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CHAPTER  I 
 

SUPERHEAVY QUASIMOLECULES AND PRESENT INVESTIGATION 

 

1.1 INTRODUCTION  
 

The central aim of the present study is to investigate the inner shell dynamics of superheavy 

quasimolecules. Quasimolecules are formed transiently in close collisions of two atomic partners at 

moderate velocities. This is especially true for inner shells of heavy collision partners where the 

electron orbital velocity (ve) is larger than the collision velocity (vion) of the projectile (ve > vion). 

During collision, the inner shell electrons adjust continuously and adiabatically to the combined, 

time varying, two center potential of both the partners. For very heavy partners with Z1+Z2 >100 (Z1 

and Z2 are the atomic numbers of the projectile and target respectively), one penetrates into the 

atomic world of superheavy systems with a united atomic number ZUA = Z1+Z2.  The quasi-stationary 

states of the innermost bound electrons are called “quasimolecular” states and when the internuclear 

distance R(t) becomes smaller than the K-shell radius of the united atom (UA) with charge ZUA then 

these quasimolecular states may even become “quasiatomic” states. These superheavy 

quasimolecules arouse interest due to their strong, partially overcritical electromagnetic fields with a 

coupling strength of ZUA ≥ 1/α (=137, with α being the fine structure constant).  

The most strongly bound electrons in these quasimolecules experience these overcritical 

fields transiently. As a result, the fully relativistic, many electron problem has to be solved in order 

to calculate the energy eigen values for the different internuclear distances (R) involved [1]. For high 

ZUA, the solution reveals an extremely strong increase of the binding energy at very small R, thus the 

electrons in these orbitals may be bound with energies even beyond their rest mass. As the binding 

energies increase the wave functions shrink considerably e.g. in the case of Pb the K-shell radius (rK) 

shrinks roughly from 700 fm at Z = 82 to 100 fm for an atom with ZUA = 164 [2]. Moreover, these 

calculations show an extraordinary large spin orbit splitting which partially changes the well known, 

usual order of the levels. Both qualitative and quantitative properties of the electrons bound to such 

extraordinarily high nuclear charges are widely different from the known tendencies. Hence, an 

investigation into this widely unexplored region of extraordinary behaviour and properties of the 

atomic system constitutes an area of intellectual challenge.  

By investigating heavy-ion heavy-atom collisions at moderate relativistic velocities, a unique 

possibility exists for exploring these highly relativistic, bound atomic systems in otherwise 

inaccessible overcritical fields. The inner shell electrons which are close to the nuclei are capable of 
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probing the potential most sensitively. The mean electric field probed by a 1s electron in the U-atom 

is for instance ~ 2x1016 V/cm which is roughly 106 times the field probed by a 1s electron in a H-

atom. This value is close to the so called “Schwinger limit”, a field where energies equivalent to the 

rest mass of the electron are involved by moving it over its own Compton wavelength. At the 

overcritical fields beyond the Schwinger limit, one is obviously in the region where pair creation has 

to be taken into account. For a quasiatom with ZUA  ≈ 171, realized transiently (10-19-10-20 s) in very 

close but adiabatic collisions of e.g. U-ions with Au atoms, the 1s binding energy is almost twice the 

electron rest mass and, hence, just touches the negative continuum, “the Dirac Sea”.  The general 

theoretical aspects of these systems are reviewed for instance in [4, 5]. 

 

 
 
Fig. 1.1  Dirac representation of total energy of the bound electrons (Etotal) in superheavy atoms taken from 
[3]. The vertical rectangle shows the region of interest for the present investigation with ZUA=162, 171. 

 

Fig. 1.1 gives the total energy for the bound electrons in superheavy atoms in Dirac 

representation as a function of the atomic number ZUA (from Ref. [3]).  The region of interest of the 

present investigation is  indicated in the figure as a vertical shaded rectangle. For ZUA >137, the 

ordinary level order of p1/2 and s1/2 states is swapped because of the spin orbit splitting (mentioned 
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earlier) for the p states. At about ZUA = 173, the splitting of the L-shell is approximately equal to 

m0c2.  

These superheavy systems can be investigated experimentally only during collisions where 

nature permits a glance at the extremely short lived superheavy “quasimolecules/quasiatoms”. An 

investigation of the atomic processes in such electromagnetic fields became feasible in the seventies 

with the advent of heavy-ion accelerators, e.g. the HILAC at Berkeley, the Cyclotron at Dubna and 

the UNILAC at GSI, Helmholtz-Zentrum für Schwerionenforschung, GmbH, (Helmholtz Centre for 

heavy-ion research) Darmstadt. Numerous experimental and theoretical investigations dealing with 

superheavy collision systems were performed at relatively low velocities. Details regarding these 

investigations are given in several review articles [see e.g. 6, 7].  

During the collisions, energy and momentum can be transferred to strongly bound electrons 

due to the time dependence of the two centre Coulomb field. These electrons can be excited into the 

higher lying bound states or into the continuum thereby creating a vacancy in the innermost orbitals. 

For these deepest vacancy states, several channels for decay are possible either in the quasimolecule 

itself by molecular orbital radiation or most probably by a transfer to one of the collision partners 

followed finally by characteristic x-ray radiation. Since the lifetimes of the inner shell vacancies are 

at least 1 to 2 orders of magnitude larger than the collision time, characteristic x-ray emission 

dominates the decay channels. An investigation of this emission for the collision partners and for the 

atomic shells in which the vacancies are finally transferred to, enable conclusions to be drawn 

regarding the excitation mechanisms of the corresponding states in the superheavy quasimolecule or 

even in the quasi-atom.  

Heavy-ion heavy-atom collisions with highly charged projectiles at moderate collision 

velocities (vion<ve) give, in particular, an access to the coupling of the inner-most shells in these 

superheavy quasimolecules [6, 7]. Using heavy-ions with a vacancy in a well defined inner shell 

prior to the collision and following the path of this vacancy can bring these couplings to light. A 

quasimolecule can only be produced at moderate collision velocities whereas normally, inner shell 

vacancies in a heavy projectile-ion can only be produced by stripping at a high ion velocity. These 

are contradicting conditions. Hence first an acceleration of the projectile-ions to high energies, 

followed by a stripping of the inner shell electrons and finally a deceleration of these stripped 

projectile-ions to desired energies is the appropriate technique to produce high intensity, highly 

charged, heavy-ions moving at moderate collision velocities. The acceleration-stripping-deceleration 

technique, (see e.g. [8]) was used successfully at the UNILAC and at other accelerator facilities to 

investigate inner shell processes for adiabatic collisions in the energy range 1-4 MeV/u (ZUA ≤ 100). 

For very heavy collision systems (ZUA ≥ 100), the study of quasimolecules was hampered partially 
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by the low, incoming charge state ‘q’ of the projectile, because no intensive ion beam with incoming, 

inner shell (K-shell) vacancies could be provided prior to the collision. To some extent the projectiles 

could be provided with inner shell vacancies only in the L-shell, excluding the possibility to 

investigate the very high fields. However, the strongest bound levels in the heaviest quasimolecules 

were of particular interest due to their extraordinary properties. In order to investigate the couplings 

of the superheavy quasimolecules in this binding energy region in more detail (Fig. 1.1, vertical 

shaded rectangle), prior to collision K-shell vacancies were required.  

 

1.2 MOTIVATION 

 

The present investigation seeks to delve deeper into the structure and dynamics of innermost 

levels of superheavy collision systems by using “prior to collision” inner shell projectile (K) 

vacancies. Such an investigation has now become possible on account of technological advances at 

the GSI accelerator facility i.e. at the SIS (heavy ion synchrotron) /ESR (Experimental Storage 

Ring), specially concerning the enhancement in beam intensities. The heavy ion accelerator facility 

at GSI, can now provide sufficiently intensive beams of very heavy ions with the highest charge 

states (H-like, He-like etc.). These ions are available for experiments moving at reasonably moderate 

collision velocities (vion < vK) even for the heaviest elements (Zα→1). Hence, inner shell vacancies 

can now be provided (even in the K-shell) for the incoming channel of the superheavy quasimolecule 

formation. This implies, quasimolecules can now be investigated overcoming the limitation of the 

previous investigations [6,7] with closed, incoming, inner shell vacancy channels. 

Although in principle an ideal preservation of the high incoming projectile charge state can 

only be guaranteed for a collision with a gas target, these studies were limited in the past by the 

extremely low luminosities. The solid targets ensure higher luminosities and can be used for this 

investigation if single collision conditions for inner shell processes can be satisfied for these targets. 

In order to perform experiments with a H-like ion with the requirement of preservation of its charge 

state while penetrating a solid target, it is crucial to know the survival probability of the K-vacancy 

during its passage through the same. 

During distant collisions, electrons are captured from different shells of the target atoms into 

different shells of the projectile. For highly charged projectile-ions, these electrons are captured into 

the outer shells mainly to excited levels and are finally observable through the characteristic x-ray 

emission during radiative stabilization of the projectile. For the target atom, electrons captured or lost 

from the medium shells may also yield to characteristic x-ray emission in the end. The capture of 
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electrons into different shells and angular momentum states can be distinguished partially due to the 

large shell and subshell splitting in heavy projectiles. For instance the very first experiments with 

Smq+-Xe [9] showed that electrons from the outer target shells got mainly captured into the excited 

levels for projectiles having energies between 3-5 MeV/u.  

 
Table 1.1 Summary of few review articles over the field of investigation. 
 
 

Summary of review articles 
 

1. P.H. Mokler, S. Hagmann, P. Armbruster, G. Kraft, H.-J. Stein, K. Rashid and B. 
Fricke: in “Atomic Physics 4”, ed. G. zu Putlitz, E.W. Weber and A. Winnacker, 
(Plenum Publishing Corporation, 1975), p. 301. [11] 

 
2. P.H. Mokler and F. Folkmann: in “Topics in Current Physics”, Vol. 5 Structure and 

Collisions of Ions and Atoms, ed. I.A. Sellin, (Springer Verlag, 1978), p. 201. [6] 
 
3.  B. Fricke: in “Progress in Spectroscopy”, Part A, (Plenum Press, 1978), p. 183. [5] 
 
4.  J.S. Greenberg: in “Electronic and Atomic Collisions”, ed. N. Oda and K. Takayanagi, 

(North Holland Publishing Company, 1980), p. 351. [12] 
 
5. W. Greiner and W. Scheid: in “Heavy ion collisions” Vol. 3, ed. R. Bock (North 

Holland Publishing Company, 1982), p. 301. [13] 
 
6.  D. Liesen: in “Comments At. Mol. Phys.” Vol. 2, No. 1, (Science Publishers, Inc., 

1982), p. 39. [14] 
    
7. P.H. Mokler and D. Liesen: in “Progress in Atomic Spectroscopy”, Part C, ed. H.J. 

Beyer and Hans Kleinpoppen, (Plenum Publishing Corporation, 1984), p. 321. [7] 
 
8.  H. Backe and C. Kozhuharov: in “Progress in Atomic Spectroscopy”, Part C, ed. H.J. 

Beyer and Hans Kleinpoppen, (Plenum Publishing Corporation, 1984), p. 459. [15] 
 
9. P.H. Mokler: “Quasimolecular heavy ion-atom collisions”, GSI-84-37 (GSI report), 

Invited lecture to XIX Winter School on Physics, Zakopane, Poland (3-15 April, 1984). 
[16] 

 
10. J. Reinhardt and W. Greiner: in “Treatise on Heavy-Ion Science”, High Energy   

Atomic Physics, Vol. 5, ed. D. Allan Bromley (Plenum Press, 1985), p. 3. [1] 
 
11. J.S. Greenberg and P. Vincent: in “Treatise on Heavy-Ion Science”, High Energy  

Atomic Physics, Vol. 5, ed. D. Allan Bromley (Plenum Press, 1985), p. 3. [17] 
 
12. P.H. Mokler: GSI-86-25 (GSI report), “Spectroscopy of heavy few electron ions”:  
      Invited talk at 18 EGAS, Marburg, 8-11 July 1986. [18] 
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For intermediate and outer shells (vion ≈ and > ve, respectively) other atomic processes are 

active. These processes influence the electronic configuration of the collision partners. For a detailed 

understanding of the inner shell processes investigated here, a knowledge of the processes in higher 

shells would also be helpful.  

Earlier attempts [10] to understand the structure and dynamics of innermost levels in the 

superheavy collision systems had met with surprising successes even though quite simple physical 

pictures were used for the excitation processes. The literature survey showed that over about two 

decades a large variety of measurements for different projectile-atom systems have been made in the 

past and the list is almost exhaustive. Hence Table 1.1 gives a summary of some of the review 

articles on the subject which cite the references for the experimental and theoretical work done in 

this field. A need was felt for further and more selective investigation into the field using a quite 

novel approach. 

 

1.3 OBJECTIVE 

 

The central objective is to investigate the vacancy transfer between the innermost, 

quasimolecular levels of superheavy collision systems. K- or L-shell vacancies in the incoming 

channel of a close collision can be transferred to the K- or L-shell of the quasiatom during the part of 

the collision where the two partners approach each other. During the receding part of the collision, 

vacancies can be transferred to the K- or L-shell of either of the separated collision partners. 

Subsequently, the characteristic x-ray emission of the collision partners would indicate the final 

abode of these vacancies. This K-K and L-K vacancy transfer was well established for the non-

relativistic region and has been confirmed even for the relativistic region (see e.g. [19]) indicating 

that inner shell coupling in quasimolecules can be an important process of vacancy production.  

While penetrating solids, the projectile inner shell vacancies may be filled up. For a 

sufficiently long survival of the projectile inner shell vacancy, superheavy quasimolecules could be 

probed with very thin solid targets. Hence, the basis of the present investigation has been the 

determination of  survival probability of the projectile inner shell vacancies (K and L) while its 

passage through a solid and therefore to find out the extent to which thin solid targets can be utilized 

for studying superheavy quasimolecules with well-defined, incoming inner shell vacancy channels. 

A target thickness dependent study of the characteristic x-ray production of the collision partners 

would provide information on the survival probabilities of the projectile K-vacancy as it penetrates 

the solid target as well as an insight into the evolution of the projectile’s charge state, its distribution 
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and its excitation in the bulk matter. Extrapolating the x-ray emission cross sections ("absolute 

yields") to zero target thickness, "true" cross sections under single collision conditions could be 

extracted. From the true x-ray emission cross sections for different incoming vacancy conditions and 

using simple geometrical considerations one should be able to deduce the coupling distance for K-K 

and L-K vacancy transfer. The same holds true for extracting interaction distances for electron 

capture.  

The projectile charge state dependence of the characteristic x-ray emission would unveil the 

various inner shell processes in play during collision and provide information on the inner shell 

couplings. The course of an adiabatic collision [defined by the adiabaticity parameter η<1 with η = 

(vion/ve)2] is usually described by a diabatic level diagram. For incoming projectile vacancies, the 

vacancy transfer can be considered within the quasimolecular picture using diabatic level diagrams. 

A better representation are ab initio calculated level diagrams giving the binding energies as a 

function of the internuclear distance (R) where mainly transitions between the levels may occur at 

the crossings. A comparison between extracted interaction distances and corresponding level 

crossing regions should reveal the inner shell vacancy transfer process in the quasimolecule.  

Non-adiabatic processes in higher shells determine in particular evolution of the projectile’s 

charge state, its distribution and its excitation while penetrating the solid. The target thickness 

dependence of the x-ray emission from these shells would deliver detailed information on this topic. 

An additional measurement of the projectile charge state distribution after the target foil (by a 

magnet spectrometer) would correlate the charge state evolution inside and outside the solid.  

 

1.4       EXPERIMENTAL TECHNIQUE 

 

In order to fulfill the above objectives, experiments have been planned with very heavy 

collision partners such that ZUA = Z1+Z2 >160, with both a near symmetric (Z1~Z2) as well as a 

slightly asymmetric (Z1 ≠ Z2) system. The energy of the projectile ions has been so chosen that the 

adiabaticity parameter η<1 could be fulfilled for the electrons in the shells of concern (here the K-

shell for both collision partners). The heavy-ion accelerator facility of GSI with the SIS has been 

used to produce relativistic very heavy ions (vion ~ 0.4c) followed by electron stripping to produce 

highly charged ions (H-like, He-like, .., up to the equilibrium ‘qeq’). Hence, projectiles with well 

defined, inner shell vacancies (K or L) in the “incoming channel” of the collision were produced. 

These ions then bombarded on thin foils of heavy target elements. In order to fulfill the basic as well 

as the central objective, it has been planned to observe the characteristic x-ray emission from both 
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the collision partners as a function of the target thickness ‘t’ and incident charge state ‘q’ of the 

projectile-ion. Moreover, the charge state evolution of the projectile ions penetrating the foil could be 

observed.  

The study has been  performed with highly charged, very heavy ions such as U (Z1 = 92) and 

Bi-ions (Z1 = 83) as projectiles incident at ~ 69 MeV/u on thin Au (Z2 = 79) target foils. Table 1.2 

gives a list of the experiments performed along with the details of projectile ion, its charge state, 

energy, the targets investigated and the adiabaticity parameter for the K- and L-electrons of the 

collision partners.  

 

Table 1.2    Investigated superheavy collision systems  

 

Parameters Collision type 

Name Symbol Near symmetric Slightly asymmetric 

Quasiatom ZUA 163 171 

Asymmetry Z1/Z2 ~1.05 ~1.16 

Projectile Z1 83Bi q+ 92Uq+ 

Charge state q 82, 81, 77 91, 90, 88, 86, 73 

Energy E (MeV/u) 69.2 69.1 

Target Z2 79Au 79Au 

Target thickness t (µg/cm2) 21*, 42**, 79, 150, 
225 

18*, 50, 70 

C backing C (µg/cm2) *with 11µg/cm2 C 
backing 

**with 12µg/cm2 C 
backing 

*with 15µg/cm2 C 
backing 

Adiabaticity 
parameter 

ηK-Z1 0.44 0.33 

ηK-Z2 0.45 0.45 

ηL-Z1 1.8 1.4 

ηL-Z2 2.0 2.0 

 

From the value of the adiabaticity parameters it is clear that the quasimolecular model for the 

collision processes has to be applied for the K-shells however it is not applicable for the electrons of 

the higher shells (L and higher). Fast collision processes e.g. loss and capture processes are effective 

for these higher shells. In both cases the collision partners will land up in excited states and their x-

ray decay would give information on the collision processes. For observing the K and L x-ray 
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emission of the collision partners solid state detectors have been used. A position-sensitive diamond 

particle detector has been employed for observing the charge state distribution of the projectiles as 

well as for normalization of the x-ray emission. 

The target thickness (t) dependence of the projectile K x-ray emission would reveal the extent 

to which projectile inner shell vacancies (here K-shell) would survive while penetrating solid targets 

and hence, whether solid targets can be used for collision spectroscopy of inner shells. Moreover, the 

K x-ray emission could be extrapolated to “zero” target thickness and hence used to approximate 

“single collision conditions” in the solid targets.  

The charge state (q) dependence of the K x-ray emission from both the partners, on the other 

hand, would provide a tool to scrutinize the inner shell dynamics of the superheavy quasimolecules 

formed transiently during the collision. The couplings between the inner shells could be 

consequently elucidated. The investigation of charge state evolution of the projectiles would provide 

an idea about the change in initial collision conditions for a highly charged projectile while 

penetrating solids.  

During heavy-ion heavy-atom collisions, multiple vacancies are generally created, especially 

in the higher lying atomic shells [cf. 20-22]. Multiple vacancies are still present during the radiative 

filling of the vacancies in the inner shells (K or L) and hence they act as spectators during the K or L 

x-ray emission. Due to the decrease in the screening of the nuclear charge, the binding energy as well 

as the transition energies of all the levels increase compared to the ‘single hole’ standard values [23]. 

This leads to energy shifts giving information on the population distributions of electrons in the 

higher shells during inner shell x-ray emission. Similar to the energy shifts, partially complementary 

information on the population distribution of the electrons in the various shells can be extracted from 

intensity ratios for the various x-ray lines. 

Although the present investigation has not been designed for precision energy shift 

measurement, nevertheless even rough values for K and L x-ray emission reveal interesting trends 

shedding light on the collision processes acting for higher shells as well as on the charge state and 

evolution of the projectile’s excitation inside the target. The same is true for the intensity ratios. The 

determination of x-ray intensity ratios can be done with a higher precision than that for the absolute 

x-ray energy shifts because the main source of error arises from the counting statistics only.  

Further a charge state distribution of the ejectiles behind the thin foils would confirm the 

survival probability of the projectile charge state ‘q’ during interaction with solid target foils. 

Additionally, the distributions behind the foils can be compared with the x-ray results yielding 

information on the charge state evolution inside the foil. 
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1.5 OUTLINE OF THE THESIS 

 

The present investigation deals with x-ray emission from heavy atomic collisions, in 

particular with couplings of inner shells in superheavy quasimolecules. The details have been 

covered from Chapters 2 to 7.  Chapter 2 gives an overview of the fundamental interaction processes 

involved in heavy-ion heavy-atom collisions. The basics of the theories for ion-atom collisions and 

their ranges of validity have been discussed here. Apart from Coulomb ionization processes and 

molecular orbital theories, the charge exchange processes have also been discussed there. Chapter 3 

introduces the experimental details of the present investigation. These include the heavy-ion 

experimental facility at GSI, Darmstadt, Germany, the set up at the experimental area, specifications 

of the x-ray and particle detectors along with their efficiencies, online data acquisition system and of 

the data analysis procedure followed.  

In chapters 4 and 5, the investigation of the slightly asymmetric, U-Au collision system and 

the near symmetric, Bi-Au collision systems have been discussed respectively. For both these 

systems, the K and L x-ray emission have been considered in detail in the chapters together with a 

brief interpretation of the outcome. The charge state and target thickness dependence of x-ray 

emission cross sections of both the projectile and target have been described. The survival 

probability of the projectile inner shell vacancies as the ion penetrates a solid target has been 

pondered upon for both the systems. The x-ray energy shifts and x-ray intensity ratios have also been 

considered for these systems which give information on the charge state and excitation evolution of 

the projectile inside the target. A refined discussion over the charge state evolution in the bulk of the 

target and the experimental charge exchange cross sections in comparison to theoretical values has 

been covered.  

Chapter 6 is devoted to the interpretation and discussion of results of the present investigation 

where special emphasis is laid on the inner shell processes. Explanations of the strong x-ray cross 

section dependences on incoming projectile charge states and other interesting trends observed have 

been given. A discussion of the experimental findings in the light of the level diagrams used to 

interpret the data has been done. Interaction distances for close as well as for distant collision 

processes have been extracted. At the end, the conclusions drawn from the study and an outlook for 

future experiments are the subject of Chapter 7.  
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CHAPTER  II 
 

HEAVY-ION HEAVY-ATOM COLLISION PROCESSES 

 

2.1 INTRODUCTION  

 

 This chapter introduces the relevant collision processes for the present investigation viz. “X-

ray emission from heavy atomic collisions: couplings of inner shells in superheavy quasimolecules”. 

The formation of a superheavy quasimolecule during heavy atomic collisions has been discussed 

already in Chapter 1. Inner shell ionization is the most important process responsible for x-ray 

emission in a collision (Section 2.2). The different ionization regions are elucidated in this section 

and the corresponding ionization processes are explained. A selective study of inner shells in 

superheavy quasimolecules is possible only with a survival of inner shell projectile vacancies hence 

the various charge changing processes in a collision such as electron loss and capture are briefly 

described in Section 2.3. Based on this, the charge state evolution of a projectile penetrating through 

matter is treated in Section 2.4. For clarity, the information that could possibly be extracted from the 

x-ray spectra is finally summarized in Section 2.5.  

 

2.2 INNER SHELL IONIZATION PROCESSES 

 

The theory of inner shell ionization by various approximate methods is a long and 

continuously developing field till today. Several basic approaches have been made to understand the 

process of inner shell vacancy production with different probes. Madison and Merzbacher [24] have 

reviewed the development of the various theoretical models. The inner shell ionization in various 

elements by light and heavy ions is caused mainly by direct Coulomb ionization, electron capture 

from the target to projectile and electron promotion due to quasi-molecular formation. Two 

parameters, the asymmetry parameter (Z1/Z2) and the adiabaticity parameter [η = (vion/ve)2] are 

essential for the classification of dynamic ion-atom systems. Such a rough classification known as a 

Madison-Merzbacher map [24] is shown schematically in Fig. 2.1. The colliding systems are divided 

into two regions; Region-1 with Z1/Z2<<1 (asymmetric systems) and/or  η>>1 corresponds to the 

situation where the perturbing influence of the projectile nuclear motion on electrons is relatively 

weak due to a small strength of the projectile target interaction or due to a short interaction time. In 

this region single electron transitions are described by the direct ionization (DI) process caused by 
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direct Coulomb interaction. Region-2 with Z1/Z2~1 (symmetric systems) and η<1 corresponds to a 

strong interaction between electrons and the colliding nuclei which is responsible for the formation 

of a transient diatomic complex (quasimolecule).  

 
Fig. 2.1 Diagram showing the domain of direct Coulomb ionization  processes (Region-1) and Molecular 
Orbital processes (Region-2). The filled circle denotes the representative point for Bi-Au collision system and 
that of the filled square for U-Au collision system corresponding to their values of asymmetry parameter 
(Z1/Z2) and the adiabaticity parameter (η). The arrow shows the adiabaticity to which a collison system such 
as U-Au approaches in a superheavy collision. 

 

 For slow and mainly symmetric (Z1/Z2~1) or less asymmetric collision systems Molecular 

Orbital [25] (MO) promotion processes are significant for vacancy production in the atomic shells. 

When Z1 ~ Z2 and vion< ve, the target electron adjusts adiabatically in presence of two nuclear 

centers. As the two nuclei come closer, transient molecular orbitals (MO) are formed leading to a 

united atom (UA) of the target and the projectile with ZUA= Z1+Z2. The electron in an inner shell of 

the united atom (UA) approach can be promoted to an outer shell or the continuum within the 

interaction time. An electron promotion could also occur by a direct curve crossing through the 

radial or rotational coupling [26] of the MO levels during the interaction time. Additionally, electron 

capture (EC) [27] can contribute to vacancy production in atomic shells, especially at moderate 

velocities and the probability of such a transfer becomes maximum when vion~ve. For non relativistic 

collisions, the adiabaticity parameter is the appropriate criteria for classifying the collision systems. 
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For the near relativistic collisions of the present investigation η may not be completely suitable 

however it provides a reasonable picture for understanding the tendencies. Mokler and Folkmann [6] 

have given a complete review on “X-ray Production in Heavy Ion-Atom Collisions” including 

details on direct ionisation, quasimolecular excitation and electron capture. 

 

2.2.1 Direct Coulomb ionization 

 

The process of vacancy production by a heavy charged particle is due to the momentum 

transfer by the projectile to a target electron during a collision and causing the promotion of the 

electron to continuum level. This occurs as a result of direct Coulomb interaction of the incident 

projectile charge with the electron. The direct ionization (DI) theories (valid mainly for Z1<<Z2) 

include the 1st order theories such as Semi Classical Approximation (SCA) [28], Binary Encounter 

Approximation (BEA) [29] and the Plane Wave Born Approximation (PWBA) [30] and a 

modification of the same called ECPSSR (perturbed stationary state theory with energy loss, 

Coulomb deflection and relativistic effects included) [31]. Richard [32] has given a detailed review 

of the experimental measurements in ion-atom collisions involving direct ionization and including K 

and L x-ray cross sections both in solid and gas targets. Phenomena like electron capture, excitation 

and charge exchange in collisions of few electron projectiles with gas targets have also been 

discussed in the same section and the united atom phenomena has been pondered upon.  

 
2.2.2 Molecular orbital formation 

  

The viability of the quasimolecular description for heavy-ion collisions at higher energies 

rests centrally on the condition that the ratio of velocity of the moving projectile (vion) to that of the 

inner shell electrons (ve) satisfies the condition (vion/ve)2<<1.  Such conditions are favourable for the 

atomic electrons to adjust their orbits to the combined projectile-target charge, leading to the 

formation of quasimolecular orbitals (MO). The variation of the molecular binding energies with 

changes in the interatomic distance (R) is conveniently displayed in the MO diagrams. In the 

evolution from the separated atom limit (R=infinity) to the united atom limit (R=0), most orbitals 

increase in binding energy whereas some orbitals decrease. The topography of the R-dependent 

molecular orbital levels and their proximity to unoccupied neighbouring states (of the collision 

partners or of the transient quasimolecule formed) and to the continuum provide important 

information on the probability of electronic transitions during the course of the collision. 
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In heavy ion-atom collisions two competing excitation processes occur for the inner 

quasimolecular levels a) MO coupling excitation and b) direct MO excitation or electron promotion. 

In the MO coupling excitation process interaction between approaching MO’s leads to vacancy 

transfer down to inner shells during the collision. In direct MO excitation electrons from an inner 

MO level are directly transferred to the continuum (or near continuum states) during collision. When 

it became apparent that for Z1~Z2 and vion<< ve, the observed cross sections for inner shell ionization 

(at least for small Z) were many orders of magnitude larger than predicted by any approximation 

discussed so far, Fano and Lichten [25] and Lichten [33] proposed that the reason for this 

discrepancy was the electron promotion via crossing molecular orbitals (MO).  In this molecular 

orbital model, promoted electrons can be ejected to the continuum or couple to empty higher lying 

states, where the created vacancies are finally transferred to the inner shells in the separated atoms. 

This process was discussed in terms of diabatic level diagrams [34, 35]. The observed enhanced 

cross sections lent support to the MO model of inner shell ionization. 

 

 
Fig. 2.2   A schematic diagram representing L-K coupling and K-K coupling for the case of a superheavy 
collision system. Electron is indicated by a full circle and vacancy by an empty one. The ‘h’ and ‘l’ represent 
heavy and light collision partner respectively and ‘UA’ represents united atom. The single pass probabilities 
for L-K coupling (pL-K) and for K-K transfer (pK-K) are indicated. 

 

Fig. 2.2 shows a schematic diagram representing coupling between L shell of the projectile 

and K-shell of the target (L-K coupling), pL-K is the single pass probability of vacancy transfer from 

L to K.  The coupling between K-shells of the projectile and target (K-K coupling) is also depicted 

where pK-K is the single pass probability of vacancy transfer. The direct MO excitation or electron 

promotion is shown from the united atom levels. In the earlier investigations starting from the 

seventies (for review see Mokler and Folkmann [6]), vacancies were produced due to electron 
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promotion and these vacancies then were transferred to the separated atoms in the outgoing part of 

the collision. However in the collision systems of the present investigation, vacancies are brought 

into the collision in the incoming channel itself either in the L or K-shell of the projectile. These 

vacancies are then transferred to the K-shell of the target either due to L-K coupling followed by K-

K coupling or due to K-K transfer. Level diagrams for the collision systems of this investigation 

have been drawn using ab initio Self Consistent Field relativistic many electron Dirac Fock Slater 

(SCF DFS) calculations [36]. More details are discussed in Chapter 6. 

 
2.3 CHARGE CHANGING PROCESSES 

 

A collision of a highly charged projectile-ion with an atom leads to several charge changing 

processes. All these processes can be broadly classified as i) ionization ii) capture iii) recombination 

(with quasifree electrons) processes. During the collision, a highly charge projectile-ion can either 

lose charge by ionisation (stripping) of its own electrons or gain charge by capturing an electron 

from the target atom. The three basic processes can be expressed as: 

i) ( ) ......121 +→+ +++ ZZZ baa    where b ≥ 1 (projectile ionisation) 

ii) ( ) ......121 +→+ +−+ ZZZ caa     where c ≥ 1   (electron capture from target) 

iii) ( ) ......)( 1
121 +→+ +−+ ZZeZ aa (recombination) 

where Z a+
1 is the positive ion with charge a+, Z2 is the neutral target atom and e(Z2) is a quasifree 

electron attached to Z2. The total charge changing cross-section for the projectile charge (σ X
Tot ) is a 

sum of the cross sections for "single and multi-electron projectile ionisation" and "electron capture"  

∑+∑=
≥≥ 11

1
c

c
ec

b

b
ion

Z
Tot σσσ  

It is known that for high projectile-ion velocities (vion), usually the one electron processes i.e. one 

electron capture and one electron ionisation (b = c =1) give the main contributions to theσ Z
Tot1 , 

recombination with quasifree target electrons is usually unimportant for heavy collision systems, see 

below. The above mentioned processes are discussed in detail in the following sections. 

  

2.3.1 Ionisation and loss processes 

 

 Ionisation is caused by the time varying perturbation due to the collision partner (projectile 

for the target and vice versa) observed by the electron being ionized in the shell of concern.  
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Projectile ionisation is an important charge changing process in collisions between few electron 

projectiles and neutral target atoms. During and after the acceleration process, heavy projectiles are 

generally highly ionised due to stripping before they hit the target atom. Due to Bohr-Lamb [37] 

criterion for the average charge state, the projectile electrons with orbital velocity smaller than the 

collision velocity (i.e. ve <vion) are mostly ionised during penetration through a stripper foil. In other 

words accelerator produced heavy-ion projectiles can roughly be ionised up to η  = 1 on the average.  

