Aus dem Institut für Veterinär-Anatomie, -Histologie und -Embryologie der Justus-Liebig-Universität Gießen

Immunhistochemische und molekularbiologische Untersuchung der räumlichen und zeitlichen Expression der Connexine 26, 32 und 43 im Plazentom des Rindes

INAUGURAL-DISSERTATION zur Erlangung des Doktorgrades beim Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen

Eingereicht von

CORNELIA HEEB

Gießen 2003

Aus dem Institut für Veterinär-Anatomie, -Histologie und -Embryologie der Justus-Liebig-Universität Gießen

Immunhistochemische und molekularbiologische Untersuchung der räumlichen und zeitlichen Expression der Connexine 26, 32 und 43 im Plazentom des Rindes

> Inaugural-Dissertation Zur Erlangung des Doktorgrades beim Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen

> > Eingereicht von Cornelia Heeb

Gießen 2003

Aus dem Institut für Veterinär-Anatomie, -Histologie und -Embryologie der Justus-Liebig-Universität Gießen Betreuer: Prof. Dr. h. c. R. Leiser

Immunhistochemische und molekularbiologische Untersuchung der räumlichen und zeitlichen Expression der Connexine 26, 32 und 43 im Plazentom des Rindes

> Inaugural-Dissertation Zur Erlangung des Doktorgrades beim Fachbereich Veterinärmedizin der Justus-Liebig-Universität Gießen

> > Eingereicht von Cornelia Heeb Tierärztin aus Neuss

> > > Gießen 2003

Mit Genehmigung des Fachbereichs Veterinärmedizin der Justus-Liebig-Universität Gießen

Dekan: Prof. Dr. Dr. h. c. B. Hoffmann

- 1. Berichterstatter: Prof. Dr. Dr. h. c. R. Leiser
- 2. Berichterstatter: Prof. Dr. E. Burkhardt

Tag der mündlichen Prüfung: 07. Mai 2003

Immunhistochemische und molekularbiologische Untersuchung der räumlichen und zeitlichen Expression der Connexine 26, 32 und 43 im Plazentom des Rindes

> von Cornelia Heeb

Für Winnie

Ein Versprechen des Menschen ist, zu helfen. (Verfasser unbekannt)

INHALTSVERZEICHNIS

INHA	LTSVERZEICHNIS	I
ABKÜ	ÜRZUNGSVERZEICHNIS	III
1.	EINLEITUNG UND LITERATURÜBERSICHT	1
1.1	PLAZENTA	1
1.2	Connexine	
1	.2.1 Allgemeines	
1	.2.2 Gap Junctions	4
1	.2.3 Die Connexin-Familie	6
1.3	PATHOLOGIE, KNOCK-OUTS UND MUTATIONEN	13
2.	ZIELSETZUNG DER STUDIE	14
3.	MATERIAL	15
4.	METHODEN	16
4.1	Vorbehandlung	16
4	1.1.1 Entnahme und Bearbeitung der Proben	16
4	1.2 Erstellung von Kryostatschnitten	17
4	1.3 Erstellung und Entparaffinisierung von Paraffinschnitten	18
4.2	PROTEINNACHWEIS MITTELS IMMUNHISTOCHEMIE	19
4	2.1 Antikörper	19
4	2.2.2 Demaskierung der Paraffinschnitte	20
4	2.2.3 Vorbehandlung der Kryostat- und Paraffinschnitte	20
4	2.4 Immuninkubation	20
4	2.5 Färbung der Schnitte	21
4	2.6 Eindeckeln	
4	2.2.7 Kontrolle	
4.3	PROTEINNACHWEIS MITTELS WESTERN BLOT	
4	<i>Extraction von mRNA und Protein</i>	
4	.3.2 Gelelektrophorese I	23 26
4	2.3.5 Gelelekirophorese II	
4		·····2/ 28
	mRNA NACHWEIS MITTELS RT-PCR	
т.т 4	4.1 cDNA Frststrang-Synthese	2) 29
4	4.2 RT-PCR	30
4	4.3 Kontrolle	
4	4.4 Agarose-Gel-Elektrophorese	
4.5	RNA NACHWEIS MITTELS IN SITU HYBRIDISIERUNG (ISH)	35
4	5.1 Herstellung von DIG-markierten cRNA-Sonden für die in situ	
	Hybridisierung	
4	4.5.2 ISH	
4.6	AUSWERTUNG UND DOKUMENTATION	39

5.		ERGEBNISSE	40
4	5.1	Allgemeines zur Erfassung der histologischen und	
		MOLEKULARBIOLOGISCHEN METHODEN	40
	5.1.	1 Immunhistochemie	40
	5.1.	2 In situ Hybridisierung	41
	5.1.	3 RT-PCR.	41
	5.1.	4 Western Blot Verfahren	41
4	5.2	Cx 26	42
4	5.3	Cx 32	42
4	5.4	Cx 43	43
4	5.5	HISTOLOGISCHE ABBILDUNGEN	44
4	5.6	PCR	50
4	5.7	WESTERN BLOT	51
6.		DISKUSSION	52
(5.1	KRITISCHE BETRACHTUNG DER METHODEN	52
(5.2	DAS KOMMUNIKATIONSNETZWERK IM RINDERPLAZENTOM	53
	6.2.	<i>1</i> Bedeutung von Cx 26 für den materno-fetalen Glukosetransport	53
	6.2.	2 Einfluß von Connexinen auf invasive Prozesse	54
	6.2.	3 Cx 43 und architektonische Struktur von Geweben	59
(5.3	AUSBLICK	61
7.		ZUSAMMENFASSUNG	62
8.		SUMMARY	63
0			(5
9.			05
10.		ANHANG	78
]	10.1	Beschichtung der Objektträger	78
1	10.2	Herstellung der Stamm-und Gebrauchslösungen	79

Abkürzungsverzeichnis

APAAP	Alkalische-Phosphatase-Anti-Alkalische-Phosphatase
APES	3-Aminopropyltriethoxysilane
APS	Ammoniumpersulfat
BSA	Bovines Serum Albumin
CL	Zytoplasmatische Schleife
СТ	Carboxylende
Cx	Connexin
DEPC	Diethylpyrocarbonat
DTT	Dithioreitol
ER	Endoplasmatisches Retikulum
GA	Golgi Apparat
GJ	Gap Junction
IH	Immunhistochemie
ISH	In situ Hybridisierung
NBT-BCIP	Nitroblautetrazolium/Brom-Chlor-Indolylphosphat
NT	Aminoende
NTB	Natriumchlorid-Tris-Puffer
p.c.	Post coitum
PBS	Phosphate buffered saline
PBSM	PBS Magnesiumchlorid
PM	Plasmamembran
RT	Raumtemperatur
RT-PCR	Reverse Transcription-Polymerase Chain Reaction
SDS	Natriumdodecylsulfat (sodium dodecyl sulfate)
SSC	Natriumchlorid-Natriumcitrat-Puffer (standard saline citrate)
SSL	Scheitel-Steiß-Länge
TAE	Tris-Azetat-EDTA-Puffer
TBS	Tris buffered saline
TEMED	N,N,N`,N`-Tetramethylendiamin
TGC	Trophoblast Giant Cells
TNMT	Tris-Natriumchlorid-Magnesiumchlorid-Triton

1. EINLEITUNG UND LITERATURÜBERSICHT

1.1 Plazenta

Die Plazenta ist ein transientes, eigenständiges Organ, dessen Funktion darin besteht, Stoffwechselprodukte und Gase zwischen der Mutter und dem wachsenden Embryo beziehungsweise Fetus auszutauschen. Hinzu kommen die Produktion von graviditätsaufrechterhaltenden Hormonen und immunologische Aufgaben (Schnorr, 1989; Weetman, 1999; Hoffmann und Schuler, 2002). Innerhalb der verschiedenen Säugetierspezies haben sich viele verschiedene Formen von Plazenten entwickelt, die sich nach unterschiedlichsten Kriterien einteilen lassen (Übersicht bei Mossman, 1987; Leiser und Kaufmann, 1994; Wooding und Flint, 1994).

Die Einteilung nach der äußeren Form unterscheidet die Anordnung zottenbesetzter Areale (Chorion frondosum) und zottenfreier Areale (Chorion laeve). Sind die Zotten gleichmäßig über das Chorion verteilt, spricht man von einer Plazenta diffusa completa (Pferd) beziehungsweise incompleta (Schwein), wenn die Fruchtsackenden zottenfrei sind. Die Placenta multiplex sive cotyledonaria, die bei den meisten Wiederkäuern ausgebildet ist, ist durch Zottenfelder (Kotyledonen), die über die ganze Plazenta verteilt sind, gekennzeichnet. Die Placenta zonaria (Fleischfresser) und Placenta discoidalis (Primaten, Nager) werden durch ein gürtelförmiges beziehungsweise scheibenförmiges Zottenfeld charakterisiert.

Die Klassifikation nach Grosser (1927) teilt Plazenten anhand der Anzahl der Gewebsschichten zwischen maternalem und fetalem Blutkreislauf ein, ein Parameter, der von der Invasivität des Trophoblasten abhängig ist. Der Trophoblast der Placenta haemochorialis ist die invasivste Form. Hierbei wird erst die Lamina epithelialis, gefolgt von Anteilen des Bindegewebes und Gefäßendothelien des Endometriums, zerstört, so daß die fetalen Chorionepithelzellen (Trophoblastzellen) an mütterliches Blut grenzen. Diese Art der Plazentation kommt bei Primaten, Nagetieren und Kaninchen vor. Diese Plazentation unterscheidet sich weiter in der Anzahl der Trophoblastschichten (haemomono-, di-, und trichorial: Enders, 1965). Bei der Plazenta endotheliochorialis (Fleischfresser) wird nur das uterine Epithel und ein Teil des Bindegewebes zerstört, das heißt, die Trophoblastzellen liegen direkt an maternalen Gefäßendothelien. Beide Plazentaformen werden auch als *deziduate* Plazenten bezeichnet, da die Geburt beziehungsweise Nachgeburt mit maternalen Gewebsverlusten einhergeht. Dieser Begriff entspricht der Einteilung nach Strahl (1906), der den Zustand der Uterusmukosa bei der Geburt beurteilte.

Der Trophoblast der Plazenta epitheliochorialis (Pferd, Esel, Schwein, Wiederkäuer) ist mehr oder weniger nicht invasiv. Hier bleibt das maternale Uterusepithel unversehrt von dem angrenzenden Chorionepithel. Entsprechend dieser Verbindung wird dieser Plazentatyp nach der Strahlschen Einteilung (1906) auch als *adeziduate* Plazenta bezeichnet.

Beim Rind interdigitieren fetale Kotyledonen mit den maternalen Krypten der vorgeformten Karunkeln der Uteruschleimhaut und bilden 70-150 kissenförmige Plazentome (Björkman, 1954; Björkman und Sollen, 1960). Die feto-maternale Verankerung erfolgt erstens über tannenbaumartige Zotten, die sich je nach Verzweigungsgrad in Haupt- beziehungsweise Primär- sowie Sekundär- und Tertiärzotten einteilen lassen, und zweitens durch Interdigitation des fetalen und maternalen Mikrovillisaumes (Björkman, 1968; Leiser, 1975; Leiser et al., 1997).

Eine Besonderheit der Rinderplazenta sind die zwei- oder mehrkernigen Riesenzellen (Diplokaryozyten, binukleäre Zellen, "Trophoblast Giant Cells" [TGC]). Diese TGC (Wooding, 1992; Übersicht bei Klisch et al., 1999a, b) entstehen durch azytokinetische Mitose mononukleärer Trophoblasten. Sie werden ab dem 16. Tag post coitum (p.c.) beobachtet (Greenstein et al., 1958) und nehmen zum Ende der Trächtigkeit an Zahl ab (Gross et al., 1991). TGC besitzen weder eine Verbindung mit den apiko-lateralen "tight-junctions" der uninukleären Trophoblastzellen, noch stehen sie in Kontakt mit der Basalmembran (Morgan und Wooding, 1983); sie sind somit nicht polarisiert. Sie wandern entlang der tight-junctions zur Basalmembran des maternalen Epithels (Wooding und Wathes, 1980; Morgan, 1983; Wooding et al., 1994). Hier fusionieren sie mit Zellen des maternalen Epithels zu trinukleären fetomaternalen Hybridzellen und gehen später zugrunde (Wooding und Wathes, 1980). Björkmann (1968) beschrieb die Zellstruktur der "maternalen und fetalen" Riesenzellen, ohne jedoch auf den Zusammenhang zwischen ihnen einzugehen. Auf der fetalen Seite enthalten die Riesenzellen viele Zellorganellen, Zytoplasma und Granula mit plazentärem Laktogen sowie schwangerschaftsspezifischen Glykoproteinen (Wooding et al., 1996). Im Gegensatz dazu weisen die Riesenzellen im maternalen Epithel nur wenig Chromatin und Zytoplasma auf. Durch das Erkennen der Migration wurde klar, daß es sich hierbei um die gleichen Zellen, allerdings in verschiedenen Stadien der Entwicklung, handelt. Diese entlassen durch die Fusion fetale Proteine und Steroidhormone über die Plazentaschranke in den maternalen Organismus (Wooding and Wathes, 1980; Wooding, 1992). Durch Genom-Multiplikation können die Nukleoli einen erhöhten DNA Inhalt erreichen (Klisch et al., 1999b). Hierdurch wird eine erhöhte mRNA- und somit auch Proteinsynthese erzielt (Brodsky und Uryvaeva, 1985). Morphologisch ähnliche Zellen werden auch in anderen Spezies (Nager, Kaninchen, Primaten, Wiederkäuer und Equiden) beobachtet. Allen gemeinsam ist die Fähigkeit zur Migration und Invasion sowie die Synthese von Lactogen und Gonadotropin (Hoffman und Wooding, 1993). Da die feto-maternale Kontaktzone beim Rind aus fetalem und maternalem Epithel besteht, jedoch durch Migration und Fusion der TGC zur Bildung transienter Synzytien fähig ist, prägte Wooding (1992) den Begriff "Placenta synepitheliochorialis".

1.2 Connexine

1.2.1 Allgemeines

Zellen innerhalb eines Zellverbandes benötigen ein Kommunikationsnetzwerk, das einen schnellen Informationsaustausch und eine Isolierung von Zellen, die bei starker Veränderung notwendig ist, gewährleistet. Dieses Netzwerk muß desweiteren in der Lage sein, sich den immer wieder ändernden Anforderungen einer Zellgruppe hinsichtlich Wachstum, Versorgung und spezifischer Funktionen anzupassen. In Zellverbänden werden diese Aufgaben unter anderem von interzellulären Kanälen, Gap Junctions, übernommen. Diese befinden sich in umschriebenen Regionen der Zellmembran, die aus einigen wenigen bis zu vielen Tausenden sogenannter *Gap Junction Plaques* bestehen. Ein solcher Plaque ist ein Konglomerat von Kanälen, die einen direkten Zell-Zell-Austausch von Molekülen ermöglichen, ohne den extrazellulären Raum in Anspruch zu nehmen. Bei den Vertebraten sind die Gap Junctions (GJ) aus einer außerordentlich einheitlichen Proteinfamilie, den Connexinen (Cx), zusammengesetzt (Beyer et al., 1990; Bennett et al., 1991; Kanno et al., 1995).

1.2.2 Gap Junctions

Ursprünglich erklärte man sich die Gap Junction-Kanäle als dicht aneinander liegende Ausstülpungen der Plasmamembran (PM) von benachbarten Zellen, die durch einen kleinen Spalt (2-4 nm) voneinander getrennt bleiben (Robertson, 1963; Benedetti und Emmelot, 1965; Revel und Karnovsky, 1967). Makowski et al. (1977) stellten aufgrund von Gefrierschnitt-Analysen ein noch heute gültiges Modell für einen kompletten interzellulären Kanal auf (Skizze 1). Im Gegensatz zu anderen Zellkanälen verbindet der GJ-Kanal die Plasmamembranen zweier benachbarter Zellen. Hierbei beteiligt sich jede Zelle mit einem halben Kanal, der als Connexon benannt wird. Jedes Connexon entsteht wiederum durch Oligomerisation von Connexinen. Die hexamerische Anordnung von sechs Connexinen zur Bildung eines Connexons wird gegenwärtig allgemein akzeptiert (Unwin und Zampighi, 1980; Sosinsky et al., 1988; Yeager und Gilula, 1992; Cascio et al., 1995).

Skizze 1: Die dodekam erische Anordnung von Connexinen ergibt einen Gap Junction-Kanal.

1.2.3 Die Connexin-Familie

Aufgrund von Untersuchungen mit angereicherten subzellulären Fraktionen von GJ wurde die Mannigfaltigkeit von Connexinen deutlich. Eine Vielzahl von Polypeptidbanden konnte hierbei identifiziert werden. Das Molekulargewicht zeigte eine Spanne zwischen 16-70 kDa auf und war abhängig von den untersuchten Geweben und den angewandten Methoden (Henderson et al., 1979; Finbow et al., 1983; Gros et al., 1983; Nicholson et al., 1985; Nicholson, 1987; Buultjens et al., 1988). Die N-terminale Sequenzierung bestätigte, daß es sich um unterschiedliche Proteine handelte, die aber Ähnlichkeiten aufwiesen. Den Durchbruch zur Identifizierung der Protein-Bestandteile brachte die Klonierung des in der Leber der Ratte vertretenen Connexins 43 (Paul, 1986). Aufgrund der ausgeprägten Homologie innerhalb der Proteingruppe konnten durch PCR und Hybridisierungsverfahren weitere Connexine bestimmt werden. Sequenzanalysen ergaben, daß Connexine nicht nur innerhalb einer Spezies sehr ähnlich sind sondern auch starke Homologien zu anderen Spezies haben (Kumar und Gilula, 1992; Beyer und Veenstra, 1994). Mittels Hydropathy Plot wurde ein für die Cx 26, 32 und 43 bestätigtes Strukturmodell entworfen (Skizze 2). In diesem Modell geht man davon aus, daß jedes Connexin vier transmembranöse Domänen (M1-M4) und zwei extrazelluläre Schleifen (E1 und E2) enthält. Intrazytoplasmatisch befinden sich sowohl das Amino (NT)- und Carboxy (CT)-Ende als auch eine zytoplasmatische Schleife (CL) (Zimmer et al., 1987; Goodenough et al., 1988; Milks, 1988; Yancey et al., 1989; Evans, 1992; Dahl et al., 1994; Falk, 1994; Zhang und Nicholson, 1994). Desweiteren konnten einigen Sequenzabschnitten bestimmte Funktionen zugeordnet werden. So entsteht zum Beispiel durch Verbinden der sechs transmembranösen M3 Regionen in einem Connexon die Kanalpore (Kumar, 1996). Die beiden extrazellulären Schleifen enthalten je drei Zysteinreste an charakteristischen Stellen, die intramolekulare Disulfidbrücken bilden. Diese Domänen steuern vermutlich die Interaktion mit dem gegenüberliegenden Connexon beziehungsweise die Bildung eines kompletten Kanals (Dahl et al., 1994; Warner et al., 1995). Unterschiedliche Längen der Sequenzen in den CT und CL Regionen sind sowohl für individuelle Variationen der funktionellen Eigenschaften als auch für das charakteristische Molekulargewicht jedes einzelnen Cx verantwortlich.

