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Abstract

The critical behaviour of a relativistic scalar field theory with Z2 symmetry
is investigated near a second-order phase transition. Two sets of dynamic
equations are employed, allowing to control conservation laws of both order
parameter and energy density. We calculate spectral functions of the order
parameter as well as unequal-time correlation functions of the energy momen-
tum tensor at zero and non-vanishing spatial momenta from first-principles
classical-statistical lattice simulations in real-time. For both, we investigate
general properties and relevant degrees of freedom in distinct regions of the
phase diagram. Close to the critical point, we find signatures of dynamic
scaling behaviour and calculate the dynamic critical exponent z controlling
the divergence of the critical time scale. For both the order parameter spectral
function as well as the energy density autocorrelation, we extract universal
dynamic scaling functions.

Modifying the simulation framework to include dynamically changing tem-
perature and external field allows us to study non-equilibrium phenomena. For
the special case of instant quenches to the critical point, we identify universal
scaling behaviour controlled by the initial magnetization, and calculate the
related additional dynamic critical exponent. We extract the universal non-
equilibrium scaling functions for the evolution of both the order parameter as
well as the correlation length.

Zusammenfassung

In dieser Arbeit wird das kritische Verhalten einer relativistischen skalaren
Feldtheorie mit Z2-Symmetrie in der Nähe eines Phasenübergangs zweiter
Ordnung untersucht. Zwei fundamental unterschiedliche Bewegungsgleichun-
gen werden verwendet, die es erlauben, sowohl Energieerhaltung als auch
Erhaltung des Ordnungsparameters zu kontrollieren. Wir berechnen sowohl
Spektralfunktionen des Ordnungsparameters als auch nichtgleichzeitige Korre-
lationsfunktionen des Energie-Impuls-Tensors mithilfe klassisch-statistischer
Realzeit-Gittersimulationen. Für beide werden generelle Eigenschaften und
relevante Freiheitsgrade in unterschiedlichen Regionen des Phasendiagrams
untersucht. Nahe des kritischen Punktes finden wir Hinweise auf dynamisches
Skalierungsverhalten und berechnen den dynamisch-kritischen Exponenten z,
der die Divergenz der charakteristischen Zeitskala kontrolliert. Für sowohl die
Spektralfunktionen des Ordnungsparameters als auch Korrelationsfunktionen
des Energie-Impuls-Tensors extrahieren wir universale dynamische Skalenfunk-
tionen.

Die Modifikation des Simulationsapparats hin zu dynamisch veränderlicher
Temperatur und externem Feld erlaubt uns das Studium von Nichtgleichge-
wichtsphänomenen. Im hier betrachteten Spezialfall eines instantanen Quenchs
auf den kritischen Punkt identifizieren wir Skalierungsverhalten mit der initialen
Magnetisierung und berechnen den entsprechenden zusätzlichen dynamisch-
kritischen Exponenten θ. Wir extrahieren universelle Nichtgleichgewichts-
Skalenfunktionen für die Zeitentwicklung sowohl des Ordnungsparameters
als auch der Korrelationslänge.
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1 | Introduction

The theory of quantum chromodynamics (QCD) may well be one of the greatest
achievements of theoretical physics in the last century. Describing the strong inter-
action between quarks and gluons, it provides a description of physical processes
determining the structure and properties of hadronic matter and the early universe.
In the last decades, we have uncovered significant parts of the phase diagram of
QCD. Due to its strong coupling, its relevant low-energy degrees of freedom are given
by hadronic bound states. At high temperatures or densities, these bound states
dissolve, and one finds that its fundamental building blocks appear asymptotically
free in a quark-gluon plasma (QGP) phase.

From lattice simulations, it is known that the transition from hadronic matter to
QGP is a smooth cross-over for very low or vanishing net baryon density [1, 2, 3].
On the other hand, considerations of effective theories and models provide ample
evidence that in addition to the well-known liquid-gas transition, there is at least one
more first-order phase transition on the zero-temperature axis [4, 5]. At higher baryon
chemical potential, chiral symmetry is no longer spontaneously broken. Several model
calculations suggest that the approximate chiral symmetry restoration happens via
a first-order transition [6, 7]. By those observations one is lead to suspect the
existence of a second-order phase transition at finite temperature and baryon density,
at the critical endpoint (CEP) of a first-order transition line separating phases of
spontaneously broken and nearly-restored chiral symmetry.

The search for the QCD critical endpoint has gained a substantial amount
of attention in the span of the past decade, from the theoretical as well as the
experimental side alike [8, 9]. Dedicated heavy-ion collision experiments currently
set up at RHIC as well as the future FAIR and NICA facilities are equipped to
probe the QCD phase diagram at large baryon densities, the region where the CEP
supposedly is located. This leaves theorists with the challenge of developing methods
for extracting its precise location from the obtained data. Unfortunately, the go-to
workhorse for first-principle calculations, namely lattice QCD, currently cannot
address this region of the phase diagram due to the sign problem [10]. One therefore
has to fall back to employing effective theories, making the most of prior knowledge
about the critical behavior [11].

When a thermodynamic system comes close to a critical point, competing pro-
cesses maximizing entropy and minimizing free energy cause strong fluctuations on
all length scales. These in turn lead to scale-invariant physics and thus universal
behavior, meaning microscopically different systems are governed by quantitatively
identical universal scaling functions only differing by overall amplitudes. This allows
extremely efficient effective descriptions of critical phenomena via simple models
with matching universality classes. Considering the nature of the QCD critical point
as endpoint of the first-order chiral transition, one finds that it belongs to the same
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CHAPTER 1. INTRODUCTION

static universality class as the three-dimensional Ising model [12].
However, the collision experiments used to probe the QCD phase diagram are

dynamic processes, and it is therefore imperative to develop an understanding for sig-
natures of the CEP in dynamic observables, such as multi-time correlation functions
and relaxation rates. To fully characterize the dynamics of critical phenomena, one
must additionally take into account the equations of motion of the system. Incorpo-
rating conservation laws and dynamic mode couplings, Halperin and Hohenberg [13]
devised a scheme of dynamic universality classes called “Models.” In some of these,
the dynamic critical exponent z, which controls the divergence of time scales relative
to that of the length scales, follows from static exponents via hyperscaling relations.
Generally however, the precise determination of z presents a significant numerical
challenge, even in deceptively simple cases like Model A, corresponding e.g. to the
Ising model coupled to a heat bath [14].

In this study we investigate a relativistic scalar theory in the static Z2 Ising
universality class of the QCD CEP. Employing different equations of motion, we
examine four different dynamic universality classes, namely Models A, B, and their
counterparts with energy conservation. While the dynamic universality class at the
QCD CEP is believed to be that of Model H [15], we focus on these simpler Models
not requiring the explicit treatment of an additional conserved transverse vector field.
We reason that this course of action provides important steps toward characterizing
critical real-time dynamics in a systematic fashion, and pave the way to treat more
complicated systems such as Model H in the future, which will then be of direct
relevance to QCD.

An important mainstay for our analysis of dynamic critical phenomena is based
on real-time correlation functions. Specifically, we thoroughly investigate spectral
functions of the order parameter. Spectral functions are of great interest in many
areas of condensed matter, nuclear and particle physics due to the abundance of
information they contain. In strong-interaction matter, they are essential for our
understanding of the physics ranging from the Early Universe to heavy-ion collisions
and neutron stars. Containing the spectrum of all possible excitations of the system
in the given channel, they can be used to identify the relevant degrees of freedom
for effective descriptions. Furthermore, one typically can also obtain transport
coefficients from particular low-energy limits of spectral functions [16].

Emergent dynamic critical phenomena close to a second-order phase transition
strongly effect spectral functions. The characteristic time scale of the system diverges,
and thus slow modes dominate the dynamics, leading to the formation of infrared-
divergent power laws. The spectral indices of those power laws are controlled by both
the dynamic critical exponent z as well as static critical exponents of the system.
Additionally, one can show that scale invariance with respect to both time and space
implies that, similar to static quantities, the low-energy behavior of spectral functions
is fully described by universal scaling functions.

In order to capture these highly non-trivial infrared phenomena, the spectral
functions must necessarily be calculated non-perturbatively. This is generally very
challenging for the otherwise highly successful equilibrium field theory methods
in Euclidean spacetime, as for example first-principles lattice QCD simulations.
Additionally, it is necessary to analytically continue correlators in Euclidean time
to the real-time domain. Analytic continuation based on a finite amount of points
is however a numerically ill-posed inverse problem. While different reconstruction
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schemes exist, ranging from Maximum Entropy methods [17, 18, 19], the Backus-
Gilbert method [20], Tikhonov regularization [21] or the Schlessinger-Point (or
Resonances-via-Padé) method [22, 23] to Machine Learning [24], all of these come
with limited ranges of applicability (see, e.g. Ref. [25] for a recent comparison). A
powerful alternative to reconstructing spectral functions from Euclidean data is
in principle provided by non-perturbative functional methods, e.g. based on 2-PI
[26, 27], Dyson-Schwinger [28, 29, 30] or Functional Renormalization Group (FRG)
equations [31, 32, 33, 34, 35, 36, 37, 38], as the functional equations can be analytically
continued or even formulated directly on the closed-time path in order to actually
calculate spectral functions from real-time correlation functions. However, in one way
or another, all these functional methods require prescriptions to obtain a closed set
of equations from an originally infinite hierarchy. Controlling truncation errors then
becomes important for the systematics, and any prior knowledge of the structure of
correlations in the theory is obviously beneficial as additional input or benchmark.

The classical-statistical framework lends itself here several reasons. Unlike Eu-
clidean formulations, which are by construction limited to Hamiltonian-like, non-
dissipative dynamics, the classical-statistical approach can be applied to any dy-
namical model. Furthermore, this approach is especially useful for studying critical
phenomena, which are dominated by slow long-range modes. Since the classical
theory at finite temperature becomes exact in the infrared, the universal part of the
dynamics is captured exactly.

In this work, we calculate spectral functions of a single-component scalar field
theory employing classical-statistical lattice simulations in real-time [39, 40, 41]. We
use the fluctuation-dissipation relation or Kubo-Martin-Schwinger (KMS, [42, 43, 44])
condition to obtain the spectral function from the statistical function, which in the
classical limit can be calculated from an elementary unequal-time correlation function
of classical fields. Using different equations of motion, we study Models encompassing
conservation laws of order parameter and energy density. We quantify the divergence
of the characteristic time scale ξt in the vicinity of the critical point and extract the
respective dynamic critical exponents for the different dynamic universality classes.
Analyzing modes of the spectral function at finite spatial momenta, we extract new
universal scaling functions governing the infrared limit of the dynamics close to the
critical point.

