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Kurzzusammenfassung

Diese Dissertation befasst sich mit Existenz und Eigenschaften stationärer
Lösungen für die Bewegung von N Punktwirbeln in einer idealisierten zweidi-
mensionalen Flüssigkeit in einem beschränkten Gebiet Ω, die bestimmt wird
durch ein Hamiltonsches System

Γi
dxi
dt

=
∂HΩ

∂yi
(z1, . . . , zN )

Γi
dyi
dt

= −∂HΩ

∂xi
(z1, . . . , zN )

wobei zi = (xi, yi), i = 1, . . . , N,

wobei HΩ(z) :=
∑N

j=1 Γ2
jh(zj) +

∑N
i,j=1,i 6=j ΓiΓjG(zi, zj) die sogenannte

”
Kirchhoff–Routh–path function“ ist, unter verschiedenen Bedingungen an

die
”
Wirbelstärken“ Γi, sowie verschiedenen geometrisch–topologischen An-

nahmen über das Gebiet Ω, wie vor allem Symmetrie und mehrfacher Zu-
sammenhang. Des Weiteren werden mögliche Anwendungen der vorliegenden
Resultate auf die Untersuchung der sinh–Poisson–Gleichung sowie der Lane–
Emden–Fowler–Gleichung diskutiert.

Abstract

This dissertation is concerned with the study of existence and properties
of stationary solutions for the dynamics of N point vortices in an idealised
fluid constrained to a two–dimensional domain Ω, which is governed by a
Hamiltonian system

Γi
dxi
dt

=
∂HΩ

∂yi
(z1, . . . , zN )

Γi
dyi
dt

= −∂HΩ

∂xi
(z1, . . . , zN )

where zi = (xi, yi), i = 1, . . . , N,

where HΩ(z) :=
∑N

j=1 Γ2
jh(zj) +

∑N
i,j=1,i 6=j ΓiΓjG(zi, zj) is the so–called

Kirchhoff–Routh–path function under various conditions on the “vorticities”
Γi and various topological and geometrical assumptions on Ω, notably sym-
metry and multiple connectivity. Further, possible applications of the results
to the study of the sinh–Poisson equation and the Lane–Emden–Fowler equa-
tion are discussed.
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1 Introduction

The N–vortex–problem of fluid dynamics is concerned with the dynamics of N point
vortices z1, . . . , zN in an ideal fluid constrained to a two–dimensional domain Ω with
corresponding vortex strengths (so-called vorticities) Γ1, . . . ,ΓN ∈ R, whose absolute
values determine the degree to which the surrounding fluid is curled and whose signs
determine the direction of revolution for the surrounding fluid. It is governed by a
Hamiltonian system

Γi
dxi
dt

=
∂HΩ

∂yi
(z1, . . . , zN )

Γi
dyi
dt

= −∂HΩ

∂xi
(z1, . . . , zN )

where zi = (xi, yi), i = 1, . . . , N, (1.1)

which is derived as a limit of the Euler–equations for the motion of the whole fluid. The
geometry of the domain comes into play through the hydrodynamic Green’s function, a
generalisation of the classical Green’s function of the first kind for the Laplacian on Ω,
which plays a dominant role in the Hamilton function HΩ.

Since its derivation by Helmholtz, Kirchhoff, Lord Kelvin and Routh in the second
half of the 19th century, this model has played a central role in the research on fluid
dynamics, motivated by prominent examples of it’s applicability in turbulences of the
earth’s atmosphere and oceans up to the dynamics of an electron plasma, see for example
the survey article [1] as well as the monographies [14, 15, 16].

There is plenty of literature in the case that Ω is the whole Euclidean plane and all the
vorticities have the same sign. For research about these cases [1, 14, 15, 16] are a very
good starting point. In particular, a lot of research has been done considering questions
of integrability and ergodicity as well as existence and geometrical form of stationary or
periodic solutions.

In these papers it is crucial that if Ω is the whole Euclidean plane, the Hamilton
function is explicitly given by

H(z1, . . . , zN ) = − 1

2π

N∑
i,j=1
i 6=j

ΓiΓj ln |zi − zj |.

Much less is known about the behaviour of solutions of (1.1), if Ω is a bounded domain
and some of the vorticities Γi are positive, others negative, so that the vortices are
rotating in different directions. HΩ is then defined on the so-called configuration space1

FNΩ := {(z1, . . . , zN ) ∈ ΩN : zi 6= zj for i 6= j},

which is an open subset of ΩN and therefore of all of CN .

1This space is of great importance in algebraic topology. The term “configuration space” comes from
there and is not to be confused with the configuration space of some mechanical system in physics,
though both spaces share the same historical origin.
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In this case the Hamilton function, which in the literature is commonly called “Kirch-
hoff–Routh path function” is given by

HΩ(z1, . . . , zN ) =
N∑
j=1

Γ2
jh(zj) +

N∑
i,j=1
i 6=j

ΓiΓjG(zi, zj),

where G : F2Ω → R is the hydrodynamic Green’s function with regular part g(x, y) =
G(x, y) + 1

2π ln |x− y|, and h(x) = g(x, x) is the so-called Robin’s function.
Basic results concerning G, h and the dynamics of the equation (1.1) in the case N = 1

were proven in [10, 11, 13]. For N ≥ 2 there are plenty of papers of numerical nature by
mathematicians, physicists and engineers, especially for special domains, whose Green’s
function is either explicitly known or can be described by methods of complex analysis.

Contrary to that, there are only a few analytical papers concerned with the case of
a general domain Ω, notably [2, 4, 6, 7], where, under some special conditions on Ω
and the coefficients Γi, critical points of HΩ and thereby stationary solutions of (1.1)
are obtained. In [6] it is assumed that Γi = 1 for all i ∈ {1, . . . , N} and that Ω is not
simply connected. In [7] very special simply connected (“dumbbell shaped”) domains
are allowed, but again only for the case Γi = 1 for all i ∈ {1, . . . , N}. The paper [2] is
concerned with the case N = 2, Γ1 = −1, Γ2 = 1, and Ω an arbitrary bounded domain,
this is the first instance where a stationary configuration of counterrotating vortices in
an arbitrary domain is found. Lastly, in [4] a stationary solution of N counterrotating
vortices lying on the symmetry axis of a axially symmetric domain is found for arbitrary
N and Γi = (−1)i for i ∈ {1, . . . , N}. Additionally, the much more complicated case of
a general bounded domain Ω with Γi = (−1)i is settled in [4] successfully for N = 3 and
N = 4.

It shall also be mentioned that, somewhat surprisingly, in the papers [2, 6, 7] the
Hamiltonian HΩ appears as a limit functional for some elliptic boundary value problems
in Ω and the existence of critical points of certain perturbations of HΩ gives rise to
solutions of these problems.

The goal of this dissertation is to investigate the existence and properties of critical
points of HΩ (and hence of stationary solutions to equation (1.1)) under various condi-
tions on the vorticities Γi as well as some geometrical and topological assumptions (such
as symmetry or multiple connectivity) on Ω, but for general N ∈ N. To some extent we
are also able to prove the existence of new nodal solutions to the elliptic boundary value
problems considered for example in [2].

Although the problem of finding critical points of HΩ is finite dimensional, the problem
has proven itself to be considerably refractory. The most obvious difficulty is that for
an arbitrary domain Ω the Green’s function as an essential part of HΩ is only implicitly
given as a solution of a partial differential equation, thus all relevant properties of HΩ

have to be derived through the analysis of the corresponding partial differential equation.
More importantly, HΩ is only defined on the incomplete manifold FNΩ and is for general
vorticities Γi strongly indefinite. In fact, it may be the case that HΩ(z) remains bounded
for dist(z, ∂FNΩ)→ 0, which in the model corresponds to collisions of multiple vortices
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with each other or with ∂Ω. This lack of compactness is crucial, since it prevents us from
using standard methods of critical point theory, such as the “mountain–pass”–theorem.
Hence a more detailed study of the behaviour of HΩ is necessary. The usual methods of
critical point theory, all of which apply some sort of modified gradient flow of HΩ are
difficult to apply due to the incompleteness of FNΩ. Success in applying these methods
is therefore intimately connected to a good analytical understanding of collisions, that
is of flow lines z : (t−(z0), t+(z0))→ FNΩ to the gradient flow of HΩ satisfying

min {|zi(t)− zj(t)|,dist(zi(t), ∂Ω) : i, j ∈ {1, . . . , N}, i 6= j} → 0

for t → t+(z0). This, in turn, depends very sensitively on the constellation of the
vorticities Γi.

The space FNΩ on the other hand exhibits a rich topology even for simply connected
Ω, such that, given appropriate compactness properties of HΩ, finding critical points of
HΩ is a rather easy task.

The bulk of this thesis is therefore concerned with deriving conditions on the vorticities
Γi and on the domain Ω such that the gradient flow of HΩ has a compact flow line. The
relevant condition on the Γi has in part already been conjectured in [4] and is a rather
strict one for larger N . In particular, for general Ω, the ”model case” Γi = (−1)i is not
covered by our results, which therefore complement the results given in [4].

If Ω is dihedrally symmetric, we are able to gain some compactness and relax the
conditions on the Γi. It is here where we are also able to derive new nodal solutions to
the elliptic boundary value problems mentioned before.

This thesis is organized as follows. In chapter 2 we give some preliminary results
concerning the behaviour of the Green’s and Robin–functions. We also give an abstract
deformation argument which will be perpetually used throughout the whole thesis. In
chapter 3 we consider the (considerably simpler) case of a dihedrally symmetric domain
Ω and derive several critical points of different geometrical type for HΩ. Chapter 4 is
concerned with the careful analysis of the behaviour of HΩ along ”collision” flowlines.
Chapter 5 then provides linking properties for HΩ, consequently proving the existence
of critical points of HΩ also in the case of a general domain Ω. Lastly, chapter 6 is
dedicated to the discussion of the stability of the previous results as well as possible
applications to the elliptic boundary value problems mentioned before.

1.1 Statement of results

In this subsection we give an outline of the theorems proven in this thesis. In order not
to get too deep into technicalities already in the introduction, we state the results in
a simplified rather than their fully general version in order to give an overview of the
topics covered.

Let therefore Ω ⊂ C be a smooth domain and denote the Kirchhoff–Routh–path–
function with vorticities Γ ∈ RN in Ω by HΓ

Ω. We will prove more general versions of
the following theorems:
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Theorem 1.1. Let Γ ∈ RN satisfy
∑

i,j∈J
i 6=j

ΓiΓj 6= 0 and
∑

j∈J Γ2
j >

∑
i,j∈J
i 6=j
|ΓiΓj | for all

J ⊂ {1, . . . , N}, |J | ≥ 2, as well as Γj = (−1)j |Γj |, j ∈ {1, . . . , N}, where |Γj | ≤ |Γj+1|
for j ∈ {1, . . . , N − 1}. Then HΓ

Ω has a critical point.

If Ω is not simply–connected, we may exploit the richer topology of the configuration
space FNΩ to abolish the necessity for alternating vorticities.

Theorem 1.2. Assume Ω is not simply–connected and let, as before, Γ ∈ RN satisfy∑
i,j∈J
i 6=j

ΓiΓj 6= 0 and
∑

j∈J Γ2
j >

∑
i,j∈J
i 6=j
|ΓiΓj | for all J ⊂ {1, . . . , N}, |J | ≥ 2. Then HΓ

Ω

has a critical point.

For Dp–symmetric domains Ω, where Dp denotes the symmetry group of a regular
p–gon, and where without loss of generality we may take 0 ∈ C to be the symmetry
center of Ω, the conditions on Γ are much less severe.

Theorem 1.3. Assume Ω is Dp–symmetric, 0 6∈ Ω, and let Γ ∈ Rkp satisfy Γj+lk =
Γj = (−1)j |Γj |, for j ∈ {1, . . . , k}, l ∈ {1, . . . , p − 1}, where |Γj | ≤ |Γj+1| for j ∈
{1, . . . , k−1}. Then HΓ

Ω has a critical point, whose components are symmetrically aligned
with alternating vortices and increasing or decreasing modulus along the symmetry axes
of Ω.

Further, we have a result stating that under slightly stricter conditions on Γ, we may
replace the hole at the symmetry center of Ω by a sufficiently strong vortex.

Theorem 1.4. Assume Ω is Dp–symmetric, 0 ∈ Ω, and let (Γ0, . . . ,Γkp) ∈ Rkp+1 satisfy
Γj+lk = Γj = (−1)j |Γj |, for j ∈ {1, . . . , k}, l ∈ {1, . . . , p − 1}, where |Γj | < |Γj+1| for
j ∈ {1, . . . , k − 1}. There is Γ̃0 > 0, such that for all Γ0 > Γ̃0 the Kirchhoff–Routh–
path–function HΓ

Ω has a critical point, whose components are symmetrically aligned with
alternating vortices and decreasing modulus along the symmetry axes of Ω with the vortex
with strength Γ0 placed in the symmetry center of Ω.

More general versions of the above theorems are found in theorems 5.1, 5.2, concerning
the case of an asymmetric domain Ω as well as theorems 3.6 and 3.9, respectively, where
symmetric domains are considered.
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2 Preliminaries

2.1 Hypotheses and basic notation

Hypothesis 2.1. Let Ω ⊂ C be a bounded domain with C3–boundary. A fortiori, Ω
is finitely connected and satisfies a uniform exterior ball condition, that is there exists
a constant r > 0 such that for any x ∈ ∂Ω there is x∗ ∈ C such that Br(x

∗) ⊂ C \ Ω
as well as x ∈ ∂Br(x∗). Let k0 := rankπ1(Ω), and denote the bounded components (if
any) of C \ Ω̄ by Ωj , j ∈ {1, . . . , k0}.

For convenience in stating our results and further hypotheses, we start by fixing some
useful notation.

Definition 2.2 (Basic notation). The configuration space of N point vortices in Ω is
defined as

FNΩ :=
{
z ∈ ΩN : zi = zj ⇔ i = j

}
,

which is an open subset of ΩN and therefore of all of CN . We denote its boundary
in CN by ∂FNΩ. We set ∆N :=

{
t ∈ (0,∞)N : ti < ti+1 ∀i ∈ {1, . . . , N − 1}

}
, and for

a ∈ C and v ∈ S1 we define the space of ordered configurations of N vortices along the
line a+ R · v through Ω to be the N–dimensional submanifold of FNΩ defined by

LN (a, v) := (ã+ ∆N · v) ∩ ΩN =
{

(a+ t1v, . . . , a+ tnv) ∈ ΩN : (t1, . . . , tn) ∈ ∆N

}
,

where ã = (a, . . . , a) ∈ CN . The symmetric group ΣN on N symbols acts freely on FNΩ
via

ΣN ×FNΩ 3 (σ, z) 7→ σ ∗ z := (zσ−1(1), . . . , zσ−1(N)) ∈ FNΩ,

hence it is possible to define

LσN (a, v) := σ−1 ∗ LN (a, v)

as well as
LσNΩ :=

⋃
(a,v)∈Ω×S1

LσN (a, v)

for σ ∈ ΣN . Lastly, for ∅ 6= C ⊂ {1, . . . , N} it will be useful to define the orthogonal
projection πC by

πC : CN 3 z 7→ (zj)j∈C ∈ C|C|.

Definition 2.3 (Reflection at ∂Ω). Since Ω is C3 there is ε > 0 such that the orthogonal
projection

p : Ωε := {z ∈ Ω : dist(z, ∂Ω) < ε} → ∂Ω

is a well–defined C2–map satisfying |p(z) − z| = dist(z, ∂Ω). The reflection at ∂Ω is

7



a

z2

z1

z4

z5

z3
L = a + tvW

W1

W2

v

Figure 1: A configuration z ∈ L(12)(345)
5 (a, v) ⊂ F5Ω.

then defined as the C2–map2

Ωε 3 z 7→ z := 2p(z)− z ∈ C.

Additionally, in what comes we will always abbreviate d(z) := dist(z, ∂Ω).

We are now ready to state the general sufficient assumptions on the function G for
carrying out our arguments.

Hypothesis 2.4. Let G : F2Ω → R satisfy the following hypotheses: G is bounded
below by some constant C0 and has logarithmic singularities on the diagonal in Ω× Ω,
more precisely, the map F2Ω 3 (x, y) 7→ G(x, y) + 1

2π ln |x − y| ∈ R has a continuation
g ∈ C1(Ω2), which is bounded from above by some constant C1 > 0. Thus, we may
write

G(x, y) = g(x, y)− 1

2π
ln |x− y|. (2.1)

Further, for every ε > 0 there is C2 > 0 depending only on Ω and ε such that

|G(x, y)|+ |∇xG(x, y)|+ |∇yG(x, y)| ≤ C2 (2.2)

for every x, y ∈ Ω with |x−y| ≥ ε. Similarly, there is a constant C3 > 0, also depending
only on ε and Ω, such that

|ψ(x, y)|+ |∇xψ(x, y)|+ |∇yψ(x, y)| ≤ C3, (2.3)

for every x, y ∈ Ωε, where ψ(x, y) = g(x, y) − 1
2π ln |x̄ − y| and x 7→ x̄ is reflection at

∂Ω. Further there exists a constant C4 > 0 such that for any line L = Rv+w ⊂ C with

2Here and in all what follows, when talking about differentiability, we regard C = R2, and thus mean
differentiability in the real–valued sense. We regard Ω ⊂ C simply because the elegant geometrical
properties of complex multiplication allow us to state some things more concisely.
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L ∩ Ω 6= ∅
G(w + rv, w + sv)−G(w + rv, w + tv) ≥ −C4. (2.4)

for all r < s < t, for which the left hand side is defined. Finally, if Ω is invariant under
some symmetry group U acting on Ω by linear isometries, the functions g and h respect
these symmetries, that is

g(u · x, v · y) = g(x, u−1v · y)

h(u · x) = h(x)
(2.5)

for any x, y ∈ Ω, u, v ∈ U .

Definition 2.5. For Γ ∈ RN we define the Kirchhoff–Routh path function for vortices
with vorticities Γi, i ∈ {1, . . . , N} to be the function

HΓ
Ω : FNΩ 3 (z1, . . . , zN ) 7→

N∑
j=1

Γ2
jh(zj) +

N∑
i,j=1
i 6=j

ΓiΓjG(zi, zj) ∈ R,

where the functions G and h satisfy the above hypotheses. If the parameter Γ is
understood, we will drop it from the notation, writing HΩ instead of HΓ

Ω.

2.2 Preliminary results

Theorem 2.6. Green’s function of the first kind for the Dirichlet Laplacian in Ω satisfies
hypothesis 2.4.

Proof. All of the conditions in 2.4 are either well known properties of the Dirichlet
Laplacian, see for example [12] or verified in [4] except for property (2.4), which is a
slight sharpening of the result given there.