Skizze 2: Strukturmodell eines Connexins.

M1-M4: transmembranöse Domänen; E1, E2: extrazelluläre Schleifen; NT: Aminoende; CT: Carboxylende; CL: zytoplasmatische Schleife

Von der Synthese eines Connexins bis zur Entstehung eines GJ-Kanals

Der Entstehung eines kompletten, funktionsfähigen GJ-Kanals müssen folgende Schritte vorausgehen: Mit wenigen Ausnahmen treten Plasmamembranproteine cotranslational in das Endoplasmatische Retikulum (ER) über. Von hier aus werden sie durch Abschnüren von Vesikeln (Mikrosomen) durch den Golgi Apparat (GA) geschleust und schließlich zur Plasmamembran transportiert (Karlson, 1988). Connexine werden ebenfalls co-translational in die Membran des ER integriert und erhalten hier ihre endgültige transmembrane Topologie (Falk, 1994, 1995, 1998; Zhang, 1996). In vitro Versuche zur Lokalisation der Oligomerisation zum Connexon wiesen verschiedene Resultate auf. Musil und Goodenough (1993) konnten anhand von Zellkulturen zeigen, daß das Cx 43 im Gegensatz zu anderen Proteinkomplexen erst nach dem Austritt aus dem ER im trans-GA zum Connexon oligomerisiert wird. Falk et al. (1997) konnten bereits in Mikrosomen zusammengesetzte Connexone (Cx 32 und auch Cx 43) nachweisen. In einer Baby-Hamster-Nieren-Zelllinie konnten komplette GJ-Plaques in der Membran des ER identifiziert werden (Kumar, 1995). Der Transport von den noch verschlossenen Connexonen zur PM ist noch nicht geklärt. Zum einen wird der klassische vesikuläre Transportmechanismus beschrieben (Laird, 1996), zum anderen scheinen Proteine des Zytoskeletts (ZO-1 und α -Spectrin) eine Rolle zu spielen (Toyofuku, 1998). Da Connexone auch außerhalb von Zell-Zell-Kontaktzonen vorhanden sein können, wurde vermutet, daß sie nicht direkt zu ihrem Bestimmungsort wandern (Musil und Goodenough, 1991). Aufgrund von zahlreichen biochemischen und physiologischen Analysen wurde gezeigt, daß in nicht-GJkompetenten Zonen funktionsfähige Halbkanäle vorhanden sein können, deren Öffnungseigenschaften reguliert werden können (Ebihara und Steiner, 1993; Gupta et al., 1994). Dieser PM-Pool kann zur Rekrutierung von Connexonen für die GJ Plaques verwendet werden, wobei die Connexone innerhalb der Lipid-Doppelmembran transportiert werden (Johnson, 1974). Laird (1996) postulierte dieses für nicht polarisierte Zellen, da in polarisierten Zellen ein Transport von Connexonen aus dem apikalen Bereich zur basolateralen Seite durch die lateral angeordneten Tight Junctions verhindert würde. In Schilddrüsenepithelzellen konnte gezeigt werden, daß Connexone direkt in umschriebene PM-Regionen "sortiert" werden (Guerrier et al., 1995). Zwei hexamerische Halbkanäle gegenüberliegender Zellen bilden schließlich aufgrund von Interaktionen der extrazytoplasmatischen Schleifen den kompletten dodekamerischen GJ-Kanal. Diese Fähigkeit wird durch kalziumabhängige Zell-Adhäsions-Moleküle begünstigt (E-cadherin) beziehungsweise inhibiert (N-cadherin) (Jongen, 1991; Meyer et al., 1992).

Der Abbau erfolgt über lysosomale und proteosomale Wege, wobei der dodekamerische Kanal als Ganzes abgebaut wird (Laing, 1995; Laird, 1996).

Art der Oligomerisation: Homomerisch-Heteromerisch; Homotypisch-Heterotypisch-Heteromerisch

Gap Junctions und Connexone können in vitro aus unterschiedlichen Connexinen zusammengesetzt sein (Skizze 4) (Bruzzone, 1993; Elfgang et al., 1995; White et al., 1995a). Das heißt, Connexone können entweder homomerisch (6 identische Connexine) oder heteromerisch (mindestens zwei der sechs Connexine sind unterschiedlich) sein. Eine Gap Junction kann entweder homotypisch (12 identische Connexine), heterotypisch (zwei verschiedene homotypische Connexone) oder heteromerisch (zwei verschiedene heteromerische Connexone) sein. Voraussetzung hierfür ist die Fähigkeit einer Zelle, unterschiedliche Connexine synthetisieren zu können, und die Kompatibilität der beteiligten Connexine. Letzteres scheint von der zweiten extrazellulären Domäne (E2) abzuhängen (White, 1995b). Versuche an Insektenzellen, die mit einem rekombinanten Baculovirus infiziert wurden, zeigten, daß Cx 26 und Cx 32 miteinander kompatibel sind und heteromerische Kanäle bilden (Stauffer, 1995).

Skizze 3: Schematische Anordnung von Connexinen in Connexone und interzelluläre Kanäle.

Physiologie

Die Funktionalität von GJ wird zum einen über den transzellulären Transport von radioaktiv markierten Ionen und organischen Molekülen und zum anderen über den Transport von Farbstoffen, insbesondere Lucifer Yellow, untersucht (Bruzzone et al., 1996). Dagegen werden individuelle, funktionelle Eigenschaften bestimmter Connexine zum Beispiel mit Xenopus Oozyten untersucht, denen spezifische RNA injiziert wird (Dahl et al., 1987), sowie über kommunikationsdefiziente Zell-Linien, die mit Cx DNA transfiziert werden können (Eghbali et al., 1990).

Anorganische Ionen (Na⁺, K⁺, Ca²⁺, etc.) und kleinere Moleküle (cAMP, Inositol 1,4,5-Triphosphat) mit einem Molekulargewicht von 1-2 kDa können durch einen Gap-Junction Kanal passieren (Murray and Fletcher, 1984; Sandberg et al., 1992). Entgegen früheren Behauptungen konnten Veenstra (1994a, b) und Steinberg (1994) zeigen, daß GJ-Kanäle in der Lage sind, nach durchströmenden Ionen und nach Größe der Teilchen zu selektieren. Den verschiedenen Connexinen konnten individuelle Permeabilitätseigenschaften nachgewiesen werden (Elfgang et al., 1995). Phosphorylierung von Tyrosin- und Serinresten in der CT Domäne verändern die Permeabilitätseigenschaften der Kanäle (Swenson et al., 1990; Kwak, 1995).

Die Öffnungseigenschaften können das Ergebnis von kovalenten oder nichtkovalenten Bindungen innerhalb der Gap Junction sein oder sie können durch pharmakologische Agentien beziehungsweise intra- und extrazelluläre Messenger beeinflußt werden. Innerhalb der Connexin-Familie sind Unterschiede hinsichtlich der spannungsabhängigen Öffnungseigenschaften festzustellen (Bennett und Verselis, 1992). Für diese Unterschiede scheinen die Sequenzen vom NT bis zum M2 verantwortlich zu sein (White et al., 1994, 1995a).

Analysen heterotypischer Kanäle wiesen sowohl veränderte Permeabilitätseigenschaften (Mills und Massey, 1995) als auch veränderte, spannungsabhängige Öffnungseigenschaften auf (Donaldson et al., 1995; Chen und DeHaan, 1996).

Die ersten nachgewiesenen, chemischen Inhibitoren, die eine junktionale Entkopplung provozierten, waren der pH-Wert (Turin und Warner, 1977) und Kalzium (Rose und Loewenstein, 1976). Versuche mit mutierten Cx zeigten, daß sowohl die Länge und die erste Sequenz der zytoplasmatischen Schleife als auch das Endstück des Carboxylendes eine kritische Rolle in den pH-abhängigen Öffnungseigenschaften spielen (Ek, 1994; Morley, 1996). Kalzium hingegen scheint keinen direkten Effekt zu haben. Wahrscheinlicher ist es, daß das ubiquitäre Kalzium-Rezeptor-Protein Kalmodulin als Mediator für Kalzium fungiert (Peracchia et al., 2000).

Der second Messenger cAMP erhöht den Transport oder den Einbau von Cx 43 zur beziehungsweise in die PM. Diese Zunahme erfolgt je nach Zelltyp innerhalb von 1-3 Minuten und hält zirka 24 Stunden an (Burghardt et al., 1995). Willecke und Haubrich (1996) erklärten diese lange Lebensdauer, die einer Halbwertszeit von maximal 60 Sekunden entgegensteht, mit den Permeabilitätseigenschaften der Cx-Kanäle.

Nomenklatur

Bei der Nomenklatur der Connexine konkurrieren zwei Systeme. Zum einen erfolgt die Namensgebung nach Molekulargewicht (Beyer et al., 1987). Hierbei wird die Abkürzung Cx vorangestellt und danach das Molekulargewicht des entsprechenden Connexins gesetzt. Homologe Connexine von verschiedenen Spezies können durch ein entsprechendes Präfix unterschieden werden. Connexine, die im Molekulargewicht nur gering voneinander abweichen, werden durch Dezimalstellen ergänzt (zum Beispiel rCx30.3; r für Ratte). Zum anderen wird die Namensgebung aus phylogenetischen Aspekten betrachtet (Kumar und Gilula, 1992). Dabei werden die Connexine mit längeren M2-M3 Schleifen und einer längeren Carboxylendung als α (Typ I) Connexine, die anderen als β (Typ II) Connexine bezeichnet. Da beide Möglichkeiten korrespondierende Orthologe anderer Spezies nicht berücksichtigen, wird die Namensgebung immer wieder diskutiert (Bruzzone, 2001).

Vorkommen

Interzelluläre Kanäle kommen in fast allen Gewebearten mit Ausnahme von einigen voll ausdifferenzierten Zellen, zum Beispiel Skelettmyozyten, einigen Neuronen und Blutzellen, vor (Bruzzone et al., 1996). Ihnen werden Aufgaben wie die Koordination von Herz- und glatter Muskelkontraktion (Page und Shibata, 1981; Huizinga et al., 1992; De Mello, 1994) oder metabolische Kooperation avaskulärer Organe zugrunde gelegt (Goodenough, 1992). Aufgrund ihrer Permeabilität für second Messenger werden ihnen wichtige Funktionen bei dem Formationsmuster während der Entwicklung (Caveney, 1985; Guthrie und Gilula, 1989; Kidder, 1992; Warner, 1992), bei onkogenischen Transformationen (Trosko und Ruch, 1998) und bei der Kontrolle von Zellwachstum zugeschrieben (Yamasaki, 1990; Loewenstein und Rose, 1992; Hotz-Wagenblatt und Shalloway, 1993).

Versuche an Ratten zeigten, daß gegen Ende der Trächtigkeit die Expression von Cx 43 in der glatten Uterusmuskulatur ansteigt, während die Expression von Cx 26 sinkt (Orsino, 1996). Weiterhin konnte gezeigt werden, daß die Expression von dem Östrogen-Progesteron Verhältnis und dem jeweilig exprimierten Cx abhängt (Lye et al., 1993; Orsino, 1996). Vermehrte Expression von Cx 43 konnte ebenfalls durch mechanische Reizung oder Streckung und Kontraktion des Myometriums induziert werden (Ou, 1997; Cook, 2000). In der zirkulären Muskelschicht des Uterus konnte beim Rind eine stärkere Expression von Cx 43 nachgewiesen werden als im Stratum longitudinale (Doualla-Bell, 1995). Cx 26, 32 und 43 im Ovar des Rindes werden bei gesunden und atretischen Follikeln unterschiedlich exprimiert (Johnson, 1999). Zur Aufrechterhaltung der Gelbkörperfunktion beim Rind scheint die Regulation der GJ durch cAMP ein wichtiger Faktor zu sein (Grazul-Bilska, 1996).

In der dem Rind ähnlichen epitheliochorialen Plazenta des Schafes konnte Cx 26 im Uterusepithel und Cx 43 im maternalen Stroma und fetalen Mesenchym nachgewiesen werden (Gabriel, 1996). In der weniger invasiven epitheliochorialen Plazenta von Pferd und Schwein konnte während der gesamten Trächtigkeit das Cx 43 im maternalen Stroma und beim Schwein zusätzlich im Trophoblasten während der Implantation nachgewiesen werden (Day et al., 1998).

1.3 Pathologie, Knock-outs und Mutationen

In der jüngeren Vergangenheit wird versucht, die Bedeutung von Connexinen im Organismus mit Hilfe von knock-out Tieren und Mutationen zu analysieren.

Cx 26 defiziente Mäuse sterben in utero zwischen dem 10. und 11. Tag p. c., da der transplazentäre Glukosetransport über Cx 26 GJ vermindert ist (Gabriel et al., 1998). Mäuse mit fehlendem Cx 31 haben aufgrund einer plazentären Dysmorphogenese eine erhöhte intrauterine Mortalität. Die Abwesenheit von Cx 31 erhöht die Fähigkeit der Trophoblastzellen, zu Trophoblastriesenzellen zu differenzieren (Plum et al., 2001).

Tiere, bei denen das Gen für Cx 32 ausgeschaltet ist, sind lebensfähig, jedoch weisen sie neurologische Störungen auf. Zum einen ist die Glukosemobilisation in der Leber aufgrund von fehlenden Signalen des Sympathikus gestört (Nelles et al., 1996), und zum anderen leiden diese Tiere an einer spät auftretenden Neuropathie ähnlich der humanen *X-linked Charcot-Marie-Tooth*-Erkrankung, bei der es zur Demyelinisierung von peripheren Nerven durch Cx 32 Genmutationen kommt (Bruzzone et al., 1994; Lo, 1996; Anzini, 1997; Nicholson und Bruzzone, 1997). Onkogenetisch interessant ist das gehäufte Auftreten von chemisch induzierten Lebertumoren bei Cx 32 defizienten Tieren (Temme, 1997). In diesem Zusammenhang sollte erwähnt werden, daß GJ Expression und Kopplung das Wachstum von humanen Prostata-Krebszellen hemmen kann (Mehta, 1999).

Cx 37 knock-out Mäuse sind äußerlich gesund und lebensfähig, jedoch sind die weiblichen Tiere aufgrund von Oogenese- und Ovulationsstörungen nicht vermehrungsfähig (Simon, 1997). Im intakten Organismus verbindet Cx 37 die Oozyte und die innerste Granulosa-Zellschicht zu einem Informationsnetzwerk, welches ein Heranreifen der Oozyte und den Eisprung überhaupt erst möglich macht (Anderson, 1976; Gilula, 1978; Eppig, 1991). Entsprechend sind in den knock-out Tieren weder reife Oozyten im Ovar nachzuweisen, noch können Anzeichen meiotischer Kompetenz in den Oozyten gefunden werden (Nicholson und Bruzzone, 1997).

Cx 43 defiziente Morulae zeigen im Experiment eine Reduktion der Permeabilitätseigenschaften gegenüber Mäusen des Wildtyps. Vermutlich werden aber essentielle Aufgaben von anderen Gap Junction-Kanälen übernommen, so daß ein Austragen der Embryonen möglich ist (Kidder und Winterhager, 2001). Diese Tiere sterben allerdings kurz nach der Geburt aufgrund eines anatomischen Defekts des rechten Herzventrikels (Reaume et al., 1995).

2. ZIELSETZUNG DER STUDIE

In der vorliegenden Arbeit soll das interzelluläre Kommunikationsnetzwerk im Rinderplazentom untersucht werden. Besondere Beachtung gilt der zellulären Kommunikation in der feto-maternalen Kontaktzone in den Wachstumszonen an den Septenspitzen und bei der Migration der Trophoblastriesenzellen während der eingeschränkten Trophoblastinvasion, die mit Invasionvorgängen im Tumorgeschehen vergleichbar ist. Desweiteren sollen Hinweise auf Kontrollmechanismen für die Invasionstiefe gewonnen werden. Die Cx 26, 32 und 43 sollen auf Protein- und mRNA-Ebene mittels Immunhistochemie und / oder Western Blot Verfahren beziehungsweise mittels PCR und / oder in situ Hybridisierung auf ihr Vorhandensein, ihre räumliche Verteilung und Unterschiede während der Trächtigkeit untersucht werden.

3. MATERIAL

Die im Rahmen dieser Doktorarbeit verwendeten Plazentaproben wurden von klinisch gesunden Rindern aus dem Routineschlachtbetrieb des Schlachthofs Gießen gewonnen. Das Trächtigkeitsalter wurde anhand der fetalen Scheitel-Steiß-Länge (SSL) geschätzt (Habermehl, 1975). Insgesamt standen 36 Tiere zur Verfügung. Die Trächtigkeitsstadien erstreckten sich vom 60. bis zum 270. Tag der Trächtigkeit. Sie wurden in fünf Gruppen (60-90 Tage; 90-120 Tage; 120-150 Tage; 150-220 Tage; 220 Tage bis Geburt) eingeteilt. Je Gruppe standen zirka 7 Tiere zur Verfügung (siehe Tabelle 1).

25. Monat					69. Monat			
Tier	SSL (cm)	Monat	zirka Tage	1	Tier	SSL (cm)	Monat	zirka Tage
C 27	6,5	2	60		S 19	36,8	6	150
C 14	7,5	2	60		C 20	38,5	6	150
C 26	9	3	80		C 10	44	6	150
S 7	10	3	80		C 24	46,5	6	180
S 27	10,7	3	80		C 21	47	6	180
C 5	12	3	90		S 8	47	6	180
S 32	14,2	4	100		C 22	48	6	180
C 6	16	4	100		S 14	50	6	180
S 23	17,2	4	100		C 23	51,5	7	200
C 15	17,5	4	100		C 16	54,5	7	200
C 7	19,5	4	110		C 25	56	7	220
S 10	24	4	120		S 28	58	7	220
S 4	24,2	4	120		C 19	63	7	220
S 24	24,3	4	120		C 9	64	7	220
C 13	28,5	5	130		S 21	65,9	7	220
C 17	28,5	5	130		C 11	78	8	240
S 17	31	5	140		S 31	78	8	240
C 18	31	5	140		S 33	96	9	> 270

 Tabelle 1: Auflistung der Versuchstiere

4. METHODEN

4.1 Vorbehandlung

4.1.1 Entnahme und Bearbeitung der Proben

Der Uterus wurde baldmöglichst nach Schlachtung und Entblutung der Tiere entnommen und entlang der Curvatura major aufgeschnitten.