Moreover, in an effort to bridge the gap to an effective classical model mapping
the dynamics of Model H, we study the energy-momentum tensor of the lattice
models. After some general considerations about its definition and effects of the
reduced spatial translation symmetry, we focus on dynamic properties of the energy
density. Applying the same methodology as for the order parameter, we calculate
spectral functions of the energy density and investigate their general features. We
show that one can observe similar scaling behavior in spectral functions respectively
auto-correlation functions of components of the energy-momentum tensor, and extract
the underlying universal scaling functions.

We do however not limit ourselves to equilibrium dynamics, since the machinery
can trivially be extended to study non-equilibrium processes as well. First estimates
have shown that in collision experiments closing in on the QCD CEP, the factor
restricting the magnitude of critical effects is most likely finite time rather than
finite system size [5, 45]. It is therefore vital to develop a precise understanding of
non-equilibrium critical phenomena, and to find observables which retain enough
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CHAPTER 1. INTRODUCTION

information to reconstruct the location of the critical point from final-state data
[46, 47, 48].

By investigating the dynamics of Model A after a quench to the critical point,
we determine the so-called initial-slip exponent θ1 in addition to the dynamic critical
exponent z. It turns out that the most reliable methods to this end make use of
non-equilibrium phenomena, observing the process of thermalization at the critical
point [49, 50, 51, 52, 53, 54, 55]. Using results for both exponents, we confirm that
the evolution of both order parameter and correlation length in this scenario is
governed by universal non-equilibrium scaling functions. Knowing these universal
functions allows to make strong predictions about thermalization processes at the
critical point with different initial conditions.

This thesis is organized as follows: The next chapter introduces the Keldysh
formalism for describing real-time dynamics of quantum field theories, and how
from there the classical-statistical limit naturally emerges, before introducing the
specific models employed by us. It is followed by some remarks concerning the
technical realization and implementation of numerics, to ease reproducibility and
continuation of the project. The fourth chapter contains the results obtained for
order-parameter dynamics in thermal equilibrium, starting with the static critical
behavior, before presenting spectral functions of the order parameter and their
universal dynamic critical behavior. Subsequently, we provide in the fifth chapter the
definition of the energy-momentum tensor on the lattice. We provide some critical
remarks on recent efforts to extract transport coefficients via Kubo relations, before
presenting our results on the dynamic behavior of the energy density. The sixth
chapter is then concerned with non-equilibrium processes and universal behavior after
a quench to the critical point. Finally, we provide conclusions as well as an outlook
on possible future projects in the last chapter. Several appendices contain some
mathematical intricacies concerning the definition of diffusive dynamics, properties
of the Breit-Wigner function and details on the order-parameter spectral functions
at low temperature.

Parts of this thesis concerning the order-parameter dynamics in equilibrium of Models
A and C have already been published in [56]. Publications on Models B and D as
well as non-equilibrium phenomena are currently in preparation.

8



2 | Real-time field theory

2.1 From the Keldysh contour to classical fields

The quantum field theory (QFT) framework developed over the past century is a
flexible and powerful language, and has been used to describe an immense range of
physical problems. Its most popular manifestation as finite-temperature equilibrium
QFT employs the imaginary-time Matsubara formalism [57]. We introduce here
the much more powerful non-equilibrium QFT developed by Schwinger [58] and
Keldysh [59], which for reasons probably related to its higher complexity has not yet
made its way into standard undergraduate curricula. This framework allows us to
ask questions about real-time quantities without undergoing the often cumbersome
analytical continuation procedure from imaginary to real time. It also provides a
natural connection to the classical-statistical systems used in this project.

Some details and tedious algebra will be skipped in favor of readability; for
those, the reader is referred to a relevant textbook such as the one by Kamenev [60],
chapters one through five.

2.1.1 Closed time path

Assume a general quantum many-body system, the state of which is at some time tÑ
´8 deep in the past known to be described by the many-body density matrix ρ̂p´8q,
and whose dynamics are governed by some (possibly time-dependent) Hamiltonian
Ĥptq. Critically, we assume that at t “ ´8 there are no interactions in the system,
although they may adiabatically emerge at some finite time prior to any observation.
The Hamiltonian Ĥptq may however contain truly time-dependent perturbations
at finite times, driving the system away from thermal equilibrium. Generally, the
time evolution of such a system is then given by the von Neumann equation for the
density matrix,

Btρ̂ptq “ ´i
”

Ĥptq, ρ̂ptq
ı

, (2.1)

which is formally solved by the unitary evolution operator

Ût,t1 “ T exp

ˆ

´i

ż t

t1
Ĥptqdt

˙

, (2.2)

ρ̂ptq “ Ût,´8ρ̂p´8qÛ´8,t, (2.3)

where T symbolizes the time-ordering operator. The expectation value of a general
observable Ô is given by its trace with the density matrix,

xÔptqy ”
Tr

!

Ôρ̂ptq
)

Tr tρ̂ptqu
“

1

Tr tρ̂ptqu
Tr

!

Û´8,tÔÛt,´8ρ̂p´8q
)

, (2.4)
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CHAPTER 2. REAL-TIME FIELD THEORY

´8 `8

ρp´8q
t

Ôptq

Figure 2.1: Closed time contour C, visualizing the evolution under the operator ÛC . It
turns out to be irrelevant whether the observable is inserted on either the forward or
backward path, making the half-sum of both a practical choice (see Eq. (2.7)).

where the trace is taken over the associated many-body Hilbert space. The trace allows
the already performed cyclic permutation of operators, alluding to the alternative
interpretation of evolving the observable operator rather than the density matrix, in
spirit of the Heisenberg picture. One notes that the expression contains both forward
and backward evolution in time. It will be convenient to extend the evolution in time
to t “ `8 by inserting a factor of unity as 1̂ “ Ût,`8Û`8,t, such that

xÔptqy “
1

Tr tρ̂p´8qu
Tr

!

Û´8,8Û8,tÔÛt,´8ρ̂p´8q
)

, (2.5)

where we also changed the normalization factor, since under von Neumann evolution
the trace of ρ̂ptq does not change over time. We establish the generating function of
the above expectation value as

ZrV s ”
Tr

!

ÛCrV sρ̂p´8q
)

Tr tρ̂p´8qu
, (2.6)

where the Hamiltonian governing the evolution was modified to now read Ĥ˘
V ptq ”

Ĥptq ˘ ÔV ptq, where the sign indicates the scope of the Hamiltonian as either the
forward or backward part of the evolution. One now obtains the expression (2.5)
from Eq. (2.6) by differentiating with respect to the auxiliary field term,

xÔy “
i

2

δZrV s

δV

ˇ

ˇ

ˇ

ˇ

V“0

. (2.7)

In Eq. (2.6), we have introduced the evolution operator on the closed time path
ÛC describing evolution along the contour depicted in Fig. 2.1. In the following,
we develop a functional integral representation for the generating function ZrV s
in Eqs. (2.6) and (2.7), allowing e.g. the application of well-known methods from
equilibrium and zero-temperature perturbation theory.

2.1.2 Bosonic coherent states

We begin by considering bosonic particles occupying a single energy level. Working in
the basis of pure number states, a many-body state with n bosons is denoted by |ny,
and these states form a complete orthonormal basis. We denote by b̂, b̂: bosonic ladder
operators acting on states in the many-body Hilbert space as b̂ |ny “

?
n |n´ 1y,

b̂: |ny “
?
n` 1 |n` 1y. Based on those, we define coherent states as right eigenstates

of the annihilation operator b̂ with (complex) eigenvalue ϕ as

b̂ |ϕy “ ϕ |ϕy , |ϕy “
8
ÿ

n“0

ϕn
?
n!
|ny “

8
ÿ

n“0

ϕn

n!

´

b̂:
¯n

|0y , (2.8)
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2.1. FROM THE KELDYSH CONTOUR TO CLASSICAL FIELDS

where |0y denotes the vacuum state, i.e. b̂ |0y “ 0. In this basis, the matrix elements
of any normally ordered operator Ôpb̂:, b̂q are given by

xϕ| Ôpb̂:, b̂q |ϕ1y “ Opϕ̄, ϕ1q. (2.9)

One finds that the overlap of two coherent states is given by xϕ |ϕ1y “ eϕ̄ϕ
1 , where ϕ̄

denotes the complex conjugate of ϕ. Coherent states form an over-complete basis of
the many-body Hilbert space. As can easily be shown, we can thus express unity in
the coherent-state basis as

1̂ “

ż

d rϕ̄, ϕs e´|ϕ|
2

|ϕy xϕ| , (2.10)

where the integration d rϕ̄, ϕs ” d<pϕq d=pϕq{π independently runs over both real
and imaginary part. The trace of some operator Ô in the coherent-state basis
becomes

TrtÔu ”

ż

d rϕ̄, ϕs e´|ϕ|
2

xϕ|Ô|ϕy . (2.11)

2.1.3 Partition function

We now turn to developing the real-time formalism for the simplest possible many-
body quantum system, namely a set of bosons occupying a single state. The simplicity
of this example eases notational effort, and it turns out that only minor changes are
needed for the generalization to a theory of interacting fields. Consider therefore the
Hamiltonian

Ĥ “ ω0b̂
:b̂, (2.12)

and define the partition function

Z “ Tr
!

ÛC ρ̂
)

{Tr tρ̂u . (2.13)

While the initial density matrix is in general some function of the Hamiltonian, we
simplify the following derivations by assuming thermal equilibrium at some time
early in the past, namely ρ̂0 ” exp

”

´βpĤ ´ µN̂q
ı

, such that we have for the trace

Tr tρ̂0u “

8
ÿ

n“0

e´βpω0´µqn “ r1´ ρpω0qs
´1 , (2.14)

where ρpω0q “ expp´βpω0 ´ µqq. Since the density matrix evolution is governed by
the von Neumann equation, this trace is constant in time, and may therefore be
omitted from here on.

In order to evaluate the contour evolution operator ÛC for this system, one applies
a Suzuki-Trotter decomposition, discretizing the contour into p2N ´ 2q intervals δt
with boundary conditions t1 “ t2N “ t0, tN “ tN`1 “ 8. Between the individual
evolution operators, one inserts unity in the coherent-state basis (2.10) to obtain

Tr
!

