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1 Introduction 

1.1 Small Ruminant Scrapie 

Scrapie is the oldest known transmissible spongiform encephalopathy (TSE) and affects 

sheep and goats (Table 1) (Chelle, 1942; Zlotnik and Stamp, 1961). TSEs may present 

as genetic, infectious or sporadic disorders in which spongiform degeneration and 

astrocytic gliosis can be found upon microscopic examination of the CNS (Zlotnik and 

Stamp, 1961), accompanied by deposition of a protease-resistant, aggregated and 

misfolded form (PrPSc) of the normal cellular prion protein (PrPC) (Basler et al., 1986; 

Brown et al., 1986; Diringer et al., 1983; Prusiner, 1982). Scrapie has never been shown 

to be a source of TSE infection in humans (Race et al., 2001; Raymond et al., 1997). 

However, it is widely accepted that meat and bone meal (MBM) from scrapie infected 

sheep was the source of the bovine spongiform encephalopathy (BSE) epidemic in the 

UK (Wilesmith et al., 1988). In turn, BSE was shown to cause a newly recognized TSE 

in humans, the new variant Creuzfeldt-Jakob disease (nvCJD) (Bruce et al., 1997). This 

prompted wide spread testing for BSE and scrapie in Europe’s ruminant population 

through the establishment of a TSE monitoring and eradication program outlined in the 

European Parliament and Council Regulation No 999/2001 (EC 999/2001). The concern 

that scrapie could mask a BSE epidemic in the small ruminant population was 

substantiated by the identification of a naturally infected BSE positive goat in France in 

2004 (Eloit et al., 2005). EC 999/2001 has been implemented to protect consumer and 

animal health.  

1.2 Goal of this Study 

It has been established for ovine classical scrapie that, to a high degree, susceptibility is 

dependent on certain nonsynonymous single nucleotide polymorphisms (SNPs) within 

the prion protein gene (PRNP) locus on ovine chromosome 13 (Belt et al., 1995; Diaz et 

al., 2005; Goldmann et al., 1994; Hunter et al., 1994). Particular PRNP genotypes confer 

a higher degree of classical scrapie susceptibility whereas others confer a higher degree 

of classical scrapie resistance in sheep (Baylis and Goldmann, 2004; Goldmann, 2008; 

Hunter, 1997; Mead, 2006; Tranulis, 2002). Active surveillance, PRNP genotyping and 

breeding programs were established within the EU as a result and implemented in an 
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effort to increase scrapie resistance in the sheep and goat breeding population (EC 

999/2001). With the advent of atypical scrapie (Benestad et al., 2003) as well as 

accounts of putative resistant sheep succumbing to classical scrapie (Groschup et al., 

2007; Ikeda et al., 1995), emphasis has turned to the search for other genetic factors 

that modulate classical and atypical scrapie susceptibility in sheep as well as in goats.  

The goal of this study was to choose specific TSE candidate genes and survey them for 

mutations that possibly modulate scrapie susceptibility in sheep. In this study, five 

candidate genes for scrapie susceptibility were screened for SNPs. One SNP within 

each candidate gene was tested for its influence on susceptibility to classical as well as 

atypical scrapie in sheep.  
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2 Literature Review 

The advent of TSE active surveillance revealed that scrapie in the EU small ruminant 

population was more widespread than expected. Also, it lead to an increased 

recognition of atypical scrapie, a separate scrapie strain affecting the sheep and goat 

population (Benestad et al., 2003; Götte et al., 2011), which in the field does not seem to 

be infectious (Lühken et al., 2007) but has proven so in a laboratory setting (Le Dur et 

al., 2005; Simmons et al., 2007). Classical and atypical scrapie represent separate 

scrapie strains capable of infecting individual animals dependent on their specific 

genotype at the prion protein gene (PRNP) locus (Arsac et al., 2009; Belt et al., 1995; 

Diaz et al., 2005; Goldmann et al., 1994; Gretzschel et al., 2005; Hunter et al., 1994; 

Lühken et al., 2007; Moum et al., 2005; Saunders et al., 2006). 

Table 1: Overview of natural small ruminant TSEs. 

Species TSE Year 
Identified Reference 

Sh
ee

p classical scrapie 1732 (Schneider et al., 2007) 

atypical scrapie 1998 (Benestad et al., 2003) 

G
oa

ts
 

classical scrapie 1942 (Chelle, 1942) 

BSE 2004 (Eloit et al., 2005) 

atypical scrapie 2007 (Seuberlich et al., 2007) 

 

2.1 Historical Aspects of Sheep Scrapie 

Recognition of scrapie as a small ruminant disease dates as far back as 1732 and initial 

investigations were conducted by veterinarians in England, France and Germany 

(Besnoit, 1899; Comber, 1772; Cuillé and Chelle, 1936; Schneider et al., 2007). Scrapie 

was shown to be a transmissible disease in 1936 when intraocular inoculation of brain 

and spinal tissue from an affected sheep transmitted scrapie to two healthy sheep 

(Cuillé and Chelle, 1936). However, epidemiological studies in the laboratory and in field 

cases showed that another factor must play a role in determining scrapie susceptibility 

(Hadlow, 1959; Kingsbury et al., 1983; Sigurdsson, 1954). Suspicion of a genetic 

component to scrapie susceptibility was expressed as early as 1826: “[Scrapie] is 



Literature Review 
 

 4 

caused by an external factor. However, one animal is affected more easily than another, 

i.e. has a certain disposition to [scrapie]“ (Waßmuth, 2001).  

2.2 Prion Protein Encoding Gene 

The genetic locus responsible for the largest effect on classicial scrapie susceptibility in 

sheep is the PRNP locus (Diaz et al., 2005). PRNP, the gene encoding the prion protein, 

is highly conserved in mammals (Schatzl et al., 1995; Wopfner et al., 1999). PRNP is 

located on mouse chromosome 2 (MMU2 F2|2), human chromosome 20 (HSA 20p13), 

bovine chromosome 13 (BTA 13q17) and sheep chromosome 13 (OAR 13q15) 

(Castiglioni et al., 1998; Iannuzzi et al., 1998; Liao et al., 1986; Robakis et al., 1986; 

Sparkes et al., 1986).  

Ovine PRNP (Figure 1) is composed of three exons that are 52, 98 and 4028 base pairs 

(bp) in length (Lee et al., 1998). The 5’-untranslated region (5’-UTR) is 150 base pairs in 

length and includes exons 1 and 2. The open reading frame (ORF) is 768 bp and is 

found entirely within exon 3, followed by a 3220 bp 3’-UTR (Goldmann et al., 1990; Liao 

et al., 1986; Westaway et al., 1994).  

In sheep and goats, PRNP has been shown to be polymorphic (Baylis and Goldmann, 

2004; Bossers et al., 2000; Goldmann et al., 2011; Mead, 2006; Vaccari et al., 2009). 

Over 40 non-synonymous SNPs have been identified in the sheep PRNP, some of 

which are associated with susceptibility or resistance to scrapie (Belt et al., 1995; 

Goldmann, 2008; Hunter et al., 1994; Hunter et al., 1997b; Tranulis et al., 1999). In 

goats, 29 non-synonymous PRNP SNPs have been described worldwide, 25 of these in 

the European goat population (Acutis et al., 2008; Acutis et al., 2006b; Billinis et al., 

2002; Fragkiadaki et al., 2011; Vaccari et al., 2009). Of these, 5 are suggested to 

modulate scrapie susceptibility (Acutis et al., 2012; Bouzalas et al., 2010; Goldmann et 

al., 1996; Goldmann et al., 2011; Vaccari et al., 2006; White et al., 2012). 
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Figure 1: PRNP gene structure showing exon 1 (52 bp), exon 2 (98 bp) and exon 3 (4028 bp). 
The ORF codes for a 256 residue ovine prion protein (PrP) and is highly polymorphic. The 
polymorphic positions are labelled (136, 141, 154 and 171) that have, so far, been shown to 
modify scrapie susceptibility in sheep. V, A, F, L, H, R and Q represent the different allelic 
variants that can appear at each position (Saunders et al., 2009). 
 

2.3 Cellular Prion Protein  

Ovine PRNP encodes a 4.6 kb mRNA in the brain. The unprocessed ovine protein PrPC 

comprises 256 amino acids (Figure 2). Many specific structural regions (Figure 2) can be 

identified in the protein: a carboxy-terminal secretion signal peptide (Hope et al., 1986), 

five repeat octapeptides (PHGGGWGQ) close to the amino-terminus, a propeptide 

removed in posttranslational processing, two glycosylation sites, one disulfide bond and 

one glycosylphoshatidylinositol (GPI) anchor (Stahl et al., 1987; Turk et al., 1988). 
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Figure 2: Posttranslational processing of the PrP protein into mature form. The mature ovine PrP 
contains 5 octapeptide repeats (red) where copper and zinc binding occur (*).Two β sheets (β1 
and β2) and three α helices (α1, α2 and α3) form the globular C-terminal end, where two 
glycosylation sites (Gly) are also found (Gasset et al., 1992; Haire et al., 2004). 

 

The three dimensional structure of the prion protein is highly conserved among 

mammals, despite amino acid substitutions (Genoud et al., 2004; Gossert et al., 2005; 

Lopez Garcia et al., 2000; Lysek et al., 2005; Riek et al., 1996; Zahn et al., 2000). Ovine 

PrPC consists of two regions (Haire et al., 2004; Lysek et al., 2005): a flexible N-terminal 

region extending to amino acid 145, and thereafter, a C-terminal globular region 

containing 3 α-helices and 2 β-sheets (Figure 3). Three α-helices are formed from amino 

acids 146 to 158, 174 to 196 and 203 to 228. Two short, anti-parallel β-sheets are built 

by amino acids 129 to 134 and 163 to 167 (Eghiaian et al., 2004). It is suggested that 

the percentage of α-helices in PrPC is 43%. The mature PrPC is fully digested after 

incubation with proteinease K and is soluble in detergent solutions (Meyer et al., 1986).  

 



Literature Review 
 

  7 

 

 

 

Figure 3: Structure of the globular C-
terminal domain of the ovine PrP 
protein (Eghiaian et al., 2004). Shown 
are the positions of amino acids 136 
(alanine), 154 (arginine) and 171 
(glutamine). Beta sheets are labelled 
S1 and S2. Alpha helices are labelled 
H1, H2 and H3. 
 

 

 

 

2.3.1 Cellular Biology of PrPC   

PrPC is synthesized in the endoplasmic reticulum (ER) and transported through the 

Golgi apparatus to the cell membrane. During posttranslational processing (Figure 2), 

the immature PrPC protein undergoes the following: the N-terminal signal peptide (aa 1-

23) is removed during trafficking; N-linked glycosylation at aa 184 and 200 occurs; a 

disulfide bond is formed between aa 182 and aa 217; and following cleavage of the C-

terminal propeptide (aa 234-aa 256), a glycosylphosphatidylinositol (GPI) anchor is 

attached at aa 233 (Campana et al., 2005). Mature PrPC contains amino acids 24-233 of 

the original translation product.  

The N-terminal signal peptide is responsible for transport of the PrPC through the 

secretory pathway to the cell surface membrane (Nunziante et al., 2003). It appears that 

the GPI anchor associates most mature PrPC with lipid rafts, which are cell membrane 

domains high in sphingolipids and cholesterol (Simons and Ikonen, 1997; Soto, 2006). 

These rafts are organized in the Golgi apparatus and are the preferential localisation of 

GPI-anchored proteins and proteins involved in signal transduction (Brown and London, 

1998).  
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PrPC contains two glycosylation sites (Figure 2) and can therefore exist as di-, mono- or 

unglycosylated glycoforms. Differing ratios of the three glycoforms can be found in 

different species, strains or even tissues (Hill et al., 2003; Parchi et al., 1997), thus 

creating a specific glycoprofile of 3 bands upon Western blot analysis (Figure 12). 

2.3.2 Prion Protein Expression 

PrPC is expressed in neurons (Kretzschmar et al., 1986), various cells in non-neuronal 

tissues (Simak et al., 2002), as well as in enterocytes (Morel et al., 2005). More recent 

studies have also located PrPC in platelets, leukocytes and red blood cells (Barclay et 

al., 1999; Dodelet and Cashman, 1998; Panigaj et al., 2011). Cellular localisation 

depends largely on cell type. In neurons, PrPC is mainly located on the cell surface 

(Sunyach et al., 2003; Galvan et al., 2005) whereas another study found PrPC not only 

on the cell membrane of dendrites and axons but also in the protein synthesis and 

endocytic pathways (Mironov et al., 2003). In a neuroblastoma cell line, PrPC is present 

predominantly in the late endosomes (Pimpinelli et al., 2005) and on early endocytic or 

recycling vesicles (Godsave et al., 2008). 

2.3.3 Prion Protein Function 

The functional role of PrPC has yet to be elucidated. Because it is found in lipid rafts, it 

may have a function in signal transduction. Signaling proteins such as neuronal 

phosphoprotein synapsin Ib, growth factor receptor-bound protein 2 (Grb2), prion 

interactor 1 (Pint1) and stress-induced-phosphoprotein 1 (STI1) were shown to 

coimmunoprecipitate with PrPC (Spielhaupter and Schatzl, 2001; Zanata et al., 2002). 

Interaction with these proteins may provide a neuroprotective effect (Jeong et al., 2012; 

Zanata et al., 2002). However, how a GPI-anchored protein such as PrPC can transmit 

signals to the cytoplasm remains to be answered (Mouillet-Richard et al., 2000; 

Spielhaupter and Schatzl, 2001). Other studies (Brown et al., 1997; Kramer et al., 2001) 

have shown that the PrPC octapeptide repeats bind copper for uptake into the cell 

(Figure 2). PrPC binds less copper in the brains of mice infected with scrapie (Thackray 

et al., 2002). Patients affected by sporadic Creuzfeldt-Jakob disease (sCJD) show a 

50% reduction of copper in the brain (Wong et al., 2001). Structural characteristics of 

PrPC have been shown to bind copper and zinc, indicating a role in cell homeostasis of 

these metals (Pushie et al., 2011). PrPC also plays a putative role in binding calcium 

(Whatley et al., 1995).  
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2.4 Disease-Causing Prion Protein 

PrPC and PrPSc are considered two isoforms of the prion protein, where PrPSc is the 

pathological misfolded isomer of PrPC (Caughey and Raymond, 1991; Horiuchi et al., 

2000; Oesch et al., 1985; Prusiner, 1982, 1998; Prusiner et al., 1982). To date, no 

genetic or posttranslational differences have been found between PrPC and PrPSc. 

However, studies have shown differences in conformation within the C-terminal globular 

domain and biochemical properties (Table 2 and Table 1A) such as protease resistance 

and solubility (Cohen and Prusiner, 1998; Jackson et al., 1999). Detailed structural 

information for PrPSc has been difficult to attain due to its insolubility and propensity to 

form aggregates. The structure has been inferred through various protein-folding models 

based on the tendency of PrPSc to form fibrils. The fibrillar structure is similar for all 

amyloidogenic proteins and consists of a cross-ß structure of perpendicular ß-strands 

and parallel ß-sheets (Sunde et al., 1997). The α-helices comprise only about 20% of 

the C-terminal globular domain, whereas a much larger proportion of the C-terminus 

consists of β-sheets (Pan et al., 1993). Oligomerization with other PrPSc molecules 

stabilizes the β-sheets (Rigter et al., 2009).  

Table 2: Characteristics of cellular PrPC and disease-causing PrPSc. 

PrPC versus PrPSc 
 PrPC PrPSc 
In detergents soluble insoluble 
Proteolytic digestion susceptible resistant 
α-helix content  43 % 20 % 

Location cell surface fibrillar 
aggregates 

Molecular weight 33-35 kDa 33-35 kDa 
Molecular weight after PK 
digestion degraded 27-30 kDa 

 

2.4.1 PrPC ↔  PrPSc Interaction 

The interaction of endogenous PrPC and PrPSc is central to scrapie pathogenesis. The 

presence of host cell, membrane-anchored PrPC is necessary for disease to occur 

(Sailer et al., 1994). PrPC knockout mice do not develop disease after inoculation with 

PrPSc (Brandner et al., 1996). It is still unkown how PrPC ↔ PrPSc interaction spurs 

propagation of nascent infectious PrPSc molecules. Two models have been proposed: 

the template-assisted conversion model (Cohen et al., 1994) and the 
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nucleation/polymerization model (Caughey, 2003). In the first model, a transient PrP 

conformational intermediate interacts with an endogenous conversion co-factor, which is 

then capable of forming a heterodimer with PrPSc. This interaction causes a permanent 

conformational switch of the PrP intermediate to form a new PrPSc molecule. The PrPSc 

homodimer, consisting of the original and new PrPSc molecules, can dissociate and each 

PrPSc can drive formation of further PrPSc molecules. An exponential increase in PrPSc is 

the result (Cohen et al., 1994). The nucleation/polymerization model suggests that PrPC 

and PrPSc coexist in solution, but that monomer PrPSc is unstable and transient. The 

presence of an ordered PrPSc aggregate stabilizes the monomer PrPSc, allowing it to 

retain its pathological conformation and join the aggregate . 

Conformational change produces endogenous PrPSc from endogenous PrPC. 

Endogenous PrPSc then propagates itself through further recruitment and autocatalytic 

conversion of additional PrPC (Gambetti et al., 2011). Cell free conversion assays 

(CFCA) incubating only PrPC and PrPSc are not very efficient (Kocisko et al., 1995) and 

PrPSc amounts must greatly exceed those of PrPC in order to form de novo PrPSc. The 

low efficiency of this system is thought to explain the long incubation times in prion 

diesease (Graham et al., 2010). Conversion enhancement is achieved when certain 

subcellular co-factors are reintroduced into the CFCA, specifically those present in low-

density subcellular fractions (Graham et al., 2010; Saborio et al., 1999). These results 

tend to support the template-assisted conversion model.  

One study achieved amplification of infectious, PK-resistant protein when PrPC from 

brain homogenate, its co-purifying lipid components and the addition of exogenous 

poly(A)RNA were combined and seeded with PrPSc in a cell-free system (Deleault et al., 

2007). However, continual shaking alone of recombinant PrPC eventually produces fibrils 

resembling PrPSc that can cause disease in transgenic mice overexpressing PrPC 

(Bocharova et al., 2005; Legname et al., 2004). 

Where PrPC to PrPSc conversion occurs has not been completely elucidated. One study 

has ruled out the early and late endosomes as sites of conversion (Marijanovic et al., 

2009), although this contradicts earlier studies (Godsave et al., 2008). Three cell lines 

infected with three different scrapie strains showed preferential accumulation of PrPSc in 

the endosomal recycling compartment (ERC). PrPSc amounts were reduced when 

trafficking of PrP to ERCs was inhibited. PrPSc amounts increased when release of PrP 

from the ERC was impaired, causing PrP to accumulate in the ERCs.  
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The GPI anchor has been implicated as necessary for PrPSc propagation (Chesebro et 

al., 2005). Monomeric anchorless PrPC is excreted from cells. Transgenic mice with only 

this form of PrP never develop spongiform changes in the brain or clinical disease after 

being infected with PrPSc. However, large extracellular PrPSc plaques are still observed 

upon histological examination (Aguzzi, 2005). The GPI anchor may act in directing the 

PrP to the ERC and embedding it there in a cholesterol enriched membrane, such as 

lipid rafts, allowing sufficient time and an ideal environment for conversion. Cholesterol 

depletion has been shown to inhibit PrPSc formation (Taraboulos et al., 1995). 

Heterogeneous lipid rafts can be found in various subcellular locations such as ER, ERC 

as well as in the cellular membrane. GPI anchored proteins and their endocytic route is 

dependent on cell type and also correlates with length of time spent in lipid rafts (Fivaz 

et al., 2002). This may explain why PrPSc conversion occurs only in certain tissues such 

as neurons, or why certain cells are more susceptible to PrPSc accumulation 

(Marijanovic et al., 2009). These results could narrow the search for conversion co-

factors to proteins found in the ERC. 

2.5 PrPSc Invasion in Scrapie 

2.5.1 Oral Uptake of the Scrapie Infectious Agent 

Three hypotheses have been formulated for the uptake of the scrapie agent from the 

alimentary lumen through the mucosal barrier after ingestion. M-cells have been 

suspected to transport the PrPSc across the epithelium (Heppner et al., 2001; Neutra et 

al., 1996) where it can be taken up by macrophages or dendritic cells and transported to 

gut associated lymphoid tissue (GALT) (Andréoletti et al., 2000). Post digestion, smaller 

fragments of PrPSc could form complexes with ferritin, leading to endocytosis through a 

ferritin dependent mechanism (Mishra et al., 2004). Lastly, direct uptake could occur 

through dendritic cell processes extending between epithelial cells to the lumen, a 

process which has been shown for bacteria (Rescigno et al., 2001). In vitro, human 

enterocytes can internalize PrPSc derived from BSE brain homogenates through the 

laminin receptor (LRP/LR) (Morel et al., 2005). No PrPSc uptake occurred when human 

enterocytes were incubated with mouse prions or aggregates of purified BSE fibrils. 

LRP/LR is expressed in many ovine tissues including enterocytes, and colocalizes with 

scrapie- and BSE-derived PrPSc (Kolodziejczak et al., 2010; Qiao et al., 2009b).  
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2.5.2 GALT Invasion 

PrPSc accumulation and propagation occur in the gut associated lymphoid tissue (GALT) 

of the tonsils and Peyer’s patches as shown through infectivity and 

immunohistochemical studies (Andréoletti et al., 2000; van Keulen et al., 2002). PrPSc 

can initially be found in tingible body macrophages (TBM) and later in follicular dendritic 

cells (FDC) within the B-cell follicles. However, there is often minimal or no replication of 

PrPSc detected in the lymphoid tissues of cattle naturally infected with BSE (Iwata et al., 

2006; Terry et al., 2003), sheep naturally infected with atypical scrapie (Andréoletti et al., 

2011; Benestad et al., 2003) as well as ARR/VRQ sheep naturally infected with classical 

scrapie (van Keulen et al., 1996). In these animals, neuroinvasion does still occur albeit 

at a slower rate (Bossers et al., 1996). It is still unknown how PrPSc reaches the Peyer’s 

patch follicles from the gut lumen. Uptake of PrPSc occurs in the absorptive epithelium 

within the first three hours of scrapie agent ingestion as seen by immunohistochemistry 

in a gut-loop model (Akesson et al., 2011; Jeffrey et al., 2006). Although the follicle-

associated epithelium shows signs of activation and transcytosis, no PrPSc is detectable. 

However, thirty days after innoculation, activated macrophages in the Peyer’s patch 

follicles contain de novo PrPSc.  

Temporally, PrPSc detection initially occurs in the GALT, followed by further 

dissemination to non-GALT lymphoid tissues, presumably haematogenically (Hunter et 

al., 2002; Schmerr et al., 1999; Siso et al., 2009).  

2.5.3 Neuroinvasive Routes of PrPSc 

The primary neuronal tissue to harbor PrPSc is the enteric nervous system (ENS) at the 

level of the duodenum and ileum (Andréoletti et al., 2000; van Keulen et al., 2002).  

From here, the PrPSc is detected along efferent parasympathetic neurons to the dorsal 

motor nucleus of the vagus (DMNV) located in the brain stem as well as along efferent 

sympathetic neurons to the intermediolateral column (IMLC) in the spinal cord. Since 

some sheep can display PrPSc in the CNS without PrPSc being found in the lymphoid 

tissue, other neuroinvasive routes are considered. PrPSc has been identified within 

capillary endothelial cells in the hypothalamus as well as in various organs at an early 

stage after infection, which may indicate haematogenic neuroinvasion through the 

circulatory system (Siso et al., 2009; van Keulen et al., 2000).  
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Many cell types and neuroinvasive mechanisms have been proposed to be involved in 

cell-to-cell transportation of PrPSc. Tunnelling nanotubes (TNTs) are intercellular tube-

like structures containing F-actin that can connect cells over large distances (Rustom et 

al., 2004). TNTs can form between dendritic cells and neurons in lymphoid tissue as well 

as between neurons. PrPSc can travel discretely along the TNT membrane or, encased 

in vesicles, transported within the TNT itself (Gousset et al., 2009). Since much of the 

PrPC and PrPSc cycles through the cell in endosomes, these vesicles may be of 

endosomal origin. It has already been shown that the endosome is an important 

structure where conversion of PrPC to PrPSc occurs (Sunyach et al., 2003). TNTs may 

represent the predominate or even exclusive mechanism of transferring infectious prions 

from immune cells to neurons (Gerdes, 2009). 