Mit dem Skalpell wurden an verschiedenen Lokalisationen 2-3 Plazentome herausgeschnitten. Diese wurden in flüssigen Stickstoff (N_2) schockgefroren und bis zur Weiterverarbeitung bei –80°C gelagert.

Die Gefäße an den Entnahmestellen wurden durch Aufsetzen von Klemmen geschlossen. Danach wurden einzelne Plazentome über Äste der Arteria umbilicalis perfusionsfixiert. Ein Teil der Proben wurde mit zirka 60 ml Bouin'scher Lösung (S-Tiere) fixiert, für einen anderen Teil wurde 10% iges gepuffertes Formalin (C-Tiere) verwendet. Frühe Trächtigkeitsstadien, bei denen der Gefäßdurchmesser zu klein, beziehungsweise das Gewebe zu fragil war, wurden mit den gleichen Lösungen immersionsfixiert. Die Fixierung der Plazentome wurde sichtbar durch Gelbfärbung (Bouin'sche Lösung) oder weißliches Erscheinungbild (Formalin) und fühlbar durch zunehmende Härte. Zwei Stunden nach ihrer Entnahme wurden die Plazentome in zirka 0,5 x 1 x 0,5 cm große Stücke geschnitten und für 24 Stunden mit den jeweils gleichen Lösungen nachfixiert. Zum mehrmaligen Spülen der Präparate wurde PBS Puffer (phosphate buffered saline) verwendet. Nach vier Tagen wurden die Präparate mit einem EG 1160 Einbettungsgerät (Leica, Bensheim) in Paraffin eingebettet und am nächsten Tag mit einem TP 1050 der Firma Leica ausgebettet.

Die schockgefrorenen Plazentome wurden in zirka $0,5 \times 1 \times 0,5$ cm große tortenstückartige Proben geschnitten (Skizze 4) und mittels Tissue-Tek Gewebekleber der Firma Sakura (U.S.A) auf Probentellern befestigt.

Skizze 4: Querschnitt durch ein Rinderplazentom (modifiziert nach Leiser et al., 1997). Darstellung der Schnittführung zur Entnahme von Proben um histologische Schnitte anzufertigen (grüne Linien).

CP, Chorionplatte; CS, Karunkelstiel; CT, fetaler Choriozottenbaum; S, maternale Septen; SVT, Kombination aus maternalen Septen und baumartigen, fetalen Chorionzotten; UG, Uterine Drüsen; V, Gefäße

4.1.2 Erstellung von Kryostatschnitten

Aus den schockgefrorenen Gewebeproben wurden an einem Kryostat (Fa. Reichert und Jung) Gefrierschnitte von zirka 10 µm Dicke hergestellt. Diese wurden durch vorsichtiges Annähern eines Chrom-Alaun beschichteten Objektträgers direkt vom Messer auf den Objektträger gezogen. Nach einer Trockenzeit von einer Stunde bei Raumtemperatur (RT) erfolgte die Fixation der Gefrierschnitte, ebenfalls bei RT mit einem Gemisch aus Azeton/Methanol, im Verhältnis 70:30, für 10 Sekunden.

4.1.3 Erstellung und Entparaffinierung von Paraffinschnitten

Zur Erstellung der zirka 3 µm dünnen Paraffinschnitte wurde ein Mikrotom der Firma Mikrom (HM 400, Walldorf) verwendet. Die Schnitte wurden im Wasserbad bei zirka 37°C gestreckt und auf Objektträger gezogen, die, zur besseren Haftung der Schnitte, mit 3-Aminopropyltriethoxysilane (APES) beschichtet waren. Anschließend wurden die Schnitte zirka 12 Stunden in einen Brutschrank (Fa. Memmert, Schwabach) bei einer Temperatur von 37°C getrocknet.

Die Entparaffinisierung erfolgte für die Immunhistochemie und für die in situ Hybridisierung nach unterschiedlichen Protokollen.

Immunhistochemie:

- \rightarrow 2 Stunden Xylol I
- \rightarrow 10 min Xylol II
- \rightarrow 10 min Xylol III
- \rightarrow Absteigende Alkoholreihe jeweils 5 min
- \rightarrow Spülen mit Aqua dest.

In situ Hybridisierung:

- → Verbringen der Schnitte und eines Xylolbehälters in einen Brutschrank, über Nacht bei 60°C
- \rightarrow 5 min Xylol I (60°C)
- $\rightarrow 2 \text{ x 5 min Xylol}$
- \rightarrow 2 x 5 min Abs. Ethanol
- \rightarrow 1 x 96% iges Ethanol
- \rightarrow 1 x 5 min 70% iges Ethanol

4.2 Proteinnachweis mittels Immunhistochemie

4.2.1 Antikörper

Primärer Antikörper:

Für die Connexine 26 und 43 wurden monoklonale Maus anti-Cx 26 und Maus anti-Cx 43 Antikörper auf Gefrierschnitten verwendet. Für das Cx 32 wurde ein polyklonaler Kaninchen anti-Cx 32 AK auf Paraffinschnitten verwendet. Alle Antikörper wurden von der Firma Zymed Laboratories Inc., Kalifornien, U.S.A. bezogen. Die verwendeten Verdünnungen und Klone sind in Tabelle 2 aufgelistet.

Sekundärer Antikörper:

Zur Anwendung kam ein biotinylierter Anti-Maus/Kaninchen Antikörper, der im Pferd entwickelt wurde (Firma Vector Laboratories, Kalifornien, U.S.A; BA-1400).

Antikörper	Klon	Iso-Typ	Herkunft	Verdünnung	Herkunft
Cx 26	CX- 12H10	IgG1- Kappa	Maus	1:100	Zymed Laboratories; 13-8100
Cx 32			Kaninchen	1:50	Zymed Laboratories; 71-0600
Cx 43	CX-1B1	IgF1- Kappa	Maus	1:100	Zymed Laboratories; 13-8300

Tabelle 2: In der Immunhistochemie verwendete Antikörper.

4.2.2 Demaskierung der Paraffinschnitte

- → Verbringen der Schnitte in kochende Citrat-Puffer Lösung, 20 min
- \rightarrow Abkühlen der Schnitte in Citrat-Puffer im Eisbad
- \rightarrow Spülen (3 x 5 min) in Phosphat gepufferter Salzlösung (PBS)

4.2.3 Vorbehandlung der Kryostat- und Paraffinschnitte

Um eine Hintergrundreaktion der endogenen Peroxidase (Oxidoreduktase) zu vermeiden, wurden die Schnitte nach folgendem Schema geblockt:

- → Blockierung der endogenen Peroxidaseaktivität mit 1% H₂O₂ in PBS verdünnt, 10 min bei RT
- \rightarrow Spülen (3 x 5 min) in PBS auf einem Schüttler
- → Inkubation mit einem Gemisch aus 1 g bovinem Serum Albumin (BSA; Sigma, Deisenhofen; B-5486), 21 µl Triton–X-100 (Sigma; T-8787) und 70 ml PBS Puffer, 20 min

4.2.4 Immuninkubation

- \rightarrow Spülen (3 x 5 min) in PBS auf einem Schüttler
- → Inkubation mit Primär-Antikörper, über Nacht im Kühlschrank
- \rightarrow Spülen (3 x 5 min) in PBS auf einem Schüttler
- \rightarrow Inkubation mit biotinyliertem Zweit-Antikörper, 20 min bei RT
- \rightarrow Spülen (3 x 5 min) in PBS auf einem Schüttler
- → Inkubation mit dem Avidin-Biotin-Peroxidase-Komplex (ABC; Firma Vector Laboratories, Vectastain Elite ABC Kit; PK-6100), 45 min bei RT

4.2.5 Färbung der Schnitte

Die immunhistochemische Reaktion wurde mit einem Peroxidase-Substrat/Chromogengemisch (AEC-Lösung; AEC Substrate Kit for Peroxidase, Vector Laboratories; SK-4200) rot dargestellt.

- \rightarrow Inkubation im Dunkeln, 5 min bei RT
- \rightarrow Waschen (3 x 5 min) in Aqua dest. (Schüttler)
- → Kerngegenfärbung mit Hämatoxylin zur Verbesserung des Kontrastes zur roten AEC-Färbung, 10 sec
- \rightarrow Waschen unter fließendem Wasser, 10 min

4.2.6 Eindeckeln

Die Objektträger wurden um die gefärbten Schnitte abgetrocknet und mittels Histogel und Deckgläsern versiegelt.

4.2.7 Kontrolle

Pro immunhistochemischen Färbedurchgang wurden zwei Schnitte als Negativkontrollen mitgeführt. Ein Schnitt wurde anstelle des Primärantikörpers mit PBS inkubiert und der zweite wurde mit Kaninchennormalserum (Cx 32, 1:50) beziehungsweise Maus-IgG (Cx 26, 1:100; Cx 43, 1:100) inkubiert.

4.3 Proteinnachweis mittels Western Blot

Beim Western-Blot-Verfahren werden die einzelnen Komponenten einer Proteinmischung gelelektrophoretisch getrennt, auf eine Membran überführt und mittels Immunchemie nachgewiesen und visualisiert.

4.3.1 Extraktion von mRNA und Protein

Zum Proteinnachweis mittels Western-Blot-Verfahren werden aus tiefgefrorenem Plazentomgewebe die Proteinanteile extrahiert. Die Extraktion von mRNA für die PCR wird aufgrund der Chronologie der Arbeitsschritte bereits hier erwähnt.

- \rightarrow Mörsern von tiefgefrorenem Plazentomgewebe in einer Porzellanschale mit N₂
- → Homogenisieren (Ultra-Turrax TS; IKA-Labortechnik, Karlsruhe) von 100 mg des zerkleinerten Gewebes mit 1 ml Trizol Reagent (Life Technologies; 15596-026)
- \rightarrow Stehen lassen, 5 min bei Raumtemperatur
- \rightarrow Zugeben von 200 µl Trichlormethan (Fa. Roth, Karlsruhe; 3313.1)
- \rightarrow Stehen lassen, 5 min bei Raumtemperatur
- \rightarrow Zentrifugieren, 15 min bei 4°C

mRNA:

- → Abpipettieren der obersten, wäßrigen Phase (mRNA)
- \rightarrow Hinzufügen der gleichen Menge Isopropanol
- \rightarrow Stehen lassen, 30 min bei -20° C
- \rightarrow Zentrifugieren, 10 min bei 4°C

Waschvorgang:

- \rightarrow Überstand verwerfen
- → Lösen des mRNA-Pellets mit 500 µl 70%igem Ethanol in Diethylpyrocarbonat (DEPC)-Wasser
- \rightarrow Abschrecken auf Eis, 20 min
- \rightarrow Vermischen der mRNA mit Pellet
- \rightarrow Zentrifugieren, 10 min bei 4°C
- \rightarrow Waschvorgang 1 x wiederholen

Resuspendieren:

- \rightarrow Verwerfen des Überstandes
- \rightarrow Trocknen lassen des Pellets im Trockenschrank, 30-60 min bei 37°C
- \rightarrow Resuspendieren in 50 µl DEPC bei 70°C

Kontrolle:

Konzentrationsbestimmung am Photometer:

OD 260nm : $1 = 40 \ \mu g \ RNA / ml$

Bestimmung der Reinheit:

OD $_{260nm}$: OD $_{280nm}$ = 1,5 - 2,0

Die mRNA wurde bei -80°C gelagert.

Protein:

- \rightarrow Abpipettieren der untersten Phase des Homogenats (rot)
- → Zugabe von 1,5 ml Isopropylalkohol, kurz vortexen (REAX control, Heidolph, Schwabach)

- \rightarrow Stehen lassen, 10 min bei RT
- \rightarrow Vortexen
- \rightarrow Zentrifugieren, 10 min bei 4°C

Waschvorgang:

- \rightarrow Verwerfen des Überstandes
- → Lösen des Pelletts mit 2 ml 95%igem Ethanol und 0,3 M Guanidinhydrochlorid (Sigma; G-4505)
- \rightarrow Vortexen
- \rightarrow Stehen lassen, 20 min bei RT
- \rightarrow Vortexen
- \rightarrow Zentrifugieren, 5 min bei 4°C

Den Waschvorgang 3 x wiederholen. Danach den Waschvorgang einmalig mit 70%igem Ethanol durchführen.

Resuspendieren:

- \rightarrow Verwerfen des Überstandes
- \rightarrow Trocknen lassen des Pelletts, 20 min bei 37°C
- → Resuspendieren in 1% SDS (Natriumdodecylsulfat [Sigma, L-4390]), bei 70°C
- \rightarrow Zentrifugieren, 10 min bei 4°C
- \rightarrow Verwerfen des Pelletts
- → Überführen des Überstandes (Protein) in neues Tube

Die Proteine wurden bei -20°C gelagert.

4.3.2 Gelelektrophorese I

- → Aufbau des Mini-Protean 3® Electrophoresis Cell–System (Bio-Rad, München)
- → Reinigen und Trocknen der Glasplatten und Spacer mit Aqua bidest. und Ethanol (70%)
- \rightarrow Zusammenbauen der Glasplatten und in Halterungen einklemmen
- → Überprüfen der Dichtigkeit durch Einfüllen von Aqua bidest., danach Wasser vollständig entfernen (Filterpapier)
- 5 ml Trenngel (10%) herstellen:
- \rightarrow 2,0 ml Aqua bidest.
- \rightarrow 1,7 ml 30% iges Acrylamid (Sigma, A-3574)
- \rightarrow 1,3 ml 1,5M Tris-HCL-Puffer (pH 8,8)
- \rightarrow 50 µl SDS (10%)
- \rightarrow 50 µl APS (10%) (Ammoniumpersulfat; Sigma, A-3678)
- \rightarrow 2 µl TEMED (N,N,N',N'-Tetramethylethylendiamin; Sigma, T-9281)
- → Trenngellösung blasenfrei in Kammer pipettieren und 1 cm mit Aqua bidest. überschichten
- → Polymerisieren, 20-30 min (Kontrolle: Reste im Erlenmeyerkolben)
- 3 ml Sammelgel herstellen:
- \rightarrow 2,1 ml Aqua bidest.
- \rightarrow 500 µl Acrylamid
- \rightarrow 380 µl Tris-HCL-Puffer (pH 6,8)
- \rightarrow 30 µl SDS 10%
- \rightarrow 3 µl TEMED
- \rightarrow Aqua bidest. abgießen, Reste mit Filterpapier entfernen

- → Trenngel mit Sammelgel überschichten und gereinigten Kamm (Ethanol) einsetzen
- \rightarrow Polymerisieren, 20-30 min

Probenvorbereitung:

- \rightarrow Vortexen der Proteinproben
- \rightarrow Mischen von 20 µl Proben-Puffer (Laemmli 1) und 20 µl Probe
- \rightarrow Kochen der Proben im Wasserbad, 5 min bei 95°C
- \rightarrow Vortexen der Proben

4.3.3 Gelelektrophorese II

- \rightarrow Kamm vorsichtig aus dem Gel entfernen
- \rightarrow Gelkassette in Elektrophoreseapparatur einbauen
- → Auffüllen der Apparatur mit 1 x Laufpuffer (Laemmli 2) (100 ml Stammlösung auf 1 l mit Aqua bidest.)
- → Reinigen der Probentaschen mit Hamiltonspritze (Hamilton-Microliter-Syringes, Bonaduz, Schweiz) mit 1 x Laufpuffer
- \rightarrow Einbringen von 30 µl Probe mit Hamilton Spritze auf den Boden der Taschen
- → Gelelektrophorese 60 min bei einer Spannung von 200 Volt (Beenden, wenn Bromphenolblau-Front unteren Gelrand errreicht hat)

4.3.4 Western Blot (Semi-Dry-Verfahren)

1. Tag:

→ 6 Filter (Whatman 3MM, Rothenburg) und 1 Polyvinyliden-Difluorid-Membran (PVDF-Membran, Westran ®, Schleicher & Schuell GmbH, Dassel) auf Gelgröße schneiden

Folgende Puffer wurden zum Tränken der Filter, des Gels und der Membran verwendet:

- P1: 36,3 g Tris-HCL (0,3 M) mit 200 ml Methanol in Becherglas mischen und auf
 1 l mit Aqua bidest. auffüllen
- P2: 3 g Tris-HCL (25 mM) mit 200 ml Methanol in Becherglas mischen und auf 1 l mit Aqua bidest. auffüllen
- P3: 3 g Tris-HCL (25 mM) und 5,2 g Amino-Capronsäure (40 mM; Sigma, A-2504) mit 200 ml Methanol in Becherglas mischen und auf 1 l mit Aqua bidest. auffüllen
- \rightarrow Gel vorsichtig, ohne unnötiges Anfassen aus Glasplatten lösen und in P2 legen
- → Elektrodenplatten der Blotting-Apparatur (Trans-Blot® SD-Dry Transfer Cell; Bio-Rad, München) mit Aqua bidest. gleichmäßig befeuchten

Aufbau des Blotting Sandwichs:

2 Filter aus P1
1 Filter aus P2
Membran aus P2
Gel aus P2
3 Filter aus P3

Nach jedem Filter vorsichtig mit Glasstäbchen die Luftblasen rausrollen.
45-60 min Blotten, wobei die Spannung so hoch wie möglich, jedoch 25 Volt nicht übersteigen sollte.