  

2.3.2 Electron capture processes 

 

 Electron capture, the transfer of an electron from a target atom into a fast moving projectile is 

one of the fundamental processes in atomic-collision physics. So the ionization of a target atom by a 

moving ion proceeds not only through direct ionization to the continuum but also through the 

electron capture by the projectile. The collision of highly charged ions with bound electrons lead to 

three different capture processes namely Non-Radiative electron Capture (NRC), Radiative Electron 

Capture (REC) and Resonant Transfer and Excitation (RTE). Electron capture may take place to 

excited/outer states of the projectile and these states may then decay through x-ray emission to the 

ground state.  

 Capture via NRC and via REC (emission of radiation accompanying capture) are both caused 

by the time varying (screened) Coulomb field of the projectile on the target electrons. For NRC to 

occur the precondition is that the electron must be bound originally to the target so that the 

conservation of energy and momentum can be satisfied during the collision. REC [38] can occur 

even with a quasi-free (or free) target electron because here the conservation laws of energy and 

momentum can be fulfilled by the photon that is emitted. Since REC dominates for heavy projectiles 

on light target atoms (Z1>>Z2) and for very high collision velocities, details regarding REC are not 

covered here. Resonant capture of a target electron accompanied by excitation (RTE) [39] and 

ionisation of another projectile electron are also important capture processes however they are not 

important for the cases considered here and hence further details are not given. For the collision 

velocities investigated here NRC is the dominant process for highly charged heavy ions colliding 

with target atoms or electrons and is briefly discussed below. 

 

Non Radiative electron Capture (NRC) 

 The non-radiative or Coulomb electron capture (NRC) is the dominant electron transfer 

process especially for heavy collision partners. NRC occurs due to interaction of the projectile 
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nucleus with a target electron. The electron is transferred non-radiatively from a bound target state 

into a bound state of the projectile. The energy and momentum gained in the capture process are 

shared between the projectile and the target atom. A theoretical description of NRC is in general 

difficult because it is inherently a three body problem where the Coulomb field of the projectile 

leads to distortions of the target atomic wave functions even at large distances. The first work on the 

process of electron capture was taken up by Oppenheimer [40] Brinkman and Kramer [41] (OBK 

formalism) who found an analytical expression for the capture cross-section. Later electron capture 

cross-sections by inclusion of an internuclear Coulomb interaction to the OBK formalism [42] were 

carried out by several workers [43-49]. A rough cross-section scaling dependence is given by the 

first-order OBK [42] approximation for the non-relativistic case: 

E
ZZ

NRC 6
1

5
2

5
1∝σ     

The above dependence indicates that for medium projectile energies, in collisions of high-Z 

projectiles with medium or high-Z target atoms such as Uq+ or Biq+ on Au target, NRC is a dominant 

capture process due to its strong dependence on Z2.  The one electron capture cross section has the 

structure of a non-relativistic Brinkman and Kramers [41] approximation. For relativistic collision 

conditions, the above energy dependence has to be modified.  For such a case an asymptotic energy 

dependence of E 1
1
− form is approached. 

 Schlachter et al. [50] derived a semi empirical formula from the experimental data for fast, 

positive ions on He, N2, Ne, Ar, Kr and Xe-gases. This analytical expression is used for calculating 

the one electron capture cross section generally and it agrees with about 70% of the experimental 

data of the above mentioned collision systems within a factor of two. Such a treatment of electron 

capture neglects atomic shell effects and is justified for highly charged projectiles in the intermediate 

velocity regime (Knudsen et al. [51]). 

 A more refined theoretical treatment of the NRC process can be obtained within the Eikonal 

approximation [52] in the nonrelativistic formulation. Here hydrogenic wave functions are employed 

and the resulting cross-section is divided by two for capture into the partially filled 1s-shell for H-

like projectiles (U91+, Bi82+). Because Eikonal approximation is basically a high velocity approach 

therefore the application of this approximation to the relatively slow collision has to be considered 

with caution. The Eikonal approximation [52, 53] gives the calculations for NRC cross section 

which scales as follows: 

nE
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where nf is the principal quantum number of the bound state into which the electron is captured. 

Both the Schlachter’s empirical formula as well as Eikonal approximation have been used for 

calculation of electron capture cross sections corresponding to different incident projectile-ion (Uq+ 

or Biq+) charge states (q). The same have been compared with values deduced from x-ray emission 

and projectile-ion’s charge state distribution/evolution on passage through the thickness of solid 

target (Au) in Chapter 4 and 5 in Section 4.5 and Section 5.5.3 respectively.  

 

2.4   CHARGE STATES OF SWIFT IONS IN MATTER 

  

 The charge state (q) of an energetic ion passing through a medium varies due to electron loss 

and capture as a function of penetration depth. An equilibrium distribution occurs when electron 

capture and loss into any charge state component are balanced. This equilibrium value is 

independent of the initial distribution of charge states in the beam incident on the target. Depending 

on the collision system, the length of the penetration depth at which the charge equilibrium occurs 

depends on the magnitude of the relevant charge exchange cross sections. Some trends of charge 

equilibrium thickness of foils with respect to Z1 and E1 have been established by Betz [54], Baron 

[55] and Zaikov et al. [56]. Therefore the charge state distribution of an emergent ion reflects the 

effect of collisions experienced by the projectile inside the solid. Ab initio calculations of charge 

state distributions are usually performed through the use of rate equations which require the 

knowledge of cross sections of above mentioned processes which are huge in number for ion-solid 

collisions. 

 Charge state distribution for a swift highly charged ion beam behind a target foil is 

characterized by the mean charge, the width and the shape of the distribution. The charge state 

distribution is varied when the target atomic number (Z2), target thickness (t), the incident energy 

(E1) or the nature of the projectile ion varies. The charge state fraction F(q) is defined as 

( )
∑

=
q

qN
qNqF

)(
)(  

Where N(q) is the measured number of ions of charge state q. In most cases, the incident charge state 

prevails for thin targets. For increasing target thickness the weight of the incident charge state 

decreases at the expense of neighbouring fractions. Most probable charge state is the charge 

associated with the most intense charge state fraction. Charge state fractions F(q) vary with 

penetrated target thickness  until they reach ultimately an equilibrium value. For a given equilibrium 

charge state distribution, the average/mean charge state is defined as )(qFqq
q

×= ∑ .  
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  The charge state fraction F(q) increases for q < q  and decreases for q > q . Variation of F(q) 

and q  in the charge equilibration regime of foil thickness is also connected or related to the 

variation of the emergent ion energy due to the energy loss it experiences in traversing the foil. 

Nikolaev and Dmitriev’s [57] relation explains well the variation of q  with equilibrium foil 

thickness. Semi empirical formula for calculation of the mean charge state at equilibrium for heavy-

ion beams emerging from a target foil with atomic number Z2 have been reported by Betz [54], 

Baron [55], Nikolaev and Dmitriev [57], Shima et al. [58] and references therein. 

Scheidenberger et al. [59] have reported on the development of the programs GLOBAL and 

CHARGE for calculating atomic charge-changing cross sections, charge state evolutions and 

equilibrium charge state distributions for relativistic heavy–ions. GLOBAL calculates the same for 

ions carrying up to 28 electrons and CHARGE for bare, H- and He-like relativistic heavy-ions 

penetrating through matter. These programs are based on Runge Kutta integration of the charge 

exchange equations; more details are covered in the mentioned section. These programs have been 

used in the present work to calculate the charge state evolution of the Biq+-ions on their penetration 

through Au target foils of varying thickness. Further details regarding this are covered in Chapter-5 

where the Bi-Au collision system has been dealt in detail. 
 

2.5  INFORMATION FROM X-RAY EMISSION 

 

 Inner shell vacancy production cross sections (ionization, excitation, capture) are normally 

determined by x-ray yields during their decay. The target x-rays are a result of vacancies created 

either due to target ionisation or capture of a target electron by a projectile. For high Z projectiles in 

the relativistic energy domain, the K-shell ionisation holds a particular importance and the x-ray 

decay of an inner shell vacancy is used as an indicator of the vacancy production. Apart from 

ionisation, capture to empty projectile states may also lead to x-ray emission. Hence in highly 

charged projectiles, x-ray emission takes place due to a) the radiative decay of the vacancies 

produced in the projectile either by ionization or by transitions of electrons which have been excited 

out of their initial inner shells to the outer shells and/or  b) by transitions of electrons captured from 

the target into the projectile outer shells from the outer shells to the available vacancies in the inner 

shells.  

The K and L x-ray spectra for projectile and target emission have been measured.  However a 

detailed analytical treatment has not been given. Fig. 2.3 shows the K, L and M x-ray transitions for 

singly ionised heavy atoms for clarity.   
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Fig. 2.3 A schematic energy level diagram showing the transitions leading to K-, L- and M-series of x-rays. 
The one electron quantum numbers are listed on the right. Labels of the energy levels are given on the left. 

 

Multiple ionization i.e. outer-shell ionization simultaneous to inner shell ionization has been 

studied extensively in the past decades [60-63]. Multiple ionization can be observed by the energy 

shifts and the change in the intensity ratios as compared to the corresponding single hole values ([23] 

for energies and [64] for ratios). The multiple vacancies in the higher shells might not be filled prior 

to the radiative filling of the vacancy in the concerned inner shells. These vacancies then act as 

spectators to the radiative transitions of the electrons to the vacancy of the shell under consideration. 

The binding energy of all the levels thus increases due to less screening of the nuclear charge.  

The relative intensities of x-ray transitions filling a vacancy in the same subshell are also 

influenced by the presence of these additional vacancies in the levels from where the lines originate 

and thus the intensity ratios of various x-ray lines filling a vacancy in the same subshell also get 

changed with respect to the corresponding single-hole branching ratios [64]. The ionization cross 

sections, fluorescence yield values and Coster-Kronig transition probabilities are not required for the 
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theoretical calculation of these ratios if they involve the same atomic levels. The theoretical results 

for these ratios are the x-ray emission rates for the relevant x-ray transitions as given by Scofield 

[64]. An overestimation of the Scofield values by the experimental ones would give an idea of the 

degree of multiple ionization of the shells. 

 
Table 2.1 X-ray (K and L) energies (in keV) in singly ionized atoms for the collision partners of the 
investigated systems (Biq+-Au and Uq+-Au). (Ref. Tables of Bearden [23]) 

 
X-ray lines Transition Gold (Au) 

Z=79 
Bismuth (Bi) 

Z=83 
Uranium (U) 

Z=92 
K x-rays     

Kα2 K - L2 66.9895 74.8148 94.665 
Kα1 K - L3 68.8037 77.1079 98.439 
Kβ1 K - M3 77.984 87.343 111.300 
Kβ2 K - N3 80.185 89.864 114.60 

L x-rays     
Ll L3 - M1 8.4939 9.420 11.6183 

Lα2 L3 - M4 9.6280 10.731 13.4388 
Lα1 L3 - M5 9.7133 10.839 13.6147 
Lη L2 - M1 10.3083 11.712 15.3997 
Lβ6 L3 - N1 11.1602 12.482 15.7260 
Lβ15 L3 - N4 11.5667 12.955 16.3857 
Lβ2 L3 - N5 11.5847 12.980 16.4283 
Lβ4 L1-M1 11.2047 12.691 16.5753 
Lβ7 L3 - O1 11.8106 13.259 16.8450 
Lβ5 L3 - O45 11.9163 13.395 17.0701 
Lβ1 L2 - M4 11.4423 13.024 17.2200 
Lβ3 L1- M3 11.6103 13.210 17.4550 
Lβ10 L1 – M4 12.0617 13.700 18.0310 
Lβ9 L1 – M5 12.1474 13.808 18.2054 
Lγ5 L2 - N1 12.9743 14.773 19.5072 
Lγ1 L2 - N4 13.3817 15.248 20.1671 
Lγ2 L1- N2 13.7095 15.582 20.4847 
Lγ8 L2 - O1 13.6260 15.551 20.6210 
Lγ3 L1 - N3 13.8090 15.710 20.7127 
Lγ6 L2 - O4 13.7304 15.685 20.8426 

 L1 - N4 13.999 15.904 20.9790 
Lγ11 L1 - N5 14.02 15.951 21.0190 
Lγ4' L1 - O2 14.2809 16.271 21.4984 
Lγ4 L1 - O3 14.2996 16.295 21.5620 
Lγ13 L1 - P2,3 ----- 16.380 21.7290 

M x-rays range 1.648 –2.883 1.883 – 3.315 2.4548 – 5.5 
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The emitted x-ray spectra from the collision system would contain essentially three different 

messages: 

• The vacancy production for the inner levels can be deduced from the total emission cross 

sections of the collision partners for selected transitions. This is the basic information 

required for probing the inner quasimolecular levels and their couplings. 

• Population ratio of the feeding levels can be obtained from the intensity ratios of different x-

ray transitions filling the same levels; whereas the intensity ratio from the same feeding level 

would give the ratio of the probability of vacancies in the final levels [64]. 

• Presence of vacancies in the collision partners (inner and outer shells) can be extracted from 

shifts in the values of x-ray transition energies towards higher values. Table 2.1 shows the 

theoretical transition energies of K and L x-rays for the collision partners of the present 

investigation as given by Bearden [23] for single hole atoms.  

For the K-emission of our heavy systems fluorescence yields of unity are approached however for 

the L-shell they are smaller and complex. During heavy ion-atom collisions multiple ionization of 

the inner as well as outer-shells alter the fluorescence yield values for the excited atoms [65, 66].  It 

is also known that for the same reason, Auger processes may be suppressed.  Hence for initial 

investigation a fluorescence yield of unity for both K and L-shells of the collision partners is 

assumed for simplicity.  
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CHAPTER  III 
 

EXPERIMENTAL DETAILS AND DATA ANALYSIS PROCEDURE 
 

3.1  INTRODUCTION 

 

The present chapter gives a description of the various experimental details and the procedure 

for data analysis. Section 3.2 deals with accelerator facility, ion-beam preparation, experimental area 

and set up. Section 3.2.1 describes details of the accelerator facility existing at GSI, whereas details 

of the experimental set up such as the chamber, types of targets, target and detector positions, 

particle detector set up and magnet spectrometer are described in Section 3.2.2. Section 3.2.3 gives 

specifications of various types of x-ray and particle detectors used in the experiments with special 

emphasis to the efficiency of the particle detector used. The data acquisition and analysis procedure 

in Section 3.3 lays out the basics of data acquisition systems used, electronics set up for the 

experiments and various experimental quantities that are calculated from the data along with their 

formulae. The different acquisition systems used for data handling and the electronics set up for the 

experiments are explained in Section 3.3.1. Section 3.3.2 gives details of the energy and efficiency 

calibration of x-ray detectors and Section 3.3.3 explains the phenomenon of Doppler shift and 

Doppler correction. The x-ray peak fitting and analysis procedure is unfolded in Section 3.3.4. 

Section 3.3.5 presents details for calculation of experimental results such as x-ray energy shifts, 

intensity ratios, normalization and dead time correction as well as x-ray emission cross sections. 

 

3.2 EXPERIMENTAL DETAILS  

 

3.2.1 Heavy-ion accelerator facility at GSI 

 

Fig. 3.1 gives a schematic view of the GSI accelerator facility (for details see [67]). The main 

components of the facility are the Ion Sources, Linear Accelerator, the UNILAC and its associated 

experimental area, the heavy-ion synchrotron SIS (SchwerIonen Synchrotron), the FRragment 

Separator (FRS), the Experimental Storage Ring (ESR) and the high-energy experimental areas also 

called as Cave’s.  Elements from hydrogen to uranium are accelerated in this facility. The atomic 

physics experiments at GSI are performed in the experimental area of UNILAC, Cave-A and the 

ESR. The experiments for the present investigation were performed at the Cave-A marked in the Fig. 

3.1. 
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Fig. 3.1 A schematic view of the GSI accelerator facility.  
 

The projectile-ions of desire are produced at the ion source {Penning Ion Gauge (PIG), MEtal 

Vapour Vacuum Arc ion source (MEVVA) or Electron Cyclotron Resonance ion source (ECR)}, e.g. 

the U- and Bi-ion beams have been produced for these investigations from PIG. The ion beam 

produced by the ion source is injected into the UNILAC. The UNILAC delivers beams with energies 

ranging from 3 to 15 MeV/u. The ions on transportation to the first part of the UNILAC (called the 

pre-stripper linac, operating at a frequency of 36 MHz and consisting of a RFQ and an IH structure) 

get accelerated to an energy of 1.4 MeV/u. They are then ionized in the following gas stripper 

whereby the ion-beam acquires higher charge states. For U-ion the most probable charge state is 

there 28+ (see Fig. 3.2). The ion beam with its most probable charge state is then transported to the 

second section of the UNILAC (the post-stripper linac, with its first part as an Alvarez structure at a 

frequency of 108 MHz) where it is accelerated to an energy of 11.4 MeV/u, the standard injection 

energy into the heavy ion synchrotron (SIS).  

However, heavy ions can be accelerated to higher energies by the use of 15 single cavities 

(Einzel Resonators) which constitute the second part of the post-stripper. The linac accelerated ion-

beams can be ionized further by passing them through a stripper foil of appropriate material and 
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thickness before injection into the SIS. For example a U-ion beam of 11.4 MeV/u acquires a most 

abundant charge state of 73+ through this stripping.   

The SIS18 (circumference 216 m) can be operated at a maximum magnetic bending power of 

18 Tm with a ramp rate of 4 T/s. On injection in the SIS, the ion beams are accelerated to high 

(relativistic) energies. The energy range for the lighter ions extends typically from 20 to 2000 

MeV/u, while for U73+ it extends only up to 1 GeV/u. After acceleration in the SIS, the ion beams are 

extracted and transported towards a specific experimental area. The pulsed beam from the SIS can 

have a cycle length of 1-16 s and extraction can either be a slow one (10-8000 ms) or a fast one (~1 

µs). The projectile ions can be further stripped to highest charge states (bare, H-like etc.) by 

bombarding them once again on stripper foils before the experimental target area. Model 

calculations/simulations can be performed to make an appropriate choice of the stripper, the details 

of which are discussed below.  

 
Fig. 3.2 A schematic diagram of beam transport from the ion source towards the Cave-A experimental area.  

 

An analyzer magnet then separates the ion-beam of required charge state (H-like, He-like etc.) from 

other charge state fractions and is transported further towards the experimental area. Thus, a heavy 

ion (even the heaviest U-ion), highly charged (bare, H-like, He-like etc.), selected for a particular 

charge state and moving at high or even at moderate collision velocities bombards the target in Cave-

A experimental area. Fig. 3.2 gives a schematic diagram of the beam transport from the ion source 

till the Cave-A experimental area. 

 

Appropriate choice of the stripper 

The general removal of electrons from an ion penetrating dense matter is called stripping.  It 

takes place mainly by multiple soft collisions of the projectile with the target material. According to 
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the Bohr’s criterion, roughly, all the electrons having an orbital velocity smaller than the collision 

velocity are stripped during the collisions. The final charge state distribution is a balance between the 

capture and loss processes. The choice of the material of the stripper for a projectile ion beam is 

dependent upon the charge state evolution of the ion through the material of the stripper. The 

maximum probability of obtaining a particular charge state fraction for a given incoming energy 

depends both on the material and its thickness. Based on models, the charge state evolution of the 

ions can be calculated for different possible stripper materials and for different thicknesses of each 

material [59].  

The program GLOBAL [68] was used to estimate the charge state evolution of the ion-

beams. The charge state evolution of Bi68+-ions of 73 MeV/u was calculated for C, Al, Cu and Sn 

targets of different thicknesses ranging from 0-30 mg/cm2. The calculations enabled a proper choice 

of a stripper providing a considerable yield for He-like, Li-like and C-like and in particular for the 

most important but less abundant H-like component. Fig. 3.3 shows this charge state evolution. 

Finally an Al target of 20 mg/cm2 was chosen as it proved to be appropriate for both the experiments 

with U- and Bi-ions providing different charge states of the beam with reasonable intensity. Details 

regarding GLOBAL [68] and CHARGE [68] simulation programs along with a comparison of their 

values with experimental data are given in [59].  

 

Fig. 3.3 Charge state evolution of 73 MeV/u Bi68+-ions incident on C, Al, Cu and Sn stripper targets of 
different thicknesses calculated by GLOBAL [68]. 
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 The energy straggling of an ion through a solid target depends on its nuclear charge, being 

higher for heavier targets. Hence a low Z material (Aluminium) was preferred. The energy loss of the 

ion beam through the material of the stripper is additionally required to calculate the final energy of 

the ions interacting with the target. The choice of the stripper thickness is made keeping a minimum 

energy loss of the projectile and a small energy straggling under the conditions of an abundant 

production of the required charge state. The ATIMA [69] and CHARGE [68] programs have been 

used to calculate the stopping power in MeV/mg/cm2, the total energy loss of the projectile in MeV/u 

and the energy straggling in MeV for the stripper; where needed ranges were calculated as well.  

 

3.2.2 Experimental set up at Cave-A (general) 
 

The experiments for the present investigation have been performed at the atomic physics 

experimental area Cave-A as mentioned above. Cave-A mainly consists of a target chamber area 

followed downstream by a magnet spectrometer for charge state separation of the ejectiles. For the 

proper transport of the beam, apart from ion optical elements like quadrupoles and dipoles, 

collimators and beam diagnosis detectors (screens, wire chambers) are also available in the beam 

line.  

Fig. 3.4 shows a schematic diagram of this area starting at beam delivery point marked by the 

Gate Valve (GV) with all its components such as the valves (APx, x=1-3), collimators (C1 and C2), 

fluorescent screens (Sx, x=1-4), target chamber area (T), two different geometries of the x-ray 

detectors for the two experiments (at backwards angles: G1 or at forward angles: G2 with respect to 

the beam), magnet spectrometer (MS) with quadrupoles Q1 and Q2 and the dipole magnet and the 

alternative positions of the diamond particle detector (P1 and P2) for the experiments with U- and 

Bi-ions respectively. The valves are remotely controlled and are opened for beam transport after the 

appropriate vacuum has been achieved in the beam line. The fluorescent screens, Sx are ceramic 

ones (aluminium oxide) and are connected to individual step-motors for moving in or out of the 

beam path remotely. The beam position on the graduated screens is monitored by cameras installed 

on the glass ports opposite to the port containing the screen. The Cave-A beam line is equipped with 

a variable collimator C1 installed after the screen S1, it is also driven by a step motor. This 

collimator consists of two pairs of variable collimators (in X and Y direction) which can be moved 

so as to form a square opening of a definite aperture. It was used with an opening of 4 x 4 mm2. 

Another fixed collimator C2 was installed only for the experiment with Bi-ions. It was a cylindrical 

collimator with a diameter of 8 mm and a length of 40 mm. The length was machined as a screw to 

reduce multiple scattering. 
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Fig. 3.4 The details of the beam line components in Cave A and the beam transport through them till the 
particle detectors. 
 
 
i) The target chamber and detector positions 

The target chamber area (T) was installed with a chamber having a special geometry. As 

mentioned earlier, two different geometries of the target chamber were used for the two different 

experiments performed for the present investigation. These are indicated by two rectangles in Fig. 

3.4 as G1 and G2 (for a further schematic representation see Fig. 3.6). The choice for the change in 

the x-ray observation angle depended upon the choice of the collision partners (projectile and target) 

i.e. on the expected energies of the projectile x-rays in the laboratory frame with respect to the target 

x-ray lines. The projectile x-rays are observed as Doppler shifted in the laboratory frame due to the 

relativistic velocities of the projectile. The geometry was chosen so as to facilitate an energy wise 

separation of the target and projectile x-ray transitions in the laboratory frame. A detailed discussion 

on this is given in Section 3.3.3. 

Fig. 3.5 gives a photograph of the target chamber [70] in G2 geometry (for Bi-ion 

experiment) and a schematic drawing of the same with a top view indicating angles of the in-plane x-

ray detector ports. A port for installing the target ladder has been indicated in the photograph. 

Assigning Z-direction to the beam transport in Cave-A downstream, the target chamber can be said 

to consist of two coplanar ports in the X-Z plane (used for Ge(i) detectors) both of which are at an 

angle of 60ο placed symmetrically on both sides with respect to the beam direction. It has another 

detector port (used for Si(Li) detector) at an angle of 45ο  (in the Y-Z plane, shown in the photograph 

only) with respect to the beam axis, off plane with respect to the other two coplanar ports in the X-Z 
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plane mentioned above. Fig. 3.6 shows a schematic diagram of the experimental set up where 

geometries of both the experiments are represented by the rectangles G1 (for U-ions) and G2 (for Bi-

ions). The detector ports were covered by x-ray transparent Be-windows inserted in specially 

designed pockets so that the detectors could be placed very close to the targets. 

 

 
 
Fig. 3.5 A photograph of the target chamber (G2 geometry) and a schematic design of the same (top view 
only) indicating the angles of the in-plane detector ports.  

 
 
Fig. 3.6 A schematic diagram of the experimental set up where geometries of both the experiments are 
represented by G1 (backward angles for U-ions) and G2 (forward angles for Bi-ions). The corresponding 
positions for the CVD-diamond particle detector are given by P1 and P2, respectively.  
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 Because of its special geometry, the target chamber could also be installed in a 180ο  rotated 

(along Z-axis) position for the reasons explained above. The two coplanar ports for the Ge(i) 

detectors were then at 120ο with respect to the beam direction and the off plane (Y-Z plane) port at 

an angle of 135ο  (used for the Si(Li) detector) with respect to the beam. The chamber was used in 

this setting for the experiment with U-ions and is indicated by the rectangle G1 in Fig. 3.6. 

The target ladder consisting of 8 possible target positions was connected to a step motor, 

facilitating measurements with a maximum of 7 targets without a break of vacuum. Self-supporting 

Au targets produced by the GSI target laboratory with an open size of 8-10 mm in diameter were 

used and mounted perpendicular to the beam direction. The thinnest targets had to be produced on 

thin C backings (10 or 15 µg/cm2) where the Au surface faces the incoming beam.  

All the step motors connected to the screens and the target ladder were connected to a 

controller, remote controlled through the Labview software [71]. Fig. 3.6 also shows the two 

positions of the particle detector P1 and P2 corresponding to the geometries G1 (U-ion) and G2 (Bi-

ion) for the two experiments. The ejectiles after interaction with the target were detected by the one 

dimensional, position-sensitive, Chemical Vapour Deposition (CVD)-diamond particle detector as 

described below.  

 

ii) Particle detector set-up 

The CVD-diamond detector was placed in air behind a thin 25 µm stainless steel window, 

either after the target chamber (position P1) or after the magnet spectrometer (at position P2) for the 

two different experiments as explained above (see Fig. 3.4 and 3.6). The CVD-diamond particle 

detector was used for normalization of x-ray yields of the collision partners in both the experiments. 

It was also used as a beam monitor for the beam transport through the Cave-A beam line. The detail 

features of the detector are described in Section 3.2.3 ii) a) below. 

For the U-ion experiment (geometry G1, Fig. 3.4, 3.6), the particle detector was placed 79 cm 

behind the target chamber (position P1, Fig. 3.4, 3.6). In this position it registered the whole of the 

beam intensity after interaction with the target and functioned basically as a particle counter. The 

position sensitiveness was not put to use in this experiment. For the Bi-ion experiment (geometry 

G2, Fig. 3.4, 3.6), the detector’s one dimensional position sensitiveness was used for measuring the 

charge state distribution of the ejectiles. Hence, the particle detector was placed after the magnet 

spectrometer of Cave-A (at position P2, Fig. 3.3, 3.6) in its focal plane.  
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iii) The magnet spectrometer 

The magnet spectrometer in Cave-A consists of a dipole and two quadrupoles. The dipole 

having a deflection angle of 14.5°, facilitates the separation of various charge states of the ejectiles 

which are detected by a position-sensitive detector placed in the focal plane of the spectrometer. The 

Lorentz force balanced by the centrifugal force control the motion of the projectile ions (charge 

particles) in the magnetic field which is directed perpendicular to the motion of the particle. While 

passing through a magnetic field B, ions of different charge states are dispersed to different 

trajectories in the deflection plane. The distance x between two different charge states of the ion at 

the focal plane is given by: 

q
qDx ∆

=  

Here D is the dispersion (in the units of mm/%) of the dipole magnet for a known distance behind the 

dipole and qq∆  is the difference in the charge states in %. For example, for a change of charge 

state from H-like to He-like in Bi-ions q∆ = 1, hence qq∆  = 1/82 = 1.2%. So for a typical 

dispersion (D) of say 8.35 mm/%, the distance to the next charge state would be ( )qqx /∆= . D = 1.2 

x 8.35 = 10.02 mm. The ion beam can be focused in the plane of deflection by the quadrupoles of the 

magnet spectrometer. The focusing is needed for separation of the different ejectile charge states 

behind the dipole magnet in a position-sensitive detector. Ion-optics calculations were performed in 

advance for the whole beam line including the spectrometer using the program MIRKO [72], and the 

settings were also controlled by MIRKO during beam adjustments. 

 

3.2.3 Detectors for the experiment  

i) X-ray detectors  

a) Ge single crystal x-ray detector [Ge(i)] 

The K x-rays of the collision partners were detected by two coplanar Germanium detectors. 

For the U-ion experiment two single crystal Ge(i) detectors were used (Ge(i)-A and Ge(i)-B, see 

Table 3.1 a)  whereas for the Bi-ion experiment, the Ge(i)-A and another seven segmented Ge(i) 

detector, the [7-Ge(i)] was used (Table 3.1 b). 

 

b) 7 stripe Ge x-ray detector [7-Ge(i)] 

This position-sensitive detector with dimensions of 25x25x12 mm3 has 7 independent 

adjacent Au-stripes of 3.57 mm width each oriented along the Y direction (c.f. Fig. 3.6) with an 

angular accuracy of better than 1 degree. The entrance window on the detector is 0.4 µm Ge and the 
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Table 3.1 a) Specifications of x-ray detectors used in U-ion experiment (G1 geometry). 
 

 
Specification Ge(i)–A Ge(i)-B Si(Li) 

Model Number 
CANBERRA 

GL0515R-7935 
CANBERRA 

GL1010R 
ORTEC 
10180 

Bias supply -3000 V -2000 V -1000V 

Shape round round round 

Active area 500 mm2 1000 mm2 80 mm2 

Active diameter 25.5 mm 35.7 mm 10 mm 

Crystal thickness 15 mm 10 mm 5 mm 
Crystal  to window 

distance 5 mm 10 mm 10 mm 

Be window thickness 0.15 mm 0.5 mm 0.0125 mm 
Energy resolution at 
13.942 keV. Am241 

source and 4 µs shaping 
time 

250 eV 300 eV 308 eV 

  
 
Table 3.1 b) Specifications of x-ray detectors used in the Bi-ion experiment (G2 geometry). 

 

Specification Ge(i)-A 7-Ge(i) Si(Li) 

Model number 
CANBERRA  

GL0515R-7935 
INTERTECHNIQUE 

EGPS 25x25-12-N7 EURISYS 

Bias supply -3000 V +1200V -1000V 

Shape round square round 

Active area 500 mm2 (7x3.57)x25= 625 mm2 200 mm2 

Active diameter 25.5 mm 
length and breadth = 

25mm 8 mm 

Crystal thickness 15 mm 12 mm 5 mm 
Crystal to window 

distance 5 mm 9 mm 7 mm 

Be window thickness 0.15 mm 0.2 mm 40 µm 
Energy resolution at 

13.942 keV. Am241 source 
and a 4 µs shaping time. 

250 eV 560 eV 338 eV 
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entrance window of the cap is 0.2 mm Be. Each stripe is connected to a cooled, built in preamplifier 

all of which work simultaneously. Along with all these specifications by the manufacturer, the cross-

talk  between the stripes has been quoted to be less than 0.1%. This detector was placed in one of the 

two coplanar ports (at an angle of 60ο to the beam) for the Bi-ion experiment (geometry G2). Placed 

in this position the observation angles of the detector were in the range from 53.9ο to 74.2ο in steps of 

approximately 3.6ο each.  
 

c) Silicon Lithium x-ray detector [Si(Li)]  

The L x-rays of the collision partners were detected by a lithium drifted silicon detector 

[Si(Li)]. Two different detectors were used for the experiments with U- and Bi-ion as projectiles, 

their specifications are given in Table 3.1 a) and b) respectively. 
 

ii) Particle detectors  

a) The CVD-diamond particle detector  

Measurement of the charge state distribution and charge exchange cross-sections for heavy-

ion heavy-atom collisions require a large area, position-sensitive detector with a high, known 

detection efficiency. For the special case investigated in this work (beam intensities of 107-109 

particle/s at an energy of ~70 MeV/u) a fast, radiation hard position-sensitive detector is needed. A 

detector made out of polycrystalline chemical vapour deposited diamond (CVD-diamond) was 

specially developed at GSI and can satisfy the above requirements [73, 74]. This is based on the 

specific property of diamond: fast signal build up caused by equally high mobility for positive and 

negative charge carriers and the unusually high dislocation energy.  

A front view of the particle detector is shown in Fig. 3.7 a) and the electronics used for the 

CVD read out are shown in Fig. 3.7 b). This detector has an active area of 60x40 mm2 and is 200 µm 

thick. The one dimensional position sensitiveness is provided by the 32 gold stripes (thickness 100 

nm) deposited on top of the CVD-diamond layer. Each strip is 1.8 mm broad with a 0.2 mm inter 

stripe distance and has an independent read-out coupled to a preamplifier.  A bias of typically -300 V 

was given to each stripe. The preamplifier signals have been selected by a level discriminator. The 

threshold of the level discriminator was set to cut the electronic noise as well as the small amplitude 

cross-talk signals. A cross-talk may be produced specially if an ion hits the detector in between the 

stripes. For such a case signals in adjacent stripes originate from the same particle.  