2.5.4 Histopathological Changes in Infected Brains 

Histopathological changes in scrapie-infected sheep are seen only in the CNS, despite 

PrPSc invasion via the peripheral nervous system (PNS) (Ligios et al., 2002; Wood et al., 

1997). Histopathological changes can include diffuse or focal and eventually confluent 

grey matter vacuolation, salient neuronal loss and activation of astrocytes and microglia 

without lymphocytic infiltration. Synaptic dysfunction occurs long before neuronal death 

as well as varying degrees of PrPSc aggregation (Jeffrey and Gonzalez, 2007). 

2.6 Ovine Scrapie 

Two forms of ovine scrapie, classical and atypical scrapie, can presently affect sheep. 

Classical scrapie has been known as a disease affecting European sheep populations 

since the late 18th century (Comber, 1772). Atypical scrapie has been recognized as a 

separate disease entity since 1998 (Benestad et al., 2003). 

2.6.1 Classical Scrapie in Sheep 

Classical scrapie was first described in 1772 as a disease in the British sheep population 

(Comber, 1772; Schneider et al., 2007). In the 18th and early 19th centuries, scrapie 

spread rapidly throughout Europe as a result of efforts to improve wool quality through 

both inbreeding and increased trade of purebred animals (Brown and Bradley, 1998).  
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2.6.1.1 Routes of Infection 

Classical scrapie is mainly spread horizontally within and between flocks but also 

vertically from ewe to lamb (Dickinson et al., 1974; Pattison et al., 1972). Horizontal 

transmission occurs during lambing and through environmental contamination (Race et 

al., 1998; Ryder et al., 2004; Tuo et al., 2001). The main infectious route is oral (van 

Keulen et al., 2008). Preclinical sheep secrete PrPSc from the oral cavity and thus can 

infect flock mates or objects such as feeding troughs (Gough et al., 2012). PrPSc can 

persist in the environment and on farm objects that sheep come into frequent contact 

with (Maddison et al., 2010). Highly sensitive detection methods (Saborio et al., 2001) 

have also identified PrPSc in placenta, urine, feces and milk (Gough and Maddison, 

2010). 

2.6.1.2 Clinical Symptoms 

Classical scrapie is endemic in many flocks and outbreaks affect multiple animals within 

one flock (Lühken et al., 2007). Most scrapie cases are diagnosed in 2 to 5 year old 

sheep, but have also occcurred in lambs as young as 6 months (Clark and Moar, 1992). 

The incubation times can vary between 18 months and 5 years and disease progression 

can be acute or chronic (Capucchio et al., 2001).  

Clinical signs of scrapie can be very diverse and insiduous, which can hinder early 

detection of affected animals in the field (Jeffrey and Gonzalez, 2007). Early, subtle 

signs may include cardiac arrhythmia and abnormal rumination rates (Austin and 

Simmons, 1993). An increase in abomasal compaction incidence in sheep with naturally 

acquired scrapie infection has been observed (Sharp and Collings, 1987; van Keulen et 

al., 1995). Other nonspecific clinical signs involve weight loss in spite of maintained 

appetite and intermittent behavioral changes (Kimberlin, 1976). With disease 

progression, emaciation grows increasingly apparent and behavioral changes, such as 

hyperreaction to external stimuli or voluntary separation from the flock, become more 

pronounced and permanent. Conversely, somnolence and apathy could predominate. 

Affected animals spend more time grooming, rubbing against objects and scratching, 

resulting in alopecia and pruritis. Progressive ataxia is also a common symptom, 

characterised by hypermetria. In end stages, ataxia results in recumbency and finally 

death occurs (Sigurdsson, 1954; Ulvund, 2001; van Bogaert et al., 1978; Vargas et al., 

2005). Sheep showing no clinical signs have been slaughtered and widespread 

vacuolation in the brain was nevertheless observed (Clark et al., 1994). Clinical 
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symptoms show great variation due to the interactions of age, breed, PRNP genotype, 

scrapie strain and disease progression (Masujin et al., 2009; Ulvund, 2001). 

2.6.1.3 Genetic Susceptibility to Classical Scrapie 

Studies of genetic susceptibility to classical scrapie identified certain nonsynonymous 

polymorphisms in PRNP codons 136, 154 and 171 that confer degrees of susceptibility 

or resistance to infection with classical scrapie (Belt et al., 1995; Clouscard et al., 1995; 

Goldmann et al., 1991; Hunter et al., 1989; Hunter et al., 1996; Hunter et al., 1992; 

Hunter et al., 1997a). The polymorphisms in these codons that modulate classical 

scrapie susceptibility are: at codon 136, a valine (V136) or alanine (A136); at codon 154, 

an arginine (R154) or histidine (H154); and at codon 171, a glutamine (Q171), histidine 

(H171) or arginine (R171). A haplotype combination is A136R154R171 and commonly 

designated ARR. Five haplotypes arising from these polymorphisms, namely VRQ, 

ARQ, AHQ, ARH and ARR, have been shown to modulate classical scrapie 

susceptibility in sheep. Many susceptibility studies in breeds such as Cheviot (Goldmann 

et al., 1991), Texel (Belt et al., 1995), Rygja (Tranulis et al., 1999), and Suffolk (Hunter 

et al., 1997b; Ikeda et al., 1995) show that the V136 allele strongly confers susceptibility. 

VRQ/VRQ animals are most susceptible to classical scrapie, the incubation time is short 

and death occurs quickly. Complete disease penetrance can occur in some flocks with 

high numbers of VV136 animals (Laplanche et al., 1993). However, in other flocks, 

survival times are increased in VA136 sheep bearing the H154 and, more importantly, R171 

alleles. Homozygote ARR/ARR animals are thought to be completely resistant to 

classical scrapie or the incubation time is longer than life expectancy (Baylis et al., 2002; 

Goldmann et al., 1994; Hunter et al., 1996; Hunter et al., 1994). Genotype combinations 

including only the AHQ, ARH and ARQ alleles are associated with a slight genetic 

resistance to classical scrapie compared to genotypes including these same alleles 

combined with a VRQ allele. When the aforementioned alleles are combined with ARR 

(ARR/AHQ, ARR/ARH, ARR/ARQ), genetic resistance increases. In comparison, 

ARR/VRQ animals are more susceptible to classical scrapie. PRNP genotypes have 

been grouped according to their degree of genetic resistance to classical scrapie (Table 

3) as observed for sheep flocks in the United Kingdom (http://www.defra.gov.uk/ahvla-

en/disease-control/notifiable/scrapie/nsp/).  

To date, four ARR/ARR sheep have been diagnosed with classical scrapie (E.C.H.C.P., 

2012; Ikeda et al., 1995), although in two of these cases, the PrPSc showed slightly lower 
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PK resistance (Groschup et al., 2007). In addition, studies show flocks with low 

frequencies of the resistant/susceptible alleles ARR or VRQ, respectively, may not follow 

the NSP-scheme for classical scrapie resistance or susceptibility (Acin et al., 2004; 

Billinis et al., 2004; Lühken et al., 2007; Lühken et al., 2004). 

Table 3: NSP scheme: PRNP genotypes and their risk levels for classical scrapie in sheep in the 
EU (E.C.H.C.P., 2011). *Provisional classification for ARQ/ARQ pending scientific review. 

Risk level groups 
lowest risk ➟ highest risk 

NSP1 
Genetically 

most 
resistant 

NSP2 
Genetically 

resistant 
 

NSP3 
Genetically 

little 
resistance 

NSP4 
Genetically 
susceptible 

 

NSP5 
Genetically 

highly 
susceptible 

ARR/ARR ARR/ARQ ARQ/ARQ* ARR/VRQ ARQ/VRQ 
 ARR/ARH AHQ/AHQ  ARH/VRQ 
 ARR/AHQ ARH/ARH  AHQ/VRQ 
  ARH/ARQ  VRQ/VRQ 
  AHQ/ARH   
  AHQ/ARQ   

 

 

2.6.2 Ovine Atypical Scrapie 

Five exceptional ovine scrapie cases were reported in Norway in 1998, differing from 

classical scrapie in their disease phenotype and biological properties of the scrapie 

strain. This new form of scrapie was denoted Nor98 or atypical scrapie (Benestad et al., 

2003) and has since been recognized in many other European countries such as France 

and Germany (Arsac et al., 2007; Buschmann et al., 2004b), Belgium (De Bosschere et 

al., 2004), Ireland (Onnasch et al., 2004), Portugal (Orge et al., 2004) and others 

(Gavier-Widen et al., 2004; Konold et al., 2006). Age of the affected sheep were on 

average close to two years older than that observed for classical scrapie (Lühken et al., 

2007). In most cases, only one sheep in the flock was affected and did not show some 

of the typical scrapie symptoms such as pruritus or behavioral changes (Gavier-Widen 

et al., 2004; Lühken et al., 2007). Multiple cases of atypical scrapie in the same flock 

tended to occur only in larger flocks. It has not yet been established if atypical scrapie is 

an infectious or sporadic disease. 
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2.6.2.1 Routes of Infection 

In atypical scrapie cases, lymphatic tissue consistently remains free of detectable PrPSc 

(De Bosschere et al., 2005), and may explain why atypical scrapie does not seem to be 

passed horizontally in a flock. Screening of peripheral tissues in neonatal lambs infected 

with atypical scrapie 12 and 24 months after oral challenge were negative. Atypical 

scrapie may be a sporadic disease, however, transmissibility has been shown in mice 

and sheep (Le Dur et al., 2005; Simmons et al., 2007). Mouse bioassays using 

peripheral, PrPSc negative tissues from atypical scrapie-infected lambs caused scrapie-

like disease (Simmons et al., 2011), showing that atypical scrapie can be orally 

transmitted. Atypical scrapie may have the potential for natural or iatrogenic 

transmission.  

2.6.2.2 Clinical Symptoms 

Most atypical scrapie cases have been diagnosed through active surveillance of 

apparently healthy sheep at the time of slaughter (Benestad et al., 2008). Some reports 

of clinical signs have included ataxia, anxiety and loss of body condition (Benestad et 

al., 2003; Onnasch et al., 2004). 

2.6.2.3 Genetic Susceptibility to Atypical Scrapie in Sheep 

Three of the five initial atypical scrapie cases described in Norway carried the PrP 

genotype AHQ/AHQ and two were AHQ/ARQ. Both of these genotypes are rarely 

associated with scrapie in Norway (Benestad et al., 2003). Furthermore, atypical scrapie 

is strongly associated with an F variant at codon 141. F141 is only found with the ARQ 

haplotype, constituting the AF141RQ allele (Bossers et al., 1996; Lühken et al., 2007; 

Moum et al., 2005). Initial genotyping results showed the sheep most susceptible to 

atypical scrapie carried the AHQ/AHQ genotype, sheep with the VRQ haplotype seemed 

most resistant to atypical scrapie (Buschmann et al., 2004a; Moum et al., 2005; Orge et 

al., 2004). Genotypes seeming to confer susceptibility to atypical scrapie contrast with 

those conferring susceptibility to classical scrapie (Table A1). 
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2.6.3 PRNP Genotype Distributions in German Sheep 

Genotyping results of randomly chosen, healthy, slaughtered sheep over 18 months of 

age in Germany for the past three years are shown below (Figure 4).  

 

 

 

 

Figure 4: PRNP genotype 
frequencies in German 
slaughtered sheep according to 
random sampling results 
(E.C.H.C.P., 2010, 2011, 2012). 
 

 

 

 

 

 

The genotype distribution of classical scrapie cases in Germany from 2002 to 2009 is 

shown in Figure 5 as reported by Germany to the European Commission Health and 

Consumers Directorate-General (E.C.H.C.P., 2010, 2011, 2012). Most classical scrapie 

cases in Germany have been found in sheep carrying the ARQ haplotype and the 

ARQ/ARQ genotype. The VRQ haplotype is found in a low percentage of classical 

scrapie cases, but is slighty more common in healthy flock mates. From 2002 to 2004, 

no classical scrapie case in Germany carried the VRQ haplotype (Lühken et al., 2007). 
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Figure 5: PRNP genotype distribution of 
classical scrapie cases in Germany 2002 to 
2009 (E.C.H.C.P., 2010, 2011, 2012). 
 

 

 

 

 

 

 

The genotype frequencies for atypical scrapie cases in Germany from 2002 to 2009 are 

shown in Table 4. The AHQ haplotype occurs more often in atypical scrapie cases 

compared to their healthy flock mates whereas the VRQ haplotype occurred infrequently 

in atypical scrapie cases. The ARR haplotype combined with either ARQ or AHQ 

seemed to confer a higher risk for atypical scrapie (Lühken et al., 2007).  

Similar to atypical scrapie in Norway, the SNP at codon 141 coding for either leucine (L) 

or phenylalanine (F) is highly significant for atypical scrapie in Germany (Lühken et al., 

2007; Moum et al., 2005): haplotypes AF141RQ and AHQ as well as the 

AF141RQ/AF141RQ or AF141RQ/AHQ genotypes greatly increased risk for atypical 

scrapie. The genotype AL141RQ/AL141RQ tends to confer higher but not absolute 

resistance to atypical scrapie in German sheep (Lühken et al., 2007).  
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Table 4: Genotype distribution (%) of atypical scrapie cases in Germany from 2002 to 2009 (G. 
Lühken, personal communication) according to NSP group and including F141 (here F).  

Year NSP1 AFRQ/ 
NSP1 

NSP2 NSP3 
(ARQ/ARQ) 

AFRQ/ 
AFRQ 

NSP3 
(others) 

AFRQ/ 
NSP3 

NSP5 

2002 11.1 0.0 33.3 0.0 11.1 33.3 11.1 0.0 
2003 6.7 6.7 13.4 13.3 6.7 13.4 33.3 6.7 
2004 8.3 5.6 11.1 5.6 0.0 50.0 19.4 0.0 
2005 8.0 4.0 16.0 8.0 12.0 24.0 28.0 0.0 
2006 21.7 4.3 39.1 0.0 4.3 26.1 4.3 0.0 
2007 5.0 15.0 30.0 5.0 0.0 35.0 10.0 0.0 
2008 0.0 0.0 0.0 0.0 0.0 42.9 57.2 0.0 
2009 0.0 20.0 60.0 0.0 0.0 20.0 0.0 0.0 

 

Figure 6 shows a comparison of genotype distributions in classical and atypical scrapie 

cases in Germany from 2002 to 2009. Sheep carrying genotypes considered protective 

against classical scrapie infection seem more susceptible to atypical scrapie (Benestad 

et al., 2003; Buschmann et al., 2004b; De Bosschere et al., 2005; Madec et al., 2004; 

Orge et al., 2004). However, German sheep carrying the VRQ allele do not seem as 

susceptible to classical scrapie as has been shown for other sheep populations (Baylis 

et al., 2004; Diaz et al., 2005). The ARQ/ARQ genotype shows the highest susceptibility 

to classical scrapie. This genotype confers a strong degree of resistance to atypical 

scrapie, along with the L141 allele, since the number of positive atypical scrapie cases of 

this genotype is low compared to the frequency it is found in the affected flocks (Lühken 

et al., 2007). 

 

 

Figure 6: Genotype 
distribution in sheep 
positive for classical 
and atypical scrapie 
in Germany 2002 to 
2009.  
(G. Lühken, personal 
communication). 
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The frequency of affected genotypes may be influenced by the genotype mosaic present 

within a flock. Where VRQ is absent, ARQ/ARQ seems to be the most susceptible 

genotype for classical scrapie (Baylis et al., 2004; Hautaniemi et al., 2012; Hunter et al., 

1997b; Westaway et al., 1994). It seems that in German sheep flocks, the absence of a 

high number of VRQ/VRQ animals may have shifted classical scrapie susceptibility to 

other genotypes (Lühken et al., 2004).  

2.6.4 PRNP Genotype Distribution of Scrapie Positive Sheep in the EU 

The genotype distributions of classical and atypical scrapie cases in the EU member 

states from 2002 to 2011 are shown in Figure 7. Breeding goals set out by the European 

Union (EC 999/2001) have had an effect on the frequency of certain genotypes. From 

2005 to 2007, when the use of ARR/ARR rams for breeding was obligatory 

(2003/100/EC), the frequency of the ARR allele in certain populations increased by more 

than 10%, causing a concurrent decrease in the frequency of the ARQ allele, as 

exemplified in the Netherlands. The percentages of the genotypes ARR/ARR, ARR/AHQ 

and ARR/ARQ increased but ARH/ARH, ARQ/ARQ and VRQ/ARQ decreased. 

Prevalence of classical scrapie also decreased in the Netherlands during this time 

period (Hagenaars et al., 2010; Melchior et al., 2010).  

In Cyprus, thorough genotyping of the entire sheep population has been ongoing since 

2005. The frequency of the ARR/ARR genotype has increased from 15% in 2005 to 

71.4% in 2011. In 2011, only 0.7% carried the ARQ/ARQ genotype as compared to 34% 

in 2005. Genotypes of the NSP2 group have decreased from 44% in 2005 to 26.7% in 

2011. This trend has been accompanied by a significant decrease in the prevalence of 

classical scrapie in Cypriot sheep (E.C.H.C.P., 2006, 2012). 
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Figure 7: PRNP genotype 
distribution in sheep 
positive for classical and 
atypical scrapie in the EU 
2002 to 2011 (E.C.H.C.P., 
2012). 
 

 

 

 

 

2.7 Caprine Scrapie 

Scrapie has been shown to be transmissible to goats (Cuillé and Chelle, 1936) and most 

natural cases occur in goats cohoused with sheep affected by scrapie (Billinis et al., 

2002; Chelle, 1942; Hadlow et al., 1980; Sofianidis et al., 2006; Toumazos and Alley, 

1989). However, scrapie can also occur in goats that have not had contact with sheep 

(Fankhauser et al., 1982; Wood et al., 1992). Studies have shown that goats innoculated 

with scrapie can display a wide range of incubation times, with often up to 16 months 

difference between the shortest and longest times observed (Goldmann et al., 1998; 

Goldmann et al., 1996; Pattison and Millson, 1962). 

Atypical scrapie has also been identified in goats in Switzerland (Seuberlich et al., 

2007), Italy (Colussi et al., 2008) and other European countries (E.C.H.C.P., 2011; 

Fediaevsky et al., 2008). 

2.7.1 Routes of Infection 

Like classical scrapie in sheep, scrapie in goats can be spread horizontally or vertically 

(Pattison et al., 1972). Epidemiological studies show that in dairy goat herds, practices 
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such as cross-fostering or sharing of colostrum rapidly increase scrapie prevalence rates 

within the herd (Gonzalez et al., 2009).  

2.7.2 Clinical Symptoms 

Most common clinical symptoms in goats affected by scrapie are pruritis and emaciation, 

which can be observed in over 80% of cases (Capucchio et al., 2001). However, ataxia, 

hyperaesthesia, anxiety, aggression, blindness or tremor may be seen in more than 40% 

of cases (Andrews et al., 1992; Capucchio et al., 2001; Wood et al., 1992). Unlike in 

sheep, a scratch reflex can not usually be elicited in goats (Acutis et al., 2012). 

2.7.3  Genetic Susceptibility to Classical and Atypical Scrapie in Goats 

Preliminary results of PRNP genetic association with scrapie susceptibility in goats is 

emerging. However, due to low numbers of affected animals and/or few case control 

studies, statistical signinficance is limited (Bouzalas et al., 2011; Fragkiadaki et al., 

2011).  

A nonsynonymous polymorphism at codon 142 (M142I) has been shown to modulate 

incubation time in goats experimentally infected with two sheep scrapie strains, where 

M142 carriers displayed longer incubation times (Goldmann et al., 1996). In a study of a 

classical scrapie outbreak in a goat herd in the UK, PRNP codon 142 was shown to be 

associated with scrapie susceptibility but only in goats older than 60 months. M142 

carriers showed a significantly lower prevalence of infection when compared to those 

homozygous for isoleucine (II142). Age may have played a role in that increasing 

infection pressure as the disease spreads over time in a herd may overcome the 

protective effect of M142 (Gonzalez et al., 2009). In another field study, the M142 

protective effect was only seen in French Alpine and Saanen goats concurrently 

homozygous for proline (P) at codon 240 (Barillet et al., 2009).  

Codon 146 (N146S or D) may also modulate classical scrapie genetic susceptibility in 

Cypriot goats. None of the goats affected by scrapie carried S or D at codon 146, but 

these polymorphisms were observed in control and scrapie negative goats (Papasavva-

Stylianou et al., 2007). In Greece, S146 was only recorded in scrapie negative goats 

(Fragkiadaki et al., 2011). Oral scrapie challenge of goats revealed that S146 

heterozygotes remained clinically healthy and rectal biopsies remained negative for 

significantly longer compared to N146 homozygotes (White et al., 2012). 
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The R154H polymorphism is present in both sheep and goat PRNP (Billinis et al., 2002; 

Laplanche et al., 1993). In a case controlled study of 264 goats from a scrapie infected 

goat herd, risk of developing scrapie was lower in animals carrying one H154 allele, 

although this allele was present in the flock at a very low frequency (Barillet et al., 2009). 

Studies of genetic susceptibility in goats to classical scrapie in both field observations 

and experimental challenge show an effect of the PRNP Q222K polymorphism (Acutis et 

al., 2006a; Acutis et al., 2012; Vaccari et al., 2006), where K222 confers a degree of 

resistance to infection. In a scrapie outbreak in Italian goat herds, no goats carrying the 

K222 haplotype were affected with scrapie (Acutis et al., 2006a; Vaccari et al., 2006). 

However, in France, goats heterozygous for K222 and affected by classical scrapie have 

been identified (Barillet et al., 2009). Another study in a Greek goat herd affected by 

classical scrapie, an aberrant PrPSc fragment that was not a classical or atypical scrapie 

isolate was found in 10 clinically healthy goats. Three from ten of the aberrant PrPSc 

goats carried the K222 polymorphism (Bouzalas et al., 2011). Also in Greece, scrapie 

positive goats from scrapie endemic flocks carried the K222 polymorphism, however no 

case control data from the flocks exists (Fragkiadaki et al., 2011). In goats orally 

challenged with scrapie, those carrying one K222 allele remained clinically healthy and 

rectal biopsy results remained negative significantly longer when compared to Q222 

homozygotes (White et al., 2012). 

Reports of atypical scrapie in goats are rare, inhibiting studies on genetic associations 

with scrapie susceptibility. However, the R154H polymorphism increases susceptibility to 

atypical scrapie in sheep (Moum et al., 2005). Three goats diagnosed with atypical 

scrapie all carried the H154 mutation (Le Dur et al., 2005; Seuberlich et al., 2007). In a 

case control study, all goats positive for atypical scrapie had the H154 mutation, showing 

this mutation has a highly significant effect on susceptibility of goats to atypical scrapie 

(Colussi et al., 2008). 
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2.8 TSE Prevalence in the EU and Germany 

2.8.1 Sheep and Goat Populations 

EU-wide active TSE surveillance (EC Regulation 999/2001) came into effect in April 

2002 and has since revealed that scrapie is more widespread than previously thought 

(Baylis and McIntyre, 2004; Buschmann and Groschup, 2005). In 2011, the total EU 

sheep population as reported by 20 of the 27 member states (no data available for 

Czech Republic, Denmark, Estonia, Latvia, Luxembourg, Slovenia and Finland as of 

August 2, 2012) was 85 million (Eurostat, 2011b). Populations of ewes as well as goats 

used for breeding in the individual EU member states is shown in Table 5. 