Nach Beendigung des Blottens:

- \rightarrow Membran 1-2 min in Aqua bidest. schwenken
- \rightarrow Benetzen mit Methanol, kurz
- \rightarrow Trocknen lassen, 15-20 min
- \rightarrow Rehydrieren mit Methanol, kurz

4.3.5 Nachweisreaktion (Immunchemie)

Blocken:

- → Schwenken auf Schüttler mit 5% Milchpulver in 1 x PBS (pH 7,4), 60 min
- 1. Antikörper Cx 43 (1:500):
- → Mischen von 10 ml PBS, 0,1 g BSA, 50 µg Tween 20 (Merck, 822184) und 20 µl Primärantikörper
- \rightarrow Inkubation über Nacht auf einem Schüttler

2. Tag:

- \rightarrow Waschen (2 x 5 min) mit TBS
- → Schwenken auf Schüttler mit Kaninchen Serum 5% in TBS, 30 min
- → Schwenken auf Schüttler mit Sekundärantikörper Kaninchen anti Maus 1:1000 in TBS, 60 min
- \rightarrow Waschen (4 x 5 min) mit TBS
- → Inkubation mit APAAP-Komplex (Maus; DAKO, D0651) 1:1500, 60 min
- \rightarrow Waschen (4 x 5 min) mit TBS
- → Visualisieren mit NBT-BCIP (Nitroblautetrazolium/Brom-Chlor-Indolylphosphat; Kirkegaard+Perry Laboratories, Maryland; LB 100-04), ca 40 min

4.4 mRNA Nachweis mittels RT-PCR

4.4.1 cDNA Erststrang-Synthese

Zur Gewinnung von cDNA (komplementäre DNA) wurde die gewonnene mRNA (siehe Punkt 4.3.1) mittels Reverser Transkriptase (Superscript II Reverse Transkriptase, Gibco BRL; 18064-014) nach folgendem Protokoll umgeschrieben.

In einem 20 μ l Ansatz sollen zirka 8 μ g mRNA enthalten sein. Nach der photometrischen Bestimmung des mRNA-Gehaltes im Kryoextrakt ergibt sich die zu verwendende Menge mRNA in μ l und somit auch die Menge DEPC-Wasser in μ l nach folgender Rechnung:

Photometerergebnis : 1000 = x

8 (Menge des gewünschten cDNA-Gehaltes) : x = Menge mRNA

Ansatz:

 \rightarrow 1 µl Primer Oligo dT-15 (Roche Diagnostics GmbH, Mannheim; AO-2444)

 \rightarrow 3 µl RNA

- \rightarrow Ansatz stehen lassen, 10 min bei 70°C
- \rightarrow Abkühlen im Eiswasser, 3 min
- \rightarrow 4 µl 5 x first strand buffer (Life Technologies; 18064-014)
- \rightarrow 2 µl 0,1 M DTT (Dithioreitol) (Gibco;18064-014)
- \rightarrow 1 µl 10 mM dNTP-Mix (aus dATP, dTTP, dGTP und dCTP) (Promega, USA; C 1145)
- \rightarrow Ansatz stehen lassen, 1 min bei 37°C
- \rightarrow 1 µl Superscript II Reverse Transcriptase (Life Technologies; 18064-014)
- \rightarrow Inkubation zur Bildung der cDNA, 60 min bei 42°C
- Die cDNA wurde bei -20°C gelagert.

 $[\]rightarrow$ 8 µl DEPC-Wasser

4.4.2 RT-PCR

Ziel der RT-PCR ist die Amplifikation spezifischer cDNA-Sequenzen für die Connexine 26, 32 und 43. Die mRNA Sequenzen wurden der Nucleotide Datenbank entnommen und werden in Tabelle 3 für die entsprechenden Connexine angeführt. Die verwendeten Primer wurden von der Firma MWG, Ebersberg, Deutschland hergestellt.

Sowohl der Arbeitsplatz als auch sämtliche, für die PCR verwendeten Geräte und Reagenzien wurden zuvor desinfiziert beziehungsweise sterilisiert oder autoklaviert oder mit RNAse-free (Continental Laboratory Products; 401134) gegen RNAsen behandelt. Zum Pipettieren wurden ausschließlich gestopfte Pipettenspitzen verwendet.

Für einen 50 µl-Ansatz wurden folgende Reagenzien gemischt:

- \rightarrow 38,5 µl DEPC-Wasser
- \rightarrow 5 µl 10 x PCR-Puffer (Perkin Elmer; N8080241)
- \rightarrow 4 µl 25 mM MgCl₂-Lösung (Perkin Elmer; N8080241)
- \rightarrow 1 µl 10 mM dNTP (Perkin Elmer; N8080007)
- \rightarrow 1 µl 5'Primer (10 pmol/µl) forward/reverse
- \rightarrow 1 µl 3'Primer (10 pmol/µl) forward/reverse
- \rightarrow 1 µl cDNA
- \rightarrow 0,5 µl Taq DNA Polymerase (Perkin Elmer; N8080241)

Zur Vervielfältigung von cDNA müssen die Proben in mehreren Zyklen bei unterschiedliche Temperaturen folgende Prozeduren durchlaufen.

- 1. Denaturierung: die beiden Stränge der Doppelhelix werden getrennt
- Annealing: die Primer, die im Überschuß vorhanden sind, paaren sich spezifisch mit der passenden cDNA-Sequenz. Diese cDNA-Doppelstränge dienen als Starter für die DNA-Polymerase.

3. Elongation: die DNA-Polymerase setzt an den Primern an, liest den noch verbleibenden DNA-Einzelstrang in 5`-3` Richtung ab und baut passend die entsprechenden Nukleotide aneinander. Somit wird ein neuer DNA-Strang gebildet.

Während jedes Zyklus wird die DNA-Menge verdoppelt. Die Proben wurden in einem Thermocycler (T3, Biometra, Göttingen) mit den in Tabelle 4 aufgeführten Programmen bearbeitet.

Die Schmelztemperatur der Primer wurde nach folgender Formel aus den Nukleinsäuren (Adenosin, Thymin, Guanosin und Cytidin) berechnet:

$$T_M = (A+T) \times 2^{\circ}C + (G+C) \times 4^{\circ}C$$

Die Anlagerungstemperatur ergab sich aus:

 $T_A = T_M - 5^{\circ}C$

Für die hier untersuchten Connexine ergaben sich somit die in Tabelle 5 dargestellten Temperaturen.

4.4.3 Kontrolle

Die Länge der Amplifikate wurde über Gel-Elektrophorese (siehe Punkt 4.4.4) überprüft und visualisiert. Als Kontrolle für die PCR wurde ein Gemisch ohne Polymerase verwendet.

Cx	Spezies	Primer	Sequenz	Basen-	NCBI
				paare	Accession
Cx		F1			
26		(vorwärts)	5°CTGCCTTCATGTATGTCTTCTACGT3`	222	4 1000000
Cx	Rind	R1		bp	AJ293886
26		(rückwärts)	5`AATCAGCAAGTAACACAGCTCAGTGA3`		
Cx		F1			
32		(vorwärts)	5`ATCAGCGTGGTCTTCCGGCTGT3`	362	X07211
Cx	Rind	R1		bp	X95311
32		(rückwärts)	5`TCCTGCTCACTCAGCAGCTTGTT3`		
Cx		R1	5'CCATCTCTAACTCTCATGCACAGC3`		
43		(rückwärts)		138	
Cx	Human	R1		bp	AF 151980
43		(rückwärts)	5`TGGCACGACTGCTGGCTCTGCTT3`		

Tabelle 3: Sequenzen der Primer, ihre Basenpaarlänge und die NCBI Zugriffsnummer.

Schritte	Cx 26			Schritte	Cx	32		Schritte	Cx 43	
	95°C,				95°C,				95°C,	
1	3 min			1	3 min			1	3 min	
	95°C,				95°C,				95°C,	
	1 min				1 min	40 x		1 min		
	67°C,		Ī		65°C,				66°C,	
2	1 min	40 x		2	1 min			2	1 min	10 x
	72°C,				70°C,				72°C,	
3	2 min			3	2 min				2 min	
	72°C,			70°C,				95°C,		
	10 min				10 min			1	1 min	
									62°C,	
	4°C				4°C			2	1 min	25 x
								•	72°C,	
								3	2 min	
									72°C,	
									10 min	
									4°C	

Tabelle 4: Temperaturzyklen für die Cx 26, 32 und 43.

°Cx	Cx 26	Cx 32	Cx 43
Schmelztemperatur	72°C	70°C	72°C
Anlagerungstemperatur	67°C	65°C	66°C

Tabelle 5: Schmelz- und Anlagerungstemperatur für die ausgewählten Primer.

4.4.4 Agarose-Gel-Elektrophorese

cDNA kann in Agarose-Gelen aufgetrennt werden. Hierfür muß das Agarose-Gel, welches zuvor mit cDNA geladen wurde, an ein elektrisches Feld angelegt werden. Die cDNA, die bei neutralen pH negativ geladen ist, wandert in Richtung Anode. Kleine Amplifikate wandern schneller und somit weiter. Durch Zugabe von Ethidiumbromid in das Gel kann die cDNA sichtbar gemacht werden. Um die Länge der cDNA bestimmen zu können, wird ein Molekulargewichtsmarker mit DNA-Stücken definierter Längen mit aufgetrennt.

Durchführung:

Gel:

- \rightarrow Lösen von 1 g Agarose (2%) in 50 ml Laufpuffer (1 x TAE)
- → Aufkochen der Agarose-Lösung in der Mikrowelle, bis keine Schlieren mehr vorhanden sind
- \rightarrow Zugabe von 10 µl Ethidiumbromid (Sigma; E-1385)
- → Lösung in einen Elektrophorese-Schlitten gießen
- → Mittels Kamm die Taschen (Slots) für das PCR Produkt formen

Probe	Marker
6 μl PCR-Produkt	2 µl eines 100 Bp Markers (Promega,
	G2101)
4 μl Aqua bidest.	8 μl Aqua bidest.
5 μl Loadingbuffer (PCR)	5 µl Loadingbuffer (PCR)

Elektrophorese:

→ Elektrophoresekammer mit TAE-Puffer auffüllen, bis das Gel komplett bedeckt ist

- \rightarrow 15 µl je Probe vorsichtig ohne Beschädigung des Gels in die Slots pipettieren
- → Elektrophorese bei 125 V Spannung und 1 cm Elektrodenabstand, 25 min

4.5 RNA Nachweis mittels in situ Hybridisierung (ISH)

4.5.1 Herstellung von DIG-markierten cRNA-Sonden für die in situ Hybridisierung

Die cRNA Sonden zur Hybridisierung wurden im Institut für Veterinär-Anatomie, -Histologie und -Embryologie der Justus-Liebig-Universität nach folgendem Schema aus den RT-PCR Produkten hergestellt:

Klonierung:

- → Ligation von Plasmid (pGEM-T) und Insert (PCR-Produkt)
- → Transformation von Plasmid (mit Insert) in E. coli XL1-Blue
- \rightarrow Plasmid Extraktion
- \rightarrow Doppelverdau und DNA Agarose Gel
- → Restriktions-Endonuklease-Verdauung (Linearisierung der 5`-Enden)
- \rightarrow 2 x Einzelverdauung mit Restriktionsenzymen *NCO I* und *NOT I*, zur Herstellung von Sense und Anti-Sense
- \rightarrow DNA Agarose Gel

In-vitro Transkription von DIG-cRNA:

- \rightarrow Umschreiben der DNA in cRNA
- \rightarrow Markieren der cRNA Sequenzen mit DIG-RNA-Labeling-Mix

Um die vorhandenen Sequenzen mit den ursprünglichen zu vergleichen, wurden die Connexinsequenzen im Plasmid mit Hilfe spezifischer Primer generiert. Die Identität dieser Gen-Stücke wurde durch Sequenzierung geprüft und bestätigt (Quiagen Sequenzier Service).

4.5.2 ISH

Die Hybridisierung erfolgte an Paraffinschnitten, die mit Bouin`scher Lösung fixiert wurden. Die Schnittdicke betrug je nach Präparat 3-5 µm. Zur Verwendung kamen APES beschichtete Objektträger.

Da die RNA nur von 5' nach 3' abgelesen werden kann, wurden die ersten Versuche einer Sonde mit *Noc* und *Not* durchgeführt. Aufgrund der Reaktion konnte Sense und Antisense bestimmt werden. In weiteren Versuchen wurde nur noch die Antisense verwendet. Als Negativkontrolle wurde je Durchgang ein Schnitt ohne DIG-cRNA im Sondengemisch mitgeführt.

1. Tag:

Entparaffinisieren der Schnitte (siehe Punkt 4.1.3).

Im Weiteren wurden ausschließlich sterile Behälter, steriles Besteck und sterile Lösungen verwendet, um eine RNAse Kontamination zu vermeiden. Die Sterilisation der Instrumente erfolgte bei 180°C für 4 Stunden mit einem Sterilisator der Fa. Heraeus, Rabenau.

- → Spülen der Schnitte in 1 x DEPC-Wasser, kurz
- \rightarrow Spülen in 0,2 N HCL, 20 min
- \rightarrow Spülen in 2 x SSC, 15 min bei 70°C
- \rightarrow Spülen in 1 x PBSM, kurz
- → Inkubieren in einer Feuchten Kammer (DEPC) mit 20%iger Proteinase K (Sigma; P-2308), 30 min
- \rightarrow Abstoppen mit 0,2% iger Glycin-Lösung, 5 min
- \rightarrow Spülen in 20% ige Essigsäure, 15 sec
- \rightarrow Spülen in 1 x PBSM, kurz
- → Spülen mit 4%iger Paraformaldehyd-Lösung, 10 min

- \rightarrow Spülen in 1 x PBSM, kurz
- → Prä-hybridisieren mit 20%igem Glycerol in DEPC-Wasser, 60 min

Hybridisierung:

Sonden-Gemisch

Hybridisierungs-Puffer

25 µl DEPC-Wasser
20 µl 20 x SSC
40 µl 50% Dextransulfat
2 µl Denhardt-Reagenz
(Sigma, D-2532)

- \rightarrow Denaturieren des Sondengemisches in einem Wasserbad, 10 min bei 70°C
- \rightarrow Abschrecken in Eiswasser
- \rightarrow Spülen in 2 x SSC, kurz
- \rightarrow Schnitte auf eine Heizplatte legen, 10 min bei 70°C
- → Abkühlen auf einem Kühlakku

Sonden-Gemisch und Hybridisierungspuffer zusammenpipettieren und auf die Schnitte geben. Mit einem Deckglas abdeckeln und über Nacht in einer Feuchten Kammer mit 50%igem Formamid in 2 x SSC bei 37°C inkubieren.

2. Tag:

Posthybridisierung:

- \rightarrow Spülen (3 x 10 min) in 4 x SSC
- → Inkubation mit RNAse A (Boehringer, Mannheim; 109193) in Feuchter Kammer (DEPC), 30 min 37°C

Stringentes Waschen zur Ablösung nicht perfekt gepaarter Hybridmoleküle, um unspezifische Hintergrundreaktionen zu vermeiden:

- \rightarrow Spülen (4 x 5 min) in 4 x SSC, bei 37°C
- \rightarrow Spülen in 2 x SSC, 15 min bei 60°C
- \rightarrow Spülen in 0,2 x SSC, 15 min bei 42°C
- \rightarrow Spülen in 0,1 x SSC, 5 min bei RT
- \rightarrow Spülen in 2 x SSC, 5 min bei RT

Immunhistochemie:

- \rightarrow Spülen in 1 x TNMT, 10 min bei RT
- \rightarrow Spülen in 3% BSA in TNMT, 60 min bei RT
- → Inkubation mit DIG-Fab-Antikörper (Anti-Digoxigenin-AP Fab fragments; Fa. Roche Diagnostics GmbH, 1093274) in Feuchter Kammer, über Nacht bei 4°C
- 3. Tag:

Darstellung:

- \rightarrow Spülen (2 x 10 min) in 1 x TNMT
- \rightarrow Spülen in 1 x NTB, 5 min
- → Spülen in 1 x NTB mit 1 ml 1M Levamisol, 5 min
- → Entwickeln mit NBT-BCIP-Lösung in einer Feuchten Kammer bei RT

Die Entwicklung wurde je nach Stärke der Reaktion nach einigen Stunden oder am nächsten Morgen nach folgendem Protokoll abgestoppt.

- \rightarrow Spülen in 1 x NTB + 1 ml 1M Levamisol, 5 min
- \rightarrow Spülen in Aqua bidest., 5 min
- → Eindeckeln mit DAKO Glycergel

4.6 Auswertung und Dokumentation

Die Auswertung der immunhistochemischen Reaktionen und der in situ Hybridisierung erfolgte an einem Mikroskop (Leica DMLB) mit Kamera (JVC KYF55B Color Kamera). Die Bilder wurden mit dem Programm *dhs Bilddatenbank* (Dietermann und Heuser Solution GmbH, Greifenstein-Beilstein) aufgenommen und im folgenden digital mit dem Programm *CorelDraw8* bearbeitet.

Das Gel mit der aufgetrennten DNA wurde auf einen High Performance Ultraviolett Transilluminator (Fa UVP; Upland, CA) gelegt und mittels eines Elektrophoresis Hood (0,8 Vergrößerung; Fa Polaroid) und einer Gel Cam (Fa Polaroid) fotografisch dokumentiert.

5. ERGEBNISSE

5.1 Allgemeines zur Erfassung der histologischen und molekularbiologischen Methoden

In der Skizze 5 ist die Histologie eines Plazentoms vereinfacht dargestellt.

Skizze 5: Darstellung der histologischen V erhältnisse im Plazentom.

5.1.1 Immunhistochemie

Die eindeutige positive Reaktion für die Connexine 26, 32 und 43 ist durch eine rotbraune Färbung gekennzeichnet. Diese kann entweder in annulärer oder in makulärer Form auftreten. Die Intensität der Färbung ist nur bedingt für eine quantitative Auswertung zu verwenden, da nur Schnitte, die aus demselben immunhistochemischen Durchgang stammen, direkt miteinander verglichen werden können. Aus diesem Grund wurden für jeden Versuch Tiere aus verschiedenen Gruppen verwendet und eine Einteilung nach folgender Abstufung in Stärke und Intensität der Anfärbung vorgenommen (siehe auch Tabellen 6, 7).

[+++]	starke Immunreaktion
[++]	durchschnittliche Immunreaktion
[+]	schwache Immunreaktion

[+/-] stellenweise und schwache Immunreaktion

5.1.2 In situ Hybridisierung

Die eindeutige, positive Reaktion für die Connexine 26 und 32 ist durch eine braun / schwarze Färbung gekennzeichnet. Insbesondere ist auf die Färbung im Zytoplasma und die Aussparung des Zellkerns zu achten, da sich der größte Anteil von mRNA im Zytoplasma befindet. Eine quantitative Einteilung wurde entsprechend Punkt 5.1.1 vorgenommen.