To see that (2.4) holds assume on the contrary that there is a sequence Ln = an+Rvn
of lines with Ω ∩ Ln 6= ∅ as well as rn < sn < tn such that

G(an + rnvn, an + snvn)−G(an + rnvn, an + tnvn)→ −∞ (2.6)

as n → ∞, where by selecting appropriate subsequences we may take the sequences
(an) ⊂ Ω and (vn) ⊂ S1 to be convergent to some a ∈ Ω and v ∈ S1, respectively.

Now since G is bounded below (2.6) implies

G(xn, zn) = g(xn, zn)− 1

2π
ln |tn − rn| → ∞,

hence |tn − rn| → 0, such that rn, sn, tn → t as n→∞, since g is bounded from above,
and where we abbreviated xn := an + rnvn, yn := an + snvn, zn := an + tnvn.

If a+ tv ∈ Ω this leads to a contradiction via

G(xn, yn)−G(xn, zn) ≥ C − 1

2π
ln
sn − rn
tn − rn

≥ C − ln 1 = C,
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for some constant C, since g is bounded on compact subsets of Ω× Ω.
Thus a + tv ∈ ∂Ω, so if n is large enough, xn, yn, zn ∈ Ωε, where we may use the

approximation

G(xn, yn)−G(xn, zn) =
1

2π
ln
|xn − yn|
|xn − zn|

· |xn − zn|
|xn − yn|

+O(1)

as n→∞. Considering the differentiable function

f : (rn,∞) 3 α 7→ |xn − an − αvn|
2

|xn − an − αvn|2
∈ R

we easily compute

f ′(α) = 2
〈−vn, xn − an − αvn〉 |xn − an − αvn|2 + 〈vn, xn − an − αvn〉 |xn − an − αvn|2

|xn − an − αvn|4

=
(4dxn 〈vn, νxn〉+ α− rn)(α− rn)2 + 2 〈vn, rn − αvn〉 |xn − an − αvn|2

|xn − an − αvn|4

=
2

|xn − an − αvn|4

(
(2dxn 〈vn, νxn〉 (α− rn)2 + (α− rn)3

+(rn − α)
(
4d2

xn + (rn − α)2 − 2dxn(rn − α) 〈vn, νxn〉
))

=
8d2

xn(rn − α)

|xn − an − αvn|4
≤ 0,

thus f is decreasing, in other words

|xn − yn|2

|xn − yn|2
= f(sn) ≥ f(tn) =

|xn − zn|2

|xn − zn|2
,

hence
|xn − yn|
|xn − zn|

· |xn − zn|
|xn − yn|

≥ 1,

from which we deduce

G(xn, yn)−G(xn, zn) =
1

2π
ln
|xn − yn|
|xn − zn|

· |xn − zn|
|xn − yn|

+O(1)

≥ ln 1 +O(1) = O(1),

as n→∞, which is the desired contradiction.

Rather than the regular Green’s function for the Dirichlet Laplacian, the single most
important class of Green’s functions G for fluid dynamics is the class of so-called hydro-
dynamic Green’s functions, which we will now introduce. An excellent motivation and
introduction to the topic of hydrodynamic Green’s functions is provided by [11].
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Definition 2.7 (Hydrodynamic Green’s function). The hydrodynamic Green’s function
with periods γ0, . . . , γk0 ∈ R, subjected to the condition

∑k0
j=0 γj = −1 is the unique

solution G ∈ C2(F2Ω) of the problem
−∆G(·, y) = δy for every y ∈ Ω

〈∇xG(x, y), τx〉 = 0 for every y ∈ Ω, x ∈ ∂Ω∫
∂Ωj
〈∇xG(x, y), νx〉 ds(x) = γj for every j ∈ {0, . . . , k0}∫

∂ΩG(x, y) 〈∇xG(x, z), νx〉 ds(x) = 0 for every y, z ∈ Ω,

where ∂Ω0 = ∂Ω \
⋃k0
j=1 ∂Ωj .

Using this definition we have the following

Theorem 2.8. Any hydrodynamic Green’s function satisfies hypothesis 2.4, given the
prescribed periods are symmetric if Ω is symmetric.

Proof. Nearly all of this follows from the fact that there is a symmetric positive semidef-
inite matrix (gkl) ∈ Rk0×k0 , such that

G(x, y) = G0(x, y) +

k0+1∑
k,l=1

gkluk−1(x)ul−1(y),

where G0 is the Green’s function of the Dirichlet Laplacian in Ω and the uk are the
unique solutions of {

∆uk = 0 in Ω

uk = δkl on ∂Ωl,

see [11], proposition 7.By assumption 2.1 on ∂Ω each of the uk has bounded gradient
and is bounded by the maximum principle. Therefore (2.1), (2.2), (2.4) and (2.5) are
immediate and so is (2.3), since

ψ(x, y) = g(x, y)− 1
2π ln |x̄− y| = g0(x, y)−

∑
k,l

gkluk(x)ul(y)− 1
2π ln |x̄− y|,

in other words ψ(x, y) = ψ0(x, y)−
∑

k,l g
kluk(x)ul(y) and we are done.

Concerning the analysis of the boundary behaviour of HΩ, the condition (2.3) is of
course crucial. The detailed study of boundary collisions will be postponed until chapter
4, but by then we will need a technical lemma, which may be a simple case of some
general theorem known to differential geometers. Its proof though is pretty easy, so that
we place it here for further reference.

Lemma 2.9. There is ε > 0 such that

Dp(z)v =
1

1− κzdz
〈v, τz〉 τz
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Dνzv = − κz
1− κzdz

〈τz, v〉 τz

holds for any z ∈ Ωε, where τz is the unit tangent vector to ∂Ω at p(z), such that the
basis (τz, νz) is positively oriented and κz is the curvature of ∂Ω at p(z) with respect to
the induced orientation of ∂Ω.

Proof. Let ε > 0 so that p : Ωε → ∂Ω is well–defined and ε < 1
maxz∈∂Ω |κ(z)| , where κ

is the curvature of ∂Ω. Fix z ∈ Ωε and let γ : (−δ, δ) → ∂Ω for some δ > 0 be a local
parametrisation of ∂Ω by arc length such that γ(0) = p(z) and (γ̇(0), νz) is positively
oriented. Then γ̈(t) = κγ(t)νγ(t), and further setting

F : (−δ, δ)×Bδ(z) 3 (t, x) 7→ 〈γ̇(t), x− γ(t)〉 ∈ R,

we observe that F is C1, and since z − p(z)⊥Tp(z)∂Ω: F (0, z) = 0, as well as

Ft(0, z) = 〈γ̈(0), z − γ(0)〉 − 〈γ̇(0), γ̇(0)〉 = dzκz − 1

by the chain rule. Since Ft(0, z) 6= 0 by construction, the implicit function theorem tells
us that there is a C1–map x 7→ θ(x) satisfying F (θ(x), x) = 0 with derivative

∇θ(z) = −(Ft(0, z))
−1Fx(0, p(z)) =

1

1− κzdz
τz.

By the chain rule we infer

Dp(z)v = D(γ ◦ θ)(z)v = γ̇(0) 〈∇θ(z), v〉 =
1

1− κzdz
〈v, τz〉 τz,

as well as

Dνzv = JD(γ̇ ◦ θ)(z)v = Jγ̈(0) 〈∇θ(z), v〉 = Jκzνz
1

1− κzdz
〈τz, v〉

= − κz
1− κzdz

〈τz, v〉 τz,

which are precisely the claimed formulae and where we used the fact that νz = Jτz,

where J =

(
0 −1
1 0

)
.

Lemma 2.10. There are ε > 0 and constants C6, C7, C8 > 0 depending only on Ω such
that the inequalities

max{d(x) + d(y), C6|x− y|} ≤ |x− y| ≤ |x− y|+ 2d(y) (2.7)

|x− y|2 ≥ C7|p(x)− p(y)|2 (2.8)

||x− y| − |x− y||2 ≤ C8(d(x) + d(y))|p(x)− p(y)|2 (2.9)

hold for any x, y ∈ Ωε.
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Proof. Concerning the first inequality consider the straight line joining x and y. This
line intersects ∂Ω at some point z ∈ ∂Ω, which implies

|x− y| = |x− z|+ |z − y| ≥ d(x) + d(y) = d(x) + d(y).

The other direction is immediate from the triangle inequality, since

|x− y| = |x− y + y − y| = |x− y + 2d(y)νy| ≤ |x− y|+ 2d(y),

and the other inequalities are verified as (2.1), (2.4) and (2.5) in [4].

We are now ready to define a very important class of parameters.

Definition 2.11 (L–admissible parameters). A parameter Γ ∈ RN is called L-admissible
if there is σ ∈ ΣN such that ι(σ ∗Γ) ∈ ∆N or −ι(σ ∗Γ) ∈ ∆N , where ι : RN → RN is the
involution (xj)j∈{1,...,N} 7→

(
(−1)jxj

)
j∈{1,...,N} and the closure is to be taken in (0,∞)N .

Similarly, we call Γ strictly L–admissible, if ι(σ ∗ Γ) ∈ ∆N or −ι(σ ∗ Γ) ∈ ∆N .

With this notation, we have the following theorem, which lies on the very foundation
of this thesis. Its proof is similar to the one given for the case of axially symmetric
Ω in [4] but works out just as well for general L–admissible parameters Γ without any
assumptions on symmetry.

Theorem 2.12. Let Γ be L–admissible with corresponding permutation σ̃ ∈ ΣN and
let σ ∈ {σ̂σ̃, σ̃}, where σ̂ ∈ ΣN is the order–reversing permutation. Then HΩ

∣∣
LσNΩ

is

bounded above, and fixing a line L = a+ Rv ⊂ C with a ∈ C \Ω, v ∈ S1 and Ω∩L 6= ∅,
we have that

HΩ

∣∣
LσN (a,v)

(z)→ −∞ as z → ∂LσN (a, v),

where the boundary of the N–dimensional submanifold LσN (a, v) of FNΩ is to be taken
in LN .

Proof. Let Γ be L–admissible. Since the change Γ 7→ −Γ leaves HΩ unaffected we may
assume without loss of generality that Γj = (−1)j |Γj | and |Γj+1| ≤ |Γj |. Thus HΩ takes
the form

HΩ(x) =
N∑
j=1

Γ2
jh(xj) +

N∑
i,j=1
i 6=j

(−1)i+j |ΓiΓj |G(xi, xj)

=
N∑
j=1

Γ2
jh(xj) + 2

N−1∑
i=1

Gi(x),

where for N − i even we have

Gi(x) =

N−i
2∑

k=1

|Γi|
(
|Γi+2k|G(xi, xi+2k)− |Γi+2k−1|G(xi, xi+2k−1)

)
,
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whereas for N − i odd

Gi(x) =

N−i−1
2∑

k=1

|Γi|
(
|Γi+2k|G(xi, xi+2k)− |Γi+2k−1|G(xi, xi+2k−1)

)
− |ΓiΓN |G(xi, xN )

We now are able to infer from hypothesis (2.4) that for any line L = {a + tv : t ∈ R}
with a ∈ ∂Ω, v ∈ S1, and such that Ω ∩ L 6= ∅

G(a+ rv, a+ sv)−G(a+ rv, a+ tv) ≥ −C4

for all r < s < t for which the left hand side is defined, so combining this result with the
condition |Γi−1| ≥ |Γi| and the fact that G ≥ C0 we get for a x ∈ LN (a, v) and N − i
even, that Gi(x) is equal to

N−i
2∑

k=1

|Γi|

[
|Γi+2k|

(
G(xi, xi+2k)−G(xi, xi+2k−1)︸ ︷︷ ︸

≤C4

)
+ (|Γi+2k| − |Γi+2k−1|︸ ︷︷ ︸

≤0

)G(xi, xi+2k−1)

]

≤

N−i
2∑

k=1

(
|ΓiΓi+2k|C4 + |Γi| (|Γi+2k| − |Γi+2k−1|)C0

)
,

whereas analogously for N − i odd

Gi(x) ≤

N−i−1
2∑

k=1

(
|ΓiΓi+2k|C4 + |Γi| (|Γi+2k| − |Γi+2k−1|)C0

)
− |ΓiΓN |G(xi, xN )︸ ︷︷ ︸

≥|ΓiΓN |C0

.

Since by hypothesis 2.4 h is bounded from above by C1, this gives the required upper
bound.

Now fixing a and v, every z ∈ LN (a, v) has a unique representation z = ã + tv with
t ∈ ∆N , where ã := (a, . . . , a) ∈ CN . Setting

R :=
{
t ∈ ∆N : ã+ tv ∈ FNΩ

}
as well as

E : R 3 t 7→ HΩ(ã+ tv) ∈ R,

we have to show that E(t) → −∞ as dist(t, ∂R) → 0. Therefore consider a sequence
(tn) ⊂ R with the property that tn → ∂R as n→∞. Let us first consider the case that
d(a+ tnkv)→ 0 as n→∞ for some k ∈ {1, . . . , N}. Since

∑N
i,j=1,i 6=j(−1)i+j |ΓiΓj |G(a+

tni v, a + tnj v) is bounded from above as n → ∞ and h(a + tnkv) → −∞ for n → ∞ we
infer that indeed E(tn)→ −∞ as claimed.

Hence we may assume that

lim inf
n→∞

d(a+ tnj v) > 0 (2.10)
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for all j ∈ {1, . . . , N} and that

tnk+1 − tnk → 0 as n→∞ (2.11)

for some k ∈ {1, . . . , N − 1}. By assumption (2.10) the first two sums in

E(tn) =
N∑
j=1

Γ2
jh(a+ tnj v) +

N∑
i,j=1
i 6=j

ΓiΓjg(a+ tni v, a+ tnj v)−
N∑

i,j=1
i 6=j

(−1)i+j
|ΓiΓj |

2π
ln |tni − tnj |

remain bounded as n→∞. We then expand

N∑
i,j=1
i 6=j

(−1)i+j |ΓiΓj | ln |tni − tnj | = 2
N−1∑
i=1

N∑
j=i+1

(−1)i+j |ΓiΓj | ln |tni − tnj | = 2
N−1∑
i=1

|Γi| lnψi(t),

where for N − i even

ψi(t) =

N−i
2∏
j=1

|tni+2j − tni ||Γi+2j |

|tni+2j−1 − tni ||Γi+2j−1|
≥

N−i
2∏
j=1

|tni+2j−1 − tni ||Γi+2j |−|Γi+2j−1| ≥ C

and for N − i odd

ψi(t) =
1

|tnN − tni ||ΓN |

N−i−1
2∏
j=1

|tni+2j − tni ||Γi+2j |

|tni+2j−1 − tni ||Γi+2j−1|
≥ C

|tnN − tni ||ΓN |

for some constant C > 0, since |Γi+2k| − |Γi+2k−1| ≤ 0. It thus remains to show that
ψk(t

n)→∞ for n→∞ for some k ∈ {1, . . . , N−1}. Let k be maximal satisfying (2.11).
If k = N − 1 we infer ψN−1(tn)→∞ for n→∞ and the proof is done. Otherwise there
is δ > 0 such that

δ ≤ |tnj+1 − tnj | ≤
1

δ
for all j > k (2.12)

and n sufficiently large. Therefore, if N − k is even,

ψk(t) =
|tnk+2 − tnk ||Γk+2|

|tnk+1 − tnk ||Γk+1|

N−k
2∏
j=2

|tnk+2j − tnk ||Γk+2j |

|tnk+2j−1 − tnk ||Γk+2j−1|
≥ C̃ · δ|Γk+2|

|tnk+1 − tnk ||Γk+1|
→∞

as n→∞ by (2.11) and (2.12), whereas for N − k odd

ψk(t) =
|tnk+2 − tnk ||Γk+2|

|tnk+1 − tnk ||Γk+1|
· 1

|tnN − tnk ||ΓN |

N−k
2∏
j=2

|tnk+2j − tnk ||Γk+2j |

|tnk+2j−1 − tnk ||Γk+2j−1|
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≥ C̃ · δ|Γk+2|+1

|tnk+1 − tnk ||Γk+1|
→∞ as n→∞,

again by (2.11) and (2.12) and the proof is done.

2.3 A general deformation argument

For simplicity in stating our results, we find the following definition useful:

Definition 2.13 (ϕ-complete deformations). Let X be a topological space and let ϕ be
a flow on FNΩ. We call a family β ⊂ [α] ∈ [X,FNΩ] of homotopic maps ϕ-complete, if
for any α ∈ β and any continuous map T : α(X) → [0,∞) such that T (x) ∈ [0, t+(x))
for all x ∈ α(X) the map

X 3 x 7→ ϕ(T (α(x)), α(x)) ∈ FNΩ

is in β.

Denoting the gradient flow of HΩ by

ϕ :
⋃

z∈FNΩ

(t−(z), t+(z))× {z} → FNΩ,

in the sequel, we will frequently use the following

Lemma 2.14 (general deformation argument). Suppose there is a subset L ⊂ FNΩ,
such that HΩ is bounded above on L by σ, that is

supHΩ

∣∣
L = σ <∞. (2.13)

Further let X be a topological space, β ⊂ [α] ∈ [X,FNΩ] be ϕ-complete, and such that
for any representative α ∈ β the intersection

α(X) ∩ L 6= ∅

is nonempty. Then, fixing some representative α0, there is x ∈ α0(X), such that

lim
t→t+(x)

HΩ(ϕ(t, x)) <∞.

Proof. Assume not. Then for every x ∈ α0(X) there is a minimal T (x) ∈ [0, t+(x))
such that

HΩ(ϕ(T (x), x)) = σ + 1.

Since for each x ∈ α0(X) HΩ ◦ ψ(·, x) is strictly increasing (otherwise we are done), the
map

T : α0(X) 3 x 7→ T (x) ∈ R
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is continuous. It follows, that unambiguously defining

αt : X 3 ξ 7→ ϕ (tT (α0(ξ)), α0(ξ)) ∈ FNΩ,

where t ∈ [0, 1]: α0 ' α1 and α1 ∈ β, since β is ϕ-complete, hence there is ξ ∈ X with
α1(ξ) ∈ L, but HΩ(α1(ξ)) = σ + 1, in contradiction with (2.13), and we are done.
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3 The symmetric case

3.1 Developing a convenient language

This chapter is devoted to develop the correct notion of symmetry for our problem as
well as to devise some useful definitions, which enable us to state our results as concisely
as possible, while remaining also in the most general form. The techniques used in the
proofs are as basic as is the intuition behind the results, which is quickly explained using
pictures rather than words, nonetheless, without devising some appropriate language,
the notation will quickly become cluttered.

To get well beyond this, we will supplement the more abstract sounding theorems by
more concrete examples later on.