The present investigation holds the importance of being the very first measurement to test the 

charge collection and particle counting efficiency of this detector for high intensity, very heavy–ions 

of below 100 MeV/u. As a normalization detector (U-ion experiment), the CVD-diamond detector 
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registered the whole of the beam intensity whereas for measuring the charge state distribution (Bi-ion 

experiment), it detected typically more than 90% of the total beam intensity at one time. The single 

stripe as well as the total detector count rate were monitored during the experiments.  

 

 

 
 

Fig. 3.7 a) Front view of the position-sensitive CVD-diamond particle detector. 
 

 
 

Fig. 3.7 b)  Electronics for the CVD-diamond detector. PA is the pre-amplifer, one for each stripe. 
 
 

The tremendous energy deposition of low energy heavy ions in the diamond poses a problem 

for a high detection efficiency. During the experiment with the U-ion beam of 69.1 MeV/u i.e. in 

total 16.45 GeV, the ions lost a total of 5.4 MeV during interaction with the thickest Au target (170 

µg/cm2) and subsequently a total of 908 MeV in the 25 µm stainless steel window. Further, a total of 

6.29 MeV is lost in the Au layer of 100 nm which is deposited on top of the diamond layer in the 

detector.  Finally, U-ejectiles of 15.5 GeV impinge on the diamond layer of 200 µm thickness 
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depositing approximately a total of 4.5 GeV of energy there. These calculations were done according 

to SRIM [75]; slightly different values were obtained from ATIMA [69]. The amount of deposited 

energy influences the charge collection efficiency of the detector. Due to the intrinsic characteristics 

of diamond, mainly its polycrystalline structure which creates traps for charge carriers, the pulse 

height distribution of the signals is very broad leading to only a limited energy resolved information.  

 

b) SEETRAM- Secondary Electron Emission TRAnsmission Monitor 

 A secondary electron emission transmission detector (SEETRAM) [76] was used in the Bi-

Au experiment besides the CVD-diamond particle detector as a second beam intensity monitor after 

interaction with the target. It is basically a particle detector which uses the phenomenon of secondary 

electron emission from a thin foil. Subsequently, the emitted electrons are focused to multi channel 

plates (MCP) to count the number of particles (ions) impinging on it. The aim in the present 

measurement was to determine the efficiency of the CVD-detector by comparison with the 

SEETRAM. The CVD-detector was developed for experiments with heavy-ions of few hundred 

MeV/u. Up to the present experimental investigation, no quantitative information was available 

regarding the efficiency of the detector with very heavy ions below 100 MeV/u.  It was thus 

necessary to measure the efficiency of the CVD-detector with a second detector whose efficiency is 

known. The SEETRAM with its indirect measurement of the projectile-ions is well known as a non-

destructive transmission detector with almost 100% detection efficiency for moderate count rates and 

lower ion energies [76]. The count rate capability being limited only by its MCP. 

 

Working principle of SEETRAM 

The projectile ions produce free electrons after interaction with the C-foils and the ones 

flying off in the direction of an “accelerating grid” are accelerated towards it. These accelerated 

electrons are bent by an angle of 90º towards a microchannel plate (MCP) by an electrostatic mirror 

consisting of an inner and outer grid maintained at a potential difference between them. The 

equations of motion for a charged particle in an electric field govern the stream of electrons, their 

penetration depth in the electrostatic mirror depending upon the potential of the accelerating grid and 

the electrostatic mirror. Hence the time of flight for different electrons to the MCP is equivalent. The 

signals are collected by an anode and recorded by the data acquisition system. 

 

Mechanical design of the detector 

 The detector was placed in vacuum at the zero degree exit of the dipole in the beam line (Fig. 

3.4) with the electrostatic mirror facing the ejectiles. Fig. 3.8 a) shows a schematic diagram of the 
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prism shaped detector. The microchannel plate (MCP) and the anode (separated by an insulator) 

form one side of the detector. Two carbon foils (held in a frame) along with the adjoining 

accelerating grid (G) form another side of the detector. An electrostatic mirror (oriented at 45°) faces 

the accelerating grid and constitutes the third side of the detector. Fig. 3.8 b) shows a photograph of 

the SEETRAM detector. The two C-foils of thickness 15-20 µg/cm2 each are separated from each 

other by the 0.2 mm thickness of their frame. These two foils installed in this way ensure a higher 

mechanical stability than a single foil of 30-40 µg/cm2 thickness. The effective area of the C-foils 

available for irradiation by the ejectiles is 30 x 60 mm2 and the opening area of the electrostatic 

 

 
 
a)                         b) 
 
Fig. 3.8 a) Schematic design of SEETRAM. b)  Photograph of SEETRAM. 
 
mirror’s grid is 60 x 65 mm2. This ensures that all the electrons moving towards the accelerating grid 

and the electrostatic mirror are bent towards the microchannel plate having an effective area of 75 

mm2. The base plate and the insulator (with an opening of 40 x 70 mm2) are installed in such a way 

that all the electrons emitted from the foils and bent by the electrostatic mirror reach the MCP. 

 

c)   Comparison of CVD-diamond and SEETRAM detector efficiencies 

 The basic working of principle for both the detectors is different however their efficiencies 
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secondary electrons (via MCP) released from a C-foil due to the passage of projectile ions (ejectiles) 

through them.  

Highly charged heavy-ions at intermediate energies (E<100 MeV/u) produce a large amount 

of primary charge inside a diamond. When the range of the ions is equal to or less than the thickness 

of the diamond detector, bulk polarization effects could take place which could lead to a strong 

variation in the signal pulse height produced by ions having equal energies.  This in turn can induce 

detection efficiency losses. Less ionizing particles (e.g. high energy protons and C-ions) have been 

used in the past to test the detection efficiency, time resolution and radiation hardness with excellent 

results [77]. The CVD-diamond detector has also showed a high detection performance for heavy 

ions of few hundred MeV/u [78]. During the present investigation, the detector performance has been 

tested for the first time with highly charged, very heavy-ions at intermediate energies (E ~ 69 

MeV/u) having an extreme ionizing power. The total count rate registered by the CVD-diamond 

detector has been compared to the count rate of SEETRAM in order to determine the detection 

efficiency of the former at these energies. 

 

 
Fig. 3.9 Pulse height distribution for the collected charge (Q) in the CVD-diamond detector measured with 
an incoming Bi-ion beam of 69.2 MeV/u. CCE is the charge collection efficiency. Energy resolution ∆E/E of 
the CVD detector is equivalent to the charge resolution of ∆Q/Q (FWHM). 

 

Fig. 3.9 shows the pulse height distribution of the CVD-diamond detector measured with an 

incoming Bi-ion beam of 69.2 MeV/u. The counts are measured as a function of the collected charge 

“Q”, the charge being measured in units of 1e- charge. The calibration of charge collection efficiency 

was such that a detection of 2.54 x 108 electrons would denote a collection efficiency of 100%. Mean 
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value of the charge collected “Qcollected” per ion in units of 1 electron charge (e-) was 5.97 x 107. The 

charge collection efficiency (CCE) is ~24% which is apt enough for a 100% particle counting 

efficiency as it is well above the noise level. The Full Width at Half Maximum (FWHM) of the 

distribution ∆Q/Q is ~23.8% and corresponds to the energy resolution ∆E/E of the detector. For 

earlier measurements with few hundred MeV/u heavy-ions, a poor energy resolution of only 60% 

was observed [79]. The remarkably good separation between the noise and the real signals indicate 

that practically all the real events are detected even after the low electronic level discrimination 

introduced later. 

Fig. 3.10 shows the schematics of the experimental arrangement for the comparison of 

efficiencies of CVD-diamond detector and SEETRAM. A Bi81+-ion beam of 69.2 MeV/u has been 

bombarded on Au and C foils of different thicknesses t (12 ≤ t in µg/cm2 ≤ 225). The CVD-diamond 

detector was placed in air at the focal plane of the magnet spectrometer (Fig. 3.4, 3.6, position P2). 

The SEETRAM was installed in vacuum at the zero degree exit of the dipole magnet (see Fig. 3.4). 

The ejectiles were consequently detected by the CVD-diamond detector after charge state separation 

by the magnet spectrometer or alternatively by the SEETRAM after switching off the magnetic field.  

Hence, any measurement by SEETRAM was independent from that of the CVD-detector.  

 

 
 
Fig. 3.10 Schematics of the experimental arrangement at Cave-A for the comparison of CVD-diamond 
detector and SEETRAM detection efficiencies. 
 

For very thick targets a large number of charge states are created after interaction with the 

target yielding a very broad spectrum. By changing the magnetic field of the magnet spectrometer in 

small steps, it was possible to detect all the separated charge states of the ejectiles on the CVD 

successively. The position of at least one charge state in the spectrum from the new magnet setting 
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was kept as overlapping with the charge state distribution spectra from the previous setting of the 

magnet. It was shown that 90% of the primary beam could be measured at once in one setting of the 

magnet spectrometer. Hence, it was ensured that almost all the particles were counted. For the 

measurement with SEETRAM, an optical setting of the quadrupoles of the spectrometer was chosen 

such that the entire beam impinged on the surface of the detector, the beam was 3 mm broad and 20 

mm in height (Fig. 3.10).  

 

 

Fig. 3.11   A comparison of CVD-diamond particle detector and SEETRAM efficiencies.  

 

To compare the efficiencies of the two detectors, normalization to an initial beam intensity 

was required. As explained earlier in Section 3.2.1, the beam on exit from the SIS is passed through a 

stripper (Fig. 3.3) and only one of the charge states created during this interaction impinges on the 

target. As a result the actual intensity of the ions after the stripper is much lower than the intensity of 

the beam measured in SIS. For an estimation of the detection efficiency, the number of detected ions 

integrated over a few seconds (Det_C) have been normalized to the total number of ions stored in a 

spill in the SIS (I_spill). 

Fig. 3.11 for example shows this ratio (Det_C/I_spill) plotted against “measurement number” 

for both the detectors. A measurement number comprises two independent successive measurements 

for each detector both normalized to the corresponding SIS spills. The first four points correspond to 

the 21 µg/cm2 thick Au target and the rest to the 225 µg/cm2 thick Au target. The value of the 

calculated ratio in Fig. 3.11 is appreciably smaller than the real detection efficiency of the two 

detectors due to normalization on the total beam intensity stored in the SIS but not on the intensity of 

the ions impinging on the target. According to the calculations presented in Fig. 3.3 for the charge 
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state evolution in the stripper, the beam intensity on the target was only a small fraction of the total 

beam stored in the SIS. With the observations shown in Fig. 3.11 it can be concluded that both the 

detectors are equally efficient. Since the SEETRAM is known for its 100% detection efficiency, the 

efficiency of the CVD-particle detector is also concluded to be 100% for the used count rates and 

energies of the projectile-ions. The variations in Fig. 3.11 have been observed for all the target 

thicknesses investigated, it is concluded that this is due to the statistical fluctuation in the number of 

particles extracted from the SIS. 

 

3.3 DATA ACQUISITION AND ANALYSIS 

 

The online and offline data acquisition system used have been described briefly in Section 

3.3.1 along with electronics set up for the experiments. The data analysis has been detailed in 

Section 3.3.2 to 3.3.5. As mentioned earlier, two different types of Germanium detectors; the single 

crystal Ge(i) and the seven stripe Germanium [7-Ge(i)] have  been used for recording the K x-ray 

data. These detectors had large solid angles and the highly intense low energy L x-rays had to be cut 

out by strong aluminium absorbers to reduce the count rate. The Si(Li) detector with smaller solid 

angle and without any absorber has  been used for recording the L x-ray data of the collision 

partners. The CVD-diamond particle detector has been used for detecting the ejectiles. Different 

procedures have been followed for the offline analysis of these data. The x-ray emission cross 

sections can be calculated from the x-ray yields, target thickness, number of particles incident on the 

target, efficiency and dead time of the x-ray and particle detector, solid angles subtended by both 

types of detectors at the target and the dead time of the data acquisition system. The shifts in the 

energies of the x-ray transitions and the intensity ratios of the x-ray yields can be obtained almost 

directly from the deconvoluted x-ray spectra. The details of analysis are discussed below.  

 

3.3.1 Data acquisition system and electronics set up 
 

The standard data acquisition system used at GSI is the multibranch system (MBS) [80]. It is 

based on real time operating System i.e. LynxOS. The CAMAC trigger module of GSI was used 

along with M68k CPU i.e. CVC99 (CVC: Camac VSB Computer). The net work data flow was via 

fast or Gigabit Ethernet switches. An easy data interface (TCP) exists for on-line analysis. A remote 

visualization of the data was done with online data acquisition systems like GOOSY and Go4 [81]. 

The offline data analysis was done with Go4. More details of MBS and Go4 can be found in the 
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respective internet sites quoted. The electronics set up for the two experiments performed differed 

from each other slightly. The more complex set up for the Bi-Au experiment is shown in Fig. 3.12. 

 

 
 

Fig. 3.12 A schematic diagram of the electronics set up for the Bi-Au experiment. 

 

3.3.2  Energy and efficiency calibration of the x-ray detectors  

 

The energy calibration of the x-ray detector is important for the identification of x-ray 

emission from the collision partners. A good energy resolution of the detector is also required to 

measure the shift in energy of x-ray transitions with respect to standard single hole values [23]. The 

efficiency of a x-ray detector in the energy range of interest has a direct bearing on the calculation of 

x-ray emission cross sections of the collision partners. The energy calibration of the Ge(i), 7-Ge(i) 

and the Si(Li) detector was performed before and after the experiment by using  standard radioactive 

sources of 57Co, 
133Ba, 152Eu and 241Am placed at the target position within the target chamber. With 

the prior knowledge of the energies of x-ray and γ−ray transitions occurring in these radioactive 
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sources, a linear fit for calibration was obtained and used for the identification of the projectile and 

target x-rays in the recorded spectra. 

Special care was taken in the determination of the efficiency of the Ge(i) and 7-Ge(i) and the 

Si(Li) detectors. The intrinsic efficiency of all the detectors was measured in the laboratory by using 

standard radioactive sources in the same geometry by the procedure described by Pajek et al. in [82]. 

The measured x-ray yields corresponding to various x-ray and γ-ray lines from the radioactive 

source were converted into the intrinsic detector efficiency by using the formula: 

)( i

x
x xIN

Y
i

i ×
=ε  

where 
ixY  = Number of photons observed correspondingly to ith x-ray / γ-ray peak/s, 

N = Number of disintegrations/second of the source at the time of measurement, 

( )xI i  =   Intensity of ith x-ray/ γ-ray peak per decay of the source. 

The relative intensities of different x-ray lines for 57Co and 241Am sources were taken from  

Dias and Renner [83] and Cohen [84] respectively. The experimental data was then fitted with a 

polynomial [85] to obtain the intrinsic efficiency. The geometrical factor of π4Ω , for the solid 

angle (Ω) of the detectors in 4π was included later to calculate the experimental efficiency curve for 

each detector separately. Fig. 3.13 shows the intrinsic efficiency of the ‘A’ Ge(i) detector used in 

both the experiments. 

 
Fig. 3.13 The intrinsic efficiency of the ‘A’ Ge(i) detector. 

  

In addition to the procedure mentioned above the efficiency of the Si(Li) detector was 

determined additionally through the use of the detector parameters such as the Si sensitive and dead 

layers, thickness of Au contact layer and the Be window as described by Pajek et al. [82].  The 

101 102 103
10-2

10-1

100

 

 

In
tri

ns
ic 

ef
fic

ien
cy

 o
f t

he
 G

e(
i) 

de
tec

to
r 

Energy (keV)



 43 

attenuation of the x-rays in these different layers was calculated (using XCOM [86] computer code) 

and the corrected theoretical efficiency curve was obtained which took into account the x-ray 

absorption in the Be window of the target chamber separating the Si(Li) detector from the target 

chamber and the air gap between the Be window and the detector too. The calculated efficiency 

curve was least square fitted and normalized to the measured experimental values to obtain the 

efficiency in the region of interest.  

 

3.3.3  Doppler shift and Doppler correction 

 

The projectile-ions used in the present investigation move with relativistic velocities (v ~ 

40% of c, the velocity of light). As a result the x-rays emitted from these projectiles are strongly 

Doppler shifted when observed in the laboratory (lab) frame. The Doppler shift can be calculated 

from the following formula: 

)cos1(
0

θβγ lab
lab

EE
−

=  

where β =  v/c and βγ 211 −=  is the Lorentz factor. E0 is the energy for the projectile x-rays in 

the emitter frame or emitting system, Elab is the Doppler shifted x-ray energy detected in the 

laboratory system, θ lab  is the angle between the emitted x-ray and projectile in the laboratory 

system. The ratio of Elab/E0 depicts the Doppler shift.  For example Fig. 3.14 shows the Doppler shift 

for 69.2 MeV/u Uq+- or Biq+-ions as a function of θ lab  varying from 50° to 130°. This gives an idea 

about how the two experimental geometries in the backward (G1) and forward (G2) directions (Fig. 

3.6) affect the x-ray energies observed in the laboratory system. 

 A correction for the Doppler shift requires a precise determination of β as well as of θ lab . 

The uncertainty in θ lab  is much larger because of a large opening for the observation angle of the x-

ray detectors. The uncertainties in β andθ lab   introduce an uncertainty E∆ 0  in emitter frame energy 

E0. The ratio EE 00∆ is called Doppler broadening. The solid angles in the laboratory and the 

emitter system follow the relation: 

)cos1(
1
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d

−
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and this factor is used for the calculation of projectile x-ray emission cross sections. The values of 

this factor for the two experiments performed are given in Fig. 3.14. 
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Fig. 3.14  Doppler shift (Elab/E0) as a function of observation angles ranging from 50° to 130° for 69.2 
MeV/u Uq+- or Biq+-ions. The x-ray detector positions for both geometries G1 and G2 are indicated. 
 

Based on theoretical values of Elab/E0 for the velocity of the projectile-ion (vion) chosen, a 

simulated x-ray spectra was emulated for both the stationary target (Au) x-rays and the Doppler 

shifted projectile (U or Bi) x-rays in the laboratory system. It was found that for 69.2 MeV/u U and 

Bi–ions the projectile K x-rays would be well separated in energy from the Au K x-rays if the 

detectors are placed in the forward  direction (60º) i.e. geometry G2, Fig. 3.6.  The Doppler 

broadened U or Bi K x-rays would then get a forward boost and hence a clear separation from the Au 

K x-rays. The geometry G2 was used for Bi-ion experiment. 

For the U-ion experiment, U-targets along with the Au targets were intended to be 

bombarded in order to investigate completely-symmetric systems. The geometry G1 (Fig. 3.6) would 

facilitate a clear separation of the projectile (U) K x-rays from the target U K x-rays. Consequently, 

the chamber was placed with its detector ports at backward angles. Limitations of the beam time did 

not enable a complete measurement with the U targets and hence could not be included in the present 

investigation. 

50 60 70 80 90 100 110 120 130
0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25
A

B

 For 69.1 MeV/u
 Uq+-ions   (G1)
dΩ0/dΩlab = 0.6

 

 E lab
/E

0

Observation Angle (θlab) in degrees

For 69.2 MeV/u 
Biq+-ions   (G2)
dΩ0/dΩlab = 1.3

A



 45 

3.3.4  X-ray peak fitting and analysis procedure 

 

 The measured x-ray spectra were analyzed by the Gaussian peaks subtracting a suitable 

background using a least square fitting iterative method. The position, intensity and width of the 

peaks are the three adjustable parameters used for this iterative method. As a first step, the various 

peak energies are fixed corresponding to the standard x-ray transition energies taken from the tables 

of Bearden [23] corrected for the Doppler effect if required.  These fixed energies of the K or L x-ray 

lines were then allowed to vary so that the various peaks fit in the entire spectrum. The fitting 

procedure gives intensities and lab energies (as well as widths) for the prominent lines. From the 

intensities absolute x-ray cross sections and intensity ratios have been deduced. The position (i.e. 

energy shifts) give in addition an information on multiple ionization during the emission of x-ray 

lines.  

   

3.3.5  Calculations of experimental results 

 
i) X-ray energy shifts 

 The shifts in the characteristic x-ray energies have been calculated with respect to the 

standard atomic values [23]. The error in the energy shifts include mainly the error in energy 

calibration, fitting procedure (statistics), energy resolution of the detector and by the kinematics of 

the collision system. The dominant uncertainty for the projectile x-ray lines arises from the 

uncertainty in the Doppler correction. In most other cases the statistics is the limiting factor.  

 

ii) X-ray intensity ratios 

The intensity ratios for various K and L x-ray lines were calculated by using the formula: 
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here "i" and "j" refer to different K (Kα1, Kβ2  etc.),  or L x-ray lines (Lα, Lβ1  etc.), Yxi is the yield 

of K or L x-ray for the ith x-ray line, ε i is the efficiency of the x-ray detector for the ith line. The 

intensity ratios calculated for a particular incoming charge state (q) of the projectiles and for a 

particular target thickness (t) do not require any absolute normalization. Hence these ratios can be 

determined with greater accuracy than the absolute x-ray emission cross sections because the sources 

of error arise mainly from the counting statistics. However, for an intensity ratio involving projectile 

and target x-ray lines, the Doppler correction for the solid angle has to be included additionally. 
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iii) Normalization procedure and dead time correction 

As mentioned above in Section 3.2.2 (ii) two different procedures were followed for the 

normalization of the x-ray yields in the two experiments (U-Au and Bi-Au) by the CVD-diamond 

particle detector. The dead time correction to the experimental data included the dead time correction 

for the x-ray and particle detectors as well as the dead time correction for the data acquisition system. 

The latter overpowered the former; details will be discussed in the relevant chapters 4 and 5 

respectively. 

 

iv) X-ray emission cross sections   

The x-ray yields are related to the x-ray emission cross sections by the relation: 
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where σ x
i  = x-ray production cross section ( i = Kα, Kβ, Lα etc.),  

ixY  = x-ray yield under the ith  x-ray peak,  

t = target thickness in atoms/cm2, 

ixε  = detection efficiency of the x-ray detector accounting for the absorption of the x-rays in the 

chamber window and solid angle subtended by the detector at the target, 

Np = number of ejectiles after interaction with the target, 

Γx and Γp = dead time corrections for the x-ray and charged particle detectors, 

Γ = dead time correction for the data acquisition system, 

Ω
Ω

d
d

lab

0  = correction to the solid angle due to Doppler effect. 

The solid targets are considered to be thin if they satisfy the single collision condition 

conditions for the projectile-ions traversing through them. The single collisions essential for atomic 

physics processes investigated can be obtained approximately by extrapolating the target thickness 

dependence of the normalized x-ray yields to “zero” target thicknesses. 
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CHAPTER  IV 
 

A SLIGHTLY ASYMMETRIC SUPERHEAVY COLLISION SYSTEM: Uq+-Au 
 

4.1 INTRODUCTION 

 

This chapter deals with the first exploratory experiment performed for this study. A U-Au (Z1 

= 92, Z2 = 79) collision system was investigated for 69.1 MeV/u, highly charged Uq+ projectiles (73 

≤ q ≤ 91) bombarding on thin Au targets (18 ≤ t in µg/cm2 ≤ 170). This exploratory experiment was 

planned in a simple way avoiding too much complexity in the experimental set up and data analysis. 

For close collisions affecting inner shells, the quasiadiabatic collision regime prevails as the 

adiabaticity factor ηK-U  = (vion/vK-U)2, for the U K-shell is ≤ 0.33 and similarly ηK-Au  ≤ 0.45 for the 

Au K-shell. For H-like U projectiles i.e. for an U-ion with an incoming K vacancy, the collision 

conditions for the projectile charge are beyond the equilibrium charge state which is about 86+ at 

this energy [59]. Section 4.2 describes the experimental details and Section 4.3 deals with the K x-

ray emission from the U-Au collision system. Details regarding the K x-ray spectra, energy shifts of 

the K x-ray transitions, their intensity ratios and K x-ray emission cross sections have been covered 

in the subsections of Section 4.3 viz. 4.3.1 to 4.3.4 respectively. The charge state and target 

thickness dependences of the x-ray emission cross sections have been detailed in Section 4.3.4. 

Section 4.4 deals with the L x-ray emission from the collision system for completeness although this 

is not a main aim of this work. Section 4.4.1 to 4.4.3 reports on the L x-ray spectra, shift in the 

energy of the L x-ray transitions, intensity ratios and the L x-ray emission cross sections along with 

their dependences on projectile charge state and target thickness. The charge exchange cross sections 

have been discussed in Section 4.5. 

 

4.2  EXPERIMENTAL DETAILS 

 

A general description of the experimental set-up with the details regarding the position of 

targets and detectors has been given in Chapter 3, Section 3.2.2. A charge state selected, well 

collimated, Uq+-ion beam [q = 91, 90, 88, 86 and 73] of 69.1 MeV/u impinged on thin Au targets of 

thickness t [t = 18, 50 and 170 µg/cm2, the thinnest one having a thin carbon backing of 15 µg/cm2]. 

For q = 73, the 18 µg/cm2 target was not used for observations only due to time constraints. Fig. 4.1 
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shows a schematic diagram of the experimental set up with a view from the top (G1 geometry, see 

Section 3.2.2) and Fig. 4.2 shows a photograph of the experimental set-up. 

 

 
Fig. 4.1   Schematic diagram of the experimental set up with a view from the top. The two single crystal Ge(i) 
detectors, A and B were placed at backward angles of  ± 120°. The collimators for the two x-ray detectors are 
indicated in the figure, the solid angle of detector B being larger. The front view of the CVD-diamond particle 
detector at position P1 is depicted as blown up on the right side. The Si(Li) detector viewing the target region 
out of plane from above (135°) is not shown in the figure.  
 

With the target foils positioned normally to the beam direction, the x-rays emitted from the 

collision partners were detected by the two intrinsic, single crystal Ge(i) detectors positioned in the 

same plane at an angle of 120ο to the beam direction (backwards). The two Ge(i) detectors A and B 

had Ta collimators of 4 and 3 mm thicknesses with rectangular openings of 5.8x38 mm2 and 7.7x38 

mm2 respectively. The resulting geometry allowed solid angles of 0.051 sr and 0.089 sr respectively 

which were 0.4% and 0.7% of 4π. A Si(Li) detector was used for the detection of L x-rays of the 

collision partners and was installed at 135ο with respect to the beam direction in the 45ο port of the 

chamber (backwards), off plane with respect to the Ge(i) detectors (Fig. 4.2). The Si(Li) detector had 

a much smaller solid angle of 0.004 sr. The details of the physical characteristics of the x-ray 

detectors have been given in Table 3.1 a) of Chapter 3. 

Behind the target, the ion beam was monitored by the one-dimensional, position-sensitive, 

CVD-diamond particle detector (discussed in detail in Chapter 3, Section 3.2.2 (ii) and 3.2.3 (ii a)) 

[87, 88] for normalization of the x-ray emission with the number of ejectiles. As mentioned in 

Chapter 3, this particle detector was installed approximately 70 cm behind the target. A schematic 

diagram of the particle detector is shown on the right hand side of Fig. 4.1. 
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Fig. 4.2  Photograph of the experimental set-up showing the two Ge(i) x-ray detectors A and B at angles of 
120° and the Si(Li) x-ray detector placed off plane at an angle of 135° with respect to the beam direction 
(indicated in the figure).  A view of the target area from the particle detector position is shown on top right of 
the figure with the Si(Li) detector (top) and the two Ge(i) detectors viewing the target in close proximity. 
 

4.3 K X-RAY EMISSION IN U q+- Au COLLISIONS 

 

4.3.1 The K x-ray spectra 

 

Fig. 4.3 depicts K x-ray spectra (laboratory frame) measured by the Ge(i) detector “A” 

showing a smaller Doppler broadening (c.f. Fig. 4.1)  for the 50 µg/cm2 thick Au target bombarded 

by Uq+-ions (q = 73, 90 and 91). The counts are normalized relative to the number of ejectiles 

detected by the particle detector through the procedure described in Section 4.3.4. The counts 

however are not shown normalized with respect to target thickness. The different characteristic x-ray 

lines of the collision partners have been labelled in the figure and the overlapping of the different x-

ray lines is evident. The Ta collimators used in front of the detectors are the origin for the Ta-Kα1,α2 

and Kβ1 fluorescence x-ray lines visible in the spectra. These fluorescence lines result due to the 

ionization/excitation of the Ta induced by the radiation from the interaction area. These lines also 
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serve as a check on the energy calibration of the x-ray spectra. The procedure for energy calibration 

has been explained in Chapter 3, Section 3.3.2.  

The figure shows the effect of projectile incident charge state ‘q’ on the K x-ray spectra of 

the collision partners for a particular thickness ‘t’ of the Au target. It can be clearly observed that the 

normalized K x-ray yields are highly sensitive to the charge state ‘q’. On a comparison of spectra for 

 
 
Fig. 4.3   K x-ray spectra (laboratory frame) measured by the Ge(i) “A” detector for the 50 µg/cm2 thick Au 
target bombarded by Uq+-ions (q = 73, 90, 91). The counts are normalized relative to the number of ejectiles.  

 

q = 90 and q = 73, one can observe only a slight increase in the yields of U- and Au-K x-rays with 

increasing q. A q = 91 and 90 for Uq+ projectiles correspond to an open and closed K-shell of the U 

respectively in the incoming channel of the collision. A comparison of the corresponding spectra 

reveals firstly that for q = 90, the Au-K x-rays are relatively much more intense than the U-K x-rays. 

However, for q = 91 these intensity ratios show a reversal and there is a dramatic increase in the yields 

of the U-K x-rays as compared to that of the Au-K x-rays. Secondly, for q = 91, the normalized yields 

of both U and Au are considerably higher than their values corresponding to q = 90 and 73. The x-ray 

spectra were deconvoluted to yield Au-K and U-K x-rays separately by the x-ray line fitting procedure 
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described in Chapter 3, Section 3.3.4. For the spectra corresponding to q = 91, the extraction of U-

Kα1 yield from the mixed line of U-Kα1+Au-Kβ1 did not pose a problem because the U lines are an 

order of magnitude more intense than the Au-Kβ1 lines. Elsewhere, the x-ray emission rates from 

Scofield [64] and the area under the Au-Kα1 line were used to estimate the number of counts under 

the Au-Kβ1 line. A similar procedure was followed for the extraction of U-Kβ1 yield from the mixed 

line of Au-Kβ2+U-Kβ1. 

 
Fig. 4.4 K x-ray spectra (laboratory frame) for U91+ and U86+-ions (top and bottom respectively)  incident on 
a) the thickest  Au target (170 µg/cm2) and  b) the thinnest one (18 µg/cm2). The counts are normalized relative 
to the number of ejectiles. The energy scale for the emitter frame of the relativistic U-ions is given on top. 
 

Fig. 4.4 depicts a closer look at the K x-ray spectra (semi-log plot) measured in the laboratory 

by the “A” Ge(i) detector for U91+, 86+-ions incident on the thickest (170 µg/cm2) Au target (part a) and 

on the thinnest (18 µg/cm2) one (part b). The figure shows both the charge state ‘q’ effect and the 

target thickness ‘t’ effect on the K x-ray spectra of both the collision partners. The counts are 

normalized relative to the number of ejectiles however they are not depicted normalized with respect 

to target thickness. The projectile K x-ray spectra are observed as Doppler shifted in the laboratory 
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frame. The phenomenon of Doppler shift has been explained in detail in Chapter 3, Section 3.3.3. The 

Doppler corrected U-K x-ray energies in the emitter frame can be obtained from the scale given at the 

top in both the spectra. 

 A comparison of the spectra with respect to ‘q’ shows a strong influence of the same on x-ray 

emission. As has also been observed in Fig. 4.3, for a projectile with an incoming K vacancy (q = 91, 

i.e. open K-shell), one can again observe clearly a reversal in the relative intensities of the U-K and 

Au-K x-rays as compared to those without an incoming K vacancy (q = 86 i.e. for a closed K-shell). 

For q = 91, the Au-K x-rays show a much smaller increase in yield as compared to the U-K x-rays. 

This observation is independent of the thickness of the target as is evident by a comparison of Fig. 4.4 

a) and b).  

The Au-K emission is with very high probability, the result of a close collision whereby Au-

K vacancies are created. For H-like projectiles, the Au-K vacancies might also result from a sharing 

of the vacancies brought to the collision system in the incoming channel. The Au-K x-ray emission is 

not remarkably influenced by the incoming charge state of the projectile as long as the projectile K-

shell is closed. On the other hand, during distant collisions, electron capture dominates for a highly 

charged projectile. Although capture takes place for all the incident charge states ‘q’ of the projectile; 

for q = 91, the captured electrons become visible through the now available radiative decay channel 

to the projectile K-shell leading to the observed high U-K x-ray emission yields. For lower incoming 

charge states this decay channel is closed. For these charge states only capture to the M- and higher 

shells can manifest itself through L x-ray emission. Moreover, according to theoretical approaches 

like the Eikonal [53] for H-like U (q = 91), the cross section for capture is maximum from target L 

shell to the projectile M shell (refer Fig. 4.23, details in Section 4.5). For all q investigated (q = 73, 

86, 88, 90 and 91) the projectile always has vacancies in M and higher shells. 

