocks in when
a lower boundary has been hit, an up-and-in call (UIC) respectively put
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(UIP) knocks in when an upper boundary has been hit. The payoffs are as
follows:

DICT = (S̃T −K)+II{inft≤T S̃t<H}

DIPT = (K − S̃T )+II{inft≤T S̃t<H}

UICT = (S̃t −K)+II{inft≤T S̃t>H}

UIPT = (K − S̃T )+II{inft≤T S̃t>H} .

We give the price for the down-and-in call, the other pricing formulas can
be determined analogously.

Theorem 7.7 (Down-and-in call)
Let H be the knock-in barrier, K the strike and T the maturity of the down-

and-in call. Furthermore set H̃ = ln
(
H
S̃0

)

. Under τ > t, i.e., no knock-in

yet, the price of a down-and-in call is given by

DICt =

∫

Ω

[

S̃t√
2π(GT−Gt)

∫∞
H̃ e

1
2
z+ 1

8
(GT−Gt)− (|z−H̃|−H̃)2

2(GT −Gt) dz

− K√
2π(GT−Gt)

∫∞
H̃ e

− 1
2
z+ 1

8
(GT−Gt)− (|z−H̃|−H̃)2

2(GT −Gt) dz

]

dIPGT−Gt|FY
t
.

Proof.

DICt = IE
[

(ST −K)+II{inft≤T St<H} | FY
t

]

= IE
[

(expYT −K)+II{inft≤T Yt<H̃}

]

We use that G and W are independent and apply the known density
IP(inft≤T Wt ≤ H̃, WT ∈ dz); cf. Borodin & Salminen (2002). �

7.2.3 The Dufresne time change

As an example we consider the so-called Dufresne time change

Gt =

∫ t

0
gs ds =

∫ t

0
eσ̂Bs−σ̂2κs ds ,

where gt = eσ̂Bt−σ̂2κt and σ̂ > 0, 0 < κ ≤ 1
2 . It has expectation (applying

Fubini)

IE[Gt] =

∫ t

0
IE
[

eσ̂Bs e−σ̂
2κs
]

ds =

∫ t

0
IE
[

eσ̂Bs

]

e−σ̂
2κs ds

=

∫ t

0
e

1
2
σ̂2s−σ̂2κs ds =

{
t if κ = 1

2
1

σ̂2( 1
2
−κ)

[

eσ̂
2( 1

2
−κ)t−1

]

otherwise.
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Since 0 < κ ≤ 1
2 , we have IE[Gt] → ∞ for t → ∞. The option prices are

determined by inserting the density for the Dufresne time change (see Table
1.3):

IP(Gt ∈ dx) = σ̂−2κ+1x−κ−
1
2 2κ−

1
2 e−κ

2σ̂2 t
2
− 1

σ̂2x · mσ̂2t/2

(

−κ− 1

2
,

1

σ̂2x

)

dx .

7.3 Idea: adding a leverage effect

We expand the model by a random variable Z that is independent of the
processes (Wt) and (gt):

St = S0 exp {WGt + ρZ}

Gt =

∫ t

0
g2
s ds+ Z2 .

Z influences the leverage effect and also enables a volatility skew. Further-
more Z2 leads to an a.s. positive starting value G0 and enforces the variance
to speed up and enables an instantaneous price jump.

Using the independence of Z the first-passage time distribution of the
exponent process Yt = WGt + ρZ can be determined by conditioning (on Z
and Gt) and thus also barrier option prices.
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Appendix A

Technical details

A.1 General derivative for a time-dependent inte-

gral

We determine the derivative of

F (t) =

∫ h(t)

g(t)
f(s, t) ds .

For this let

G(t) = (g(t), h(t), t) ,

H(u, v, w) =

∫ v

u
f(s, w) ds ,

F (t) = H ◦G(t) ,

then

F ′(t) = < ∇H(G(t)), G′(t) > ,

DuH(u, v, w) = −f(u,w) ,

DvH(u, v, w) = f(v, w) ,

DwH(u, v, w) =

∫ v

u
Dwf(s, w) ds ,

where ∇ denotes the gradient, and herewith

F ′(t) = < ∇H(g(t), h(t), t), (g′(t), h′(t), t) >

= −f(g(t), t) · g′(t) + f(h(t), t) · h′(t) +

∫ h(t)

g(t)

d

dt
f(s, t) ds .

We are interested in the following special cases:

141
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Example 1

Let T be a constant, set h : t 7→ T and g ≡ id. Then h′(t) = 0 and g′(t) = 1,
and thus

d

dt

∫ T

t
f(s, t) ds = −f(t, t) +

∫ T

t

d

dt
f(s, t) ds (A.1)

Example 2

Let M be a constant, set h : t 7→ t + M and g ≡ id, then h′(t) = 1 and
g′(t) = 1. Thus

d

dt

∫ t+M

t
f(s, t) ds = −f(t, t) + f(t+M, t) +

∫ t+M

t

d

dt
f(s, t) ds (A.2)

A.2 Gamma, Bessel and modified Bessel function

We cite definitions of Borodin, Salminen (2002), page 637 f.

Definition A.1 (Gamma function)
The Gamma function is defined as

Γ(x) :=

∫ ∞

0
ux−1 e−u du, Re (x) > 0 .

Definition A.2 (Bessel function)
The Bessel function of order ν ≥ 0 is defined by

Jν(x) :=
∞∑

k=0

(−1)k
(
x
2

)ν+2k

k! Γ(ν + k + 1)
.

0 < jν,k < jν,k < . . . denote the positive zeros of Jν(x).

Definition A.3 (Modified Bessel function)
The modified Bessel function of order ν is given by

Iν(x) :=
∞∑

k=0

(
x
2

)ν+2k

k! Γ(ν + k + 1)
.

A.3 Proof: European call of Theorem 7.4

Proof. We give the main steps. The true measure conditional on FY
t is

denoted by IPFY
t

. The general likelihood process Lt was given in Corollary
7.3, but we only consider the case µ = r, that is, Lt = 1. Define

c :=
ln(KSt

) − r(T − t) + 1
2(GT −Gt) − ρ

∫ T
t

√
gs dBs

√

1 − ρ2
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and note that c is FY
t ∨ B-measurable. Furthermore (Bs)s≥0 is FY

t ∨ B-
measurable and (B̂s)s>t is independent of FY

t ∨B. Then

IEIP

[
LT
Lt

(ST −K)+| FY
t ∨B

]

= IEIP

[

ST
LT
Lt

II{ST>K}| FY
t ∨B

]

−KIEIP

[LT
Lt

II{ST>K}| FY
t ∨B

]

=

∫

{ST>K}
St e

µ(T−t)− 1
2

∫ T
t gs ds+ρ

∫ T
t

√
gs dBs+

√
1−ρ2

∫ T
t

√
gs dB̂s dIPFY

t

−K

∫

{ST>K}
1 dIPFY

t

= St e
µ(T−t)− 1

2

∫ T
t gs ds+ρ

∫ T
t

√
gs dBs

∫

{∫ T
t

√
gs dB̂s>c}

e
√

1−ρ2
∫ T

t

√
gs dB̂s dIPFY

t

−K

∫

{∫ T
t

√
gs dB̂s>c}

1 dIPFY
t

= St e
(µ− 1

2
ḡ)(T−t)+ρ

∫ T
t

√
gs dBs e

1
2
(1−ρ2)(GT−Gt)

· Φ
(
√

1 − ρ2
√

GT −Gt −
c√

GT −Gt

)

−K · Φ
(

− c√
GT −Gt

)

Now insert c, d+, and d− as defined. �
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