ÛC ρ̂pt0q
)

“

ż 2N
ź

j“1

drϕ̄j, ϕjs xϕ2N |Û´δt |ϕ2N´1y . . . xϕN`2|Û´δt |ϕN`1y xϕN`1|1̂|ϕNy

¨ xϕN |Û`δt |ϕN´1y . . . xϕ2|Û`δt |ϕ1y xϕ1|ρ̂pt0q|ϕ2Ny ,

(2.15)
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CHAPTER 2. REAL-TIME FIELD THEORY

´8 `8

ϕ1

ϕ12

ϕ2

ϕ13

ϕ3

ϕ14

ϕ4

ϕ15

ϕ5

ϕ16

ϕ6

ϕ17

ϕ7

ϕ18

ϕ8

ϕ19

ϕ9

ϕ20

ϕ10

ϕ21

ϕ11

ϕ22

Ûδt

Û´δt

ρ̂0

Figure 2.2: Closed time contour C, decomposed into N “ 11 discrete evolution steps per
direction. At early times, the state of the system is given by the density matrix ρ̂0.

where the infinitesimal evolution operator Û˘δt is introduced. Its matrix elements
are given by

xϕj|Û˘δt |ϕj´1y ” xϕj|e
¯iĤpb:,bqδt |ϕj´1y « xϕj|1¯ iĤpb:, bqδt|ϕj´1y

“ xϕj|ϕj´1y p1¯ iHpϕ̄j, ϕj´1qqδt « eϕ̄jϕj´1e¯iHpϕ̄j ,ϕj´1qδt ,
(2.16)

up to linear order in δt, using that xϕ|ρb̂:b̂|ϕ1y “ eϕ̄ϕ
1ρ. Note that this holds for general

normally-ordered Hamiltonians. Applying the assumption of an initial state in thermal
equilibrium, one substitutes xϕ1| exp p´βpω0q ´ µq b

:b|ϕ2Ny “ exp rϕ1ϕ2Nρpω0qs to
obtain for the partition function the Gaussian integral expression

Z “
1

Tr tρ̂pt0qu

ż 2N
ź

j“1

d rϕ̄j, ϕjs exp

˜

i
2N
ÿ

j,j1“1

ϕ̄jG
´1
jj1ϕj1

¸

, (2.17)

with the variance matrix

iG´1
jj1 ”

»

—

—

—

—

—

—

–

´1 ρpω0q

h´ ´1
h´ ´1

1 ´1
h` ´1

h` ´1

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, where h˘ ” 1˘ iω0δt. (2.18)

The elements on the main diagonal originate from the expression for unity (2.10),
the lower sub-diagonal follows from the matrix elements (2.16), and the upper right
elements in the off-diagonal blocks are crucial for normalization.

The presence of the non-zero off-diagonal blocks means that we have to exercise
some care when using continuum notation. We formally assume sufficiently fine
discretization and large N when we write

Z “

ż

D rϕ̄, ϕs eiSrϕ̄,ϕs, (2.19)

D rϕ̄, ϕs ” pTrtρ̂0uq
´1

2N
ź

j“1

d rϕ̄j, ϕjs , (2.20)

S rϕ̄, ϕs ”
2N
ÿ

j“2

δtj

„

iϕ̄j
ϕj ´ ϕj´1

δtj
´ ω0ϕ̄jϕj´1



` iϕ̄1 rϕ1 ´ iρpω0qϕ2N s (2.21)

Ñ S rϕ̄, ϕs “

ż

C
ϕ̄ptqĜ´1ϕptqdt, Ĝ´1

“ iBt ´ ω0. (2.22)
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2.1. FROM THE KELDYSH CONTOUR TO CLASSICAL FIELDS

Some remarks are in order: First, note that δtj changes sign depending on whether
j ď N or not, i.e. if it is defined on the forward or backward branch of the contour.
Second, it appears as if the upper right element of (2.18) is seemingly absent in
the continuum notation of (2.22). However, note that due to the presence of the
zero mode expp´iω0tq, the expression iBt ´ ω0 is not uniquely invertible, making it
therefore necessary to include the boundary term for a unique definition of Ĝ´1.

For reasons of convenience, one rewrites the integration over the time contour
and instead splits the integrand into parts defined on either the forward pϕ`q or the
backward pϕ´q part of the contour. The rewritten action then reads

S rϕ̄, ϕs “

ż

C
dt

“

ϕ̄`ptqpiBt ´ ω0qϕ
`
ptq ´ ϕ̄´ptqpiBt ´ ω0qϕ

´
ptq

‰

, (2.23)

still keeping in mind the implicit boundary terms. While from Eq. (2.23) one might
get the impression that ϕ` and ϕ´ are unrelated, they are actually connected due to
the boundary term. We will in the following exploit this interdependence to derive a
continuum representation that incorporates all correlations without carrying implicit
terms. For the moment, we revert to the discrete notation, to observe that Gaussian
integration yields for correlation functions of fields

xϕjϕ̄j1y ”

ż

D rϕ̄, ϕsϕjϕ̄j1 exp

˜

i
2N
ÿ

k,k1“1

ϕ̄kG
´1
kk1ϕk1

¸

“ iGjj1 , (2.24)

the matrix elements of the inverse of (2.18). Splitting the time contour, we identify
four block matrices in Ĝ,

xϕ`j ϕ̄
´
j1y ” iGăjj1 “

ρhj
1´1
` hj´1

´

det
”

´iĜ´1
ı , (2.25)

xϕ´j ϕ̄
`
j1y ” iGąjj1 “

hN´j` hN´j
1

´

det
”

´iĜ´1
ı , (2.26)

xϕ`j ϕ̄
`
j1y ” iGT

jj1 “
hj´j

1

´

detr´iĜ´1s
ˆ

#

1, j ě j1

ρph`h´q
N´1, j ă j1

, (2.27)

xϕ´j ϕ̄
´
j1y ” iGT̃

jj1 “ ´rĜ
T
s
:, (2.28)

where the relation between the last two stem from the fact that h˚` “ h´. The
symbols T and T̃ stand for time ordering respectively anti-time ordering, while ă pąq
conveniently indicates that the first argument is taken before (after) the second one.
In order to return to continuum notation, we take the limit N Ñ 8 while keeping
the product Nδt constant. Evaluating the determinants, we thus have

xϕ`ptqϕ̄´pt1qy “ iGăpt, t1q “ nBe
´iω0pt´t1q, (2.29)

xϕ´ptqϕ̄`pt1qy “ iGąpt, t1q “ pnB ` 1qe´iω0pt´t1q, (2.30)
xϕ`ptqϕ̄`pt1qy “ iGT

pt, t1q “ θpt´ t1qiGąpt, t1q ` p1´ θpt´ t1qqiGăpt, t1q, (2.31)

xϕ´ptqϕ̄´pt1qy “ iGT̃
pt, t1q “ θpt1 ´ tqiGąpt, t1q ` p1´ θpt1 ´ tqqiGăpt, t1q, (2.32)
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CHAPTER 2. REAL-TIME FIELD THEORY

where we introduced the step-function θptq with θp0q “ 1, as well as the bosonic
occupation number

nBpω0q “
ρpω0q

1´ ρpω0q
. (2.33)

Immediately, one observes that these correlation functions are not linearly inde-
pendent, but for t ‰ t1 obey the relation1

GT
pt, t1q `GT̃

pt, t1q ´Gąpt, t1q ´Găpt, t1q “ 0. (2.34)

This linear dependence implies that a linear change of coordinates may significantly
simplify the correlator matrix by eliminating a dependent component. One performs
the Keldysh rotation by changing the variables as

ϕcl
ptq “

1
?

2

`

ϕ`ptq ` ϕ´ptq
˘

, ϕq
ptq “

1
?

2

`

ϕ`ptq ´ ϕ´ptq
˘

(2.35)

where if the indices α, β P tcl, qu label the new components, the new block matrix of
Green functions becomes

@

ϕαptqϕ̄βpt1q
D

” iGαβ
pt, t1q “ i

ˆ

GKpt, t1q GRpt, t1q
GApt, t1q 0

˙

. (2.36)

The retarded (R), advanced (A) and Keldysh (K) propagator for different times
t ‰ t1 become2

GR
pt, t1q “ Gcl,q

pt, t1q “ θpt´ t1q pGą ´Găq , (2.37)
GA
pt, t1q “ Gq,cl

pt, t1q “ θpt1 ´ tq pGă ´Gąq , (2.38)
GK
pt, t1q “ Gcl,cl

pt, t1q “ Gă `Gą. (2.39)

Employing the representation of the un-rotated Green functions in the time domain
in Eqs. (2.29) to (2.32), one finds for the Keldysh-rotated propagators in both time
and frequency (ω) domain

GR
“ ´iθpt´ t1qe´iω0pt´t1q Ñ pω ´ ω0 ` iεq´1 (2.40)

GA
“ iθpt1 ´ tqe´iω0pt´t1q Ñ pω ´ ω0 ´ iεq´1 (2.41)

GK
“ ´ip1` 2nBpω0qqe

´iω0pt´t1q Ñ ´ 2πip1` 2nBpω0qqδpω ´ ω0q (2.42)

with some infinitesimal ε ą 0 to shift the poles off the real axis, realizing the
Heaviside function θptq. In thermal equilibrium, i.e. if ρ “ exp p´βpω0 ´ µqq, the
Green functions are related via a fluctuation-dissipation relation

GK
pωq “ coth

ω ´ µ

2T

`

GR
pωq ´GA

pωq
˘

. (2.43)

Generating function for the Keldysh correlators is the closed-time-path partition
function

@

ϕαptqϕ̄βpt1q
D

” iGαβ
pt, t1q “

ż

D
“

ϕcl, ϕq‰ϕαptqϕ̄βpt1qeiSrϕcl,ϕqs (2.44)

1For t “ t1, the right-hand side of Eq. (2.34) becomes one, as a consequence of the regularization
of θp0q “ 1.

2On the diagonal, one generally has GRpt, tq `GApt, tq “ 0 and GRpt, tq ´GApt, tq “ ´i. For all
practical purposes, one can however extend Eqs. (2.37) and (2.38) to the diagonal by interpreting
θp0q “ 0, as usually only the sum contributes.
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2.1. FROM THE KELDYSH CONTOUR TO CLASSICAL FIELDS

with the Keldysh action

Srϕcl, ϕq
s “

ż ż 8

´8

dtdt1pϕ̄cl, ϕ̄q
q

ˆ

0 rG´1sA

rG´1sR rG´1sK

˙

t,t1

ˆ

ϕcl

ϕq

˙

. (2.45)

The retarded/advanced components of the inverse propagator are obtained by the
condition rG´1sRpAq ˝GRpAq “ δpt´ t1q, i.e.