 

Table 5: Sheep and goat populations in each EU country for 2010 (E.C.H.C.P., 2011). 
COUNTRY SHEEP POPULATION GOAT POPULATION 
Austria 213 170 37 990 
Belgium 121 470 27 190 
Bulgaria 1 283 560 344 520 
Cyprus 178 260 218 370 
Czech Republic 105 190 8 680 
Denmark 72 580 7 660 
Estonia 49 960 2 570 
Finland 62 170 4 620 
France 6 814 190 1 159 800 
Germany 1 468 150 149 900‡ 
Greece 8 116 400 4 109 150 
Hungary 976 710 37 320 
Ireland 2 966 830 6 270 
Italy 5 891 940 797 480 
Latvia 40 450 12 440 
Lithuania 22 990 14 460 
Luxembourg 4 330 1 220 
Malta 7 520 5 000 
Netherlands 644 800 223 250 
Poland 208 000 93 640 
Portugal 1 953 060 323 360 
Romania 7 339 120 728 480 
Slovakia 281 980 12 330 
Slovenia 89 460 19 820 
Spain 17 072 220 2 295 760 
Sweden 230 900 + 
United Kingdom 15 257 700 49 160 

‡ estimated (Eurostat, 2011a); + no data available 
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2.8.2 Ovine TSE Prevalence and Incidence in the EU and Germany 

The overall prevalence rate of ovine TSE cases per 10,000 sheep tested in 2010 in 

Europe, excluding Greece and Cyprus, was 14.2 (E.C.H.C.P., 2011). In 2010, Greece 

and Cyprus reported the most scrapie cases in sheep in the European Union. The 

prevalence rate of positive TSE cases per 10 000 tested sheep slaughtered for human 

consumption in Germany reported from 2002 to 2010 was 3.2 (E.C.H.C.P., 2011).  

Relative to its sheep population, scrapie incidence in Cyprus remains the highest in 

Europe with 24.7 per 100,000 sheep, followed by Slovenia, Finland and Greece (Figure 

8) (E.C.H.C.P., 2011).  

Figure 8: TSE incidence in sheep in 2010. Shown are only EU member states reporting cases in 
sheep in 2010 (E.C.H.C.P., 2011). 
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Scrapie incidence as reported for Germany from 2002 to 2011 is shown in Figure 9. 

Since 2008, overall scrapie incidence in Germany is again slowly increasing. As of 

November 2012, six scrapie cases have been reported in Germany (BMELV, October 

2012). 

Figure 9: Overall ovine scrapie incidence in Germany 2002-2012. + (G. Lühken, personal 
communication) * (BMELV, October 2012). 
 

Trends in the prevalence rates (cases per 10,000 sheep tested) of classical scrapie in 

sheep differ between member states. Some member states such as Cyprus, France, 

Netherlands, Germany, Belgium or Ireland have shown steadily decreasing classical 

scrapie prevalence rates between 2002 and 2011. In 2011, prevalence of classical 

scrapie in the UK increased for the first time since 2004, from 0.51 in 2010 to 72.5 in 

2011. Testing in other states such as Spain and Greece have shown high numbers of 

classical scrapie cases and prevalence rates have since oscillated year for year around 

a relatively high average (27.8 and 306.4, respectively) (E.C.H.C.P., 2012). 
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Atypical scrapie consistently comprises a large portion of all scrapie cases in sheep in 

some member states such as France (28 of 44 TSE cases in 2010) or Portugal (46 of 47 

cases in 2010). All reported scrapie cases in Italy, Denmark and Finland in 2010 were 

atypical (E.C.H.C.P., 2011; Hautaniemi et al., 2012). Monitoring for atypical scrapie is 

dependent on testing and sampling methods (E.C.H.C.P., 2011). Early active 

surveillance in the EU may have underestimated atypical scrapie prevalence, since its 

detection is highly dependent on method (Benestad et al., 2003; Buschmann et al., 

2004a).  

2.8.2.1 Distribution of Classical and Atypical Scrapie in Germany 

Atypical scrapie has continuously made up an increasingly larger portion of the scrapie 

cases recorded in Germany since 2002 (Figure 10). This may also reflect the 

development of more sensitive tests for distinguishing atypical scrapie from classical 

scrapie (Buschmann et al., 2004a). 

 

 

 

 

Figure 10: Distribution 
of scrapie cases by type 
in Germany.  
+ (G. Lühken, personal 
communication)  
* (E.C.H.C.P., 2011) 
 

 

 

 

2.8.3 Scrapie Prevalence in Goats in the EU 

The goat population in the EU in 2011 (no data for Belgium, Czech Republic, Denmark, 

Estonia, Ireland, Latvia, Luxembourg, Slovenia and Finland) was 13 million (Eurostat, 

2011a). The total number of goats used for breeding purposes in each EU member state 
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is shown in Table 5. Prevalence rates of goat scrapie are shown in Figure 11 and are 

lower than in sheep. Cyprus shows by far the highest scrapie prevalence in goats 

compared to the remaining EU member states. 

 

Figure 11: Shown are the scrapie prevalence rates in goats in the EU member states reporting 
scrapie in goats in 2010 (E.C.H.C.P., 2011). 
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2.9 BSE in Sheep and Goats 

Small ruminants have proven susceptible to experimental BSE challenge (Foster et al., 

1993) and BSE has been shown to spread naturally in a sheep flock experimentally 

infected with BSE (Bellworthy et al., 2005). Before the ban on MBM, sheep and goats 

were also exposed to contaminated feed supplements, which could have introduced 

BSE into the sheep and goat population (Kao et al., 2003; Wilesmith et al., 1988). One 

natural case of BSE was detected in a goat in France (Eloit et al., 2005). In 2010, 

discriminatory testing of 435 sheep TSE cases as well as 52 goat TSE cases revealed 

no positive BSE result, although 3 test results were inconclusive (E.C.H.C.P., 2011). 

Since clinical signs of scrapie and BSE in small ruminants are similar (Foster et al., 

2001; Gonzalez et al., 2005), scrapie could mask a coexistent BSE epidemic (Houston 

and Gravenor, 2003), posing just as much a threat to consumers as BSE in cattle. 

Transgenic mice expressing human cellular prion protein exhibit a higher susceptibility to 

infection with sheep and goat passaged BSE than to bovine BSE (Padilla et al., 2011; 

Plinston et al., 2011). 

2.9.1 Genetic Susceptibility to BSE in Sheep and Goats 

Studies of sheep and goats experimentally innoculated with BSE have shown that PrP 

polymorphisms of the host affect incubation period (Foster et al., 2001; Goldmann et al., 

2006; Gonzalez et al., 2005; Jeffrey et al., 2001). The mutation R171 provides a 

protective effect against experimental infection of sheep with BSE (Foster et al., 2001; 

Goldmann et al., 2006). ARR/ARR sheep can develop BSE after intracranial 

innoculation (Houston et al., 2003). However, ARR/ARR sheep innoculated orally or 

intraperitoneally with BSE proved resistant (Jeffrey et al., 2001). In goats, genetic 

susceptibility to BSE is similar to that in sheep, although in equivalent PRNP genotypes, 

goats displayed slightly longer incubation times (Foster et al., 1993). 

L168, an allele with low frequency in the study population of 33 ARQ/ARQ Cheviot sheep 

from New Zealand, has been shown to increase resistance to BSE infection but no 

association of codon 141 with BSE susceptibility could be found (Goldmann et al., 

2006). 
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2.10   Evidence for Multiple Scrapie Strains 

Western blot typing of different TSEs, as well as their stable characteristics such as 

incubation periods and brain lesion distribution upon innoculation into in-bred mouse 

models, reveals the presence of multiple scrapie strains in sheep populations (Masujin 

et al., 2009; Thackray et al., 2011). Different TSE strains most likely circulate together in 

a population as a mosaic of infectious agents (Groschup et al., 2007; Masujin et al., 

2009; Thackray et al., 2011). TSE strains are thought to be encrypted in PrPSc 

conformations (Thackray et al., 2011). The successful strain causing disease in the host 

may be selected depending on the hosts’ own PrP genotype and PrPC conformation, as 

well as the specific cell or tissue environment where initial PrPC → PrPSc conversion 

occurs. In this scenario, PrP genotype may be only one of many factors affecting 

susceptibility to a certain TSE strain (Collinge and Clarke, 2007; Gambetti et al., 2011). 

Classical and atypical scrapie most likely represent two different scrapie strains (Arsac 

et al., 2009; Götte et al., 2011; Le Dur et al., 2005; Wemheuer et al., 2011). Classical 

and atypical scrapie in sheep show different profiles on Western blotting (Figure 12). 

Differences in ovine classical and atypical scrapie are summarized in Table 1A. 

 

 

 

 

Figure 12: Western blot profiling of the protein 
kinase resistant core of PrPSc (PrPres) from 
different ovine prion strains (De Bosschere et al., 
2005). 
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2.11 Regulations for the Control and Eradication of Small Ruminant 
Scrapie in the European Union 

Legislation regarding the prevention, control and eradication of TSEs binding for all EU 

member states are established in European Parliament and Council Regulation (EC) No 

999/2001 (EC 999/2001). This legislation was introduced to protect human and animal 

health from the risk of TSEs and stipulates periodic updating in keeping with scientific 

information. 

Live, slaughtered or fallen stock showing or having shown neurological or behavioral 

disorders, progressive deterioration and/or poor response to treatment where no 

alternative diagnosis may be made define an animal suspected of TSE infection in this 

regulation.  

2.11.1   Specified Risk Material 

Specified risk material (SRM) as defined by Regulation (EC) 999/2001 includes the skull 

with brain, eyes and tonsils, as well as the spinal cord and spleen of all sheep and goats 

over the age of 12 months. Where age is not known, this applies to all animals 

displaying at least one erupted incisor. 

2.11.2   Scrapie Monitoring Framework  

Scrapie monitoring and eradication measures are based on the Regulation (EC) 

999/2001 as amended by Regulation (EC) No 2245/2003. Member states with large 

sheep populations are required to monitor scrapie utilizing approved rapid tests. Scrapie 

random sampling in monitored flocks must occur in a certain minimum number of 

slaughtered, fallen or otherwise perished sheep and goats over 18 months of age or 

where two permanent incisors are erupted through the gum. In Germany, a minimum of 

10,000 sheep slaughtered for human consumption and all or up to 500 goats are to be 

randomly tested each year (EC No 727/2007). 

Member states must name national reference laboratories for monitoring TSEs where 

samples giving positive rapid test results are sent for confirmation and discriminatory 

tests. Confirmation and discriminatory tests (EC No 36/2005) of a positive result from a 

rapid test include Western blot, immunohistochemistry and/or detection of typical scrapie 

fibrils. If the confirmatory test is positive, TSE strain typing must be carried out through 

Western blot or mouse bioassay (Beck et al., 2012). The national TSE reference 
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laboratory for Germany is the Institute of Novel and Emerging Infectious Diseases 

(INNT) of the Friedrich-Löffler-Institute in Greifswald on the Riems island. 

After the occurrence of natural BSE identified in a slaughtered French goat (Eloit et al., 

2005), (EC) No 214/2005 set sample size minimum limits on monitoring for TSEs in 

goats. Member states with large goat populations such as Spain and France were given 

minimum sampling sizes and in countries with small goat populations, such as Germany, 

all goats intended for slaughter were to be tested for TSE. This was replaced with (EC) 

No 727/2007, stating in countries with large goat populations (>750,000 animals) a 

minimum of 10,000 animals slaughtered for human consumption must be screened for 

TSEs. 

2.11.3   Scrapie Eradication Measures 

Commission Decision (EC) 2002/1003 requires all member states to complete a survey 

of the PrP genotype of each of its sheep breeds. Also, dependent on animal population 

(EC No 727/2007), either 600 or 100 animals, representative for the entire population, 

must be genotyped for PRNP at codons 136, 141, 154 and 171 each year.  

2.11.3.1 Measures Following Confirmation of TSE in a Flock 

Movement restrictions are imposed on a flock where TSE is suspected until results of 

testing become available (EC No 727/2007). If TSE is confirmed in a flock and BSE 

cannot be ruled out, all animals must be culled. If BSE is ruled out, options are either 

culling of the entire flock or culling of all animals with the following exceptions: ARR/ARR 

breeding rams, ARR/XXX breeding ewes not carrying a VRQ allele and ARR/XXX sheep 

intended for slaughter (EC 999/2001 as ammended by EC 260/2003 and EC No 

727/2007). However, animals to be culled may also be slaughtered for human 

consumption if they are tested for TSE. For up to 50 of these culled or slaughtered 

animals, PrP genotype is to be determined. Exceptions to culling are possible for flocks 

with low ARR allele frequency and culling can be delayed up to 5 breeding years (EC No 

1428/2007).  

If the confirmed TSE in question is atypical scrapie, the infected animal may be culled as 

well as the parents and the last progeny if female. Or, the flock is subjected to increased 

TSE monitoring for a 2 year time period where all animals over 18 months, regardless of 

cause of death, are to be tested. Live animals and embryos originating from the flock are 

not to be traded to other member states (EC No 727/2007). 
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All positive TSE cases must be genotyped for PrP at codons 136, 154 and 171. In the 

case of atypical scrapie, PrP genotype at codon 141 must be determined (EC No 

727/2007). 

A certain percentage of animals over 18 months culled after TSE confirmation in a flock 

must be tested for TSE infection (EC No 727/2007).  

2.11.3.2 Breeding Program 

Requirements for breeding programs for TSE resistance are outlined in both 

Commission Regulation 1492/2004 and Commission Regulation EC No 727/2007, which 

amended Regulation (EC) 999/2001. The aim is to increase the classical scrapie and 

BSE resistant allele ARR in the European sheep population (Melchior et al., 2010).  

EC No 727/2007 dictates general breeding requirements for purebred sheep flocks with 

high genetic merit or those working towards such a status, meaning that all sheep are 

considered breeding animals belonging to certain purebred breeds under the auspices 

of a breeding association. A database must be established containing identification of all 

animals involved, their breed and genotyping results. A breeding program should be 

devised for each breed taking allele frequencies, breed rarity and inbreeding avoidance 

into account. All breeding rams must be genotyped and tagged with an individual 

identification. All genotyped rams carrying a VRQ allele must be slaughtered or 

castrated within 6 months of test results and are not allowed to leave holding except for 

slaughter. Female animals carrying a VRQ allele cannot leave the holding except for 

slaughter. Certain breeds displaying a low incidence of ARR alleles or where certain 

production traits may be lost are exempted from these requirements. 

2.11.4   TSE Road Map 2 

The EU Commission Decision 2008/341/EC of 25 April 2008 dictates common criteria, 

based on EC 999/2001, for national programs for the eradication, control and monitoring 

of TSEs. The EU Commission Decision 2008/425/EG regulates the submission of these 

national plans and harmonizes the reporting system to the EU Commission in order to 

provide epidemiological data on TSEs in each member country. The reporting system 

also facilitates the financing of the national eradication programs. 

In July of 2010, the European Commission published a communication entitled TSE 

Road Map 2 [COM (2010) 384] (2010) outlining a strategy for the next 5 years, which 
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gradually repeals TSE control and surveillance measures in accordance with scientific 

advice. The current measures for livestock are being criticised as too excessive in 

comparison to the risks currently posed. For example, scrapie prevalence in Germany is 

low (3.2 per 10000 animals tested) and BSE has not yet been found in the German 

sheep or goat population after 7 years of active surveillance (E.C.H.C.P., 2011). The 

cost of conducting a TSE rapid test on a sheep is generally more than the slaughter 

value of the sheep itself (StMUG, 2011).  

2.12     Other Genetic Factors Influencing Susceptibility to Scrapie 

The discovery of the prion protein and the genetics of PRNP have been able to explain 

to a certain degree why some flock animals succumb to scrapie infection and others do 

not. However, it has been estimated that PRNP is responsible for approximately 79% of 

overall genetic susceptibility to scrapie in sheep (Diaz et al., 2005). In one Romanov 

sheep flock, not all animals with an expected equal degree of scrapie susceptibility and 

identical PrP genotypes developed clinical signs of scrapie (Elsen et al., 1999). When 

inbred mouse lines all carrying the same PRNP genotype are infected with the same 

prion strain, the incubation times vary from 100 to 500 days (Carlson et al., 1988; 

Dickinson, 1975; Westaway et al., 1987). Other genetic loci have been shown to 

modulate incubation times and/or disease pathogenesis (Booth et al., 2004; Cosseddu 

et al., 2007; Lloyd et al., 2001; Moreno et al., 2003; Moreno et al., 2010; Stephenson et 

al., 2000).  

2.12.1   Quantitative Trait Locus Analysis  

A quantitative trait (QT) is a phenotype that is influenced by more than one gene. 

Continuous variation in a quantitative trait is believed to be partly due to DNA sequence 

variations at multiple genes, called loci. QTs can act as precursors to risk of certain 

diseases, show a strong (>0.8) heritability (Bloom et al., 2013) and the genes underlying 

these traits can be mapped (Majumder and Ghosh, 2005). Quantitative trait loci (QTL) 

mapping is a particurlarly strong tool when inbred lines can be developed, such as the 

established mouse models for scrapie. QTL studies are highly useful in determining 

genomic regions putatively harboring genes involved in scrapie susceptibility. However, 

due to the scarcity of mapped markers on certain chromosomes, QTL regions identified 

can be up to 25 cM, which may contain a great number of genes (Lloyd et al., 2010). 
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Insufficient numbers of mapped markers is a problem in many species including sheep 

and cattle. 

Many quantitative trait loci (QTL) for classical scrapie susceptibility have been identified 

in mice (Lloyd et al., 2001; Moreno et al., 2003; Moreno et al., 2010; Stephenson et al., 

2000). Table 6 summarizes scrapie QTL studies. Regions on both mouse chromosomes 

9 and 11 showed high LOD scores (Stephenson et al., 2000). Other mouse 

chromosome regions identified included chromosomes 2, 11 and 12 (Lloyd et al., 2001) 

as well as 5, 6, 7 and 8 (Moreno et al., 2003). Differing results for QTL studies can be 

attributed to use of different mouse lines and scrapie strains as well as innoculation 

routes (Iyegbe et al., 2010; Moreno et al., 2003). Candidate genes located in some of 

these QTL and further investigated in this study are: laminin receptor gene 1 (LAMR1) 

on mouse chromosome 6, scrapie responsive gene 1 (SCRG1) on mouse chromosome 

8 and prion protein doppel (PRND) on mouse chromosome 2 (Table 6). 

A study in sheep identified a QTL for classical scrapie incubation time on OAR 18 

(Cosseddu et al., 2002). One study showed two QTLs (mouse chromosomes 4 and 8) 

being involved in increased incubation time in both classical scrapie and BSE (Moreno 

et al., 2003). Lloyd et al. (2002) identified QTLs on mouse chromosomes 2 and 11 

significant for BSE incubation time in mice.  
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2.12.2   Differential Display Studies 

Differential gene expression studies can identify genes involved in scrapie 

pathogenesis. In classical scrapie, mRNA levels were compared in healthy and scrapie-

infected animals, identifying genes that may modulate scrapie pathogenesis (Booth et 

al., 2004; Cosseddu et al., 2007; Stobart et al., 2007). Vimentin (VIM) was found to be 

differentially expressed between scrapie-infected and non-infected mice (Booth et al., 

2004). 

2.12.3   Functional Gene Studies 

Gene function can be determined after establishment of a knock-out model for the gene 

in question. Also, protein-protein interactions can be useful in identifying functional gene 

relationships (Fields and Song, 1989; Limviphuvadh et al., 2007; Uetz et al., 2000). 

LAMR1 was discovered to code for a protein acting as the PrP receptor after both 

proteins consistently coprecipitated (Rieger et al., 1997). In addition, localising a protein 

in the cell may give hints to functionality (Lechauve et al., 2009; Lin et al., 2008). For 

example, proteins located within lipid rafts usually play a role in signal transduction 

(Korade and Kenworthy, 2008). 

2.13     Candidate Genes for Scrapie Susceptibility 

2.13.1   Laminin Receptor Gene 1 

The laminin receptor 1 gene (LAMR1; otherwise known as RPSA) is found distal on 

mouse chromosome 9 (Douville and Carbonetto, 1992) and at 3p22.1 on human 

chromosome 3 (Jackers et al., 1996b). It has also been mapped to bovine chromosome 

22 (12.88 Mnt) and ovine chromosome 19q13 (Marcos-Carcavilla et al., 2008; Zimin et 

al., 2009). It lies just distal to a mice QTL for scrapie susceptibility but is located in a 

putative second QTL nearby (Stephenson et al., 2000).  

The ovine LAMR1 gene consists of 7 exons and results in the transcription of an mRNA 

885 base pairs in length and encodes a 295 amino acid protein (Marcos-Carcavilla et al., 

2008; Qiao et al., 2009a). A high level of conservation of the LAMR1 nucleotide 

sequence is observed among mammalian species (Rao et al., 1989). 

LAMR1 encodes the 37 kDa laminin receptor precursor (LRP), which constitutes the 

binding ligand of the mature 67 kDa laminin receptor (LR). Unmodified LRP is also a 
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ribosomal component, indicating a role in mRNA translation (Shmakov et al., 2000). Two 

LRP molecules are acylated to form the mature 67 kDa LR homodimer (Gauczynski et 

al., 2001; Hundt et al., 2001). Located on the cell surface, LR binds laminin, elastin, 

various viruses, epigallocatechin gallate (EGCG) as well as PrP and PrPSc (Gauczynski 

et al., 2006; Nelson et al., 2008; Rieger et al., 1999).  

LRP and LR exhibit multiple functions depending on their ribosomal, nuclear or 

extracellular localisation (Nelson et al., 2008) and it seems threshhold levels of LAMR1 

are necessary for different functions. Yeast have two copies of LAMR1. When one is 

disrupted, cell growth is inhibited but knockout of both is lethal (Demianova et al., 1996). 

It is believed that the C-terminal domain, which is responsible for binding laminin, prions 

and various viruses, plays a role in cell viability in that apoptosis is prevented. Cleavage 

of this domain, resulting in the separation of LRP/LR from the cell surface, may promote 

apoptosis (Mathew et al., 2009). This domain is only present in vertebrates. Of those 

species showing a high susceptibility to prion disease, many have identical amino acids 

at positions 241, 272 and 290/291 of LRP (Marcos-Carcavilla et al., 2008; Zhou et al., 

2010). Positions 241 and 272 fall within the heparan sulfate proteoglycan (HSPG) -

dependent PrP binding domain (Hundt et al., 2001). 

In approximately 40% of human small intestinal mucosa samples tested, apical 

expression of mature laminin receptor is observed. The samples also showed staining 

for the LRP in the region of the Golgi apparatus. (Shmakov et al., 2000). Human 

enterocytes take up bovine PrPSc via LRP/LR (Morel et al., 2005). In scrapie infected 

mice, tissues accumulating PrPSc such as spleen and brain display increased levels of 

LRP/LR (Rieger et al., 1997). On the surface of neuronal and non-neuronal cells, the 

laminin receptor LRP/LR is responsible for mediating PrPC and PrPSc binding and 

internalization through endocytosis (Gauczynski et al., 2001). The inactivation of LRP/LR 

delays either PrPSc propagation or accumulation, causing prolonged incubation times in 

scrapie-infected mice (Pflanz et al., 2009). EGCG intervenes in the formation of PrPSc in 

scrapie-infected cells, possibly by occupying the laminin receptor (Rambold et al., 2008). 

Ovine LRP amino acids 161-179 have been shown to bind prion proteins, which is also 

the binding site for laminin. In yeast, LRP binds to the PrP amino acids 144-179 directly. 

Amino acids 180-285 on LRP bind to PrP at amino acids 53-93, dependent on the 

presence of HSPGs. Yeast LRP also displays a transmembrane region encompassing 

amino acids 86 to 101. Heparan sulfate proteoglycans (HSPGs) act as coreceptors, 
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helping to form a more stable ligand-receptor complex between PrPC or PrPSc and 

LRP/LR through the HSPG dependent binding sites (Gauczynski et al., 2001; Hundt et 

al., 2001; Rieger et al., 1997).  

In spleen and brain from BSE-infected mice, LRP concentration is stable. In brains from 

scrapie infected mice, a 2-fold increase of LAMR1 mRNA expression is observed 

(Rieger et al., 1997). In contrast, in the cerebellum of scrapie-infected sheep, levels of 

LAMR1 mRNA were significantly reduced (Marcos-Carcavilla et al., 2008).  

The genomes of many species contain LAMR1 pseudogenes. To date, 63 LAMR1 

processed pseudogenes have been found in humans, at least one of those showing 

evidence of being transcribed (Asano et al., 2004; Balasubramanian et al., 2009; 

Jackers et al., 1996a). At least 25 LAMR1 pseudogenes have been indentified in cattle 

through in silico analyses of the bovine genome (Van den Broeke et al., 2010). One of 

these has been shown to be transcribed (Germerodt et al., 2004). Eleven LAMR1 

pseudogenes are thought to be present in the ovine genome and five of them are 

transcribed (Marcos-Carcavilla et al., 2008; Van den Broeke et al., 2010).  