When speaking of stationary solutions to the N–vortex problem, to a physicist, vor-
tices with equal strengths are indistinguishable. To satisfy this intuition, we thus shall
work in the quotient space FNΩ/Σ of FNΩ under the group action of some appropriate
subgroup Σ ≤ ΣN . When some symmetry of Ω, represented by a symmetry group G
comes into play, we are thus really interested in the quotient space (FNΩ/Σ)/G, which
is not the nicest space to work with, since in the interesting cases, the action of G on
FNΩ/Σ is, of course, not free.

Since all calculations take place in (particularly nice) subsets of FNΩ anyway, we thus
might as well develop our concept of symmetry for the N–vortex problem solely working
on this space.

Definition 3.1 (Symmetric points). As stated in definition 2.2, the symmetric group
ΣN on N symbols acts on RN and FNΩ ⊂ CN by permutation of coordinates:

σ ∗ z =
(
zσ−1(1), . . . , zσ−1(j)

)
Further, if Ω is Dp–invariant, the dihedral group Dp also acts diagonally on FNΩ by
linear isometries of Ω, in fact, without loss of generality we may take the dihedral group

Dp as 〈g0, s0〉, wherein the rotation element g0 acts on Ω by multiplication with e
2πi
p and

s0 is complex conjugation.
Let Σ(Γ) := (ΣN )Γ be the stabilizer of Γ ∈ RN , and let U ≤ Dp be a subgroup. We

say that z ∈ FNΩ is an U–invariant (or U–symmetric) point for Γ, if for any u ∈ U
there is σ ∈ Σ(Γ) such that

u · z = σ ∗ z. (3.1)

We denote the set of U–symmetric points for Γ by

SU
Γ Ω := {z ∈ FNΩ : ∀u ∈ U ∃σ ∈ Σ(Γ) : u · z = σ ∗ z} ,

and denote by
ŜU

Γ Ω :=
{
z ∈ SU

Γ Ω : ∃ k ∈ {1, . . . , N} : zk = 0
}
.

the set of all U–symmetric points for Γ where one vortex is placed in the symmetry
center of Ω.
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For the discussions to come, we want to restrict HΩ to certain subsets SU
Γ Ω and ŜU

Γ Ω,
respectively, so we want to introduce some useful notation for that.

Lemma 3.2. The element σ in (3.1) is uniquely determined, in fact, we have a locally
constant map

τ : SU
Γ Ω 3 z 7→ τz ∈ Hom(U,Σ(Γ)),

such that
u · z = τz(u)−1 ∗ z (3.2)

for all u ∈ U , z ∈ SU
Γ Ω.3

z1

z2

z3

z4

z5

z6

z7

z8

z9

z10

z12

z14

z11

z13

z15

W

Figure 2: A D3–symmetric configuration z ∈ SD3
Γ Ω ⊂ F15Ω for a D6–symmetric domain

Ω satisfying τz(g
2
0) = (321)(654)(987)(14 12 10)(15 13 11) as well as τz(s0) =

(10 11)(23)(56)(89)(13 14)(12 15)

Proof. Let z ∈ SU
NΩ, u ∈ U , and let σ, σ′ ∈ Σ(Γ) satisfy u · z = σ ∗ z = σ′ ∗ z, that

is zσ−1(j) = z(σ′)−1(j) for every j ∈ {1, . . . , N}. Since z ∈ FNΩ and the group action of
Σ(Γ) is free on FNΩ, this is only possible if σ = σ′, hence there is a map τz : U → Σ(Γ)

3Outside this section the letter τ is reserved for the positively oriented tangent vector field to ∂Ω, which
is not needed in this section, so we want this notation to hold only in this section.
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satisfying (3.2). This map is clearly a homomorphism, because

τz(u · v)−1 ∗ z = (u · v) · z = u · (v · z) = u · (τz(v)−1 ∗ z),

and since U acts diagonally on FNΩ, both the U–action and the Σ(Γ)–action commute,
therefore this is equal to

= τz(v)−1 ∗ (u · z) = τz(v)−1 ∗ (τz(u)−1 ∗ z) = (τz(v)−1 · τz(u)−1) ∗ z,

hence
τz(u · v)−1 = τz(v)−1 · τz(u)−1 = (τz(u) · τz(v))−1,

which is what we were to show.
Concerning the local constancy of the map τ , we have for z ∈ SU

Γ Ω, u ∈ U :

|τz(u)−1z − τz′(u)−1z| ≤ |τz(u)−1z − τz′(u)−1z′|+ |τz′(u)−1z′ + τz′(u)−1z|

= |u · z − u · z′|+ |τz′(u)−1(z − z′)| ≤ (1 + |τ−1
z′ (u)|)|z − z′|,

where we identify τz′(u) with the matrix A ∈ GLN (C) representing it and | · | denotes
the induced matrix norm. Since Σ(Γ)z ⊂ FNΩ is discrete and Σ(Γ) acts freely on FNΩ
this means τz(u) = τz′(u) for z′ close enough to z and the proof is done.

Definition 3.3. Throughout this section we select an arbitrary fundamental domain
J = Jz for the U–action on {1, . . . , N} defined by

U × {1, . . . , N} 3 (u, j) 7→ u · j := τz(u)(j) ∈ {1, . . . , N},

that is a subset J ⊂ {1, . . . , N} such that the map

J 3 j 7→ U · j ∈ {1, . . . , N}/U

is bijective.

Proof. This is really a U–action since

(uv) · j = τz(uv)(j) = (τz(u)τz(v))(j) = τz(u) (τz(v)(j)) = u · (v · j).

Remark (Simplifying notation). The U–action on {1, . . . , N} and hence its fundamental
domain J of course depend heavily on z ∈ SU

Γ Ω. However, the proofs to come only
employ the gradient flow of HΩ, so hypothesis (2.5) implies that once we chose an
initial value z0 ∈ SU

Γ Ω, we may choose the same fundamental domain J for every zt,
t ∈ (0, t+(z0)), since Σ(Γ) acts on FNΩ by isometries, too, and the gradient flow ϕ
of HΩ is therefore equivariant with respect to those transformations, that is for z0 ∈
FNΩ, g ∈ Dp and σ ∈ Σ(Γ) satisfying g · z0 = σ ∗ z0 and t ∈ (t−(z), t+(z)) we have
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(t−(z0), t+(z0)) = (t−(g · z0), t+(g · z0)) = (t−(σ ∗ z0), t+(σ ∗ z0)) and

g · ϕt(z0) = ϕt(g · z0) = ϕt(σ ∗ z0) = σ ∗ ϕt(z0), (3.3)

hence the suppression of the z–dependence of J in our notation is justified, thereby
considerably increasing readability.

As mentioned before, the different group actions of Σ(Γ) and U on FN may be rep-
resented in terms of commuting linear isometries CN → CN . It is therefore safe to
henceforth denote both group actions simply by juxtaposition.

We now continue by developing a formula for HΩ which takes all its invariance prop-
erties into account.

Lemma 3.4. Let U ≤ G be a rotation subgroup, z ∈ SU
Γ Ω and J = Jz as above. Then

HΩ(z) = |U |

∑
j∈J

Γ2
jh(zj) +

∑
i,j∈J
i 6=j

ΓiΓjG(zi, zj) +
∑

u∈U\{id}

∑
i,j∈J

ΓiΓjG(zi, uzj)

 , (3.4)

if zj 6= 0 for every j ∈ J as well as

HΩ(z) = Γ2
nh(0) + |U |

( ∑
j∈J\{n}

Γ2
jh(zj) +

∑
i,j∈J
i 6=j

∑
u∈U

ΓiΓjG(zi, uzj)

+
∑

j∈J\{n}

∑
u∈U\{id}

Γ2
jG(zj , uzj)

)
,

(3.5)

if zn = 0.

Proof.

HΩ(z) =
N∑
j=1

Γ2
jh(zj) +

N∑
i,j=1
i 6=j

ΓiΓjG(zi, zj) =
∑
j∈J

∑
k∈U ·j

Γ2
kh(zk) +

∑
i,j∈J

k∈U ·i, l∈U ·j
k 6=l

ΓkΓlG(zk, zl)

=
∑
j∈J

∑
k∈U ·j

Γ2
kh(zk) +

∑
i,j∈J

k∈U ·i, l∈U ·j
i 6=j

ΓkΓlG(zk, zl) +
∑
j∈J

k,l∈U ·j
k 6=l

ΓkΓlG(zk, zl)

Now if k ∈ U · j we have k = u · j = τz(u)(j) for some u ∈ U , so we have Γk = Γj by
the definition of Σ(Γ) as well as zk = zτz(u)(j) = τz(u)−1zj = u · zj , so h(zk) = h(zj) by
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condition (2.5), and we are left with

HΩ(z) =
∑
j∈J
|U · j|Γ2

jh(zj) +
∑
i,j∈J
i 6=j

∑
u,v∈U

1

|Uu·i||Uv·j |
ΓiΓjG(uzi, vzj) +

∑
j∈J

k,l∈U ·j
k 6=l

Γ2
jG(zk, zl)

=
∑
j∈J
|U · j|Γ2

jh(zj) +
∑
i,j∈J
i 6=j

∑
u,v∈U

1

|Ui||Uj |
ΓiΓjG(zi, u

−1vzj) +
∑
j∈J

k,l∈U ·j
k 6=l

Γ2
jG(zk, zl),

since the index k = u · j is achieved precisely |Uk| = |Uu·j | times as u ranges through U
and |Uu·j | = |Uj |, since Uu·j and Uj are conjugate subgroups of U .

Since U is a rotation subgroup of G, we have Uj = {id} if zj 6= 0 and Uj = U otherwise,
hence in these cases |U · j| = |U | and |U · j| = 1, respectively. Now if zj 6= 0 for every
j ∈ J we therefore obtain

HΩ(z) = |U |
∑
j∈J

Γ2
jh(zj) +

∑
i,j∈J
i 6=j

∑
u,v∈U

ΓiΓjG(zi, u
−1vzj) +

∑
j∈J

k,l∈U ·j
k 6=l

Γ2
jG(zk, zl)

= |U |

∑
j∈J

Γ2
jh(zj) +

∑
i,j∈J
i 6=j

ΓiΓjG(zi, zj) +
∑

u∈U\{id}

∑
i,j∈J

ΓiΓjG(zi, uzj)

 ,

since k = u·j, l = v ·j ∈ U ·j are equal if and only if zk = zl, therefore if u−1v = id, which
has precisely |U | solutions, and, more generally the equation w = u−1v has precisely |U |
solutions for w ∈ U fixed.

If, on the other hand, zn = 0 for some n ∈ J , we obtain

HΩ(z) = Γ2
nh(0) + |U |

 ∑
j∈J\{n}

Γ2
jh(zj) +

∑
i,j∈J\{n}

i 6=j

∑
u∈U

ΓiΓjG(zi, uzj)


+2

∑
j∈J\{n}

∑
u,v∈U

ΓjΓn
|U |

G(zj , 0) + |U |
∑

j∈J\{n}

∑
u∈U\{id}

Γ2
jG(zj , uzj)

= Γ2
nh(0) + |U |

( ∑
j∈J\{n}

Γ2
jh(zj) +

∑
i,j∈J
i 6=j

∑
u∈U

ΓiΓjG(zi, uzj)

+
∑

j∈J\{n}

∑
u∈U\{id}

Γ2
jG(zj , uzj)

)
,

and the proof is done.
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3.2 Statement of results

In this section we state our results on critical points of HΩ for symmetric domains Ω in
general form. The next section is concerned with the proofs of the theorems given here,
and in section 3.5 we give some important examples and discuss the results further.

The most complicated part of the theorems given here is not the existence of critical
points, this is achieved by elementary means by showing that HΩ restricted to certain
symmetric submanifolds of FNΩ assumes a local maximum, but to state a corresponding
multiplicity result. In order to do so, we find the following definition useful.

Definition 3.5. The group Πr := Σr ×Zr2 acts on an arbitrary set M of r–dimensional
arrays of vectors via

Πr ×M 3 ((σ, v), (z1, . . . , zr)) 7→ (σ, v) � (z1, . . . , zr) := σ ∗ (v1 � z1, . . . , vr � zr) ∈M,

where 1 � z is the result of reversing the order of components of z and Σr acts on M
by permutation of components as usual.

Theorem 3.6. Suppose Ω has dihedral symmetry of order p and that 0 6∈ Ω. Then for
any rotation subgroup U ≤ Dp such that there is a z ∈ SU

Γ Ω 6= ∅ the Kirchhoff-Routh–
path function HΩ has at least N1(Γ,Ω, U) distinct U–symmetric critical points, whose
components lie on the symmetry axes of the D|U |–action on Ω, that is, on

SU := R ·
{
e

2πik
|U| : k ∈ {0, . . . , |U | − 1}

}
∩ Ω.

Here N1(Γ,Ω, U) is given by

l∑
r=1

(
l

r

)
·
∣∣∣∣Πr �

{
(σCπCΓ)C∈P :

P partition of J, |P| = r, ∀C ∈ P : πCΓ
is L–admissible with permutation σC

}∣∣∣∣ ,
where J = Jz is a fundamental domain for the U–action on {1, . . . , N} and l is the
number of connected components of [0,∞) ∩ Ω if |U | is even and of R ∩ Ω if |U | is odd.

If |U | = 1, that is, Ω is only axially symmetric, the condition 0 6∈ Ω may be dropped.

Corollary 3.7. The consequence of the above theorem also holds if one replaces the
condition “ 0 6∈ Ω” by “ [0,∞) ∩ Ω is disconnected”. If then additionally 0 ∈ Ω, the
multiplicity result is more complicated: If ŜU

Γ Ω = ∅, one has to replace l in N1(Γ,Ω, U)

by l−1, placing all vortices away from the middle. On the other hand, if ŜU
Γ Ω 6= ∅, there

additionally is the possibility to place a single vortex into the component of [0,∞) ∩ Ω
containing the symmetry center. We are then in the situation of theorem 3.9, and the
multiplicity result there holds.

We are also able to give a positive result if the hole at the symmetry center of Ω is
replaced by a sufficiently strong vortex in the symmetry center. In order to do this, we
need one additional definition.
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Figure 3: Symmetric critical points of HΩ according to theorem 3.6 for |U | even and |U |
odd, respectively.

Definition 3.8 (Center–admissibility). A strictly L–admissible parameter Γ ∈ Rr is
called center–admissible for a rotation subgroup U ≤ Dp with |U | > 1 if

|Γσ−1(r)| ≥ (|U | − 1) max
j∈{1,...,r−2}

{
Γ2
σ−1(j+1) + Γ2

σ−1(j)

|Γσ−1(j+1)| − |Γσ−1(j)|
, |Γσ−1(j)|

}

for r ≥ 3, where σ ∈ Σr is such that −ισΓ ∈ ∆r or ισΓ ∈ ∆r as in definition 2.11. If
r ∈ {1, 2} the above condition is empty, in this case we call Γ center–admissible if it is
L–admissible.

Theorem 3.9. Suppose Ω is Dp–symmetric with 0 ∈ Ω. Then for any rotation subgroup

U ≤ Dp such that there is z ∈ ŜU
Γ Ω 6= ∅, the Kirchhoff–Routh path function HΩ has

at least N2(Γ,Ω, U) critical points, whose components lie on the symmetry axes SU as
before and where one of the vortices is located in the symmetry center of Ω. Here, the
number N2(Γ,Ω, U) is given by

l−1∑
r=0

(
l − 1

r

)∣∣∣∣∣∣∣∣
⋃
C∗⊂J

πC∗Γ is c.–a.

{σC∗πC∗Γ} ×

Πr �

(σCπCΓ)C∈P :
P partition of
J \ C∗, |P| = r,

∀C ∈ P : πCΓ is L–a.



∣∣∣∣∣∣∣∣ ,

where J = Jz is as before, l is the number of connected components of [0,∞) ∩ Ω and
“L–a.” and “c.–a.” stand for “L–admissible” and “center–admissible”, respectively.

Despite their complex statement, proof and concept of these theorems are fairly simple.
The proof is constructive in every case: One places certain vortices U–symmetrically onto

24



W

Figure 4: The situation of corollary 3.7.

the symmetry axes of Ω, such that the vorticities are increasing or decreasing along the
symmetry axes by modulus and have alternating signs, and this pattern may be broken
between different connected components of the symmetry axes. The multiplicity result
is then obtained by rigorously counting all the different possibilities one has for doing
so.

The proof will be relatively descriptive, and we will discuss simpler cases and examples
of this theorem later on.

Of course it is theorem 2.12 concerning the behaviour of the Kirchhoff–Routh path
function HΩ for vortices lying on a line together with a form of the principle of symmetric
criticality which lies at the heart of all of this (and of almost all of the results to come).

3.3 Proof of theorem 3.6

This section is devoted to the proofs of theorems 3.6 and its corollaries. We will explicitly
construct a starting value z0 ∈ SU

Γ Ω which will converge to a critical point z∗ ∈ SU
Γ Ω

of HΩ under the gradient flow ϕ, while meticulously keeping track of all the choices we
could have made, thereby proving the multiplicity result.

We start out noting that in order to prove theorem 3.6 we necessarily have N = k · |U |
if there shall be any chance of having an U -symmetric point at all. Further, we may
then assume without loss of generality that the fundamental domain J = Jz0 is equal to
{1, . . . , k} and that our vortices are sorted appropriately such that their corresponding
vorticities are k-periodic, that is Γj+nk = Γj for any j ∈ J and n ∈ {1, . . . , |U |}.

The first easy observation we make allows us to generalise theorem 2.12 a little bit.

Lemma 3.10 (Vortex addition lemma). Suppose we decompose {1, . . . , N} as the dis-
joint union of A and B and further suppose there is ρ > 0 such that |zi − zj | > ρ for
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W

Figure 5: A symmetric critical point according to theorem 3.9.

any i ∈ A, j ∈ B. Then there is a constant C > 0 depending only on Ω and ρ such that∣∣∣HΓ
Ω(z)−HπAΓ

Ω (πAz)−HπBΓ
Ω (πBz)

∣∣∣+

∣∣∣∣∇HΓ
Ω(z)−∇H̃πAΓ

Ω (πAz)−∇H̃πBΓ
Ω (πBz)

∣∣∣∣ ≤ C,
(3.6)

where H̃πAΓ
Ω is the obvious continuation of HπAΓ

Ω to FNΩ.

Proof. We observe

HΓ
Ω(z) = HπAΓ

Ω (πAz) +HπBΓ
Ω (πBz) + 2

∑
i∈A,j∈B

ΓiΓjG(zi, zj).

Since |zi − zj | > ρ for i ∈ A, j ∈ B, (3.6) is a direct consequence of hypothesis (2.2)
together with the triangle inequality.