“

G´1
‰RpAq

“ ω ´ ω0 ˘ iε Ñ δ pt´ t1q piδt1 ´ ω0 ˘ iεq, (2.46)

where again the infinitesimal offset acts as a reminder that these are not truly diagonal,
but lower(upper) triangular. The Keldysh component of the inverse propagator is
obtained by the relation

“

G´1
‰K
“ ´

“

GR
‰´1

˝GK
˝
“

GA
‰´1

. (2.47)

2.1.4 Thermal systems

Up to this point, we treated an isolated system of bosons. In the following, we prepare
the formalism for more realistic systems by introducing interactions with infinitely
many harmonic oscillators, arriving at the real-time version of the Caldeira-Leggett
model of a quantum particle in a heat-bath. To this end, we start by parametrising
complex boson field ϕptq by real fields πptq, φptq as

ϕptq “
1

?
2ω0

pπptq ` iω0φptqq , ϕ̄ptq “
1

?
2ω0

pπptq ´ iω0φptqq . (2.48)

Inserting these into Eq. (2.23), we find then for the contour action

S rφ, πs “

ż

C
dt

„

π 9φ´
1

2
π2
´
ω2

0

2
φ2



“

ż

C
dt

„

1

2
9φ2
´
ω2

0

2
φ2



, (2.49)

where we performed the Gaussian integral over π. Boundary terms implicit in the
continuum notation were omitted. Equation (2.49) is recognized as the Feynman
action of the harmonic oscillator. Although the inclusion of interactions requires a
bit more care, it is convenient to work with some arbitrary φ-dependent potential
term V pφq to absorb additional complications.

Splitting the integration contour in forward/backward parts and performing a
Keldysh rotation of φptq yields

Srφs “

ż

C
dt

„

1

2
9φ2
´ V pφq



, φptq Ñ φcl/q ”
1

2

`

φ`ptq ˘ φ´ptq
˘

(2.50)

ñ Srφcl, φqs “

ż `8

´8

dt
”

´2φq :φcl ´ V pφcl ` φqq ` V pφcl ´ φqq
ı

. (2.51)

From this form of the action it becomes clear how the quantum and classical
components φq, φcl get their names: If the quantum component φq9pϕ` ´ ϕ´q is
small, one can linearize the action and perform the integral over φq, such that

ż

Drφqsei
ş

C dtφqr :φcl`V 1pφclqs “ δ
´

:φcl ` V 1pφclq
¯

. (2.52)
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CHAPTER 2. REAL-TIME FIELD THEORY

One is then left with a delta functional forcing the classical component φcl „ ϕ`ϕ´

along trajectories where :φcl “ ´V 1pφclq, i.e. those fulfilling the Newtonian equations
of motion.

Going back to the harmonic oscillator action with V pφq “ ω2
0φ

2{2, we can write
the action as a quadratic form

Srφs “
1

2

ż

dt
ÝÑ
φ
T
D̂´1ÝÑφ , (2.53)

with the Green functions in equilibrium3

D̂αβ
pt, t1q “

ˆ

DKpt´ t1q DRpt´ t1q
DApt´ t1q 0

˙

, (2.54)

DRpAq
pωq “

1

2

`

pω ˘ iεq2 ´ ω2
0

˘´1
, (2.55)

DK
pωq “ coth pω{2T q

`

DR
pωq ´DA

pωq
˘

. (2.56)

We will employ this representation of harmonic oscillators in the following to model
a heat bath. Consider therefore some particle in contact with an environment of
harmonic oscillators, such that its Keldysh action is written in three terms as

Srφ, ϕs “ Sprφs ` Sbrϕs ` Sintrφ, ϕs, (2.57)

Sprφs “

ż

dt
”

´2φq :φcl ´ V pφcl ` φqq ` V pφcl ´ φqq
ı

, (2.58)

Sbathrϕs “
ÿ

s

1

2

ż

dtÝÑϕ T
s D̂

´1
s
ÝÑϕ s, (2.59)

Sintrϕs “
ÿ

s

gs
1

2

ż

dt
ÝÑ
φ
T
σ̂1
ÝÑϕ , (2.60)

where σ̂1 is the first Pauli matrix, leading to interactions of the form gs pφ
`ϕ`s ´ φ

´ϕ´s q,
and integrals over the time coordinate are understood to run from t “ ´8 to `8.
By completing the square one can integrate out the heat-bath degrees of freedom ϕs
of Sbath, Sint, to arrive at the dissipative part of the action

Sdiss “
1

2

ż ż

dtdt1
ÝÑ
φ
T
ptqD´1

pt´ t1q
ÝÑ
φ pt1q, (2.61)

D´1
pt´ t1q ” ´σ̂1

˜

ÿ

s

gsD̂spt´ t
1
q

¸

σ̂1. (2.62)

The propagators of the oscillators D̂s are given by Eq. (2.54). Sending the number
of heat-bath oscillators to infinity, one may make the spectral density Jpω1q “
π
ř

spg
2
s{ωsqδpω

1 ´ ωsq continuous in ω1. Choosing the couplings such that Jpω1q “
4γω1, one arrives at the Ohmic bath, where the retarded (advanced) propagator
becomes

“

D´1
‰RpAq

pωq “ 4γ

ż

dω1

2π

ω12

ω12 ´ pω ˘ iεq2
“ const˘ 2iγω. (2.63)

3In order to perform the Gaussian integral, the matrix D̂´1 has to be symmetric, corresponding
to DKpωq being an even function. Thus, the chemical potential of a real field must vanish.
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2.1. FROM THE KELDYSH CONTOUR TO CLASSICAL FIELDS

The constant contribution is the same for both components and can be absorbed
in the definition of the quadratic part of the potential V pφq. In equilibrium, one
obtains the Keldysh component of the correlator from the fluctuation-dissipation
theorem as

“

D´1
‰K
“ 4iγω coth

ω

2T
, (2.64)

which becomes non-local in the time domain. The full action S “ Sp ` Sdiss then
reads

Srφs “

ż `8

´8

dt

„

´ 2φq
`

B
2
t ` γBt

˘

φcl ´ V pφcl ` φqq ` V pφcl ´ φqq

` 2iγ

˜

2T pφqq2 `
πT 2

2

ż `8

´8

dt1
pφqptq ´ φqpt1qq2

sinh2
pπT pt´ t1qq

¸ff

.

(2.65)

2.1.5 Classical approximation

Earlier, we saw that by linearizing the action around small values of the quantum
component φq Ñ 0, the bosonic system reduced to classical equations of motion for
φcl. However, since we introduced the heat bath, we have to be somewhat more
careful with regards to units. The safe course of action is to take the limit ~ Ñ 0
of the Keldysh action (2.65) of the Caldeira-Leggett model. To this end, we first
must reintroduce ~ at the appropriate locations, namely in the form of ~´1 as overall
factor to make the action itself dimensionless, then re-scale φq Ñ ~φq, and finally
take care of the unit of temperature by replacing T Ñ T {~. The dissipative Keldysh
action and its limit then read

1

~
S rφs “

1

~

8
ż

´8

dt
”

´2~φq
´

:φcl ` γ 9φcl
¯

´ V
`

φcl ` ~φq
˘

´ V
`

φcl ´ ~φq
˘

ı

`
2iγ

~

8
ż

´8

dt

»

–

2T

~
p~φqq2 `

πT 2

2~2

8
ż

´8

dt1
~2 pφqptq ´ φqpt1qq2

sinh2
rπT pt´ t1q{~s

fi

fl ,

(2.66)

lim
~Ñ0

1

~
Srφs “

8
ż

´8

dt
´

´2φq
”

:φcl ` γ 9φcl ` V 1
`

φcl
˘

ı

` 4iγT pφqq2
¯

. (2.67)

The non-local term becomes local and drops out completely, while the term quadratic
in φq survives. The limits γ Ñ 0, ~Ñ 0 commute, see Eq. (2.51).

If it were not for the last term of Eq. (2.67), one could simply perform the
integral over φq and be left with a delta function forcing φcl along classical Newtonian
trajectories, however with an additional viscous friction force. To get rid of pφqq2,
one employs a Hubbard-Stratonovich transformation, introducing an auxiliary field
ξ as

exp

„

´4γT

ż

dtpφqptqq2


“

ż

Drξptqs exp

„

´

ż

dt
1

4γT
ξ2
ptq ´ 2iξptqφqptq



, (2.68)

where the integration measure is normalized to yield
ş

Drξptqse´
ş

dt 1
4γT

ξ2ptq
“ 1. The

remaining terms are now at most linear in φq, allowing to perform the integral. For
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CHAPTER 2. REAL-TIME FIELD THEORY

the expectation value of some observable Ô, one thus has

xÔrφclsy “

ż

Drφcl, φqsÔpφclqeiSrφcl,φqs (2.69)

“

ż

Drξse´
1

4γT

ş

dtξ2ptq

ż

Drφcl, φqsÔpφclqe´2i
ş

dφqp :φcl`γ 9φcl`V 1pφclq´ξq (2.70)

“

ż

Drξse´
1

4γT

ş

dtξ2ptq

ż

DrφclsÔpφclqδ
´

:φcl ` γ 9φcl ` V 1pφclq ´ ξ
¯

, (2.71)

with the δ-functional only contributing for φclptq, ξptq such that its argument vanishes,
therefore enforcing a Langevin-type equation of motion on the classical field

:φcl “ ´γφcl ´ V 1pφclq ` ξ, (2.72)

with some stochastic driving force ξ. We now have in principle a prescription for the
numerical computation of xÔrφclsy:

1. Choose some arbitrary force history ξptq,

2. solve Eq. (2.72) numerically,

3. calculate Ôrφcls over the solution and

4. average over sufficiently many different ξptq and weigh with the Gaussian weight
exp

“

´
ş

dtξptq{4γT
‰

.

An efficient way to realize this lies in a kind of importance-sampling method: By
drawing ξptq from a Gaussian random distribution such that

xξptqy “ 0, xξpt1qξptqy “ 2γTδpt´ t1q (2.73)

ensures that the resulting force histories are distributed with the correct weight, and
one can simply average over solutions of Eq. (2.72) with this specific Gaussian noise.