2.13.2   Scrapie Responsive Gene 1  

Scrapie responsive gene 1 (SCRG1) is located on mouse and bovine chromosome 8 

(Dron et al., 2000; Zimin et al., 2009). Bovine chromosome 8 has been shown to be 

homologous to the short arm of ovine chromosome 2 (OAR2p) (Ansari et al., 1999). Two 

studies of mouse susceptibility to BSE (Manolakou et al., 2001) and scrapie (Moreno et 

al., 2003) each identified a QTL on mouse chromosome 8 containing the SCRG1 gene.  

Mouse and human SCRG1 consist of three exons, where only exon 2 and 3 are protein 

coding (Dron et al., 2000). It encodes a protein of unknown function consisting of 98 

amino acids (Dandoy-Dron et al., 1998; Dron et al., 1998). The hydrophobic N-terminal 

end could be anchored in the cell membrane or secreted as assumed from the presence 

of a cleavable signal peptide consisting of the first 20 amino acids (Dron et al., 1998). 

This gene is conserved in human, chimpanzee, cow, rat, and chicken (Dron et al., 2000).  

In mice, SCRG1 seems to be expressed only in brain tissue and has been identified in 

cell lines of glial origin (Dron et al., 2000). In humans, SCRG1 is amply expressed in the 

brain and spinal cord, but also to a much lesser degree in the aorta and the testes (Dron 

et al., 1998). SCRG1 was first identified in scrapie-infected mice using mRNA differential 

display (Dandoy-Dron et al., 1998). Expression of SCRG1 in mice increased 2-3 fold in 
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the brain at 120 days post inoculation, when PrPSc can be found in the brain but 

approximately 30 days before clinical signs appear. In BSE infected mice, an increase of 

SCRG1 expression was also observed (Dandoy-Dron et al., 2000). In one sample of 

brain from a CJD patient, SCRG1 mRNA was also increased 3-fold compared to normal 

brain (Dandoy-Dron et al., 1998; Dron et al., 1998). This increase also coincides with 

astrocytosis and microglial activation, both of which may be involved in neuronal death. 

This gene may play a role in susceptibility to scrapie (Moreno et al., 2003) as well as in 

neurodegenrative processes (Dron et al., 2005). 

More recently, it has been shown that the protein encoded by SCRG1 plays a role in the 

neuronal autophagy cascade in TSE disease (Dron et al., 2006). In a PRNP knockout 

mouse model, where ectopic PRND expression causes similar pathological changes as 

in prion disease, SCRG1 mRNA levels have been measured and were found to be 

stable, suggesting that the gene itself is not upregulated (Heitz et al., 2010). Rather, the 

autophagic pathway is interrupted, causing an accumulation of SCRG1 protein. This 

interruption of the autophagic pathway may lead to cell death directly or initiate the Bax 

dependent apoptosis cascade, both of which are observed in TSE infected brains. 

Scrapie responsive gene 1 and its protein seem to be involved in general 

neurodegenerative processes but not directly involved in the regulation of PrPSc.  

2.13.3   Prion-like Protein Gene (Doppel) 

PRND is located on sheep chromosome 13 (OAR13q17), most likely between 20 

(Comincini et al., 2001) and 52 kb (Essalmani et al., 2002) downstream from the PRNP 

gene. This discrepancy could be the result of an insertion or deletion event in the DNA 

material used in each study (Essalmani et al., 2002). The ovine gene (GenBank 

accession number AY017311) consists of 2 exons separated by an 1818 bp intron 

(Comincini et al., 2001). The coding sequence for doppel is exclusively contained in the 

second exon along with the 3’-UTR (Essalmani et al., 2002). Where PRNP is highly 

polymorphic, PRND is not, with only three synonymous ovine SNPs reported to date 

(Comincini et al., 2001; Mesquita et al., 2010). 

PRND encodes the 178 aa doppel protein (Dpl), which shares approximately 25% amino 

acid homology to the PrP C-terminal region (Tranulis et al., 2001). Like prion protein, 

doppel protein is expressed during embryogenesis, but in contrast to PrP, at minimal 

levels in the adult brain. However, doppel protein is highly expressed in the testes of 
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post-pubertal sheep although its exact function is still unknown (Espenes et al., 2006). 

Male PRND0/0 mice are infertile (Behrens et al., 2002).  

PRNP promoter-induced PRND overexpression in PRNP0/0 mice leads to Purkinje cell 

death and cerebral degeneration (Genoud et al., 2004; Moore et al., 1999; Rossi et al., 

2001). The reintroduction of PrP reverses the ataxia phenotype, although Dpl 

expression levels remain the same (Moore et al., 1999). When PRND is also deleted 

from PRNP0/0 mice, cerebellar degeneration does not occur (Genoud et al., 2004). 

Reintroduction of an N-terminal truncated PrP does not reverse cerebellar degeneration 

and ataxia (Shmerling et al., 1998).  

Two synonymous mutations in the PRND coding sequence were identified in Italian 

Sarda sheep but were not associated with scrapie susceptibility (Comincini et al., 2001; 

Essalmani et al., 2002). In a study of 110 sporadic CJD (sCJD) patients compared to 

102 healthy controls, a non-coding SNP in the PRND 3’-UTR was associated with sCJD 

occurrence (Jeong et al., 2005a).  

2.13.4   Reticulon 4  

Reticulon 4 gene (RTN4 or Nogo) has been mapped in humans (HSA2p16.3), mice 

(MMU11) and cattle (BTA11) (Church et al., 2011; Oertle et al., 2003; Zimin et al., 2009). 

BTA 11 is homologous to the short arm of OAR 3 (OAR3p) (Ansari et al., 1999). RTN4 is 

located within a mouse QTL for scrapie incubation time (Table 6). The human RTN4 

gene consists of 14 exons and encodes the Nogo-A protein (Diekmann et al., 2005). 

Typical for this gene is its transcription into at least 10 mRNA isoforms due to alternate 

splicing and the presence of multiple promotors. However, all vertebrate Nogo isoforms 

contain a highly conserved domain consisting of the carboxy terminal 201 amino acids 

(reticulon homology domain, RHD), whereby the amino terminal protein sequences 

showed no homology (Oertle et al., 2003).  

RTN4 is highly expressed in the CNS (Fergani et al., 2005) and is mainly associated 

with membrane components of the cell such as the endoplasmic reticulum (Roebroek et 

al., 1998), Golgi apparatus and plasma membrane in oligodendrocytes (Fergani et al., 

2005). Nogo-A acts as a potent inhibitor of neurite outgrowth through interaction with a 

GPI-anchored receptor in the CNS and is involved in apoptosis by sequestering and 

thus inhibiting anti-apoptotic proteins (Tagami et al., 2000).  
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Upregulation of RTN4 occurs in the brains of scrapie-infected mice (Sorensen et al., 

2008). Overexpression of two RTN4 isoforms has been shown to reduce the amount of 

amyloid-ß-protein, which accumulates as senile plaques in the brains of Alzheimer 

patients (Selkoe, 2002).  

Recently it has been shown that genetic knockdown of RTN4 in a mouse model for 

Alzheimer’s disease improves learning and memory deficits at an early stage of the 

disease (Masliah et al., 2010). Nogo is a potent inhibitor of axonal sprouting (Cafferty 

and Strittmatter, 2006) and may modulate disease progression in Alzheimer’s. The 

compensatory reaction to neuronal loss inhibited by RTN4 may also play a role following 

neurodegeneration in scrapie caused by PrPSc accumulation, thus modulating TSE 

disease progression (Masliah et al., 2010).  

2.13.5   Vimentin 

Vimentin (VIM) has been mapped in mice (MMU2, 7.0 cM, 87.8 Mb), humans 

(HSA10p13) and sheep (OAR 13q15) (Church et al., 2011; Deloukas et al., 2004; 

Iannuzzi et al., 2001), placing it just proximal to a mouse QTL for scrapie incubation time 

(Table 6) (Lloyd et al., 2001; Manolakou et al., 2001). The human and bovine VIM genes 

are comprised of 9 exons (Deloukas et al., 2004; Zimin et al., 2009) and encode a 466 

amino acid protein (Geisler and Weber, 1981; Ikeda et al., 2010). 

VIM expression is characteristic for activated astrocytes (Myerowitz et al., 2002; Ridet et 

al., 1997). Expression is increased in the brains of mice infected with mouse-adapted 

BSE (Booth et al., 2004).  

VIM encodes intermediate filaments required for astrocytic activation (Kraft et al., 2012), 

which occurs in the brain in response to PrPSc accumulation (Field and Peat, 1969). 

Vimentin is a member of the intermediate filament protein family and has been shown to 

be an important regulator of cell mobility (Tapscott et al., 1981). Cells can respond to a 

high amount of damaged or abnormal protein, such as PrPSc, in the cytoplasm by 

forming a proteinaceous body called an aggresome, where the abnormal protein is held 

within these aggressomes by a filamentous cage containing vimentin (Johnston et al., 

1998). Accumulation of such aggresomes can impair the ubiquitin-proteasome pathway 

(Bence et al., 2001). Vimentin may functionally interact with PrPSc in forming 

aggresomes. Recently, in an Alzheimer’s disease mouse model, VIM could be knocked 

out, resulting in reduced astrocytic activation and increased accumulation of amyloid 
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precursor protein (Kraft et al., 2012). If a similar mechanism exists in scrapie infected 

brains, TSE disease progression could be modulated by VIM.  

 





Material and Methods 
 

  47 

3 Material and Methods 

3.1 DNA Samples 

Table 7 shows an overview of ovine DNA samples used in this study. One reference 

sample of DNA from a Merino Land (ML) sheep was used to test designed PCR primers 

and establish the PCR reaction for each candidate gene. Ten ovine DNA samples were 

then sequenced and compared in order to identify single nucleotide polymorphisms 

(SNPs). SNP validity was tested using sheep family DNA. Lastly, DNA sample sets from 

217 scrapie positive sheep as well as from 456 (or 196 for the PRND gene) healthy 

cohort sheep were available for SNP genotyping. In the case of rare SNP alleles, 192 

representative DNA samples from 7 Hessian breeds were also genotyped. 

Table 7: Overview of ovine DNA sample groups used in this study 
DNA samples used  

in this study 
Number of 
individuals Description 

1) Reference DNA 1 female Merino Land sheep (3.1.1) 

2) Sequencing DNA 11 nine different sheep breeds (3.1.2) 

3) Sheep Family DNA 32 4 rams, 12 ewes, 16 lambs (3.1.3)  

4) Scrapie Positive Sheep 214 from scrapie DNA bank (3.1.4) 

5) Scrapie Flock Mate  
Sheep 

654 from scrapie DNA bank (3.1.4) 

6) Hessian Breeds 192 seven different breeds from Hesse (3.1.5) 

 

3.1.1 Reference DNA 

The reference DNA originated from one female Merino Land (ML) sheep (ear tag 

number 035), which was kept at the Oberer Hardthof Teaching and Research Facility at 

Justus-Liebig University, Giessen, Germany. DNA samples from this sheep were 

consistently used to establish PCR and sequencing reactions for each candidate gene. 
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3.1.2 DNA Samples for Sequencing  

DNA samples routinely sequenced in this study included DNA from 11 individual sheep 

representing nine breeds (Table 8). Nine sheep were breeding stock on farms in Hesse, 

Germany and were listed in the Hessian Association of Sheep Breeders and Owners 

breeding stock register (3.1.5). The remaining two Merino Land (ML) sheep were held at 

the Oberer Hardthof Teaching and Research Facility at Justus-Liebig University, 

Giessen, Germany. DNA samples from these animals were routinely sequenced for 

each candidate gene to provide data for SNP identification and were then further used 

as positive controls in genotyping of the scrapie DNA bank samples.  

Table 8: DNA samples from 9 different sheep breeds plus reference sample routinely sequenced 
and used as controls in genotyping. 

Individuals (#) Sheep Breed Schafrasse Abbreviation 

1 Coburg Fox Coburger Fuchsschaf COF 
1 German Blackheaded 

Mutton 
Schwarzköpfiges 

Fleischschaf 
SKF 

1 German White Mountain Weißes Bergschaf BS 
1 Grey Horned Heath  Graue gehörnte 

Heidschnucke 
HS 

3 Merino Land Merinolandschaf ML 
1 Rhoen Rhönschaf RH 
1 Romanov Romanov RV 
1 Suffolk Suffolk SU 
1 Texel Texel TX 

 

3.1.3 Sheep Family DNA 

Blood for DNA extraction was collected from Merino Land (ML) and Rhoen (RH) sheep 

families totalling 32 individuals. Pedigree relationships are illustrated in Figure 13. These 

families were genotyped for each candidate gene SNP to prove Mendelian inheritance 

segregation of the SNP in question. All sheep were kept at the Oberer Hardthof 

Teaching and Research Facility at Justus-Liebig University, Giessen, Germany. 

 



Material and Methods 
 

  49 

Figure 13: Pedigree relationships within four sheep families (square = ram; round = ewe; 
diamond = offspring). 
 

3.1.4 Scrapie Sample DNA Bank 

All scrapie DNA samples used in this study originated from an existing ovine scrapie 

DNA bank kept at the Department of Animal Breeding and Genetics, Justus-Liebig 

University of Giessen, Germany. Samples are made up of DNA from scrapie positive 

sheep and their apparently healthy, cohort flock mates. Each animal is genotyped with 

respect to PrP at codons 136, 141, 154 and 171 by sequencing and/or restriction 

fragment length polymorphism (RFLP) analysis as previously described (Lühken et al., 

2007). All available information for each animal is included in the database: sex, breed 

(exact from breeder or phenotype estimated), age (exact from breeder or dentition 

estimated), scrapie status (positive or negative) and scrapie type (classical or atypical) 

were recorded for each animal (Lühken et al., 2007). Most scrapie affected flocks 

included in the DNA bank were of mixed (MIX) breed. In addition to sheep breeds 

already mentioned (Table 8), flocks affected by scrapie included in the DNA bank were 

of the following breeds: Shropshire (SHROP), German Grey Heath (GGH), East Friesian 

(OMS), and German White Moorland (MOOR). Table 9 summarizes the samples used in 

this study taken from the scrapie sample DNA bank.  
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3.1.4.1 Scrapie Positive Sheep DNA 

Samples with a positive or questionable result from a previous TSE rapid test were sent 

to the INNT for verification and determination of scrapie type as described elsewhere 

(Buschmann et al., 2004a; Gretzschel et al., 2005). DNA samples from scrapie positive 

sheep identified in German sheep flocks were kindly provided by the research group of 

Prof. Dr. Martin Groschup, Institute for Novel and Emerging Infectious Diseases (INNT), 

Greifswald, Germany.  

3.1.4.2 Scrapie Sheep DNA 

For each scrapie positive DNA sample described in 3.1.4.1, an average of five DNA 

samples from flock mates were used for association analyses of candidate genes in this 

study. DNA control samples from apparently healthy flock mates were collected and 

extracted in a previous project (Lühken et al., 2007). Flock mates were age- and breed-

matched to the positive animal whenever possible. 

For all candidate genes with the exception of PRND, flock mate samples were chosen 

independent of PrP genotype at PRNP codons 136, 141, 154 and 171. Due to the 

location of both PRNP and PRND on sheep chromosome 13 (OAR13), for each scrapie 

positive DNA sample, one PRNP-matched DNA sample from a flock mate was chosen 

for the PRND gene (Table 9). 

3.1.5 Hessian Breeds 

Blood samples of sheep listed in the Hessian Association of Sheep Breeders and 

Owners (Hessischen Verbandes für Schafzucht und Schafhaltung e.V.) breeding 

register and their lambs were collected by Hessian Sheep Health Service veterinarians 

between 2002 and 2005 at the request of the breeders. These samples form part of a 

DNA bank for sheep breeds in Hesse (Lipsky et al., 2008). These include 32 samples of 

DNA from each of the following sheep breeds: Coburg Fox (COF), German Grey Heath 

(GGH), Merino Land (ML), Rhoen (RH), and German Blackheaded Mutton (SKF) as well 

as a total of 36 samples from Suffolk (SU) and Texel (TX) sheep. Samples were 

genotyped for an SNP identified in the PRND gene to determine its frequency. 
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Table 9: Information on samples from scrapie DNA bank used for association analyses in this 
study (continued over next two pages). 

Flock 
Number 

TSE 
Type 
(pos 

animal) 

Breed Total TSE 
Positive 
Animals 

Total Negative 
Animals 

  All 
other 
genes 

PRND 

2 AT Mix 1 5 1 
3 AT Mix 1 

1 
2 

5 1 
4 AT COF 5 1 
5 AT & 

INC 
Mix 5 2 

6 AT ML 1 
1 
1 
2 
1 
1 
2 
1 
4 
1 
2 
1 
1 
1 
1 
4 
4 
1 
1 
1 
1 
1 
3 
1 
1 
1 

51 
2 
1 
2 
1 
1 
1 
1 
1 
1 

5 1 
7 AT COF 5 1 
8 AT Mix 5 1 
9 AT Mix 5 2 

10 AT Mix 0 1 
12 AT ML 5 1 
14 AT Mix 5 2 
15 INC Mix 5 1 
16 CL Mix 5 4 
17 AT Mix 5 1 
18 AT Mix 5 2 
19 CL Mix 5 1 
21 CL SHROP 5 1 
22 AT Mix 5 1 
23 AT MOOR 5 1 
24 CL Mix 5 4 
25 AT ML 5 4 
26 AT Mix 5 1 
27 AT MLW 5 1 
28 INC Mix 5 1 
29 AT Mix 5 1 
30 AT Mix 5 1 
31 AT ML 5 3 
32 AT COF 5 1 
33 AT u 0 0 
34 AT Mix 5 1 
35 CL Mix 50 51 
36 CL TX 5 2 
37 CL Mix 5 1 
38 AT Mix 5 2 
41 AT GGH 5 1 
42 AT Mix 5 1 
43 AT Mix 5 1 
44 AT ML 5 1 
45 AT Mix 5 1 
46 AT Mix 5 1 
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Flock 
Number 

TSE 
Type 
(pos 

animal) 

Breed Total TSE 
Positive 
Animals 

Total Negative 
Animals 

  All 
other 
genes 

PRND 

47 AT ML 1 
1 
1 

5 1 
50 AT ML 5 1 
51 AT Mix 5 1 
52 ns Mix 0 5 1 
54 CL Mix 1 

1 
1 
1 
3 
1 
1 

17 
1 
1 
1 
1 
1 
1 
1 
1 
1 

14 

5 1 
55 AT Mix 5 1 
57 AT OMS 5 1 
58 AT Mix 5 1 
59 CL Mix 5 3 
60 AT Mix 5 1 
61 AT Mix 1 1 
62 CL Mix 17 15 
63 AT GGH 5 1 
64 AT ML 5 1 
65 AT Mix 5 1 
66 AT Mix 5 1 
67 CL Mix 5 1 
68 AT Mix 5 1 
69 AT Mix 5 1 
70 AT Mix 5 1 
71 AT Mix 5 1 
72 CL (11) 

INC (3) 
Mix 14 13 

73 AT TX 1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 

5 1 
74 AT ML 5 1 
75 CL Mix 5 1 
77 AT BS 4 1 
78 AT ML 5 1 
79 AT ML 5 1 
80 AT Mix 5 1 
81 AT Mix 2 1 
83 AT Mix 5 1 
84 AT u 5 1 
85 AT Mix 5 1 
86 CL Mix 5 1 
87 AT SHROP 4 1 
88 CL Mix 3 1 
89 AT Mix 5 1 
90 AT Mix 5 1 
91 AT Mix 8 1 
92 AT Mix 5 1 
93 AT Mix 2 1 
94 AT Mix 5 1 
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Flock 
Number 

TSE 
Type 
(pos 

animal) 

Breed Total TSE 
Positive 
Animals 

Total Negative 
Animals 

  All 
other 
genes 

PRND 

96 AT Mix 1 
1 
1 
1 

0 1 
97 AT Mix 0 1 
98 AT Mix 0 1 
99 AT Mix 0 1 

100 AT Mix 2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 2 
101 AT Mix 0 1 
102 AT Mix 0 1 
103 AT Mix 0 1 
104 AT Mix 0 1 
105 CL Mix 0 1 
106 AT Mix 0 1 
107 AT Mix 0 1 
108 AT ML 0 1 
109 AT Mix 0 1 
110 AT Mix 0 1 
111 AT Mix 0 1 
112 AT Mix 0 1 
113 AT Mix 0 1 
114 AT ML/Mix 0 1 

AT=atypical scrapie; CL=classical scrapie; INC=scrapie type inconclusive; ns=no sample; u=unknown 

3.2 Materials 

3.2.1 Equipment 

Item Company 
ABI Prism® 377 DNA Sequencer Applied Biosystems, Darmstadt 
Analysis Scale AC211S Satorius AG, Göttingen 
Double Water Still 2302 Distillation Unit Gesellschaft für Labortechnik GmbH, 

Burgwedel 
Borosilicat Glass Plates (36 cm) Applied Biosystems, Darmstadt 
CAS-1200™ Pipetting Robot Corbett Life Science, Sydney, Australia 
Centrifuge Biofuge 13R Heraeus Instruments GmbH, Hanau 
Centrifuge 5804 with Rotor A-2-DWP Eppendorf AG, Hamburg 
Centrifuge 5810R with Rotor A-4-62 Eppendorf AG, Hamburg 
Centrifuge/Vortex Combi-Spin FVL 2400 Peqlab, Erlangen 
Combitips® Plus Eppendorf AG, Hamburg 
Digital Graphic Printer UP-D895 (Sony) Biometra, Göttingen 
Distriman Multipipette Gilson International B.V., Bad Camberg 
Distritips Micro, Mini, and Maxi Gilson International B.V., Bad Camberg 
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Item Company 
Electrophoresis Chamber (horizontal), mini 
& midi 

Von Kreutz Labortechnik GmbH, 
Reiskirchen 

Electrophoresis Chamber IBI Model HRH Intl. Biotechnologies, Inc., New Haven, CT, 
USA 

Filter 595 (∅ 240 mm) Schleicher und Schuell MicroScience 
GmbH, Dassel 

Filter Tips Biosphere® (100 µL) Sarstedt, Nümbrecht 
Filter Tips (10 µL, 1000 µL) nerbe plus GmbH, Winsen/Luhe 
Filter Tips (20 µL, 200 µL) Peqlab, Erlangen 
Gel Combs (various sizes) Von Keutz Labortechnik GmbH, 

Reiskirchen 
Gel Trays (various sizes) Von Keutz Labortechnik GmbH, 

Reiskirchen 
Ice Machine Scotsman AF10 Kälte Mack, Maintal 
iCycler 96 well Thermocycler Bio-Rad, München 
Kimwipes® Kimberly-Clark, Roswell, USA 
Latex Gloves G. Kisker GbR, Steinfurt 
Magnetic Mixer MR2002 Heidolph, Kelkheim 
Membrane Filter (0.2 µm) Schleicher und Schuell MicroScience 

GmbH, Dassel 
Microwave Clatronic, Kempten 
Monovette K-EDTA 9 mL Sarstedt, Nümbrecht 
Multipipette Eppendorf AG, Hamburg 
Mylar Shark Tooth Gel Comb (36-well, 0.2 
mm) 

Applied Biosystems, Darmstadt 

Mylar Spacer (0.2 mm) Applied Biosystems, Darmstadt 
Nitril Gloves (Latex-free) MAGV, Rabenau-Londorf 
PCR Cap Strips  VWR International GmbH, Darmstadt 
PCR-Cups Soft Tube® with Soft Strip Cap Biozym, Hess. Oldendorf 
PCR Plate PP (96-well) nerbe plus GmbH, Winsen/Luhe 
PCR Strips (0.2 mL) VWR International GmbH, Darmstadt 
Photopaper Type V UPP-110HG (Sony) MS Laborgeräte Schröder, Wiesloch 
Pipetman P10, P20, P100, P200, P1000  Gilson International B.V., Bad Camberg 
Pipette Research Pro (0,5-10 µL and 50-
1200 µL) 

Eppendorf AG, Hamburg 

Power Supply for Electrophoresis Chamber 
Consort E425 

MAGV, Rabenau-Londorf 

Power Supply for Electrophoresis Chamber 
Power Pac 1000 and 3000 

Bio-Rad, München 

Quali PCR Plates (96-well) G. Kisker GbR, Steinfurt 
Reagent Flasks Sarstedt, Nümbrecht 
Thermocycler PE 9600 Perkin Elmer Applied Biosystems GmbH, 

Weiterstadt 
Thermowell Plates (96-well) Corning Inc., Corning, New York, USA 
Transilluminator Ti5 Biometra, Göttingen 
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Item Company 
Transferpipette®-8 (2.5 mL-25 mL) Brand GmbH & Co KG, Wertheim 
Vortex Reax 2000 Heidolph, Kelkheim 
Water bath GFL MAGV, Rabenau-Londorf 
Water bath Julabo 22A Julabo Labortechnik, Saalbach 
Water bath  Köttermann Labortechnik, Uetze-Hänigsen 
 

3.2.2 Chemicals and Reaction Kits 

All chemicals are grade p.a. (per analysum). 