 

4.3.2 Shift in the energy of the K x-ray transitions 

 

As has been explained in Chapter 2, multiple ionization during heavy-ion heavy-atom 

collisions leads to an energy shift of the x-ray lines compared to single hole standard atomic values 

(Eo) (taken from Bearden [23]). Fig. 4.5 a), b) shows the centroid energies (Eobs.) of Kα1,α2 x-ray 

transitions in the laboratory frame (LAB) for Au and in the emitter frame (E.F.) for U respectively. 

They are expressed as a function of the incident charge state (q) of the Uq+-ions for the three 

different Au thicknesses investigated (18, 50 and 170 µg/cm2). The standard values (Eo) for the 

energies of these x-ray transitions have been indicated by solid lines in the plot corresponding to 18 
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µg/cm2 Au target. The errors in U-Kα1,α2 energies are larger than the ones for Au as for U x-ray 

emission, large systematic errors have to be taken into account due to the Doppler shift correction 

required for relativistic projectiles and the uncertainty in the observation angle which is in the region 

of 3o (see the systematic error in the figure indicated by an arrow). This error arose from the fact that 

the targets loaded on the ladder were positioned about 2 mm upstream from the chamber centre. Both 

Au- and U-Kα1,α2 x-ray transitions are observed at higher energies as compared to the standard 

values [23].  

 
Fig. 4.5 Centroid energies (Eobs.) of K x-ray transitions as a function of the incident charge state (q) of the Uq+-
ions. a) for Au-Kα1,α2 in the laboratory frame (LAB) b) for U-Kα1,α2 in the emitter frame (E.F.). The 
corresponding standard values of Bearden (Eo) [23] have been indicated by solid lines in the uppermost plot. 
Thickness of Au target (t) is in µg/cm2. Statistical errors are smaller than the size of the symbols. The lines 
through the data points are drawn to guide the eye. MCDF calculations [90] for U-ion are depicted with dotted 
and dashed lines. The uncertainty due to the Doppler correction is given by an arrow in the uppermost plot of 
U for q = 91. 
 

The Uq+-ion is multiply ionized in the incoming channel itself for all the q investigated (q=73 

to 91) having M-shell vacancies in all the cases and hence a large number of outer shell spectator 

vacancies. These vacancies persist during the collision and hence during x-ray emission in the 

projectile. The simultaneous creation of outer shell spectator vacancies (L, M, N etc.) in Au is evident 
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from above observation. Both U- and Au-K x-ray transition energies increase with increase in ‘q’ with 

the former showing a larger increase. The Ta-Kβ1 fluorescence line has been plotted to show the good 

agreement between its standard values and those observed experimentally. 

The dotted and the dashed lines in the plots for U [see Fig. 4.5 b)] correspond to Multi 

Configuration Dirac Fock calculations [89] performed for U-ions [90] using GRASP92 code [91] for 

Kα1,α2 energies respectively. The energy of these x-ray transitions have been calculated for the 

ground state configuration of the highly charged ions with one excited electron. A particular vacancy 

distribution in the shells has been considered. For a final charge state of q = 90, 7 vacancies were 

assumed in the L-shell and the number of vacancies were decreased in steps of 1 with q also 

decreasing in steps of 1. Thus for a final charge state of q = 83, calculations were done for a full L 

shell (zero vacancies). The electrons were distributed in the 2s and the 2p shells as per the Hund’s 

rule. Corresponding to a particular q, the values plotted in Fig. 4.5 b) are an average of values for all 

possible electronic configurations (3 values for q = 88, 87, 86, 85; 2 for q = 89, 84; 1 each for q = 90 

and 83). For a highly charged U-ion, the observed energy shifts can be compared with these 

calculations as ionization/excitation will probably lead to similar configurations as discussed above. 

Since the experimental U-K x-ray transitions are observed at much higher energies compared to even 

these calculations [90], it might be caused by the uncertainty in the observation angle mentioned 

earlier. It is to be noted that the slope of the experimental and theoretical values is almost the same. 

The increase in shift per additional vacancy observed experimentally coincides with the calculations 

indicating that most probably the projectile captures only a single electron in a distant collision. 

The ‘q’ dependence of these transition energies becomes clearer in a relative representation, 

by a comparison of these values with standard ones (Eo). For clarity, Fig. 4.6 shows the shift in the 

centroids of Au and U-K x-ray lines relative to standard values and normalized to them as a function 

of ‘q’ for all the three Au thicknesses investigated. These relative shifts (Eobs-Eo)/Eo give the change 

in screening (change in the corresponding Zeff) caused by the multiple ionization. The lines drawn 

are linear fits to the data. A linear fit to the Au- and U-Kα1,α2 corresponding to 18 µg/cm2 thick 

Au target has been done with the same parameters as that for t =170 µg/cm2. It has been estimated 

that the Au-K x-ray transitions show a relative shift increasing with q from 1% to 2% on an average 

whereas the U-K x-ray transitions show a larger relative shift increasing from 2% to 4% and 

therefore a steeper slope, not considering the uncertainty in the Doppler correction. For these 

projectiles moving at relatively high velocities this might be due to the greater initial ionization in the 

higher projectile shells which survive collisions in the solid to some extent. The steeper slope for the 

projectiles with increasing q points to a higher ionization in the L shell leading to an increased 
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change in the screening. The Kα2 lines of U and Au exhibit a relatively smaller shift as 2p1/2 

electrons are involved in the transition instead of 2p3/2. 

Fig. 4.7 depicts the centroid energies of U- and Au-K x-ray transitions as a function of the Au 

target thickness (t) in the laboratory frame. Within the large experimental uncertainties, a target 

thickness dependence of the shifts for these Au- or U-K x-ray transitions could not be observed. This 

may indicate that as the projectile penetrates the solid target, its vacancy distribution does not vary 

considerably, i.e. the projectile vacancies have a definite probability to survive in the bulk material. 

 
Fig. 4.6   Relative shift (Eobs.-Eo)/Eo in K x-ray transitions (centroids) normalized to standard values (Eo) 
[23], as a function of the incident charge state (q) of the Uq+-ions  a) for Au in the laboratory frame (LAB) 
and  b) for U in emitter frame (E.F.). Au target thickness (t) is in µg/cm2. Statistical errors are smaller than 
the size of the symbols. Lines drawn are linear fits to the data. Note the different ordinate scales for a) and b). 
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intensities of the emitted x-ray transitions such as K and L [62]. It was intended to investigate 

whether the projectile incident charge state (q) and the target thickness (t) have any effect on the 

intensity ratios of the K x-ray transitions i.e. Kα2 [(L2-K or 2p1/2→1s1/2)] and Kα1 (L3-K or 

2p3/2→1s1/2)] of both the collision partners. This ratio reveals the relative population of the 2p1/2 and 

2p3/2 levels thus revealing the j dependent population of the L-shell. The K x-ray intensity ratios for 

both U and Au were deduced using the formula given in Section 3.3.5 (ii) of Chapter 3. Taking into 

account the uncertainties, mainly in the counting statistics and analysis procedure, the overall 

uncertainties in the experimental intensity ratios are estimated to be between 20-40% for the Kα1,α2 

transitions of both U and Au.  The intensity ratios for the U- and Au-Kβ1,2 transitions were not 

calculated due to their low intensity and higher statistical errors involved in extracting their yields 

from the mixed lines shown in Fig. 4.3 and 4.4.  

 

 
Fig. 4.7 Centroid energies (Eobs.) of U- and Au-K x-ray transitions in the laboratory frame (LAB) as a function 
of the thickness (t) of the Au targets. The lines through the data points are drawn to guide the eye.  
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completeness the U-Kα1/Au-Kα1. The figure shows that within the experimental uncertainties one 

cannot infer any incident charge state (q) dependence of either the U-Kα2/U-Kα1 or Au-Kα2/Au-Kα1 

intensity ratio. Atomic single hole values by Scofield [64] have also been given in the figure for 

comparison. Scofield values assume single ionization, a comparison obviously depends on the 

population in both the levels concerned. So more vacancies in the inner shell increases the emission 

whereas a vacancy increase in the outer shell will lead to a decreased emission. This is relevant 

especially for comparison of inter-partner ratios (U-Kα1/Au-Kα1) at different q. 

 

 

Fig. 4.8   Measured intensity ratios (intra-partner and inter-partner) for K x-ray transitions of the projectile 
(U) and target (Au) as a function of the incident charge state (q) of the Uq+-ions. The corresponding single hole 
values by Scofield [64] have been indicated in the figures as [Scof.]. 
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to a possibility of higher  population of the U L2-subshell in comparison to L3 or higher ionization of 

the latter (binding effect).. 

Both from Fig. 4.8 as well as from Table 4.1, it is evident that the inter-particle ratio of U-

Kα1/Au-Kα1 has a near constant value of 0.4 for the closed K-shell case (q ≤ 90). For these charge 

states, the population in the 2p3/2 level of U is probably ~1/3 of that in Au. This indicates again that 

the projectile remembers its high ionization in outer shells even after interaction. Considering that the 

Au target is also highly ionized (evident by the line shifts), it can be inferred that the projectile 2p 

levels have a very small population. This is caused by the relatively large velocity of the projectile 

compared to the orbital velocity of concern (ηU-L = 1.4).  

 
Table 4.1 Average values of U and Au x-ray intensity ratios for closed (q ≤ 90) and open (q = 91) U K-shell in 
the entrance channel. Atomic single hole values by Scofield [64] have been given for comparison. The 
experimental inter-partner ratios (1st line) are corrected for the relativistic solid angle transformation. 
 
 

                Charge state q 
Intensity ratio q ≤ 90 q = 91 Scofield [64] 

U-Kα1 / Au-Kα1 0.4 ± 0.1 34.6 ± 4.8 0.96 

U-Kα2 / U-Kα1 1.3 ± 0.5 0.9 ± 0.1 0.625 

Au-Kα2 / Au-Kα1 0.7 ± 0.1 0.8 ± 0.2 0.588 

 

The ratio of U-Kα1/Au-Kα1 increases drastically for an open K-shell of the projectile (q = 91) 

in the entrance channel. This fact is evident from the K x-ray spectra itself shown in Fig. 4.3 and 4.4. 

The reasons for the increased U-K emission for q = 91 has been explained above. A comparison of the 

observed value (34.6±4.8) with the single hole value of 0.96 for U-Kα1/Au-Kα1 indicates the presence 

of other active processes mainly for U. Here the radiative decay channel to the K-shell for capture 

processes to higher shells becomes available. Thus this increased ratio gives mainly the probability for 

having a K vacancy in the projectile or target atom.  

Fig. 4.9 shows the U-Kα1/Au-Kα1 intensity ratio as a function of the Au target thickness (t). 

For q = 73 to 90 i.e. closed U-K shell in the entrance channel, the ratio does not always show a clear 

‘t’ dependence. However for q = 91, a decrease in the ratio with increasing target thickness is evident. 

As the projectile ions pass through the bulk of the solid target, highly charged ions (U91+) capture 

electrons by multiple collisions which gradually fill up the K-shell vacancies due to the radiative 

transitions, consequently, the U-Kα1 emission decreases. After a penetration length of about 190±10 

μg/cm2 half of the projectiles have lost their initial K vacancy.   
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Fig. 4.9   Measured inter collision partner intensity ratio (U-Kα1/Au-Kα1) as a function of the Au target 
thickness (t). The corresponding single hole values by Scofield [64] have been indicated in the figures as 
[Scof.]. 
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however, for these count rates, the double counting phenomenon/cross talk might have lead to an 

overestimation of the particle count rate.  

The beam position on the particle detector was monitored by recording the spectra of particle 

counts vs detector stripe number. In order to find out whether the beam shifted its position on the 

target during the measurements, such spectra were recorded in small time windows and compared to 

each other.  It was found that the maxima of the beam spot fell between 5th to 8th stripes. The FWHM 

of the distribution or the diameter of the beam on the CVD fluctuated between 1.9 and 2.8 stripes i.e. 

~4 mm and 6 mm respectively. Hence the use of 16 stripes was found sufficient for measuring the 

total number of ejectiles.  

The dead time of the data acquisition system overpowered that of the individual x-ray 

detectors in this experiment, the dead time for the latter being not large due to their small solid angles. 

The ratio of the number of events accepted to the total number of events is given as 
iN

N
i

i
.Σ

Σ  where i is 

the number of channels in the scaler spectra and Ni is the number of counts in the ith channel. Hence 

the x-ray yields were corrected for the dead time of the acquisition system by multiplying the yields 

with the reciprocal of the above quantity.  

The ion beam intensity had an approximate uncertainty of ~10% as estimated from the particle 

detector, the efficiency of the Ge(i) detectors ~3%, solid angles ~5% and target thickness ~5%. Apart 

from these uncertainties, the data acquisition system constrained the efficient counting of the emitted 

x-rays leading to systematic uncertainties of the order of 30% at maximum. Due to the experimental 

boundary conditions (varying spill structure) of the ion beam, high systematic errors of a factor of 2 

(at an average) had to be taken into account. The K x-ray emission cross sections along with their 

uncertainties are presented in Fig. 4.10 as a function of the projectile incident charge state (q) and as a 

function of the Au target thickness (t) in Fig. 4.11. 

 

Charge state dependence of the cross sections 

Fig. 4.10 a) shows the q dependence of Au-Kα1,α2 emission cross sections for 18, 50 and 170 

µg/cm2 target thicknesses and Fig. 4.10 b) depicts the same for U-Kα1,α2. It is clear from the figure 

that for projectiles carrying a K vacancy prior to the collision (U91+), the projectile K x-ray emission 

increases substantially above its value for the closed K-shell (U90+) and a similar trend is shown by the 

Au-K emission although by an order of magnitude to a lesser extent.  

During distant collisions for highly charged projectiles (i.e. when the inner shells of the two 

collision partners do not overlap each other), the electrons are captured from the target to the higher 
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vacant shells of the projectile. For projectiles having K vacancies prior to the collision (U91+) radiative 

stabilization of the captured electrons to the half empty K-shell leads to the observed increase in the 

U-K x-ray emission. A capture cross section of an order of a megabarn has been observed for these 

projectiles (typical electron capture interaction distance is estimated later in Chapter 6).  

 
Fig. 4.10 Kα1 and Kα2 emission cross sections (top and bottom respectively) as a function of incident charge 
state (q) of the Uq+-ions a) for the target Au,  b) for the projectile U. Au target thickness (t) is in µg/cm2.  

 

The increase in the Au-K emission (of the order of 10 kbarns) gives access to the vacancy 

transfer in the collision molecule i.e. in close collisions. For H-like projectiles (U91+), the increase in 

Au-K x-ray emission cross section relative to its value for q=90 points to an additional vacancy 

production mechanism such as coupling of K-shells of both the collision partners (the K-K sharing 

process [92]). For projectiles with incoming L(j=1/2) vacancies (e.g. U90+ ), a slight increase in the 

Au-K emission might also be observed for U90+ in comparison to its value for U88+. This slight 

increase indicates the possibility of a coupling between the L-shell of the projectile and the K-shell of 

the target atom in close collisions, the so called L-K shell coupling [93]. The cross sections stay nearly 

constant for lower incident charge states (ranging from 73+ to 86+).  The above features are exhibited 
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for the entire range of target thicknesses investigated. Further discussion and inferences from the ‘q’ 

dependence of the cross sections and calculation of interaction distances for K-K sharing and L-K 

shell coupling are given in Chapter 6. 

 
 
Fig. 4.11 Kα1 and Kα2 x-ray yields (cross sections) top and bottom respectively, as a function of the target 
thickness (t) a) for the target Au, b) for the projectile U. 
 

 Target thickness dependence of the cross sections 

The target thickness (t) dependence of the Au-Kα1,α2 and U-Kα1,α2 emission cross sections 

are presented in Fig. 4.11 a) and b) respectively. The figure shows clearly that as the target thickness 

increases, the U-Kα1,α2 emission cross sections show a pronounced decrease; to some extent a similar 

trend may be seen for the Au-K cross sections also. Since a true cross section does not depend on 

target thickness the cross sections shown here are actually absolute yields and the true cross section 

can be calculated by extrapolating these values to zero target thickness, i.e. to approximate cross 

sections at single collision conditions. It is observed that within the given large uncertainties, the 

decrease in yield is remarkable for q = 91 as compared to the other incident charge states of the 

projectile (q = 73 to 90).  
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From the target thickness dependence of the absolute yields, cross sections corresponding to 

“zero” target thickness have been extrapolated. This has been done by assuming an exponential 

decrease of the K x-ray cross sections approaching ultimately the values corresponding 

(approximately) to those for the equilibrium charge state of the projectile (e.g. to a few kb for U-Kα1, 

see Fig. 4.11 b). More details regarding the cross sections for near “zero” target thicknesses along 

with their significance for the present investigation are discussed in Chapter 6. For the projectile 

having an open K-shell (q = 91), the decrease in the U-K emission indicates the filling up of vacancies 

as the projectile penetrates the solid. From a rough exponential fit we may deduce that after a 

penetration length of about 95±10 μg/cm2 half of the ions have lost their initial K vacancy. Due to the 

large systematic uncertainties in absolute cross sections this value is still in acceptable agreement with 

the half thickness (190±10 μg/cm2) extracted from the intensity ratios above. Moreover, a slight 

decrease is observed also for the Au-K x-rays probably due to the K-K vacancy sharing.  

 

4.4        L X-RAY EMISSION IN U q+ - Au COLLISIONS  

 

4.4.1 The L x-ray spectra 

 

The L x-ray spectra from the collision partners U and Au were recorded by the Si(Li) detector 

and both the Ge(i) detectors “A” and “B” (refer Fig. 4.2 and Section 4.2 ). The spectra were analysed 

mainly by the Si(Li) detector placed at 135° (off plane) with respect to beam direction for the reasons 

mentioned in Chapter 3,  Section 3.3.  Fig. 4.12 shows the L x-ray spectra recorded by the Ge(i) “A” 

detector for U86+-ions incident on Au targets of various thicknesses (t = 18, 50 and 170 µg/cm2). The 

top most spectra has to be compared with the corresponding one in Fig. 4.13 for U86+-ions incident on 

170 µg/cm2 Au target recorded by the Si(Li) detector. A comparison of these two spectra reveals the 

advantages of the Si(Li) detector’s resolution over the Ge(i). The U-Lα1 line visible separately in the 

Si(Li) spectra is merged with the Au-Lβ1 line in the Ge(i) spectra. Due to the different observation 

angles, 135° for Si(Li) (off-plane) and 120° for Ge(i) (in-plane), the projectile x-ray lines are observed 

with different Doppler shifts and hence different energies in the two spectra. The L x-ray spectra are 

interpreted with respect to both the incident charge state (q) effect as well as the target thickness (t) 

effect on the spectra.  
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Fig. 4.12 The L x-ray spectra for U86+-ions incident on Au targets of various thicknesses (t = 18, 50 and 170 
µg/cm2) recorded by the "A" Ge(i) detector positioned in-plane at 120°. The characteristic lines for both U and 
Au are marked. 

 

4.4.2 Shift in the energy of the L x-ray transitions 

 

Effect of the projectile incident charge state (q) 

 Fig. 4.13 shows the L x-ray spectra recorded for the thickest Au target (170 µg/cm2) for all the 

incident charge states (q) of the Uq+-ion beam viz. (q = 73, 86, 88, 90 & 91).  Although the standard 

energy values [23] of both Au and U are such that only the Au-Lγ lines would overlap with the U-Lα 

lines, however due to the backward observation angle of 135° for Si(Li), the U-L x-ray spectra  almost 

completely overlap the Au-L x-ray spectra.  
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Fig. 4.13  A comparison of  L x-ray spectra for Uq+-ions (q = 73, 86, 88, 90, 91) incident on the thickest Au 
target (170 µg/cm2) recorded with the Si(Li) detector. The solid and the dashed lines indicate the shift of the U-
Lα and U-Lβ1 lines towards higher energies. The dash-dot and the dotted lines show the near constant energy 
of Au-Lα and Au-Lβ1 lines respectively. (The scale for normalized counts corresponding to q = 86 and 90 are 
indicated on the right). The counts are normalized relative to the number of ejectiles. 

 

The influence of q on the L x-ray spectra is evident from Fig. 4.13.  As q increases from 73 to 

91, a line which first appears merged with the Au-Lα line as a hump on the right side for q = 73, shifts 

progressively to higher energy values (shift being indicated by the solid line). This line is visible 

individually, only in the spectra corresponding to q = 86.  Probably only a x-ray line corresponding to 

the projectile can shift to higher energies as q increases and this line has been identified as the U-Lα. 

The distortion of the Au-L x-ray spectra due to the progressive shift of the U-L x-ray lines towards 

higher energies is evident from the spectra.  The Au-L x-rays do not show a pronounced shift towards 

higher energies with the increase in the charge state as is evident by looking at the dash-dot and dotted 
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lines passing through Au-Lα, Lβ1 respectively as compared to U-L x-ray lines. The strong increase in 

the centroid energy of the U-L x-ray transitions with increasing q, indicate the presence of increased 

number of projectile vacancies in L shell itself and partially in higher shells too. 

 

Fig. 4.14   Centroid energies (Eobs.) of L x-ray transitions as a function of the incident charge state (q) of the 
Uq+-ions, a) for Au-Lα,β1 in the laboratory frame (LAB) and b) for U-Lα in the emitter frame (E.F.). The 
corresponding standard values of Bearden (Eo) [23] have been indicated by solid lines in the uppermost plot. 
Au target thickness (t) is in µg/cm2. The lines through the data points are drawn to guide the eye. Statistical 
errors are smaller than the size of the symbols. 

 

The centroid energies of Au-Lα,β1 x-ray transitions in the laboratory frame (LAB) and of U-

Lα in the emitter frame (E.F.) as a function of the incident charge state (q) have been shown in Fig. 

4.14 a) and b) respectively. The energies have been plotted for all the three Au target thicknesses 

investigated (18, 50, 170 µg/cm2). The standard values Eo [23] for the energies of these x-ray 

transitions have been indicated by solid lines in the plot corresponding to 18 µg/cm2 Au target. The 

systematic errors in U-Lα energies are larger than the ones for Au-Lα due to the uncertainty in the 

detector’s observation angle.   
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As has also been observed for the K x-rays, the Au-Lα, Lβ1 are observed at higher energies 

with respect to standard values confirming multiple ionization. The same is also true for U-Lα, 

however the shifts are larger due to the presence of projectile L vacancies. As shown already in Fig. 

4.14, the centroid positions of U-L x-rays show appreciable q dependence, increasing with increase in 

q.  

 
Fig. 4.15 Relative shift (Eobs.-Eo)/Eo in L x-ray transitions (centroids) with respect to and normalized to 
standard values (Eo) [23] as a function of the incident charge state (q) of the Uq+-ions, a) for Au-Lα,β1 in the 
laboratory frame (LAB) and b) for U-Lα in the emitter frame (E.F.). Au target thickness (t) is in µg/cm2. 
Statistical errors are smaller than the size of the symbols. Lines are drawn to guide the eye. Note the 
drastically different scales for the Au and U. 

 

The relative shift (Eobs.-Eo)/Eo with respect to and normalized to standard values (Eo) in the 

centroids of Au and U-L x-ray lines are shown respectively in Fig. 4.15 a) and b) as a function of the 

incident charge state q for all Au target thicknesses investigated.  It can be observed that the relative 

shifts for U are appreciably stronger than that for Au. As mentioned in Section 4.3.1, the Eikonal 

approximation [53] predicts that the cross section for capture from the Au-L shell to the U-M shell is 

maximum. The excitation and/or ionization of the target L-shell along with the capture of its electrons 
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to the outer shells of the projectile is probably one of the reasons for the production of the vacancies 

in the target L-shell. Due to fast electron rearrangement in the outer shells of the target atom, multiple 

ionization is less pronounced as compared to that in the outer shells of the fast projectile. Hence for 

the target (Au), the centroid positions are less affected by the presence of vacancies in the projectile in 

the incoming channel of the collision. 

It is observed that the L x-ray intensity for U is comparatively  very less intense U-Au, 

possibly it also indicates that electrons captured to the M and N shells of U are probably reionized 

quickly leading to fewer transitions to the L shell. The higher shifts observed for the projectile are 

caused by its higher ionization which survives the collision partially. For an incoming K vacancy, a 

further drastic increase in the shifts is observed due to the change in inner shell screening.  

 
Fig. 4.16 a) A comparison of L x-ray spectra depicting the centroid positions of x-ray transitions with 
increasing Au target thicknesses (t = 18, 50 and 170 µg/cm2)  for U86+-ions, The counts are normalized relative 
to the number of ejectiles. The scale for normalized counts corresponding to t = 50 is indicated on the right 
axis. As in Fig. 4.13, the solid and the dashed lines indicate the positions of the U-Lα and U-Lβ1 lines 
respectively. Those for Au-Lα and Au-Lβ1 lines are indicated by dash-dot and dotted lines respectively. 
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Effect of the target thickness (t) 

Fig. 4.16 a) and b) depict the L x-ray spectra of U86+- and U91+-ions incident on Au targets (for 

all the different thicknesses investigated) respectively. The spectra do not display a pronounced shift 

in the centroid energies of the intense lines such as either the Au-Lα or the U-Lα. The solid and the 

dashed lines indicate the positions of the U-Lα and U-Lβ1 lines respectively. Those for Au-Lα and 

Au-Lβ1 lines are indicated by dash-dot and dotted lines respectively. Any possible dependences on the 

target thickness cannot be inferred from the spectra.  

 
Fig. 4.16  b) Same as Fig.4.16 a) but for U91+-ions.  

 

Fig. 4.17 shows the centroid energies of Au-Lα,β1 in the laboratory (LAB) frame and U-

Lα in the emitter frame (E.F.) as a function of ‘t’ the target thickness. Within the large uncertainties 

the Au-Lα,β1 do not indicate any ‘t’ dependence in their energies and so do U-Lα. This observation 

is similar to that for target thickness dependence of K x-ray transitions (Section 4.3.2, Fig. 4.7). Fig. 

4.18 depicts the relative shifts in the centroid energies of Au-Lα,β1 and U-Lα as a function of ‘t’ and 

the observations of Fig. 4.17 are reiterated here. Systematic errors (less than 10%) are not shown in 

the above figures. 
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 Fig. 4.17 Centroid energies (Eobs.) of Au-L x-ray transitions in the laboratory frame (LAB) and of U-Lα in 
the emitter frame (E.F.) as a function of the Au target thickness (t). Lines through the data points are drawn to 
guide the eye. Systematic errors (<10%) are not shown here.   
 

 
Fig. 4.18 Relative shift (Eobs.-Eo)/Eo in L x-ray transitions (centroids) with respect to and normalized to 
standard values (Eo) [23] as a function of Au target thickness (t) for Au-Lα,β1 in the laboratory frame (LAB) 
and for U-Lα in the emitter frame (E.F.). Statistical errors are smaller than the size of the symbols. Main 
uncertainties are due to systematic errors (<10%, not shown here).  Lines are drawn to guide the eye. Note the 
different scales for U-Lα and that for Au-Lα,β1. 
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4.4.3 Intensity ratios for L x-rays 

 

 The utility of x-ray line intensities ratios in investigating the relative population of the levels 

from where they originate has been discussed in the Section 4.3.3 for the K x-ray transitions of the 

collision partners. Following the formula given in Section 3.3.5 (ii) of Chapter 3 the L x-ray intensity 

ratios of U and Au have been deduced from the spectra for the higher intensity lines only such as 

Lα,β1 for Au and Lα for U. Fig. 4.19 shows the projectile incident charge state (q) dependence of the 

intra-partner and inter-partner intensity ratios viz. Au-Lα/Αu-Lβ1, U-Lα/Αu-Lα for all the target 

thicknesses investigated. The corresponding single hole values by Scofield [64] have also been 

indicated the figure as [Scof.]. The former ratio has a higher value and the latter a lower value 

compared to the single hole values. 

 

Fig. 4.19   Measured intensity ratios (intra partner and inter-partner) for L x-ray transitions of the projectile 
(U) and target (Au) as a function of the projectile incident charge state (q). The corresponding single hole 
values by Scofield [64] have been indicated in the figures as [Scof.]. Lines through the data points are drawn 
to guide the eye. 
 

 Within the experimental uncertainties Au-Lα/Αu-Lβ1 do not show any q dependence for the 

closed K-shell case (q ≤ 90). However for the open K-shell (q = 91) the ratios decreases implying a 
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preference of M4-L2 transition (Lβ1) over M4,5-L3 (Lα) transition. This further indicates a preference 

of L2-K transition (Kα2) over L3-K transition (Kα1) which has been indeed found to be the case (see 

Fig. 4.8). The loss from Au L-shell is probably more from the L3 subshell than the L2 subshell in the 

latter case. Compared to the neutral atom case (Scofield values) L3 vacancy production seem to be a 

lot more efficient than the L2 one. 

 

Fig. 4.20   Measured intensity ratios (intra partner and inter-partner) for L x-ray transitions of the projectile 
(U) and target (Au) as a function of the target thickness (t) in µg/cm2. The corresponding single hole values by 
Scofield [64] have been indicated in the figures as [Scof.]. Lines through the data points are drawn to guide 
the eye. 
   

 Fig. 4.20 shows the above mentioned intensity ratios of Fig. 4.19 as a function of target 

thickness. Both the intra-partner or inter-partner intensity ratios show no explicit ‘t’ dependence 

except for U-Lα/Au-Lα for q=91, an observation similar to the one for the  K x-ray intensity ratios 

(see Fig. 4.9). For q=91 a slight decrease is observed in this ratio with increasing ‘t’. As ‘t’ increases 

there is a gradual filling up of U-L shell vacancies leading to decreased U-Lα emission. However 
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indeed interesting to note that after about 200 µg/cm2, half of the projectiles have changed their 

relevant electron/vacancy distribution. 

 

4.4.4 L x-ray emission cross sections 

 

The L x-ray emission cross sections have been calculated from the measured L x-ray yields, 

efficiency of the Si(Li) corresponding to the L x-ray line energies, its solid angle and the solid angle 

transformation required for the projectile x-rays, known target thicknesses, number of normalizing 

ejectiles measured by the particle detector and the dead time correction required for the Si(Li) and the 

data acquisition system. The formula used was the one discussed in Section 3.3.5 (iv), Chapter 3. As 

has been noted by Fig. 4.13 and 4.16 the U-L x-ray spectra are almost completely overlapped by the 

Au-L x-ray spectra. Hence emission cross sections for only Au-Lα and U-Lα  can be calculated with 

reasonable uncertainties although the entire spectrum was deconvoluted into U- and Au-L x-ray lines. 

 

Fig. 4.21  Lα  x-ray emission cross sections of Au (part a) and U (part b) as a function of incident charge state 
(q) of the Uq+-ions for all target thicknesses (t, in μg/cm2) investigated. Lines are drawn through the Au data 
points to guide the eye, for U data for t=170 has been fitted linearly to show the decrease of cross sections.  
 

72 76 80 84 88 92
102

103

104

72 76 80 84 88 92
102

103

104

b)   Incident charge state (q) of Uq+-ionsa)    Incident charge state (q) of Uq+-ions

 t = 18
 t = 50
 t = 170

 

Au-Lα

 
 

σ 
in

 k
ba

rn

Uq+   Au (t in µg/cm2)

 t = 18
 t = 50
 t = 170

 

U-Lα

 

 



 74 

Fig. 4.21 a) and b) shows the x-ray emission cross sections of Au- and U-Lα as a function of 

the incident charge state (q) respectively. The data has been plotted for all the target thicknesses 

investigated. One can observe a slight increase in the Au-Lα for q=91, as compared to its value for q 

= 86, 88 and 90. For t=170 µg/cm2, one may observe that Au-Lα shows a slight decrease with 

increasing q, increasing again for an open U-K shell. On the other hand U-Lα  cross sections display a 

definite q dependence, decreasing with the increase in q.  Presently, the decrease is difficult to 

explain. However looking at the comparable cross sections for U and Au, electron capture seems to be 

a dominant process especially from Au-L to U-M shell leading to L x-ray emission in both the 

partners. The extent to which the matching of the K- and L-shells changes and hence the cross 

sections has to be investigated further. Moreover, an excitation of available projectile L electrons to 

higher shells in distant collisions may contribute to the U-L emission and its decrease with increasing 

initial charge state.  

 
Fig. 4.22 Lα and Lβ1 x-ray yields (cross sections) of Au (part a) and U (part b) as a function of target 
thickness (t) corresponding to q = 73, 86, 88, 90 and 91.  Lines through the data points are drawn to guide the 
eye. 
 

 

Fig. 4.22 depicts the x-ray cross sections of Au-Lα,β1 and U-Lα in part a and b respectively, 

as a function of the Au target thickness (t) corresponding to all the charge states investigated. Both 
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Au-Lα,β1 and U-Lα show a decrease in the yield with increasing target thickness. A comparison of 

Fig. 4.22 with that of Fig. 4.11 (for K x-ray transitions) may indicate that both K and L x-rays show to 

some extent a similar trend for initially closed K-shell projectiles; however, the thickness dependence 

is stronger for the L x-ray emission. The reasons for this observation are not fully understood, and the 

effect has to be investigated further in the future, the self absorption in the target may play a role here. 

Here, additionally solid state effects as e.g. surface effects or the built up of wakes in the bulk may 

contribute (see e.g. [94]). However, this part is not important for our main goal, the study of 

quasimolecular inner shell processes.  