5.1.3 RT-PCR

Die amplifizierte cDNA wurde mittels Gelelektrophorese dargestellt. Ein eindeutiges Ergebnis wird dadurch erlangt, daß die jeweilige Bande der PCR (Abbildung 12) mit dem zuvor errechneten Stück der Sequenz zwischen den Primern übereinstimmt. Die Banden des Markers entsprechen je 100 Basenpaaren.

5.1.4 Western Blot Verfahren

Die spezifisch positive Reaktion ist durch eine blaue Bande (Abbildung 13) gekennzeichnet, deren Gewicht anhand eines Markers abgelesen werden kann. Die Banden des Markers entsprechen 25, 37 und 50 kDA.

5.2 Cx 26

Immunhistochemisch konnte Cx 26 Antigen während aller Trächtigkeitsstadien an der feto-maternalen Grenzlinie lokalisiert werden (Abbildungen 1, 2). Aufgrund der präparationsbedingten Artefakte im Gewebe läßt sich immunhistochemisch keine Aussage darüber machen, ob Cx 26 am apikalen Pol des maternalen Epithels oder des Trophoblasten liegt. Durch den mRNA Nachweis mittels in situ Hybridisierung wird deutlich, daß die mRNA zu allen Trächtigkeitsstadien im Zytoplasma des maternalen Epithels liegt (Abbildungen 3, 4). Auch in den TGC wird eine Cx 26 Immunreaktion beobachtet, wie auch mRNA über in situ Hybridisierung detektiert. Interessanterweise liegt hier das Cx 26 sowohl in der makulären (entlang der Zytoplasmamembran) als auch in der annulären (intrazytoplasmatisch) Form vor. Die feto-maternalen Hybridzellen im maternalen Epithel bleiben hinsichtlich Protein- und mRNA-Nachweis reaktionslos. Der mRNA-Nachweis mittels PCR bestätigt das Vorhandensein von Cx 26 mRNA (Abbildung 12). Die Bande mit einer Basenpaarlänge von 222 Bp entspricht der zuvor berechneten Basenpaarlänge.

5.3 Cx 32

Die immunhistochemische Färbung mit anti-Cx 32 findet sich in den Wachstumszonen des Plazentoms, in denen das maternale Epithel der Septenspitzen (gegenüber den Primärzotten liegend) eine deutliche Reaktion an den lateralen Zellgrenzen zeigt (Abbildungen 5, 6, 7). Dieser Nachweis ist streng lokal begrenzt, das heißt das Innere des Plazentoms bleibt komplett negativ. Auch bei der in situ Hybridisierung ist eine starke Reaktion in diesen Bereichen des invasiven Wachstums im maternalen Epithel zu sehen (Abbildung 8). Aber anders als in der Immunhistochemie ist Cx 32 mRNA im maternalen Epithel des gesamten Plazentoms nachzuweisen. Die Reaktion ist jedoch wesentlich schwächer als an den Septenspitzen. In der RT-PCR zeigt sich eine Bande von 362 Bp für die mRNA, deren Länge den zuvor berechneten Basenpaaren entspricht (Abbildung 12).

5.4 Cx 43

Cx 43 Antigen läßt sich immunhistochemisch in dem maternalen Kryptenstroma und dem fetalen Mesenchym der Chorionzotten nachweisen (Abbildung 9). Die TGC der Stammzotten zeigen eine deutliche intrazytoplasmatische Farbreaktion (Abbildung 11). Wohingegen die TGC im Plazentominneren nur noch vereinzelt makulär Cx 43 Antigen exprimieren (Abbildung 10). Eine spezifische Immunreaktion für das Cx 43 Protein konnte mittels Western-Blot-Verfahren bei einer Bandenlänge von 43 kDa gezeigt werden (Abbildung 13). Die PCR bestätigt durch eine Bande von 137 Bp auch das Vorhandensein von Cx 43 mRNA (Abbildung 12).

			Fet	al					Ma	ternal				
	Trophoblast		TGC/I	Hybrid-		Epithel								
	Stroma	Gefäße	basal	lateral	apikal	zellen		apikal	lateral	basal	Gefäße	Stroma		
Cx 26					+++	+++								
Cx 32									+++					
Cx 43	+++	+++				+++					+++	+++		

Tabelle 6: Lokalisation der immunhistochemischen Färbung der Cx 26, 32 und 43.

			Fetal		Maternal				
	Stroma Gefäße Trophoblast		TGC/I ze	Hybrid- llen	Epithel	Gefäße	Stroma		
Cx 26				+++		+++			
Cx 32						+++			

Tabelle 7: Lokalisation der mRNA der Cx 26 und 32 ermittelt durch in situ Hybridisierung.

5.5 Histologische Abbildungen

In den folgenden, histologischen Abbildungen wird die Verteilung der Connexine auf Proteinebene und mRNA-Ebene dargestellt. Folgende Markierungen wurden auf den Abbildungen 1-13 verwendet: ME, maternales Epithel; MS, maternales Stroma; T, Trophoblastzellen; TGC, Trophoblast Giant Cell; FM, fetales Mesenchym; MG, maternales Gefäß; IH, Immunhistochemie; ISH, in situ Hybridisierung; M, Marker; d, Tag (day)

Abbildung 1:IH, Cx 26, 180. Tag.Übersichtsaufnahme. Kräftige Immunreaktion entlang der feto-maternalen Grenzlinie.

Abbildung 2: IH, Cx 26, 240. Tag. Fetale Zotte mit positivem Signal entlang der feto-maternalen Grenzlinie. TGC mit positiver annulärer Reaktion (Pfeile).

Abbildung 3: ISH, Cx 26, 150.Tag. Übersichtsaufnahme. Längs- und quergeschnittene feto-maternale Einheiten. Das maternale Epithel zeigt eine deutliche schwarze Reaktion.

Abbildung 4:ISH, Cx 26, 80. Tag.Die TGC weisen, unter Aussparung des Kerns, eine positive zytoplasmatische Färbung auf (Pfeile).Zytoplasmatische Anfärbung des maternalen Epithels. Links im Bild verläuft vertikal ein großes Gefäß mitErythrozyten.

Abbildung 5: IH, Cx 32, 90. Tag. Übersichtsaufnahme der feto-maternalen Kontaktzone. Ausschließlich im maternalen Epithel der Septenspitzen liegt ein positives Signal.

Abbildung 6: IH, Cx 32, 120. Tag. Diagonal verlaufende maternale Septenspitze, die von invadierendem Trophoblast umgeben wird. Im maternalen Epithel liegt die positive Reaktion deutlich baso-lateral (Pfeile).

Abbildung 7: IH, Cx 32, >270. Tag. Übersichtsaufnahme. Ineinanderragen von fetalen Zotten und maternalen Septen. Stellen, an denen maternales Epithel zerstört wurde, sind ohne positive Reaktion (Pfeile).

Abbildung 8: ISH, Cx 32, 220. Tag. Starke Reaktion im maternalen Epithel der Septenspitzen, die zum Plazentominneren hin abnimmt.

Abbildung 9:IH, Cx 43, 120. Tag.Maternales Stroma und fetales Mesenchym zeigen eine deutliche positive Reaktion.

Abbildung 10: Ausschnitt aus Abbildung 9.

Die TGC im Plazentominneren weisen eine positive makuläre Färbung auf (Pfeile).

Abbildung 11: IH, Cx 43, zirka 240. Tag.

Die TGC in der Wachstumszone (Mitte oben) zeigt eine homogene Anfärbung im Zytoplasma.

5.6 PCR

In der Abbildung 12 werden die cDNA Banden der PCR Produkte dargestellt.

Abbildung 12: Die Banden der PCR Produkte entsprechen den zuvor errechneten Basenpaarlängen.
Bp; Basenpaar; M, entspricht einem 100 Bp Marker.
Cx 26, 222 Bp; Cx 32, 362 Bp; Cx 43, 137 Bp.

5.7 Western Blot

Die Abbildung 13 zeigt die Reaktion im Western-Blot-Verfahren. Cx 43 Protein konnte zu verschiedenen Trächtigkeitsstadien detektiert und durch eine Bande bei 43kDa visualisiert werden.

Abbildung 13: Im Western-Blot-Verfahren konnte Cx 43 Protein nachgewiesen werden (hier: Tag (d) 180. und 270.; M, Marker).

6. **DISKUSSION**

6.1 Kritische Betrachtung der Methoden

In den histologischen Schnitten konnte eine Zusammenhangstrennung zwischen maternalem und fetalem Epithel fixationsbedingt in einigen Fällen nicht vermieden werden, so daß in diesen Bereichen eine artifizielle Lücke entstand. Dies ist in der Lichtmikroskopie der Plazenta ein oft gesehenes Phänomen und ist als lediglich "ästhetisches Problem" für den immunohistochemischen Nachweis der hier erfolgten Expressionen nicht von Belang. Gelegentlich zeigten einige Schnitte auch eine leichte Hintergrundfärbung, die jedoch anhand der Negativkontrollen als unspezifisch beurteilt werden konnte.

Die Einheitlichkeit der Connexine untereinander sowie die Homologie zu anderen Spezies rechtfertigt die Anwendung nicht rindspezifischer Antikörper in der Immunhistochemie.

Für den Cx 26-Antikörper ist bekannt, daß eine Kreuzreaktion mit dem Cx 30 vorliegen kann, deren Intensität von den Fixierungsbedingungen abhängt (Kumar, 1996). Es ist deshalb eine falsch-positive Reaktion in der Immunhistochemie theoretisch nicht auszuschließen. Im Western-Blot-Verfahren konnten in einigen Zelltypen für das Cx 43 Kreuzreaktionen bei einer Bandenlänge von 70 kDa vom Hersteller festgestellt werden, die aber in unseren Versuchen nicht auftraten und somit die Spezifität des Primärantikörpers in der Immunhistochemie bestätigen.

Die für die PCR verwendeten Primer wurden mittels spezifischer mRNA Sequenzen für jedes Cx hergestellt. Aufgrund der Beinahe-Homologie der Cx untereinander könnte es jedoch sein, daß mRNAs verschiedener Cx-Sequenzen Ähnlichkeiten aufweisen und somit in der PCR zu falsch-positiven Banden führen. Die immunhistochemischen Ergebnisse für die Cx 26, 32 und 43 konnten hier durch die ISH beziehungsweise das Western-Blot-Verfahren bestätigt werden. Hätten die für das Cx 26 ausgewählten mRNA Sequenzen mit denen von Cx 30 übereingestimmt, wäre eine falsch-positive Reaktion vorgelegen. Die in der vorliegenden Arbeit für die PCR zur Anwendung gekommenen Primer für das Cx 43 sind dem humanen Cx 43 Genom entnommen worden. Dieses könnte ein Grund dafür sein, warum sich eine in situ Hybridisierung im bovinen Plazentom nicht durchführen ließ. Ein anderer Grund für eine Behinderung der Hybridisierung der Einzelstränge könnte die Permeabilität des Gewebes sein. Weiterhin könnte die Oligomerisation so schnell stattfinden, daß zu wenig detektierbare mRNA im Gewebe vorliegt.

6.2 Das Kommunikationsnetzwerk im Rinderplazentom

6.2.1 Bedeutung von Cx 26 für den materno-fetalen Glukosetransport

Das Vorhandensein von Cx 26 mRNA im maternalen Epithel und Cx 26 Protein entlang der feto-maternalen Grenzlinie im Rinderplazentom könnte für eine nutritive Versorgung des Fetus mit Glukose aus dem maternalen Blutkreislauf sprechen. Ein diesbezüglicher Hinweis stammt aus Untersuchungen der haemodi- und haemotrichorialen Plazenta von Nagern, WO benachbarte Zellen zweier Trophoblastschichten über GJ verbunden sind (Metz et al., 1976). Da außerdem in diesen Zellen keine Hinweise auf mikropinozytotische Vorgänge zu finden sind, wird eine Rolle von GJ im diaplazentären Austausch von Molekülen postuliert (Metz et al., 1976).

In der Plazenta der Ratte verbindet Cx 26 die Synzytiotrophoblastlagen I und II (Risek und Gilula, 1991). An den gegenüberliegenden Plasmamembranseiten, die zur maternalen (Synzytiotrophoblast I) und zur fetalen (Synzytiotrophoblast II) Blutseite gerichtet sind, liegt GLUT I (Takata et al., 1994), ein die Glukosediffusion unterstützendes Protein (Baldwin, 1993). Diese Anordnung erleichtert den Glukosetransport aus maternalem Blut via GJ in den fetalen Kreislauf (Shin et al., 1996). In dem Synzytiotrophoblasten der haemomonochorialen, humanen Plazenta liegt GLUT I sowohl am apikalen als auch am basalen Pol des Synzytiotrophoblasten (Takata et al., 1992). Obwohl hier immunhistochemisch keine GJ nachgewiesen werden konnten (Winterhager et al., 1999), wurden elektronenmikroskopisch im ersten Drittel der Schwangerschaft GJ zwischen Synzytiotrophoblast und Zytotrophoblast festgestellt (de Virgiliis et al., 1982).

In der Plazenta der Maus konnte Cx 26 in den Zytotrophoblastzellen des plazentären Labyrinths detektiert werden (Pauken und Lo, 1995). Die essentielle Bedeutung von Cx 26 für die Ernährung des Fetus auch in der Maus wird durch Untersuchungen an Cx 26-defizienten, homozygoten Mäusen belegt, da diese aufgrund von verminderten Glukosetransport zwischen dem 10. und 11. Tag p.c. in utero sterben (Gabriel et al., 1998).

Die Tatsache, daß Cx 26 mRNA im Rinderplazentom nur im maternalen Epithel, das heißt, nur auf einer Seite der Kontaktzone dargestellt werden konnte, läßt den Schluß zu, daß neben Cx 26 weitere Cx an der Bildung heterotypischer Kanäle beteiligt sind. Versuche an Xenopus Oocyten und transfizierten HeLa Zellen zeigen, daß Cx 26 funktionsfähige, heterotypische GJ Kanäle zusammen mit den Cx 30, 32, 46 und 50 bilden kann (Elfgang et al., 1995; White et al., 1995b). Daß zwei unterschiedliche Zelltypen apikal miteinander über GJ verbunden sein können, wurde bereits an der Verbindung zwischen Granulosazellen und Oozyten bei der Maus gezeigt (Gilula, 1978). Die Oozyte exprimiert Cx 37 und nimmt mit Ausläufern der Granulosazellen, die durch die Zona pellucida dringen, Kontakt über ein noch unbekanntes Connexin auf (Nicholson und Bruzzone, 1997). Der Informationsaustausch über dieses Kommunikationsnetzwerk steuert die Reifung der Oozyten (Anderson, 1976; Eppig, 1991).

6.2.2 Einfluß von Connexinen auf invasive Prozesse

Zum Prozess der Plazentation gehört die Proliferation, die Invasion und die Differenzierung der Zytotrophoblastzellen (Aplin, 1991). Aufgrund des proliferativen und invasiven Charakters des Trophoblasten kann die Plazentation mit Tumorwachstum verglichen werden. Während es aber bei der Karzinogenese zu einem Zusammenbruch der Homeostase kommt, der mit unkontrollierten Vorgängen auf zellulärer Ebene einhergeht (Trosko und Ruch, 1998), findet die Invasion des Trophoblasten in zeitlich und räumlich begrenztem Rahmen statt (Winterhager, 2000).

Die Bedeutung von Connexinen bei dem Wachstum von Tumoren wird dadurch deutlich, daß die meisten neoplastischen Zellen im Vergleich zu ihren nicht entarteten Zellen weniger oder kleinere GJ bilden, weniger Connexine exprimieren und der Informationsaustausch über die vorhandenen GJ verringert ist (Loewenstein, 1981; Weinstein et al., 1976; Yamasaki, 1990).

Tumoren des Endometriums haben eine deutlich verringerte Expression von Cx 26 und Cx 43 beziehungsweise exprimieren die Cx an von der Norm abweichenden Stellen (Saito et al., 2001). Untersuchungen an Jeg-3 Chorionkarzinomzellen zeigen, daß Cx 40 mRNA in den Zellen synthetisiert wird, jedoch keine Kopplung der Zellen stattfindet (Hellmann et al., 1996). Versuche, diese Tumorzell-Linien mit weiteren Cx zu transfizieren, zeigen, daß die Proliferations- und Invasionseigenschaften dieser Zell-Linien, insbesondere bei den Klonen mit viel Cx 26, erheblich gehemmt werden können (Winterhager, 2000). Daß der Verlust von Cx 32 eine wichtige Rolle bei der Entstehung von Tumoren hat, wird durch das gehäufte Auftreten von chemisch induzierten Lebertumoren bei Cx 32 defizienten Tieren verdeutlicht (Temme, 1997). Aus diesem Grund sind Connexine auch als *Tumor Suppressor Proteine* bekannt (Yamasaki und Nauss, 1996). Diese sind im Prozess der Differenzierung von Geweben (Simon, 1999) und an Invasionsvorgängen beteiligt (Graeber und Huelser, 1998).

Kontrollmechanismen in der Proliferationszone - Chorionplatte des Rindes

Die für Proliferations- und Invasionsvorgänge am meisten exponierte Stelle im Rinderplazentom ist die Chorionplatte, der fetusnahe Rand des Plazentoms, an dem fetale Kotyledonen und maternale Karunkeln ineinanderwachsen. Hier wird Cx 32 Protein ausschließlich im maternalen Epithel an den Septenspitzen exprimiert, also genau in dem Bereich, in dem der erste Kontakt zum fetalen Trophoblasten stattfindet. Cx 32 wirkt hier möglicherweise als Tumor Suppressor Protein, nämlich invasionshemmend beziehungsweise grenzt den Bereich des (Primär)Zottenwachstums oder die Anzahl der Primärzotten ein. Da Cx 32 mRNA im maternalen Epithel des gesamten Rinderplazentoms vorkommt, scheint die Proteinsynthese auf einer anderen Ebene reguliert zu werden. Hierbei könnte der mechanische Reiz des einwachsenden Trophoblasten und der Einfluß von Steroidhormonen Anlaß zur Expression des Proteins geben. Beim Kaninchen wurde der Einfluß der Blastozyste auf die Verteilung von Cx und die Ausbildung von GJ vor und während des Implantationszeitpunktes betrachtet. Im Gegensatz zum Uterusepithel scheinträchtiger Kaninchen und nicht fruchttragender Uteri exprimiert das Uterusepithel der Implantationskammer tragender Tiere zum Zeitpunkt der Implantation Cx 26 (Winterhager et al., 1988). Cx 32 wird zusätzlich ab dem 6. Tag p.c. vom Uterusepithel exprimiert (Antoskiewicz et al., 1996). Verschiedene Versuche konnten zeigen, daß ein mechanischer Stimulus in Kombination mit 17-beta-Östradiol-Gaben die Synthese des Connexins 32 im Uterusepithel in ähnlicher Weise anregt, wie die Blastozyste während der Trächtigkeit. Beim Schaf konnte Cx 32 weder im zyklischen Endometrium noch während der Implantation oder in der synepitheliochorialen Plazenta nachgewiesen werden (Gabriel, 1996).