Corollary 3.11. If L = a+R·v is a line with a ∈ ∂Ω and v ∈ S1 such that a+(0,∞)v∩Ω
has l connected components, and P = {C1, . . . , Cr} is a partition of {1, . . . , N} with
|P| = r ≤ l such that πCjΓ is L–admissible with permutation σ̃j and σj ∈ {σ̂σ̃j , σ̃j} for
any j ∈ {1, . . . , r}, where, as before, σ̂ is a permutation which reverses order, then we
have

HΩ

∣∣
E(a,v)

(z)→ −∞ for z → ∂E(a, v),

where

Er(a, v) :=

z ∈ FNL :

∃L1, . . . , Lr ∈ Λ pairwise disjoint
∀j ∈ {1, . . . , r}, i ∈ {1, . . . , N} :

πCjz ∈ L
σj
|Cj |(a, v), zi ∈ Lj ⇔ i ∈ Cj

 ,

E(a, v) :=

l⋃
r=1

Er(a, v),
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Λ is the set of connected components of a+ (0,∞)v ∩Ω and the boundary is to be taken
in LN , as in theorem 2.12.

Proof. Let z ∈ Er(a, v). Since Ω satisfies a uniform exterior ball condition by hypoth-
esis 2.1 we have ρ := min{dist(Li, Lj) : i, j ∈ {1, . . . , l}, i 6= j} > 0 so that |zi − zj | > ρ
if i ∈ Cm, j ∈ Cn for m 6= n. Hence we may apply (3.6) inductively to get

HΩ(z) =
r∑
j=1

H
πCjΓ

Ω (πCjz) +W (z),

where W : Er(a, v)→ R is uniformly bounded in the C1–sense. Since πCjz ∈ L
σj
|Cj |(a, v)

and πCjΓ is L–admissible for every j ∈ {1, . . . , r} each of the terms H
πCjΓ

Ω (πCjz) is
bounded from above by theorem 2.12. Now if z → ∂E(a, v) we have z → ∂Er(a, v) for
some r ∈ {1, . . . , l} since dist(Er(a, v), Es(a, v)) ≥ ρ for r 6= s by the uniform exterior
ball condition on Ω and therefore πCjz → ∂Lσj|Cj |(a, v) for at least one j ∈ {1, . . . , r},
hence HΩ(z)→ −∞ as claimed.

In proceeding with the proof of theorem 3.6 will first consider the case that |U | is odd.
Define the map

sU : Fk (Ω ∩ R) 3 z 7→
(
z, e

2πi
|U| z, . . . , e

2π(|U|−1)i
|U| z

)
∈ FNΩ.

sU is well-defined, linear and injective since |U | is odd, hence, if E(a, v) is as in Lemma
3.11 with k in place of N , the set R := sU (E(a, 1))) ⊂ SU

Γ Ω, where a = inf(Ω ∩R), is a
differentiable k–dimensional submanifold of FNΩ and sU is a parametrisation of R.

If, what we now assume, |U | is even, we have to proceed a little differently. Since in
this case the counterclockwise rotation by π provides us with an involution of R∩Ω, sU
as defined before is not well–defined any more. Instead, we have to define

sU : Fk (Ω ∩ [0,∞)) 3 z 7→
(
z, e

2πi
|U| z, . . . , e

2π(|U|−1)i
|U| z

)
∈ FNΩ.

sU is then well-defined, linear and injective as before, and the set R := sU (E(0, 1))) ⊂
SU

Γ Ω is again a differentiable k–dimensional submanifold of FNΩ parametrised by sU .
Our goal is now to apply an argument similar to the principle of symmetric criticality

to HΩ

∣∣
R. Using lemma 3.4 we obtain for z = sU z̃ ∈ R, z̃ ∈ E(a, 1) or z̃ ∈ E(0, 1),

respectively:

HΩ

∣∣
R(z) = |U |

∑
j∈J

Γ2
jh(zj) +

∑
i,j∈J
i 6=j

ΓiΓjG(zi, zj) +
∑

u∈U\{id}

∑
i,j∈J

ΓiΓjG(zi, uzj)
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= |U | ·HπJΓ
Ω

∣∣
E(a,1)

(z̃) + |U |
∑

u∈U\{id}

∑
i,j∈J

ΓiΓjG(zi, uzj), (3.7)

independent of the parity of |U |.
Since Ω satisfies a uniform exterior ball condition by hypothesis 2.1 there is ρ > 0

such that Bρ(0) ⊂ C \ Ω, hence

|zi − uzj | ≥ 2ρ sin

(
π

|U |

)
> 0

for any i, j ∈ J and u ∈ U \ {id}, which immediately implies that the last term of (3.7)
is uniformly bounded on R. Also note that this inequality is trivially fulfilled if |U | = 1,
which implies that the condition 0 6∈ Ω may be dropped in this case.

Corollary 3.11 now implies that HπJΓ
Ω

∣∣
E(a,v)

assumes a local maximum in each con-

nected component of E(a, v), and so does HΩ

∣∣
R at some z∗ ∈ R.

It remains to show that the critical point z∗ of HΩ|R is indeed a critical point of HΩ

and to count the connected components of E(a, v). This is precisely what we do within
the next few lemmata.

Lemma 3.12. R is invariant under the gradient flow ϕ of HΩ.

Proof. Let z0 ∈ R, that is z0 = sUζ for some ζ ∈ Fk(Ω ∩ R) if |U | is odd and
ζ ∈ Fk(Ω∩ [0,∞)) if |U | is even. Since HΩ is invariant under the group actions of U and
Σ(Γ), the gradient flow is equivariant with respect to these operations. If σ ∈ Σ(Γ) is
the permutation which shifts indices k times cyclically, we obtain for t ∈ (t−(z0), t+(z0))
and j ∈ {1, . . . , |U |}

σjϕt(z0) = ϕt(σ
jz0) = ϕt(r

jz0) = rjϕt(z0),

by construction, where r = e
2πi
|U| , in other words ϕt(z0) = sUπJϕt(z0). Now

s0πJϕt(z0) = πJs0ϕt(z0) = πJϕt(s0z0) = πJϕt(s0sUζ) = πJϕt(s̃Us0ζ),

where s̃Uz = (z, r−1z, . . . , r−|U |z), since s0r
j = r−js0. Now s0ζ = ζ, thus s̃Uζ = τz0 for

some τ ∈ Σ(Γ) whose fixed point set is J . It follows

s0πJϕt(z0) = πJϕt(s̃Uζ) = πJϕt(τz0) = πJτϕt(z0) = πJϕt(z0),

in other words we have shown that πJϕt(z0) ∈ Fk(R ∩ Ω) for all t ∈ (t−(z0), t+(z0)),
which implies that the order of components of πJz0 = ζ is preserved under the gradient
flow, and of course none of these components can switch into another component of
Ω∩R which means πJϕt(z0) ∈ E(0, 1) or πJϕt(z0) ∈ E(a, 1), respectively, hence ϕt(z0) =
sUπJϕt(z0) ∈ R and the proof is done.

Lemma 3.13. Any critical point z∗ of HΩ

∣∣
R is also a critical point of HΩ.

Proof. Since R is a k–dimensional differentiable submanifold of FNΩ the fact that z∗

is a critical point of HΩ

∣∣
R means that ∇HΩ(z∗) is orthogonal to Tz∗R. On the other
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hand R is invariant under the gradient flow ϕ by Lemma 3.12, thus ∇HΩ(z∗) ∈ Tz∗R,
hence ∇HΩ(z∗) = 0 and we are done.

Lemma 3.14. R has precisely N1(Γ,Ω, U) connected components.

Proof. The connected components of R are the images of connected components of
E(a, 1), where a is either inf(Ω ∩ R) if |U | is odd or a = 0 if |U | is even. Connected
components of these spaces are special connected components of FkL, and in either case
L is the disjoint union of l open intervals. A component of FkL is completely specified
by placing k vortices into r of the l intervals. Such a component of FkL belongs to
Er(a, v) if and only if the vortices are ordered such that their corresponding vorticities
are increasing or decreasing in modulus and have alternating signs within each interval.
Summing over r then gives the asserted result.

This finishes the proof of theorem 3.6, a fortiori we have proved theorem 1.3. If 0 6∈ Ω
there is also nothing left to show for corollary 3.7. If, on the other hand 0 ∈ Ω and
[0,∞) ∩ Ω is disconnected, the statement of corollary 3.7 is easily obtained following
the lines of the proof for theorem 3.6 with ρ = supL1, where L1 is the first connected
component of [0,∞) ∩ Ω and using E(ρ, 1) instead of E(0, 1) and E(a, 1), which ensures
that no vortices are placed into the connected component of R ∩ Ω containing 0.

3.4 Proof of theorem 3.9

The proof of theorem 3.9 is completely analogous to the proof of theorem 3.6, except
that we need a sort of strengthening of theorem 2.12 in order to prevent the vortices from
colliding in the symmetry center of Ω, this is what the condition of center–admissibility
is made for and the first thing we state here.

Note that throughout this section we leave the rotation subgroup U ≤ Dp fixed. If

z0 ∈ ŜU
Γ Ω 6= ∅ we then necessarily have N = k · |U | + 1, and without loss of generality

we may assume J = Jz0 = {1, . . . , k + 1}.

Lemma 3.15. Let Γ ∈ RN be such that πJΓ ∈ Rk+1 is center–admissible, 0 ∈ Ω.
Without loss of generality we may assume Γj = (−1)j |Γj | for j ∈ J , |Γj+1| < |Γj | for
every j ∈ {1, . . . , k}. Defining

R := {0} × sULk(0, 1),

where sU is as before, we obtain

HΩ

∣∣
R(z)→ −∞ as zj → 0

for any j ⊂ J .
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Proof. We argue similarly to the proof of theorem 2.12. Equation (3.5) implies

HΩ

∣∣
R(z) = Γ2

1h(0) + |U |
( k+1∑
j=2

Γ2
jh(zj) +

k+1∑
i,j=1
i 6=j

∑
u∈U

ΓiΓjG(zi, uzj)

+
k+1∑
j=2

∑
u∈U\{id}

Γ2
jG(zj , uzj)

)
,

= Γ2
1h(0) + |U |HπJ∗Γ

Ω (z) + 2|U |
k+1∑
j=2

Γ1ΓjG(0, zj) + |U |
∑

u∈U\{id}

k+1∑
i,j=2

ΓiΓjG(zi, uzj)

where J∗ = J \{1}. Using theorem 2.12 and hypothesis (2.2) together with the fact that
|zi − uzj | for u ∈ U \ {id} is small only if zi, zj are close to 0 ∈ Ω we obtain that the
term g(zi, uzj) is bounded by hypothesis 2.4, hence there is a constant C̃ such that

HΩ

∣∣
R(z) ≤ C̃ − |U |

π

k+1∑
j=2

Γ1Γj ln |zj | −
|U |
2π

∑
u∈U\{id}

k+1∑
i,j=2

ΓiΓj ln |zi − uzj |

= C̃ +
|U |
π

k+1∑
j=2

(−1)j |Γ1||Γj | ln |zj | −
|U |
π

∑
u∈U\{id}

k+1∑
j=2

k+1∑
i=j

(−1)i+j |Γi||Γj | ln |zi − uzj |

= C̃ +
|U |
π

k+1∑
j=2

(−1)j |Γ1||Γj | ln |zj |+
∑

u∈U\{id}

k+1∑
i=j

(−1)i+j+1|Γi||Γj | ln |zi − uzj |


= C̃ +

|U |
π

k+1∑
j=2

(
(−1)j |Γ1||Γj | ln |zj |+ ψj(z))

)
where

ψj(z) =
∑

u∈U\{id}

[
− |Γj |2 ln |zj − uzj |+

k−j
2∑

r=1

|Γj | ln
|zj+2r−1 − uzj ||Γj+2r−1|

|zj+2r − uzj ||Γj+2r|

+|Γk+1||Γj | ln |zk+1 − uzj |

]

if k − j is even and

ψj(z) =
∑

u∈U\{id}

−|Γj |2 ln |zj − uzj |+

k−j−1
2∑

r=1

|Γj | ln
|zj+2r−1 − uzj ||Γj+2r−1|

|zj+2r − uzj ||Γj+2r|
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if k − j is odd. Using the fact that z ∈ R, we obtain |zj+2r−1 − uzj | ≤ |zj+2r − uzj |,
which leaves us with

ψj(z) ≤ −(|U | − 1)|Γj |2 ln |zj |+ C ′

for some constant C ′ > 0 in any case. Thus we obtain

HΩ

∣∣
R(z) ≤ Ĉ +

|U |
π

k+1∑
j=2

(
(−1)j |Γ1||Γj | ln |zj | − (|U | − 1)Γ2

j ln |zj |
)

= Ĉ +
|U |
π

k+1∑
j=2

|Γj |
(
(−1)j |Γ1| − (|U | − 1)|Γj |

)
ln |zj | = Ĉ +

1

π
ln ψ̃(z),

where, if k is even,

ψ̃(z) =

k
2∏

r=1

|z2r||Γ2r|(|Γ1|−(|U |−1)|Γ2r|)

|z2r+1||Γ2r+1|(|Γ1|+(|U |−1)|Γ2r+1|)
(3.8)

≤

k
2∏

r=1

|z2r+1||Γ1|(|Γ2r|−|Γ2r+1|)−(|U |−1)(|Γ2r+1|2+|Γ2r|2),

and if k is odd

ψ̃(z) = |zk+1||Γk+1|(|Γ1|−(|U |−1)|Γk+1|)

k−1
2∏

r=1

|z2r||Γ2r|(|Γ1|−(|U |−1)|Γ2r|)

|z2r+1||Γ2r+1|(|Γ1|+(|U |−1)|Γ2r+1|)
(3.9)

≤ |zk+1||Γk+1|(|Γ1|−(|U |−1)|Γk+1|)

k−1
2∏

r=1

|z2r+1||Γ1|(|Γ2r|−|Γ2r+1|)−(|U |−1)(|Γ2r+1|2+|Γ2r|2).

Since πJΓ is center–admissible for U we have that each of the exponents in ψ̃(z) is
nonnegative, hence ψ̃ is bounded above since Ω is bounded.

It follows that HΩ

∣∣
R is bounded above, and upon recalling that

HΩ

∣∣
R(z) = Γ2

1h(0)+|U |HπJ∗Γ
Ω (z)+2|U |

k+1∑
j=2

Γ1ΓjG(0, zj)+|U |
∑

u∈U\{id}

k+1∑
i,j=2

ΓiΓjG(zi, uzj)

we infer that HΩ

∣∣
R(z)→ −∞ if πCz → 0 for any C ⊂ J with 3 ∈ J , since then H

πJ∗Γ
Ω (z)

does so. If, on the other hand, z2 → 0 and zj > ρ for some ρ > 0 and j ∈ {3, . . . , k + 1}
(3.8) and (3.9) imply ψ̃(z)→ 0, since |U ||Γ1| > (|U |−1)|Γ2|) and Ω is bounded, therefore
HΩ

∣∣
R(z)→ −∞ and we are done.

Now the rest of the proof of theorem 3.9 follows easily. Denote the set of connected
components of [0,∞) ∩ Ω by Λ, and let l = |Λ|. Let r ∈ {1, . . . , l} and suppose
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P = {C1, . . . , Cr} is a partition of J such that πCjΓ is L–admissible for j ∈ {1, . . . , r}
and that πC1Γ is center–admissible. Select connected components L1, . . . , Lr ∈ Λ,
where L1 is the connected component containing 0. Let Ã be a connected compo-
nent of Fk+1 ([0,∞) ∩ Ω) such that zj ∈ Li if and only if j ∈ Ci for j ∈ J , i ∈
{1, . . . , l} and the vortices are ordered with descending moduli inside L1, placing the
strongest vortex in the symmetry center, and that the other vortices are either or-
dered with ascending or descending moduli inside their respective connected components.
Renumbering the vortices we may without loss of generality assume that |zi| < |zi+1|
for all i ∈ {1, . . . , k}, a fortiori z1 = 0, and that the vorticities satisfy Γj+ik = Γj
for i ∈ {1, . . . , |U | − 1} and j ∈ {2, . . . , k + 1}. Defining A := {0} × sU Ã, I :=
{1, j + ki : j ∈ C1 \ {1}, i ∈ {0, . . . , |U | − 1}}, I ′ := {1, . . . , N} \ I we may write

HΩ

∣∣
A(z) = HπIΓ

Ω (πIz) +H
πI′Γ
Ω (πI′z) +W (z),

where W : A → R is uniformly bounded by 3.10. Now if z → ∂A either HπIΓ
Ω (πIz) →

−∞ by theorem 2.12 and lemma 3.15 orH
πI′Γ
Ω (πI′z)→ −∞ by corrolary 3.7, hence HΩ

∣∣
A

assumes a local maximum which is a critical point of HΩ by arguing as in lemmata 3.12
and 3.13, taking into consideration that ż1 = 0 for any z ∈ A due to the symmetry
assumption.

The multiplicity result then follows by rigorously counting all the possibilities for
the connected component Ã. This works out exactly the same way as for lemma 3.14,
except we now have to meet the condition that the vorticities of the vortices that are
placed into the central connected component of [0,∞)∩Ω need to be center–admissible
and descending in modulus away from the symmetry center. This finishes the proof of
theorem 3.9 and of course also of theorem 1.4.

3.5 Examples and further discussion

This section is devoted to the discussion of the results obtained in section 3.2 and to
some simpler examples. Namely the cases where Γi = (−1)i are of significant importance
because of their applicability to partial differential equations, which will be discussed in
chapter 6. This is most easily done if p = 1 or p > 1, N even and 0 6∈ Ω. The case p = 1
is the one discussed in [4], and we give a slight sharpening of their theorem here. The
other case is a simple application of theorem 3.6, which we state first.

Corollary 3.16. Let N be even, Ω be Dp–symmetric, 0 6∈ Ω and Γj = (−1)j, j ∈
{1, . . . , N}. Then for any common divisor q > 1 of p and N

2 there are at least

l(q)∑
r=1

∑
(a,b,c,d)∈Vq,r

l(q)!

(l(q)− r)!
·

N
2q∏
j=1

1

aj ! · bj ! · cj ! · dj !

distinct Dq–symmetric critical points of HΩ whose components lie on the symmetry axes
of the Dq–action on Ω such that the vorticities have alternating signs, where l(q) is the
number of connected components of [0,∞)∩Ω if q is even, and of R∩Ω, if q is odd and
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where

Vq,r :=

(a, b, c, d) ∈ N
2N
q

0 :

N
2q∑
j=1

(aj + bj + cj + dj) = r,

N
2q∑
j=1

aj =

N
2q∑
j=1

bj

N
2q∑
j=1

[(2j − 1)(aj + bj) + 2j(cj + dj)] = N
q

 .

Corollary 3.17. If p = 1, that is Ω is only axially symmetric, the assumptions “N
even” and “ 0 6∈ Ω” are not needed, and the minimum number of critical points of HΩ is
then given by

l∑
r=1

∑
(a,b,c,d)∈Ṽr

l!