Item Company 
Acrylamide/Bisacrylamide 29:1 (30% w/v) Bio-Rad, München 
Agarose NEEO Ultra Quality Carl Roth GmbH, Karlsruhe 
Ammonium persulfate (APS) Amresco, Ohio, USA 
BigDye® Terminator v1.1 Cycle 
Sequencing Kit 

Applied Biosystems, Darmstadt 

Boric Acid AppliChem, Darmstadt 
Bromophenol blue E. Merck AG, Darmstadt 
Bromophenol blue United States Biomedical Corp., Ohio, USA 
Dimethyl sulfoxide (DMSO) Carl Roth GmbH, Karlsruhe 
EDTA dipotassium salt dihydrate AppliChem, Darmstadt 
Ethanol Carl Roth GmbH, Karlsruhe 
Ethanol E. Merck AG, Darmstadt 
Ethidium bromide Serva Feinbiochemica GmbH, Heidelberg 
Fast Ruler™ DNA Ladder Low Range Fermentas, St. Leon-Rot 
Formamide  AppliChem, Darmstadt or Carl Roth GmbH, 

Karlsruhe 
Gene Ruler™ 100nt DNA Ladder plus Fermentas, St. Leon-Rot 
Glycerol Carl Roth GmbH, Karlsruhe 
HPLC Water KMF Laborchemie Handels GmbH, Sankt 

Augustin 
Invisorb® Blood Mini HTS 96 Kit / C-Sheep Invitek, Berlin 
Magnesium Solution [25 mM Mg(OAc)2] Eppendorf AG, Hamburg 
MSB® HTS PCRapace/ C-Kit Invitek, Berlin 
Multiplex PCR Kit Qiagen, Hilden 
N,N,N#,N#-Tetramethylendiamine (TEMED) Amresco, Ohio, USA or AppliChem, 

Darmstadt 
NuSieve® GTG® Agarose Cambrex Bio Science, Inc., Rockland, 

Maine, USA 
Rotiphorese® 10X TBE Buffer [1 M Tris-
Borate (pH 8.3), 20 mM EDTA, distilled, 
deionized water] 

Carl Roth GmbH, Karlsruhe 

Sodium Acetate Merck KgaA, Darmstadt 
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Item Company 
Tris(hydroxymethyl)aminomethane (Tris) MP Biomedicals, LLC, Eschwege 
Urea AppliChem, Darmstadt or Bio-Rad, 

München 
Water - Molecular biology grade Carl Roth GmbH, Karlsruhe 
Wizard® SV Gel and PCR Clean-Up 
System 

Promega GmbH, Mannheim 

Xylencyanol FF E. Merck AG, Darmstadt or United States 
Biomedical Corp., Ohio, USA 

 

3.2.3 DNA Size Markers 

Item Company 
FastRuler™ DNA Ladder, Low range Fermentas, St. Leon-Rot 
GeneRuler™ 100nt DNA Ladder Plus Fermentas, St. Leon-Rot 
pUC Mix Marker 8 Fermentas, St. Leon-Rot 
pUC19 DNA/MspI (HpaII) Marker Fermentas, St. Leon-Rot 
 

3.2.4 Enzymes 

Item Company 
BseR I Restriction enzyme New England Biolabs, Frankfurt a.M. 
Dde I Restriction enzyme New England Biolabs, Frankfurt a.M. 
Hinf I Restriction enzyme Fermentas, St. Leon-Rot 
Mbi I Restriction enzyme Fermentas, St. Leon-Rot  
Proteinase K Invitek, Berlin 
Pwo (Pyrococcus woesei) Polymerase Roche Diagnostics GmbH, Mannheim 
Ssi I Restriction enzyme Fermentas, St. Leon-Rot 
Taq (Thermus aquaticus) Poymerase Eppendorf, Hamburg 
 

3.2.5 Oligonucleotides 

Item Company 
unlabelled Oligonucleotides biomers.net GmbH 
 

3.2.6 Computer and Internet-Based Programs 

Program Company 
BLAST 2.2.25 (Zhang et al., 2000) 
ChromasPro Version 1.32 Technelysium Pty Ltd. 
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Program Company 
ExPASy http://www.expasy.org/ (Gasteiger et al., 

2003) 
GenBank http://www.ncbi.nlm.nih.gov/genbank/ 
Geneious™ 5.3  Biomatters Ltd., Auckland, New Zealand 
Genotyper® V 3.7 NT Applied Biosystems, Darmstadt 
Livestock Genomics http://www.livestockgenomics.csiro.au/sheep/ 
Mutation Surveyor® SoftGenetics, LLC., PA, USA 
NEBCutter v2.0 
Online Encyclopedia for Genetic 
     Epidemiology Studies 

New England Biolabs, Ipswich, MA, USA 
http://www.oege.org/software/hwe-mr-
calc.shtml  (Rodriguez et al., 2009) 

Primer3 (Rozen and Skaletsky, 2000) 
Prosite http://prosite.expasy.org/ (Sigrist et al., 2013) 
SAS® 8.01 SAS Institute Inc., Cary, NC, USA 
SPSS® 18 International Business Machines Corp., 

Armonk, NY, USA 
UniProt http://www.uniprot.org/ (UniProt, 2012) 

 

3.3 Methods 

3.3.1 DNA Extraction  

3.3.1.1 From Peripheral Leukocytes 

Whole blood sample monovettes were centrifuged at 3000-3500 rpm for 15 minutes at 

4°C. Using a capped 1000 µl pipette tip, the buffy coat was transferred to a 1.5 mL 

eppendorf tube and stored at -20°C. Genomic DNA was isolated from peripheral 

leukocytes using a modified salt extraction protocol (Montgomery and Sise, 1990) in that 

no EDTA was added before the samples were incubated with proteinase K.  

3.3.1.2 Brain Stem Tissue 

DNA from scrapie positive sheep was kindly provided by the research group of Martin 

Groschup (INNT) at the Friedrich-Loeffler-Institut, Greifswald, Germany. Samples of 

brain stem tissue from sheep showing positive results after testing with the Bio-Rad 

Platelia rapid test were sent to the Institute for Novel and Emerging Infectious Diseases 

(INNT) in Greifswald, Germany. Immunohistochemistry (Hardt et al., 2000) and/or SAF 

immunoblot confirmed scrapie. DNA was extracted from brain stem tissue samples as 

described (Buschmann et al., 2004b). 
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3.3.2 DNA Dilution 

A total of fourteen 96-well plates were created using the CAS-1200 Pipetting Robot 

(Corbett Life Science, Sydney, Australia). Each plate well contained 20 µL of DNA 

diluted to 10 ng/µL (Table 10). 

Table 10: Overview of scrapie DNA sample plates with total numbers of sheep DNA samples. 

 
Number 

of 
Plates 

Total 
Sheep 

Total 
Herds 

Scrapie 
Negative 

Scrapie 
Positive 

Number 
Control 

DNA 
Wells 

Number 
Negative 
Control 
Wells AT CL 

Scrapie 
Positive 
Samples 

3 214 81 – 97 117* – 3 

Flock Mate 
Samples 6 458 81 458 – – 77 6 

PRND 
Flock Mate 
Samples 

3 196 81 196 – – 9 4 

Hessian 
Samples 2 192 – – – – – – 

* 9 positive samples inconclusive (INC) as to scrapie type; AT = atypical scrapie; CL = classical scrapie 

 

3.3.3 Screening for DNA Polymorphisms in Candidate Genes 

3.3.3.1 Primer Design 

Primers were designed with the help of the Primer3 program (Rozen and Skaletsky, 

2000). Optimal primer conditions were chosen to be approximately 21 bp in length with 

an approximate annealing temperature of 60°C and a GC clamp of 1 or 2. Candidate 

gene sequences were taken from GenBank reference sequences (Table 11).  

Where ovine gene sequences were not available, sequences from cattle, human and/or 

mouse were aligned using ChromasPro. Primers were then chosen using the bovine 

sequences from homologous domains between the different species. PCR products 

were designed to be approximately 800 bp in size and to cover as many exons as 

possible. 
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To avoid targeting pseudogenes, a primer pair was designed with the forward primer in 

an exon and the reverse primer in an intron. The intron sequences of known genes of 

other species were aligned and primers were chosen from intron segments showing a 

high amount of similarity. Table 11 lists candidate genes analyzed in this study, the 

primer pairs designed to amplify candidate gene domains as well as the GenBank 

sequences from which the primers originated. Primers were diluted to a concentration of 

10 µM with HPLC water upon arrival and stored at -20°C or at 4°C when in use.  

Table 11: Primer information for the candidate genes analyzed in this study. 

GENE GENOMIC 
REGION 

FORWARD (5’→3’) 
(Origin, Species) 

REVERSE (5’→3’) 
(Origin, Species) 

FRAG–
MENT 
SIZE 
(bp) 

LAMR1 Exon 5 ! 
Exon 7 

LAMR1 Ex5f 
TCAGTGGGTCTGATGTGGTG 
(NM174379, Bt) 

LAMR1 Ex7r 
GTAGGAACCACCACCGAGTG 
(NM174379, Bt) 

374 

LAMR1 Exon 5 ! 
Intron 6 

LAMR1 Ex5f 
TCAGTGGGTCTGATGTGGTG 
(NM174379, Bt) 

LAMR1 In6r 
GATGTGGCTGATGACCTCCT 
(NW930073, Bt) 

542 

SCRG1 Exon 1 ! 
Intron 1 

SCRG1 Ex1f 
GTTGGACTAACTTTGCTGCTAGG 
(XM593394, Bt) 

SCRG1 In1r 
GGAGTTTGCTGAAACTTGTCAC 
(XM593394, Bt) 

310 

PRND Prom !  
Exon 1 

Prom f 
GAATTCACATTCAGGAAGAGTGAT
G 
(AF394223, Oa) 

Ex 1r  
AGGTGCGTCAGAGAGATCCTAA 
(AF394223, Oa) 

465 

PRND Exon 2 Ex 2f 
TCCGACACAATGAGGAAACA 
(AF394223, Oa) 

Ex 2r 
TAGCATCTGGCCCACCATAT 
(AF394223, Oa) 

830 

PRND Exon 2 ! 
3'UTR 

PRND Ex2f B  
TGTGACTTTTGGTTGGAAAGG 
(AF394223, Oa) 

PRND 3UTRr 
TAAGCCAGGGTTGAATTATGG 
(AF394223, Oa) 

576 

RTN4 Exon 6 ! 
Exon 8 

RTN4 Ex6f 
TGTGGGTATTTACCTATGTTGGTG 
(BC116111, Bt) 

RTN4 Ex8r 
GGACTTGCAAATAAGAATGTTAAAGA 
(BC116111, Bt) 

1201 

RTN4 Intron 7 ! 
Intron 7 

RTN4 Intr7f 
GGCTAACAAATCTTAGAACTGTGA 
(BC116111, Bt) 

RTN4 Intr7r 
TGAACGGCATCAGGTAATTT 
(BC116111, Bt) 

166 

VIM Exon 1 ! 
Exon 2 

VIM Ex1f 
GAGCTACGTGACCACATCCA 
(AF251147, Oa) 

VIM Ex 2r 
TGGAGCAGCAGAACAAGATC 
(AF251147, Oa) 

307 

Origin denotes GenBank accession numbers from which the primer pairs were designed. Bt = Bos taurus; Oa = Ovis 
aries; A denotes a mismatch base created for amplification-created restriction site analysis (Haliassos et al., 1989). 
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3.3.3.2 Polymerase Chain Reaction 

To establish an optimal polymerase chain reaction (PCR) protocol for each primer pair 

(Mullis and Faloona, 1987), a test PCR reaction was mixed containing 0.5 µM each 

forward and reverse primer, 10 ng DNA, 0.2 mM deoxyribonucleotide triphosphates 

(dNTPs), 1x Taq puffer advanced (2 mM Mg2+), 1 unit (U) Taq polymerase and bidest 

water to a reaction volume of 25 µL.  

An initial temperature gradient PCR (Table 12) was conducted to identify the ideal 

annealing temperature using the iCycler thermocycler. 

According to PCR results as seen on an ethidium bromide (EtBr)-stained agarose gel, 

different strategies were undertaken to optimize the PCR product quality. DMSO was 

added to the PCR reaction mix of certain primer pairs (Table 13) to enhance primer 

binding (Filichkin and Gelvin, 1992).  

Following establishment of an efficacious PCR protocol for each candidate gene, PCR 

was repeated with a reaction volume of 50 µL in preparation for sequencing. 

Table 12: Temperature gradient PCR program. 
 

 

 

 

 

 

3.3.3.3 PCR Fragment Assessment and Estimation 

PCR fragments were visualized for quality assessment and quantity estimation on 

agarose gels stained with ethidium bromide (EtBr). DNA size markers containing 

premeasured DNA amounts migrated alongside PCR products for size and 

concentration determination of the product. PCR products were run on 1% to 3.5% 

agarose gels (Table 13) in horizontal electrophoresis chambers with 1X TBE buffer 

(Sambrook et al., 1989). The gels were stained in an ethidium bromide (EtBr) bath and 

PCR products were visualized under UV light.  

Cycles Temp 
(oC) Time 

1 Initial Denaturation 94 02:00 
 Denaturation 94 00:30 

30 Annealing 50-65 00:30 
 Elongation 72 01:30 

1 Final Elongation 72 10:00 
1  6 ∞ 
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3.3.3.4 PCR Purification 

PCR products to be sequenced were purified using the Wizard SV Gel and PCR Clean-

Up System (Boom et al., 1990) and eluted with 40 µl of nuclease-free water.  

 



M
at

er
ia

l a
nd

 M
et

ho
ds

 

 
62

 

Ta
bl

e 
13

: E
st

ab
lis

he
d 

PC
R 

re
ac

tio
ns

 a
nd

 c
on

di
tio

ns
 fo

r t
he

 d
iff

er
en

t c
an

di
da

te
 g

en
e 

pr
im

er
 p

ai
rs

 w
ith

 a
 fi

na
l v

ol
um

e 
of

 2
5 
µ

l. 
 

G
en

e 
Pr

im
er

  
Pa

ir 
An

ne
al

in
g 

Te
m

pe
ra

tu
re

 
(°C

) 

Nu
m

be
r  

 C
yc

le
s 

 
Pr

im
er

 
Co

nc
en

tra
tio

n 
(µ

M
) 

Un
its

 (U
) 

Ta
q 

Po
lym

er
as

e 

DN
A 

(n
g)

 
M

od
ific

at
io

ns
 

Pr
od

uc
t 

Si
ze

 
(n

t) 

Ag
ar

os
e 

G
el

 
(%

) 

LA
M

R
1 

Ex
 5

f !
 E

x 
7r

 
58

.9
 

40
 

0.
5 

 
1.

0 
12

.5
 

10
%

 D
M

SO
 

37
4 

1.
2 

LA
M

R
1 

Ex
 5

f !
 In

 6
r 

63
.1

 
40

 
0.

75
  

1.
5 

12
.0

 
5%

 D
M

SO
 

54
2 

1.
5 

SC
R

G
1 

Ex
 1

f !
 In

 1
r 

59
.5

 
35

 
1.

2 
 

1.
0 

12
.0

 
- 

31
0 

2.
0 

PR
N

D
 

Pr
om

 f!
 E

x 
1r

 
59

.5
 

35
 

1.
25

 
1.

0 
15

.0
 

5%
 D

M
SO

 
46

5 
1.

5 

PR
N

D
 

Ex
 2

f !
 E

x 
2r

 
60

.0
 

35
 

1.
25

 
1.

0 
13

.0
 

8%
 D

M
SO

 
83

0 
1.

0 

PR
N

D
 

Ex
 2

f B
 

!
3ʼ

U
TR

r 
59

.5
 

35
 

0.
5 

 
1.

25
 

12
.5

 
- 

57
6 

1.
5 

R
TN

4 
Ex

 6
f !

 E
x 

8r
 

62
.3

 
30

 
0.

5 
 

1.
0 

12
.5

 
- 

12
01

 
1.

5 

R
TN

4 
In

 7
f !

In
 7

r 
55

.0
 

40
 

1.
0 

 
1.

0 
25

.0
 

5%
 D

M
SO

 
16

6 
3.

5 

VI
M

 
Ex

 1
f !

 E
x 

2r
 

60
.1

 
35

 
1.

0 
 

1.
0 

12
.5

 
4%

 D
M

SO
 

30
7 

1.
5 



Material and Methods 

 63 

3.3.3.5 Sequencing of PCR Products 

Sequencing reactions and program (Table 14) were based on the Sanger method 

(Sanger and Coulson, 1975).  

All purified PCR products were sequenced with the ABI PRISM 377 DNA Sequencer 

both in the 5’→3’ and the 3’→5’ direction. Sequencing was conducted using the ABI 

PRISM BigDye Terminator v1.1 Cycle Sequencing Kit which included the Premix and 

sequencing buffer. Reaction mix included 4 µl Premix, 2 µl sequencing buffer, 0.5 µl 

each PCR primer of 10 µM, between 8 and 40 ng purified PCR product, and HPLC 

water to an end volume of 20 µl. Purified PCR product concentration required for 

sequencing was determined by dividing the size of the PCR product by 20 (Anonymous, 

2000). Premix contained dye terminated dNTP’s where end hydroxyl groups were 

replaced by one of four dye molecules for each of the nucleotide bases, as well as 

normal dNTPs. 

Table 14: Sequencing reaction cycle program.  
 

 

 

 

 

* if primer ≤ 20 nt, then annealing temperature 50°C; if primer = 20-23 nt, then annealing temperature 55°C; if primer 
≥ 23 nt, then annealing temperature 60°C 

 

Reactions were precipitated immediately in 2 µl sodium acetate (3M) and 50 µl 

nondenatured 100% ethanol (Sambrook et al., 1989). After centrifugation for 15 min at 

11900 rpm, the pellet was washed twice in 150 µl ethanol, centrifuged at 11900 rpm for 

5 min and dried in a heat block at 50°C for 15 min. The pellet was stored at -20°C until 

loading onto 5% polyacrylamide gel in the sequencer occurred.!

3.3.3.6 Sequencing Gel Casting and Loading 

Preparation of the 0.2 mm, 5% polyacrylamide sequencing gel followed the 

manufacturer’s protocol (Anonymous, 2000). Glass plates were cleaned with an anionic 

Sequencing reaction 

Initial denaturation  96°C  1 min 
25 cycles 

Denaturation 
Annealing 
Elongation 

96°C 
50-60°C* 
60°C 

10 sec 
5 sec 
4 min 

Final Elongation 4°C ∞ 
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detergent, rinsed with deionized water and the inner surfaces treated with 6N sodium 

hydroxide (NaOH). A 5% polyacrylamide gel with 7 M urea was prepared by mixing 8.4 

mL polyacrylamide (acrylamide:bisacrylamide 29:1; 30% w/v), 21 g urea, 6 mL 10x TBE 

(Tris-base, boric acid, EDTA) and 20 mL HPLC water, with subsequent degassing and 

filtering (0.2 µm) prior to gel casting. Immediately before gel casting, the polymerisation 

initiators TEMED (20 µl) and APS (300 µL) were added to the degassed polyacrylamide 

gel solution. Gel polymerized following dispersion between glass plates, which were 

then washed with isopropanol and set into the ABI PRISM 377 DNA sequencer. Buffer 

chambers were filled with 1x TBE buffer. 

Sequencing reaction pellets were dissolved in 4 µl loading dye included in the 

sequencing kit, loaded onto the gel and run for approximately six to eight hours.  

3.3.3.7 Sequence Analysis 

Candidate gene segment sequences were extracted with the Genotyper V 3.7 NT 

program and visualized with the program ChromasPro Version 1.32. The use of basic 

local alignment search tool (BLAST) verified sequences attained (BLAST 2.2.25).  

3.3.3.8 SNP Identification 

Sequences from a minimum of 11 DNA samples from 9 different sheep breeds were 

aligned together with GenBank reference sequences using ChromasPro Version 1.32. 

Scanning for SNPs followed with the help of the program ChromasPro Version 1.32, 

Geneious 5.3 and/or Mutational Surveyor. One SNP was selected for genotyping based 

on the occurrence of all three genetic variants as well as position in the candidate gene. 

SNPs located within exons were prioritized over those in introns.  

3.3.4 SNP Genotyping  

Candidate gene SNPs were genotyped in scrapie positive sheep and their flock mates in 

order to investigate whether the candidate gene in question influenced susceptibility to 

classical or atypical scrapie.  

3.3.4.1 Restriction Fragment Length Polymorphism Analysis 

Restriction fragment length polymorphism (RFLP) analysis (Saiki et al., 1985) was used 

to genotype candidate gene SNPs in the scrapie DNA bank sample population. 

Restriction enzymes for each identified SNP were chosen with NEBcutter V2.0 (Vincze 

et al., 2003). 
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Eight microliters of PCR product from each sample were incubated overnight with 2 µl of 

enzyme mix (5U of enzyme, 1 µl puffer and 1 µl HPLC water) in a water bath at the 

appropriate temperature for the enzyme. This reaction was run on a 2.5 to 3.5% agarose 

gel and visualization under UV light occurred through previous staining in an EtBr bath. 

RFLP conditions for all candidate gene SNPs analyzed are shown below (Table 15). 

Table 15: Overview of RFLP conditions for each candidate gene. 

Gene Primers Enzyme Units Per 
Reaction 

Incubation 
Temperature 

Agarose 
Gel (%) 

LAMR1 LAMR1 Ex 5f 
LAMR1 In 6r 

Mbi I 3 37oC 3.5% 
BseR I 5 37oC 3.5% 

SCRG1 SCRG1 Ex1f 
SCRG1 In1r Ssi I 5 37oC 3.5% 

PRND PRND Exon2f B 
PRND 3UTRr Dde I 5 37oC 2.5% 

RTN4 RTN4 In7f 
RTN4 In7r Hinf I 2 37oC 3.5% 

 

3.3.4.2 Amplification-created restriction site (ACRS)-RFLP Analysis 

Amplification-created restriction site (ACRS)-RFLP analysis was implemented for RTN4 

as no restriction enzyme recognition site existed for the SNP investigated. By designing 

new primers containing a mismatch base, a cutting site for one of the two possible 

alleles was created (Haliassos et al., 1989). For genotyping of the RTN4 C/T SNP, new 

primers were designed where the last position of the forward primer contained a 

mismatch base, replacing a T with an A (Figure 14). The T in the original sequence is 

replaced by A in the amplified PCR product and is situated 2 bp upstream of the C/T 

SNP. Together with the SNP T-allele, a cutting site for Hinf I was created. PCR 

amplification leads to the creation of an allele specific cutting site for Hinf I, when the T-

allele is present. 
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Figure 14: ACRS-RFLP design for candidate gene RTN4. Capital letters represent primer 
sequence with * denoting the same base as the gene sequence. Lower case letters represent 
RTN4 intron 7 sequence amplified by RTN In7f and In7r. Blue represents the mismatched base. 
The Y is the C/T SNP in intron 7. Cutting site for Hinf I, created when Y = T, is underlined. 
 

3.3.4.3 SNP Verification 

The validity of SNPs analyzed in this study was tested using RFLP or ACRS-RFLP on 

PCR products from sheep family DNA (Figure 13). SNP validation occurred through 

demonstration of a Mendelian inheritance pattern.  

3.3.5 Functional Analysis of SNPs 

The DNA sequences attained for the candidate genes in this study were scanned using 

the internet based program ExPASy to investigate if the identified SNP was located 

within a functional or regulatory motif (Gasteiger et al., 2003). Translated products of 

exons containing identified SNPs were also scanned for functional and conserved 

domains using the internet based programs Prosite (Sigrist et al., 2013) and Uniprot 

(UniProt, 2012).  