 

4.5 CHARGE EXCHANGE CROSS SECTIONS 

 

The process of electron capture has been discussed in Chapter 2. Since a charge state 

distribution was not measured, the charge exchange cross sections could only be calculated either by 

using model approximations or deduced from the projectile x-ray emission cross sections for 

projectiles having incoming K vacancies. During distant collisions, the U91+-ions (incoming projectile 

K-vacancy) capture electrons in the outer shells. Fig. 4.23 gives a graph of electron capture cross 

sections deduced from x-ray emission cross sections, by the Eikonal approximation of Eichler [53] 

and the semi-empirical, non-relativistic, scaling prescription for non radiative capture (NRC) by 

Schlachter et al. [50].  

The curves indicate the distribution of cross sections corresponding to electron capture from 

the different Au-shells (K, L, M and N) to various empty U-shells (K to T). The total of σcap from Au 

shells (K to N) to a particular U-nth shell (K to T, to be read from abscissa) is also depicted ((#) thick 

solid line). A total of cross sections from a Au-nth shell (K, L, M and N to be read from top axis) to U 

K to T shells has been also shown ((*) thin solid line). It can be observed that the probability of 

capture is maximum from the Au L- and M-shells. This suggests that electrons are preferentially 

captured to the M- and N-shells of U with a maximum for the U-M shell. Values for total electron 

capture cross section according to the semi-empirical, non-relativistic scaling prescription for non 

radiative capture (NRC) by Schlachter et al. [50] have also been included for Uq+ (q = 86 to 91) and 

they do not vary much with q. Values of σ L
cap and σ M

cap  deduced from x-ray emission cross sections 

are indicated in the figure along with σ Tot
cap . The K emission cross sections for open incoming K-shell 

(q = 91) corresponding to “zero” target thickness were used for determining the σ Tot
cap . This 

corresponds to the sum of all U-K x-ray cross sections extrapolated to the value corresponding to a 
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single collision i.e. “zero” target thickness (details below). For closed incoming projectile K-shell 

(q=73 to 90), the measured U-L x-ray emission cross sections provide an estimate of the capture into 

U M-shells (for higher lines into N, .. , .. shells). 

 

Fig. 4.23 Shell differential electron capture cross sections vs. the atomic shells of the projectile (U) calculated 
theoretically and from experimentally measured values. The curves signify the distribution of the cross sections 
according to Eikonal [53] from Au K, L, M and N shells to various projectile shells (shown on the abscissa) 
and their total. (#):-σ Tot

cap from Au K, L, M and N-shells to a U-nth shell (K to T) (to be read from abscissa). 

(*):-σ Tot
cap from a Au-nth shell (K to N) (to be read from axis on top) to all U-shells (K to T). The Schlachter 

[50] values are a total for q = 86, 88, 90 and 91. The experimentally determined values of σ L
cap , σ M

cap
 and 

σ Tot
cap from x-ray emission cross sections (Kα1,2,β1,2  for q = 91and Lα,β1 for q<91) are also included. 

 
 
 Estimating the U-Lα and U-Lβ1 cross sections for single collision conditions i.e. corresponding to 

‘t=0’ and summing up, the σ M
cap  is calculated to be about 2.2 Mb (closed incoming K-shell). For an 
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values for the closed case (q=73 to 90) as part of the captured M-shell electrons decay directly to the 

K-shell (leading to U-Kβ emission). This reduction can be calculated from the cross sections for U-

Lα as a difference between its values at q=73 to 90 and that corresponding to q=91. The σ M
cap -

reduction is thus estimated to be about 0.5 Mb. These results provide an estimate of projectile 

subshell population. For a predominance of single capture with an open U K-shell, it is expected to 

find an increase in the shifts in centroid energies of L x-rays which is indeed the case (see Fig. 4.14, 

4.15). The U-K radiation for an open incoming K-shell comprises also capture to U-L and higher 

shells (including cascades). The U-Kα1 cross section corresponding to its value for t=0 provides an 

estimate. In order to account for all the K x-ray decay channels i.e. α1, α2, β1, β2 a multiplicative 

factor, maximum of about “3” (see Table 6.2) has to be taken into account. This yields a total capture 

cross section of σ Tot
cap = 2.7 Mb. Subtracting the U-L cross sections i.e. σ M

cap  (including the 

reduction) from σ Tot
cap , one gets the capture to the U-L shell i.e. σ L

cap = 2.7-2.2+0.5= 1.4 Mb. Above 

are shell differential results deduced from measured x-ray cross sections.  

 
Table 4.2 Total electron capture cross sections for 69 MeV/u Uranium on Gold target calculated by 
Schlachter et. al. formula [50], the Eikonal approximation [53] and the  values  determined from measured 

projectile x-ray emission cross sections.  The 
L
capσ , 

M
capσ represent the calculated cross section for electron 

transfer from  target K to N shells into the projectile L and M shells  respectively. )1(Tot
capσ  represents the 

electron capture  from the  target K to N shells into the projectile K to N shell. )2(Tot
capσ  is the electron 

capture cross section from the target K to N shells into  all  K to T projectile shells.  The experimental values 
XExpt

cap
−σ  are deduced from the projectile x-ray emission yields.        

 

Projectile 

incident 

charge 

state 

(q) 

Th
capσ in Mb  

XExpt
cap

−σ   in Mb 

Schlachter et 

al. [50] 
Eikonal approximation   [53] L

capσ  
M
capσ  

Tot
capσ  L

capσ  
M
capσ  

Tot
capσ  

    (1) 

Tot
capσ  

   (2) 
91 3.67  1.23  3.12  7.39  14.6  1.41 ± 0.7 2.2 ± 0.5 2.7 ± 0.1 

90 3.59         

88 3.27         

86 2.33         
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Table 4.2 gives the electron capture cross sections calculated by the Eikonal approximation, 

by the semi-empirical prescription of Schlachter et al. [50]  and σ L
cap , σ M

cap
 and σ Tot

cap deduced from 

measured x-ray emission cross-sections. It is to be noted that σ Tot
cap estimated through U K x-ray 

emission cross sections (for open K-shell in the entrance channel) can only reflect one electron 

capture. In case there is multi electron capture or successive capture in different collisions, it will be 

reflected in σ M
cap  which is capture into M and higher shells. Within our experimental uncertainties the 

total capture cross section is comparable to the value by Schlachter. A total of the Eikonal cross 

sections for capture from Au K-, L-, M- and N-shells to U-shells (K-T considered) yield a value of 

14.6 Mb. The Bohr’s criterion of vion= ve, shows that the collision velocity is already larger than the 

velocity of electrons in the U-M shell. Hence, some of the electrons captured to the M-shell are 

probably reionized quickly by further collisions if they do not cascade down via the L- to K- shell. 

All the shells above U-M are probably vacant and hence the bulk of the curves for O and higher 

shells can be safely neglected (shaded rectangle at the bottom of the figure) in calculating the total 

capture to U nth-shell. According to Eikonal, the total capture from Au (K- to N-shells) to U K- to N-

shells (column 1) yields a value of 7.39 Mb which is more than double the value of σ Tot
cap deduced 

from x-ray emission cross sections (2.7±0.1 Mb). The value of σ L
cap determined from x-ray emission 

agrees well with the predictions of Eikonal (solid line), however Eikonal overestimates the 

experimental σ M
cap . These values provide only a general picture of the capture process in the slightly 

asymmetric collision system under investigation and more accurate data are required for a rigorous 

comparison. 

Although Eikonal predicts a maximum capture to the U-M shell, U-Kβ1 (M3-K transition) has 

not been observed with appreciable intensity for all q = 73 to 90 (Fig. 4.3 and 4.4). For q = 73 to 90 

this K-decay channel is closed and the L radiation provides the requisite information. The U-Lα 

emission cross section is in the order of 1.2 Mb indicating capture to the U M-shell and its cascading 

(cf. Figs. 4.21 and 4.22). Additionally, it can be seen from Fig. 4.21 that the Au-L emission is 

considerably larger (from a factor of about 3 to an order of magnitude) than the U-L emission. 

However, it is comparable in magnitude to that of U-Kα manifesting the capture from the Au-L shell 

and further indicating that for the Au-L shell ionization is the dominant channel compared to loss to 

the projectile (capture). Moreover, the Eikonal approach is known to overestimate cross sections for 

the considered case. 
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CHAPTER  V 
 

A NEAR SYMMETRIC SUPERHEAVY COLLISION SYSTEM: Biq+- Au 

 

5.1  INTRODUCTION 

 

Based on the exploratory studies described in Chapter 4 for a slightly asymmetric, 

superheavy collision system, the present investigation applies refined experimental techniques to 

study under equivalent conditions, a near symmetric superheavy collision system. The new system of 

Bi-ions (Z1 = 83) bombarding on Au target (Z2 = 79) has a nuclear charge of the united atom (u.a.) 

[7] as Zu.a. = Z1+Z2 = 162. In this study the ejectiles behind the target were charge state analysed 

magnetically and additionally a granular x-ray detector was used to reduce the uncertainties caused 

by the Doppler effect on the x-ray energies (broadening, line overlap and shifts) without reducing the 

total detection solid angle. As for the asymmetric collision case, the initial aim of this study was to 

confirm  the previous observation that an incoming inner shell projectile vacancy will survive with a 

high probability the penetration of thin layers of solid matter and hence, those projectiles colliding 

with thin target foils can be used for exploring superheavy quasimolecules.  Consequently, the first 

goal was to deduce the charge state evolution and charge exchange cross sections of a relativistic 

heavy ion (Biq+) penetrating through a very thin solid foil (Au). The charge state evolution in a solid 

target depicts to some extent the conditions for the incoming channels, for quasimolecular collisions 

inside the solid as a function of penetration depth. Further, the charge exchange cross sections could 

be correlated with x-ray emission cross sections determined for the collision system. The central goal 

of an elucidation of coupling mechanisms of inner shells in the superheavy quasimolecules was 

subsequently fulfilled. Collisions with a projectile having an incoming K vacancy (Bi82+) were of 

particular interest as this implies a high charge state far off the equilibrium. For close collisions and 

inner shells (K) the adiabatic collision regime prevails as the adiabaticity factor η for K-shells [ηΚ = 

(vion/vK-e)2] ≤ 0.5.  In the present investigation in contrast to the one reported in Chapter 4, more 

targets of different thicknesses were used at the cost of fewer charge states studied.  

  

5.2 EXPERIMENTAL DETAILS 

 

A general description of the experimental set-up with the details regarding the position of 

targets and detectors has been given in Chapter 3, Section 3.2.2. A charge state selected Biq+-ion 
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beam (q = 82, 81 or 77) of 69.2 MeV/u was well collimated before it bombarded on thin Au targets 

with thicknesses (t) of 21, 42, 79, 150 and 225 µg/cm2 (the thinnest ones, 21 and 42 µg/cm2 targets 

had ultra thin carbon backings of 11 and 12 µg/cm2 respectively). The Au layer faced the incoming 

beam.  

A schematic diagram of the experimental set-up with a top view is shown in Fig. 5.1 and a 

photograph of the same is shown in Fig. 5.2. The target foils were positioned perpendicular to the 

beam direction. The emitted projectile and target x-rays emitted were detected by two intrinsic Ge 

detectors (mainly for the K x-rays) and by a Si(Li) detector (for the L x-rays). Following the G2 

geometry mentioned in Chapter 3, Section 3.2.2, the Ge detectors, a normal and a granular one were 

positioned in one plane (on both sides of the beam axis) at 60ο (forwards) to the beam direction and 

the Si(Li) detector was positioned at 45ο, off plane relative to the two  Ge detectors  (the latter shown  

 

 
Fig. 5.1 A top view of the schematic experimental set up with the two Ge(i) x-ray detectors, the magnet 
spectrometer and the position-sensitive, CVD-diamond particle detector at position P2. The granular 
arrangements (stripes) for the 7-Ge(i) and the CVD detector are indicated at the bottom. The spectra shown 
on the CVD is the charge state distribution of the ejectiles. The alternate position for the particle detector 
“SEETRAM” is shown. 
 

only in Fig. 5.2). Both the germanium detectors had aluminium absorbers of 500 µm and 1 mm 

thicknesses respectively in front to reduce the high count rate of the L x-rays as compared to the K x-

rays of main interest. The single crystal Ge detector [Ge(i)] had a 4 mm thick Ta collimator with an 

aperture of 5.8x38 mm2. The 7-Ge(i) detector (an enlarged front view is shown at the bottom right in 

Fig. 5.1) had its observation angles (polar) in the range of 53.9ο to 74.2ο. Each stripe had an 



 81 

observation angle of 3.6ο. The active solid angles of the Ge(i) and the whole of the 7-Ge(i) detector 

were 0.049 sr and 0.199 sr respectively (0.4% and 1.6% of 4π respectively). Each stripe of the 7-

Ge(i) subtended a much smaller solid angle of 0.029 sr (0.2 % of 4π).  

 

 
 
Fig. 5.2 A photograph of the target area for the experimental set-up showing two Ge(i) x-ray detectors, the 
Si(Li) x-ray detector on the right hand side (the beam is coming from top right); the magnet spectrometer and 
the position of the CVD-diamond particle detector after the magnet spectrometer is shown on the left side at 
the bottom. An enlarged view of the particle detector has been shown in the inset (top left).  
 

 

Fig. 5.3 A schematic diagram of the 7-Ge(i) x-ray detector showing the observation angles of each stripe.  
Detector specifications are indicated on the right and the Doppler correction values are indicated on the left.  
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Fig. 5.3 shows a detailed schematic diagram of the 7-Ge(i) detector and the observation 

angles of each stripe. The values of β and γ required for the calculation of the Doppler correction 

factor (E0/Elab) are also indicated in the figure (see Section 3.3.3, Chapter 3). The standard Ge(i) 

detector was used mainly for a check on the redundancy of the data. Its large solid angle allowed the 

measurements at much higher statistics compared to any single stripe of the 7-Ge(i). However, the 7-

Ge(i) detector had an advantage over the Ge(i) regarding the smaller solid angle opening of each 

stripe as well as the unique possibility of using the phenomenon of angle dependent  Doppler shift to 

deconvolute the projectile K x-rays from the target K x-rays separately. The details are discussed in 

Section 5.3.1. Fig. 5.4 shows a complete x-ray spectra recorded by the 1st, 4th and 7th stripes of the 7-

Ge(i) detector for Bi77+-ions incident on 42 µg/cm2 Au target. The regions of Bi-K and Bi-L x-rays 

and Au-K x-rays have been indicated in the figure. More details of the spectra follow in the 

subsequent sections. 

 
Fig. 5.4  X-ray spectra recorded by the 1st, 4th and 7th stripes of the 7-Ge(i) detector for Bi77+-ions incident on 
42 µg/cm2 Au target in the laboratory frame. Counts are not normalised to the ejectiles. The regions of Bi-K, 
Bi-L and Au-K x-rays have been indicated in the figure.  
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The Si(Li) detector had an opening of 2.8ο for the observation angle and a solid angle of  

0.006 sr (0.04% of 4π), it was mainly used for the detection of the L x-rays of the collision partners 

discussed in Section 5.4. The ejectiles after being charge state analyzed by a magnet spectrometer 

were detected by the one-dimensional, position-sensitive CVD-diamond particle detector the details 

of which have been already given in Chapter 3 Section 3.2.3 (ii), and a photograph of the same in 

Fig. 3.7 a). The charge state distributions and their evolution with the target thickness measured 

using this detector as well as charge exchange cross sections are presented in Section 5.5. 

 

5.3 K X-RAY EMISSION IN Bi q+- Au COLLISIONS 

 

5.3.1 The K x-ray spectra 

Fig. 5.5 a) shows the K x-ray spectra (in logarithmic presentation) measured in the laboratory 

system by the different stripes of the 7-Ge(i) detector for Bi82+-ions incident on the thinnest Au target 

(21 µg/cm2). Considering the previously treated asymmetric case, the Bi-K emission is expected to 

overwhelm the target K emission due to the initially open projectile K-shell. The x-ray peaks for Au-

Kα2 and Au-Kα1 transitions of the target which is stationary in the laboratory frame display the same 

energy for all the stripes of the detector. Those for Bi-Kα1,2 and Bi-Kβ1, Kβ3,5,2,4 are moving in the 

laboratory frame and appear at different energies in each stripe because of the observation angle 

dependent Doppler shift (for details see Chapter 3 Section 3.3.3). The laboratory frame spectra of 

Fig. 5.5 a) are corrected for Doppler shift and depicted in Fig. 5.5 b). In this representation the 

projectile (Bi) K x-rays are observed at the same energy in the moving (emitter) frame and hence 

coincide for all the stripes. The x-ray peaks for the Bi are observed as broadened due to the Doppler 

effect.  

For all ‘q’ and ‘t’ combinations investigated, the projectile K x-ray spectra observed in the 

laboratory frame overlapped those of the target K x-rays for certain stripes of the detector (stripe 2 to 

stripe 7), for e.g. the Au-Kβ x-rays are overlapped by the Bi-Kα1,2 x-rays in Fig. 5.5 a) for stripe 4 

onwards. For such cases the non-overlapped spectrum of Au target K x-rays observed in stripe 1 was 

considered as a reference spectrum and a non-overlapped  spectrum for Bi K x-rays in stripe 2 to 7 

was obtained by subtraction of the reference spectrum from each stripe spectrum (except stripe 1). 

Hence two separate set of spectra were obtained, one each for Au and Bi in the laboratory frame. The 

Bi K x-rays were then corrected for Doppler shift as shown in Fig. 5.5 b). The spectra obtained by 

the above two methods were added up independently resulting in separate emitter frame K-spectra 

for each collision partner. A total yield for the Au and Bi K x-rays was then deduced for all the ‘q’ 
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and‘t’ combinations investigated. The use of the 7-Ge(i) detector thus enabled a very clear separation 

of the projectile x-ray spectra from the target x-ray spectra. Such a possibility did not exist with any 

single crystal Ge(i) detector used in this experiment as well as with the previous experiment of Uq+-

ions incident on Au (discussed in Chapter 4). From Fig. 5.5 it is clear that for q = 82 (open K-shell of 

the projectile) the Au-K x-rays are observed to have a much smaller intensity as compared to the Bi-

K x-rays.  

 
Fig. 5.5 a). K x-ray spectra (log. scale) measured in the laboratory frame (LAB) by different stripes of the 7-
Ge(i) detector for Bi82+-ions incident on 21 µg/cm2 thick Au target on a carbon backing of 11µg/cm2. b) The 
spectra shown in a) are depicted here in the emitter frame (E.F.) of the projectile after being corrected for 
Doppler shift. Counts are not normalised to the number of ejectiles. 

 
 
Fig. 5.6 shows the laboratory frame K x-ray spectra (in linear representation) for Bi81+-ions, 
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is identical to that of Fig. 5.5 a). The dashed lines in Fig. 5.6 indicate the position of the target x-rays 

and the slanted dotted lines represent the position of the projectile x-rays moving towards lower 

energies for greater observation angles of the stripes (with respect to the beam direction). A 

comparison of Fig. 5.5 and 5.6 (log. and lin. representation respectively) reveals that the x-ray 

emission from Biq+-Au collision system depends significantly on the incident charge state ‘q’ of the 

projectile as in the asymmetric case discussed previously.  

 
Fig. 5.6  K x-ray spectra (laboratory frame) measured by the 1st, 4th and 7th stripes of the 7-Ge(i) detector for 
69.2 MeV/u Bi81+-ions incident on the 225 µg/cm2 thick Au target.  
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(q = 82) condition. For q = 82, the copious emission of Bi-K x-rays relative to the Au-K x-rays has 

been mentioned above. So there is a reversal in the relative intensities of the projectile and target 

while moving from a closed to an open K-shell condition of the projectile. This observation is 

identical to that for U-Au collision system reported in Chapter 4 Section 4.3.1 

 

Fig. 5.7   A comparison of the K x-ray spectra for Biq+-ions with q = 82, 81 and 77, incident on 225 µg/cm2 
thick Au target. The counts are normalized relative to the number of ejectiles. (Note: for the spectra 
corresponding to q = 82, the scale is a factor of 16 larger than others).  
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(LAB) for Au and in the emitter frame (E.F.) for Bi respectively, as a function of the incident charge 

state (q) of the Biq+-ions.  

 

Fig. 5.8   Centroid energies (Eobs.) of K x-ray transitions as a function of the incident charge state (q) of the 
Biq+-ions. a) for Au-Kα1,α2 in the laboratory frame (LAB) and b) for Bi-Kα1,α2 in the emitter frame (E.F.). 
The corresponding standard values of Bearden (Eo) [23] have been indicated by solid lines in the lowermost 
plot. Thickness of Au target (t) is in µg/cm2. Statistical errors are smaller than the size of the symbols. The 
lines through the data points are drawn to guide the eye.  
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However in the present case, the observation angles are a lot more precisely known than in the 

asymmetric collision case (U-Au) treated in the previous chapter. It is because of the redundant 

information available from the x-ray granular detector [7-Ge(i)]. The total errors are smaller than the 

size of the symbols. 

It is clear from the figure that both the Au and Bi-Kα1,α2 x-ray transitions are observed at 

higher energies (Eobs) as compared to the standard values (Eo) [23]. For all ‘q’ investigated, the Biq+-

ion is multiply ionized in the incoming channel itself  having L shell vacancies in all cases and hence 

has a large number of outer shell spectator vacancies. During collision, the projectile seems to 

remember (to some extent) its initially high ionization in outer shells and hence the observed shifts in 

the x-ray transitions. The figure also points out to the creation of multiple vacancies in the upper 

levels (L, M, N etc.) of Au. The Bi-Kα1,α2 plot shows a more pronounced slope with increasing ‘q’ 

as compared to that of Au for all target thicknesses investigated. This observation is also identical to 

that of U-Kα1,α2 plots (Fig. 4.5 b).  

Just as for the U-Au collision system, relative shifts ((Eobs.-Eo)/Eo) provide more information 

for this collision system also. Fig. 5.9 shows these relative shifts for Au (part a) and for Bi (part b) as 

a function of ‘q’ for all ‘t’ investigated. The uncertainties in the values for Au are smaller than that 

for Bi for the reasons mentioned above, however, they are smaller than the size of the symbols in the 

figure for both Au and Bi. The lines drawn are linear fits to the data.  

The relative shifts in the Au- and Bi-Kα1,α2 x-ray lines are observed to become larger with 

increasing q. Bi-Kα1,α2 x-ray lines exhibit a stronger q dependence than Au x-ray lines. With 

increasing q, the Au-Kα1 and Bi-Kα1 x-ray transitions show a relative shift of 1.1-1.6 % and 1.5-2.5 

% respectively. The increase in the relative shifts of Au is about half as much as that for Bi indicating 

a correspondingly lower multiple ionization as compared to Bi. For the Kα2 lines there is a slightly 

smaller but quite similar behaviour as instead of p3/2, p1/2 electrons are involved in the transition. 

These observations are identical to that observed for U-Au collision system in Fig. 4.6 a), b), Chapter 

4. The reasons for this dependence have been explained there already and are valid for this collision 

system also.  

Here it is emphasized that for the Au targets, the relative shifts with their absolute values and 

slopes coincide (within the experimental uncertainties) for the symmetric (Bi-Au) and asymmetric 

(U-Au) collision case; this points to comparable multiple ionization in both collision cases. However, 

for the U-ion projectile case, a stronger dependence on ‘q’ has been observed than that for the Bi 

projectiles. For the U-ion case, the uncertainty caused by the observation angle (target position shift) 

yielded in unreasonable high shifts which were also not supported by the calculations of shifts (see 
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Fig. 4.5). From this observation and the more precise measurements of the Bi-Au case, it may be 

concluded that the relative U-ion shifts given (Fig. 4.6) should possibly be reduced by a factor of 0.6. 

Anyhow, it is clear that the projectile ions show a stronger relative shift (compared to the target 

atoms) and a steeper slope with q at the high charge states investigated for the reasons explained 

earlier. This is due to the greater initial ionization in the higher projectile shells surviving to some 

extent, collisions in the solid at the relatively high ion velocities.  

 
Fig. 5.9  Relative shift (Eobs-Eo)/Eo in K x-ray transitions (centroids) normalized to standard values (Eo) [23], 
as a function of the incident charge state (q) of the Biq+-ions,  a) for Au in the laboratory frame (LAB) and b) 
for Bi in the emitter frame (E.F.). Thickness of Au target (t) is in µg/cm2. Statistical errors are smaller than the 
size of the symbols. Lines drawn are linear fits to the data. 
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Fig. 5.10 Centroid energies (Eobs) of Bi- and Au-K x-ray transitions in the laboratory frame (LAB) as a 
function of the thickness (t) of the Au targets. Statistical errors are smaller than the size of the symbols. The 
lines through the data points are drawn to guide the eye.  
 

Fig. 5.10 depicts the centroid energies of Bi- and Au-K x-ray transitions as a function of the 

Au target thickness (t) in the laboratory frame. Within the experimental uncertainties a target 

thickness dependence of these Au- or Bi-K x-ray transitions could not be observed except possibly in 

the open K-shell case for Bi-K x-rays. This observation is also identical to that for U-Au collision 

system (Fig. 4.7, Chapter 4) and the inferences too: the ionization in higher shells seems to survive 

with a high probability while penetrating the solid target foils. 

 

5.3.3 Intensity ratios for K x-rays 

 

The reasons for the modification of the intensities of the K x-ray transitions have been 

discussed in Chapter 2 and 4. Assuming a single ionization of the target atom, branching ratios have 
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been calculated theoretically by Scofield [64] for a full occupation of the shells. A variation of the 

occupation numbers will change the intensity ratios correspondingly. Therefore a comparison of the 

measured K x-ray intensity ratios and the calculated branching ratios reveals how the intensity ratios 

of the K x-ray lines get changed due to multiple ionization and how the population ratio of the 2p1/2 

and 2p3/2 levels changes. The intensity ratios have been calculated using the formula given in Section 

3.3.5 (ii) of Chapter 3 and the overall uncertainties were ~10%. The ratios of only the intense x-ray 

lines i.e. Kα1,α2 of both Bi and Au have been calculated. Table 5.1 presents the average values for 

these for q ≤ 81, corresponding to closed, incoming, projectile K-shell and for q = 82, the open K-

shell of the incident Biq+-ions. Single hole values [64] have also been given in the table for 

comparison. The values have been averaged over all ‘q’ and ‘t’ investigated. 

 

Table 5.1 Average values of Bi and Au x-ray intensity ratios for closed (q ≤ 81) and open (q = 82) projectile 
K-shell in the entrance channel. Single hole values by Scofield [64] have been given for comparison. The 
experimental inter-partner ratios (1st line) are corrected for the relativistic solid angle transformation. 
 

                Charge state q 
Intensity ratio q ≤ 81 q = 82 Scofield [64] 

Bi-Kα1 / Au-Kα1 0.9 ± 0.1 23.7 ± 6.5 0.989 

Bi-Kα2 / Bi-Kα1 0.6 ± 0.1 0.9 ± 0.05 0.598 

Au-Kα2 / Au-Kα1 0.6±0.03 0.588 

 
 
 Fig. 5.11 shows the Bi and Au intensity ratios as a function of the incident charge state ‘q’ for 

all t investigated. The Bi and Au Kα2/Kα1 ratio does not show any q dependence and agrees 

reasonably well with the Scofield values (Table 5.1) except for the Bi Kα2/Kα1 ratio showing a 

slight q dependence on opening the incoming K-shell. Since this ratio reveals the population 

distribution of the 2p1/2 and 2p3/2 levels, it seems that this distribution is unaffected by the presence 

of vacancies in the incoming channel of the collision. For the open K-shell case, the projectile p3/2 

electrons seem to be more affected than the p1/2 ones. These observations and the following are 

identical to that observed for U-Au collision system. 

For a closed shell case (q = 77 to 81) the Bi-Kα1/Au-Kα1 ratio is slightly lower than the 

Scofield’s value and does not vary with q. For this case the relative population of 2p3/2 level of Bi 

seems to be almost the same as that of Au 2p3/2 level. The inner shell vacancies created during close 

collisions may be transferred to the Bi and Au-K shells in the outgoing part of the collision and it 

may influence this ratio additionally. The implications of this are discussed in Chapter 6. For an open 
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K-shell of Bi (q = 82), the Bi-Kα1/Au-Kα1 inter-partner ratio increases by more than an order of 

magnitude. This is also demonstrated by the K x-ray spectra shown in Fig. 5.7. A similar observation 

for U-Au collision system is reported in Fig. 4.8, Chapter 4. The reasons for increased Bi K emission 

have been explained above. As the experimental value is much larger than the Scofield value it 

indicates that a different production channel becomes available. The presence of a K vacancy there 

enables the observation of an electron captured to higher shells through its radiative decay to the K-

shell.  

 

Fig. 5.11   Measured intensity ratios (intra-partner and inter-partner) for K x-ray transitions of the projectile 
(Bi) and target (Au) as a function of the projectile incident charge state (q). The corresponding single hole 
values by Scofield [64] have been indicated in the figures as [Scof.]. 
 

Fig. 5.12 shows the measured Kα2/Kα1 intensity ratio for Bi and Au and the Bi-Kα1/Au-Kα1 
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collisions is not altered while the projectile penetrates through the thickness of the solid target. The 

Au ratios agree well with the single hole values pointing towards a similar population ratio in the 2p 

levels as in a singly ionized atom.  

 
Fig. 5.12 Measured intensity ratios (intra-partner and inter-partner) for K x-ray transitions of the projectile 
(Bi) and target (Au) as a function of the Au target thickness (t). The corresponding single hole values by 
Scofield [64] have been indicated in the figures as [Scof.]. 
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observed for U-Au collision system (Fig. 4.9). Since the high inter-partner ratio can be used as a 

measure for the existence of projectile vacancies, the decrease of this ratio gives directly the 

percentage of projectile ions losing their initial K vacancy with target thickness. From the 

0 20 40 60 80 100 120 140 160 180 200 220 240
10-1

100

101

102
0 20 40 60 80 100 120 140 160 180 200 220 240

10-1

100

101
0 20 40 60 80 100 120 140 160 180 200 220 240

10-1

100

101

[Scof.]

 q=82
 q=81
 q=77

 

 

Bi
-K

α 1/A
u-

Kα
1

Target thickness (t) in µg/cm2

Bi      Au(t), (t in µg/cm2)

[Scof.]

 

 

In
ten

sit
y 

ra
tio

s
Au

-K
α 2/A

u-
Kα

1

 

[Scof.]

 

Bi
-K

α 2/B
i-K

α 1



 94 

(exponential) decrease of this ratio, the thickness of the target corresponding to which half of the 

projectiles lose their initial K vacancy can be inferred. This yields a value of  about 230±30 μg/cm2. 

Here it is emphasized that these (intra spectra) intensity ratios are independent of any normalization 

problems. These estimations have been compared in Chapter 6 with other results. 

 

5.3.4 K x-ray emission cross sections 

 

The x-ray spectra were deconvoluted to yield Au K and Bi K x-rays separately by the 

procedure explained in Section 5.3.1. Total yields for the Au and Bi K x-rays were obtained by 

adding up the two set of spectra independently. The K x-ray emission cross sections for both Bi and 

Au were calculated by the formula discussed in Chapter 3, Section 3.3.5 (iv). 

 

Normalization procedure and dead time correction 

The x-ray yields of both Bi and Au have been normalized to the number of ejectiles recorded 

by the CVD-diamond particle detector which was used after the magnet spectrometer to measure the 

charge state distribution of the ejectiles. The total number of normalizing ejectiles was obtained from 

a sum of the intensities of all the charge state fractions for each charge state distribution 

measurement. The details regarding the procedure of obtaining the intensities have been covered 

later in Section 5.5 of this chapter. The dead time correction of the data acquisition system was much 

larger than the dead time of the individual x-ray detectors and corrections for the same were made by 

the same procedure as explained in Section 4.3.4 of chapter 4.  

 

Charge state dependence of the cross sections 

Fig. 5.13 shows the Kα1,2 emission cross sections as a function of the projectile incident 

charge state (q) for Au (part a) and Bi (part b) corresponding to all the Au thicknesses investigated. 

The Au- and Bi-Kα1,2, cross sections show a slight increase in the values for q = 81 (just closed 

projectile K-shell) relative to those for q = 77 (near equilibrium charge state). These observations are 

identical to the ones for U-Au collision system detailed in Section 4.3.4. The inferences drawn there 

are applicable to this collision system also. For q = 82 (open projectile K-shell), both the Bi and Au 

cross sections show a considerable increase relative to their values at q = 81. However, the increase 

in the Bi-Kα1,2 cross sections is dramatic. For q = 82, the increase in the Bi-K emission cross 

sections indicates a predominance of electron capture from the target to the higher projectile shells 

and their radiative stabilization to the K-shell, whereas the increase in Au-K emission gives access to 
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the vacancy transfer in the collision molecule. The electron capture cross sections for Bi-Au collision 

system is of the order of 1-2 megabarns and a  typical electron capture interaction distance has been 

estimated later in Chapter 6. The increase in the Au-K emission is of the order of 50 kbarns for an 

open K-shell condition. For this collision system inferences are not deduced for incoming L (j=1/2) 

vacancies in the projectile as it requires a larger number of data points for initial L-shell vacancies. 

All the observations are applicable for all the target thicknesses investigated. Estimation of 

interaction distances for K-K sharing are given in Chapter 6 along with further discussions and 

inferences.  

 
Fig. 5.13 Kα1 and Kα2 emission cross sections (top and bottom respectively) as a function of projectile 
incident charge state (q), a) for the target Au and, b) for the projectile Bi. Au target thicknesses (t) is in 
µg/cm2. 