Die Verteilung von Steroidhormonrezeptoren könnte für eine differenzierte Expression von Cx von Bedeutung sein (Winterhager et al., 1993). Cx 43 wird nämlich während der frühen Trächtigkeit bei Ratten vom Endometrium exprimiert, wohingegen das Myometrium das gleiche Cx ausschließlich zum Geburtszeitpunkt exprimiert, obwohl beide Kompartimente unter dem gleichen hormonellen Einfluß stehen (Risek et al., 1990; Winterhager et al., 1991).

Erlangung der Migrationsfähigkeit der Trophoblastzellen

Im Gegensatz zur kontinuierlichen beziehungsweise progressiven Entwicklung von Tumorzellen, ist die Fähigkeit zur Migration ein Differenzierungsweg, der der Trophoblastzelle kurzzeitig invasive Eigenschaften verleiht (Cross et al., 1994). Der temporäre Verlust spezifischer Connexine oder die Fähigkeit, unterschiedliche Cx zu exprimieren, spielt für die Erlangung und den Grad der Invasivität des Trophoblasten eine große Rolle (Winterhager et al., 1999).

Der invasivste Prozess im Rinderplazentom ist die Migration der TGC in das maternale Epithel. Die TGC enthalten sowohl Cx 26 als auch Cx 43 mRNA. Bei beiden liegt das Protein, je nach Lokalisation, entweder in der makulären oder in der annulären Form vor, solange sich die TGC noch im fetalen Chorionepithel befinden. Dagegen ist im maternalen Epithel und bei den dreikernigen feto-maternalen Hybridzellen keine Proteinexpression mehr nachzuweisen. Hieraus läßt sich schließen, daß die TGC im Rinderplazentom möglicherweise einen Pool von Connexinen zur Kommunikation benötigen, wohingegen ihre Migration und Invasion in das maternale Epithel durch Unterdrückung der Expression von Cx möglich wird.

In der Humanplazenta ist die Expression von Cx 40 auf den proliferativen Phänotyp der Zytotrophoblastzellen begrenzt. Wenn sich diese Trophoblastzellen von den Zellsäulen lösen und ihre Migration in das Plazentabett beginnen, stellen sie die Cx 40 Expression ein (Winterhager, 1999). Mit dem Erreichen der endgültigen Invasionstiefe reaggregieren einige der nicht proliferierenden Trophoblastzellen im Plazentabett und nehmen auch ihre Kommunikation über Cx 40 wieder auf (Winterhager et al., 1999).

Die Trophoblastsäulen der Paviane und Makaken unterscheiden sich von denen des Menschen durch elongierteres Wachstum und größere Trophoblastinseln (Enders et al., 2001). Anders als in der Humanplazenta können in dieser Region die Gap Junctions elektronenmikroskopisch nachgewiesen werden (Enders et al., 2001).

In der Plazenta der Maus und der Ratte exprimiert der proliferative und invasive Trophoblast Cx 31 (Dahl et al., 1996; Reuss et al., 1996; Grümmer et al., 1996). Im späteren Verlauf der Trächtigkeit wechselt die Cx 31 Expression zu Cx 26 im Labyrinth und zu Cx 43 im Spongiotrophoblasten und den Riesenzellen (Risek und Gilula, 1991; Reuss et al., 1996). Dieser Wechsel findet interessanterweise zu einem Zeitpunkt statt, der auch mit einem Wechsel des physiologischen Status der Plazenta vom invasiven Charakter zum funktionell morphologischen Typ einhergeht (Reuss et al., 1996). Hierbei werden Cx 26 und 43 mit dem Ca²⁺ abhängigen Adhäsionsmolekül E-cadherin coexprimiert, wohingegen die Cx 31 Expression mit einem Verlust des Ecadherin einhergeht (Reuss et al., 1996). Der Verlust von E-cadherin in Epithelzellen führt zu erhöhter Invasivität und Entartung dieser Zellen (Behrens, 1989; Frixen, 1991). Die Fusion der TGC mit uterinen Epithelzellen könnte durch Cx 43 angeregt werden. Firth (1980) stellte aufgrund von Untersuchungen an der Plazenta von Meerschweinchen die Vermutung auf, daß Cx für die Fusion von Zellen mitverantwortlich sind. Elektronenmikroskopisch konnte er GJ zwischen Zytotrophoblast und Synzytiotrophoblast nachweisen. In der Humanplazenta des Trimesters konnten ebenfalls GJ zwischen Zytotrophoblast ersten und Synzytiotrophoblast nachgewiesen werden (de Virgiliis et al., 1982), wohingegen bei Untersuchungen an Plazenten aus dem (zweiten und) dritten Trimester GJ elektronenmikroskopisch keine nachzuweisen waren (Metz. 1980). Immunhistochemisch können in der Humanplazenta zwischen Zytotrophoblast und Synzytiotrophoblast keine GJ nachgewiesen werden (Winterhager et al., 1999).

Ergebnisse aus in vitro Studien mit Zellkulturen unterstützen die Vermutung von Firth (1980). Zytotrophoblastzellen werden hier durch die Expression von Cx 43 zur Bildung eines Synzytiums angeregt. Die Expression von Cx 43 wird durch die Anwesenheit des Hormons hCG und durch cAMP gefördert (Cronier et al., 1994, 1997, 2001).

Beschränkung der Invasionstiefe

Die feto-maternale Verbindung während der Trächtigkeit ist im wesentlichen abhängig von der Implantationsart und der Trophoblastinvasion der verschiedenen Spezies (Leiser und Kaufmann, 1994). Die invasive, hämochoriale oder endotheliochoriale Plazentation ist dadurch gekennzeichnet, daß der Trophoblast das auf den Kontakt hin degenerierende maternale Epithel penetriert (Grosser, 1927). Als Antwort darauf finden zahlreiche Veränderungen im maternalen Stroma statt, die zusammengefaßt als Dezidualisierung bezeichnet werden (Christian, 2002). Im Gegensatz dazu steht die kaum invasive, epitheliochoriale Plazentation, bei der sich maternales Epithel und fetale Trophoblastzellen gegenüberliegen, und das maternale Stroma vom Trophoblasten unberührt bleibt (Grosser, 1927). In der maternalen Karunkel des Rinderplazentoms sind im Epithel Cx 26 mRNA und im Stroma das Cx 43 Protein zu beobachten. Ein Regulationsmechanismus für die Limitierung der Invasion der TGC könnte die Anordnung dieser Cx sein. Die Invasion der TGC in das maternale Epithel im Rinderplazentom könnte durch das Vorhandensein des Cx 26 kontrolliert werden und durch die Expression von Cx 43 im maternalen Stroma begrenzt werden.

Untersuchungen zum Implantationszeitpunkt bei der Ratte zeigen nämlich ein ähnliches Muster (Winterhager, 1993). In nächster Umgebung der Blastozyste wird Cx 26 erst vom maternalen Epithel exprimiert, und Cx 43 in der Dezidua. Kaum ist das Epithel zerstört, übernimmt die Dezidua, die mit der Blastozyste in Kontakt steht (primäre Deziduazone), die Expression von Cx 26. Cx 43 wird zu dem Zeitpunkt von der ganzen Dezidua exprimiert. Dieses ist umso interessanter, da die Zellen der primären Deziduazone aufgrund der Dezidualisierung einen epitheloiden Charakter bekommen (Parr et al., 1986; Winterhager et al., 1993).

In der epitheliochorialen Plazenta von Pferd und Schwein konnte während der gesamten Trächtigkeit das Cx 43 im maternalen Stroma, bei der Stute in den Drüsenzellen des Endometriums und beim Schwein zusätzlich im Trophoblasten während der Implantation nachgewiesen werden (Day et al., 1998). Die fetalen und maternalen epithelialen Anteile waren hinsichtlich weiterer Connexine reaktionslos. Diese Abwesenheit von Gap Junctions könnte ein Grund für die Unterbindung einer Trophoblastinvasion bei diesen Spezies sein (Day et al., 1998).

6.2.3 Cx 43 und architektonische Struktur von Geweben

Die kontinuierliche Präsenz von Cx 43 mRNA und -Protein im maternalen und fetalen Bindegewebe ist aller Wahrscheinlichkeit nach für die architektonische Struktur und für das Wachstum von Zotten und Krypten von Bedeutung.

Die Beeinflussung der Genexpression von Connexinen in in vitro Kulturen konnte anhand von Cx 43 in bovinen Blastozysten deutlich gemacht werden. Im Gegensatz zu in vivo gezüchteten Blastozysten exprimierten diese kein Cx 43 (Wrenzycki et al.,

1996). Die präimplantative Expression von Cx ist nicht essentiell für diese erleichtert die Entwicklungsperiode, sondern Erstellung eines Kommunikationsnetzwerkes für die postimplantative Entwicklungsphase (Houghton et al., 2002). In diesem Zusammenhang ist besonders interessant, daß Versuche mit geklonten Kälbern eine hohe Sterblichkeitsrate aufgrund von Plazentaanomalien aufweisen. Zum einen verhungern nach Hill et al. (2000) und Thompson et al. (2000) die Kälber im ersten Trimester der Trächtigkeit aufgrund eines enormen Nährstoffmangels. Zum anderen weisen die Kotyledonen eine zu kleine architektonische Struktur mit gleichzeitig normalem Chorionepithel auf. Die beeinträchtigte Expression von Cx 43 während der präimplatativen Phase könnte ein Grund für das verminderte Wachstum der Kotyledonen sein.

Cx 43 defiziente Morulae von Mäusen unterscheiden sich im Experiment in ihren Permeabilitätseigenschaften gegenüber Mäusen des Wildtyps. Vermutlich werden aber essentielle Aufgaben von anderen Gap Junction Kanälen übernommen, so daß ein Austragen der Embryonen möglich ist (Kidder und Winterhager, 2001). Diese Tiere sterben allerdings kurz nach der Geburt aufgrund eines anatomischen Defekts des rechten Herzventrikels (Reaume et al., 1995). Versuche an heterozygoten Tieren lassen vermuten, daß eine funktionierende Zell-Zell-Kommunikation, insbesondere über Cx 43 GJ, für eine korrekte architektonische Entwicklung des Herzens und seiner Ventrikel von Bedeutung sind (Nicholson und Bruzzone, 1997).

6.3 Ausblick

Um den interzellulären Informationsaustausch und dessen Bedeutung in der Plazenta des Rindes besser zu verstehen, müsste zunächst ermittelt werden, welche weiteren Connexine im Rinderplazentom vorhanden sind. Von Interesse sind hier insbesondere die Cx 30, 46 und 50, da diese in der Lage sind, heterotypische GJ mit dem Cx 26 zu bilden. Das Cx 30 wäre im Hinblick auf die oben erwähnte Kreuzreaktion zu ermitteln. Hinsichtlich invasiver Prozesse ist sicherlich das Cx 31 interessant, da dieses bei Nagern als invasionssteuerndes Connexin gilt.

Da der Proteinnachweis allein keine Aussage zuläßt, ob ein Austausch von Substanzen tatsächlich stattfindet, wären Versuche mit Farbstoffen von großem Interesse, um die Öffnungseigenschaften der Kanäle zu definieren. Zum besseren Verständnis der Rolle von Cx bei den Migrations-, Invasions- und Fusionseigenschaften der TGC wäre deren Beeinflussung durch Substanzen wie zum Beispiel cAMP, Kalzium und Hormonen in Zellkulturen oder in Versuchstieren zu untersuchen.

Unter dem Aspekt der vergleichenden Plazentation wäre es sinnvoll, den Zeitraum um den Implantationszeitpunkt in die Untersuchungen mit einzuschließen.

7. ZUSAMMENFASSUNG

Direkte Zell-Zell-Kommunikation via Gap Junction-Kanälen ist ein wichtiger Faktor für die Plazentaentwicklung und für den feto-maternalen Austausch. Wir haben die Rolle der Cx 26, 32 und 43 im bovinen Plazentom während verschiedener Trächtigkeitsstadien und mit besonderem Interesse an den nicht polarisierten, migrierenden Trophoblast-Riesenzellen (TGC) untersucht.

Plazentome von 36 Kühen wurden entsprechend ihrer fetalen Scheitel-Steiß-Länge in fünf Trächtigkeitsstadien eingeteilt. Die Proben wurden entweder in gepuffertem Formalin oder Bouin'scher Lösung fixiert und in Paraffin eingebettet oder sie wurden in flüssigem Stickstoff schockgefroren. Ein Proteinnachweis erfolgte für Cx 26, 32 und 43 mittels indirekter Immunhistochemie und für das Cx 43 zusätzlich mittels Western-Blot-Verfahren. Die mRNA von Cx 26, 32 und 43 wurde mittels RT-PCR nachgewiesen sowie für Cx 26 und 32 über in situ Hybridisierung in Gewebeschnitten lokalisiert.

Cx 26 Protein konnte entlang der feto-maternalen Grenze dargestellt werden. In der in situ Hybridisierung ist eine deutliche Reaktion im maternalen Epithel zu erkennen. In den TGC wird sowohl Cx 26 mRNA als auch das Cx 26 Protein nachgewiesen.

Cx 32 mRNA und Protein werden im maternalen Epithel beobachtet. Allerdings beschränkt sich die Proteinexpression ausschließlich auf das maternale Epithel der Septenspitzen, während die mRNA im gesamten maternalen Epithel zu finden ist.

Cx 43 Protein konnte sowohl im maternalen Bindegewebe der Krypten und im fetalen Mesenchym als auch in den TGC immunhistochemisch lokalisiert und über das Western-Blot-Verfahren mit einer deutliche Bande bei 43 kDa bestätigt werden. Das Vorhandensein von Cx 43 mRNA im Rinderplazentom wurde mittels RT-PCR nachgewiesen.

Direkte Zell-Zell-Kommunikation im Rinderplazentom via Gap Junction-Kanälen scheint neben dem Austausch von Molekülen auch Wachstum und Invasionsvorgänge im Plazentom zu regulieren. Das Vorhandensein von Cx 26 entlang der fetomaternalen Grenzlinie spricht für einen diaplazentären Austausch von Molekülen, insbesondere Glukose, die im Dienst der Nutrition des Fetus steht. Dem Gap Junction-Netzwerk aus Cx 32 und Cx 43 könnte bei der Kontrolle von Wachstum und Invasionsvorgängen eine bedeutende Rolle zukommen. Die Anwesenheit von Cx 32 in der Region, in der die Interdigitation von fetalen Kotyledonen und maternalen Karunkeln beginnt, könnte die Wachstumsrichtung und die Proliferation in dieser Zone steuern. Das Vorkommen von Cx 43 im fetalen Mesenchym und im maternalen Stroma könnte für die Ausbildung einer korrekten architektonischen Struktur des Plazentoms verantwortlich sein. Die Migration, Invasion und Fusion der TGC könnte durch das gleichzeitige Vorhandensein von Cx 26 und Cx 43 reguliert werden.

8. Summary

Cell-cell communication via gap junctions has been proved to be an important factor for placental development and feto-maternal exchange. We investigated the role of Connexin 26, 32 and 43 in the bovine placentome, with special attention to the nonpolarized migrating trophoblast giant cells. Placentomes from 36 cows were allocated to five groups according to fetal crown-rump-length. Samples were fixed in either buffered formalin or Bouins'solution and embedded in paraffin or were shockfrozen in liquid nitrogen.

Connexin 26, 32 and 43 protein was visualized by immunohistochemistry and Cx 43 protein was additionally detected by Western-Blot. The presence of Connexin 26, 32 and 43 mRNA was investigated by RT-PCR and additionally Connexin 26 and 32 mRNA was localized in tissue sections by in situ hybridisation.

Cx 26 protein was detected apically on mononuclear trophoblast cells and as cytoplasmic staining in TGC. Cx 26 mRNA is located in maternal epithelium and in TGC.

Cx 32 protein expression was observed in the maternal epithelium exclusively on the tips of maternal septa whereas Cx 32 mRNA was detected in the maternal epithelium of the complete placentome.

Cx 43 protein was present in maternal, septal stroma and to lesser extent in chorionic villous mesenchyme as well as on TGC. Western blotting and RT-PCR confirmed the presence of Cx 43 protein and mRNA in the bovine placentome.
Direct cell-cell communication via specifically localized gap junctional connexins in the bovine placentome is very likely and not only seems to maintain diaplacental exchange of molecules but may also regulate invasion and growth. The existence of Cx 26 at the feto-maternal contact interface indicates exchange of molecules especially glucose with the aim of fetal nutrition. The gap junction network of Cx 32 and 43 might play an essential role in the control of growth and invasion. The presence of Cx 32 in the area where fetal cotyledones and maternal caruncles begin to interdigitate each other might control the direction of growth and proliferation in this zone. Cx 43 in fetal and maternal stroma might support the formation of a correct placentomal architecture. Cx 26 and 43 expression in TGC might regulate migration, depth of invasion and fusion with maternal epithelial cells.