3.3.6 Statistical and Association Analyses 

All SNP genotype and allele frequencies were calculated using the FREQ command with 

SAS version 8.01 or SPSS version 18.0. Frequencies were calculated according to 

scrapie type (classical or atypical) and status (negative or positive). 

Pearson’s chi-squared (Chi2 or ) test was used to calculate possible non-random 

association between identified SNPs in the candidate genes and scrapie status 

(Pearson, 1900). Genotype and allele frequencies in scrapie positive sheep were 

compared to those in the scrapie negative cohort flock mates. Association analyses 

were calculated with SAS version 8.01 or SPSS version 18.0. 
€ 

χ2
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Fisher’s exact test (Fisher, 1922) was useful to analyze small sample sizes or where 

there were large differences in the number of observed genotypes. In these cases, 

Fisher’s exact test was more appropriate to test associations. 

Deviations from the Hardy-Weinberg equilibrium (HWE) model (Hardy, 1908; Weinberg, 

1908) were estimated for the control groups (Gomes et al., 1999; Lunetta, 2008) 

consisting of healthy flock mates using SAS version 8.01, SPSS version 18.0 and/or the 

Online Encyclopedia for Genetic Epidemiology studies (Rodriguez et al., 2009). 
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4 Results 

Table 16 summarizes all the SNPs identified in this study as well as their locations within 

the amplified and sequenced genomic segment for each candidate gene. Homologous 

sequence (BLAST) results for sequences obtained for each candidate gene are shown 

in the Appendix (Table A2). All sequences attained in this study, with the exception of 

the RTN4 sequence, were submitted to GenBank (Table 16). The length of the analysed 

RTN4 sequence (166 bp) precluded GenBank submission. 

Table 16: Overview of sequenced candidate gene segments and the corresponding GenBank 
accession number where appropriate. SNP alleles, positions and SNP location within gene 
structures are listed. 

*Sequence attained in this study was too short (<200 bp) to submit to GenBank. 

 

4.1 Laminin Receptor Gene 1 

4.1.1 LAMR1 Sequences and SNPs 

4.1.1.1 Exon 5 to Exon 7 

BLAST results of the gene segment sequenced with primer pair LAMR1 Ex5f and 

LAMR1 Ex7r (GenBank KC904790) showed a 99% homology with no gaps to Ovis aries 

cDNA sequence (GenBank GW996948.1) and an 87% similarity to Homo sapiens 

LAMR1 pseudogene 9 (GenBank NR026890.1). Sequences were also compared to the 

Candidate 
Gene 

Segment 
Sequenced 

SNP 
Alleles 

GenBank Accession 
Number 

SNP 
Position 

(bp) 
Location 

LAMR1 Exon 5 to Intron 6 A/G KC904790 119 Exon 5 

LAMR1 Exon 5 to Intron 6 C/T KC904790 311 Exon 6 

SCRG1 Exon 1 to Intron 1 G/A KC904792 228 Intron 1 

PRND Exon 2 to 3’-UTR C/T KC904791 262 3’UTR 

RTN4 Exon 6 to Exon 8 G/A 
NT022184.15 

HSA 2 genomic contig* 
34022706 Intron 7 

RTN4 Exon 6 to Exon 8 C/T 
NT022184.15 

HSA 2 genomic contig* 
34022716 Intron 7 

VIM Exon 1 to Exon 2 C/T KC904793 43 Exon 1 
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genomic human sequence (GenBank U43901). A pseudogene was amplified, as it was 

apparent that the obtained sequence was devoid of introns 5 and 6 (Figure 15). 

 

Figure 15: Alignment of reference DNA LAMR1 Ex 6f-Ex 7r sequence (Query) with ovine mRNA 
LAMR1 sequence (Sbjct; Genbank accession no. GW996948.1). ~ indicates missing intron 
sequence. 
 

4.1.1.2 Exon 5 to Intron 6  

Pseudogene amplification was avoided using this primer pair. BLAST results for the 

sequence obtained (Figure 16) are shown in Table A2. This sequence was submitted to 

GenBank and assigned accession number KC904790. 

A synonymous C/T polymorphism (Figure 16) was identified at position 311 of the 

sequence obtained (KC904790), corresponding to bp 692 of the Ovis aries mRNA 

sequence (NM001105263.1). This SNP is located at position 69 in exon 6 which is the 

third position of codon 232 (NP001098733.1). Both C or T in the third position codes for 

threonine (T).  
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A second SNP could be identified at position 119 of this sequence (KC904790), 

constituting a G/A polymorphism (results not shown). This G/A SNP is located at the 

second nucleotide position in the last codon of exon 5 and is nonsynonymous. An 

adenine at this position codes for glutamic acid (E) but a guanine at this position codes 

for glycine (G).  

 

Figure 16: Sequence (KC904790) for ovine LAMR1 obtained with primer pair Ex 5f and In 6r. Y 
represents the C/T SNP. Exons 5 and 6 represented by capital letters, introns 5 and 6 by lower 
case letters. Primers are underlined. 
 

  

001 TCAGTGGGCC TGATGTGGTG GTGCTCGCCC GGGAAGTCCT GCGCATGCGC  Exon 5 

051 GGCACCATCT CCCGAGAACA CCCGTGGGAG GTCATGCCGG ACCTCTACTT  

101 CTACAGGGAC CCCGAGGAGg tgagctccgt ccacagaggc gtgttggcac 

151 tcacataagt acatactggg tacttcttac tgccaagaac agaaattaat  

201 ctgtcaatgc atataaacta aaaactattt tcctaaacta gATTGAAAAG  Exon 6 

251 GAAGAGCAGG CAGCAGCCGA GAAGGCTGTG ACCAAGGAGG AGTTTCAGGG  

301 CGAATGGACY GCTCCAGCTC CAGAGTTCAC GGCTGCCCAG CCTGAGGTGG  

351 CAGACTGGTC TGAAGGTGTG CAGGTGCCTT CCGTGCCCAT TCAGCAGTTC  

401 CCCACTGgta cgtatcagga tccaagggca tccagctggt ggtttagaac  

451 tgctcttctc agtctgacat atctgtagga ataaaagcag attggtgcag  

501 tggggttaca aaagtaactg gggatgtggc tgatgacctc ctt 
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Figure 17: Alignment of six LAMR1 Ex 5 f sequences. The arrow shows the C/T SNP. 
 

4.1.2 Investigation of LAMR1 SNP C/T by RFLP Analysis 

An RFLP was developed using the enzyme Mbi I, which cuts at 5’-CCG↓CTC-3’, with C 

indicating the SNP within the restriction enzyme site (Figure 18). A total of 640 animals 

could be genotyped. 

Figure 18: LAMR1 RFLP analysis. 3.5% agarose gel showing LAMR1 genotypes for C/T SNP 
after digestion with enzyme Mbi I. Fragment sizes are labelled on right. M = pUC Mix marker 8. 
U = undigested PCR product.  
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4.1.3 Genotype and Allele Frequencies of C/T SNP and their Influence on 

Scrapie Susceptibility 

Genotype and allele frequencies of the C/T SNP identified for all scrapie groups are 

shown in Table 17 and Table 18, respectively. Cumulative genotype frequencies were 

as follows: 16.4% CC, 47.7% TC, 35.9% TT and the cumulative allele frequency for C 

was 40.2% and for T 59.8% in all animals. No significant differences were found in 

genotype (Table 17) or allele (Table 18) frequencies between classical or atypical 

positive scrapie groups when compared to the corresponding group of scrapie negative 

cohort flock mates. 

 

Table 17: LAMR1 genotype frequencies for C/T SNP for both classical scrapie as well as 
atypical scrapie groups. Total sheep shows total number of animals genotyped in each subgroup 
and p values are listed for both cases.  

LAMR1 Genotype 

Frequency 

Total 

Sheep 

(n) 

CC (%) CT (%) TT (%) p-value 

cl
as

si
ca

l 
sc

ra
pi

e negative 137 16.8 43.1 40.1 
1.00 

positive 106 17.0 43.4 39.6 

at
yp

ic
al

 
sc

ra
pi

e negative 304 16.1 50.0 33.9 
0.49 

positive 93 11.8 55.9 32.3 
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Table 18: LAMR1 allele frequencies for C/T SNP with P values are listed for classical and 
atypical scrapie groups. 

LAMR1 Allele  

Frequency 

Total 

Sheep 

(n) 

C (%) T (%) p-value 
cl

as
si

ca
l 

sc
ra

pi
e negative 137 38.3 61.7 

 0.94 
positive 106 38.7 61.3 

at
yp

ic
al

 
sc

ra
pi

e negative 304 41.1 58.9 
 0.75 

positive 93 39.8 60.2 

 

4.1.4 HWE of Healthy Flock Mates 

Observed and expected genotype frequencies of the LAMR1 C/T SNP according to 

Hardy-Weinberg equilibrium in the healthy cohort flock mates are shown below (Table 

19).  

Table 19: Observed and expected LAMR1 C/T genotype frequencies in the classical and 
atypical healthy cohort flock mates.  

LAMR1 
CC (%) CT (%) TT (%) p-value 

cl
as

si
ca

l 
sc

ra
pi

e observed 16.8 43.1 40.1 
0.38 

expected 14.7 47.3 38.0 

at
yp

ic
al

 
sc

ra
pi

e observed 16.1 50.0 33.9 
0.74 

expected 16.9 48.4 34.7 

 

4.1.5 Investigation of LAMR1 SNP G/A 

A second, nonsynonymous G/A SNP was identified within the same amplified LAMR1 

gene segment and located at the second nucleotide position of the last codon in exon 5 

(position 119 in GenBank KC904790). The current ovine LAMR1 sequence (GenBank 
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GQ202529.1) found in the GenBank displays an adenine at this position (bp 12705). 

This codon codes for glutamic acid (E) when an adenine is found at this position but 

codes for glycine (G) when a guanine is present. Of the 11 sequencing DNA samples, 4 

were heterozygote A/G and 7 were homozygote A/A but G/G homozygotes were not 

observed. An RFLP with the enzyme BseR I [5’-GAGGAG(N)10↓-3’] was conducted on 

PCR products from the 11 sheep samples sequenced as well as on 5 additional samples 

amplified from the Hessian sheep sample DNA group to try to identify all three 

genotypes (results not shown). Five A/A homozygote animals could be genotyped but it 

was not possible to distinguish between the A/G heterozygote or the putative G/G 

homozygote genotypes from this RFLP even after increasing enzyme concentrations 

from 4 U to 5 U per digest reaction.  

4.2 Scrapie Responsive Gene 1 

4.2.1 SCRG1 Sequencing and SNPs 

4.2.1.1 Exon 1 to Intron 1  

Primers SCRG1 Ex1f and SCRG1 In1rB amplified a 310 bp product (Figure 19) 

assigned GenBank accession number KC904792. BLAST results of the sequenced 

products are shown in Table A2. Only one SNP was found in this amplified segment of 

the ovine SCRG1 gene. A G/A polymorphism was identified at position 228 of the 

sequence (Figure 20). Figure 20 shows the reverse sequence originating from the 

reverse primer In 1rB due to the higher quality sequence achieved. Position 228 in this 

sequence corresponds to bp 9501 of the GenBank cattle sequence NC007306.  
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Figure 19: Forward SCRG1 sequence of PCR product obtained with primer pair Ex 1f and In 
1rB. SNP G/A represented by r and located at bp 13 of intron 1. Exon bases are in capital letters 
and intron bases in lowercase letters.  

 

 

 

 

 

 

 

 

 

 

Figure 20: Alignment of six SCRG1 reverse sequences showing the SNP (arrow).  
 

4.2.2 Demonstration of SCRG1 SNP by RFLP Analysis 

An RFLP was designed using the enzyme Ssi I, which cuts at 3’–GGC↓G–5’, where the 

underlined G represents the G/A SNP identified (Figure 21).  

A total of 556 animals could be genotyped. 

001 GTTGGACTAA CTTTGCTGCT AGGAGTCCAA GCCATGCCTG CAAACCGCCT   Ex 1 

051 TTCCTGCTAC AGAAAAATAC TAAAAGATCG CAACTGTCAC AGTCTTCCAG  

101 AAGGAGTAGC TGACCTGACA AAGATTGATG TCAATGTCCA GGATCACTTC  

151 TGGGATGGGA AGGGATGTGA GATGATCTGT TACTGCAACT TCAGCGAACT 

201 GCTCTGCTGC CCAAAgtaag gaaatgcrgt cacaagacgt atggttgtaa   In 1 

251 aatgtatgca taacgacttt cttaagacac cttcacaagg agtttgctga 

301 aacttgtcac 
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Figure 21: SCRG1 RFLP analysis. 3.5% agarose gel showing SCRG1 genotypes for G/A SNP in 
intron 1 after digestion with enzyme Ssi I. Fragment sizes (bp) are 264, 181, 85 and 46. M = 
marker pUC19, fragment sizes are labelled on left. U = undigested PCR product (310 bp).  

 

4.2.3 Genotype and Allele Frequencies of SCRG1 G/A and their Influence on 

Scrapie Susceptibility 

Genotype and allele frequencies are shown in Table 20 and Table 21, respectively. The 

cumulative genotype frequencies in all animals were as follows: 27.9% GG, 46.9% GA, 

25.2% AA and the cumulative allele frequencies were 51.3% for G and 48.7% for A. No 

statistically significant differences in genotype (Table 20) or allele (Table 21) frequencies 

were observed. 

Table 20: SCRG1 genotype frequencies for identified SNP for classical and atypical scrapie. 
Total sheep shows total number of animals genotyped in each subgroup and p values are 
shown.  

SCRG1 Genotype 

Frequency 

Total 

Sheep 

(n) 

GG (%) GA (%) AA (%) p-value 

cl
as

si
ca

l 
sc

ra
pi

e negative 115 22.6 47.0 30.4 
 0.64 

positive 80 17.5 52.5 30.0 

at
yp

ic
al

 
sc

ra
pi

e negative 287 31.0 45.6 23.3 
 0.38 

positive 74 36.5 47.3 16.2 
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Table 21: SCRG1 allele frequencies for identified SNP. Total sheep shows total number of 
animals genotyped in each subgroup.  

SCRG1 Allele  

Frequency 

Total 

Sheep 

(n) 

G (%) A (%)  p-value 
cl

as
si

ca
l 

sc
ra

pi
e negative 115 46.1 53.9 

 0.65 
positive 80 43.8 56.3 

at
yp

ic
al

 
sc

ra
pi

e negative 287 53.8 46.2 
 0.17 

positive 74 60.1 39.9 

 

4.2.4 HWE of Healthy Flock Mates 

Observed and expected genotype frequencies according to Hardy-Weinberg equilibrium 

in the healthy cohort flock mates are shown below (Table 22).  

Table 22: Observed and expected SCRG1 genotype frequencies in the classical and atypical 
healthy cohort flock mates.  

SCRG1 
GG (%) GA (%) AA (%) p-value 

cl
as

si
ca

l 
sc

ra
pi

e observed 22.6 47.0 30.4 
0.59 

expected 21.2 49.7 29.1 

at
yp

ic
al

 
sc

ra
pi

e observed 31.0 45.6 23.3 
0.41 

expected 29.0 49.7 21.3 

 

4.2.5 Putative Location of Ovine SCRG1 

The ovine SCRG1 sequence determined in this study was used to search (BLAST) the 

O. aries genome assembly version 2.0 (www.livestockgenomics.csiro.au; March 2011) 

database, resulting in a putative location for this gene on OAR 2 (Table 6).  
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4.3 Prion protein 2 (PRND – Doppel) 

4.3.1 PRND Sequencing and SNPs 

4.3.1.1 Promoter to Exon 1  

BLAST results of sequences obtained showed 99% homology to ovine PRND partial 

sequence AY184242.1 (Table A2). A total of 24 DNA samples from individual animals 

were sequenced, however no SNP was detected.  

4.3.1.2 Exon 2  

With the primer pair Ex 2f-Ex 2r, one A/C SNP at position 110 (GenBank KC904791) 

was identified. Results of RFLP analysis with the restriction enzyme Bse NI (cuts at 5’–

ACTGGN↓–3’) however, were inconclusive. Fourteen of 17 digested PCR products from 

different sheep DNA samples still revealed the original band of 827 bp, which should 

have been completely digested in all variants. Results remained inconclusive after 

doubling enzyme concentration (results not shown).  

4.3.1.3 Exon 2 to 3’-Untranslated Region (3’-UTR) 

The third primer pair, PRND Ex 2fB and PRND 3UTRr, extended from exon 2 (codon 

147) into the 3’-untranslated region (3’-UTR) and included part of the exon 2 region 

analysed with primer pair Ex 2f and Ex 2r (4.3.1.2). The authenticity of the A/C SNP at 

position 110 (GenBank KC904791) could also be tested with this primer pair, since it 

was located 89 base pairs after the first base of primer PRND Ex 2fB.  

A 576 bp product was amplified with primer pair PRND Ex 2fB and 3’UTRr and PCR 

products from 15 sheep were sequenced (Figure 22). BLAST results are shown in Table 

2A.  

Initial mutation analysis revealed no SNP corresponding to position 110. However, a T/C 

polymorphism at position 262 of this fragment was identified (GenBank KC904791). This 

T/C SNP was only observed in one Scottish Blackface sheep and two Coburger Fox 

sheep, where all three were heterozygote T/C (Figure 23). All other sequenced DNA 

samples were homozygote T/T. This SNP is at base pair number 163 in the 3’-UTR 

region, corresponding to nucleotide position 2818 in the ovine complete cds (GenBank 

AF394223).  
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Figure 22: Sequence obtained with primer pair PRND Ex2fB and PRND 3UTRr. Primers are 
underlined with exon 2 in capital letters and 3’UTR in lowercase. Y = T/C SNP. a = suspected 
A/C SNP, not observed in sequences attained with this primer pair. 
 

Figure 23: Chromatogram alignment of 7 PRND Ex 2fB sequences showing T/C SNP (arrow).  
 

 

001 TGTGACTTTT GGTTGGAAAG GGGAGCAGGA CTTCAGGTCA CTCTGGACCA  Ex 2 

051 GCCCATGATG CTCTGCCTGC TGGTTTTCAT TTGGTTTATT GTGAAATAAg   

101 cttgcaggca agttggcagc cacagagatc aataggcaag caaaccataa  3’UTR 

151 gcaagttatt ccagttcttc tcctctaacc ccaaacccca cgtgttctga  

201 aggtaccaaa gaacagtgtg attgattctt tagcgcttga aatagcactc  

251 ccaagtattc aYtcaggtgt ttgattatat ttgataaatg tgtgggtatc  

301 aatcctctcc aggttctacc taaagttggc ttgttcatca ttgcattctc  

351 aactctggtg tagcatctgg cccaccatat tatgcaataa atgtttggta  

401 agcagataaa agaatgtgcc agggaccata ccaagcactt cacaatgctt  

451 cctgacaact ctcagaggta ggtgtaataa gtgttattct cttggtatag  

501 atgagaaaat tgaggctcca agaagtaaaa tagtaaagta gttagaaagt  

551 atcagccata attcaaccct ggctta 
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4.3.2 Demonstration of PRND T/C SNP by RFLP Analysis 

An RFLP analysis was conducted with restriction enzyme Dde I (5’–C↓TNAG–3’) (Figure 

24). The T/C SNP identified is the first base (C) of the recognition site.  

A total of of 259 animals were genotyped. 

 

 

Figure 24: RFLP PRND T/C SNP. Agarose gel (1.5%) of PRND Ex 2fB and PRND 3UTRr PCR 
products digested with restriction enzyme Dde I. Restriction fragment lengths (bp) labelled on 
the right. Genotypes TT, TC and CC are shown. M = marker pUC19, fragment sizes are labelled 
on the left. U = undigested PCR product. 
 

4.3.3 Genotype and Allele Frequencies of PRND T/C SNP and their Influence on 

Scrapie Susceptibility 

Cumulative genotype frequencies were as follows: 0.4% CC, 7.3% TC and 92.3% TT. 

The cumulative allele frequency for C was 4.1% and for T 95.9% in all animals. No 

significant differences in genotype (Table 23) or allele (Table 24) frequencies were 

observed between the groups. 
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Table 23: PRND genotype frequency results for T/C SNP in classical and atypical scrapie 
groups. Total sheep shows total number of animals genotyped in each subgroup.  

 

Table 24: PRND allele frequencies for T/C SNP between classical and atypical scrapie groups. 
Total sheep shows total number of animals genotyped in each subgroup 

PRND Allele  

Frequency 

Total 

Sheep 

(n) 

C (%) T (%) p-value 

cl
as

si
ca

l 
sc

ra
pi

e negative 74 3.4 96.6 
 0.59 

positive 56 4.7 95.3 

at
yp

ic
al

 
sc

ra
pi

e negative 73 5.5 94.5 
 0.30 

positive 56 2.8 97.2 

 

4.3.4 HWE of Healthy Flock Mates 

Observed and expected genotype frequencies according to Hardy-Weinberg equilibrium 

in the healthy cohort flock mates are shown below (Table 25).  

 

PRND Genotype 

Frequency 

Total 

Sheep 

(n) 

CC (%) TC (%) TT (%) p-value 

cl
as

si
ca

l 
sc

ra
pi

e negative 74 0.0 6.8 93.2 
 0.65 

positive 56 0.0 8.9 91.1 

at
yp

ic
al

 
sc

ra
pi

e negative 73 1.4 8.2 90.4 
 0.55 

positive 56 0.0 5.4 94.6 
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Table 25: Observed and expected PRND genotype frequencies in the classical and atypical 
healthy cohort flock mates.  

PRND 
CC (%) TC (%) TT (%) p-value 

cl
as

si
ca

l 
sc

ra
pi

e observed 0.0 6.8 93.2 
0.72 

expected 0.1 6.6 93.3 

at
yp

ic
al

 
sc

ra
pi

e observed 1.4 8.2 90.4 
0.03 

expected 0.3 10.4 89.3 

 

4.3.5 Genotype and Allele Frequencies of PRND SNP 262Y in a Representative 

Selection of Hessian Sheep Breeds 

PCR and RFLP analysis was conducted on DNA samples from 192 sheep representing 

breeds held in Hesse, Germany, with the primer pair PRND Ex 2fB and PRND 3UTRr. In 

this sample population, the CC genotype was observed exclusively in Coburger Fox 

sheep at a frequency of 6.25% (Table 26). 

Table 26: Genotype and allele and frequencies of T/C SNP in Hessian sheep breeds.  

Breed Total 
Genotyped 

TT (%) TC (%) CC (%) T (%) C (%) 

Coburg Fox 32 68.75 25.0 6.25 81.25 18.75 

Grey Horned Heath 32 100 0 0 100 0 

Merino Land 31 96.8 3.2 0 98.4 1.6 

Rhoen 32 100 0 0 100 0 

German Blackheaded 
Mutton 31 96.8 3.2 0 98.4 1.6 

Suffolk 16 100 0 0 100 0 

Texel 16 100 0 0 100 0 
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4.4 Reticulon 4 

4.4.1 RTN4 Sequencing and SNPs 

4.4.1.1 Exon 6 to Exon 8 

Primer pair RTN4 Ex6f and RTN4 Ex8r amplified a fragment of approximately 950 

nucleotides. For BLAST results see Table A2. New primers were then chosen from initial 

sequences attained for ACRS-RFLP analysis (Figure 25).  

A G/A polymorphism was identified (Figure 26) within intron 7 at base pair Exon 7+127 

or 62 bp before the start of exon 8. 

  

Figure 25: RTN4 incomplete exon 7 and intron sequence surrounding the G/A SNP (R). Capital 
letters represent exon 7 and lowercase letters represent intron 7. Primers designed for ACRS-
RFLP are underlined, where * indicates mismatch base (a>t). 
 

 

A second, C/T SNP was observed ten nucleotides downstream from the G/A SNP 

shown in Figure 25, at position 151. The homozygote TT genotype was not observed in 

the initial 11 animals sequenced. Nine of these animals carried the CC genotype, and 

two were heterozygote at this position (results not shown).  
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Figure 26: Comparison of seven reverse RTN4 sequences, revealing corresponding T/C SNP, 
marked by arrow. Reverse sequences shown due to finer quality. 
 