 

Target thickness dependence of the cross sections 

Fig. 5.14 shows the Kα1,2 x-ray cross sections for the target Au (part a) and projectile Bi (part b) 

as a function of the Au target thickness (t). The cross sections for single collision condition can be 

obtained by an extrapolation of the shown values which are actually the absolute yields (a true cross 

section is known to be independent of target thickness). It can be observed that for an incoming K 

vacancy (q = 82), the Bi-K and Au-K x-ray cross sections decrease with increasing target thickness. This  
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Fig. 5.14 Kα1 and Kα2 x-ray yields (cross sections) top and bottom respectively, as a function of the target 
thickness (t) a) for the target Au and b) for the projectile Bi for all the charge states (q) investigated. The 
dotted line passing through Au and Bi-Kα1,α2 values for q = 82 are the exponential fits to extract the single 
collision cross sections.  

 

seems to be due to the gradual filling of the projectile K-vacancies in the solid target during passage 

in the bulk. The decrease for Bi-K cross sections is much steeper than that for Au. For Bi81+ (He-

like), comparatively only a slight decrease with target thickness can be observed; and for Bi77+ the 

data are not good enough to deduce a real variation with target thickness. Assuming an exponential 
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true, “single collision” cross sections are summarized in Table 6.1. A detailed interpretation and 

explanation is given in Chapter 6.  

 
5.4 L X-RAY EMISSION IN Bi q+-Au COLLISIONS 

 

5.4.1 L x-ray spectra 

 

Although the L x-ray spectra was recorded by both Si(Li) and the Ge(i) detectors, it was analysed 

only from the Si(Li) spectra. Strong absorbers had to be used in front of the Ge(i) detectors to cut out 

the high intensity of the low energy L x-rays. Moreover, thresholds of the amplifiers connected to 

these detectors had to be high in order to cut off the unwanted noise generated from the experimental 

electronics. In this process low energy x-rays (M x-rays) were partially cut out for certain stripes of 

the 7-Ge(i) detector. Spectra recorded by first, fourth and seventh stripes of the 7-Ge(i) detector for 

Bi81+-ions incident on 42 µg/cm2 target are shown in Fig. 5.15. These spectra, strongly suppressed by 

absorbers, are to be compared with a similar spectra recorded by Si(Li) for the same ‘q’ and ‘t’ 

shown in Fig. 5.16. Inferences from L x-ray spectra can be drawn by looking for the effect of varying 

‘q’ and ‘t’ on the energy shifts, intensity ratios and the x-ray emission cross sections for both the 

collision partners. 

 
Fig. 5.15 L x-ray spectra recorded by first, fourth and seventh stripes of the 7-Ge(i)  detector for Bi81+-ions 
incident on 42 µg/cm2 thick Au target in the laboratory frame. 
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5.4.2 Shift in the energy of the L x-ray transitions 

 

Effect of the projectile incident charge state (q) 

Fig. 5.16 shows a comparison of the L x-ray spectra for 42 µg/cm2 thick Au target 

bombarded by Biq+-ions for q = 77, 81 and 82 and Fig. 5.17 shows the same comparison but for the 

thickest Au target investigated i.e. 225 µg/cm2. The spectra depict the counts normalized relative to 

the number of ejectiles. The peaks of Au and Bi L x-rays are indicated in the figure. Because of  

 
Fig. 5.16  L x-ray spectra  (laboratory frame) for 42 µg/cm2 thick Au target bombarded by Biq+-ions for q = 
77, 81 and 82. The counts are normalized relative to the number of ejectiles. The dotted line shows the near 
constant energy of Au-Lα line. The solid, dashed, dash-dotted lines show the shift in the energy of the Bi-L x-
ray lines labelled in the figure. 
 

Doppler shift at 45° Bi-L x-rays are separated to a large extent from the Au-L. However, the Bi-Ll x-

rays are observed overlapped with Au-Lγ x-rays in the figure. The energy resolution of Si(Li) 

detector contributes to the observed composite peak of Lβ1,2,15 for both Au and Bi and as well as for 
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Bi-Lβ5,7,9,10. The Au and Bi-Lγ x-rays are not resolved clearly into separate peaks and are observed as 

mere humps. The Au and Bi-Mα x-rays have also been identified in the figures.  

 

 
 

Fig. 5.17 L x-ray spectra (laboratory frame) for 225 µg/cm2 thick Au target bombarded by Biq+-ions for q = 
77, 81and 82. The counts are normalized relative to the number of ejectiles. The dotted line shows the near 
constant energy of Au-Lα line. The solid and dashed lines show the shift in the energy of the Bi-L x-ray lines 
labelled in the figure. 
 

The Au target L x-rays are observed at almost the same energy for all the three spectra 

corresponding to q = 77, 81 and 82 in Fig. 5.16 and 5.17. No remarkable energy shift with increasing 

charge state ‘q’ is observed for these x-rays from the spectra. The dotted line in the figures 

demonstrates the near constant energy of the Au-Lα x-rays. The Bi-L x-rays on the other hand show 

a remarkable shift in energy towards higher values with increasing q. The solid line through the Bi-

Lα x-rays for q = 77 to 82 indicates the shift in energy exhibited by these x-rays with increasing q. 

Similarly, the dashed line depicts the energy shift experienced by the Lβ1,2,15 x-ray peak and the 

dashed-dotted line represents the same for Bi-Lβ3,5,7,9,10 x-rays.  

0 5 10 15 20 25 30
102

103

 

q = 82

  

101

102

103

No
rm

ali
ze

d 
co

un
ts q = 81

  

102

103

104 BiMα
AuMα

Bi Ll
AuLγ 

Bi Lβ1,2,15
AuLβ1,2,15

Bi Lβ3,5,7,9,10

Bi Lγ

AuLα Bi Lα q = 77
Biq+    Au (225 µg/cm2) 

 

 

 

X-ray energy in keV

+



 100 

 
Fig. 5.18   Centroid energies (Eobs.) of L x-ray transitions as a function of the incident charge state (q) of the 
Biq+-ions. a) for Au-Lα,β1 in the laboratory frame (LAB) and b) for Bi-Lα,β1 in the emitter frame (E.F.). The 
corresponding standard values of Bearden (Eo) [23] have been indicated by solid lines in the lowermost plot. 
Au target thickness (t) is in µg/cm2. The lines through the data points are drawn to guide the eye. Statistical 
errors are smaller than the size of the symbols. 
 

Fig. 5.18 shows the centroid energies of the Au and Bi-Lα,β1 x-ray peaks in the laboratory 

and emitter frame respectively with respect to ‘q’ for all the target thicknesses investigated (21 ≤ t ≤ 

225 µg/cm2). The graph confirms the observations made earlier. The reasons for shift in energy of x-

rays due to change in binding energy by multiple spectator vacancies has been explained in Chapter 

2. For Biq+-ions with an incoming K vacancy (q = 82), the change in the binding energy is the largest 
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and hence the observed shifts are largest in this case. Fig. 5.19 shows the relative shift (Eobs-Eo)/Eo in 

above mentioned L x-ray transitions and reiterate the observations and inferences. 

 
Fig. 5.19  Relative shift (Eobs-Eo)/Eo in L x-ray transitions (centroids) with respect to and normalized to 
standard values (Eo) [23], as a function of the incident charge state (q) of the Biq+-ions a) for Au-Lα,β1 in the 
laboratory frame (LAB) and b) for Bi-Lα,β1 in emitter frame (E.F.). Au target thickness (t) is in µg/cm2. Lines 
drawn are linear fits to the data. Statistical errors are smaller than the size of the symbols. Note the drastically 
different scales for the Au and Bi. 
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spectra. A similar comparison for Bi82+-ions carrying a K vacancy is shown in Fig. 5.21. The Mα 

peak and the L x-ray peaks of Au and Bi are labelled in the figures. The shaded region with 

negatively sloping lines indicate the region of Au L x-rays and that with positively sloping lines 

indicate the Bi-L x-rays in both the figures. The dotted line through the Au-Lα peaks in Fig. 5.20 and 

5.21 does not indicate a noticeable energy shift with target thickness. 

 
Fig. 5.20 A comparison of the L x-ray spectra (laboratory frame) for Bi81+-ions incident on Au targets of 
various thicknesses investigated viz. 21, 42, 79, 150 and 225 µg/cm2. The counts are normalized relative to the 
number of ejectiles. The shaded rectangles show the region of L x-ray lines for Au by right, down slanting 
lines and for Bi by left, down slanting lines. The dotted and the solid lines represent the near constant energy 
of Au-Lα and Bi-Lα lines with increasing target thickness. 
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remarkable energy shift with target thickness. This observation remains the same for Bi77+-ions also. 
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increasing target thickness, the projectiles lose their K vacancy partially and hence, the average shift 

decreases in that case for the projectile lines. The increasing line width points to the same fact.   

 
Fig. 5.21 A comparison of the L x-ray spectra (laboratory frame) for Bi82+-ions incident on Au targets of 
various thicknesses investigated viz. 21, 42, 79, 150 and 225 µg/cm2. The counts are normalized relative to the 
number of ejectiles. The shaded rectangles show the region of L x-ray lines for Au by right, down slanting 
lines and for Bi by left, down slanting lines. The dotted line represents the near constant energy of Au-Lα. The 
solid and dashed lines depict for Bi-Lα the slight dependence of the shift with increasing target thickness. 

 

Fig. 5.22 a) shows the centroid energies (Eobs.) of  Au-Lα,β1 in the laboratory frame (LAB) and that 

of Bi-Lα,β1 in the emitter frame (E.F.) as a function of the Au target thickness (t). The standard values (Eo) of  

Bearden [23] are indicated in the figure for comparison. Fig. 5.22 b) shows the relative shift (Eobs-Eo)/Eo in 

these L x-ray transitions (centroids) with respect to and normalized to standard values (Eo) [23], as a function 

of the Au target thickness (t). These L x-ray transitions for both Au and Bi do not show any truly remarkable 

target thickness dependence. Fig. 5.22 b) only reiterates this observation, however one has to note the different 

scales for the Au and Bi in this figure indication higher shifts for the projectile than that for the target. 
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Fig. 5.22  a) Centroid energies (Eobs.) of L x-ray transitions of  Au-Lα,β1 in the laboratory frame (LAB) and 
of Bi-Lα,β1 in the emitter frame (E.F.) as a function of the Au target thickness (t). The standard values (Eo) of  
Bearden [23] are indicated in the figure. Statistical errors are smaller than the size of the figure. The lines 
through the data points are drawn to guide the eye.  

 
Fig. 5.22 b) Relative shift (Eobs-Eo)/Eo in L x-ray transitions (centroids) with respect to and normalized to 
standard values (Eo) [23], as a function of the Au target thickness (t) for Au-Lα,β1 in the laboratory frame 
(LAB) and for Bi-Lα,β1 in emitter frame (E.F.). Lines through the data points are drawn to guide the eye. 
Statistical errors are smaller than the size of the symbols. Note the different scales for the Au and Bi. 
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5.4.3 Intensity Ratios of L x-rays 

 

It can be observed from Fig. 5.16 (42 µg/cm2 Au target) that for the spectra corresponding to 

q = 77, the peak height of the Bi-Lα x-ray line is higher than that of the Au-Lα and for the spectra 

corresponding to q = 81, 82 it is vice versa. Any possible influence of the energy differential self 

absorption in the target has not been considered here. The observation for spectra corresponding to q 

= 81, 82 for 225 µg/cm2 Au target is the same as that for 42 µg/cm2 as can be seen in Fig. 5.17. For 

this thickest target, the q = 77 spectra shows a smaller intensity of Bi-Lα compared to Au-Lα in 

contrast to the observation for 42 µg/cm2 Au (Fig. 5.16). 

 
 
Fig. 5.23  Measured L x-ray intensity ratios (intra-partner and inter-partner) of the projectile (Bi) and target 
(Au) as a function of a) projectile incident charge state (q) and b) target thickness (t). The corresponding 
single hole values by Scofield [64] have been indicated in the figures as [Scof.]. Lines through the data points 
are drawn to guide the eye. 

 

Fig. 5.23 shows graphs of Au-L and Bi-L x-ray intensity ratios viz. Bi-Lα/Bi-Lβ1 , Au-
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solid angle transformation, and hence deviates from the direct observation in the spectra by a factor 

of 0.623. For q = 77, the inter-partner ratio Bi-Lα/Au-Lα  is higher than its value for q = 81 or even 

for q = 82; this ratio decreases considerably with increasing q. The strong decrease for q = 82 may be 

caused by the fact that for closed K-shell (q = 77, 81) condition of the projectile, more transitions to 

L-shell (from the Bi-M) take place in comparison to the case when the Biq+ possesses an open K-

shell (q = 82) and M electrons can directly decay to the K-shell. Although q = 81 is also a closed K-

shell condition, the half filled L-shell of Biq+ for q = 77 leads to more M4,5–L3 (Lα) transitions than 

that for q = 81 (L-shell completely empty). Fig. 5.23 b shows that the intensity ratio of Au-Lα/Au-

Lβ1 and Bi-Lα/Bi-Lβ1 does not show any remarkable q dependence, the statistics of the spectra 

limits the observation of any such dependence within errors.  

Concerning the M radiation, Fig. 5.16 depicts that for spectra corresponding to q = 82, the Bi-

Mα x-ray intensity is more than that of Au-Mα. One cannot observe such a trend for other spectra in 

Fig. 5.16 or 5.17. As q increases from 81 to 82, the yield ratio of Au-Mα/Bi-Mα decreases indicating 

a “relative” larger yield for the Bi-Mα x-ray emission. With increasing target thickness (see Fig. 

5.17) this ratio increases, possibly caused by the loss of projectile vacancies. However, one has to 

take into account a shift with q especially for the projectile Mα radiation, changing the intensity 

ratios by a change of the detector efficiencies. 

 

5.4.4 L x-ray emission cross sections 

 

Since the L x-ray measurement by the Si(Li) was simultaneous to that for the K x-rays 

described in Section 5.3, hence the normalization procedure followed for the K x-rays and L x-rays is 

identical. The procedure has been described in detail in Section 5.3.4 above. The emission cross 

section data for L x-rays of Bi and Au have been calculated by the formula discussed in Chapter 3, 

Section 3.3.5 (iv). 

Fig. 5.24 displays the emission cross sections for Lα and Lβ1 (the most intense L x-ray 

peaks) for Au in part a and for Bi in part b as a function of q for all target thicknesses investigated. 

The part a indicates that the Au-Lα and  Lβ1 do not show any strong q dependence within the 

experimental errors, although there might be a tiny tendency of a decrease with increasing q. On the 

other hand Bi-Lα and  Lβ1 cross sections show a definite q dependence, these cross sections decrease 

with increase in q, in particular for an open projectile K-shell. For q = 82 (open K-shell) the 

decreased cross sections may indicate that even though electrons are captured to outer vacant shells, 

the radiative decay has preference to fill first the half empty K-shell. As a result fewer electrons are 
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present in the M and N shells to decay down radiatively as L x-rays. Here, it is necessary to mention 

that the results for the asymmetric collision system (U-Au; Section 4.4.3) gives similar dependences 

for U-Lα although the Au-Lα shows somewhat different dependences which have to be analyzed in 

the future. In particular energy differential absorption in the target should also be considered here for 

accuracy. 

 
 
Fig. 5.24  Lα and Lβ1  x-ray emission cross sections of Au (part a) and Bi (part b) as a function of incident 
charge state (q) of the Biq+-ions for all target thicknesses (t, in µg/cm2) investigated. Lines through the data 
points are drawn to guide the eye. 
 

Fig. 5.25 depicts the x-ray yields of Au and Bi-Lα and Lβ1 in part a and b respectively as a 

function of the Au target thickness (t) corresponding to all q investigated. The Au-Lα and Lβ1 yields 

show a small decrease with t, whereas the Bi-Lα and Lβ1 data show a stronger but still moderate 

decrease in the yield with increasing target thickness. This may point to a gradual filling of the 

projectile vacancies while moving through the solid foil. On comparison of Fig. 5.25 with Fig. 5.14 

for K x-ray transitions it is clear that both K and L x-rays show an opposing trend with the yields for 

the K x-rays being the largest for q = 82 whereas lowest for L x-rays for the same q, cf. Figs. 5.24 
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and 5.13. Also here, it has to be noted that the dependences for the asymmetric collision system are 

definitely a lot stronger (Figs. 4.21 and 4.22).  . 

 
 
Fig. 5.25 Lα and Lβ1 x-ray yields (cross sections) of Au (part a) and Bi (part b) as a function of target 
thickness (t) corresponding to q = 71, 81 and 82. Lines through the data points are drawn to guide the eye. 
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5.5.1 Charge state distribution and evolution 

 

For this investigation, the CVD-diamond, position-sensitive particle detector has been used 

for the measurement of charge state distributions (spread over 24 adjacent stripes) after the magnet 

spectrometer (Fig. 5.1). The charge state evolution and charge exchange cross-sections has been 

deduced from the charge state distributions. The detector facilitated normalization of the x-ray 

emission cross sections too. The position of the detector enabled the detection of five primary charge 

states of the emerging Biq+-ions. The actual charge state distribution of the ejectiles was broader than 

0 40 80 120 160 200 240
102

103

104

0 40 80 120 160 200 240

103

104

0 40 80 120 160 200 240

103

104 0 40 80 120 160 200 240
102

103

104

Au-Lα

 

 

σ 
in

 k
ba

rn

 q = 82
 q = 81
 q = 77

Au-Lβ1

a)                   Target thickness in µg/cm2

 
 

σ 
in

 k
ba

rn

Bi-Lβ1

 

 

b)              Target thickness in µg/cm2

 q = 82
 q = 81
 q = 77

Bi-Lα

Biq+   Au (t in µg/cm2)

 

 



 109 

the active area of the position-sensitive detector. A detector with 55 stripes would be required in 

principle to record the complete charge state distribution at once (see Fig. 5.26). However, it was 

possible to draw a “composite charge state distribution” by changing the magnetic field of the 

spectrometer to appropriate values for successive measurements of groups of 5 charge states. This 

was followed by normalization of overlapping charge states and all the lower ones (Biq-4, Biq-5, Biq-6 

etc.).  

Such a distribution has been obtained for each measurement (change of qincident as well as 

target thickness t) except for the Bi77+ bombarding on Au targets of 21 and 42 µg/cm2 thicknesses. 

This process has been repeated until the intensity of Biq-lowest has been negligible compared to the 

Biq-incident. Each charge state fraction of the ejectiles was spread out over 3-4 stripes of the particle 

detector and the various fractions separated clearly from each other with the counts of the valley 

being negligible compared to that of the peak. 

 
Fig. 5.26 Area under the peaks for each ejectile charge state  vs the outgoing charge states detected by the 
CVD-diamond, position-sensitive detector for Bi82+,81+,77+-ions incident on 225 µg/cm2 Au target. 
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Fig. 5.26 shows the area under the peaks for each charge state of the ejectiles vs the outgoing 

charge states as observed by the particle detector. These yields have been shown for each incident 

charge state (q = 77, 81, 82) of the Biq+-ions after penetrating the thickest Au target (225 µg/cm2). 

The lines connecting the data are drawn to guide the eye. The curves for q = 82 and 81, show the tail 

of a distribution with a possible maximum around q = 82 and 81 respectively. This asymmetric 

distribution is in contrast with the symmetric one for q = 77 having a maximum at q = 77.   

 

Charge state distribution 

Fig. 5.27 shows a composite charge state distribution for the particle detector for Bi82+,81+,77+-

ions incident on 79 µg/cm2 Au based on charge spectra measured by the particle detector. The dashed 

lines indicate the lower (for Bi82+,81+) or higher (for Bi77+) charge state ensembles observed with the 

shift of the spectrometer magnetic field. The overlapping of at least one of the charge states 

(measured with the shift of the magnetic field) with one of the primary charge distribution on the 

detector is presented in the figure, the former being normalized to latter. About 60% of the ions with 

qin = 77 and 81 retain their charge state while passing through 79 µg/cm2 thick Au target and about 

30% do so for qin = 82. The strong logarithmic scale is to be noted. 

 
Fig. 5.27 “Composite charge state distribution” measured by the CVD-diamond, position-sensitive, particle 
detector for Bi82+,81+,77+-ions incident on 79 µg/cm2 Au target. Note the compressed log-scale. 
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The survival probability of the initial charge state of the projectile becomes clearer by the 

following comparison of target thickness dependence of the charge state distribution. Fig. 5.28 a), b) 

shows the composite charge distribution in the particle detector for Bi82+,81+-ions incident on Au 

targets of two extreme thicknesses, 21 and 225 µg/cm2 respectively. The two spectra for different 

thicknesses look quite similar, except for the initial charge state fraction. For the thin target the initial 

charge state fraction is roughly an order of magnitude larger than that for the thick one (logarithmic 

display is condensed for the former case in Fig. 5.28 a). Hence, for the thin target the incoming 

charge fraction survives with a high probability. From the composite distributions it can be deduced 

that the equilibrium thickness is larger than 225 µg/cm2. This assumption can be cross checked by 

comparing the experimental charge state evolution through the thickness of the target with 

calculations as is discussed later in this section. 

 
 
Fig. 5.28 a) “Composite” charge state distribution measured by the CVD-diamond, position-sensitive, 
particle detector for Bi82+-ions incident on Au targets of two extreme thicknesses, 21 and 225 µg/cm2 
respectively. 
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Fig. 5.28 b) “Composite” charge state distribution measured by the CVD-diamond, position-sensitive, 
particle detector for Bi81+-ions incident on Au targets of two extreme thicknesses, 21 and 225 µg/cm2 
respectively. 

 
Fig. 5.28 c) “Composite” charge state distribution measured by the CVD-diamond, position-sensitive, 
particle detector for Bi77+-ions incident on Au targets of two thicknesses investigated, 79 and 225 µg/cm2 
respectively. 
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Charge state evolution 

The intensity of each charge state i.e. the number of ejectiles corresponding to each charge 

state, Nq+ was calculated by adding up the number of counts corresponding to each stripe displaying 

the fraction. The counts corresponding to the stripe representing the minima between the two charge 

state peaks was divided equally between the two fractions. It was observed that the charge state 

fractions obtained with the shift of the magnetic field and later normalized with the overlapping 

charge states constituted 1-10% of the total number of counts for the Bi82+, 8-30% for the Bi81+ and 

6-17% for the Bi77+. Here, the lower percentage corresponded to the thinnest target and the higher to 

the thickest Au target. Thus it can be concluded that the primary charge distribution obtained on the 

position-sensitive, CVD-diamond particle detector constituted the main contribution to the  total 

number of ejectiles and the normalized fractions constituted a small percentage of the same. Hence 

the uncertainty in the total number of ejectiles introduced due to the shift of the magnetic field and 

normalization is small. 

Fig. 5.29 a), b) and c) shows the charge state fractions i.e. the ratio of the number of particles 

corresponding to a particular charge state (Nq+) with respect to the total number of particles (Ntot) 

(i.e. Nq+/Ntot) as a function of Au target thicknesses (t) in µg/cm2 for Bi82+,81+,77+-ions. The symbols 

in this figure present the experimental values and the lines are calculations performed using the 

GLOBAL code [68]. 

 
Fig. 5.29 a) Charge state fractions Nq+/Ntot  of  Bi82+-ions as function of the Au target  thickness: Nq+ refers to 
the number of ejectiles for a particular charge state ‘q’ and Ntot to the total number of ejectiles. The 
experimental data are denoted by symbols and the lines are calculations performed using the GLOBAL code 
[68]. 
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From Fig. 5.29 a) for qincident = 82, it can be deduced that the calculations by GLOBAL agree to some 

extent with the experimental data for charge state evolution corresponding to q = 82 and 81 (solid 

and dashed line respectively). For q = 80 and for lower charge states, the calculations by GLOBAL 

underestimate the measured cross sections. The underestimation is larger for thinner targets. The 

calculations for charge states lower than 78 have not been shown in the figure as the underestimation 

of the experimental data increases there. For qincident = 81 (Fig. 5.29 b), the observations are similar. 

The GLOBAL values agree reasonably with the experimental data for q = 81, 80 and underestimate 

for other, lower charge states. For qincident = 77 (Fig. 5.29 c), the experimental data does not agree 

well with the calculations. The curves underestimate the experimental data for q = 75, 76, more for 

smaller thicknesses than at higher ones. For q=78, 79, 80 and 81, the trend of overestimation is the 

same as mentioned above. This also indicates that the equilibrium thickness lies higher than 

225µg/cm2.  

 
Fig. 5.29 b) Charge state fractions Nq+/Ntot  of  Bi81+-ions as function of the Au target  thickness: Nq+ refers to 
the number of ejectiles for a particular charge state ‘q’ and Ntot to the total number of ejectiles. The 
experimental data are denoted by symbols and the lines are calculations performed using the GLOBAL code 
[68]. 

 

From the Figures 5.29 a) - c) the most important issue, the survival of the primary projectile 

vacancy can be deduced. In particular the half thickness t1/2 where the fraction for the initial charge 

dropped to 50% can be extracted. For Bi82+ ions (open K-shell) the half thickness t1/2 in the Au layer 

is about 150 μg/cm2, for Bi81+ (just closed K-shell) already about 170 μg/cm2, and for Bi77+
 (near 

equilibrium) 200 μg/cm2. Hence for the ion energies used here, thin Au target foils can be used for 

studying inner shell process in close quasimolecular collisions with well defined entrance channels.  
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Fig. 5.29 c) Charge state fractions Nq+/Ntot  of  Bi77+-ions as function of the Au target  thickness: Nq+ refers to 
the number of ejectiles for a particular charge state ‘q’ and Ntot to the total number of ejectiles. The 
experimental data are denoted by symbols and the lines are calculations performed using the GLOBAL code 
[68]. 

 

5.5.3 Charge exchange cross sections  

 

Charge exchange cross sections have been determined experimentally from the charge state 

distribution (Fig. 5.28 a) and the dependence of charge state fractions on target thickness (Fig. 5.29 

a). During distant collisions, the Bi82+-ions (incoming projectile K-vacancy) capture electrons in the 

outer shells. The total electron capture cross section can be calculated from the target thickness 

dependence of the ratio N82+/Ntot. The curve corresponding to N82+/Ntot in Fig. 5.29 a) has been fitted 

with an exponential function of the form:- 

)exp( tAy σ−=  

Here σ is the total electron capture cross section and was found to be equal to 4.3•10-18 cm2 or 4300 

kbarn. This value has been compared with the calculations from two different approaches, the 

Eikonal approach of Eichler [53] and the semi-empirical, non-relativistic scaling prescription for non 

radiative capture (NRC) by Schlachter et al. [50] (see below).  

Additionally σcap has been deduced from the measured values of x-ray emission cross 

sections for capture to L-, M-shell and a total. For closed incoming projectile K-shell (q=77, 81), the 

measured Bi-L x-ray emission cross sections provide an estimate of the capture into Bi M-shells (for 

higher lines into N, ... shells). Estimating the  Bi-Lα and Bi-Lβ1 cross sections for single collision 

conditions i.e. corresponding to t=0 (see Fig. 5.24) and summing up, the σ M
cap  is calculated to be 
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about (3.35)+(1.9) ≈ 5.25Mb. For an open incoming projectile K-shell (q=82), the Bi-L radiation is 

reduced (see Fig. 5.24) compared to its values for the closed case (q=77, 81) as part of the captured 

M shell electrons decay directly to the K-shell (leading to Bi-Kβ emission). This reduction can be 

calculated from the cross sections for Bi-Lα, as a difference between its value for q=81 and q=77 to 

the corresponding value for q=82. This gives a σ M
cap -reduction to be about 1.5 Mb. Correspondingly 

one can note that the shifts in L x-rays increase for an open Bi K-shell as is expected with a 

predominance of mostly single capture. The Bi-K radiation for an open incoming K-shell comprises 

capture to Bi-L and also higher shells (including cascades). The Bi-Kα1 cross section corresponding 

to t=0 can be used to estimate this value. However a multiplicative factor of about “3” (maximum, 

see Table 6.2) has to be taken to account for all the decay K channels i.e. Kα1, Kα2, Kβ1 and Kβ2. 

This yields a total capture cross section of σ Tot
cap = 5.1Mb. Subtracting the Bi-L cross sections i.e. 

σ M
cap  (and accounting for the reduction) from σ Tot

cap , one gets the capture to the Bi-L shell. Hence, 

σ L
cap = 5.1-5.3+1.5 =1.24 Mb. Above are shell differential results deduced from measured x-ray 

cross sections.  

Fig. 5.30 summarizes the electron capture cross sections just as done for U-Au collision 

system (Fig. 4.23, Chapter 4). The cross section distribution according to Eikonal approximation for 

capture from Au (K, L, M and N) shells to vacant shells of Bi (K to T) is indicated by the curves. The 

calculations show that the total cross section for capture from target L and M shells (to be read from 

top of the figure) is most probable (thin solid line with empty circles denoting the four values (*)). 

The total cross section distribution (thick solid line (#)) for capture into all K to T Bi shells suggests a 

preferential capture to the L, M and N shells with a maximum for the Bi-M shell. Values for total 

electron capture cross sections according to Schlachter et al. [50] are indicated as empty squares in 

the figure. These values do not differ appreciably from each other when calculated for different 

incident charge states of the projectile. The experimental value of the σ Tot
cap  (~4300 kbarn) determined 

from the charge state evolution (for q = 82) is indicated in the figure along with those deduced from 

x-ray emission cross sections (described above). The Schlachter values are only slightly 

underestimating the experimental data.  The σ L
cap  and σ M

cap  determined from x-ray emission give a 

general idea of the capture process in these near symmetric collision systems and more accurate data 

are required for a rigorous comparison. 
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Fig. 5.30 Shell differential electron capture cross sections vs the atomic shells of the projectile (Bi) calculated 
theoretically and from experimentally measured values. The curves signify the distribution of the cross sections 
according to Eikonal [53] from Au K, L, M and N shells to various projectile shells (shown on the abscissa) 
and their total. (#):-σ Tot

cap  from Au K, L, M and N-shells to a Bi-nth shell (K to T), (to be read from abscissa). 

(*):-σ Tot
cap  from a Au-nth shell (K to N) (to be read from axis on top) to all Bi-shells (K to T). The Schlachter [50] 

values are a total for q = 77, 81 and 82. The experimentally determined values of σ L
cap , σ M

cap
 and σcap

Tot from 

x-ray emission cross sections (Kα1,2,β1,2 for q=82 and Lα for q<82) are included along with the value deduced 
from measured ‘q’ state evolution. 

 

Table 5.2 gives a comparison of the above mentioned experimental and theoretical values. 

The total capture to Bi K to N-shells (6.32 Mb see column 5) is in good agreement with the σ Tot
cap

deduced from x-ray emission cross sections (5.1 Mb) and in fair agreement with that from q state 

evolution (4.3 Mb). A total of the Eikonal cross sections for capture from Au K, L, M, N shells to Bi 

(K to T shells) yield a value of 11.4 Mb. As has been mentioned earlier, σ Tot
cap estimated through Bi K 

x-ray emission cross sections (for open K-shell) reflects only one electron capture and not multi 

electron capture or successive capture in different collisions. The latter is manifested through σ M
cap  
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this has to be investigated further. However, without further studies a conclusion cannot be drawn. As 

per the Bohr’s criterion mentioned earlier in Chapter 4, the collision velocity of Bi-ions is larger than 

the velocity of electrons in the Bi-L shell. In principle the electrons captured to N and higher shells 

will be reionized quickly (before being able to cascade down to inner shells) and hence the bulk of 

the curves for O and higher shells can be safely neglected (shaded rectangle at the bottom of the 

figure) in calculating total capture to Bi nth shell reducing Eikonal value considerably to about 6.3 

Mb. 

 

Table 5.2 Total electron capture cross sections for 69 MeV/u Bismuth on Gold target calculated by Schlachter 
et. al. formula [50], the Eikonal approximation [53] and the  values  determined from measured projectile x-

ray emission cross sections.  The 
L
capσ , 

M
capσ represent the calculated cross section for electron transfer from  

target K to N shells into the projectile L and M shells  respectively. )1(Tot
capσ  represents the electron capture  

from the  target K to N shells into the projectile K to N shells. )2(Tot
capσ  is the electron capture cross section 

from the target K to N shells into  all  K to T projectile shells.  The experimental values 
XExpt

cap
−σ  are deduced 

from the projectile x-ray emission yield and the
qTot

cap
−σ from the charge state distribution.        

 

Projectile 
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L
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M
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   (2) 

82 2.96 1.45  2.62  6.32  11.4  1.24±0.6 5.3±1.1 5.1±0.9 4.3±1.0 

81 2.89         

77 2.60         

 

The Eikonal approximation predicts a maximum capture to the Bi-M shell and Bi-Kβ1 (M3-K 

transition) emission has been observed with a low intensity only for q = 82. For q = 77 and 81 this K-

decay channel is closed and the L radiation provides the requisite information. The Bi-Lα cross 

section is in the order of 3 Mb confirming the possibility of capture to the projectile M shell (cf. Figs. 