2.1.6 Field theory

Generalizing the formalism outline above to d` 1-dimensional fields turns out to be
as trivial as replacing

Ĥ “ ω0b̂
:b̂Ñ Ĥ “

ÿ

k

ωkb̂
:b̂, ωk “

|k|2

2m
, (2.74)

ϕptq, ϕ̄pt1q Ñ ϕpk, tq, ϕ̄pk1, tq, (2.75)

and extending the integration measure as well as the action to take into account all
spatial momentum vectors k

Drϕcl, ϕq
s “

1

Tr tρ0u

ź

k

N
ź

j“1

d<ϕcl
j pkqd=ϕcl

j pkq

π

d<ϕq
j pkqd=ϕq

j pkq

π
, (2.76)

thus arriving at the Keldysh action for non-interacting bosonic fields

S0rϕ
cl, ϕq

s “
ÿ

k

ż `8

´8

dt
`

ϕ̄cl, ϕ̄q˘
ˆ

0 iBt ´ ωk ´ iε
iBt ´ ωk ` iε 2iεF pωkq

˙ˆ

ϕcl

ϕq

˙

. (2.77)
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Comparing to Eq. (2.45), one finds that we effectively only replaced ω0 Ñ ωk. The
q–q-component in the free theory again acts solely as a regulator, with F pωq “
coth ppω ´ µq{2T q for the system in thermal equilibrium. Since ωk ” k2{2m, one
finds for the retarded (advanced) propagator in coordinate representation

rG´1
s
RpAq

“ iBt `∇2
{2m˘ iε. (2.78)

Before we introduce a local interaction, we remark that one crucial step of the
formalism relied on the element xϕ1|ρ̂0|ϕ2Ny in Eqs. (2.17) and (2.18) being quadratic
in the fields, leading to the outlined form of Ĝ´1. If one therefore assumes thermal
equilibrium, the interactions must be turned on over time adiabatically, i.e. infinitely
slowly, such that the energy levels of the system are shifted, but no transitions may
occur.

We introduce a local interaction potential V pφpxqq, which contributes the inter-
action part of the Keldysh action

Sint “ ´

ż

ddx

ż

C
dtV pφpxqq “

ż

ddx

ż `8

´8

dtV pφclpxq ` φqpxqq ´ V pφclpxq ´ φqpxqq.

(2.79)
A natural choice is V pφq “ λ

4!
φ4, for which the interaction part of the Keldysh action

becomes

Sint “ ´

ż

ddx

ż `8

´8

dt
λ

3

`

φqpxqpφclpxqq3 ` pφqpxqq3φclpxq
˘

. (2.80)

The Keldysh rotation generates two vertices, one with three classical fields and
one quantum component, and another one with three quantum fields and only one
classical component. Of these, obviously only the “classical” vertex linear in the
quantum component φq survives the classical limit ~Ñ 0, while the “quantum” vertex
vanishes. This is the first manifestation of a feature that is visibly absent in the
classical approximation. One can use this to benchmark functional approaches: By
eliminating all diagrams containing a quantum vertex, the classical limit should be
recovered, and truncation errors can be estimated by comparing to classical-statistical
first-principle simulations.

2.2 Dynamical Models

We consider the scalar Landau-Ginzburg-Wilson model in d “ 2, 3 spatial dimensions.
The equilibrium distribution of the order-parameter field φpxq ” φpx, tq is given by

Prφs 9 exp p´βHrφsq, (2.81)

Hrφs “

ż

ddx

"

1

2
φpxq

`

´∇2
`m2

˘

φpxq `
λ

4!
φ4
pxq ´ Jφpxq

*

, (2.82)

where β “ 1{T refers to the inverse temperature. In case of vanishing explicit
symmetry breaking (J “ 0), this model is invariant under Z2 transformations of the
order parameter field φpxq Ñ ´φpxq. If one chooses a negative square-mass m2 ă 0,
the symmetry is spontaneously broken for temperatures 0 ď T ă Tc below some
non-zero critical temperature, but restored above Tc after undergoing a second-order
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phase transition in the Z2 (Ising) universality class. We study the dynamic critical
behavior of this model in both 2+1 and 3+1 dimensions. If not stated otherwise,
the model parameters are set to m2 “ ´1, λ “ 1, as well as J “ 0.

For the dissipative dynamics of Model A [13] we use as the stochastic evolution
equation of the order parameter field φ an equation of motion with uncorrelated
white noise of the same form as in [56],

:φpx, tq “ ´
δHrφs

δφpx, tq
´ γ 9φpx, tq `

a

2γT ηpx, tq, (2.83)

xηpx, tqy “ 0, xηpx1, t1qηpx, tqy “ δpx1 ´ xqδpt1 ´ tq, (2.84)

where, in slight abuse of notation, the functional derivative is defined as a d-
dimensional one at a fixed time t. The real parameter γ represents the Langevin
coupling to a heat bath via the Gaussian random noise ηpx, tq. Dots are used for
partial time derivatives of the fields, in particular, defining πpx, tq ” 9φpx, tq to be
used below.

In the case of the diffusive dynamics of Model B, when the order parameter
Q “

ş

ddxφpx, tq is conserved, i.e. 9Q “ 0, we consider equations of motion of the
form

:φpx, tq “ µ∇2 δHrφs

δφpx, tq
´ γ 9φpx, tq `

a

2γT ηpx, tq, (2.85)

xηpx, tqy “ 0, xηpx1, t1qηpx, tqy “ ´µ∇2δpx1 ´ xqδpt1 ´ tq, (2.86)

where µ is the mobility coefficient. In our numerical simulations, we set µ “ 1 in
lattice units (see below), however we keep the symbol in our notation where it is
necessary to avoid confusion of units.

If one decouples the systems from the heat bath by setting the Langevin coupling
γ “ 0, there is another conserved scalar quantity in the system, which can be
identified with the total energy.

It may not be immediately obvious that both sets of dynamic equations reproduce
the same stationary order-parameter distribution (2.81). We therefore go on to
explicitly show that Eq. (2.81) solves the Fokker-Planck equation

dP
dt
“
BP
Bt
`

ż

ddx

"

δ

δφx

´

9φxPrφ, πs
¯

`
δ

δπx
p 9πxPrφ, πsq

*

´ γT

ż

ddxddy xηxηyy
δ2

δπxBπy
Prφ, πs !

“ 0

(2.87)

for both processes, where the implicit time dependence is given by the equal-time
Poisson brackets as usual, with subscripts x as shorthand notations for the spatial
functional derivatives w.r.t. the fields at fixed times. Generally, we can separate
so-called drift and collision (or sometimes diffusion) terms, the latter one originating
from interactions with the heat bath and therefore proportional to the Langevin
coupling γ. We argue that the equilibrium distribution must not depend on the value
of the coupling γ, and thus require both sets of terms to vanish independently.

As a brief recap, the equilibrium distribution of the order-parameter field for the
standard Langevin evolution in Eq. (2.83) of course corresponds to the Boltzmann
distribution,

PA rφ, πs “ Z´1 exp

"

´ βHrφs ´ β

ż

ddx
π2pxq

2

*

. (2.88)
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It is the stationary solution to the Fokker-Planck equation for the Itô-Langevin
process described by Eqs. (2.83) and (2.84) with Model-A dynamics, whose drift
term vanishes and hence

dPA

dt
“
BPA

Bt
´

ż

ddx

ˆ

δHrφs

δφx

δ

δπx
´ πx

δ

δφx

˙

PArφ, πs “ 0 . (2.89)

In general, the right hand side of the Fokker-Planck equation is given by the collision
term. For our Model-A dynamics it reads

dPA

dt
“ γ

ż

ddx CApx,x, tq , with CApx,y, tq “
δ

δπx

„

πyPA ` T
δ

δπy
PA



, (2.90)

and separately also vanishes in equilibrium, simply because TδPA{δπx “ ´πxPA.
By the same line of arguments, the equilibrium distribution for our diffusive

Model-B dynamics is in turn given by

PB rφ, πs “ Z´1 exp

"

´ βHrφs ` β

ż

ddx
1

2µ
πpxq∇´2πpxq

*

. (2.91)

This is the stationary solution to

dPB

dt
“
BPB

Bt
`

ż

ddx

ˆ

´

µ∇2 δHrφs

δφx

¯ δ

δπx
` πx

δ

δφx

˙

PBrφ, πs “ 0 , (2.92)

and it also nullifies the collision integral, where the kernel now gets modified according
to

CBpx,y, tq “
δ

δπx

„

πyPB ´ Tµ∇2 δ

δπy
PB



. (2.93)

And finally, for completeness, away from equilibrium the full Fokker-Planck equation
for our Model-B process reads as follows:

BPB

Bt
“ ´

ż

ddx

„ˆ

´

µ∇2 δHrφs

δφx

¯ δ

δπx
` πx

δ

δφx

˙

PBrφ, πs ´ γ CBpx,x, tq



. (2.94)

Note that the Model-A version of the equilibrium distribution in (2.88) is given
by the usual exponentiated Hamiltonian of the corresponding scalar field theory with
a single real field variable φpxq and its conjugate momentum field πpxq ” 9φpxq. It is
therefore tempting to also identify the equilibrium distribution in Eq. (2.91) with
the Boltzmann distribution PB9 exp p´βHBq of an effective total energy HB, i.e.,

HB “

ż

ddx

"

´
1

2µ
πpxq∇´2πpxq `

1

2
φpxq

`

´∇2
`m2

˘

φpxq `
λ

4!
φ4
pxq ´ Jφpxq

*

.

(2.95)
However, the time derivative πpxq “ 9φpxq is then no longer the conjugate momentum
variable of the field φpxq. On the other hand, by introducing a canonical momentum
field Kpxq as the solution to πpxq “ ´µ∇2Kpxq as the scalar field conjugate to φpxq,
it is straightforward to show that the Hamiltonian

HB rφ,Ks “ ´

ż

ddx
µ

2
Kpxq∇2Kpxq ` Hrφs “

ż

ddx
µ

2

`

∇Kpxq
˘2
` Hrφs (2.96)
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generates the conservative part of the equation of motion (2.85) with 9φpx, tq “
´µ∇2Kpx, tq.