(l − r)!
·

N
2∏
j=1

1

aj ! · bj ! · cj ! · dj !
,

where l now is the number of connected components of R ∩ Ω and

Ṽr :=

(a, b, c, d) ∈ N4bN+1
2 c

0 :

bN+1
2 c∑
j=1

(aj + bj + cj + dj) = r,
bN+1

2 c∑
j=1

aj =
bN+1

2 c∑
j=1

bj− 1+(−1)N

2

bN+1
2 c∑
j=1

[(2j − 1)(aj + bj) + 2j(cj + dj)] = N

 .

This is a small sharpening of theorem 3.3 in [4], since now we are allowed to break the
pattern of alternating vorticities from one connected component to another.

Proof. We prove corollaries 3.16 and 3.17 at once. This is clearly an application of
theorem 3.6, we just have to evaluate the number N1(Γ,Ω, U) for U = Zq. To this
end fix a common divisor q > 1 of p and N

2 and put k := N
q . In the case Γi = (−1)i

L–admissibility simply means we have to alternate the signs of vorticities for adjacent
vortices along a line, possibly breaking this pattern between two connected components
of Ω ∩ [0,∞) and Ω ∩ R, respectively, depending on the parity of Ω and rotate this
configuration q − 1 times to get the other vortex locations. To do this, necessarily k
has to be even, and it in fact is by assumption. We are thus left to count the number
of alternating configurations of k vortices put into r of the l connected components.
To count these effectively, we form four different groups of configurations of vortices
(“chains”) which can occur in one single connected component. We possibly have aj
chains of vortices of length 2j−1 which start with +1, bj chains of length 2j−1 starting
with −1, cj chains of even length 2j starting with +1 and finally dj chains of length 2j
starting with −1. In order for this to be a proper description of the situation, j has to
range from 1 to N

2q , and there have to be precisely r chains, that is

N
2q∑
j=1

(aj + bj + cj + dj) = r.
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Further, we have to meet the condition that the sum of all vorticities vanishes if q > 1.
This is the case if and only if

N
2q∑
j=1

aj =

N
2q∑
j=1

bj .

Finally, there are precisely k vortices to be distributed, in other words

N
2q∑
j=1

[(2j − 1)(aj + bj) + 2j(cj + dj)] = k.

Vq,r is precisely the set of all tuples (a, b, c, d) satisfying these constraints. Each of the aj
chains of length 2j − 1 are indistinguishable from each other and similarly for the other
groups of chains. The number of orderings of such things is given by the multinomial
coefficient

r! ·

N
2q∏
j=1

1

aj ! · bj ! · cj ! · dj !
.

Summing over Vk,r in combination with the fact that there are
(
l
r

)
ways to choose r

out of l connected components gives the expected result. Finally, if q = 1 the condition
that N is even may be dropped, hence it may be possible for the total vorticity to be .1
instead of 0. The definition of Ṽr precisely takes care of that.

Example. If, for example N = 24, Γi = (−1)i and Ω has the symmetry group of a regular
hexagon such that Ω ∩ R has four connected components this gives 20260 axially sym-
metric, 780 D3–symmetric and 12 D6–symmetric critical points for HΩ. There are also
36 D2–symmetric critical points, but these are already included in the axially symmetric
ones.

One may ask whether the geometry of symmetric critical points of HΩ described within
theorem 3.6, theorem 3.9 and their corollaries is the most general one or even the only
one possible. In both cases the answer is negative. This is most easily seen when Ω is
U–symmetric and |U | is even as well as 0 6∈ Ω. In this case there exists a second set

of symmetry axes, namely the rotations of the axis Re
πi
p . Applying theorem 3.6 for a

fixed rotation subgroup U to Ω with vorticities Γ1 and to Ω̃ := e
πi
|U|Ω with vorticities Γ2

such that SU
Γ Ω 6= ∅ for Γ ∈ {Γ1,Γ2} we are left with two U–symmetric critical points

z∗1 and z̃∗2 of HΓ1
Ω and HΓ2

Ω̃
. It follows easily that z∗2 := e

−πi
p z̃∗2 is a critical point of HΓ2

Ω

and, applying the vortex addition lemma 3.10 and lemma 3.12, ϕ((z∗1 , z
∗
2), t) → z∗ for

t → t+((z∗1 , z
∗
2)), where ϕ denotes the gradient flow of HΓ

Ω for Γ = (Γ1,Γ2) and z∗ is a
critical point of HΓ

Ω with vortices distributed on all of the U–symmetry axes of Ω.
The question if it is necessary, that all of the components of critical points have to lie

on the symmetry axes of Ω is harder to answer, but the answer is also negative.

Theorem 3.18. Let Ω be symmetric with respect to the reflection s0 : z 7→ z̄ on R,
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N = 3, Γ1 = Γ3 = −1
4 , Γ2 = 1 and consider symmetric constellations of vortices

F̃2Ω := {(z1, z2, z3) ∈ F3Ω : z2 ∈ Ω ∩ R, z3 = z1}.

Then HΩ has a critical point z∗ ∈ F̃2Ω.

Proof. Since F̃2Ω is s0–invariant, it follows similarly to lemma 3.13 that a critical point
of HΩ|F̃2Ω is also a critical point of HΩ.

We begin by choosing appropriate coordinates on F̃2Ω: x2 := x ∈ Ω∩R, x1 := x+reiϕ,
x3 := x1, where r > 0 and ϕ ∈ (0, π) are chosen such that (x1, x2, x3) ∈ F3Ω. With
respect to these coordinates HΩ|F̃2Ω has the form

HΩ(x, x+ reiϕ, x+ re−iϕ) = h(x) +
1

8
h(x1) + 2

[
1

16
G(x1, x1)− 1

2
G(x, x1)

]

= h(x) +
1

8
h(x1) + 2

[
1

16
g(x1, x1)− 1

32π
ln |2r sinϕ| − 1

2
g(x, x1) +

1

4π
ln r

]
= h(x) +

1

8
h(x+ reiϕ) +

1

8
g(x+ reiϕ, x+ re−iϕ)− g(x, x+ reiϕ)− 1

16π
ln

sinϕ

r7
− 1

16π
ln 2

and we infer, using that the g– and h–terms are bounded, that

HΩ(x1, x2, x1)→∞ (3.10)

as ϕ→ 0 or ϕ→ π, as we keep x and r fixed such that Br(x) ⊂ Ω.
On the other hand we have the following

Lemma 3.19. HΩ is bounded above on L̃3Ω := L3Ω ∩ F̃2Ω.

Proof. We have for z = (z1, z2, z1) ∈ L̃3Ω:

HΩ(z) = h(z2) +
1

8
h(z1) +

1

8
G(z1, z1)−G(z2, z1)

≤ 9

8
C1 +

1

8
(G(z1, z1)−G(z2, z1))− 7

8
G(z2, z1) ≤ 9

8
C1 +

1

8
C4 −

7

8
C0

by hypothesis 2.4 and we are done.

We now are ready to apply a mountain-pass-type argument to HΩ|F̃2Ω. To this end,

fix x0 ∈ Ω∩R and r0 > 0 such that B2r0(x0) ⊂ Ω. Denote the supremum of HΩ on L̃3Ω
by σ. Next we define a path

γ̃0 : (0, π) 3 t 7→ (x0 + r0e
it, x0, x0 + r0e

−it) ∈ F̃2Ω.

From (3.10) we infer that there is δ̃ > 0 such thatHΩ(γ̃0(δ)) ≥ σ+1, HΩ(γ̃0(π−δ)) ≥ σ+1
for every δ ∈ (0, δ̃). Further observe that

Re(γ̃0,1(t)− γ̃0,2(t))→ r0 (t→ 0),

35



therefore there is δ ∈ (0, δ̃) such that

Re(γ̃0,1(δ)− γ̃0,2(δ)) = ρ0 > 0.

Set γ0 := γ̃0|[δ,π−δ] and define the following class of paths in F̃2Ω:

β :=

{
γ ∈ C0([δ, π − δ], F̃2Ω) : γ

h' γ0, HΩ(h([0, 1]× {δ, π − δ})) ≥ σ + 1

}
.

Denoting the gradient flow of HΩ by ϕ we have the following

Lemma 3.20. β is ϕ-complete and for each γ ∈ β we have

γ([δ, π − δ]) ∩ L̃3Ω 6= ∅. (3.11)

W

x0

z1

z3

Figure 6: The map γ0.

Proof. Clearly β is ϕ-complete, since HΩ(ϕ(x, ·)) is non-decreasing. For the second
part let γ ∈ β and let Φ be a homotopy connecting γ0 and γ1 := γ as in the definition
of β, that is is

HΩ (Φ([0, 1]× {δ, π − δ})) ≥ σ + 1. (3.12)

Define H : [0, 1] × [δ, π − δ] → R, H(s, t) := Re [Φ1(s, t)− Φ2(s, t)]. We claim that
H(s, δ) > 0 for all s ∈ [0, 1]. To see this, observe that H(0, δ) = ρ0 > 0 and assume
there is s0 ∈ [0, 1] such that H(s0, δ) ≤ 0. Then, by the intermediate value theorem,
there is s1 ∈ [0, 1], such that H(s1, δ) = 0, which means that Φ(s1, δ) ∈ L̃3Ω, hence
HΩ(h(s1, δ)) ≤ σ, in contradiction with (3.12). Hence H(s, δ) > 0 for all s ∈ [0, 1],
and a similar argument shows H(s, π − δ) < 0 for all s ∈ [0, 1]. In particular, again by
the intermediate value theorem, there is t0 ∈ (δ, π − δ) such that H(1, t0) = 0, that is
γ(t0) ∈ L̃3Ω.

36



We see by applying Lemma 2.14 to β, that there is some z0 ∈ F̃2Ω satisfying

lim
t→t+(z0)

HΩ(ϕ(z0, t)) <∞.

In slight anticipation of chapter 4 we may note that Γ =
(
−1

4 , 1,−
1
4

)
is ∆–admissible and

∂–admissible, hence proposition 4.3 implies that HΩ has a critical point z∗ ∈ F̃2Ω.
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4 Singularities of HΩ

We will now leave the case of symmetric Ω for the rest of this thesis and work with a
general bounded domain Ω which still satisfies hypothesis 2.1. During the last chapter
we have taken massive advantage of the fact that the vortices were constrained to a
line, hence their order would not change under the gradient flow, which induced some
compactness into the problem of finding critical points. This is not to be expected if we
work on a general domain Ω, hence we are led to investigate possible conditions on Γ
and, from time to time, also on Ω which enable us to give some positive results.

As work on this thesis started out, the paper [4] was the main starting point for the
research conducted here. As of this writing, it still is the only reference known to the
author dealing with both general Ω and alternating signs of vorticities at once. By the
time the problem of collisions of vortices under the gradient flow of HΩ in the interior
of the domain seemed to be the largely unsolved one, except in the cases Γi = (−1)i

and N ≤ 4, whereas the problem of vortices colliding with ∂Ω was dealt within [4]
in great generality, but as it turned out, the result concerning the latter case given
there is erroneous. More precisely, it is the proof of lemma 4.2 in [4] that contains
an error. Although the statement of lemma 4.2 appears to be wrong in general, the
authors [3] were able to recover their results for N ≤ 4 and general Γi using different
methods, but for larger values of N the problem turned out to be the more difficult one,
leading to more severe conditions on the vorticity vector Γ than are needed for smaller
values of N . In fact, it turns out ([3]) that for N ≤ 4 the condition

∑
i,j∈J
i 6=j

ΓiΓj < 0

for any J ⊂ {1, . . . , N}, |J | ≥ 3 is sufficient for recovering the results of [4]. This is
only slightly more restrictive than our condition of ∆–admissibility below, which has
been previously conjectured to be sufficient in [4]. The author believes, partly based on
numerical simulations of the problem, that the severe restriction of ∂–admissibility is in
fact unnecessary and may be completely abolished or at least be weakened, as it is done
by Bartsch et al. in the case N ≤ 4.

This section is devoted to the study of HΩ near collisions with the boundary ∂Ω or
with each other away from the boundary and to give conditions on Γ and Ω which
prevent these. We start out by simply stating the relevant conditions on Γ.

Definition 4.1 (∆–admissibility). We call a parameter Γ ∈ RN ∆–admissible, if for
every C ⊂ {1, . . . , N}, |C| ≥ 2: ∑

i,j∈C
i 6=j

ΓiΓj 6= 0.

Definition 4.2 (∂–admissibility). We call a parameter Γ ∈ RN ∂–admissible, if for
every C ⊂ {1, . . . , N}, |C| ≥ 2: ∑

i∈C
Γ2
i >

∑
i,j∈C
i 6=j

|ΓiΓj |.
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If Ω is strictly convex, this condition may be replaced by∑
i∈C

Γ2
i >

∑
i,j∈C

ΓiΓj<0

|ΓiΓj |.

The intuition behind these definitions is simple: the idea is that ∆–admissibility
prevents collisions of vortices inside the “diagonal” ∆ = {z ∈ ΩN : zi = zj for some i 6=
j} from happening while the energy HΩ of the system remains finite. Since ΓiΓjG(zi, zj)
becomes large if zi and zj collide inside Ω, we may regard the quantity

∑
i,j∈C
i 6=j

ΓiΓj as a

kind of “collision weight” associated to the vortices with indices in C. Since Γ2
jh(zj)→

−∞ if zj → ∂Ω, we may, by the same intuitive reasoning, regard the quantity
∑

i∈C Γ2
i

as a kind of weight for the boundary interaction of the vortices zi, i ∈ C, and the
condition of ∂–admissibility then simply states that the boundary interaction outweighs
the collision weight.

The goal of this section is to prove the following

Proposition 4.3. Let Γ ∈ RN be ∂–admissible and ∆–admissible. Then there is δ > 0
such that |∇HΩ(z)| > 1 for every z in Mδ, where

Mδ := {z ∈ FNΩ : |zi − zj | ≤ δ or d(zj) ≤ δ for some i, j ∈ {1, . . . , N}, i 6= j} .

In particular, HΩ satisfies the Palais–Smale–condition. Further, if there is z ∈ FNΩ
such that

lim
t→t+(z)

HΩ(ϕ(z, t)) <∞,

we have t+(z) = ∞ and there is a sequence sn → ∞ such that defining zsn := ϕ(z, sn),
we have zsn → z∗ ∈ FNΩ where ∇HΩ(z∗) = 0, hence HΩ has a critical point.

The proof of proposition 4.3 of course involves a detailed study of the behaviour of
HΩ near its singularities. The functional HΩ has singularities at the boundary ∂FNΩ of

FNΩ in CN . This boundary consists of points z ∈ Ω
N

with zj ∈ ∂Ω or zi = zj for some
indices i, j ∈ {1, . . . , N}, i 6= j, corresponding to collisions of vortices with the boundary
or with each other in Ω, respectively.

In order to deal with the problem of collisions effectively, we first introduce some
convenient notation for dealing with different types of collisions of vortices within Ω,
corresponding to the respective parts of the boundary ∂FNΩ of FNΩ in CN .

First note that collisions of vortices correspond to partitions of the set {1, . . . , N} as

follows: Given a point z ∈ Ω
N

, we define

Pz := {C ⊂ {1, . . . , N} : zi = zj ⇔ i, j ∈ C} ,

which is clearly a partition of {1, . . . , N}. We call an element C ∈ P a cluster, if it has
more than one element itself. Denote the subset of clusters of Pz by C(Pz). Now for
C ∈ Pz define zC to be the unique element of {zj : j ∈ C}. With this notation, the proof
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splits essentially into two major cases of types of collisions which have to be excluded.
The one which can be settled most easily is the case of interior collisions, that is, given
an initial value z0 ∈ FNΩ there exists a point z ∈ ∂FNΩ, such that the partition Pz has
a cluster C ∈ C(P) satisfying zC ∈ Ω, such that ϕ(z0, t)j → zC as t→ t+(z0) if and only
if j ∈ C. We denote the set of interior collision points as

∂intFNΩ = {z ∈ ∂FNΩ : ∃ C ∈ C(Pz) such that zC ∈ Ω} .

Note that this does include the case of vortices colliding with the boundary, as long as
there are some other vortices, which collide inside Ω at the same time.

The second case, which in the following is termed ”boundary collisions” is more com-
plicated to settle. In this case the collision point z ∈ ∂FNΩ satisfies zC ∈ ∂Ω for each
cluster C ∈ C(P), and it holds that ϕ(z0, t)j → zC as t→ t+(z0) for all j ∈ C, C ∈ C(Pz).
We denote the set of boundary collisions with

∂bdryFNΩ = {z ∈ ∂FNΩ : ∀ C ∈ C(Pz) : zC ∈ ∂Ω} .

Clearly ∂FNΩ is the disjoint union of these two sets.
Before we turn to the proof of proposition 4.3, we state some essential lemmata which

help us settle the above two cases.

4.1 Interior collisions

Lemma 4.4. Let Γ be ∆–admissible and for any partition P of {1, . . . , N}, C ∈ C(P)
define

JC : FNC 3 z 7→
∑
i,j∈C
i 6=j

ΓiΓj ln |zi − zj | ∈ R,

JP : FNC 3 z 7→
∑

C∈C(P)

JC(z) ∈ R.

Further define the constant CΓ by

CΓ := min
P partition
of {1,...,N}
C(P)6=∅

min
C∈C(P)

∣∣∣∣∣∣∣∣
∑
i,j∈C
i 6=j

ΓiΓj

∣∣∣∣∣∣∣∣ ,
which is positive since Γ is ∆–admissible. With this notation the inequality

|∇JPz(w)| ≥ CΓ max
C∈C(Pz)

(∑
i∈C
|wi − zC |2

)− 1
2

.

holds for every z ∈ ∂FNC, w ∈ FNC.

Proof. Fix points z ∈ ∂FNC, w ∈ FNC and some cluster C ∈ C(Pz), put z̃C :=
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(zC , . . . , zC) ∈ CN and define

jC : (0,∞) 3 r 7→ JC(z̃C + r(w − z̃C)) ∈ R.

Then
j′C(1) =

∑
i,j∈C
i 6=j

ΓiΓj 6= 0

and letting cC := |j′C(1)| we infer

0 < cC = |j′(1)| = |〈∇JC(w), z − z̃C〉| ≤ |∇JC(w)| ·

(∑
i∈C
|wi − zC |2

) 1
2

for any w ∈ FNC. Together with min
C∈C(Pz)

cC ≥ CΓ and

|∇JPz(w)| =

 ∑
C∈C(Pz)

|∇JC(w)|2
 1

2

≥ max
C∈C(Pz)

|∇JC(w)|

the claim follows.

Lemma 4.5. Let Γ be ∆–admissible and z̄ ∈ ∂intFNΩ with corresponding partition Pz̄,
and let C ∈ C(Pz̄) be an interior collision cluster, that is z̄C ∈ Ω. There exists δ > 0,
such that for each z ∈ Uδ(z̄) ∩ FNΩ:

|∇HΩ(z)| ≥ CΓ

4π

(∑
i∈C
|zi − z̄C |2

)− 1
2

.