5.24 and 5.25). Additionally, it can be seen from Fig. 5.24 that the Au-L emission is considerably 

larger (factor of about 3) than the Bi-L emission. However, it is comparable in magnitude to that of 

Bi-Kα manifesting the capture from the Au-L shell and further indicating that for the Au-L shell, 

ionization is the dominant channel compared to loss to the projectile (capture).  
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CHAPTER  VI 
 

COUPLING DISTANCES IN SUPERHEAVY COLLISION SYSTEMS 

 

6.1 INTRODUCTION 

 

The details and results of the experiments performed with very heavy, extremely charged 

projectile-ions at SIS for a slightly asymmetric (U-Au) and a near symmetric (Bi-Au) very heavy 

collision systems have been given in Chapter 4 and 5 respectively. A general discussion of the results 

obtained is given in Section 6.2. Section 6.3 presents a summary of the results of this investigation. 

The projectile and target x-ray lines’ energy shifts and intensity ratios are given in Section 6.3.1 and 

6.3.2 respectively. The results of x-ray cross section measurements for both K and L x-ray emission 

are summarized in Section 6.3.3. Section 6.3.4 explains the charge state dependence of the x-ray 

cross sections. Section 6.3.5 comments on the survival probability of the “prior to collision” inner 

shell (K) vacancies for projectiles penetrating a solid. The interpretations from the results of charge 

state evolution and charge exchange cross sections measured or calculated for the collision systems 

is given in Section 6.3.6. Section 6.4 offers an explanation of the observations made from x-ray 

emission on the basis of the quasimolecular model. Section 6.4.1 uses the level diagrams evaluated 

on the basis of the quasimolecular model to interpret the results. Section 6.4.2 provides an estimation 

of the interaction distances for “electron capture”, for “K-K transfer” (vacancy transfer between 

projectile K-shell and target K-shell) and for “L-K coupling” (coupling between the L-shell of the 

projectile and K-shell of the target). Section 6.5 derives a correlation between the interpretations 

from K and L x-ray emission and those from charge state evolution and charge exchange cross 

sections of the collision systems.  Thus a comprehensive picture of the processes taking place during 

heavy-ion, heavy-atom collisions in the light of the above discussion and interpretations is presented 

along with conclusions. 

 

6.2 DISCUSSION OF RESULTS 

 

In general ion-atom interaction involves two different regimes, distant collisions showing 

evidently large cross sections and close collisions with smaller cross sections. Both regimes leave 

different fingerprints in the x-ray emission therefore, the details of the interaction mechanisms can be 
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understood from the collision induced x-ray radiation. The reported results on x-ray emission give 

information mainly on three different subjects: 

• On the excitation status of the collision partners while the projectile penetrates the foil. After 

the interaction it is manifested by the observed transitions, their energy shifts and intensity 

ratios (see Section 6.3.1 and Section 6.3.2).  

• On the probability of survival of a projectile vacancy while penetrating a solid foil (see 

Section 6.3.5) from the variation of the x-ray emission, particularly that of cross sections with 

foil thickness (see Section 6.3.3). This can also be deduced from the complimentary, direct 

measurements on charge exchange (see Section 6.3.6).  

• On the interaction mechanisms for the two regimes, capture and loss for distant collisions and 

inner shell interaction for close collision processes, mediated especially by the variation 

(increase) of cross sections with the incoming charge state (q) of the projectile. (For K and L 

cross sections see Section 6.3.3 and 6.3.4).  

 

The two interaction regimes  

The distant collisions involve outer and to some extent intermediate shells also leading to 

charge exchange, i.e. loss and capture of electrons. For highly charged projectiles electron capture is 

a dominant phenomenon. The projectile L x-rays reflect capture to excited states – and if there is 

already an incoming projectile K vacancy, the same is true additionally for the K radiation too. In the 

latter case, both K and L radiation shed light on the population distribution of the projectile due to 

the captured electron. The situation is different for the initially neutral target atoms in the bulk. For 

this case, loss and multiple ionization (as well as excitation) in outer (and intermediate) shells are the 

dominant processes. The electrons lost from the target are captured into the projectile to some extent. 

As a result the target radiation may provide some additional information on the target levels 

contributing to the electron capture by the projectile. However this effect might be completely 

overwhelmed by the intense target ionization.  

After the strong perturbation due to the collision is over, the target atom has the possibility to 

rearrange itself quickly with the existing electrons in its environment. However the swift projectile 

does not have sufficient number of electrons in the proper phase space for its rearrangement. This 

indicates that post collision, the projectile remembers its initial charge state distribution (more so in 

outer levels) to a large extent whereas the target still reflects its status in the bulk. This general 

difference in the outer and medium shell population is also reflected mainly by the energy shifts at 

variance for both the collision partners. To some extent the intensity ratios are also helpful in 
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determining the final electron population distribution. (For shifts and intensity ratios see Section 

6.3.1 and Section 6.3.2). 

For close collisions the inner shells of both partners interact with each other and overlap 

transiently to form a quasi-molecule. After the collision, the K radiation of both partners give 

information on inner shell ionization/excitation and interaction mechanisms. In particular coupling 

mechanisms between inner shells of both partners can be probed if special/chosen incoming channels 

are varied (i.e. opened/closed). Nevertheless, the difference in the post collision outer shell 

population for projectile- ion and target atom becomes evident by investigating the energy shifts for 

the inner shell transitions of both partners at variance.  

Opening an incoming channel for inner shell excitation leads usually to an increase in K 

radiation for both the collision partners. However, if an incoming K vacancy is provided in the 

projectile, the increase in K projectile radiation caused by the inner shell interaction is completely 

overshadowed by the distant collision processes. For an open projectile K-shell, the capture to higher 

shells manifests its existence suddenly by K radiation and this has a large cross section. Hence, for 

an incoming projectile K vacancy the increase in target K radiation indicates the inner shell 

interaction whereas the increase in projectile K radiation is dominated by capture, a distant collision 

process.  

Finally, the main goal has been to get information on the inner shell interaction mechanisms 

(see Section 6.4) after having established that projectiles will retain their inner shell (K) vacancies 

while penetrating a solid foil with a certain high probability. Thus from target thickness dependence 

of the x-ray emission, cross sections for zero target thicknesses can be extracted, i.e. cross sections 

under single collision conditions. With these cross sections and with the help of appropriate “level 

diagrams” (see Section 6.4.1) finally the following coupling distances (Section 6.4.2) could be 

extracted using some approximate values for coupling strengths and compared to level crossing 

regions in the level diagrams:  

• K-K sharing – deduced from K emission of both collision partners for closed, incoming 

projectile K-shell and its increase from the target K radiation for one incoming projectile K 

vacancy.  

• L-K shell coupling – deduced from observed increase in K x-ray cross sections of both 

collision partners with the increase of incoming j=1/2 vacancies in the projectile.  

Only oversimplified models could be used for this interpretation as presently no full dynamic 

coupled channel calculations exist.  
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• A rough interaction distance for capture was also deduced from the increase in projectile K 

emission carrying a vacancy in the incoming channel.  

 

6.3 SUMMARY OF RESULTS 

 

6.3.1 Energy shifts for K and L x-ray emission 

 

The shifts in the energies of the K and L x-ray transitions towards higher values have been 

investigated for both U-Au and Bi-Au collision systems. The reasons for the energy shifts have been 

explained in Chapter 2. The energy shifts were estimated for the collision systems to obtain 

additional information on the distribution of population in the higher/outer shells. Although the 

present investigation was not designed for precision energy shift measurement, nevertheless their 

rough values for K and L x-ray emission reveal interesting trends shedding light on the collision 

processes relevant for outer shells. The centroid energies of Au-Kα1,α2 (lab frame) and U-Kα1,α2 

(emitter frame) as a function of the projectile incident charge state ‘q’ has been shown in Fig. 4.5 a 

and b respectively for all target thicknesses investigated in comparison to the standard, single hole 

values of Bearden [23]. Similarly, Fig. 5.8 a, b shows the centroid energies of Au-Kα1,α2  (lab 

frame) and Bi-Kα1,α2 (emitter frame) respectively as  a function of q. The corresponding shifts 

relatively normalized to the standard values have been shown in Fig. 4.6 for U-Au collision system 

and in Fig. 5.9 for the Bi-Au collision system.  

As a summary the relative shifts of Au-Kα1,α2 (lab frame) and that of U- and Bi-Kα1,α2 (emitter 

frame) are shown in Fig. 6.1 a), b) respectively as a function of the projectile incident charge state 

(q). All the Au-, U- and Bi-K x-ray transitions are observed at higher energies as compared to the 

standard values (see Fig. 4.5 and Fig. 5.8) confirming increasing multiple ionization (with spectator 

vacancies in the upper levels) in all of them. The Au-K x-ray transitions show only a slight q 

dependence whereas both U- and Bi-Kα1,α2 show a distinct dependence, the shifts increasing with 

increasing q. The Au-K x-ray transitions show a relative shift of 1-2% for U-ions and 1-1.5% for Bi-

ions, increasing slightly with an increase in q. On the other hand, U-K x-ray transitions show a larger 

relative shift of 2-4% as compared to 1-2.5% for Bi-K x-ray transitions both increasing with an 

increase in q. It is clear that even for lower q, multiple vacancies exist in the outer/higher shells 

during x-ray emission for all q investigated. The U- or Bi–ions are laden with a large number of 

outer shell spectator vacancies in the incoming channel of the collision itself and the Au target gets 

multiply ionised due to either electron capture in a distant collision as the projectile approaches it or   
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due to (ionisation/excitation) during the collision.  

            During close collisions, the multiple vacancies in the higher shells increase with an increase 

in the q and the projectile somehow recalls its initial high ionization in the outer shells. The distant 

 
Fig. 6.1  Relative shift (Eobs.-E0)/E0 in K x-ray transitions (centroids) with respect to and normalized to 
standard values (E0) [23], as a function of the incident charge state (q) of the projectile ions a) for Au in the 
laboratory frame (LAB) and b) for U and Bi in emitter frame (E.F.). Thickness of Au targets (t) is in µg/cm2. 
Statistical errors are smaller than the size of the symbols. Lines through the data points are drawn to guide 
the eye. (Note the factor of two change in ordinate scale for target and projectile.)  

 

collisions seem to result into mainly one electron capture although multiple electron capture remains 

as a possibility too. The increase in the relative shifts of Au are nearly half as that of U or Bi 

indicating that Au is probably multiply ionized to a lesser extent as compared to U or Bi. As the 

relative shifts of Au Kα1,α2  for both the near symmetric (Bi-Au) and slightly asymmetric (U-Au) 

collision case coincide with each other within the experimental uncertainties, it can be concluded that 

the target K shifts do not depend sensitively on the projectile Z in the considered small range of Z. 

The target thickness dependence of Au-, U- and Bi-K x-ray transition energies has been 

shown in Fig. 4.7 (for U-Au) and in Fig. 5.10 (for Bi-Au) collision systems. Within the large 
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experimental uncertainties a target thickness dependence of Au-, U- or Bi-K x-ray transitions was 

not observed indicating that the vacancy distribution (beyond the K-shell) of a highly charged 

projectile does not change considerably while penetrating thin solid targets. This may point also to a 

definite survival probability of inner shell vacancies in the solid targets. 

 
Fig. 6.2  Relative shift (Eobs.-E0)/E0 in L x-ray transitions (centroids) with respect to and normalized to 
standard values (E0) [23], as a function of the incident charge state (q) of the projectile ions a) for Au in the 
laboratory frame (LAB) and b) for U and Bi in emitter frame (E.F.). Thickness of Au targets (t) is in µg/cm2. 
Statistical errors are smaller than the size of the symbols. Lines through the data points are drawn to guide 
the eye. (Note the drastically different scales in the shifts for projectile and target system).   

 

For completeness Fig. 6.2 gives the relative shifts for the L x-rays a) for the target, b) for the 

projectiles. Due to the high ionization, the relative L shift is larger than that for the K radiation. 

Moreover, due to the stronger binding energy in the U-case compared to Bi-projectiles, the shift in 

both cases differ from each other as expected. The energy shifts give information on the charge and 

excitation status of each collision partner after the interaction. Inferences can be drawn both from K 

and L x-ray shifts. It has been observed that:  
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• With increasing q both the shifts increase, slightly for target and drastically for projectile 

indicating increasing (multiple) ionization for both the partners.  

• With increasing target thickness the shifts (projectile and target) do not show any appreciable 

dependence 

• The Kα1 shift for U-, Bi- and Au is observed to be larger than the Kα2 shift. The L(j=3/2) 

wave function (responsible for Kα1 transition) is more extended in space than the L(j=1/2) 

(responsible for Kα2 transition) one; the latter one measures more the inner screening, the 

first one is more sensitive to L shell spectators 

• Projectile shifts are larger than the target shifts (by a factor of 2 for K x-ray shifts for U-Au 

and by a factor of 7-25 for L x-ray shifts of U and Bi respectively) showing the memory 

effect in the outer shells of projectile and target electron population and indicating the high 

projectile ionization in the L and higher shells.  

• The U and Bi-K energy shifts show a fair agreement with each other however the Bi-L x-ray 

energy shifts  are much larger (almost a factor of 2) than the corresponding values for U-L 

values due to the difference in L-binding energies. 

 

6.3.2 Intensity ratios for K and L x-ray emission 

 

The drawback of total cross sections is the systematic uncertainties especially if only a few 

points are available. Intensity ratios between x-ray lines in one spectrum are not sensitive to those 

errors which are responsible for absolute values. Hence the projectile K to target K intensity ratio 

gives a precise measure of the emission variation with projectile incident charge state ‘q’ and target 

thickness ‘t’. The additional vacancies created in the upper shells can modify the yield of the inner 

shell x-ray transitions such as K and L. The intensity ratios provide additional information on the 

outer shell vacancy distributions during x-ray emission. Both the K and L x-ray intensity ratios were 

investigated for the prominent lines of the collision partners in light of their q and t dependence. 

Details have been covered in Section 4.3.3, Chapter 4 for U-Au and in Section 5.3.3, 5.4.3, Chapter 5 

for Bi-Au collision system.  

The Kα2/Kα1 ratio reveals the relative population of the 2p1/2 and 2p3/2 levels within a 

collision partner and the Lα/Lβ1 intensity ratio provides supplementary information for the same. 

Neither the projectile (U or Bi) nor the target (Au) Kα2/Kα1 ratios showed any remarkable q or t 

dependence (see Fig. 4.8 and Fig. 5.11). This indicates that probably the final population ratio of the 

2p1/2 and 2p3/2 levels is not sensitive to the change in the incident charge state of the projectile. Table 
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6.1 gives average values of U, Bi and Au x-ray intensity ratios for closed and open projectile K-shell 

in the entrance channel. Single hole values by Scofield [64] have been given for comparison. The 

value of Au-Kα2/Kα1 ratio within experimental uncertainties agrees reasonably well with the single 

hole values of Scofield for both closed and open projectile K-shell in the entrance channel. The 

projectile Kα2/Kα1 ratios for Bi agrees well with the Scofield value for closed K-shell case whereas 

for U it is almost double (not considering the large errors in that case). For open projectile shell for 

this ratio, both U and Bi exhibit a higher value as compared to that of Scofield, 44% for Bi and 50% 

for U. 

 

Table 6.1 Average values of U, Bi and Au x-ray intensity ratios for closed and open projectile K-shell in the 
entrance channel. Single hole values by Scofield [64] have been given for comparison. The experimental inter-
partner ratios are corrected for the relativistic solid angle transformation. 
 

                Proj. K-shell 
Intensity ratio Closed Open Scofield [64] 

                q ≤ 90 q = 91  

U-Kα1 / Au-Kα1 0.4 ± 0.1 34.6 ± 4.8 0.96 

U-Kα2 / U-Kα1 1.3 ±0 .5 0.9 ± 0.1 0.625 

Au-Kα2 / Au-Kα1 0.7 ± 0.1 0.8 ± 0.2 0.588 

   

 q ≤ 81 q = 82  

Bi-Kα1 / Au-Kα1 0.9 ± 0.1 23.7 ± 6.5 0.989 

Bi-Kα2 / Bi-Kα1 0.6 ± 0.1 0.9 ± 0.05 0.598 

Au-Kα2 / Au-Kα1 0.6 ± 0.03 0.588 
 
 

The observations are entirely different for the inter-partner ratio of Kα1 transition i.e. U-

Kα1/Au-Kα1 and Bi-Kα1/Au-Kα1. This ratio has to be seen in the light of closed K-shell or open K-

shell of the projectile in the entrance channel of the collision. For the closed K-shell case the ratio is 

smaller than the Scofield value and has almost a constant value for all q corresponding to closed K-

shell. This may indicate that in a close collision more K vacancies are produced in the lighter 

collision partner due to the smaller binding energy. For the near symmetric Bi-Au system this ratio is 

close to the Scofield value pointing to equal K ionization probabilities. In the case for the U-Au 

system, the K ionization probabilities seem to be a factor of 3 different. The Scofield value is more 
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than twice the experimental value for the U-Kα1/Au-Kα1 ratio for the closed K-shell condition and it 

is only 9% higher than Bi-Kα1/Au-Kα1 ratio for the closed K-shell condition.  

 
Fig. 6.3 Inter collision partner K-line ratios (U-Kα1/Au-Kα1 and Bi-Kα1/Au-Kα1) as a function of ‘q’ in the 
bottom part and as a function of  target thickness ‘t’ in the upper part. The corresponding single hole values by 
Scofield [64] have been indicated in the figures as [Scof.]. Lines through the data points are drawn to guide 
the eye. 
 

For open K-shell of the projectile in the entrance channel this ratio increases dramatically for 

both the U-Au and Bi-Au systems. It indicates the probability of having a K vacancy in the U or Bi 

in the receding part of the collision.  The open K-shell facilitates the observation of electron capture 

in higher outer shells through its radiative decay down to the K-shell. The probability for capture 

compared to K-shell ionization is about a factor of 30 and 70 larger for the symmetric and 

asymmetric case, respectively without considering the L-shell population. 
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Fig. 6.3 shows the inter-partner K-line ratios (U-Kα1/Au-Kα1 and Bi-Kα1/Au-Kα1) as a 

function of ‘q’ in the bottom part and their variation with target thickness ‘t’ in the upper part. A 

glance at the figure shows the equivalence of the two intra-partner ratios. Since the inter-partner K 

line ratios are not much different from the Scofield ratio for all ‘q’ except for the open K-shell 

condition, they indicate a usual statistical population of the L sublevels for these charge states (q = 

73 to 90 for U and q = 77 to 80  for Bi). The dramatic change for this ratio after opening the 

projectile K-shell (q = 91 for U and q = 81 for Bi) points to the different interaction mechanisms 

responsible for the target and projectile K emission.  

 
Fig. 6.4 Inter collision partner L-line ratios (U-Lα/Au-Lα and Bi-Lα/Au-Lα) as a function of ‘q’ in the bottom 
part and as a function of  target thickness ‘t’ in the upper part. The corresponding single hole values by 
Scofield [64] have been indicated in the figures as [Scof.]. Lines through the data points are drawn to guide 
the eye. 

 

This inter-partner Kα1 ratio is especially target thickness dependent as can be observed from 

Fig. 6.3 showing the gradual loss of projectile K vacancies with target thickness. As the projectile 

emission increases drastically compared to the target K emission for opened projectile K-shell, the 

increase in this ratio is a good indicator of the survival of the incoming projectile K vacancy 

probability.  

0 20 40 60 80 100 120 140 160 180 200 220 240
0.01

0.1

1

72 74 76 78 80 82 84 86 88 90 92
0.01

0.1

1

(U-Lα/Au-Lα)
 q = 91
 q = 90
 q = 88
 q = 86
 q = 73

Au target thickness  (t) in µg/cm2 

(Bi-Lα/ Au-Lα)
 q = 82
 q = 81
 q = 77

 

 

(B
i/U

)-L
α/

 A
u-

Lα
   

   
   

 

 t = 18
 t = 50
 t = 170

U-Lα/Au-Lα
Scofield value = 0.9517

Biq+/ Uq+    Au(t) 

[Scof. for two ratios]

Incident charge state (q) of Biq+/Uq+-ions

 

 
(Bi-Lα/Au-Lα)
Scofield value = 0.9835

(B
i/U

)-L
α/

 A
u-

Lα
   

   
   

   
In

ten
sit

y 
ra

tio
s

 t = 21
 t = 42
 t = 79
 t = 150
 t = 225



 129 

For completeness the L x ray ratios are depicted in Fig. 6.4. As the highly charged projectiles 

have a low probability for electrons in higher shells (beyond L shell), only a low L x-ray intensity is 

expected (despite the possibly higher fluorescence yield) resulting in a half survival thickness of 190 

and 230 µg/cm2 for U and Bi respectively (see later). The interpartner ratio is considerably smaller 

(by a factor 4 for Bi and 10 for U) than predicted by Scofield. Further, this ratio decreases with 

increasing projectile charge and additionally for the special case of an open projectile K-shell. The 

latter tendency is more for the heavier projectile. A decrease can also be observed with increasing 

target thickness however this effect is not fully understood.  

 

6.3.3 K and L x-ray cross sections 

 

For both the collision systems investigated, the x-ray emission has been measured for the 

projectile and the target as a function of projectile incident charge state ‘q’ and target thickness ‘t’. 

The inferences from the K and L x-ray emission of collision partners of both the collision systems 

are similar in many respects and are to be interpreted in totality with some peculiarities.   

 

U-Au collision system 

The ‘q’ dependence of the Au- and U-Kα1,α2 have been shown in Fig. 4.10 a) and b) 

(Chapter 4) respectively for all the target thicknesses ‘t’ investigated. As a summary, emission cross 

sections for only the most intense K x-ray transition i.e. Kα1  are presented for U and Au 

corresponding to the thinnest  and the thickest target (t = 18 and 170 µg/cm2 respectively) as a 

function of q in Fig. 6.5 a). The ‘t’ dependence of the Au- and U-Kα1,α2 emission cross sections 

have been presented in Fig. 4.11 a) and b) (Chapter 4) respectively.  As a recapitulation, Fig. 6.5 b) 

depicts the U- and Au-Kα1 emission cross sections as a function of ‘t’ for q = 91 and 73 (highest and 

lowest q respectively). 

 

Bi-Au collision system 

The projectile charge state ‘q’ dependence of the Au- and Bi-Kα1,α2 emission cross sections 

have been presented in Fig. 5.13 a) and b) respectively (Chapter 5) and their ’t’ dependence in Fig. 

5.14 a) and b). Fig. 6.6 a) shows, as a summary the Au- and Bi-Kα1 emission cross sections as a 

function of ‘q’ corresponding to the thinnest and the thickest target (t = 21 and 225 µg/cm2 

respectively). Fig. 6.6 b) shows the same as a function of the increasing ‘t’  for q = 82 and 77 

(highest and lowest q respectively).  
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Fig. 6.5 U- and Au-Kα1 emission cross sections for 18 and 170 µg/cm2 thick targets a) as a function of the 
incoming charge state and b) as a function of target thickness (t). 

 

The most striking feature for both systems is the dramatic cross section increase with the 

opening of the projectile K-shell (see below). Especially the projectile K x-ray emission increases by 

orders of magnitude indicating electron capture to higher shells and its radiative stabilization. As 

with increasing target thickness the probability for a survival of the projectile vacancy decreases, the 

projectile K emission diminishes correspondingly giving a unique access to the survival probability. 

The smaller increase in target K emission gives the possibility to study inner shell couplings through 

the involved vacancy transfer in the collision molecule. Similar findings can be observed for for the 

Bi-Au collision system depicted in Fig. 6.6.  

For completeness the main cross sections for L x-ray emission – typically in the Mbarn 

region and beyond are given, in Fig. 6.7 for charge state dependence and in Fig. 6.8 for the target 

thickness dependence. A detailed inference/interpretation has been already given in Chapter 4 and 5 

for the two systems in Section 4.4.4 and Section 5.4.4 respectively. In general it can be commented 

that the normalized x-ray yields decrease with target thickness pointing possibly also to a decrease of 

the projectile charge. The target emission compared to the projectile is less sensitive to thickness and 

projectile charge. The projectile yields are smaller than the target ones, particularly for the heavier 

ion. This is  
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Fig. 6.6  Bi- and Au-Kα1 emission cross sections for t = 21 and 225 µg/cm2 thick targets a) as a function of 
the incoming charge state b) as a function of target thickness. 

  
Fig. 6.7  Emission cross sections for Bi-Lα for t = 21, 42 and  225 µg/cm2 thick targets and for U-Lα for t = 
18, 170 µg/cm2. Au-Lα cross sections corresponding to Biq+/Uq+ projectiles for all the above t’s as a function 
of incident charge state (q) of the projectile-ions. 
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probably a result of the reduced number of outer electrons in the projectile that are needed for filling 

the L shell radiatively. For a closer consideration however, further effects such as the changes in 

fluorescence yields have to be taken into account. 

 

6.3.4 Charge state dependence of  K x-ray emission 

 

The charge state dependence of K x-ray emission for the projectile (U or Bi) and for the 

target (Au) is similar for both the collision systems. The charge state dependence has to be 

interpreted in the light of “open” and “closed” K shells for the projectile in the incoming channel of 

the collision. The interpretation from above two views has to be supplemented with a comparison of 

the case when the projectile has a near equilibrium charge state.  

 
Fig. 6.8  X-ray yields (cross sections) as a function of target thickness  for Bi-Lα (for q = 82 and 77), U-Lα 
(for q = 91 and 86) and Au-Lα corresponding to Biq+/Uq+ projectiles for all the above q’s. 
 

For both the collision systems, the K x-ray emission of the projectile and the target show 

nearly constant values for q ranging from a near equilibrium to the case when the projectile L-shell is 

partly empty (i.e. from q = 73 to 89 for U-Au and q = 77 to 80 for Bi-Au). The U-Au collision 

system was investigated over a larger range of q (∆q =13 with smaller steps) as compared to that for 

Bi-Au (∆q = 6). As a result it is also possible to draw inferences from U-Au collision system for the 
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case when the projectile carries L (j = 1/2) vacancies in the incoming channel of the collision, the so 

called “closed K-shell condition”. Lastly, K x-ray emission for projectiles carrying K-shell vacancies 

in the collision, the so called “open K-shell” condition in comparison to the “closed” case provides a 

glimpse of the processes taking place in these collisions.  

Comparing the Au-K x-ray emission cross sections corresponding to q = 90 and 88 for K 

projectiles, a slight increase may be evident for the former from Fig. 6.5 as has been reported earlier 

in Section 4.3.4 (Chapter 4). It is possible that the L (j=1/2) vacancies brought in by the projectile in 

the incoming channel get transferred partially to the K-shell of Au in outgoing channel of the 

collision. Such a transfer may be possible due to coupling between the L shell of the projectile and 

K-shell of the target at very small internuclear distances. The region of L-K shell coupling [95] 

between projectile and target shells can be visualized through the representation of the level 

diagrams discussed in Section 6.4 in detail (Fig. 6.10 and 6.11). The region of L-K coupling is 

indicated in the figures with rectangles numbered 2. From this observed increase in the Au-K 

emission it is possible to estimate the interaction distance for the L-K shell coupling and a 

comparison with calculations can be done (Section 6.4.2). 

For both U-Au and Bi-Au collision systems, the K x-ray emission cross sections for the 

projectile show a marked increase in their value for an open K-shell (q = 91 for U, q = 82 for Bi) as 

compared to the value for a closed K-shell (q = 90 for U and q = 82 for Bi). The target (Au) K 

emission also shows such an increase however not as dramatic as the former. These observations 

have been already mentioned in (Section 4.3.4 and 5.3.4 of Chapter 4 and 5 for U-Au and Bi-Au 

respectively.  

 Although both the projectile and target K x-ray emission increases for this “open K-shell” 

condition but they reflect entirely different processes occurring during collision. The increase in the 

projectile K x-ray emission is a result of distant collision whereas the increase in target K x-ray 

emission is due to a close one. The former results into electron capture from the target to outer 

projectile shells and the latter points to an additional vacancy production mechanism such as the 

coupling of the K-shells of both the collision partners as the two partners recede from each other (the 

K-K sharing process [96]). The sharing of the K-vacancies brought in by the projectile in the 

incoming channel of the collision are shared with the K-shell of the target in the outgoing channel of 

the collision and this sharing takes place due to the close proximity of the two K levels at small inter  

nuclear distances. This K-K sharing can also be visualized through the level diagrams shown in Fig. 

6.10 and 6.11. The region of K-K sharing is indicated there with a rectangle numbered 1.  

 The increase in the projectile (U, Bi) K x-ray emission for “open K-shell” relative to its value 

for the “closed K-shell” enables an estimation of the interaction distance for electron capture whereas 
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the increase in the target K x-ray emission enables an estimation of the K-K transfer interaction 

distance (both discussed in detail in Section 6.4.2).  

It is emphasized that the observed increase in the x-ray emission with increasing ‘q’ depends 

on the target thickness, i.e. on the survival probability of the projectile K-vacancy while penetrating 

the target foils. The increase in the projectile (U or Bi) and target (Au) x-ray emission cross sections 

corresponding to incoming K or L vacancies in the projectile are to be calculated for single collision 

conditions. These can be reached approximately for near zero target thicknesses (discussed in detail 

in the following section). 

 

6.3.5 Target thickness dependence of x-ray cross sections:  
Survival probability of projectile K-vacancies penetrating a solid target  
 

As has been mentioned already in the “Introduction” (Chapter 1) to this work, the primary 

objective of this investigation was to find out the survival probability of “prior to collision” K-shell 

vacancies in the projectile while penetrating solid targets. A sufficiently long survival time would 

ensure the applicability of solid targets for investigating the inner shell dynamics of the superheavy 

quasimolecules formed transiently during collisions. Hence a target thickness dependent study of the 

x-ray emission of the collision partners became a prerequisite to any further measurement for the 

objectives of this investigation. 

Fig. 6.5 b) and 6.6 b) show the target thickness dependence of the U-, Bi- and Au-Kα1 cross 

sections.  Since a true cross section does not depend on target thickness the cross sections shown are 

actually the absolute yields. Cross sections corresponding approximately to “single collision” 

condition can be extracted from these yields by extrapolating them to “zero” target thickness.  These 

observations have been mentioned in Section 4.3.4 and Section 5.3.4 for U-Au and Bi-Au collisions 

respectively. These K x-ray cross sections show an approximate (exponential) decrease with 

increasing target thickness the decrease being firstly, more pronounced for the projectile than that for 

the target and secondly, remarkable for an “open K-shell condition” (q = 91 for U, q = 82 for Bi) as 

compared to “closed” or other incident charge states. The cross sections (absolute yields) decrease 

with increasing target thickness due to filling of the projectile K vacuum in the bulk. Assuming an 

exponential decrease, i.e.  
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the cross sections for zero target thickness (i.e. cross sections under almost single collision 

conditions) have been extrapolated from these graphs. Here t is the thickness of the targets and hence 
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t1/2 is half thickness for half of the projectile–ions to lose their K vacancy. The decrease of the K x-

ray cross sections has been assumed to be towards the values corresponding (approximately) to those 

for the equilibrium charge state of the projectile (e.g. to a few kb for U-Kα1, see Fig. 6.5).  

Table 6.2 lists the increase in U-Kα1, Bi-Kα1 and Au-Kα1 x-ray emission cross sections (in 

kbarn) per incoming projectile (K, Lj=1/2) vacancy obtained for zero target thickness i.e. approximate 

single collision conditions. For example with an exponential fit to the U-Kα1 cross sections, half of 

the U91+-ions (having an incoming K vacancy) are expected to lose their K-vacancy in a half 

thickness of approximately 95±10 µg/cm2 (=t1/2).  This corresponds to a survival time (τ1/2) in the 

range of ~(4 to 5) x10-16s for the U K-vacancy in the bulk at the experimental ion velocity of 0.38 c. 

This half-survival time is appreciably larger than that of a vacancy in a “normal” uranium atom 

(τ0(1/2)~6x10-18 s) [5, 6]. For Bi τ1/2 ~( 6 to 9) x10-16 which is also larger than the corresponding value 

for a bismuth atom i.e. 9x10-18s. The half thickness for Bi is 164±29 µg/cm2. The high projectile 

ionization together with the size of the electron capture cross section leads to this long survival time 

of the projectile K vacancy in the bulk. Table 6.3 gives the values of t1/2 (survival half thickness) and 

τ1/2 (half-survival time) of the K-shell vacancies while penetrating solid Au targets for U-Au and Bi-

Au collision systems. The τ0(1/2) for a vacancy in a normal U and Bi atom [5, 6] are also given for 

comparison. 

 

Table 6.2 Increase ( ∆ I) in U-Kα1, Bi-Kα1 and Au-Kα1 x-ray emission cross sections (in kbarn) per incoming 
projectile vacancy (K, Lj=1/2) as well as total for all emission channels obtained for zero target thickness i.e. 
approximate single collision conditions. The total x-ray emission for all decay channels i.e. α1, α2, β1, 
β2 etc. is assumed to be approximately 3 times that of Kα1 emission. 
 