An intuitive interpretation of Kpx, tq is obtained from recalling that the diffusive
dynamics of Model B result from the conservation of the total magnetization Q,
i.e. the order parameter field obeys a continuity equation

9φpx, tq `∇ ¨ Jpx, tq “ 0, (2.97)

where the magnetization current Jpx, tq “ µ∇Kpx, tq is proportional to the gradient
of the conjugate momentum field Kpxq, related by the mobility coefficient. The
coupling of the magnetization current to the heat bath must then be consistent with
Eq. (2.85), such that we have for its evolution

9Jpx, tq “ µ∇ 9Kpx, tq ´ γJpx, tq ´
a

2γµT ζpx, tq (2.98)

“ ´µ∇ δHB

δφpx, tq
´ γJpx, tq ´

a

2γµT ζpx, tq, (2.99)

with a d-component vectorial noise ζpx, tq, related to the noise in Eq. (2.86) by
?
µ∇¨ζ “ η, and hence with zero mean and covariance xζipx1, t1qζjpx, tqy “ δijδpx

1 ´

xqδpt1 ´ tq.

In particular, this confirms that 9Kx “ ´
δ

δφx

HBrφ,Ks.

Note, however, that there is yet another possible Hamiltonian H 1
B which results in

the same equations of motion. Its form for λ “ 0 is that of a free massive longitudinal
vector field ∇φ, i.e.

H 1
B “

ż

ddx

„

1

2
π2
`
µ

2

`

p∇2φq2 `m2
p∇φq2

˘



. (2.100)

In addition to the Z2 symmetry of the effective Hamiltonian HB, this expression is
invariant under constant displacements of the field φ1pxq Ñ φpxq`c, implying that the
spatial integral over the rate of change of the order parameter field (i.e. 9φpp “ 0q) is
also a conserved quantity. Setting 9φpp “ 0, t “ 0q “ 0 then results in the conservation
of the order parameter φpp “ 0, tq itself. Unfortunately, the interaction part of the
Hamiltonian is then no longer local. It has however a compact representation in
Fourier space, which is given in Appendix A, Eq. (A.14).

2.2.1 Covariant formulation

Both dynamic models can be written in a Lorentz-covariant manner. The model
without conserved order parameter is described by the usual Lagrangian density of a
self-interacting relativistic scalar field,

LA “
9φ
δHA

δπ
´

1

2
π2
´

1

2
p∇φq2 ´ V pφq “ 1

2
pBµφqB

µφ´ V pφq , (2.101)

with
V pφq “

m2

2
φ2
`
λ

4!
φ4 ,

and West-coast metric with signature p`,´,´,´q. The Euler-Lagrange equation
yields the equation of motion BµBµφ ` V 1pφq “ 0 for the non-dissipative system
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(γ “ 0) with Model-C dynamics. Adding the coupling to the heat bath, we have
to specify its local rest frame. Denoting the four-velocity of the bath by uµ, with
uµu

µ “ 1, we can then write,

0 “ BµB
µφ` V 1pφq ` γ uµB

µφ´
a

2γT η (2.102)

as the covariant version of the equation of motion for our realization of Model-A
dynamics, where Eq. (2.83) is recovered with uµ “ p1, 0, 0, 0q as the rest frame of the
heat bath.

In order to translate the Hamiltonian (2.96) and the equation of motion Eq. (2.85)
with Model-B dynamics to covariant form, we introduce some notation from rela-
tivistic hydrodynamics: Along with the local rest-frame velocity uµ, we denote the
corresponding timelike derivative in the local rest frame by Dτ ” uµB

µ. For the
spacelike gradient one first introduces the four-dimensionally transverse projector,
∆µν ” gµν ´ uµuν and with this, ∇µ ” ∆µνBν , so that Bµ “ uµDτ `∇µ. The corre-
sponding spatial Laplacian is analogously written as ∆ “ ´∇µ∆µν∇ν “ ´∇µ∇µ.
Moreover, we introduce the spacelike four-vector

νµ ” ∆µνJν “ ´µ∇µK , such that uµν
µ
“ 0 . (2.103)

We can then write our Model-B equation of motion in the form of Eq. (2.98) as

Dτν
µ
“ ´µDτ p∇µKq ´ γνµ ´

a

2γµT ζµK , (2.104)

where the spacelike noise vectors, with uµζµK “ 0, now obey

xζµKpxqζ
ν
Kpx

1
qy “ ∆µνδpx´ x1q , (2.105)

with d`1 dimensional δ-function. They are related to the scalar noise η by?µ∇µζ
µ
K “

η, whose variance is now given by the covariant form of the spatial Laplacian
∆ “ ´∇µ∇µ,

xηpxqηpx1qy “ ´µ∆ δpx´ x1q . (2.106)

In the spacelike projection of Eq. (2.104) we can now use ∆µνDτ∇ν “ ∇µDτ to
commute timelike and spacelike derivatives of the momentum field K on the right
hand side. For the timelike derivative of K we furthermore use

DτK “ ∆φ´ V 1pφq , (2.107)

where we now have φ ” uµJ
µ, and Eq. (2.104) thus now becomes

∆µνDτνν “ ´γ
´

νµ ´
µ

γ
∇µ

`

V 1pφq ´∆φ
˘

¯

´
a

2γµT ζµK . (2.108)

In this hydrodynamic form, the conserved current Jµ in the continuity equation (2.97),
BµJ

µ “ 0, is thus decomposed as Jµ “ φuµ ` νµ, and Eq. (2.108) assumes the role of
an Israel-Stewart relaxation equation [61, 62] with relaxation time 1{γ and vector
force Iµ “ ∇µ

`

V 1pφq ´∆φ
˘

. In the non-interacting scalar field theory, for example,
the corresponding diffusion rate is thus given by Ddiffpkq “ pµ{γq pm2 ` k2q “

pµ{γqχ´1pkq, i.e. inversely proportional to the respective static susceptibility χpkq
as expected.
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By taking the limit of vanishing Langevin coupling γ Ñ 0, the dynamics then
conserve the total energy, and one arrives at the relativistic version of Model-D
dynamics. We show in Appendix B that in this limit, the structure of the low-energy
spectrum of the theory changes significantly.

The analogous procedure as used for our Model A or C (without dissipation,
i.e. γ “ 0) Lagrangian LA in Eq. (2.101) above, now first leads to a Lagrangian for
the non-dissipative (γ “ 0) part of our theory with conserved order parameter, which
is of the form

LB “ ´
1

2µ
9φ∇´2 9φ´

1

2
p∇φq2 ´ V pφq (2.109)

“
µ

2
K∇2K `K 9φ´

1

2
p∇φq2 ´ V pφq ,

where we have reintroduced K as a Gaussian auxiliary field, whose equation of
motion implements the constraint

BLB

BK
“ 9φ` µ∇2K “ 0 . (2.110)

Together with the equation of motion for the φ field,

BLB

Bφ
“ ∇2φ´ V 1pφq “ 9K , (2.111)

we thus recover the non-dissipative part of Eq. (2.85),

:φ “ ´µBt∇2K “ ´µ∇2
`

∇2φ´ V 1pφq
˘

. (2.112)

Note, however, in order to get there we had to commute the time derivative with the
spatial Laplacian, which becomes a bit subtle in the covariant formulation when the
local rest-frame velocity is spacetime dependent, for the same reason that we needed
the transverse projection in the Israel-Stewart equation (2.108) in order to be able
to commute the timelike and spacelike derivatives on K. In the covariant version of
the equation of motion for the scalar field φ, the necessary commutator is readily
worked out to be

Dτ∆ “ ∆Dτ ` µpBµu
µ
qaν∇ν , (2.113)

where the spacelike vector aµ “ Dτu
µ describes the acceleration of the local fluid

element, and Bµuµ its expansion. Hence, the spatial Laplacian ∆ “ ´∇µ∇µ commutes
with the timelike derivative Dτ “ uµBµ for incompressible fluids with Bµuµ “ 0. We
observe that the non-dissipative part of Eq. (2.85) describes noisy Israel-Stewart
hydrodynamics in the limit of infinite relaxation time, which we denote by Model D.

Moreover, using the decomposition of the four-vector Jµ “ φuµ ` νµ, which is
inverted by φ “ uµJ

µ and νµ “ ´µ∇µK, see Eq. (2.103) above, one readily verifies
that the current conservation law in covariant form reads,

BµJ
µ
“ Dτφ` pBµu

µ
qφ` Bµν

µ

“ Dτφ´ µ Bµ∇µK , (2.114)

where we have again assumed incompressibility (Bµuµ “ 0) in the second line. We
thus need the covariant equation of motion of the K field to yield Eq. (2.114).

24



2.2. DYNAMICAL MODELS

This is achieved by the following covariant version of the Lagrangian for relativistic
Model-D dynamics,

LB “
µ

2
p∇µKq∇µK `KDτφ`

1

2
p∇µφq∇µφ´ V pφq , (2.115)

where the corresponding conservative equations of motion in covariant form are
obtained from

Dτ
BLB

BpDτφq
´
BLB

Bφ
“ DτK ` Bµ∇µφ` V 1pφq “ 0 , (2.116)

BLB

BK
“ Dτφ´ µ Bµ∇µK “ 0 . (2.117)

Finally, note that in general, Bµ∇µ “ ∇µBµ and neither of the two is equal to
∇µ∇µ “ ´∆, but one has

Bµ∇µ
“ ∇µ∇µ

´ aµBµ , (2.118)
∇µ
Bµ “ ∇µ∇µ

` pBµu
µ
qDτ . (2.119)

For an incompressible fluid without acceleration aµ “ Dτu
µ these distinctions are

luckily unnecessary.