Proof. We decompose HΩ as

HΩ(z) = − 1

2π
JPz̄(z) +K(z),

where

K(z) =
N∑
j=1

Γ2
jh(zj) +

∑
I∈C(Pz̄)

∑
i,j∈I
i 6=j

ΓiΓjg(zi, zj) +
∑

i,j∈{1,...,N}
∃ I,J∈Pz̄ ,i∈I,j∈J

I∩J=∅

ΓiΓjG(zi, zj).

Fixing some interior collision cluster C, we have

|∇HΩ(z)| ≥ |∇HΩ(z)|C =

∣∣∣∣− 1

2π
∇JPz̄(z) +∇K(z)

∣∣∣∣
C
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≥ 1

2π
|∇JPz̄(z)|C − |∇K(z)|C =

1

2π
|∇JC(z)| − |∇K(z)|C

≥ 1

2π
|∇JC(z)| −

∑
j∈C

Γ2
j |∇h(zj)| −

∑
i,j∈C
i 6=j

|ΓiΓj |
(
|∇zig(zi, zj)|+ |∇zjg(zi, zj)|

)
−

∑
i∈C,j 6∈C

|ΓiΓj ||∇ziG(zi, zj)|,
(4.1)

where for ζ ∈ CN : |ζ|C := |πCζ|, and πC : CN → {z ∈ CN : zj = 0 if j 6∈ C} is the
orthogonal projection. For z ∈ CN define

rC(z) := min

{
min

i∈C,j 6∈C
|zi − zj |,min

j∈C
dist(zj , ∂Ω)

}
.

Since δ0 := rC(z̄) > 0 and rC is clearly continuous, there is δ̃ > 0, such that rC(z) ≥ δ0
2

for every z ∈ Uδ̃(z̄)∩FNΩ, which by means of hyothesis 2.4 implies that on Uδ̃(z̄)∩FNΩ

the last terms of (4.1) are bounded by some constant C̃ ≥ 0.
Now applying lemma 4.4 yields

|∇HΩ(z)| ≥ CΓ

2π

(∑
i∈C
|zi − z̄C |2

)− 1
2

− C̃.

Since

(∑
i∈C
|zi − z̄C |2

)− 1
2

→∞ for z → z̄, we may choose some δ ∈ (0, δ̃), such that for

every z ∈ Uδ(z̄) ∩ FNΩ: (∑
i∈C
|zi − z̄C |2

)− 1
2

≥ 4πC̃

CΓ
,

so that

|∇HΩ(z)| ≥ CΓ

4π

(∑
i∈C
|zi − z̄C |2

)− 1
2

,

which is what we were to show.

4.2 Boundary collisions

Now we study the behaviour of HΩ near ∂bdryFNΩ. Let therefore be z̄ ∈ ∂bdryFNΩ, that
is Pz̄ is a partition of {1, . . . , N}, such that we have distinct points z̄C ∈ ∂Ω for every
cluster C ∈ C(Pz̄). It may as well be that C(Pz̄) = ∅. In this case we have z̄ ∈ FN∂Ω.

Settling the case of interior collisions is relatively easy since, away from ∂Ω, the loga-
rithmic singularity of G dominates the interaction between vortices. If two vortices x, y
are near to the boundary and to each other, this is no longer true, since then the term
g(x, y) cannot be neglected. The next lemma is the key to the understanding of the
interaction taking place between vortices near the boundary.
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Lemma 4.6. Setting

A(x, y) := 2π (〈∇xG(x, y), dxνx〉+ 〈∇yG(x, y), dyνy〉)

for x, y ∈ Ωε, we have

A(x, y) =
〈x− ȳ, νy〉2

|x− ȳ|2
− 〈x− y, νy〉

2

|x− y|2
+ o(1),

as well as
|A(x, y)| ≤ 1 + o(1)

as x, y → x0 ∈ ∂Ω. Moreover, if Ω is strictly convex, we have

o(1) ≤ A(x, y) ≤ 1 + o(1)

Proof. By hypothesis 2.4 we may write

G(x, y) =
1

2π
ln
|x̄− y|
|x− y|

+O(1),

as x, y → x0 ∈ ∂Ω, and the approximation holds in the C1–sense, therefore (since
x̄ = 2p(x)− x)

2π∇xG(x, y) = (2Dp(x)− id)
x̄− y
|x̄− y|2

− x− y
|x− y|2

+O(1)

=
y − x̄
|x̄− y|2

− x− y
|x− y|2

+
2

1− κxdx

〈
x̄− y
|x̄− y|2

, τx

〉
τx +O(1),

which leads to

A(x, y) =

〈
y − x̄
|x̄− y|2

− x− y
|x− y|2

, dxνx

〉
+

〈
x− ȳ
|ȳ − x|2

− y − x
|x− y|2

, dyνy

〉
+ o(1)

=

〈
y − x+ 2dxνx
|x̄− y|2

, dxνx

〉
+

〈
x− y + 2dyνy
|ȳ − x|2

, dyνy

〉
−
〈

x− y
|x− y|2

, dxνx − dyνy
〉

+ o(1)

= 2

(
d2
x

|x̄− y|2
+

d2
y

|ȳ − x|2

)
+

〈
y − x, dxνx

|x̄− y|2

〉
+

〈
x− y, dyνy

|ȳ − x|2

〉
−
〈

x− y
|x− y|2

, dxνx − dyνy
〉

+ o(1)

= 2

(
d2
x

|x̄− y|2
+

d2
y

|ȳ − x|2

)
+

〈
x− y, dyνy

|ȳ − x|2
− dxνx
|x̄− y|2

〉
− 1

+

〈
x− y
|x− y|2

, p(x)− p(y)

〉
+ o(1)
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Since p(x)− p(y) = Dp(y)(x− y) + o(|x− y|) we have, using lemma 2.9

A(x, y) = 2

(
d2
x

|x̄− y|2
+

d2
y

|ȳ − x|2

)
+

〈
x− y, dyνy

|ȳ − x|2
− dxνx
|x̄− y|2

〉
− 1

+
〈x− y, τy〉2

(1− κydy)|x− y|2
+ o(1)

= 2

(
d2
x

|x̄− y|2
+

d2
y

|ȳ − x|2

)
−
〈
x− y, dxνx − dyνy

|x− ȳ|2

〉
+

〈x− y, τy〉2

(1− κydy)|x− y|2
− 1

−〈x− y, dxνx〉
(

1

|x̄− y|2
− 1

|x− ȳ|2

)
+ o(1).

(4.2)

We shall now see, that the whole last line of (4.2) is in fact o(1):∣∣∣∣〈x− y, dxνx〉( 1

|x̄− y|2
− 1

|x− ȳ|2

)∣∣∣∣ ≤ dx|x− y| · 1

|x̄− y|2|x− ȳ|2
·
∣∣|x̄− y|2 − |x− ȳ|2∣∣

≤ dx|x− y|
|x̄− y|2|x− ȳ|2

· c(dx + dy)|p(x)− p(y)|2 ≤ c̃dx(dx + dy)|x̄− y|2

|x̄− y|2|x− ȳ|2
· |x− y|

≤ c̃|x− y| = o(1)

for some constants c, c̃ > 0, where we used lemma 2.10 repeatedly. For the sake of a more
readable presentation, we continue by estimating the second term of (4.2) separately.〈

x− y, dxνx − dyνy
|x− ȳ|2

〉
=
|x− y|2

|x− ȳ|2
−
〈

x− y
|x− ȳ|2

, p(x)− p(y)

〉

=
|x− y|2

|x− ȳ|2
−
〈

x− y
|x− ȳ|2

,
1

1− κydy
〈x− y, τy〉 τy + o(|x− y|)

〉

=
|x− y|2

|x− ȳ|2
− 〈x− y, τy〉2

(1− κydy)|x− ȳ|2
+ o(1)

Therefore

A(x, y) = 2

(
d2
x

|x̄− y|2
+

d2
y

|ȳ − x|2

)
−|x− y|

2

|x− ȳ|2
+
〈x− y, τy〉2

1− κydy

(
1

|x− ȳ|2
+

1

|x− y|2

)
−1+o(1)

= 2

(
d2
x

|x̄− y|2
+

d2
y

|ȳ − x|2

)
− |x− y|

2

|x− ȳ|2
+ 〈x− y, τy〉2

(
1

|x− ȳ|2
+

1

|x− y|2

)
− 1

+ 〈x− y, τy〉2
(

1

|x− ȳ|2
+

1

|x− y|2

)(
1

1− κydy
− 1

)
+ o(1).

Since |ȳ − x| ≥ ĉ|x − y| for some ĉ > 0 and dy = o(1), whereas κy is bounded, the last
line of the preceding formula is again o(1). Since |x− y|2 = 〈x− y, τy〉2 + 〈x− y, νy〉2 we
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may then rewrite A(x, y) as

A(x, y) = 2

(
d2
x

|x̄− y|2
+

d2
y

|ȳ − x|2

)
−|x− y|

2

|x− ȳ|2
+〈x− y, τy〉2

(
1

|x− ȳ|2
+

1

|x− y|2

)
−1+o(1)

= 2

(
d2
x

|x̄− y|2
+

d2
y

|ȳ − x|2

)
− 〈x− y, νy〉2

(
1

|x− ȳ|2
+

1

|x− y|2

)
+ o(1)

= 2
d2
x + d2

y

|x− ȳ|2
− 〈x− y, νy〉2

(
1

|x− ȳ|2
+

1

|x− y|2

)
−2d2

x

(
1

|x− ȳ|2
− 1

|x̄− y|2

)
+ o(1).

Again, the last line is o(1), since∣∣∣∣d2
x

(
1

|x− ȳ|2
− 1

|x̄− y|2

)∣∣∣∣ =
d2
x

∣∣|x̄− y|2− |x− ȳ|2∣∣
|x̄− y|2|x− ȳ|2

≤ cd
2
x|p(x)− p(y)|2

|x̄− y|2|x− ȳ|2
·(dx+dy) = o(1),

which is also obtained using lemma 2.10. In the following we abbreviate α = 〈x− y, νy〉,
β = 〈x− y, τy〉, hence

x− y = ανy + βτy,

x− ȳ = x− y + 2dyνy = (α+ 2dy)νy + βτy,

d2
x = d2

y + Dd2(y)(x− y) + 1
2D2d2(y)[x− y, x− y] + o(|x− y|2)

= d2
y + 2dy 〈x− y, νy〉+ 〈x− y, (id−Dp(y))(x− y)〉+ o(|x− y|2)

= d2
y + 2αdy + α2 + β2 − 1

1− κydy
β2 + o(|x− y|2)

= d2
y + 2αdy + α2 + β2

(
1− 1

1− κydy

)
+ o(|x− y|2)

= d2
y + 2αdy + α2 + o(|x− y|2),

which implies

A(x, y) =
4d2

y + 4αdy + 2α2 − α2

(α+ 2dy)2 + β2
− α2

α2 + β2
+ o(1) =

(α+ 2dy)
2

(α+ 2dy)2 + β2
− α2

α2 + β2
+ o(1),

which is precisely our first claim. The second claim also follows easily, since ξ2

ξ2+β2 ∈ [0, 1]
for every ξ ∈ R.

We will now show that the above is in fact nonnegative up to an error of o(1) if Ω is
strictly convex.

First observe that A(x, y) = 0 for β = 0. On the other hand, setting f(t) := t2

t2+β2 for
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β 6= 0 and t ∈ R we may apply the mean value theorem to get

A(x, y) = f(α+ 2dy)− f(α) + o(1) = 2dyf
′(ξ) + o(1) =

4dyβ
2ξ

(ξ2 + β2)2
+ o(1)

for some ξ ∈ [α, α+ 2dy].
Now define α = 〈x− y, νy〉 and α′ := 〈y − x, νx〉. In the sequel, we will show that for

any x, y ∈ Ωε one of both scalar products is nonnegative if |x− y| is small enough.
Assume on the contrary that there are sequences (xn), (yn) ⊂ Ωε with |xn − yn| → 0

as n → ∞ such that αn = 〈xn − yn, νyn〉 < 0 and α′n = 〈yn − xn, νxn〉 < 0 for every
n ∈ N. Then we have

0 > αn + α′n = 〈xn − yn, νyn − νxn〉 = 〈xn − yn,−Dνyn(xn − yn) + o(|xn − yn|)〉

=

〈
xn − yn, κyn

1− κyndyn
〈xn − yn, τyn〉 τyn + o(|xn − yn|)

〉
=

κyn

1− κyndyn
β2
n + o(|xn − yn|2),

hence β2
n := 〈xn − yn, τyn〉2 = o(|xn − yn|2), since κy ≥ ε̃ for all y ∈ Ωε and some ε̃ > 0

if Ω is strictly convex. Since α2
n + β2

n = |xn − yn|2 we infer

α2
n

|xn − yn|2
= 1− β2

n

|xn − yn|2
→ 1

as n→∞, which implies
αn

|xn − yn|
→ −1

as n→∞, since we have assumed αn < 0. It follows that

−1← αn
|xn − yn|

>
αn + α′n
|xn − yn|

=
κyn

1− κyndyn
β2
n

|xn − yn|
+ o(|xn − yn|)→ 0

as n→∞, which is the desired contradiction.
Hence for every x, y ∈ Ωε sufficiently close to each other, one of the two scalar products

α, α′ is nonnegative, and since A(x, y) is symmetric in x, y by definition, we might
interchange the roles of x and y to assume α ≥ 0, which in turn implies ξ ≥ 0 and we
are done.

Lemma 4.7. Let Γ be ∂–admissible, z̄ ∈ ∂bdryFNΩ and let C ∈ Pz̄ satisfy z̄C ∈ ∂Ω.
There is δ > 0 such that for every z ∈ Uδ(z̄) ∩ FNΩ

|∇HΩ(z)| ≥ εC
2π

∑
j∈C

d(zj)
2

− 1
2

,
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where the constant εC > 0 is given by

εC :=
1

2

∑
i∈C

Γ2
i −

∑
i,j∈C
i 6=j

|ΓiΓj |

 ,

if Ω is not strictly convex, and by

εC :=
1

2

∑
i∈C

Γ2
i −

∑
i,j∈C

ΓiΓj<0

|ΓiΓj |


instead, if it is strictly convex.

Proof. Note that in each case εC > 0 by the condition of ∂–admissibility. There is
δ̃ > 0, such that zj ∈ Ωε for any j ∈ C, z ∈ Uδ̃(z̄) ∩ FNΩ. We thus may consider the
function

ΦC : Uδ̃(z̄) ∩ FNΩ 3 z 7→ π
∑
j∈C

d(zj)
2 ∈ [0,∞)

and simply compute

〈∇HΩ(z),∇ΦC(z)〉 = 2π
∑
j∈C

〈
∇zjHΩ(z), d(zj)ν(zj)

〉

= 2π
∑
j∈C

〈
Γ2
j∇h(zj) + 2

∑
i∈C\{j}

ΓiΓj∇zjG(zj , zi) +O(1), d(zj)ν(zj)

〉

= 2π
∑
j∈C

〈
Γ2
j∇h(zj), d(zj)ν(zj)

〉
+ 4π

∑
i,j∈C
i 6=j

ΓiΓj
〈
∇zjG(zj , zi), d(zj)ν(zj)

〉
+ o(1)

=
∑
j∈C

Γ2
j

〈
ν(zj)

d(zj)
, d(zj)ν(zj)

〉
+ 2

∑
i,j∈C
i<j

ΓiΓjA(zi, zj) + o(1)

as z → z̄. Here we have used the fact that ∇zjG(zj , zi) = O(1) for j ∈ C, i 6∈ C as
z → z̄ by hypothesis 2.4.

In case Ω is not strictly convex, we may estimate this by

≥
∑
j∈C

Γ2
j − 2

∑
i,j∈C
i<j

|ΓiΓj |+ o(1) =
∑
j∈C

Γ2
j −

∑
i,j∈C
i 6=j

|ΓiΓj |+ o(1) = 2εC + o(1)

as z → z̄ by use of lemma 4.6.
If, on the other hand, Ω is strictly convex, we may again use lemma 4.6 and similarly
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conclude
〈∇HΩ(z),∇ΦC(z)〉 ≥

∑
j∈C

Γ2
j − 2

∑
i,j∈C

i<j,ΓiΓj<0

|ΓiΓj |+ o(1)

=
∑
j∈C

Γ2
j −

∑
i,j∈C

ΓiΓj<0

|ΓiΓj |+ o(1) = 2εC + o(1)

as z → z̄. In any case we obtain that there is δ ∈ (0, δ̃) such that

〈∇HΩ(z),∇ΦC(z)〉 ≥ εC

for every z ∈ Uδ(z̄) ∩ FNΩ.
On the other hand we have

〈∇HΩ(z),∇ΦC(z)〉 ≤ |∇HΩ(z)| · |∇ΦC(z)| = 2π · |∇HΩ(z)| ·

∑
j∈C

d(zj)
2

 1
2

by simply applying the Cauchy–Schwarz–inequality, hence we obtain

|∇HΩ(z)| ≥ εC
2π

∑
j∈C

d(zj)
2

− 1
2

for every z ∈ Uδ(z̄) ∩ FNΩ and we are done.

4.3 Proof of proposition 4.3

Equipped with these estimates we now turn to the proof of proposition 4.3, which is
comprised of the next few lemmata.

Lemma 4.8. There is δ > 0 such that |∇HΩ(z)| > 1 for every z ∈Mδ.

Proof. Assume on the contrary that there are sequences δn → 0, δn > 0 and zn ∈Mδn

such that |∇HΩ(zn)| ≤ 1 for all n ∈ N. Then, upon choosing a convergent subsequence,
we may assume zn ∈ Uδn(z̄) for some z̄ ∈ ∂FNΩ and every n ∈ N. Now if z̄ ∈ ∂intFNΩ
there are n0 ∈ N and C ∈ C(Pz̄) satisfying z̄C ∈ Ω such that

|∇HΩ(zn)| ≥ CΓ

4π

(∑
i∈C
|zni − z̄C |2

)− 1
2

≥ CΓ

4π
√
|C|δn

for every n ≥ n0 by lemma 4.5. Similarly, if z̄ ∈ ∂bdryFNΩ there are n0 ∈ N and C ∈ Pz̄
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satisfying z̄C ∈ ∂Ω such that

|∇HΩ(zn)| ≥ εC
2π

∑
j∈C

d(znj )2

− 1
2

≥ εC

2π
√
|C|δn

for every n ≥ n0 by lemma 4.7. This, however, contradicts the fact that |∇HΩ(zn)| ≤ 1
for all n ∈ N and the proof is done.