Collision 
system 

Kα1 Increase of  x-ray emission cross section 
in kbarn 

 
Cross section 

 ∆ I (Kα1) / 
incoming   

K-vacancy  

∆ I (Kα1) / 
incoming    

L(j=1/2)- 
vacancy 

∆ I (K-Xtot) / 
 vacancy  

 

U-Au U 903 ± 165 - ~ 2709 ± 859 σ captureelectron   

 Au 20 ± 5 - ~ 60 ± 26 σ sharingKK −  

 Au - 1.3 ± 0.7 ~3.9 ± 2.1 σ sharingKL−  

Bi-Au Bi 1714 ± 314 - ~ 5141 ± 1631 σ captureelectron  
 Au 30 ± 10 - ~ 90 ± 52 σ sharingKK −  
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The half thickness t1/2 can be calculated by different ways such as from the decrease in the 

projectile and target K and L x-rays, decrease in the interpartner intensity ratio for both K and L x-

ray emission, and the variation of the charge state evolution with increasing target thickness. Here 

only one of the different ways for determining t1/2 has been used. The other methods give partially 

upto a factor of 2 larger t1/2 values leading to correspondingly longer half survival times. However, 

for safety the smallest t1/2 value has been used for comparison. The most reliable value is extracted 

from the interpartner Kα1 ratio leading to t1/2= 190±10 µg/cm2 for U-Au system and t1/2= 230±30 

µg/cm2 for Bi-Au system instead of 95±10 and 164±29 µg/cm2 respectively. 

 

Interaction distance for electron capture 

During distant collisions for highly charged projectiles, the electrons are captured from the 

target to the higher vacant shells of the projectile (typical electron capture interaction distance has 

been estimated later in text). For projectiles carrying a K-vacancy prior to the collision (U91+ or 

Bi82+), the radiative stabilization of the captured electrons to the K-shell leads to a copious emission 

of the projectile K x-rays and hence to the observed increase in the projectile-K x-ray emission (U-

Kα1 or Bi-Kα1) (see Fig. 6.5, 6.6). 

 

Table 6.3 Parameters for calculation of half-survival time (τ1/2) of a K vacancy corresponding to half 
thickness of target foil i.e. (t1/2). The half- life time (τ0(1/2) ) for a vacancy in a normal U and Bi atom [97] are 
mentioned for comparison. 
 

Name of parameter Parameters U-Au system Bi-Au system 

Half thickness t1/2  (µg/cm2) 95 ± 50 164 ± 29 

Half-survival time τ1/2   (s) ~ (4 to5)x10-16      ~ (6 to 9)x10-16 

Half-Life time τ0(1/2) of  a “normal” 
atom [97]  (s) 

~ 6x10-18  ~ 9x10-18 

 

The electron capture cross section (σ cap ) can be calculated from the increase in total 

projectile-K x-ray emission cross sections (i.e. for all transitions to the K-shell, Kα1, Kα2, Kβ1 and 

Kβ2). The Bi, U and Au x-ray emission cross sections given in Table 6.2, column 3  refer to only one 

decay channel of the K vacancy. In order to account for the total K-vacancy production cross 

sections, a sum over all channels (i.e. sum over all transitions to the K-shell viz. for Kα1, Kα2,  Kβ1 

and Kβ2 emission) is required which adds up to an estimated factor of about 3 roughly within 25%. 

Hence for a total increase in the K x-ray emission, one can calculate the kbcap 5141~=σ  for the Bi 
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K x-rays and ~ 2709 kb for the U K x-rays (column 5, Table 6.2). These values are compared to the 

theoretical calculations [50, 53] for electron capture as well as with the values obtained from the 

measured charge state cross sections in Section 6.3.6.  

A simple geometrical picture (using a box model with a step function) has been used to 

estimate the interaction distance for electron capture approximately i.e.  

rP capcap cap
2.πσ =  

with Pcap = 1 for rr cap≤ and  Pcap = 0 for  rr cap≥ . From the above equation the interaction 

distance for electron capture, rcap  can be estimated to be ~12792±4055 fm for Bi-Au collision 

system and ~ 9286±2944 fm for the U-Au system. The corresponding arrow for the two distances are 

marked in the adiabatic level diagrams shown in Fig. 6.10 and 6.11.   

 

6.3.6 Charge exchange measurements 

 

As has been mentioned clearly in Introduction (Chapter 1) of this study, the charge exchange 

was investigated for the collision systems in order to fulfill the primary objective of this investigation 

namely the probability of survival for the incoming vacancies in the projectile while passing through 

solid targets. The charge exchange cross sections can either be measured directly (such as done for 

Bi-Au collision system) or deduced from x-ray emission cross sections (done for both U-Au and Bi-

Au systems) corresponding to projectiles carrying vacancies in the incoming channel of the collision. 

A charge state evolution measurement and charge exchange cross sections of a highly 

charged ion can be correlated with x-ray emission. This would provide an insight into the conditions 

of incoming channels during quasimolecular collisions inside a solid. The K x-ray emission cross 

sections corresponding to the projectiles carrying an incoming K vacancy are used for calculating the 

total electron capture cross section for both U-Au and Bi-Au collision system. As has been clarified 

in Section 4.3.5 (Chapter 4) these cross sections have been calculated for “zero” target thickness 

corresponding to approximately single collision conditions. A sum over all the possible decay 

channels has also been taken into account (see Section 6.3.5).  

The charge state distribution was measured by a position-sensitive particle detector for the 

Bi-Au collision system (Chapter 5). The charge exchange cross sections were determined from the 

target thickness dependence of the yield of charge state fractions (Nq+/Ntot). For q = 82 corresponding 

to a H-like Bi (open K-shell) a total electron capture cross section could be deduced by the procedure  

described in Section 5.5.3 (Chapter 5). The measured values from both the above procedures  

have been found to be in fair agreement with each other.  
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Fig. 6.9 Shell differential electron capture cross sections vs the atomic shells of the projectile (U/ Bi) 
calculated theoretically and from experimentally measured values. The curves signify the distribution of the 
cross sections according to Eikonal [53] from Au K, L, M and N shells to various projectile shells (shown on 
the abscissa) and their total. (#):-σ Tot

cap  from Au K, L, M and N-shells to a U/Bi-nth shell (K to T), (to be read 

from abscissa). (*):-σ Tot
cap  from a Au-nth shell (K to N) (to be read from axis on top) to all U/Bi K to T shells. 

The Schlachter [50] values are a total for q = 86, 88, 90 and 91 for U and for q = 77, 81 and 82 for Bi. The 
experimentally determined values of σ L

cap , σ M
cap

 and σ Tot
cap  from x-ray emission cross sections (for q = 91 for 

U and for q = 82 for Bi) have also been included along with the value deduced from measured ‘q’ state 
evolution for Bi. 

 

Lastly a comparison of the experimentally measured values with the model  calculations of 

Eikonal [53] and to the semi-empirical non-relativistic scaling formula for non radiative capture 

(NRC) by Schlachter et al. [50] have also been performed (details in Section 4.3.5, Chapter 4 and 

Section 5.5.3, Chapter 5) for both the collision systems. Fig. 6.9 shows the shell differential capture 

cross sections vs. the atomic shells of the projectile for U and Bi, calculated by the Eikonal 

approximation and by Schlachter et al.. The details have been covered in the respective chapters. 
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The curves signify the distribution of the cross section from Au K, L, M and N shells and their total 

according to Eikonal. The Schlachter values are a total for q = 86, 88, 90 and 91 for U and a total for 

q = 77, 81, 82 for Bi. The total experimentally determined value from x-ray emission cross sections 

(for q = 91 for U, for q = 82 for Bi) have also been included. For both the collision systems, the 

Eikonal predicts that the probability of capture is maximum from Au-L and -M shell to the U- or Bi-

M shell. The total cross sections distribution indicated by the thick solid line (#) in both the figures 

indicated that the capture to projectile (U- or Bi-) M and N-shells is preferred.  Additionally Bohr’s 

criterion of vion = ve indicates that the collision velocity of both the projectiles is larger than the 

velocity of the electrons in the M-shell of U and Bi. Keeping in mind the intensity of the projectile 

Kβ1 (M3-K) line in the x-ray spectra of both U-Au and Bi-Au collision system corresponding to open 

K-shell condition; it can be inferred that either the electrons captured to the M-shell are re-ionized 

quickly or they cascade down to the L and K-shells. The cross sections according to Schlachter et al. 

have been found to agree reasonably well with the experimentally measured values (within the 

experimental uncertainties), more for U-Au system than for Bi-Au as indicated in the Fig. 6.9 by 

empty squares. It can be observed that the σ M
cap  values are higher for the near symmetric Bi-Au 

system in comparison to those for the asymmetric U-Au system. This probably due to the matching 

of the levels in the symmetric case whereby many electron are captured from the target to the 

projectile shells. The higher values of σ M
cap  are probably due to this reason and this has to be 

investigated further. σ Tot
cap is estimated through projectile K x-ray emission cross sections (for open 

K-shell) and reflect only one electron capture and not multi electron capture or successive capture in 

different collisions. The latter is manifested through σ M
cap  (including capture into higher shells) and 

hence relatively higher values. In Table 6.4 the capture cross sections are summarized once more for 

comparison. 

 

Table 6.4 Total electron capture cross sections calculated by Eikonal approximation [53], the semi-
empirical prescription by Schlachter et al. [50] and measured values determined both from x-ray emission 
cross-sections and charge state evolution. 
 

 
Collision 
system 

Projectile 
incident 
charge 

state (q) 

σ Tot
cap  in Mb σ Exp

cap  in Mb 

Eikonal 
approx. [53] 

Schlachter   
et al. [50] 

from x-ray 
emission 

from q-state 
evolution 

U-Au 91 7.39  3.67  2.7 ± 0.1 Not available 

Bi-Au 82 6.32  2.96 5.1 ± 0.9 4.3 ± 1.0 
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6.4 LEVEL DIAGRAMS AND COUPLING DISTANCES FOR SUPERHEAVY 

COLLISION SYSTEMS  

 

6.4.1 Level diagrams for superheavy collision systems  

 

As has been mentioned in Chapter 1, the superheavy quasimolecules are formed transiently 

during collisions of heavy-atoms by high-Z projectile ions, moving slowly (vion) with respect to the 

orbital velocities of the electrons of concern (ve), here the inner shell processes are governed by the 

adiabaticity parameter η [=(vion/ve)
2] (Chapter 2). As the adiabaticity factor for the inner shells of 

both the investigated collision systems is smaller than 1 (η ≤ 0.5 for the Bi-Au collision system and 

η ≤ 0.35 for the U-Au collision system for the Au K-shell), both lie in the quasiadiabatic regime. 

Hence, the inner shell vacancy transfer can be considered / interpreted in accordance with the 

quasimolecular picture [7] using adiabatic level diagrams [98, 99]. Based on an earlier work, see e.g. 

[98], advanced SCF-DFS multielectron level diagrams for the U-Au and Bi-Au collision systems 

have been calculated by Anton and Fricke [99] and are shown in see Fig. 6.10 and 6.11 respectively. 

 

Fig. 6.10. Adiabatic level diagram for the asymmetric U-Au collision system by [99]. All the electrons above 
the region for vion = ve,  i.e. shaded area,  cannot be considered within the quasiadiabatic picture. 
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According to these calculations, the interaction region of “K-K sharing” mentioned in the 

earlier section is indicated in Fig. 6.10 and 6.11 by rectangles numbered 1. The interaction region for 

“L-K coupling” (coupling between the L-shell of the projectile and K-shell of the target at small inter 

nuclear distances) is indicated by rectangles numbered 2. The internuclear distances for the above 

two processes r KK −  and r KL−  estimated from experimentally measured cross sections are indicated 

by arrows in the figures. The L-K shell coupling distance has not been estimated experimentally for 

Bi-Au collision system for the reasons clarified above. The detail discussion regarding these follows 

in the next Section 6.4.2. This quasimolecular picture (where the adiabatic level diagram is valid 

only up to the binding energy given by (vion = ve) is not applicable to the electron capture process. 

The corresponding arrow for electron capture, rcap  estimated from measured cross sections has been 

indicated for presenting a complete overview only. 

 

Fig. 6.11. Adiabatic level diagram for the near symmetric Bi-Au collision system [99]. All the electrons 
above the region for vion = ve,  i.e. shaded area,  cannot be considered within the quasiadiabatic picture. 

10 100 1000 10000

100

10

UA

2
1

vion= vK

Bi    Au1s

3d5/2

4s
3d3/2

3p3/2  
4p1/2

 

2s

2p1/2

3s
2p3/2

3p1/2

Bi  n=3

Au n=1
Bi  n=1

Au  n=2
Bi  n=2

Bi   Au

 

 

Bi
nd

in
g 

En
er

gy
 (k

eV
)

Internuclear distance (fm)



 142 

6.4.2 Coupling Distances 

 

Table 6.5 gives a summary of the formulae for the probabilities and calculation of interaction 

distances for different processes viz. “electron capture”, “K-K sharing” and “L-K coupling”. The 

explanation of the inner shell processes is given below, electron capture has already been discussed 

above in Section 6.3.5. 

 

K-K transfer 

The increase in Au-K x-ray emission for incident U91+ or Bi82+-ions indicates that during 

close collisions, apart from couplings, excitation and ionization active at lower incident charge states, 

an additional process of K-K vacancy transfer is responsible for the production of K vacancies. In 

close collisions, K vacancies brought in by the projectile (e.g. U92+, Bi82+) can be transferred to the 

target K-shell in the quasimolecule via the coupling of the 1sσ and 2pσ orbitals called the K-K 

transfer [95] (the corresponding region indicated in Fig. 6.10 and 6.11 by rectangles numbered 1). 

Transferred vacancies are then carried by the target K-shell in the outgoing part of the collision. 

These excess target K-vacancies cause an increase in the target K x-ray emission which has been 

observed experimentally for Au for both U- and Bi-ions carrying initial K vacancies. With a 

knowledge of the transfer probability, this increase in the Au-K emission allows an estimation of the 

internuclear interaction distance for K-K transfer using a simple model.  

 
Table 6.5   Probabilities and formulae for calculation of different interaction distances. For explanation of 
the parameters see text. 
 

 
Process Bi- or U-

Kα1/AuKα1 

Probabilities Total probability Geometrical models 
for estimations 
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capture 
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The charge state dependence of Au-Kα1 for a closed projectile K-shell (i.e. q ≤ 90 for U and q

≤ 81 for Bi) and its drastic increase for an open projectile K-shell has been observed in Fig. 6.5 and 

6.6 for the experiments with U and Bi projectiles respectively. The intensity ratio of the projectile, 

U- or Bi-Kα1 with respect to the Au-Kα1 have been given in Tables 4.1 and 5.1 respectively for both 

closed and open projectile shells.  

First we consider the closed projectile case: Denoting the K x-ray emission ratio of heavier to 

 lighter collision partner for closed K-shell as 
KZ
KZ

R
12

11

α

α

−

−
= and assuming that the K vacancies are 

mainly produced via the 2pσ level, R can be related to the transfer probability p KK −  for a single way 

passage (outgoing) by the following relation: 

p
p

R
KK

KK

−

−

−
=

1
 

For U-Au system R = 0.4±0.1 and that for Bi-Au system R = 0.9 ± 0.1. For U-Au system p KK −  = 

0.29 ±0.06 and for Bi-Au system p KK − = 0.47±0.03 is deduced.  

According to the Meyerhof formula [95, 100], the non relativistic probability of single 

transfer of a vacancy RMey can be approximately given by:   

)exp(
..

)12(
ua

spMey v
Z

R
∆

−≈−
π

σσ  

where Z∆  is the difference in the atomic numbers of the two collision partners  and ..uav is the 

velocity of the projectile in a.u.. The two probabilities R and RMey can be compared to each other. 

The RMey = 0.78 for Bi-Au and is = 0.46 for U-Au. In these values no relativistic effects are included. 

Hence they can only be used as guide lines and agree reasonably well with the experimental values.  

For an open, incoming projectile K-shell (U91+ or Bi82+), a two way passage for the vacancy 

transfer (in and out) has been considered. This leads to a total probability of vacancy transfer or K-K 

transfer as:  

( )ppP KKKKtransferKK −−− −= 12)(  

For U-Au it is 0.41±0.06 and for Bi-Au 0.49±0.01. Table 6.6 gives the values of all the parameters 

required for the calculation of interaction distances for both the systems Bi-Au and U-Au. In a 

simplified geometrical picture, this total probability is related to the cross section for vacancy 

transfer or K-K transfer by the relation: 

rP KKtransferKKtransferKK
2. −−− = πσ  
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The increase in Au-Kα1 per incident K vacancy for practical single collision conditions is indicated 

in Table 6.2 for both U-Au and Bi-Au collision systems as ~20 ± 5 kb and ~30 ± 10 kb respectively. 

Taking into account the total number of Au-K vacancies (which adds up to a factor of 3 

approximately) as explained above for capture cross section case, the total cross section for K-K 

transfer (σ transferKK − ) is calculated as ~60 ± 26 kb for U-Au system and ~90 ± 52 kb for Bi-Au 

system. Using the above simple geometrical model the interaction distance for K-K coupling ( r KK − ) 

is estimated to have a value of ~2418 ± 1395 fm for the U-Au and ~2158 ± 935 fm for Bi-Au system. 

These estimated values for r KK −  are marked by the corresponding arrows in Fig. 6.10 and 6.11 

respectively. 

 

Table 6.6 Values of all the parameters required for the calculation of interaction distances for the U-Au and 
Bi-Au collision systems. See text for details of parameters.  
 

Process Parameters U-Au collision 

system 

Bi-Au collision 

system 

K-K 

transfer 

p KK −  0.29±0.06 0.47±0.03 

R  0.4±0.1 0.9±0.1 

RMey  0.46 0.78 

P KK −  0.41±0.06 0.49±0.01 

    

L-K 

coupling 

p KK −  0.29±0.06 - 

p KL−  < 1/2 - 

g  1/2 - 

P KL−  < 1/2 - 

 

Fig. 6.12 a) and b) show the level diagram of U-Au system (Fig. 6.10) enlarged for the K-K 

vacancy transfer region. Area of interaction is indicated by the circle. The passage of the incoming 

projectile vacancy through the molecular orbital levels has two possibilities. These two ways are 

shown by direction of the blue and red arrows in the two figures. 

These values estimated from experimental cross sections are somewhat larger than the region 

of crossings (rectangles numbered 1, Fig. 6.10 and 6.11) of the 1sσ and 2pσ orbitals shown in the 

level diagrams. For K-K transfer the level diagrams indicate a value for interaction distance as 
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approximately within the range 800 to 2000 fm. Relativistic treatment of the couplings may change 

the result slightly. Here one has also to consider a dynamic coupling of the involved levels already 

outside the coupling region due to the high collision velocity. Thus slightly increasing the interaction 

distance. For a more detailed understanding of the inner shell coupling in the relativistic regime 

further dynamic calculations are required. Moreover, a more detailed consideration of the conversion 

from x-ray emission to vacancy cross sections has to be considered in future.  

     
Fig. 6.12 a)  Enlarged graph of Fig. 6.10 depicting the K-K vacancy transfer region. The probability for 
transfer pK-K and the probability for not transfer 1-pK-K are also shown for clarity (see the blue path with the 
arrows showing the direction of the vacancy transfer). 

 
Fig. 6.12 b)  Enlarged graph of Fig. 6.10 depicting the K-K vacancy transfer region. The probability for 
transfer pK-K to U-K shell and the probability for not transfer 1-pK-K are also shown for clarity. (see the red 
path with the arrows showing the direction of the vacancy transfer). 
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L-K coupling 

The coupling distance for the L-K shells could be calculated only and approximately for the U-Au 

collision system because for Bi-Au experiment there was a paucity of intermediate data points 

 

 

Fig. 6.13 a) Enlarged graph of Fig. 6.10 depicting the L-K coupling region. The probability for crossing over  
pL-K and the probability for not crossing over 1-pL-K are shown for clarity. The one possible way of passage for 
an incoming projectile L vacancy is shown with the blue arrow. 
 

 
Fig. 6.13 b)  Enlarged graph of Fig. 6.10 depicting the L-K coupling region. The probability for crossing 
over pL-K and the probability for not crossing over 1-pL-K are shown for clarity. Another possible way of 
passage as compared to that shown in Fig.6.13 a) for an incoming projectile L vacancy is shown with the red 
arrow. 
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 (see Fig. 6.6) whereby one could calculate emission cross sections corresponding to incoming 

projectile L(j=1/2) vacancies (Bi80+ or lower q).  

Fig. 6.13 a) and Fig. 6.13 b) show the level diagram of U-Au system (Fig. 6.10) enlarged for 

the L-K vacancy transfer region. Area of interaction is indicated by the circle. The two ways of 

passage of an incoming projectile L vacancy are shown by direction of the blue and red arrows in the 

two figures. 

 For projectiles with incoming L(j=1/2) vacancies (U90+,88+), the vacancy may be transferred 

during the collision towards the united L-shell and couple at intermediate distances to the 2pσ level 

correlating to the Au K-shell (Fig. 6.10). In the outgoing part of the collision when the partners 

separate a fraction of the vacancies  may be lost to the 1sσ level correlating to the projectile (U) K-

shell with probability pK-K  = 0.29 ± 0.06. The projectile vacancy may exist in either a 2s1/2 or 2p1/2 

level and one can assume a simple statistical factor of a 21  (= g, Table 6.6) for the population of the 

2pσ level (Fig. 6.10). The passage of the initial L(j=1/2) vacancy to the target 1s level can be 

assumed to be a two way passage, then the total probability of transfer can be calculated as follows: 

( ) 2112 ≤−= −−− pp KLKLKLP  

 
This probability along with a statistical factor of g= 21  gives the total probability of transfer of a 

L(j=1/2) vacancy to the target 1s level as ≤ 41 .  The total increase in the Au K x-ray emission cross 

section )(σ KL− for all the channels can be calculated from the increase per L(j=1/2 vacancy) which is 

with a large uncertainty ~1.3 ± 0.7 kb (Table 6.2) and multiplying it with a factor of 3 (Table 6.2, 

column 4)  in order to include all the decay channels as explained above. This total cross section 

)(σ KL−  can be expressed as: 

rpg KLKKKLKL P 2.)1(.. −−−− −= πσ  

Now taking into account the L-K coupling sharing ratio P KL− , the statistical factor g, the K-K 

sharing ratio, 29.0=−p KK and )(σ KL− , the L-K shell coupling distance ( r KL− ) can be roughly 

estimated form the above equation. The r KL−  is obtained as ≥ 1035fm. The corresponding arrow is 

marked in the correlation diagram in Fig. 6.10. As was the case for the K-K sharing distances, this 

value estimated by a simplified model from experimental cross sections is really larger than the 

region of crossing marked in Fig. 6.10. According to the level diagram, the L-K coupling binding 

energy is around 120 keV with a gap of about 40 keV. This gap energy corresponds roughly to a 

transition energy optimally excited at the collision energy used. (cf. also the binding energy for the      

vion=ve limit). Hence due to the relatively large adiabaticity factor for the L-K coupling, the 
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corresponding levels will couple dynamically, leading to considerably larger coupling distances. It is 

clear that only dynamical calculations for the relativistic case and a more detailed consideration of 

further experiments will result in a more effective test of the coupling parameters for these 

superheavy collision systems. An enlarged graph of Fig. 6.10 depicting the K-K vacancy transfer and L-K 

coupling regions together is shown in Fig. 6.14. 

 
Fig. 6.14 Enlarged graph of Fig. 6.10 depicting the K-K vacancy transfer and L-K coupling regions. 

 

 

6.5   A COMPREHENSIVE PICTURE 

 

The target thickness dependence of the K x-ray cross sections showed clearly that for 

moderately slow near symmetric as well as for slightly asymmetric collisions for very heavy 

partners,  the projectile K vacancy can survive while penetrating solid targets. The half survival time 

of the K vacancy (~(6 to 9) x10-16 s for Bi and ~(4 to 5) x10-16 s for U) in a 69.2 MeV/u, Bi82+-ions 

and 69.1 MeV/u, U91+-ions while passing a solid Au target is estimated to be appreciably larger than 

the lifetime of a K vacancy in a normal bismuth or uranium atom (~10-18 s). It was thus shown that 

for very thin solid targets (e.g. t1/2 = 95±10 µg/cm2 for U-Au system and 164±29 µg/cm2 for Bi-Au 

system) the inner shells in superheavy quasimolecules can be probed. The K emission cross sections 

of the collision partners showed a strong dependence on the incident charge state (q) of the 

100 1000 10000

300

250

200

150

100

U    Au

2s

2p1/2

1s

Au n=1

U  n=1

Bi
nd

in
g 

En
er

gy
 (k

eV
)

Internuclear distance (fm)

L-K coupling
K-K transfer

 



 149 

projectile. The charge exchange cross sections calculated from the position resolved particle spectra 

concurred nicely with those calculated from the K x-ray emission. 

 As the collision system of U-Au (ηΚ ≤ 0.35) and Bi-Au (ηΚ ≤ 0.5) just fall in the 

quasiadiabatic collision regime an adiabatic level diagram [99] for the two systems was used for the 

interpretation of the data (Fig. 6.10, 6.11). As is evident from the level diagrams, the K-K vacancy 

sharing takes place at an appreciable shorter internuclear distance as compared to the electron 

capture. The interaction distance for electron capture concurs with the region where the atomic levels 

turn already towards molecular ones, i.e. where the corresponding shells start to overlap, the 

coupling between the L shells of the projectile and K-shell of the target take place during close 

collisions and the K-K sharing takes place where the quasimoleular 1sσ and 2pσ levels start to 

diverge towards the united atom system. 

The increase in the Bi-, U- and Au-K x-ray emission for projectiles with initial K vacancies 

allowed a rough estimation of interaction distances. The interaction distance for electron capture in 

distant collisions, interaction distance for K-K sharing and coupling distance for L-K shells sharing 

during close collisions are estimated assuming simple geometrical models. Table 6.7 gives a 

summary of the various interaction distances estimated for the Bi-Au and U-Au collision systems. 

These distances were found to be somewhat larger than the ones indicated by the level diagrams 

(Fig. 6.10 and 6.11) possibly indicating more channels for the feeding of vacancies during collisions 

than  assumed  in our simple geometrical models. Dynamical calculations for the involved couplings 

in the relativistic regime as well as further dedicated measurements are needed to get more precise 

information on these superheavy atomic collision systems. The present investigation could only open 

the door to this challenging field giving a very first however exciting glance of it.  

 

Table 6.7 A summary of the various interaction distances estimated for the U-Au and Bi-Au collision systems. 

 
 U-Au collision system Bi-Au collision system 

rcap  ~ 9286±2944 fm ~ 12792±4055fm 

r KK −  ~ 2158±935 fm ~ 2418±1395 fm 

r KL−  ≥  1035±517 fm - 

r KK −  [99] see Fig. 6.10, 6.11 ~ 900-1500 fm ~ 900-2000  fm 

r KL−  [99] see Fig. 6.10, 6.11 ~ 200-400 fm ~ 200-400  fm 
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With the results of the present investigation, the basis for a detailed probe into the inner shells 

of superheavy quasimolecules is laid. In the future, lower projectile energies will have to be 

investigated to probe these systems at better adiabatic conditions. 
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CHAPTER  VII 
 

CONCLUSIONS AND OUTLOOK 

 

7.1 SUMMARY AND CONCLUSIONS  

 

Collisions of very heavy atoms and ions have attracted many researchers in basic science 

years ago, see e.g. [7] and references therein. The goal has been to approach and understand super-

heavy atomic systems [1] with united atomic numbers far beyond existing matter, with ZUA = Z1+Z2 

> 100. Beyond ZUA = 137 the normal Dirac equation for a point charge cannot be solved [1]. For ZUA 

> 160 the innermost electron levels even dive into the negative continuum due to tremendous 

relativistic effects. These super-heavy quasi-atoms or quasimolecules can be approached in relatively 

slow [24] heavy ion-atom collisions which are slow compared to the orbital velocity of the innermost 

electrons of concern. In order to probe these tightly-bound inner shell levels, vacancies have to be 

provided there and their decay by x-ray emission in the separated partners or in the quasi-molecule 

itself has to be studied. Unfortunately, for very heavy ions it has not been possible (in early 70’s) to 

provide abundant and slow ionic projectiles with incoming inner shell vacancies for testing super-

heavy atomic systems. Hence in all previous measurements [7] in this field, inner shell vacancies 

could only be produced during the close collision itself, i.e. during the collision of interest. Many 

aspects of super-heavy atomic systems have already been tested by these investigations. However, 

the great venture to provide initial inner shell vacancies for investigating super-heavy quasimolecules 

could not be achieved earlier. The aim of this work is exactly to provide a way out of this dilemma.  

The dedicated experiments reported here demonstrate  

• that abundant highly charged heavy ions, i.e. very heavy ions with incoming K-shell 

vacancies, can be provided at still useful moderate collision energies,  

• that initial inner shell vacancies can survive in a heavy projectile penetrating thin foils of 

heavy target atoms and can be provided there for super-heavy collisions,  

• that tightly bound innermost levels of the superheavy collision molecule can be probed by 

incoming inner shell projectile vacancies.  

Up to H-like heavy U and Bi-ions carrying one K-shell vacancy were produced by stripping 

after the heavy ion synchrotron SIS at GSI, Darmstadt at an energy of ~69 MeV/u. These charge 

state selected ion beams with typically 106-108 ions/s were provided for collision experiments with 

thin Au foils. An energy of 69 MeV/u is just low enough to be considered as slow compared to the 
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Au K-shell orbital velocity. Hence during close collisions of the investigated systems, 

quasimolecules can be formed transiently for inner shells during close collisions. However the 

charge state of the ions may be reduced quickly towards the mean charge state while passing through 

matter. As a result during close quasimolecular collisions incoming K-shell vacancies may no longer 

be available in deeper layers of the target foil. In this respect a less dense gas target would be 

preferable however it is more than cumbersome to design proper gas or vapor targets of heavy atoms 

showing appropriate luminosities for the quasimolecular processes. Hence the only realistic way is to 

try thin foils of heavy target atoms.  

The first aim was to probe the survival of an incoming projectile K vacancy of a heavy 

projectile penetrating the bulk. Several tests were performed giving all comparable results that for 

the cases considered half of the projectiles still carry their K vacancies up to Au-foil thicknesses of 

150±40 μg/cm2. It is established by the decrease in intensity of the projectile K x-ray emission with 

target thickness as well as to some extent by the corresponding but smaller decrease in target K x-ray 

emission. Furthermore, the shrinking of the ratio for projectile K to target K x-ray emission leads 

very convincingly to the same result. This result has been confirmed by direct and total charge 

exchange measurements deduced from charge state distributions behind the target with different 

thicknesses. The survival thickness can also be observed approximately from the slight reduction in 

the K centroids of Biq+ and Au with increasing (Au) target thickness. Hence, Au target foils up to 

100 – 200 μg/cm2 can be used to study superheavy quasimolecules with incoming K-shell vacancies. 

Apart from this a complete impression of the projectile-ion status (charge state evolution and 

population distribution) can be obtained from the complex x-ray emission pattern involving outer 

shells.  

With the above positive outcome, a first test on the behavior of the innermost quasimolecular 

levels with incoming K vacancies could be pursued. Dynamic couplings between the innermost 

shells (K-K [92] and L-K coupling [93]) were probed for the above mentioned near symmetric and 

slightly asymmetric super-heavy quasimolecular systems (after the collision). The coupling distances 

have been deduced from the K x-ray emission of both collision partners. The values found using 

simple assumptions on the coupling behavior are roughly in accordance with the outcome of quasi-

molecular level calculations [99]. Dynamic calculations are necessary for a more detailed 

comparison and in future more appropriate models have to be applied for the evaluation. It can be 

observed from the level diagrams (Fig. 6.10 and 6.11), that the innermost couplings investigated by 

the experiments approach binding energies of around 250 keV which is about twice the binding 

energy of the innermost K electrons in U. On the whole, all the coupling distances estimated 
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experimentally including the interaction distance for electron capture fit reasonably well to the 

corresponding level diagrams and hence the quasimolecular picture is valid for the innermost shells.  

 

7.2 OUTLOOK 

 

With these basic investigations a new path to the investigation of transient super-heavy 

atomic systems is laid. The next goal would be experiment at lower ion energies of ~10 MeV/u 

region. The stripping method applied at the present synchrotron (SIS) at GSI would enable only a 

moderate decrease in energy however coupling the SIS with the storage ring (ESR) would provide 

still lower energies. High energy ions stripped on ejection from SIS can be re-injected into ESR 

where they can be decelerated to the required energy. These cooled/decelerated ions can then be 

slowly extracted and directed towards the (external) target foil.  

An interesting experiment would be the U92+-U collision system used to investigate the MO 

x-rays of the collision system as a function of the impact parameter. This system would be 

interesting as for both 1s and 2p1/2 orbitals the central field is ~1x1018 V/cm for a nuclear charge of 

184 (=92+92). Very thin Uranium targets would be appropriate for this investigation where bare or 

H-like U-ions decelerated to about 6 MeV/u would be bombarded on solid targets with a slow 

extraction of 107 ions. Large solid angle x-ray detectors along with striped x-ray detectors would 

provide the information required from the collision. Si(Li) and Ge(i) detectors would be used to 

cover the entire energy range of K and L x-rays of the collision partners. Position-sensitive particle 

detectors would be useful in analyzing the charge state of the ejectile-ions after collision. 

Internal storage ring experiments would be challenging, demanding specially developed gas 

targets. Even though they are feasible, investigations of superheavy atomic systems with ZUA ≥170 

would be nearly impossible. So the immediate next steps would be to use solid target foils which can 

permit a glance into systems with ZUA ≥170. Sophisticated x-ray experiments including impact 

parameter dependences seem feasible. Besides the characteristic K radiation of the collision partners, 

quasi-molecular radiation from the transient super-heavy atomic systems as well as positron emission 

can be investigated. However, providing incoming K vacancies will enhance all these cross sections 

by almost two orders of magnitude. Hence an exciting field in the region of super-heavy atomic 

systems can be probed uniquely. 
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