9. LITERATURVERZEICHNIS

Anderson E (1976) Gap junctions between the oocyte and companion follicle cells in the mammalian ovary. J Cell Biol 71, 680-686

Antoskiewicz B, Müller G, Grümmer R, Winterhager E (1996) Induction of connexin 32 expression by potential embryonic signals in rabbit uterine epithelium. Early Pregnancy: Biol Med 2, 253-263

Anzini P (1997) Structural abnormalities and deficient maintenance of peripheral nerve myelin in mice lacking the gap junction protein connexin 32. J Neurosci 17, 4545-4551

Aplin JD (1991) Implantation, trophoblast differentiation and haemochorial placentation: mechanistic evidence in vivo and in vitro. J Cell Sci 99, 681-692

Baldwin SA (1993) Mammalian passive glucose transporters: members of an ubiquitous family of active and passive transport proteins. Biochim Biophys Acta, 1154, 17-49

Behrens J (1989) Dissecting tumor cell invasion: Epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. J Cell Biol 108, 2435-2447

Benedetti EL, Emmelot P (1965) Electron microscopic observations of negatively stained plasma membranes isolated from rat liver. J Cell Biol 26, 299-305

Bennett MV, Barrio LC, Bargiello TA, Spray DC, Hertzberg E, Saez JC (1991) Gap Junctions: new tools, new answers, new questions. Neuron 6, 305-320

Bennett MV, Verselis VK (1992) Biophysics of gap junctions. Semin Cell Biol 3, 29-47

Beyer EC, Paul DL, Goodenough DA (1987) Connexin 43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol 105, 2621-2629

Beyer EC (1990) Molecular cloning and developmental expression of two chick embryo gap junction proteins. J Biol Chem 265, 14439-14443

Beyer EC, Paul DL, Goodenough DA (1990) Connexin family of gap junction proteins. J Membr Biol 116, 187-194

Beyer EC, Veenstra RD (1994) In: Handbook of Membrane Channels (Peracchia C. ed.). pp 379-401, Academic Press, London

Björkman N (1954) Morphological and histochemical studies on the bovine placenta. Acta Anat 22, 1-91

Björkman N, Sollen P (1960) Morphology of the bovine placenta at normal delivery. Acta Vet Scand 1, 347-362

Björkman N (1968) Fine structure of cryptal and trophoblastic giant cells in the bovine placentome. J Ultrastructure Res 24, 249-258

Brodsky VYA, Uryvaeva IV (1985) Genome multiplication in growth and development. In: (eds), Biology of Polyploid and Polytene Cells. p 294, Cambridge University Press, Cambridge

Bruzzone R (1993) Connexin 40, a component of gap junctions in vascular endothelium, is restricted in its ability to interact with other connexins. Mol Biol Cell 4, 7-20

Bruzzone R (1994) Null mutations of connexin 32 in patients with X-linked Charcot-Marie-Tooth disease. Neuron 13, 1253-1260

Bruzzone R, White TW, Paul DL (1996) Connections with connexins: the molecular basis of direct intercellular signaling. Eur J Biochem 238, 1-27

Bruzzone R (2001) Learning the language of cell-cell communication through connexin channels. Genome Bio 2, reports 4027. 1-4027. 5

Burghardt RC, Barhoumi R, Sewall TC, Bowen JA (1995) Cyclic AMP induces rapid increases in gap junction permeability and changes in the cellular distribution of connexin 43. J Membr Biol 148, 243-253

Buultjens TE, Finbow ME, Lane NJ, Pitts JD (1988) Tissue and species conservation of the vertebrate and arthropode of the low molecular weight proteins of gap junctions. Cell Tissue Res 251, 571-580

Cascio M, Kumar NM, Sfarik R, Gilula NB (1995) Physical characterization of gap junction membrane connexons (hemi-channels) isolated from rat liver. J Biol Chem 270, 18643-18648

Caveney S (1985) The role of gap junctions in development. Ann Rev Physiol 47, 319-335

Chen YH, DeHaan RL (1996) Asymmetric voltage dependence of embryonic cardiac gap junction channels. Am J Physiol 270, C276-C285

Christian M, Mak I, White J, Brosens J (2002) Mechanisms of decidualization. Reprod Biomed Online 4, 24-30

Cook JL, Zaragoza DB, Deborah H, Olson S, Olson DM (2000) Expression of myometrial activation and stimulation genes in a mouse model of preterm labor: myometrial activation, stimulation, and preterm labor. Endocrinology 141, 1718-1728

Cronier L, Bastide B, Hervé JC, Délèze J, Malassiné A (1994) Stimulation of connexin expression and gap junctional communication by hCG during human trophoblast differentiation. Placenta 15, A10

Cronier L, Hervé JC, Délèze J, Malassiné A (1997) Regulation of gap junctional communication during human trophoblast differentiation. Microsc Res Techn 38, 21-28

Cronier L, Bastide B, Defamie N, Niger C, Pointis G, Gasc JM, Malassiné A (2001) Involvement of gap junctional communication and connexin expression in trophoblast differentiation of the human placenta. Histol Histopathol 16, 285-295

Cross JC, Werb Z, Fisher SJ (1994) Implantation and the placenta: Key pieces of the development puzzle. Science 266, 1508-1518

Dahl G, Miller T, Paul D, Voellmy R, Werner R (1987) Expression of functional cell-cell channels from cloned rat liver junction complementary DNA. Science 236, 1290-1293

Dahl G, Nonner W, Werner R (1994) Attempt to define functional domains of gap junction proteins with synthetic peptides. Biophys J 67, 1816-1822

Dahl E, Winterhager E, Reuß B, Traub O, Butterweck A, Willecke K (1996) Expression of the gap junction proteins connexin 31 and connexin 43 correlates with communication compartments in extraembryonic tissues and in the gastrulating mouse embryo, respectively. J Cell Sci 109, 191-197

Day W, Bowen JA, Barhoumi R, Bazer FW, Burghardt RC (1998) Endometrial connexin expression in the mare and pig: Evidence for the suppression of cell-cell communication in uterine luminal epithelium. Anat Rec 251, 277-285

De Mello WC (1994) Gap junctional communication in excitable tissues; the heart as a paradigma. Prog Biophys Mol Biol 61, 1-35

De Virgiliis G, Sideri M, Fumagalli G (1982) The junctional pattern of the human villous trophoblast, a freeze fracture study. Gynecol Obstet Invest 14, 263-272

Donaldson PJ, Dong Y, Roos M, Green C, Goodenough DA, Kistler J (1995) Changes in lens connexin expression lead to increased gap junction voltage dependence and conductance. Am J Physiol 269, C590-C600

Doualla-Bell F, Lye SJ, Labrie F, Fortier MA (1995) Differential expression and regulation of connexin 43 and cell-cell coupling in myocytes from the circular and longitudinal layers of bovine myometrium. Endocrinology 136, 5322-5327

Ebihara L, Steiner E (1993) Properties of a nonjunctional current expressed from a rat connexin cDNA in Xenopus oocytes. J Gen Physiol 102, 59-74

Eghbali B, Kessler JA, Reid LM, Roy C, Spray DC (1990) Involvement of gap junctions in tumorigenesis: transfection of cells with connexin 32 cDNA retards growth in vivo. Proc Natl Acad Sci USA 88, 1328-1331

Ek JF (1994) Role of histidine 95 on pH gating of the cardiac gap junction protein connexin 43. Circ Res 74, 1058-1064

Elfgang C, Eckert R, Lichtenberg-Fraté H, Butterweck A, Traub O, Klein RA, Hülser DF, Willecke K (1995) Specific permeability and selective formation of gap junction channels in connexin-transfected HeLa cells. J Cell Biol 129, 805-817

Enders AC (1965) A comparative study of the fine structure of the trophoblast in several hemochorial placentas. Am J Anat 116, 29-68

Enders AC (1991) Current topic: structural responses of the primate endometrium to implantation. Placenta 12, 309-325

Enders AC, Blankenship TN, Fazleabas AT, Jones CJP (2001) Structure of anchoring villi and the trophoblastic shell in the human, baboon and macaque placenta. Placenta 22, 284-303

Eppig JJ (1991) Intercommunication between mammalian oocytes and companion somatic cells. BioEssay 13, 569-574

Evans WH (1992) Gap junction communication channel: peptides and anti-peptide antibodies as structural probes. Biochem Soc Trans 20, 856-861

Falk MM (1994) Membrane insertion of gap junction connexins: polytopic channel forming membrane proteins. J Cell Biol 127, 343-355

Falk MM (1995) Biosynthetic membrane integration of connexin proteins. In: Progress in cell research: Intercellular communication through gap junctions, vol 4. Edited by Kanno Y, Elsevier Science BV, 319-322

Falk MM (1997) Cell-free synthesis and assembly of connexins into functional gap junction membrane channel. EMBO J 16, 2703-2716

Falk MM (1998) Connexin membrane protein biosynthesis is influenced by polypeptide positioning within the translocon and signal peptidase access. J Biol Chem 273, 7856-7864

Finbow ME, Shuttleworth J, Hamilton AE, Pitts JD (1983) Analysis of vertebrate gap junction protein. EMBO J 2, 1479-1486

Firth J, Farr A, Bauman K (1980) The role of gap junctions in trophoblastic cell fusion in the guinea-pig placenta. Cell Tissue Res 205, 311-318

Frixen UH (1991) E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113, 173-185

Gabriel S (1996) Immunhistochemische Untersuchung der zeitlichen und räumlichen Expression von Gap junction-Connexinen im zyklischen, implantativen und peripartalen Schafuterus. Diss med vet, Gießen

Gabriel HD, Jung D, Bützler C, Temme A, Traub O, Winterhager E, Willecke K (1998) Transplacental uptake of glucose is decreased in embryonic lethal connexin 26-deficient mice. J Cell Biol 140, 1453-1461

Gilula NB (1978) Cell-to-cell communication. A study of the cumulus-oocyte complex. J Cell Biol 78, 58-75

Goodenough DA, Paul DL, Jesaitis L (1988) Topological distribution of two connexin 32 antigenic sites in intact and split rodent hepatocyte gap junctions. J Cell Biol 107, 1817-1824

Goodenough DA (1992) The crystalline lens. A system networked by gap junctional intercellular communication. Semin Cell Biol 3, 49-58

Graeber S, Huelser DF (1998) Connexin transfection induces invasive properties in HeLa cells. Exp Cell Res 243, 142-149

Grazul-Bilska AT, Reynolds LP, Kirsch JD, Redmer DA (1996) Gap junctional intercellular communication of bovine luteal cells from several stages of the estrous cycle: Effects of cyclic adenosine 3',5'-monophosphate. Biol Reprod 53, 538-545

Greenstein JS, Murray RW, Foley RC (1958) Observations on the morphogenesis and histochemistry of the bovine pre-attachment placenta between 16 and 33 days of gestation. Anat Rec 132, 321-341

Gros DB, Nicholson BJ, Revel JP (1983) Comparative analysis of the gap junction protein from rat heart and liver: is there a tissue specificity of gap junctions? Cell 35, 539-549

Gross TS, Williams WF, Russek-Cohen E (1991) Cellular changes in the peripartum bovine fetal placenta related to placental separation. Placenta 12, 27-35

Grosser O (1927) Frühentwicklung, Eihautbildung und Plazentation des Menschen und der Säugetiere. In: Jaschke RT (ed) Deutsche Frauenheilkunde, Geburtshilfe, Gynäkologie und Nachbargebiete in Einzeldarstellungen, Vol 5. Bergmann, München

Grümmer R, Reuss B, Winterhager E (1996) Expression pattern of different gap junction connexins is related to embryo implantation. Int J Dev Biol 40, 361-367

Guerrier A, Fonlupt P, Morand I, Rabilloud R, Audebet C, Gros D, Tousset B, Munari-Silem Y (1995) Gap junctions and cell polarity: connexin 32 and connexin 43 in polarized thyroid epithelial cells assemble into separate gap junctions, which are located in distinct regions of the lateral membrane domain. J Cell Sci 108, 2609-2617 *Gupta VK, Berthoud VM, Atal N, Jarillo JA, Barrio LC (1994)* Bovine connexin 44, a lens gap junction protein: molecular cloning, immunologic characterization and functional expression. Invest Ophthalmol Vis Sci 35, 3747-3758

Guthrie C, Gilula NB (1989) Gap junctional communication and development. Trends Neurosci 12, 12-16

Habermehl KH (1975) Die Altersbestimmung beim Hauswiederkäuer. In: Die Altersbestimmung bei Haus- und Labortieren. 2. Auflage, pp. 62-63, Paul Parey Verlag, Berlin, Hamburg

Hellmann P, Winterhager E, Spray DC (1996) Properties of connexin 40 gap junction channels endogenously and exogenously overexpressed in human choriocarcinoma cell lines. Eur J Physiol 432, 501-509

Henderson D, Eibl H, Weber K (1979) Structure and biochemistry of mouse hepatic gap junctions. J Mol Biol 132, 193-218

Hill JR, Burghardt RC, Jones K, Long CR, Looney RC, Shin T, Spencer TE, Thompson JA, Winger QA, Westhusin ME (2000) Evidence for placental abnormality as the major cause of mortality in first-trimester somatic cell cloned bovine fetuses. Biol Reprod 63, 1787-1794 (2000)

Hoffman LH, Wooding FBP (1993) Giant and binucleate trophoblast cells in mammals. J Exp Zool 266, 559-577

Hoffmann B, Schuler G (2002) The bovine placenta; source and target of steroid hormones: observation during the second half of gestation. Domest Anim Endocrinol 23, 309-320

Hotz-Wagenblatt A, Shalloway D (1993) Gap junctional communication and neoplastic tranformation. Crit Rev Oncogen 4, 541-548

Houghton FD, Barr KJ, Walter G, Gabriel HD, Grümmer R, Traub O, Leese HJ, Winterhager E, Kidder GM (2002) Functional significance of gap junctional coupling in preimplantation development. Biol Reprod 66, 1403-1412

Huizinga JD (1992) Intercellular communication in smooth muscle. Experientia 48, 932-941

Johnson M (1999) Expression of gap junctional proteins connexin 43, 32 and 26 throughout follicular development and atresia in cows. Endocrine 10, 43-51

Johnson RG, Hammer JD, Sheridan JJ, Revel JP (1974) Gap junction formation between reaggregated Novikoff hepatoma cells. Proc Natl Acad Sci USA 71, 4536-4540

Jongen TJ (1991) Regulation of connexin 43-mediated gap junctional intercellular communication by Ca²⁺ in mouse epidermal cells is controlled by e-cadherin. J Cell Biol 114, 545-555

Kanno Y, Katakoa K (1995) Intercellular communication through gap junctions. Prog Cell Res, vol 4. Elsevier Science Publishers, Amsterdam

Karlson P (1988) Kurzes Lehrbuch der Biochemie für Mediziner und Naturwissenschaftler. In: Nucleinsäure-Synthese und Expression der genetischen Information. p 140-141, Georg Thieme Verlag, Stuttgart

Kidder GM (1992) The genetic program for preimplantation development. Dev Genet 13, 319-325

Kidder GM, Winterhager E (2001) Intercellular communication in preimplantation development: the role of gap junctions. Frontiers Biosci 6, 53-64

Klisch K, Pfarrer C, Schuler G, Hoffmann B, Leiser R (1999a) Tripolar acytokinetic mitosis and formation of feto-maternal syncytia in the bovine placentome: different modes of the generation of multinuclear cells. Anat Embryol 200, 229-237

Klisch K, Hecht W, Pfarrer C, Schuler G, Hoffmann B, Leiser R (1999b) DNA contents and ploidy level of bovine placentomal trophoblast giant cells. Placenta 20, 451-458

Kumar NM, Gilula NB (1992) Molecular biology and genetics of gap junction channels. Semin Cell Biol 3, 3-16

Kumar NM (1995) Synthesis and assembly of human β 1 gap junctions in BHK cells by DNA transfection with the human β 1 cDNA. J Cell Sci 108, 3725-3734

Kumar NM (1996) The gap junction communication channel. Cell 84, 381-388

Kwak BR (1995) Effects of cGMP dependent phosphorylation on rat and human connexin 43 gap junction channels. Pflügers Arch 430, 770-778

Laing JG (1995) The gap junction protein connexin 43 is degraded via the ubiquitin proteasome pathway. J Biol Chem 270, 26399-26403

Laird DW (1996) The life cycle of a connexin: gap junction formation, removal and degradation. Bioenerg Biomembr 28(4), 311-318

Leiser R (1975) Kontaktaufnahme zwischen Trophoblast und Uterusepithel während der frühen Implantation beim Rind. Anat Histol Embryol 4, 63-86

Leiser R, Kaufmann P (1994) Placental structure: in a comparative aspect. Exp Clin Endocrinol 102, 122-134

Leiser R, Pfarrer C, Abd-Elnaeim M, Dantzer V (1997) Feto-maternal anchorage in epitheliochorial and endotheliochorial placental types studied by histology and microvascular corrosion casts. Trophoblast Res 12, 21-39

Lo C (1996) The role of gap junction membrane channels in development. Bioenerg Biomembr 28, 379-385

Loewenstein WR (1981) Junctional intercellular communication: the cell-cell membrane channel. Physiol Rev 61, 829-913

Loewenstein WR, Rose B (1992) The cell-cell channel in the control of growth. Semin Cell Biol 3, 59-79

Lye SJ, Nicholson BJ, Mascarenhas M, MacKenzie L, Petrocelli T (1993) Increased expression of connexin 43 in the rat myometrium during labor is associated with an increase in the plasma estrogen:progesterone ratio. Endocrinology 132, 2380-2386

Makowski L, Caspar DL, Phillips WC, Goodenough DA (1977) Gap junction structures. II. Analysis of the x-ray diffraction data. J Cell Biol 74, 629-645

Mehta PP (1999) Suppression of human prostate cancer cell growth by forced expression of connexin genes. Dev Genet 24, 91-110

Metz J, Heinrich D, Forssmann WG (1976) Gap junctions in hemodichorial and hemotrichorial placentae. Cell Tissue Res 171, 305-315

Metz J (1980) Intercellular junctions in the full term human placenta. Anat Embryol 158, 167-178

Meyer RA, Laird DW, Revel JP, Johnson RG (1992) Inhibition of gap junction and adherens junction assembly by connexin and A-CAM antibodies. J Cell Biol 119, 179-189

Milks LC (1988) Topology of the 32-kD liver gap junction protein determined by sitedirected antibody localizations. EMBO J 7, 2967-2975

Mills SL, Massey SC (1995) Differential properties of two gap junctional pathways made by AII amacrine cells. Nature 377, 734-738

Morgan G, Wooding FBP (1983) Cell migration in the ruminant placenta: a freeze-fracture study. Ultrastructure Res 83, 148-160

Morley GE (1996) Intramolecular interactions mediate pH regulation of connexin 43 channels. Biophys J 70, 1294-1302

Mossman HW (1987) Vertebrate fetal membranes: Comparative ontogeny and morphology; Evolution; Phylogenetic significance: Basic functions; Research opportunities. The Macmillan Press Ltd., Houndmills, Basingstoke, Hampshire RG21 2XS and London

Murray SA, Fletcher WH (1984) Hormone-induced intercellular signal transfer dissociates cyclic AMP-dependent protein kinase. J Cell Biol 98, 1710-1719

Musil LS, Goodenough DA (1991) Biochemical analysis of connexin 43 intracellular transport, phosphorylation and assembly into gap junctional plaques. J Cell Biol 115, 1357-1374

Musil LS, Goodenough DA (1993) Multisubunit assembly of an integral plasma membrane channel protein, gap junction connexin 43, occurs after exit from the ER. Cell 74, 1065-1077

Nelles E (1996) Defective propagation of signals generated by sympathetic nerve stimulation in the liver of connexin 32–deficient mice. Proc Natl Acad Sci USA 93, 9570-9656