4.4.2 Demonstration of RTN4 G/A SNP by ACRS-RFLP Analysis  

An ACRS-RFLP digest with the restriction enzyme Hinf I (cuts at 5’–G↓ANTC–3’) 

allowed a total of 563 animals to be genotyped (Figure 27). Restriction fragment sizes 

were 143 and 22 for the A allele and 165 for the G allele.  
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Figure 27: ACRS-RFLP for RTN4. Digest with Hinf I was run on 3.5% agarose gel. Genotypes 
shown for G/A SNP, where the G allele fragment is 165 bp and the A allele fragment lengths 
(labelled on right) are 143 bp and 22 bp (not shown). M = marker puc19, size fragments are 
labelled on left.  
 

4.4.3 Genotype and Allele Frequencies of G/A SNP and their Influence on 

Scrapie Susceptibility 

Cumulative genotype frequencies for all animals were as follows: 57.5% AA, 31.4% GA 

and 11.1% GG. The cumulative allele frequency for A was 71.7% and for G 28.3% in all 

animals. No significant differences were found in the genotype (Table 27) or allele 

(Table 28) frequencies when compared to scrapie status or type.  
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Table 27: RTN4 genotype frequencies for G/A SNP within classical and atypical scrapie groups. 
Total sheep shows total number of animals genotyped in each subgroup.  

RTN4 Genotype 

Frequency 

 

Total 

Sheep 

(n) 

GG (%) GA (%) AA (%)  p-value 

cl
as

si
ca

l 
sc

ra
pi

e negative 117 21.4 34.2 44.4 
 0.18 

positive 88 19.3 46.6 34.1 

at
yp

ic
al

 
sc

ra
pi

e negative 272 5.5 27.6 66.9 
 0.68 

positive 86 7.0 23.3 69.8 

 

Table 28: RTN4 allele frequencies for G/A SNP within classical and atypical scrapie groups. 
Total sheep shows total number of animals genotyped in each subgroup.  

RTN4 Allele  

Frequency 

Total 

Sheep 

(n) 

G (%) A (%)  p-value 

cl
as

si
ca

l 
sc

ra
pi

e negative 117 39.8 60.2 
 0.60 

positive 88 42.3 57.7 

at
yp

ic
al

 
sc

ra
pi

e negative 272 22.1 77.9 
 0.39 

positive 86 19.1 80.9 

 

4.4.4 HWE of Healthy Flock Mates 

Observed and expected genotype frequencies according to Hardy-Weinberg equilibrium 

in the healthy cohort flock mates are shown below (Table 29).  
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Table 29: Observed and expected RTN4 genotype frequencies in the classical and atypical 
healthy cohort flock mates.  

RTN4 
GG (%) GA (%) AA (%) p-value 

cl
as

si
ca

l 
sc

ra
pi

e observed 21.4 34.2 44.4 
0.005 

expected 14.8 47.4 37.8 

at
yp

ic
al

 
sc

ra
pi

e observed 5.5 27.6 66.9 
0.25 

expected 3.7 31.2 65.1 

 

4.4.5 Putative Location of Ovine RTN4 

With the partial RTN4 sequence obtained in this study, the sheep genome map (OAR 

v2.0, March 2011) was searched and RTN4 located to OAR 3.  

4.5 Vimentin 

Primer pair VIM Ex 1f and VIM Ex 2r was chosen at the time of this study based on the 

alignment of ovine mRNA and bovine whole genome shotgun sequences (GenBank 

AF251147 and NW482313, respectively). This primer pair spanned intron 1, which was 

approximately 80 nucleotides in the bovine sequence (NW482313) and nonexistent in 

the corresponding human sequence (NT077569). A 307 base pair product was amplified 

and sequenced (GenBank KC904793; Figure 28) that showed 94% sequence similarity 

to human VIM mRNA (GenBank accession number NM003380.2) and 99% sequence 

similarity to Bos taurus whole genome shotgun sequence with GenBank accession 

number NW482313 (Table A2). In the case of the second alignment, intron 1 was 

missing in the ovine sequence attained in this study (Figure 28).  

Mutational analysis showed only one C/T SNP at position 43 of the ovine VIM segment 

amplified (GenBank KC904793; Figure 29). However, due to BLAST results (Table A2) 

showing no part of intron 1, the PCR product amplified by this primer pair was assumed 

to be a pseudogene and no further analysis was undertaken.  

Updated versions of VIM sequences have replaced both AF251147 and NW482313. A 

new bovine whole genome shotgun sequence for VIM (NC007311.4) showed that both 
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VIM primers from this study, Ex1f and VIM Ex2r, are found within the bovine VIM exon 

1, which is homologous to exon 2 of the human VIM (NG012413). 

Figure 28: VIM sequence from primer pair VIM Ex 1f and Ex 2r, which are underlined. Y (base 
pair 43) shows the position of the identified C/T SNP. Blue break line after position 52 indicates 
where intron 1 would be according to GenBank entry NW482313, which is now obsolete. 
 

Figure 29: Chromatogram of five VIM Ex 1f - Ex 2r sequences showing C/T SNP, shown by 
arrow. 
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5 Discussion 

The candidate genes analysed in this study have all been chosen according to gene 

characteristics meeting two or more of the following criteria: 1) genomic location within 

or near a QTL involved in scrapie incubation time; 2) differential expression between 

healthy and scrapie infected groups; and/or 3) evidence of a putative functional role in 

scrapie pathogenesis. 

Single nucleotide polymorphisms in four of five candidate genes were tested as to their 

role in classical and atypical scrapie susceptibility in sheep. For each of these SNPs, a 

total of between 259 and 653 sheep DNA samples from the scrapie DNA bank were 

genotyped. The allele and genotype frequencies of each SNP found for the ovine genes 

LAMR1, SCRG1, PRND and RTN4 were compared through association analyses in 

scrapie negative and scrapie (classical and atypical) positive sheep populations. The 

fifth candidate gene sequenced, VIM, was thought to be a pseudogene at the time. The 

VIM SNP identified was not further investigated with respect to classical or atypical 

scrapie status in sheep. 

5.1 Selection of SNPs for Scrapie Association Analysis 

Only one SNP each was found in the SCRG1, PRND and VIM candidate genes. Two 

possible SNPs for each of the genes LAMR1 and RTN4 were identified.  

In the case of the LAMR1 SNP (T/C) further analysed in this study, all three genotypes 

could be observed in the initial samples sequenced and thus appeared to be the better 

SNP to choose for association testing. The presence of all three genotypes within this 

sample population allowed this SNP to be tested for Mendelian inheritance in the sheep 

families. The second LAMR1 SNP found (G/A) caused an unlikely glutamic acid (E) to 

glycine (G) change in the protein (Henikoff and Henikoff, 1992), and only two of the 

three possible genotypes were identified in initial samples sequenced. For this reason, it 

was not chosen for further scrapie association studies. This SNP may be an artifact of 

sequencing since this position is surrounded on both sides by two guanines, which may 

have led to increased and overlapping flourescence signal. In addition, the RFLP 

developed for genotyping for this SNP was insufficient. However, the possibility of an 

SNP at this position remains interesting since it is found within the putative binding site 
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for laminin (Qiao et al., 2009a). The homozygote GG genotype could represent a lethal 

mutation or be linked to one, which could explain the absence of GG homozygotes. The 

ovine, bovine and human translations for the LAMR1 gene all display a glutamic acid at 

this position (GenBank: NP001098733.1, NP776804.1 and NP001012321.1). An amino 

acid change from a large, polar glutamic acid to a small, hydrophobic glycine would most 

likely disrupt the laminin binding site structure due to differences in side chain polarity, 

size and charge (Sunyaev et al., 2001; Taylor, 1986). 

A possible second RTN4 SNP (C/T) was also identified. In contrast to LAMR1, this SNP 

is located within an intron, so a lack of all three genotypes does not carry as much 

significance except when testing for Mendelian inheritance in the sheep DNA families 

within this study itself. Again, it was not clear if the SNP was real or if background signal 

from the surrounding thymine bases overshadowed the cytosine base in the Sanger 

sequencing fragments. For this reason, it was considered unsuitable for further testing of 

association with scrapie susceptibility. 

5.2 Genomic Locations of SNPs Investigated 

SNP occurrence rate is inversely proportional to genome sequence conservation rates 

(Allendorf et al., 2010). Of the SNPs identified in this study, two were located in exons 

but were synonymous. The LAMR1 T/C SNP investigated is situated at the third 

nucleotide position of codon 232. The VIM C/T SNP described in this study is located at 

the first position of codon 43. Codon position three has been shown to have the highest 

rate of variability compared to codon positions one or two, due to the degeneracy of the 

amino acid code (Castle, 2011). Of the amino acids, 19 are degenerate at this position. 

The second nucleotide position in amino acid codons shows the lowest rate of variability, 

increasing the suspicion that the LAMR1 G/A SNP is an artifact. This pattern is only 

observed in protein coding regions and not in adjacent but equally functional gene 

regions such as polyadenylation sites (Castle, 2011; Chasman and Adams, 2001). 

In general, the rate of SNP occurrence over 100 bp into an intron is three times higher 

than SNP occurrence rates in protein coding exons (Chamary et al., 2006). However, 

the highest conservation and the lowest SNP rate can be found at splice sites, outside of 

protein coding regions. In humans and mice, the region from 5 to 20 bp after a stop 

codon shows a high SNP occurrence rate (Castle, 2011). Other studies have shown that 

miRNA binding sites in the 3’-UTR begin at least 15 bp after the stop codon (Grimson et 
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al., 2007). An area 30 to 17 bp upstream from polyadenylation sites in human and 

mouse shows high conservation and low variability, constituting the polyA signal site 

(Castle, 2011).  

Since many SNPs within one gene or chromosome region can also be linked, initially an 

entire gene may not require sequencing and genotyping (Lunetta, 2008). Because of 

this, SNPs in noncoding regions may be just as informative as those in coding regions 

and should not be disregarded. 

5.2.1 Synonymous SNPs in Coding DNA Sequences  

Synonymous point mutations within exons or UTR’s of scrapie candidate genes may 

also be important for scrapie pathogenesis. Point mutations in coding sequences may 

affect microRNA (miRNA) binding sites which can, in turn, regulate gene expression and 

protein levels (Urbich et al., 2008). In this way, even synonymous SNPs could be 

important for disease pathogenesis, as results from other studies have already 

implicated (Ebert and Sharp, 2010; Poliseno et al., 2010; Urbich et al., 2008). The 

LAMR1 gene has been analyzed in 126 sheep and nine synonymous polymorphisms 

were identified (Marcos-Carcavilla et al., 2008). Although synonymous, two of these 

polymorphisms (position 198 in exon 4 and position 96 in exon 7) could affect putative 

miRNA binding sites, resulting in impaired translation and subsequently altered protein 

levels.  

SNPs in 3’UTR regions of mRNAs can affect post-transcriptional regulatory processes 

affecting mRNA stability, movement or translation efficiency (Magee et al., 2010). 

Another study has demonstrated that SNPs in 3’UTR regions are associated with fatty 

acid composition of milk (Kgwatalala et al., 2009). 

PRND is located in a QTL in mice found repeatedly to have a general effect in all TSE 

models, specifically the genetic cross (i.e. mouse lines used), routes of infection 

(intracranial or intraperitoneal) and TSE agent, implemented in various studies (Iyegbe 

et al., 2010; Lloyd et al., 2001; Lloyd et al., 2002; Stephenson et al., 2000). The PRND 

SNP investigated in this study is located 162 bp into the 3’-UTR region and is not 

involved in any known DNA or protein motif representing possible regulatory regions (de 

Castro et al., 2006). Previously investigated PRND SNPs in human, bovine and sheep 

have not shown significant association with prion disease (Balbus et al., 2005; Comincini 

et al., 2001; Jeong et al., 2005b; Mesquita et al., 2010). However, an association 
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between a SNP in the PRND 3’-UTR and sCJD was found in a Korean population, but 

not in European populations (Jeong et al., 2005a). It could be that this polymorphism is 

in linkage disequilibrium with a close locus involved in TSE susceptibility. 

5.2.2 Intronic SNPs 

SNPs occurring in introns also merit investigation as they may be located in functional 

and regulatory gene structures, such as transcription factor binding sites, putative 

splicing signal sites, or polyadenylation sites (Chamary et al., 2006; Manolio, 2010). A 

G/A SNP in intron 3 of the porcine IGF2 gene has been shown to be the causal mutation 

within a QTL for muscle mass and fat deposit in pigs (Magee et al., 2010). The 

remaining three SNPs in the candidate genes SCRG1, PRND and RTN4 investigated in 

this study are localized in introns but did not form parts of known regulatory structural 

motifs when analyzed in silico (http://www.uniprot.org/; http://prosite.expasy.org/). One 

study has identified highly significant SNPs for scrapie incubation time using 

heterogenous stock mice that were all located in introns or in the 3’-UTR region, but 

were without apparent functional significance (Lloyd et al., 2010). It has been estimated 

that only about 12% of SNPs associated with disease are located in protein-coding 

regions of genes. Approximately 40% are found in intergenic regions and the remaining 

SNPs are located in noncoding introns (Manolio, 2010).  

5.3 LAMR1 Pseudogenes and Susceptibility to Prion Disease 

The initial attempt to target the ovine LAMR1 gene resulted in the amplification of a 

pseudogene. The term pseudogene was coined to describe a truncated copy of a 

functional gene in the genome, but not thought to undergo transcription or translation 

(Jacq et al., 1977). Until recently, pseudogenes have been relegated to the ‘junk DNA’, 

the 98% of the mammalian genome not encoding functional genes. However, evidence 

exists that pseudogenes exhibit sequence conservation of open reading frames and 

have a slow rate of mutations in mammals and other complex organisms (Podlaha and 

Zhang, 2004; Rothenfluh et al., 1995; Sudbrak et al., 2003). The ENCODE 

(ENCyclopedia Of DNA Elements) Consortium has shown that the vast majority of large 

‘barren’ DNA areas are indeed transcribed as non-protein-encoding RNA (ncRNA) in 

humans (Birney et al., 2007). In their analysis of a targeted 1% (29,998 kb) of the human 

genome, 124 processed and 77 non-processed pseudogenes were identified. It was 

estimated that at least 19% of these pseudogenes are transcribed.  
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Recent studies have ascribed certain pseudogenes biological roles in diseases such as 

cancer and diabetes (Chiefari et al., 2010; Kalyana-Sundaram et al., 2012; Poliseno et 

al., 2010). One study showed a significant association between the presence of an ovine 

LAMR1 pseudogene and resistance to scrapie (Marcos-Carcavilla et al., 2008). The 

pseudogene was present in 68.6% of healthy sheep, but only in 45.4% in scrapie 

infected sheep, albeit in a small sample size (Marcos-Carcavilla et al., 2008). The role of 

pseudogenes, in particular LAMR1 pseudogenes, in scrapie susceptibilty remains to be 

investigated. 

5.3.1 LAMR1 Pseudogenes 

The full length functional LAMR1 gene is a member of a multicopy gene family including 

many pseudogenes. The presence of these pseudogenes scattered throughout the 

mammalian genome has impeded molecular investigations of the functional gene. As 

implemented in this study, a simple method to avoid PCR amplification of pseudogenes 

from genomic DNA is to design the reverse primer from an intron region showing a high 

degree of similarity between species. 

In the human genome, 63 LAMR1 pseudogenes have been identified as well as 45 in 

the mouse genome, with evidence of at least one in humans and two in mice being 

transcribed (Asano et al., 2004; Balasubramanian et al., 2009; Fernandez et al., 1991; 

Jackers et al., 1996a; Richardson et al., 1998). Of those mapped, the pseudogenes are 

distributed over 3 chromosomes in the mouse (MMU 2, 4 and 11) and over 6 

chromosomes in human (HSA 1, 6, 9, 13, 20 and X). 

Eleven LAMR1 pseudogenes have been identified and mapped in the ovine genome 

(Van den Broeke et al., 2010). Six of the eleven ovine pseudogenes are transcribed. 

Transcribed pseudogenes can produce small interfering RNAs (siRNAs) that are 

capable of regulating expression of the functional genes or other genes (Khachane and 

Harrison, 2009). Since one of these pseudogenes may play a role in resistance to 

scrapie (Marcos-Carcavilla et al., 2008), the ovine LAMR1 family is still worthy of further 

investigation in regard to their role in scrapie susceptibility. A study examining SNPs in a 

human LAMR1 gene and their role in sporadic CJD did not find any association with 

disease susceptibilty (Yun et al., 2011). However it was not clear in the study if the 

SNPs were located in the gene or in a pseudogene.  
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5.3.2 RARB-THRB Locus in Mice Contains a LAMR1 Pseudogene 

A genome-wide association study incorporating a human GeneChip®
 covering 100K and 

500K SNPs in patients identified an SNP in the region of the RARB-THRB genes (HSA 

3) conferring increased risk to vCJD and iCJD (Mead et al., 2009). Consequently these 

genes were genotyped in a follow up study using 1052 mice phenotyped for scrapie 

incubation time (Grizenkova et al., 2010). The RARB-THRB locus is conserved in mice 

and is mapped to MMU14 (17.2 Mb and 18.49 Mb, repectively). Although all 

polymorphisms identified (Grizenkova et al., 2010) were synonymous, one SNP in the 

RARB gene (A>C in exon 3) and one SNP in the THRB gene (G>A in exon 6) were 

chosen for genotyping. Both showed a highly significant association with scrapie 

incubation time in mice. Since these SNPs displayed the same mouse strain distribution, 

it was inferred that they were linked which prevents elucidation of which gene and/or 

structure in this region might contribute to the effect on scrapie incubation time.  

This region has never been shown to contain a QTL for scrapie incubation time in mice. 

However, the most recent mouse genome map (Build 37.2) predicts a LAMR1 

pseudogene (Gene ID 100416372) located between RARB and THRB. On human 

chromosome 3 (Map Build 37.3), a ribosomal protein L31 pseudogene (24.47 Mb) is 

located between these two genes. The functional LAMR1 gene is also located 

downstream on HSA 3. Using sequences from both human and bovine RARB and 

THRB genes to BLAST (Altschul et al., 1997) the ovine Genome Assembly v2.0 

(www.livestockgenomics.csiro.au) database, both genes locate to OAR 26. However, no 

ovine LAMR1 pseudogene has been mapped to this chromosome (Van den Broeke et 

al., 2010). From this positional evidence, it cannot be excluded that the mouse LAMR1 

pseudogene at this locus may be involved in modulating scrapie incubation time.  

5.4 Genotype Frequencies 

No significant differences were found in the genotype frequencies between classical and 

atypical scrapie status groups for the SNPs investigated. Some trends can be observed 

when comparing genotype frequency results attained to expected frequencies according 

to Hardy-Weinberg equilibrium (HWE) (Hardy, 1908; Weinberg, 1908). In human case 

control studies, testing for Hardy-Weinberg equilibrium as a quality control step in control 

groups is controversial (Gomes et al., 1999; Teo et al., 2007). However, if population 



Discussion 

  97 

prevalence of the phenotype is low, HWE testing should be conducted on the controls 

(Lunetta, 2008).  

Genotype frequencies in both atypical and classical control groups for LAMR1 (Table 

19) and SCRG1 (Table 22) do not support HW proportions. In the positive atypical 

scrapie group, the LAMR1 genotype frequencies show a shift to heterozygote status 

(Table 17). This was observed only for the atypical sheep flocks, many of which consist 

of Merino Land (17%) or Merino Land cross sheep. Further genotyping of additional 

samples is required to enable interpretation of this trend.  

PRND genotypes in the atypical scrapie control group are in HW equilibrium, despite the 

low frequency of the minor allele, and in HW disequilibrium in the classical scrapie 

control group (Table 25). Sample size was quite small for PRND and the minor allele 

displayed a low frequency, requiring genotyping of more samples to interpret these 

results. Low frequency of the minor allele decreases sensitivity of HWE calculation and 

may inflate error rates (Hosking et al., 2004; Lunetta, 2008).  

The RTN4 genotype frequencies in the control group for classical scrapie are in Hardy-

Weinberg equilibrium but in HW disequilibrium in the control group for atypical scrapie 

(Table 29). Again, this may be due to differences in breeding populations, since classical 

scrapie tends to occur in ‘Suffolk-type’ flocks and atypical scrapie in ‘Merino-type’ flocks. 

However, most flocks in this study (74%) are of mixed breed. Population stratification 

could confound results in that RTN4 may be linked to a trait under the influence of 

genetic selection in some sheep breeds. 

5.5 Limitations of the Study 

5.5.1 Choosing Candidate Genes from Scrapie Incubation QTL Studies 

At the time this study was conducted, QTL studies were identifying large genomic 

regions that were linked to prion disease incubation times in mice (Lloyd et al., 2002; 

Moreno et al., 2003; Stephenson et al., 2000). These genomic stretches could contain 

numerous candidate genes as well as putative gene regulatory sites. Inherent to 

candidate gene approaches as well as QTL mapping are many limitations. Identifying 

QTLs for prion disease incubation times is dependent on scrapie routes of admission 

(intracranial versus intraperitoneal), genetic background of the chosen host as well as 

the choice of scrapie agent. These effects are manifested in the consistency of studies 
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identifying a variety of different QTLs, which ultimately may not be relevant to naturally 

occurring infections (Iyegbe et al., 2010).  

QTL studies cannot exclude the existence or involvement of PRNP regulators or 

epigenetic effects (i.e. genomic imprinting, maternal effects) (Georges et al., 2003). 

Environmental factors do not tend to alter genotype and therefore would not confound 

SNP association studies (Lunetta, 2008). However, environmental effects should not be 

underestimated in comparing results from different QTL studies (Georges et al., 2003; 

Whitelaw and Martin, 2001). Gene interactions, epigenetic effects and complex disease 

mechanisms of scrapie cannot be implicitly considered in a candidate gene approach. It 

is especially difficult to test single candidate genes in a disease like scrapie, since 

incubation phenotypes are most likely the product of multiple gene effects, where only 

the collective heritability may be cumulatively significant (Iyegbe et al., 2010). 

However, common QTLs have been identified in studies employing different TSE 

strains, different genetic backgrounds and/or different routes of infection (Iyegbe et al., 

2010; Lloyd et al., 2001; Lloyd et al., 2002; Manolakou et al., 2001; Moreno et al., 2003; 

Moreno et al., 2010; Stephenson et al., 2000) which supports a genetic influence 

independent of the PRNP locus (Iyegbe et al., 2010). The candidate genes VIM, SCRG1 

and RTN4 investigated in this study are in QTLs repeatedly identified in different studies. 

The gene VIM is located in or very near QTLs identified in four separate studies (Iyegbe 

et al., 2010; Lloyd et al., 2001; Lloyd et al., 2002; Manolakou et al., 2001). The VIM SNP 

identified in this study could still be investigated with respect to scrapie susceptibility. 

5.5.2 Sample Size 

Small sampling sizes are a limitation in this study, weakening statistical outcomes and 

their interpretations. Sample size is limited by the low scrapie prevalence in Germany. In 

this study, the highest number of individuals genotyped in any one group was 304 

sheep. A large sampling size of at least 500 is required to identify small effects of 

polymorphisms on disease phenotype at sufficient power (Long and Langley, 1999). 

Candidate genes themselves are, individually, expected to have a very small effect on 

scrapie susceptibility. PRNP alone has been estimated to account for 79% of genetic 

variation involved in scrapie susceptibility and the remaining variance due to polygenic 

influence (Diaz et al., 2005). Because of the large influence of PRNP on scrapie 

susceptibility, effects of PRNP codons on scrapie susceptibility in the German sheep 
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population have been determined using the same sample DNA bank as incorporated in 

this study (Lühken et al., 2007). 

Sensitivity of Hardy-Weinberg deviation calculation is reduced when the minor allele 

frequency is less than 5%, which can occur when sample size is too small (Hosking et 

al., 2004). This was the case for PRND. In large sampling sizes, genotype frequency 

results deviating from HWE can indicate population stratification or genotyping mistakes 

(Lunetta, 2008; Marquard et al., 2009). Genotypes for a single locus in large, randomly 

mating populations should display HWE (Hardy, 1908; Weinberg, 1908). However, one 

study has shown that SNPs displaying deviation from HWE as well as a low minor allele 

frequency may be susceptible to false negative associations (Chan et al., 2009). Chan et 

al. (2009) also showed no relation between deviations in HWE and false associations for 

SNPs with a minor genotype frequency of less than 0.9%. 

5.5.3 Population Stratification 

In this study, for each scrapie positive sheep, a phenotypically similar sheep from the 

same flock was chosen as a control to minimize the effects of population stratification. 