2.2.2 Lattice Regularization

We employ a lattice regularization to supply an ultraviolet cutoff to possible spatial
variations in the order parameter field φpxq. The entropy functional then becomes a
sum over the field at discrete lattice sites

Hrφxs “
ÿ

x

ad

#

´
1

2a2

ÿ

y„x

φxφy `

ˆ

m2

2
`

d

a2

˙

φ2
x `

λ

4!
φ4
x ` Jφx

+

, (2.120)

where the sum
ř

y„x runs over all lattice sites y adjacent to the site x, and
ř

x

denotes the sum over the lattice volume. We approximate the Laplacian ∇2φx ”

∇b∇fφx “ a´2
´

ř

y„x φy ´ 2dφx

¯

by applying a forward after a backward derivative.
To simplify the notation, we from here on let the lattice spacing a “ 1 be unity.
For Model C, the discretization of the Hamiltonian is trivial, and we obtain for the
lattice Hamiltonian and the equations of motion

HA “
ÿ

x

π2
x

2
´

1

2

ÿ

y„x

φxφy `

ˆ

m2

2
` d

˙

φ2
x `

λ

4!
φ4
x ` Jφx, (2.121)

9φx “
BHA

Bπx
“ πx, (2.122)

9πx “ ´
BHA

Bφx
´ γπx `

a

2γTηxptq (2.123)

BHA

Bφx
“ ´

ÿ

x„y

pφy ´ φxq `

ˆ

m2
`
λ

6
φ2
x

˙

φx ` J, (2.124)

where ηxptq is a zero-mean Gaussian white noise at every lattice site with xη1xpt1qηxptqy “
δx,x1δ pt

1 ´ tq.
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For Models B and D, we begin the discretization by considering again the pair
of conjugate variables tφpxq, Kpxqu Ñ tφx, Kxu, which are defined on the sites of
the lattice. One obtains the magnetization current Jpxq “ ∇Kpxq by an external
derivative, which is ambiguous on the lattice. We choose to define the components
of the discretized magnetization current J ipxq Ñ J ix on the links connecting the sites
px` î, xq, therefore interpreting the derivative in

Jx “ µ∇fKx (2.125)

as the forward derivative. In order to relate the current Jx to the time derivative πx
on the sites, we interpret the derivative in the discretized version of the continuity
equation (2.97) as the backward derivative

πx `∇b ¨ Jx “ 0, , (2.126)

which leads to the equations of motion for the discretized current and time derivative

9Jx “ µ∇f pBtKxq ´ γJx `
a

2µγTζxptq “ ´∇f
BH2

Bφx
´ γJx `

a

2µγTζxptq, (2.127)

9πx “ ´∇b
9Jx “ µ∇b∇f

BH

Bφx
` γ∇bJx ´

a

2µγT∇bζxptq

“ µ∇2 BH

Bφx
´ γπx ´

a

2µγT∇bζxptq.

(2.128)

We thus have for the equations of motion and the lattice Hamiltonian for Model D

HB “
ÿ

x

#

´
µ

2
Kx

ÿ

y„x

pKy ´Kxq ´
1

2

ÿ

y„x

φxφy `

ˆ

m2

2
` d

˙

φ2
x `

λ

4!
φ4
x ` Jφx

+

,

(2.129)

9φx “
BHB

BKx

“ ´µ
ÿ

y„x

pKy ´Kxq “ ´µ∇2Kx ” πx, (2.130)

9πx “ µ
ÿ

y„x

ˆ

BHB

Bφy
´
BHB

Bφx

˙

´ γπx `
a

2µγT∇bζxptq, (2.131)

where BHB{Bφx “ BHA{Bφx is given in Eq. (2.124). For practical reasons, in both
cases we work with φx and its time derivative πx.

Concerning the noise term in Eq. (2.128) we remark that by the affine transfor-
mation of a d-component vector of Gaussian random numbers with unit covariance,
we generate random variables with a distribution approaching the correct continuum
limit in Eq. (2.86)

ηxptq “ ∇b ¨ ζxptq,
@

ζ ixptqζ
j
ypt

1
q
D

“ δi,jδx,yδpt´ t
1
q, (2.132)

xηxptqηypt
1
qy “ xp∇b ¨ ζxptqq p∇b ¨ ζypt

1
qqy “ p

“´∇f
hkkikkj

∇T
b ∇bqδxyδpt´ t

1
q

“ ´∇2δxyδpt´ t
1
q.

(2.133)

In order to generate an initial thermal distribution of the time derivative field πx
matching the stationary solutions, the lattice variables are drawn from a Gaussian
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multivariate distribution with the covariance given by T for Models A and C respec-
tively ´T∇2 for Models B and D. The latter is realized by taking the backward
derivative of a vector noise with the Boltzmann distribution,

@

ζ ix
D

“ 0,
@

ζ ixζ
j
y

D

“ Tδx,yδ
i,j, (2.134)

πxptiq “ ∇b ¨ ζx “
d
ÿ

i

`

ζ ix ´ ζ
i
x´ei

˘

, (2.135)

ñ xπxptiqπyptiqy “ ´T∇2δx,y, (2.136)

where ei is a unit vector in the direction i.

2.3 Spectral function

Spectral functions of bosonic operators Ô pt,xq in a quantum field theory are defined
by a decomposition of the two-point function (with translational invariance in space
and time),

GOpt´ t
1,x´ x1q “

A

TÔpt,xqÔ:pt1,x1q
E

“ F pt´ t1,x´ x1q ´
i

2
ρpt´ t1,x´ x1q sgn pt´ t1q , (2.137)

where T denotes the time-ordering operator, and we have introduced the spectral (ρ)
and statistical (F ) correlation functions

ρ pt´ t1,x´ x1q “ i
A”

Ôpt,xq, Ô:pt1,x1q
ıE

, (2.138)

F pt´ t1,x´ x1q “
1

2

B

”

Ôpt,xq, Ô:pt1,x1q
ı

`

F

´ xÔpt,xqy xÔ:pt1,x1qy , (2.139)

with r , s` representing the anti-commutator. While the spectral function ρ is relevant
to describe the (linear) response of the system to an external perturbation, and thus
provides the spectrum of possible excitations, the statistical correlation function F
in general describes the quantum and thermal statistical fluctuations present in the
system.

Based on the Kubo-Martin-Schwinger (KMS) [42, 43, 44] condition in thermal
equilibrium, F and ρ are related via the fluctuation-dissipation relation

F pω,p, T q “

ˆ

nT pωq `
1

2

˙

ρpω,p, T q. (2.140)

Note that, for practical reasons, we defined the Fourier transformations of F and ρ
as

F pω,p, T q “

ż

dtddx eipωt´pxqF pt,x, T q, (2.141)

ρpω,p, T q “ ´i

ż

dtddx eipωt´pxqρpt,x, T q, (2.142)

where the additional factor of ´i in (2.142) ensures that the spectral function ρptq,
which is an odd function under space-time reflections ρp´t,´xq “ ´ρpt, xq, is real in
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both the time (ρptq) and frequency domain (ρpωq). In the classical limit, the thermal
distribution becomes

nT pωq ` 1{2 “
1

eβω ` 1
`

1

2
« T {ω, (2.143)

and the spectral can be computed directly as

ρpt,p, T q “ ´
1

T
BtF pt,p, T q. (2.144)

Close to the critical point, the dynamics of the system are dominated by its slow
infrared modes with frequencies ω ! T very small compared to the temperature scale
where quantum effects are relevant. Therefore, the classical description suffices to
fully capture the dynamic critical behavior of the model.

We are interested in the spectral function of the order parameter field φ, which
in the classical-statistical field theory is formally defined via the Poisson bracket of
the fields as

ρpt´ t0,x´ x0q “ ´ xtφpt,xq, φpt0,x0quycl . (2.145)

While it is in principle possible to evaluate the Poisson brackets directly (see e.g. [63,
64]), we follow previous works and instead exploit the classical KMS condition
to calculate the spectral function in thermal equilibrium [39, 40, 41]. By virtue
of Eq. (2.144), we can compute this spectral function ρpt,x, T q via the statistical
two-point function F pt,x, T q directly from the classical lattice fields,

ρpt,x, T q “ ´
1

2T
xπpt,xqφp0,0q ´ φpt,xqπp0,0qy . (2.146)
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3 | Technical realization

The aim of this chapter is to enable the reader to fully reproduce any numerical
results given in the subsequent chapters, by giving all necessary details concerning
the technical realization of the field theory apparatus. We provide the code as a
public repository under https://gitlab.com/nierenstein23/phi4lattice.

The main simulation is implemented in C++ [65] and CUDA [66], and built using
both CUDA’s nvcc compiler as well as the C++-compiler of the GNU Compiler
Collection [67] g++, where the build process is automated using cmake [68]. Almost
all features1 are implemented both as pure CPU code, parallelized using OpenMP
[69], as well as GPU-accelerated CUDA code. The user can either select the desired
architecture at runtime, or de-select the parts containing CUDA code at compile
time, e.g. if CUDA is not available in a certain environment.

Data used for the study at hand was generated mainly on the local heterogeneous
Cluster of the group of Prof. Lorenz von Smekal in Gießen, consisting of both
mixed GPU hardware as well as eight Intel Xeon Phi 7250 nodes. Some additional
computation time was granted on the GPU Cluster of Bielefeld University [70] as
well as on the facilities of Cori at NERSC [71].

Evaluation of data was done using a mixture of Python 3/NumPy [72, 73], awk
[74] and GNU Bash [75] scripts. Gnuplot [76] was used for extraction of some fit
parameters and general visualization of processed data.

3.0.1 Lattice representation

The lattice fields are implemented as linear arrays, with an indexing function taking
care of dimensionality d P t2, 3u and periodic boundary conditions. Hamiltonian
dynamics are supported for fields with Nc ă 16 components2; diffusion dynamics are
as now limited to single-component fields; the generalization would however require
minimal effort.

Most operations on the fields are of low algorithmic intensity and therefore
memory-bound. To optimize memory access, the fields are stored in memory with
indices in ascending order are c, x, y, z.

Since the fields are evolved using a leapfrog scheme, it is useful to simultaneously
hold the fields φx, πx as separate arrays in memory at all times.

1As of May 12, 2021, some functionality regarding the energy-momentum tensor is only available
for single-component fields on the GPU architecture.

2The upper limit on Nc is a compile-time constant.
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CHAPTER 3. TECHNICAL REALIZATION

3.0.2 Integrator scheme

We integrate Eqs. (2.123) and (2.131) using a velocity Verlet method, also known as
“leapfrog” integration, where the equations of motion are evaluated and updated at
interleaved time points.

To evolve the system from times t to t `∆t in Nt time steps, one starts with
a half-step in the fields φx, followed by alternating full steps in πx, φx, and finishes
with an appropriate half-step to bring both variables to the same time coordinate,

φx

ˆ

t`
δt
2

˙

“ φxptq `
δt
2
πx

. . .

πx pt` i δtq “ πx pt` pi´ 1q δtq ` δt F rφx pt` pi´ 1{2q δtq , πx pt` pi´ 1q δtqs

φx pt` pi` 1{2q δtq “ φx pt` pi´ 1{2qq ` δt πx

. . .