Nicholson B (1985) The Mr 28,000 gap junction proteins from rat heart and liver are different but related. J Biol Chem 260, 6514-6517

Nicholson B (1987) Two homologous protein components of hepatic gap junctions. Nature 329, 732-734

Nicholson SM, Bruzzone R (1997) Getting the message through. Curr Biol 7, R340-R344

Orsino A (1996) Connexin 26 and connexin 43 are differentially expressed and regulated in the rat myometrium throughout late pregnancy and with the onset of labor. Endocrinology 137, 1545-1553

Ou CW (1997) Expression of connexin 43 and connexin 26 in the rat myometrium during pregnancy and labor is differentially regulated by mechanical and hormonal signals. Endocrinology 138, 5398-5407

Page E, Shibata Y (1981) Permeable junctions between cardiac cells. Ann Rev Physiol 43, 431-441

Parr MB, Tung HN, Parr EL (1986) The ultrastructure of the rat primary decidual zone. Am J Anat 176, 423-436

Pauken CM, Lo CW (1995) Nonoverlapping expression of cx 43 and cx 26 in the mouse placenta and decidua: a pattern of gap junction gene expression differing from that in the rat. Mol Reprod Developm 41, 195-203

Paul DL (1986) Molecular cloning of cDNA for rat liver gap junction protein. J Cell Biol 103, 123-134

Peracchia C, Sotkis A, Wang XG, Perracchia L, Persechini A (2000) Calmodulin directly gates gap junction channels. J Biol Chem 275(34), 26220-26224

Plum A, Winterhager E, Pesch J, Lautermann J, Hallas G, Rosentreter B, Traub O, Herberhold C, Willecke K (2001) Connexin 32-null mutation in mice causes transient placental dysmorphogenesis but does not impair hearing and skin differentiation. Dev Biol 231, 334-347

Reaume AG, de Sousa PA, Kulkarni S (1995) Cardiac malformation in neonatal mice lacking connexin 43. Science 267, 1831-1834

Reuss B, Hellmann P, Dahl E, Traub O, Butterweck A, Grümmer R, Winterhager E (1996) Connexins and e-cadherin are differentially expressed during trophoblast invasion and placenta differentiation in the rat. Developm Dynam 205, 172-182

Revel JP, Karnovsky MJ (1967) Hexagonal array of subunits in intercellular junctions of the mouse heart and liver. J Cell Biol 33, C7-C12

Risek B, Guthrie S, Kumar N, Gilula NB (1990) Modulation of gap junction transcripts and protein expression during pregnancy in the rat. J Cell Biol 110, 269-282

Risek B, Gilula NB (1991) Spatiotemporal expression of three gap junction gene products involves in fetomaternal communication during rat pregnancy. Development 113, 165-181

Robertson JD (1963) The occurrence of a subunit pattern in the unit membrane of club endings in Mauthner cell synapses in goldfish brains. J Cell Biol 19, 201-221

Rose B, Loewenstein WR (1976) Permeability of a cell junction and the local cytoplasmic free ionized calcium concentration: A study with aequorin. J Membr Biol 28, 87-119

Saito T, Nishmura M, Kudo R, Yamasaki H (2001) Suppressed gap junctional intercellular communication in carcinogenesis of endometrium. Int J Cancer 93, 317-323.

Sandberg K, Ji H, Clark AJ, Shapira H, Catt KJ (1992) Intercellular communication between follicular angiotensin receptors and Xenopus laevis oocytes: medication by an inositol 1,4,5-triphosphate dependent mechanism. J Cell Biol 117, 157-167

Schnorr B (1989) Embryologie der Haustiere. In: Plazentation beim Säuger und Embryonalhüllen beim Vogel. 2. Auflage, p 70-71, Enke Verlag Stuttgart

Shin BC, Suzuki T, Matsuzaki T, Tanaka S, Kuraoka A, Yosaburo S, Takata K (1996) Immunolocalization of GLUT1 and connexin 26 in rat placenta. Cell Tissue Res 285, 83-89

Simon AM (1997) Female infertility in mice lacking connexin 37. Nature 385, 525-529

Simon AM (1999) Gap junctions: more roles and new structural data. Trends Cell Biol 9, 169-170

Sosinsky GE, Jesior JC, Caspar DL, Goodenough DA (1988) Gap junction structures. VIII. Membrane cross-sections. Biophys J 53, 709-722

Stauffer KA (1995) The gap junction proteins connexin β_1 (connexin 32) and connexin β_2 (connexin 26) can form heteromeric hemichannels. Amer Soc Biochem Molec Biol 270, 6768-6772

Steinberg RH, Civitelli R, Geist ST, Robertson AJ, Hick E, Veenstra RD, Wang HZ, Warlow PM, Westphale EM, Laing JG (1994) Connexin 43 and connexin 45 form gap junctions with different molecular permeabilities in osteoblastic cells. EMBO J 13, 744-750

Strahl H (1906) Die Embryonalhüllen der Säugetiere und die Plazenta. In: Hertwigs Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere, Vol 1. Fischer, Jena

Swenson KL (1990) Tyrosine phosphorylation of the gap junction protein connexin 43 is required for the pp60v-src-induced inhibition of communication. Mol Biol Cell 1, 989-1002

Takata K, Kasahara T, Kasahara M, Ezaki O, Hirano H (1992) Localization of erythrocyte / HepG2-type glucose transporter (GLUT1) in human placental villi. Cell Tissue Res 267, 407-412

Takata K, Kasahara T, Kasahara M, Ezaki O, Hirano H (1994) Immunolocalization of glucose transporter GLUT1 in rat placental barrier: possible role of GLUT1 and the gap junction in the transport of glucose across the placental barrier. Cell Tissue Res 276, 411-418

Temme A (1997) High incidence of spontaneous and chemically induced liver tumors in mice deficient for connexin 32. Curr Biol 7, 713-716

Thompson JG, Peterson AJ (2000) Bovine embryo culture in vitro: new developments and post-transfer consequences. Hum Reprod 15, 59-67

Toyofuku T (1998) Direct association of the gap junction protein connexin 43 with ZO-1 in cardiac myoctes. J Biol Chem 273, 12725-12731

Trosko JE, Ruch RJ (1998) Cell-cell communication in carcinogenesis. Front Biosci 3, 208-236

Turin L, Warner A (1977) Carbon dioxide reversibly abolishes ionic communication between cells of early amphibian embryos. Nature 270, 56-57

Unwin PN, Zampighi G (1980) Structure of the junction between communicating cells. Nature 283, 545-549

Veenstra RD, Wang HZ, Beyer EC, Brink PR (1994a) Selective dye and ionic permeability of gap junction channels formed by connexin 45. Circ Res 75, 483-490

Veenstra RD, Wang HZ, Beyer EC, Ramanan SV, Brink PR (1994b) Connexin 37 forms high conductance gap junction channels with subconductance state activity and selective dye and ionic permeabilities. Biophys J 66, 1915-1928

Warner A (1992) Gap junctions in development – a perspective. Semin Cell Biol 3, 81-91

Warner A, Clements DK, Parikh S, Evans WH, De Haan RL (1995) Specific motifs in the external loops of connexin proteins can determine gap junction formation between chick heart myocytes. J Physiol 488, 721-728

Weetman AP (1999) The immunology of pregnancy. Thyroid 7, 643-646

Weinstein RS, Merck FB, Alroy J (1976) The structure and function of intercellular junctions in cancer. Adv Cancer Res 23, 23-89

White TW, Bruzzone R, Goodenough DA, Paul DL (1994) Voltage gating of connexins. Nature 15, 208-209

White TW, Bruzzone R, Paul DL (1995a) The connexin family of intercellular channel forming proteins. Kidney Int 48, 1148-1157

White TW, Paul DL, Goodenough DA, Bruzzone R (1995b) Functional analysis of selective interactions among rodent connexines. Mol Biol Cell 6, 459-470

Willecke K, Haubrich S (1996) Connexin expression systems: to what extent do they reflect the situation in the animal? Bioenerget Biomembr, 28, 319-326

Winterhager E, Brümmer F, Dermietzel R, Hülser DF, Denker HW (1988) Gap junction formation in rabbit uterine epithelium in response to embryo recognition. Developm Biol 126, 203-211

Winterhager E, Stutenkemper R, Traub O, Beyer E, Willecke K (1991) Expression of different connexins genes in rat uterus during decidualization and at term. Eur J Cell Biol 55, 133-142

Winterhager E, Gruemmer R, Jahn E, Willecke K, Traub O (1993) Spatial and temporal expression of connexin 26 and connexin 43 in rat endometrium during trophoblast invasion. Developm Biol 157, 399-409

Winterhager E, von Ostau C, Gerke M, Gruemmer R, Traub O, Kaufmann P (1999) Connexin expression patterns in human trophoblast cells during placental development. Placenta 20, 627-638

Winterhager E, Kaufmann P, Gruemmer R (2000) Cell-Cell-Communication during placental development and possible implications for trophoblast proliferation and differentiation. Placenta Supplement A. Trophoblast Res 14, 61-68

Wooding FBP, Wathes DC (1980) Binucleate cell migration in the bovine placentome. J Reprod Fertil 59, 425-430

Wooding FBP (1992) The synepitheliochorial placenta of ruminants: binucleate cell fusions and hormone production. Placenta 13, 101-113

Wooding FBP, Flint APF (1994) Placentation. In: Marshall's Physiology of Reproduction. 4th edn (ed. Lamming GE), vol 3, part 1. pp 233-460, Chapman and Hall, London

Wooding FBP, Morgan G, Brandon MR, Camous S (1994) Membrane dynamics during migration of placental cells through trophectodermal tihgt junctions in sheep and goats. Cell Tissue Res 276, 387-397

Wooding FBP, Morgan G, Monoghan S, Hamon M, Heap R (1996) Functional specialization in the ruminant placenta: evidence for two populations of fetal binucleate cells of different selective synthetic capacity. Placenta 17, 75-86

Wrenzycki C, Herrmann D, Carnwath JW, Niemann H (1996) Expression of the gap junction gene connexin 43 in preimplantation bovine embryos derived in vitro or in vivo. J Reprod Fertil 108, 17-24

Yamasaki H (1990) Gap junctional intercellular communication and carcinogenesis. Carcinogenesis 11, 1051-1058

Yamasaki H, Nauss CCG (1996) Role of connexin genes in growth control. Carcinogenesis 17, 1199-1213

Yancey SB, John SA, Lal R, Austin BJ, Revel JP (1989) The 43-kD polypeptide of heart gap junctions: immunolocalization, topology and functional domains. J Cell Biol 108, 2241-2254

Yeager M, Gilula NB (1992) Membrane Topology and quaternary structure of cardiac gap junction channels. J Mol Biol 223, 929-948

Zhang JT, Nicholson BJ (1994) The topological structure of cx 26 and its distribution compared to cx 32 in hepatic gap junctions. J Membr Biol 139, 15-29

Zhang JT (1996) Membrane integration of in vitro-translated gap junctional proteins: co- and post- translational mechanisms. Mol Biol Cell, 7:471-482

10. ANHANG

10.1 Beschichtung der Objektträger

Bevor die Objektträger beschichtet wurden, wurden sie zur Entfettung und Reinigung für 10 min in ein 80%iges Alkoholbad getaucht und anschließend zum Trocknen gestellt.

APES-Beschichtung

APES (3-aminopropyltriethoxysilane; Sigma, A3648) wurde im Verhältniss 1:50 mit Azeton gemischt. Die Objektträger wurden 20 Sekunden in diese Lösung gestellt.

- \rightarrow Spülen (2 x, kurz) in Azeton
- \rightarrow Spülen (2 x, kurz) in Aqua dest.
- → Trocknen lassen der Objektträger

Chrom-Alaun-Beschichtung

- \rightarrow Erwärmen von 5 g Gelatine in 1000 ml Aqua dest., 35°C
- \rightarrow Zugabe von 0,5 g Chrom-Alaun (KCr(SO₄)₂ x 2H₂O), 40°C
- \rightarrow Abkühlen lassen, 20°C
- \rightarrow Filtrieren mit Faltenfilter
- → Eintauchen der Objektträger, 10 min
- → Trocknen lassen der Objektträger, über Nacht bei 37°C

10.2 Herstellung der Stamm-und Gebrauchslösungen

BSA-Stammlösung

0,2 g kristallines BSA ad 10 ml PBS

BSA-Gebrauchslösung

50 µl BSA-Stammlösung

ad 5 ml PBS

Denhardt-Reagenz (BFP) -20°C

200 mg BSA (2%) 200 mg Ficoll 400 (2%)

200 mg Polyvinylpyrrolidon (2%)

ad 10 ml DEPC-Wasser

Lagerung bei -20°C

DEPC-Wasser

2 l Aqua bidest.

2 ml DEPC (Diethylpyrocarbonat, Sigma, D-5758)

Trockenschrank, über Nacht bei 37°C

Autoklavieren

Dextransulfat (50%ig)

5 g Dextransulfat (Sigma, D-8906) ad 10 ml DEPC-Wasser Lösen lassen, 2 Tage im Kühlschrank Lagerung bei –20°C

Essigsäure (20%ig)

160 ml DEPC-Wasser

40 ml Eisessig

Lagerung bei 4°C

Glyzin (0,2%ig)

100 ml PBSM 200 mg Glyzin (Sigma, G-7126)

Lagerung bei RT

HCL (0,2 N)

2 ml HCL

234 ml DEPC-Wasser

Lagerung bei RT

Laemmli 1

6,25 ml 1 M Tris-Puffer (pH 6,8)
20 ml SDS (4%)
10 ml Glycerol
5 ml β-Mercaptoethanol (10%; Merck 15433)
0,1 g Bromphenolblau (2%; Fluka, 18040)

Laemmli 2

30,25 g Tris 144,25 g Glycin 10g SDS (0,1%)

Auffüllen auf 1 l Aqua bidest.

Laufpuffer (PCR)

0,05 g Bromphenolblau (Sigma, B-6131)

0,05 g Xylen Cyanol (Sigma, X-4126)

3 g Ficoll 400 (Sigma, F-4375)

3 ml 0,5 M Ethylenediamintetraacetic acid (EDTA; Sigma, E-9884)

Mit 1 x TAE auf 20 ml auffüllen und filtrieren

10 x TAE (pH 8,4)

48,4 g Trishydroxymethylaminomethan (TRIS; Sigma, T-1503)

11,4 ml Essigsäure

20 ml 0,5 M EDTA

Auffüllen auf 1 l Aqua bidest.

Levamisol (1 M)

2,4 g Levamisol (Sigma, L-9756) 10 ml 1 x NTB-Puffer Lagerung bei –20°C

NTB-Puffer (5 x)

60,5 g Tris-HCL

29,2 g NaCl

1 ml DEPC

Trockenschrank, über Nacht bei 37°C

Autoklavieren

Vor Gebrauch: Zugabe von 25 ml 1M MgCl₂-Lösung pro 500 ml 1 x NTB-Puffer

Paraformaldehyd (4%ig)

25 g Paraformaldehyd (Merck, 1.04005)500 ml 1 x PBSM-PufferNaOH zufügen, bis Lösung klar wirdZurücktitrieren mit HCL (pH 7,0)

PBS-Stammlösung (phosphat buffered saline, pH 7,2)

41 g NaCl
11 g Na₂HPO₄ x 2H₂O
2,75 g KH₂PO₄
ad 1000 ml Aqua dest.

PBS-Gebrauchslösung

1 Teil PBS Stammlösung

4 Teile Aqua dest.

PBSM-Puffer (1 x)

400 ml DEPC-Wasser 2 PBS-Tabletten (Fa. Sigma; P-4417) 2 ml 1M MgCl₂

RNAse A / T1-Stammlösung

25 mg/ml RNAse A (Boehringer, 109134) in 2 x SSC 10⁵ U/ml RNAse T1 (Boehringer, 109193) in 2 x SSC

SSC (pH 7,0; 20 x)

88,23 g Natriumcitrat (C₆H₅O₇Na₃ x 2H₂O)

175,29 g NaCl

1 ml DEPC

ad 11 Aqua bidest.

Trockenschrank, über Nacht bei 37°C

Autoklavieren

TAE (1 x; pH 8,4; Tris-Azetat-EDTA-Puffer)

48,4 g TRIS (Trishydroxymethylaminomethan; Sigma, T-1503)

11,4 ml Essigsäure

20 ml 0,5 M EDTA

Auffüllen auf 1 l Aqua bidest.

TBS

1 Teil NTB

4 Teile Aqua dest.

TNMT- Puffer (pH 7,5; 10 x)

121,1 g Tris-HCL
58,4 g NaCl
4,17 g MgCl₂
1 ml DEPC
ad 1 1 Aqua bidest
Trockenschrank, über Nacht bei 37°C
Autoklavieren
Nach dem Erkalten Zugabe von 5 ml Triton-X-100

DANKSAGUNG

Meinem Doktorvater, Herrn Prof. Dr. Dr. R. Leiser, möchte ich ganz herzlich für die Überlassung des Themas danken. Seiner stets spontanen Hilfsbereitschaft und seinen schnellen Korrekturen gilt besonderer Dank.

Ebenso herzlich möchte ich Frau Dr. C. Pfarrer danken. Jede Phase dieser Arbeit wurde von ihr uneingeschränkt mit Interesse, wertvollen Ratschlägen und fachlicher Kompetenz unterstützt.

Bei Herrn Prof. Dr. M. Bergmann, Herrn PD Dr. K. Steger und Herrn Dr. R. Brehm möchte ich mich neben fachlicher Beratung und Anregung besonders für ihren herrlichen Humor bedanken.

Für die ausführliche Einarbeitung in die Laborarbeiten und eine immer freundliche und geduldige Art möchte ich mich ganz besonders bei Frau O. Dakischew bedanken.

Bei ihrer Nachfolgerin, Frau K. Wolf, möchte ich mich für die Motivation im Versuchsteil in der Endphase dieser Arbeit bedanken.

Namentlich möchte ich mich auch bei Frau A. Hild, Frau A. Hax und Frau J. Dern-Wieloch für ihre große Hilfsbereitschaft im S1 Labor bedanken.

Allen Mitarbeitern des Instituts für Veterinär-Anatomie, -Histologie und -Embryologie möchte ich für die angenehme und humorvolle Arbeitsatmosphäre danken.

Meinem Vater, Rolf, möchte ich dafür danken, dass er nie an meiner Entscheidung gezweifelt hat. Harald, Kröte und Snoopy ein Küßchen für immer Dasein und (fast) immer alles Ertragen.