Healthy flock mate sheep were matched in age and breed where possible. For the 

PRND data set, healthy flock mate sheep were also matched at PRNP codons 136, 154 

and 171 or risk level group. Hardy-Weinberg equilibrium is a consequence of random 

mating in a population free of mutation, natural selection or genetic drift (Hardy, 1908; 

Lunetta, 2008; Weinberg, 1908). In populations under the influence of non-random 

mating, population stratification occurs resulting in significant differences in allele 

frequencies between subpopulations (Kang et al., 2010). Population stratification in 

livestock could be the result of genetic and artificial selection or genetic sampling or drift 

(Ma et al., 2012). In a sheep flock, there is likely to be a high degree of related 

individuals in a randomly chosen sample set, which can be a source of false-positive 

associations (Devlin and Roeder, 1999; Ma et al., 2012). Also, breeding for resistance to 

scrapie may compound population stratification in European sheep flocks. Conversely, 

the amount of genetic diversity within a flock is less than that between flocks.  

5.5.4 Errors in Determining Scrapie Status of Individual Sheep 

Determining scrapie case or control status of the study animals is a challenge due to 

long incubation times. The ovine DNA bank incorporated in this study is one of the most 

extensive for classical and atypical scrapie. Long incubation periods and previous 
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difficulties in diagnostic methods (i.e. differentiating between classical and atypical 

scrapie) may lead to possible discordances in the data. Keeping extensive records on 

individual flock animals has not been required from flock owners and is logistically 

difficult. A sheep may be infected with scrapie but show no clinical signs at the time of 

blood or tissue collection, therefore being labelled as a healthy cohort flock mate. The 

resulting genotype from this sheep for a specific gene that may have an influence on 

susceptibility could then skew results or at least reduce significance calculations. 

Although every effort is made to stay in touch with sheep flock owners and update the 

database, it cannot be excluded that such cases occur. Larger sample sizes could 

reduce the effect of such errors. The development of an economical in vivo test for 

classical and atypical scrapie that could identify preclinical cases would help to resolve 

classifying case or control sheep (Orrú et al., 2011; Rubenstein et al., 2010; Terry et al., 

2009). 

5.5.5 Genotyping Errors 

The SNPs identified in this study have been shown to follow Mendelian inheritance 

patterns in family pedigrees, which supports their existence. Manual genotyping of 

smaller data sets as in this study can be advantageous to automatic genotyping in very 

large data sets attained with the use of high density oligonucleotide array-based chips. 

Error rates due to automatic genotyping can become more inflated as sample size 

increases (Marquard et al., 2009). Problematic are gross genotyping errors in extremely 

large data sets, as can happen with high density oligonucleotide array-based chips 

where genotyping is automated. Automated calling procedures have been shown to 

potentially falsify or inflate association studies results due to automated genotyping 

errors (Clayton et al., 2005; Teo et al., 2007). In this case, calculation of HW deviations 

can detect genotyping errors (Teo et al., 2007) but also delete SNPs that may actually 

contribute to disease phenotype (Fardo et al., 2009).  

Genotyping errors within case control populations can occur through sample 

mishandling, DNA contamination, the presence of pseudogenes or errors within the 

high-throughput genotyping process (Hosking et al., 2004; Pompanon et al., 2005). In 

this study, DNA sample plates were created using a pipetting robot, which should have 

prevented DNA contamination between wells. Previously sequenced control DNA 

samples (3.1.2) included in the scrapie DNA sample plates used for RFLP analyses 

prevented errors in manually obtained genotypes. 
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Genotyping errors decrease the power of certain statistical tests for association, 

including Chi2 test (Gordon et al., 2002). Errors can occur more frequently in certain 

methodologies, however some SNPs in Hardy-Weinberg disequilibrium (HWD) still can 

reveal no obvious reason for deviation (Hosking et al., 2004). Previously, HWE was 

used to detect errors in genotyping with the result that many SNPs likely to have been 

associated with disease phenotype were excluded from further investigation (Cox and 

Kraft, 2006; Leal, 2005). More recent studies have shown that HWD is not a sufficient 

indicator for minor genotyping errors and even SNPs in HWD could be retyped with 

another method and further investigated with regard to phenotype association (Fardo et 

al., 2009; Marquard et al., 2009; Wittke-Thompson et al., 2005). Such SNPs have been 

shown not to increase the number of false positive associations in population-based 

studies (Fardo et al., 2009). In this study, HWE results most likely do not reflect 

genotyping errors, rather reflect breeding practices and differences within and between 

herds. 

5.6 Information Databases 

Studies such as this are highly dependent on information available in public access 

databases such as NCBI and GenBank (http://www.ncbi.nlm.nih.gov/), the later of which 

which may contain erroneous sequence information gathered by methods aimed at high 

throughput but low precision. Primers for the candidate gene VIM were based on the 

alignment of the bovine, ovine and human sequences available at the time of this study. 

All of these sequences are now obsolete and have been replaced with updated 

sequences. However, at the time, comparison of the sequenced gene segment attained 

for VIM to those in the GenBank in 2007 indicated that the amplified product was a 

pseudogene due to the apparent absence of introns, thus no further analysis was 

undertaken. Assumming the updated records are correct (NC007311.4, NG012413 and 

NC019470), the VIM primer pair implemented in this study is most likely targeting the 

gene, since no record of a human, mouse, bovine or ovine VIM pseudogene exists to 

date.  

On the other hand, sequences attained in studies such as the one presented here may 

utilize the vast information gathered since the initial construction of a reference ovine 

genome (ISGC et al., 2010). Using the sequences attained for the candidate genes, 

putative locations for SCRG1 and RTN4 could be determined. A search of the O. aries 
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genome assembly (Version 2.0) with the SCRG1 sequence attained in this study places 

the ovine SCRG1 gene on OAR2. In the mouse, SCRG1 is physically linked to the gene 

SAP30 (Dron et al., 2000) and a BLAST with the bovine SAP30 mRNA sequence 

(NM001191124.1) also locates this gene to OAR 2. This region of OAR 2 is homologous 

to the region on mouse chromosome 8 containing a QTL for scrapie and BSE resistance 

(Moreno et al., 2003) as well as the mouse SCRG1 gene. The sequence for RTN4 

attained in this study localizes the gene to OAR 3. The same search was conducted with 

the bovine RTN4 mRNA sequence (NM001113221.1) due to the short sequence 

segment attained in this study. Both searches place ovine RTN4 on OAR 3. Such results 

support the authenticity of the ovine sequences attained in this study. 

5.7 Ovine SNP GeneChip 

The Illumina Ovine SNP50 BeadChip was released in January 2009 by the International 

Sheep Genome Consortium (ISGC). DNA samples from a panel of 9 genetically 

separate sheep were sequenced and aligned to identify SNPs, of which approximately 

54,241 were chosen for the SNP chip. The SNP chip covers the ovine genome with an 

average of one marker per 46 kb. This development has made it more efficient to 

identify SNP loci segregating with disease phenotypes (Becker et al., 2010; Zhao et al., 

2011). These loci are more localized, sometimes scanning only 6 Mb (Zhao et al., 2011), 

thereby reducing the genomic region of interest and consequently, the number of 

candidate genes.  

The genetic causes of dwarfism in Texel sheep (Zhao et al., 2012), rickets in Corriedale 

sheep (Zhao et al., 2011) as well as location of the horns locus in Australian Merino 

sheep (Dominik et al., 2012) have since been discovered with the help of the ovine SNP 

chip. Other applications for the SNP chip is to determine genetic division among and 

between breeds (Kijas et al., 2012), minimizing inbreeding (Garcia-Gamez et al., 2012) 

as well as determining population stratification or a minimum marker panel to be used in 

genomic selection (Hayes et al., 2012).  

Diseases such as scrapie, which may involve the interactions of different genetic loci, 

are more difficult to study, but SNP array chips may allow a more exact identification of 

candidate gene chromosomal regions. Similarly, most economically important traits in 

livestock depend on multiple genetic loci, such as milk yield in dairy cows (Guo et al., 
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2012; Mai et al., 2010; Pryce et al., 2010), growth traits in beef as well as dairy cattle 

(Bolormaa et al., 2011) or egg production and quality in layer hens (Liu et al., 2011).  

None of the SNPs reported in this study are included on the Illumina Ovine SNP50 

BeadChip. The location of the nearest chip SNP to those examined in this study are 

presented in Table 30. Three of the SNPs on the Illumina Ovine SNP50 BeadChip are 

located in structures belonging to the candidate genes LAMR1, SCRG1, and RTN4 

investigated in this study (Table 30). With the exception of the PRND and VIM SNPs, 

the remaining SNPs investigated in this study are located relatively close to an SNP on 

the chip. For the SNPs in LAMR1, SCRG1 and RTN4 from this study, the chip would not 

necessarily provide additional information with the same scrapie sample population 

since the investigated and chip SNPs are most likely linked due to their assumed 

proximity. However, linkage disequilibrium between SNP and QTL may not be consistent 

between different flock populations, resulting in higher false discovery rates (Bolormaa 

et al., 2011).  

There are also disadvantages to using SNP chips to investigate traits resulting from 

cumulative small effects of QTL, such as scrapie susceptibility. Expecting that QTL other 

than the PRNP locus will have small, additive effects on scrapie susceptibility, testing 

less than 1000 sheep results in low power of GWAS. Increased sample numbers 

decrease false discovery rates in GWAS studies incorporating SNP chips (Bolormaa et 

al., 2011). Ideally, SNP associations with scrapie susceptibility should be confirmed in 

different breeds or populations. Again, some SNPs could also differ in the strength of 

their linkage disequilibrium when tested in different sheep breeds thus weakening power 

of associations. Conversely, a QTL may have pleiotropic effects on more than one 

unrelated trait or two linked QTLs may each affect different traits leading again to high 

false discovery rates. Two large populations of the same breed, but under the influence 

of divergent selection, could reduce the effect of these problems. This could mean, for 

example, implementing samples from scrapie-affected Merino or Suffolk populations 

from different European countries where no recent genetic mix has occurred.  
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Table 30: Locations of SNPs investigated in this study compared to those closest on the Illumina 
Ovine SNP50 BeadChip. Δ indicates bp difference in location, + downstream and – upstream; ‡ 
not within structure belonging to candidate gene listed 

Gene Chromosome Positions* (bp) and Structure ΔDistance 
(bp) Present study Illumina Gene Chip 

LAMR1 OAR 19 12 621 707   Exon 6 12 614 512   Intron 4 – 4 264 
SCRG1 OAR 2 106 202 228   Intron 1 106 202 276   Intron 1 + 48 
PRND OAR 13 46 252 184   3’-UTR 46 825 711   ‡ + 573 527 
RTN4 OAR 3 68 943 382   Intron 7 68 948 322   3’-UTR + 4 940 
VIM OAR 13 30 747 665   Exon 1 30 710 419   ‡ – 37 204 
* based on Map OARv3.1 (www.livestockgenomics.csiro.au) from October 2012 

5.8    Future Considerations 

The genes investigated in this study remain interesting candidates for scrapie 

susceptibility in sheep. The primer and sequence information could be used to test these 

candidate gene segments in other sheep and goat populations. Combining scrapie DNA 

banks from diferent countries would simultaneously increase sample numbers while 

offsetting other effects such as population stratification. 

It would be justifiable to test for SNPs linked to scrapie susceptibility using the ovine 

SNP chip and the scrapie DNA bank in this study. However, results must be carefuly 

compared to those of other sheep populations to identify true associations. In addition, 

focus should not concentrate only on the effect of candidate genes, but also on the role 

of their regulatory elements and pathways. Genome locations of such elements could 

also vary even more than those of genes, creating more complexity and affecting the 

power of association studies. Pseudogenes may also be investigated as to their role in 

scrapie susceptibility and/or pathogenesis. A LAMR1 pseudogene has already been 

implicated in modulating scrapie susceptibility (Marcos-Carcavilla et al., 2008). 

Knowledge of cellular regulation through protein homeostasis affected by various mRNA 

processing pathways and regulatory mechanisms (i.e miRNA or non coding RNA) 

continues to increase, permitting application to scrapie susceptibilty and pathogenesis. 

The interactions of genetic factors contributing to scrapie susceptibility in sheep, as in all 

multifactorial traits, appear highly complex. A single method to identify these genetic 

factors may not capture this complexity, rather a combination of different approaches 

may be necessary. Still, informative genetic material such as the DNA data bank 

incorporated in this study is essential. 
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6 Summary 

Certain polymorphisms in the prion protein gene (PRNP) gene have been shown to 

modulate classical and atypical scrapie susceptibility in sheep. Sheep carrying the 

ARR/ARR genotype seem more resistant to classical scrapie whereas the VRQ 

haplotype greatly increases classical scrapie susceptibilty. Classical scrapie has been 

reported in one ARR/ARR sheep and with the advent of active surveillance in the EU, 

not only have two other ARR/ARR sheep with classical scrapie been identified, but also 

atypical scrapie was shown to be more prevalent than expected. Haplotypes increasing 

susceptibility to atypical scrapie, such as AHQ or AF141RQ, contrast with those of 

classical scrapie. It has been estimated that PRNP is responsible for approximately 79% 

of the genetic influence of PRNP on classical scrapie susceptibility. 

The goal of the study was to identify single nucleotide polymorphisms (SNPs) in 

candidate genes for scrapie susceptibility and test them for association with both 

classical and atypical scrapie susceptibility in sheep. Five candidate genes, LAMR1, 

SCRG1, PRND, RTN4 and VIM, were chosen due to their locations within or near 

mouse quantitative trait loci (QTL) for scrapie susceptibility. The ovine candidate genes 

were then amplified and sequenced. Sequences attained for LAMR1, SCRG1, PRND, 

and VIM were submitted to GenBank. 

A synonymous C/T LAMR1 SNP analysed is located in Exon 6 at the third nucleotide 

position of codon 232. For the SCRG1, PRND and RTN4 genes, a G/A SNP (Intron1), a 

T/C SNP (3’-UTR) and a G/A SNP (Intron 7) could be identified. None of these 

mutations were found to be located in a functional or regulatory site within noncoding 

regions. For each candidate gene, one SNP was tested for possible association with 

scrapie status using DNA samples from an established scrapie DNA bank held at the 

Institute of Animal Breeding and Genetics, Justus-Liebig-University, Giessen, Germany. 

Genotyping was accomplished using restriction fragment length polymorphism (RFLP) 

or amplification-created restriction site (ACRS)-RFLP analyses. For the LAMR1, SCRG1 

and RTN4 SNPs, DNA samples from up to 106 classical scrapie positive sheep as well 

as up to 137 healthy flock mates were genotyped. In the atypical scrapie group, DNA 

samples from up to 93 atypical scrapie positive sheep and up to 304 healthy flock mates 

were genotyped. Since PRND is located near the PRNP gene on ovine chromosome 
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(OAR) 13, positive and negative DNA samples were matched for PRNP genotype. For 

the PRND SNP, 56 DNA samples each from both classical and atypical scrapie positive 

sheep were genotyped. Negative controls consisted of DNA samples from 74 healthy 

flock mates from classical scrapie herds and 73 healthy flock mates from atypical 

scrapie herds.  For each of the SNPs investigated in this study, no significant differences 

in allele or genotype frequencies were observed for classical or atypical scrapie positive 

groups when compared to healthy flock mate control groups.  

Although one SNP was identified in the ovine VIM gene, sequence information available 

at that time indicated a pseudogene had been amplified. Since, updated sequence 

information for bovine VIM shows that the synonymous C/T SNP identified in this study 

is located at the first position of codon 43.  

No significant associations between candidate gene SNPs and scrapie status could be 

shown. Due to the low numbers of animals genotyped for the association studies, these 

genes cannot be excluded as candidate genes for scrapie susceptibility in sheep. 

With the development of the Illumina Ovine SNP50 BeadChip, it would be possible to 

use the chip to identify SNPs associated with scrapie susceptibility. However, sample 

size needs to be increased in order to identify genetic loci that have modest effects on 

scrapie susceptibility in sheep. This could be accomplished by combining various 

scrapie DNA banks from different EU countries. 
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7 Zusammenfassung 

Bestimmte Polymorphismen des Prionenproteingens (PRNP) besitzen einen Einfluss auf 

die Empfänglichkeit für klassische und atypische Scrapie beim Schaf. Träger des 

ARR/ARR Genotyps scheinen mehr Resistenz gegenüber klassische Scrapie zu 

besitzen, wohingegen der VRQ Haplotyp die Empfänglichkeit erhöht. Allerdings wurde in 

einem Schaf mit ARR/ARR Genotyp klassische Scrapie nachgewiesen, und mit der 

Einführung der aktiven Überwachung in der EU sogar in zwei weiteren Schafen mit 

ARR/ARR Genotyp. Die aktive Überwachung hat zudem gezeigt, dass die Prävalenz 

von atypischer Scrapie höher ist als erwartet. Haplotypen wie z.B. AHQ und AF141Q, 

welche die Empfänglichkeit für atypische Scrapie erhöhen, wirken sich im Gegensatz 

hierzu unterschiedlich auf die Empfänglichkeit für klassische Scrapie aus. 79% der 

Empfänglichkeit für klassischer Scrapie werden dem PRNP Gen zugeschrieben, die 

übrigen 21% anderen, unbekannten Faktoren.  

Das Ziel dieser Studie war es, SNPs (single nucleotide polymorphism) in 

Kandidatengenen für Scrapie Empfänglichkeit zu identifizieren, und diese auf 

Assoziationen sowohl mit klassischer als auch atypischer Scrapie zu überprüfen. Hierfür 

wurden 5 Kandidatengene, LAMR1, SCRG1, PRND, RTN4 and VIM aufgrund ihrer 

Lokalisation in Maus QTLs (quantitative trait loci) für Scrapie Empfänglichkeit 

ausgewählt. Anschließend wurden diese Gene im Schaf amplifiziert und sequenziert. 

Die ermittelten Sequenzen von LAMR1, SCRG1, PRND, und VIM wurden elektronisch 

bei der GenBank eingereicht. 

Der C/T LAMR1 SNP konnte im Exon 6 an der dritten Position von Kodon 232 lokalisiert 

werden. Für die SCRG1, PRND und RTN4 Gene wurden entsprechend ein A/G SNP 

(Intron 1), T/C SNP (3’-UTR) und ein G/A SNP (Intron 7) identifiziert. Keiner dieser drei 

SNPs war in einem funktionellen oder regulatorischen Bereich innerhalb der nicht-

kodierenden DNA lokalisiert.  

Jeweils einer der für LAMR1, SCRG1, PRND und RTN4 identifizierten SNPs wurde 

anschließend mit Hilfe der Scrapie DNA Bank (Institut für Tierzucht und Haustiergenetik, 

Justus-Liebig-Universität, Giessen) auf eine Assoziation mit Scrapiestatus getestet.  
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Die Genotypisierung erfolgte mittels RFLP (restriction fragment length polymorphism) 

oder ACRS (amplification-created restriction site)-RFLP Analyse. Für die LAMR1, 

SCRG1 und RTN4 SNPs wurden DNA Proben von bis zu 106 auf klassische Scrapie 

positiv getestete Schafe sowie bis zu 137 gesunden Herdenmitglieder zur 

Genotypisierung verwendet. Für die atypische Scrapie Gruppe wurden DNA Proben von 

bis zu 93 positiv getesteten Schafen und bis zu 304 gesunden Herdenmitgliedern zur 

Genotypisierung verwendet. Da PRND stromabwärts vom PRNP Gen auf dem ovinen 

Chromosom 13 lokalisiert ist, stimmten Scrapie positive und negative Proben hinsichtlich 

ihrer PRNP Genotyps überein. Für den PRND SNP wurden von jeder klassischen und 

atypischen Scrapie positiven Gruppe jeweils 56 Proben genotypisiert. Als 

Negativkontrolle dienten Proben von 74 Herdenmitglieder bei klassischer Scrapie und 

73 Herdenmitglieder bei atypischer Scrapie. In Hinblick auf Empfänglichkeit für 

klassische oder atypische Scrapie konnten keine signifikanten Assoziationen der Allel- 

oder Genotypfrequenzen gefunden werden. 

Ein SNP wurde in dem VIM Gen identifiziert. Zum Zeitpunkt dieser Studie deutete die 

Sequenzinformation daraufhin, dass ein Pseudogen amplifiziert wurde. Neue 

Sequenzerkenntnisse zeigten allerdings dass der synonyme C/T SNP auf der ersten 

Position des Kodons 43 lokalisiert ist.  

Obwohl keine Assoziationen nachgewiesen worden sind, bleiben die untersuchten 

Kandidatengene interessant in Hinblick auf Scrapieempfänglichkeit beim Schaf. 

Aufgrund der niedrigen Probenzahlen kann die Relevanz dieser Kandidatengene nicht 

ausgeschlossen werden.  

Zukünftige Studien können inzwischen auf den Illumina OvineSNP50 Gen Chip 

zurückgreifen, um die Identifizierung Scrapie assoziierter SNPs zu ermöglichen. Dies 

erfordert allerdings eine ausreichende Probenzahl, um auch Assoziationen von 

Genorten mit mäßigem Effekt auf Scrapie Empfänglichkeit nachzuweisen. Eine 

Möglichkeit, um die Probenzahl zu erhöhen, wäre die Verwendung von Proben aus 

Scrapie DNA Banken von verschiedenen EU Ländern. 
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9 Appendix 

Table A1: Characteristics of ovine classical scrapie and atypical scrapie.  
 Classical Scrapie Atypical scrapie 

Average Age of Onset 2-5 years of age, ∅ 3.1 ≥ 5 years 

Incubation time ≥ 1 year ? 

Clinical signs 
behavioral changes, 

ataxia, pruritus, 
recumbency, loss of body 

condition 

ataxia, loss of 
body condition 

Epidemiology 
horizontal and vertical 

transmission (orally); ≥1 
animal/flock 

no evidence of 
natural horizontal 

or vertical 
transmission; 

only 1 
animal/flock 

Most susceptible PRNP 
haplotypes V136R154Q171 

A136H154Q171 

A136F141R154Q171 

PrPSc distribution in CNS medulla oblongata cerebellum and 
cerebral cortex 

Histopathology vacuolation of neurons, 
neuropil vacuolation 

PrPSc distribution in 
periphery LRS, PNS, placenta not detected 

Rapid test method ELISA ELISA 

Confirmatory test 
method WB with mAb P4 WB with mAb P4 

PrPSc glycoprofile 

mAb 6H4: 3 bands 19-30 
kDa 

mAb P4: 3 bands 19-30 
kDa 

mAb P4: multiple 
band pattern, 

lowest band ≤ 15 
kDa 

∅=average; LRS= lymphoreticular system; TBM: tingible body macrophages; FDC: follicular dendritic cells; PNS= 
peripheral nervous system; mAB= monoclonal antibody; WB= Western blot; ELISA: Enzyme Linked Immunosorbent 
Assay 
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Table A2: Genbank Accession No. is first BLAST result for candidate gene sequences. 
Parameter describes BLAST program search optimizations. Degree of similarity listed as 
percentage. 

Gene Genbank 

Accession No. 
Parameter Sequence 

Similarity (%) 
Comment 

LAMR1 
Ex5f - In6r 

NW_930073 
Bos taurus whole 
genome shotgun 

discontinuous 
megablast 86% 

includes 
complete introns 

5 & 6 

megablast 94% 
includes intron 5 

and first 17 
bases of intron 6 

LAMR1 
Ex5f - In6r 

NM_001105263.1 
Ovis aries mRNA 

megablast > 99% exon 5 and exon 
6 

SCRG1 
Ex1f - In1rB 

NT_016354.19 
Homo sapiens 
genomic contig 

megablast 89% including intron 
1 

PRND 
Ex2f B - 3’UTRr 

AY_017311.1 Ovis 
aries complete 

coding seq 
megablast 100% exon 2 including 

3’UTR region 

RTN4 Ex7-In7 

AY_102285.1 Homo 
sapiens complete 

sequence 

discontinuous 
megablast 76% 

including intron 
7; exon 7 100% 

similar 
NM_001145178 

Ovis aries mRNA 
discontinuous 

megablast 100% exon 7 only 

VIM Ex1f -  Ex2r 

NG_012413 Homo 
sapiens RefSeq megablast 94% sequence in 

exon 2 
NC_007311 

Bos taurus whole 
genome shotgun 

megablast 99% sequence in 
exon 1 

megablast = highly similar sequences; discontiguous megablast = more dissimilar sequences 
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