SinceMδ is a neighbourhood of ∂FNΩ in Ω
N

, this in particular shows that HΩ satisfies
the Palais–Smale–condition.

Lemma 4.9. Let z ∈ FNΩ satisfy

lim
t→t+(z)

HΩ(ϕ(z, t)) = c0 <∞.

Then t+(z) =∞.

Proof. In general we have for s, t ∈ [0, t+(z)), s < t and zt := ϕ(z, t)

|zt − zs| ≤
t∫
s

|∇HΩ(zτ )|dτ ≤
√
t− s

√∫ t

s
|∇HΩ(zτ )|2dτ =

√
t− s

√
HΩ(zt)−HΩ(zs)

≤
√
|t− s|

√
c0 −HΩ(zs) (4.3)

Now if t+(z) < ∞ we may take the limit t → t+(z) on the right hand side of (4.3)
to obtain that for every ε > 0 there is t0 ∈ [0, t+(z)) and any s, t ∈ [t0, t

+(z)), s < t:

|zt − zs| < ε, hence zt → z̄ as t→ t+(z) for some z̄ ∈ FNΩ = Ω
N

, since Ω
N

is compact.
Let δ > 0 be such that the consequences of lemmata 4.5 and 4.7 hold.
If z̄ ∈ ∂bdryFNΩ we find C ∈ Pz̄ and t0 ∈ [0, t+(z)) such that for every t ∈ [t0, t

+(z))

d

dt
ΦC(zt) =

〈
∇HΩ(zt),∇ΦC(zt)

〉
≥ εC > 0,

by application of lemma 4.7 which is a contradiction.
If, on the other hand, z̄ ∈ ∂intFNΩ, we have C ∈ C(Pz̄) as well as t0 ∈ [0, t+(z)), such

that for all t ∈ [t0, t
+(z))

|∇HΩ(zt)| ≥ CΓ

4π

(∑
i∈C
|zti − z̄C |2

)− 1
2

by lemma 4.5. We thus may compute for s ∈ [t0, t
+(z)), t ∈ (s, t+(z))

HΩ(zt)−HΩ(zs) ≥
t∫
s

CΓ

4π
|∇HΩ(zτ )|

(∑
i∈C
|zτi − z̄C |2

)− 1
2

dτ
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=
CΓ

4π

t∫
s

|żτ |

(∑
i∈C
|zτi − z̄C |2

)− 1
2

dτ ≥ CΓ

4π

t∫
s

|πC żτ |

(∑
i∈C
|zτi − z̄C |2

)− 1
2

dτ

≥ CΓ

4π

t∫
s

∣∣∣∣〈πC żτ , πC(zτ − z̄)
|πC(zτ − z̄)|

〉∣∣∣∣
(∑
i∈C
|zτi − z̄C |2

)− 1
2

dτ

=
CΓ

4π

t∫
s

∣∣∣ d
dτ

(∑
i∈C |zτi − z̄C |2

) 1
2

∣∣∣(∑
i∈C |zτi − z̄C |2

) 1
2

dτ ≥ −CΓ

4π

t∫
s

d
dτ

(∑
i∈C |zτi − z̄C |2

) 1
2(∑

i∈C |zτi − z̄C |2
) 1

2

dτ

=
CΓ

8π
ln

∑
i∈C |zsi − z̄C |2∑
i∈C |zti − z̄C |2

→∞ (t→ t+(z)),

contrary to our assumption. It follows that t+(z) = ∞, which is what we were to
show.

The next lemma finishes the proof of proposition 4.3.

Lemma 4.10. If there is z ∈ FNΩ satisfying

lim
t→t+(z)

HΩ(ϕ(z, t)) = c0 <∞,

there is a sequence (zn) ⊂ FNΩ and a point z∗ ∈ FNΩ such that zn → z∗ and
∇HΩ(zn)→ 0 as n→∞.

Proof. Since t+(z) = ∞ by lemma 4.9, consider a sequence (tn) ⊂ [0,∞), tn → ∞,
such that ztn → z∗ as n→∞.

Let us assume at first that there are n0 ∈ N, δ > 0, such that δ ≤ tn+1 − tn and
|∇HΩ(zt)| ≥ 1√

n
for all n ≥ n0 and for all t ∈ [tn, tn + δ]. Then we have

HΩ(ztn) ≥ HΩ(ztn0 ) +
n∑

j=n0

tj+δ∫
tj

|∇HΩ(zs)|2ds = HΩ(ztn0 ) +
n∑

j=n0

δ

j
→∞ (n→∞),

contrary to our main assumption.
Thus there exists a sequence δn → 0, δn > 0 for all n ∈ N, such that with sn := tn+δn:
|∇HΩ(zsn)| < 1√

n
. It follows that zsn → z∗ as n→∞ because of (4.3), since |sn− tn| =

δn → 0. Abbreviating zsn by zn we have ∇HΩ(zn) → 0 as well as zn → z∗ as n → ∞.
Lemma 4.8 now implies z∗ ∈ FNΩ and the proof is finished.

This also finishes the proof of proposition 4.3. All that is left to do for proving our
main results concerning asymmetric domains is to provide a sort of linking argument for
HΩ, that is finding a point z ∈ FNΩ such that HΩ(zt) has a finite limit for t→∞. This
is done by applying lemma 2.14 within the next section.
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5 Linking phenomena for HΩ

The goal of this section is to prove the following two theorems.

Theorem 5.1. For any N ∈ N and any L–admissible, ∂–admissible and ∆–admissible
parameter Γ ∈ RN , the Kirchhoff–Routh path function HΩ has a critical point in FNΩ.

Theorem 5.2. Suppose that π1(Ω) 6= 0. Then for any N ∈ N and for any ∂–admissible
and ∆–admissible parameter Γ ∈ RN , the Kirchhoff–Routh path function HΩ has a
critical point in FNΩ.

5.1 The simply connected case

This subsection is concerned with the proof of theorem 5.1.
Let Γ be ∂– and ∆–admissible, and let Γ be L–admissible with corresponding permu-

tation σ. Reordering the vortices, we may without loss of generality assume that σ = id
and hence abbreviate LNΩ := Lid

NΩ.
The theorem is trivial for N ≤ 2, for then HΩ(z)→ −∞ for z → ∂Ω and consequently

HΩ assumes a local maximum in FNΩ, since h(zj) → −∞ for zj → ∂Ω, j ∈ {1, 2} as
well as Γ1Γ2G(z1, z2)→ −∞ if |z1 − z2| → 0, since Γ1Γ2 < 0.

In what comes we thus consider the case N ≥ 3 and begin to construct an explicit
linking for HΩ.

Without loss of generality we may assume 0 ∈ Ω. Choose ρ > 0 such that BNρ(0) ⊂ Ω.
Define

γ0 : TN−2 := (S1)N−2 → FNΩ

γ0,1(ζ1, . . . , ζN−2) := 0, γ0,N (ζ1, . . . , ζN−2) := (N − 1)ρ,

γ0,j(ζ1, . . . , ζN−2) = (j − 1)ρζj−1,

for j ∈ {2, . . . , N − 1}, where γ0,j denotes the j-th component of γ0. Setting

Γ0 :=
{
γ ∈ C0(TN−2,FNΩ) : γ ' γ0

}
,

we have the following

Lemma 5.3. For every γ ∈ Γ0: γ(TN−2) ∩ LNΩ 6= ∅.

Proof. Let H̃ : TN−2 × [0, 1] → FNΩ be a deformation from γ0 to γ. For t ∈ [0, 1]
define

ht : TN−2 × [0, 1]N−2 → CN−2

by setting

ht,j(ζ, s) := sj

(
H̃j(ζ, t)− H̃j+1(ζ, t)

)
+ (1− sj)

(
H̃j+2(ζ, t)− H̃j+1(ζ, t)

)
for j ∈ {1, . . . , N − 2}. Obviously γ(ζ) ∈ LNΩ if and only if h1(ζ, s) = 0 for some
s ∈ [0, 1]N−2. Furthermore ht(ζ, s) 6= 0 for all s ∈ ∂

(
[0, 1]N−2

)
, t ∈ [0, 1], since H̃(ζ, t) ∈
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Figure 7: The map γ0.

FNΩ, so the map

g̃ :
(
TN−2× [0, 1]N−2× [0, 1],TN−2× ∂

(
[0, 1]N−2

)
× [0, 1]

)
→
(
CN−2,CN−2\{0}

)
g̃(ζ, s, t) := ht(ζ, s)

(5.1)

is well–defined and continuous.
Using the Künneth–formula for the pair

(X,A) :=
(
TN−2 × [0, 1]N−2,TN−2 × ∂

(
[0, 1]N−2

)) ∼= (TN−2 ×DN−2,TN−2 × SN−3
)

we easily get that

H2N−4

(
TN−2 × [0, 1]N−2,TN−2 × ∂

(
[0, 1]N−2

)) ∼= Z,

where we are using singular homology with coefficients in Z. Since g̃ is a homotopy of
pairs by (5.1), ht induces a homomorphism in homology

h∗ : H2N−4

(
TN−2 × [0, 1]N−2,TN−2 × ∂

(
[0, 1]N−2

))
→ H2N−4

(
CN−2,CN−2 \ {0}

)
,

which is independent of t ∈ [0, 1]. We claim that the degree h∗(1) ∈ Z of h0 is nonzero.
Observe that h0 has a unique zero at p := (ζ0, s0) :=

(
1, . . . , 1, 1

2 , . . . ,
1
2

)
. Abbreviating

(Y,B) :=
(
CN−2,CN−2 \ {0}

)
we thus have the following commutative diagram:

(X,A)
h0 - (Y,B)

(X,X \ {p})

i

?

∩

�
j
⊃

u

-

(Uε(p), Uε(p) \ {p}),

w = h0|(Uε(p),Uε(p)\{p})

6
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where u in the middle is given by u : (X,X \ {p}) → (Y,B), x 7→ h0(x). Taking the
(2N−4)-th homology, we notice that the restriction homomorphism i∗ is an isomorphism
since A is the boundary of the ∂–manifold X, where X \ A is orientable and i∗ maps a
generator {X} of H2N−4(X,A), which is a fundamental class corresponding to a global
orientation of X to a local orientation of X, i.e. a generator of the local homology group
H2N−4(X,X \ {p}) of X. See, for example [18], chapter V, theorem 13.1 for further
details and rigorous proofs. Since j∗ is an excision isomorphism, we have

h∗ = u∗i∗ = w∗j
−1
∗ i∗,

so we are done if the map w∗ to the right is an isomorphism. But this is surely the case,
as w∗(1) ∈ Z for small ε > 0 is the local degree of the differentiable map h0 at p and is
nonzero, which can be easily computed as follows: We have (regarding CN−2 as R2N−4)

∂

∂ζj−1
h0,j(p) =

1

2
(j−1)ρ

(
0
1

)
,

∂

∂ζj
h0,j(p) = −jρ

(
0
1

)
,

∂

∂ζj+1
h0,j(p) =

1

2
(j+1)ρ

(
0
1

)
,

∂

∂sj
h0,j(p) = −2ρ

(
1
0

)
,

whereas all the other partial derivatives vanish. Reordering the Jacobian of h0 at p, such
that the first N − 2 rows correspond to the imaginary parts of the h0,j , we get that

Dh0(p) =

(
AN 0
0 BN

)
,

where BN = diag(−2ρ) ∈ R(N−2)×(N−2). Developing the last N − 2 columns of
det Dh0(p), and using multilinearity to get rid of the ρ-factors, we get

| det Dh0(p)| = 2N−2ρ2N−4 abs

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1 1 0 · · · · · · · · · 0

1
2 −2 3

2 0
...

0 1 −3 2 0
...

...
. . .

. . .
. . .

. . .
. . .

...
... 0 N−5

2 −(N−4)
N−3

2 0
... 0 N−4

2 −(N−3)
N−2

2

0 · · · · · · · · · 0 N−3
2 −(N−2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
By looking at the first N − 3 rows of the above matrix, we see that if v ∈ RN−2 is in
the kernel, v must have all components equal to some v0 ∈ R. The last row then implies
that v0 = 0, hence det Dh0(p) 6= 0 and we are done.

By applying lemma 2.14 to the homotopy class Γ0, we get that there is ζ ∈ TN−2

such that HΩ remains bounded along the trajectory of γ0(ζ). Since HΩ satisfies the
Palais–Smale–condition, the proof of theorem 5.1 is finished.
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5.2 The case π1(Ω) 6= 0

This subsection is devoted to the proof of theorem 5.2. Hence let the paramter Γ be ∂–
and ∆–admissible.

Let π1(Ω) 6= 0, that is k0 = rankπ1(Ω) ≥ 1 and select a bounded component Ω1 of
C \ Ω̄. Without loss of generality we may assume 0 ∈ Ω1. Defining

S :=

{
z ∈ FNΩ : ∀j ∈ {1, . . . , N} :

zj
|zj |

= e
2πij
N

}
,

we have the following

Lemma 5.4. HΩ

∣∣
S is bounded from above.

Proof. Hypothesis 2.1 implies that Ω satisfies an exterior ball condition, hence there
is ρ > 0 such that |zi − zj | > ρ for i, j ∈ {1, . . . , N}, i 6= j. Using hypothesis 2.4, the
assertion is immediate.

Since Ω̄ is a ∂–manifold with ∂Ω1 a component of ∂Ω there exists a collar of ∂Ω1
∼= S1,

that is, an open neighborhood U of ∂Ω1 in Ω̄ and a homeomorphism

h̃ : S1 × [0, 1)→ U

satisfying h(S1 × {0}) = ∂Ω1. Setting

hj := h̃|S1×{ j
N+1} : S1 → Ω

for j ∈ {1, . . . , N}, the hj are Jordan curves with disjoint images enclosing Ω1. Thus

γ0 := h1 × · · · × hN : TN → FNΩ

is well defined, and setting

Γ0 := {γ : TN → FNΩ : γ ' γ0},

we have the following

Lemma 5.5. For all γ ∈ Γ0

γ
(
TN
)
∩ S 6= ∅.

Proof. Let γ ∈ Γ0, and let H̃ : TN × [0, 1] → FNΩ be a homotopy connecting γ and
γ0. Setting

r : Ω 3 z 7→ z

|z|
∈ S1,

Ψ := r × · · · × r : FNΩ→ TN ,
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Figure 8: The map γ0.

Ψ is well–defined and continuous, and the assertion is equivalent to ē ∈ Ψ(γ(TN )), where

ē =
(
e

2πij
N

)
j∈{1,...,N}

∈ TN . Now for every t ∈ [0, 1], the map ft := Ψ ◦ H̃(·, t) induces a

homomorphism
f∗ : Z ∼= HN (TN )→ HN (TN ) ∼= Z,

in singular homology which is independent of t. Since hj is a homeomorphism onto its
image and hi ' hj for i, j ∈ {1, . . . , N}, the map r ◦ hj : S1 → S1 has winding number
±1, hence induces an isomorphism (r ◦ hj)∗ = (r ◦ h1)∗ : h1(S1) → h1(S1). Now if
{S1} ∈ H1(S1) ∼= Z is a generator, {TN} = {S1} × · · · × {S1} is a generator of HN (TN )
and we compute

f∗({TN}) = (Ψ◦γ0)∗({S1}×· · ·×{S1}) = ((r ◦ h1)× · · · × (r ◦ hN ))∗ ({S1}×· · ·×{S1})

= (r ◦ h1)∗({S1})× · · · × (r ◦ h1)∗({S1}) = ±{S1} × · · · × {S1} = ±{TN},

hence f∗ is an isomorphism. Now if ē 6∈ Ψ(γ(TN )), the isomorphism f∗ factorizes over
HN (TN \ {ē}), that is we have a commutative diagram

Z ∼= HN (TN )
f∗
∼=

- HN (TN ) ∼= Z

HN (TN \ {ē})

j∗

-

-

where j : TN \ {ē} ↪→ TN . Further we have the exact sequence

HN (TN \ {ē})
j∗- HN (TN )

∼=- HN (TN ,TN \ {ē}).
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The restriction homomorphism to the right is an isomorphism since TN is a compact
orientable connected N–dimensional manifold, see for example [18], chapter V, theorem
12.1. Since the sequence is exact, we conclude that the homomorphism j∗ is trivial,
which is a contradiction and the proof of 5.5 is complete.
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6 Outlook and application to partial differential equations

The purpose of this section is to discuss the stability of the results given in the previous
sections as well as to give applications of our theorems to the nonlinear elliptic problems
mentioned in the introduction, namely the sinh–Poisson–equation and the Lane–Emden–
Fowler equation.

It is intuitively clear that the critical points of HΩ constructed in the previous chapters
are saddle points of HΩ, hence are unstable as stationary points for the gradient flow
of HΩ. On the other hand, being derived largely by topological means and given the
axiomatic setting of section 2, which in particular allows us to disturb the Green’s–

function G as a main ingredient of the functional HΩ by an arbitrary function in C1(Ω
2
),

it is to be expected that our results are stable in the sense that one can disturb HΩ quite
a lot at least in compact subsets of FNΩ and still derive the existence of a critical point.

This is precisely what we do in the first subsection. We then go on to apply these re-
sults to find sign–changing solutions to the sinh–Poisson– and the Lane–Emden–Fowler–
equation. Unfortunately, the case of |Γj | 6= 1 is of no use for these questions, so the only
new solutions arising to these problems are those where the case Γj = (−1)j is allowed,
namely the situation of theorem 3.6.

Nevertheless, every solution of a Poisson–equation on Ω gives rise to a stationary so-
lution for the Euler–equations of an incompressible fluid, and so do the solutions to the
sinh–Poisson– and Lane–Emden–Fowler equations. Only recently [5] have constructed a
more complicated equation whose solutions concentrate around a critical point of HΩ,
but without giving any existence results. They are able to obtain their result by ad-
mitting general vorticities Γ, and our results complement theirs by giving corresponding
existence results, consequently leading to new stationary vorticity solutions for the Euler
equations.

6.1 Stability of previous results

The first results we state here are some fairly standard arguments which specify, how ro-
bust our results on symmetrical domains are with respect to symmetrical perturbations.

Theorem 6.1. Let Ω ⊂ C be a Dp–symmetric domain satisfying hypothesis 2.1 and let

V ∈ C1(Ω
N

), n ∈ N be a Dp–and Σ(Γ)–invariant functional. Then for every critical
point z∗ of HΩ according to theorems 3.6, 3.9 and corollaries thereof the functional
HΩ + V has a corresponding critical point.

Proof. Theorems 3.6 and 3.9 deliver us with local maxima of some reduced functional
E : W → R for some open and connected set W ⊂ Rk. Since Ω

N
is compact and

E(z) → −∞ as z → ∂W by theorem 2.12 and lemma 3.15, respectively, for instance in
the situation of theorem 3.6, the functional E+V ◦ sU also has a local maximum, which
is also a critical point of the whole functional by the invariance assumption.

Theorem 6.2. Let Ω ⊂ C be a Dp–symmetric domain satisfying hypothesis 2.1, let
Γ ∈ RN be L–admissible and let Vn ∈ C1(FNΩ), n ∈ N be Dp– and Σ(Γ)–invariant
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functionals, and let further Vn → 0 uniformly on compact subsets of FNΩ. There is
n0 ∈ N such that for every n ≥ n0 and for any U–symmetric critical point z∗ of HΩ

according to theorems 3.6, 3.9 and corollaries thereof the functional HΩ + Vn has a
U–symmetric critical point zn.

Proof. As noted before, theorems 3.6 and 3.9 deliver us with a local maximum z∗ of
some reduced functional E : W → R for some open connected set W ⊂ Rk. Now for
small ε > 0 the set Kε := {z ∈ W : E(z) ≥ E(z∗)− ε} is compact by theorem 2.12 and
lemma 3.15, respectively. Since Vn → 0 uniformly on compact subsets of FNΩ there
is n0 ∈ N such that, for instance in the situation of the proof of theorem 3.6 for any
n ≥ n0: supz∈Kε |Vn(sUz)| < ε

2 . It follows that for every z ∈ ∂Kε:

E(z) + Vn(sU (z)) = E(z∗)− ε+ Vn(sU (z)) ≤ E(z∗) + Vn(sU (z∗)),

hence E+Vn ◦ sU achieves a local maximum zn in Kε. By the invariance assumption zn
is a critical point of HΩ + Vn.

For the nonsymmetric case of course similar stability properties hold.

Theorem 6.3. Let V ∈ C1(Ω
N

) and Γ ∈ RN be ∂– and ∆–admissible. Then if either
π1(Ω) 6= 0 or Γ is L–admissible, HΩ + V has a critical point.

Sketch of proof. This is proven by verifying that all the estimates on HΩ and ∇HΩ

remain untouched when switching from HΩ to HΩ + V . If, for example, HΩ is bounded

above on L ⊂ FNΩ, so is HΩ + V , since Ω
N

is compact. Similarly there is a constant
C > 0 such that |∇V (z)| ≤ C for all z ∈ FNΩ, so by the triangle inequality and the fact
that |∇HΩ(z)| → ∞ as z → ∂FNΩ under the above assumptions it follows, that all of
the arguments hold for HΩ + V as well.

Theorem 6.4. Let Γ be ∆– and ∂–admissible. Let δ > 0 such that |∇HΩ(z)| > 1 for
all z ∈ Mδ. If V ∈ C1(FNΩ) satisfies |V (z)−HΩ(z)| < δ

8 and |∇V (z)−∇HΩ(z)| < 1
4

for all z ∈ FNΩ \Mδ/4. Then if either Γ is L–admissible or π1(Ω) 6= 0, the functional
V has a critical point.

Sketch of proof. This is done precisely as in [4]: Since one does not know much about
the behaviour of ∇V near the boundary ∂FNΩ, in particular one does not know whether
V satisfies the Palais–Smale–condition, one constructs a suitable pseudo–gradient vector
field v which “blends” ∇V into ∇HΩ near ∂FNΩ. One then proceeds to find some point
z ∈ FNΩ whose energy remains finite along the gradient flow of HΩ via the linking
arguments in chapter 5 and using an analogue of lemma 2.14 one subsequently shows
that this z in fact leads also to a critical point of V under the flow corresponding to the
vector field v. For further details we refer the reader to section 5 and 6 of [4].

6.2 The sinh–Poisson equation

In this section we apply theorem 6.2 to the sinh–Poisson equation. We cite the relevant
result from [4] without proof. For further details we refer the reader to the original
references [2, 6].
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Theorem 6.5. Every critical point of the functional

Ĩρ(z) : FNΩ 3 z 7→ −8Nπ ln ρ+ 24Nπ ln 2− 16Nπ − 32π2HΩ(z) + rρ(z) ∈ R,

where rρ is Σ(Γ)– and Dp–invariant if Ω is Dp–symmetric and rρ → 0 in C1
loc(FNΩ) as

ρ→ 0, gives rise to a solution uρ of{
−∆ψ = ρ sinhψ in Ω

ψ = 0 on ∂Ω.
(6.1)

Applying theorems 6.5, 3.16 and 6.2 together we immediately get

Theorem 6.6. Let N be even, p > 1 and Ω be Dp–symmetric, 0 6∈ Ω and Γj = (−1)j,
j ∈ {1, . . . , N}. Then there is ρ0 > 0 such that for any ρ ∈ (0, ρ0) and any common
divisor q > 1 of p and N

2 there are at least

l(q)∑
r=1

∑
(a,b,c,d)∈Vq,r

l(q)!

(l(q)− r)!
·

N
2q∏
j=1

1

aj ! · bj ! · cj ! · dj !

distinct symmetric solutions uρ of (6.1). These solutions have the property that for any

sequence ρn → 0 there exists z∗ ∈ S
Dq
Γ Ω such that the vorticity field satisfies

ρn sinhuρn ⇀ 8π

N∑
j=1

(−1)jδz∗j

weakly in the sense of measures in Ω along a subsequence, where z∗ is a critical point
of HΩ whose components lie on the symmetry axes of the Dq–action on Ω such that the
vorticities have alternating signs and we adopted the notation of corollary 3.16.

Proof. Define for ρ > 0:

Vρ : FNΩ 3 z 7→ HΩ(z)− 1

32π2
rρ(z) ∈ R.

Then Vρ is Σ(Γ)– and Dp–invariant and since rρ → 0 in C1
loc(FNΩ) the assertion follows

from theorem 6.2 together with the observation that any critical point of Vρ is also a

critical point of Ĩρ.

6.3 The Lane–Emden–Fowler equation

The procedure is entirely analogous to the one used before. The main references in this
subsection are [8, 9] and, of course [4], from where we adopt the notation.
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Theorem 6.7. Every critical point of the functional

J̃p(z) : FNΩ 3 z 7→ N
4πe

p
−N 8πe ln p− c

p2
− 32π2e

p2
HΩ(z) +

1

p2
rp(z) ∈ R,

where rp is Σ(Γ)– and Dp̃–invariant if Ω is Dp̃–symmetric and rp → 0 in C1
loc(FNΩ) as

p→∞, gives rise to a solution up of{
−∆u = |u|p−1u in Ω

u = 0 on ∂Ω.
(6.2)

Here, c is a fixed constant, see [4] for further detail.

Applying precisely the same procedures we get

Theorem 6.8. Let N be even, p̃ > 1 and Ω be Dp̃–symmetric, 0 6∈ Ω and Γj = (−1)j,
j ∈ {1, . . . , N}. Then there is p0 > 0 such that for any p > p0 and any common divisor
q > 1 of p̃ and N

2 there are at least

l(q)∑
r=1

∑
(a,b,c,d)∈Vq,r

l(q)!

(l(q)− r)!
·

N
2q∏
j=1

1

aj ! · bj ! · cj ! · dj !

distinct symmetric solutions up of (6.2). These solutions have the property that for any

sequence pn →∞ there exists z∗ ∈ S
Dq
Γ Ω such that

pnupn |upn |pn−1 ⇀ 8πe
N∑
j=1

(−1)jδz∗j

weakly in the sense of measures in Ω along a subsequence, where z∗ is a critical point
of HΩ whose components lie on the symmetry axes of the Dq–action on Ω such that
the vorticities have alternating signs and we adopted the notation of corollary 3.16 and
replaced p by p̃.

Proof. Define for p > 0:

Vp : FNΩ 3 z 7→ HΩ(z)− 1

32π2e
rp(z) ∈ R.

Then Vp is Σ(Γ)– and Dp–invariant and since rp → 0 in C1
loc(FNΩ) as p → ∞ the

assertion follows from theorem 6.2 together with the observation that any critical point
of Vp is also a critical point of J̃p.

Remark. It is also possible to obtain symmetric solutions of (6.1) and (6.2) in the case
that N is odd and 0 ∈ Ω, provided that R∩Ω has more than one connected component:
One places the first vortex in the symmetry center and at most one other (differently
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oriented) vortex into the connected component of [0,∞) ∩ Ω. One then places the
additional vortices alternatingly into the other connected components of [0,∞) ∩ Ω.
Since the condition of center–admissibility is fulfilled for Γ = (−1, 1) or Γ = −1, the
vortex addition lemma 3.10 together with lemma 3.15 and corollary 3.7 ensures that
HΩ has a symmetric critical point, which is of course stable with respect to symmetric
C1–perturbations and hence produces solutions for (6.1) and (6.2).

6.4 Connection to the Euler equations

The study of Poisson problems is intimately connected to stationary solutions of the
Euler equations for incompressible two–dimensional fluids by means of the following
method, which can be found, for example, in [17].

Considering a solution of ∆ψ = f(ψ) in Ω for an arbitrary f ∈ C1(R), the functions

v := J · ∇ψ,

p := F (ψ)− 1

2
|∇ψ|2 ,

where J =

(
0 −1
1 0

)
and F (s) =

∫ s
0 f(t) dt form a stationary solution of the Euler

equations {
∂tv + (v · ∇)v +∇p = 0

∇ · v = 0
(6.3)

with velocity v and pressure p, since

∇ · v = ∇ · (J · ∇ψ) = −∂1∂2ψ + ∂2∂1ψ = 0,

as well as

∂tv + (v · ∇)v +∇p = ((J · ∇ψ) · ∇) (J · ∇ψ) +∇F (ψ)− 1

2
∇ |∇ψ|2

=

(
−∂2ψ · ∂1 + ∂1ψ · ∂2

−∂2ψ · ∂1 + ∂1ψ · ∂2

)(
−∂2ψ
∂1ψ

)
+ f(ψ)∇ψ − 1

2

(
∂1

(
(∂1ψ)2 + (∂2ψ)2

)
∂2

(
(∂1ψ)2 + (∂2ψ)2

))
=

(
∂2ψ · ∂1∂2ψ − ∂1ψ · ∂2

2ψ − ∂1ψ · ∂2
1ψ − ∂2ψ · ∂1∂2ψ

−∂2ψ · ∂2
1ψ + ∂1ψ · ∂2∂1ψ − ∂1ψ · ∂1∂2ψ − ∂2ψ · ∂2

2ψ

)
− (∆ψ)∇ψ

= (∆ψ)∇ψ − (∆ψ)∇ψ = 0,

where we adopted the usual physics jargon. The quantity ω = ∇ × v = ∂1v2 − ∂2v1 is
called the vorticity of the solution v. Observe that in our situation ω = ∆ψ = f(ψ),
thus the obtained solutions to the equations considered before give stationary solutions
of the Euler equations with prescribed vorticity functions.
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On the other hand, by the Biot–Savart law

v = −ω ∗ Jx
|x|2

,

where ∗ denotes convolution, the velocity v can be recovered from ω, and admitting
singular solutions of the form ω =

∑N
j=1 Γjδzj(t), corresponding to

v(x) = − 1

2π

N∑
j=1

Γj
J(x− zj(t))
|x− zj(t)|2

via the Biot–Savart law we obtain that the vortex centres (zj(t))j∈{1,...,N} obey the
Hamiltonian system (1.1) studied here, see [11] for rigorous arguments on this.

From this view, theorems 6.6 and 6.8 deliver us with stationary solutions to the Euler
equations where the singular vorticity has been regularized to smooth “vorticity blobs”.

For the sinh–Poisson equation and the Lane–Emden–Fowler equation this process is
limited to the case that |Γj | = 1 for all j ∈ {1, . . . , N}. But recently, by studying the
semilinear elliptic problem

−ε2∆u =
∑

j∈{1,...,N}
Γj>0

χΩj

(
u− q − Γj

2π ln 1
ε

)p
+

−
∑

j∈{1,...,N}
Γj<0

χΩj

(
−u+ q +

Γj
2π ln 1

ε

)p
+

in Ω

u = 0 on ∂Ω,

(6.4)

where Ωj are mutually disjoint subdomains of Ω such that z∗j ∈ Ωj for a critical point
z∗ of the Kirchhoff–Routh path function and χΩj is the characteristic function of Ωj ,
j ∈ {1, . . . , N}, and applying their results to the Euler equations as sketched above, the
authors of [5] succeeded in proving the following

Theorem 6.9. Suppose Ω ⊂ C is a bounded simply–connected smooth domain. Taking
the Kirchhoff–Routh path function as

ĤΩ(z) = HΩ(z) + 2
N∑
j=1

Γjψ0(zj),

where ψ0 is uniquely defined up to a constant as the solution of{
−∆ψ0 = 0 in Ω

−〈τ,∇ψ0〉 = vn on ∂Ω

and vn ∈ Ls(∂Ω) for some s > 1 satisfying
∫
∂Ω vn = 0, we have that for any C1–stable

critical point z∗ of ĤΩ there is ε0 > 0 such that for every ε ∈ (0, ε0) the Euler equations
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(6.3) have a solution vε with outward boundary flux given by vn and vorticity ωε satisfying

suppωε ⊂
N⋃
j=1

BCε(zj),

where C > 0 is a constant independent of ε and zj ∈ Ωj for j ∈ {1, . . . , N}. Moreover,
as ε→ 0,

(z1, . . . , zN )→ (z∗1 , . . . , z
∗
N )∫

BCε(zj)
ωε → Γj ∀ j ∈ {1, . . . , N}, as well as

∫
Ω
ωε →

N∑
j=1

Γj .

This is theorem 1.1 of [5] translated into our notation. Combined with the results in
this thesis we may now supplement this theorem by the existence result 5.1, giving us
the following theorem, which marks a suitable endpoint for this thesis.

Theorem 6.10. Let Ω be a smooth simply–connected bounded domain, let vn ∈ C1(∂Ω)
and let Γ be L–, ∆– and ∂–admissible. Then there is ε0 > 0 such that for every ε ∈ (0, ε0)
the Euler–equations (6.3) have a solution vε satisfying the properties stated in theorem
6.9.

Sketch of proof. In the case that ψ0 = 0 the theorem follows easily from theorem
6.4, which basically states that the critical points of HΩ = ĤΩ are C1–stable. If ψ0 6= 0
we define

V : Ω
N 3 z 7→ 2

N∑
j=1

Γjψ0(zj) ∈ R,

so that ĤΩ = HΩ +V and, since ψ0 ∈ C1(Ω) by standard elliptic theory, more precisely,
since by integrating the boundary condition we get that ψ0 satisfies the Dirichlet problem{

−∆ψ0 = 0 in Ω

−ψ0 = Vn on ∂Ω

for some Vn ∈ C2(∂Ω) and Vn has a continuation Ṽn ∈ C2(Ω), for ∂Ω is of class C3,

the assertion that ψ0 ∈ C1(Ω) and consequently V ∈ C1(Ω
N

) follows by theorem 6.14
of [12]. The assertion of the theorem follows now from theorem 6.3 and 6.4 applied to
ĤΩ. This is possible since the proof of 6.4 in [4] only uses the properties of HΩ which
can also be verified for ĤΩ, just as in the proof of theorem 6.3, more precisely, the only
ingredient needed is that there is δ > 0 such that |∇HΩ| > 1 on Mδ, which, of course,

can also be verified for ĤΩ instead of HΩ.
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List of Symbols

∗ group action of ΣN on FNΩ and RN by permutation of coordinates, page 7

� group action of Πr on arbitrary sets of r–dimensional arrays of vectors via
component–wise order–reversal and permutation of coordinates, page 23

� group action of Z2 on Rk defined by 1� v = σ̂ ∗ v, where σ̂ ∈ Σk reverses
the order of components, page 23

L–admissible The components of Γ can be ordered to have alternating sign and ascend-
ing modulus, page 13

∆–admissible for every subset C ⊂ {1, . . . , N}, |C| ≥ 2:
∑

i,j∈C
i 6=j

ΓiΓj 6= 0, page 37

∂–admissible for every subset C ⊂ {1, . . . , N}, |C| ≥ 2:
∑

i∈C Γ2
i >

∑
i,j∈C
i 6=j
|ΓiΓj |. If Ω

is strictly convex:
∑

i∈C Γ2
i >

∑
i,j∈C

ΓiΓj<0
|ΓiΓj | , page 38

C(Pz) set of clusters of Pz, {C ∈ Pz : |C| ≥ 2}, page 38

∂bdryFNΩ boundary collisions, {z ∈ ∂FNΩ : ∀ C ∈ C(Pz) : zC ∈ ∂Ω}, page 39

∂intFNΩ interior collisions, {z ∈ ∂FNΩ : ∃ C ∈ C(Pz) such that zC ∈ Ω}, page 39

d(z) dist(z, ∂Ω), page 8

FNΩ ordered configuration space, equal to
{
z ∈ ΩN : zi = zj ⇔ i = j

}
, page 7

G called Green’s function, if not otherwise stated: a function satisfying hy-
pothesis 2.4, page 8

g Regular part of the Green’s function G, g(x, y) = G(x, y) + 1
2π ln|x − y|,

page 8

h Robin function of the domain Ω, h(x) = g(x, x), page 8

HΓ
Ω Kirchhoff–Routh path function with vorticity Γ, HΓ

Ω(z) =
∑N

j=1 Γ2
jh(zj) +∑N

i,j=1
i 6=j

ΓiΓjG(zi, zj), page 9

LN (a, v) space of ordered configurations of N vortices along the line a+Rv, page 7

LσN (a, v) σ−1 ∗ LN (a, v) for some σ ∈ ΣN , page 7

LσNΩ
⋃

(a,v)∈Ω×S1 LσN (a, v), page 7

Mδ {z ∈ FNΩ : ∃ (i, j) ∈ F2{1, . . . , N} : |zi − zj | ≤ δ ∨ d(zj) ≤ δ}, page 38

Ωε {z ∈ Ω : dist(z, ∂Ω) < ε}, page 7
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Pz partition of {1, . . . , N} defined by {C ⊂ {1, . . . , N} : zi = zj ⇔ i, j ∈ C},
page 38

πC projection onto the components corresponding to the indices in C, page 7

Πr the group Σr × Zr2, page 23

p p : Ωε → ∂Ω, orthogonal projection onto ∂Ω, page 7

Σ(Γ) stabilizer of Γ ∈ RN under the obvious ΣN–action on RN , page 18

SU
Γ Ω U–symmetric points for Γ, {z ∈ FNΩ : ∀u ∈ U ∃σ ∈ Σ(Γ) : u · z = σ ∗ z},

page 19

ŜU
Γ Ω U–symmetric points for Γ with one vortex placed in the symmetry center

of Ω,
{
z ∈ SU

Γ Ω : ∃ k ∈ {1, . . . , N} : zk = 0
}

, page 19

z for z ∈ Ωε. Reflection of z at ∂Ω, page 8

zC for z ∈ ∂FNΩ and C ∈ Pz, the unique element of {zj : j ∈ C}, page 38
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