πx pt`∆tq “ πxpt` pNt ´ 1qδtq ` δt F rφx pt` pNt ´ 1{2q δtq , πxpt` pNt ´ 1qδtqs

φx pt`∆tq “ φx pt` pNt ´ 1{2q δtq `
δt
2
πx,

where we defined δt ” ∆t{Nt, and the counter variable i runs from 1 to Nt ´ 1. We
abbreviate the left-hand side of the equation of motion by 9πx “ :φx “ F rφx, πxs. The
error of this scheme is in Opδ2

t q. For real-time simulations, we typically use ∆t “ 1
and Nt “ 160, where we tested that there are no remaining step-size effects on the
final results.

3.0.3 Random number generator

If there is a finite heat-bath coupling γ ą 0, the equations of motion involve Gaussian
noise terms. Gaussian random numbers x, y with unit variance are obtained from
two uniform random numbers u, v P p0, 1s via the Box-Muller method [77]

x “
a

´2 lnpuq sinp2πvq, y “
a

´2 lnpuq cosp2πvq. (3.1)

In order to generate large amounts of uniform pseudo-random numbers with a
very long cycle in parallel, a linear feedback shift register (Tausworthe) random
number generator (RNG) is employed [78, 79]. We define an array of RNG states
with one state per lattice site. This array is initialized using lrand48(), seeded with
a large number typically between 109 and 1010 ´ 1, which allows exact reproduction
of any simulation run independent of hardware.3 If no seed is specified, we take the
time from the UNIX epoch in seconds as default seed.

3.0.4 Hybrid Monte-Carlo

In order to obtain the equilibrium results of the classical theory shown in Section 4.1,
one has to compute observables of the form

xOpφxqy “

ż

D rφxsOpφxqP pφxq (3.2)

3While the sequence of pseudo-random numbers is defined by the seed, differences in the
implementation related to optimizations lead to minimal changes in observables, especially those
concerning sums over large arrays.
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with the equilibrium distribution of the order parameter field given by Eq. (2.81).
While one could in theory solve the above integral by generating random configu-
rations of φx and computing the corresponding weight factors, this turns out to be
computationally very inefficient: Almost all configurations have minuscule weights,
and very few configurations with relatively high weight dominate the result. One goes
around this problem by generating configurations of φx with abundancies reflecting
their weight factor P pφxq using a Metropolis-Hastings algorithm.

The algorithm generates a sequence of configurations φx using a Markov process,
asymptotically converging on a stationary distribution P pφxq. A sufficient condition
for the existence of a stationary distribution P pφxq is detailed balance, i.e.

P pφ1x|φxqP pφxq “ P pφx|φ
1
xqP pφ

1
xq, (3.3)

where P pφ1x|φxq denotes the transition probability from the configuration φx to φ1x.
One now separates the transition into a proposal and acceptance/rejection. The pro-
posal distribution is denoted as ppφ1x|φxq and the acceptance/rejection as apφ1x|φxq, giv-
ing the conditional probabilities of proposing/accepting the new configuration φ1x after
φx. The total transition probability is then the product P pφ1x|φxq “ ppφ1x|φxqapφ

1
x|φxq.

Inserting into Eq. (3.3) and ordering the terms yields

apφ1x|φxq

apφx|φ1xq
“
P pφ1xqppφx|φ

1
xq

P pφxqppφ1x|φxq
. (3.4)

Letting

apφ1x|φxq “ min

ˆ

1,
P pφ1xqppφx|φ

1
xq

P pφxqppφ1x|φxq

˙

(3.5)

fulfills the detailed-balance condition for any proposal function.
Therein now lies the strength of the hybrid Monte-Carlo (or Hamiltonian Monte-

Carlo) method. (For a detailed review, see [80].) Here, one generates φ1x by evolving
φx using the Hamiltonian equations of motion (2.122) and (2.123). One initializes φx
randomly and draws the conjugate momentum πx from a Gaussian distribution with
variance T . After evolving for some time ∆t using the leapfrog integrator described
above, one arrives at the proposal φ1x “ φxpt`∆tq, π1x “ πxpt`∆tq. Since Hamiltonian
dynamics are exactly reversible and the leapfrog integrator is exactly symmetric
in time, one has ppφ1x, π1x|πx, φxq “ ppφx, πx|φ

1
x, π

1
xq. At finite step size however, the

Hamiltonian H may not be exactly conserved, i.e. ∆H “ Hpφ1x, π
1
xq ´Hpφx, πxq ‰ 0.

One therefore has for the acceptance/rejection probability

apφ1x|φxq “ min

ˆ

1,
e´βHpφ

1
x,π

1
xqppφx, πx|φ

1
x, π

1
xq

e´βHpφx,πxqppφ1x, π
1
x|φx, πxq

˙

“ min
`

1, e´β∆H
˘

, (3.6)

with the inverse temperature β ” 1{T . The resulting stationary distribution of the
Markov process is given by

P pφx, πxq “ Z´1e´βpHpφxq`π
2
x{2q “ P pφxqP pπxq, (3.7)

which, as suggested by the notation, factorizes such that the configurations φx follow
the desired distribution P pφxq “ e´βHpφxq. One may confirm that the stationary
solution is also unique by checking the ergodicity of the process.

The recipe for the HMC method now reads as follows:
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1. Choose some random initial conditions for φx.

2. Draw πx from a Gaussian distribution with variance T .

3. Evolve the system under the equations of motion (2.122) and (2.123) for some
time Ď∆t “ sNt

sδt.

4. Draw a random number α from a uniform distribution in r0, 1s. If α ď e´β∆H ,
accept the new configuration φ1x, π1x. If not, reject the new configuration and
count the old one twice.

5. Start over at step 2 until enough configurations tφxu were generated.

To compute the expectation value of some observable Opφq, one averages the function
Opφxq

xOpφqy “

ż

DφxOpφxqP pφxq “
ÿ

φxPtφxu

Opφxq (3.8)

over every configuration of φx generated by the HMC. One however has to beware
some caveat: Concerning the random initial condition on φx, also called a “hot start”,
one notices that depending e.g. on the temperature T the first few states are far
from the equilibrium distribution, especially for low temperatures, and therefore
have very low weight, such that they are overrepresented at the beginning of the run.
One way to mitigate this is by ignoring all configurations at the start, monitoring
for large changes in observables, and only begin measuring as soon as the system
has thermalized.

One also must carefully consider the choice of parameters sNt, sδt. The acceptance
rate typically depends only on the integrator step-size sδt. If the acceptance rate is
very low, the autocorrelation between configurations grows large. If on the other
hand the acceptance rate is very high, one wastes precious resources on unnecessarily
fine integration. We therefore typically aim for an acceptance rate between 0.5 and
0.6. The parameter sNt is then tuned such that the total trajectory length induces
sufficient change in the system, i.e. the autocorrelation dies down fast enough. Here,
we generally aim for decorrelation after „ 10 HMC steps.

3.0.5 Correlation functions

When studying equilibrium dynamics, we are mostly interested in unequal-time
correlation functions, e.g. the order-parameter spectral function in Eq. (2.146).
During the simulation, discrete time histories of observables like φ, π, T µν and
finite-momentum modes thereof are recorded. In the evaluation stage, they are
correlated and averaged longitudinally employing time-translation symmetry. For
the spectral function of the order parameter specifically, we get

ρpti,pq “
´1

2T

Nt´ti
ÿ

tj“0

π̄˚ptj ` ti,pqφ̄ptj,pq ´ π̄ptj,pqφ̄ptj ` ti,pq

Nt ´ ti
, (3.9)

where Nt denotes the total number of measurement time points in the given history,
and we used that φp´pq “ φ˚ppq for fields that are real in coordinate space. Possible
disconnected parts are dealt with by transforming φ̄pti,pq ” φpti,pq ´ xφppqy and
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similarly for the time derivative π̄pti,pq. The result is extended to negative ti by
setting ρp´ti,pq ” ρpti,pq, before applying a discrete Fourier transform (DFT) in
the time direction to obtain ρpωi,pq. Both for the correlation and the DFT we
employ a fast implementation from the NumPy library [73].
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4 | Order parameter dynamics in equi-
librium

In this chapter, we analyze the equilibrium dynamics of the models defined in
Section 2.2. Before we address the real-time dynamics of the systems, we briefly
investigate the static critical behaviour of our models in 2 and 3 spatial dimensions.
Measuring the non-universal amplitudes of the critical power laws will allow us to
express our later results in terms of dimensionless quantities, enabling a more direct
comparison to results obtained from microscopically different models of the same
universality class. Additionally, this study serves as a plausibility check for our
numerics setup.

We continue by investigating spectral functions of the order parameter, starting
with determining the spectral functions in mean-field approximation. Subsequently
we present numerical results for the spectral functions at different regions in the phase
diagram, and compare our findings to the mean-field results. Having identified the
dominant degrees of freedom, we analyze their dispersion relations and temperature
dependence.

The outcome suggests singular behaviour close to the critical temperature, mo-
tivating a closer analysis of critical spectral functions and signatures of universal
behaviour. We quantify the divergence of the characteristic time scale, and extract
both the dynamic critical exponent z as well as the universal scaling functions of the
spectral functions at either vanishing reduced temperature or spatial momentum.

4.1 Static universality and scale setting

For the full quantum theory, computing thermal expectation values amounts to
solving expressions of the form

xÔy “
Tr

”

exp
´

´βĤ
¯

Ô
ı

Tr
”

exp
´

´βĤ
¯ı . (4.1)

A popular ansatz is to interpret e´βĤ as the evolution operator along some imaginary
time axis τ “ ´it from τ “ 0 up to β. After application of a Suzuki-Trotter
decomposition on the evolution operator, one finds the Euclidean path integral
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Table 4.1: Critical exponents of the ferromagnetic transition in the Ising model. In 2D,
they are analytically known from Onsager’s solution [82]. The high-precision calculations
for the 3D Ising exponents were obtained from the conformal bootstrap approach [83, 84].

2D 3D
β 0.125 0.326419
γ 1.75 1.237075
δ 15.0 4.78984
ν 1.0 0.629971
η 0.25 0.036298
ω 2.0 0.82966

representation of the partition function

Zpβq “ Tr
”

e´βĤ
ı

“

ż

D rφpτqs e´SEpβq, (4.2)

SE “

ż β

0

dτ

ż

ddx

ˆ

1

2
9φ2
pτq ` V pφpτqq

˙

, (4.3)

where the Euclidean action SE is given by the integral over the Wick-rotated La-
grangian with periodic boundary conditions in the τ -direction. The latter property
can be used to turn the integral over imaginary time into a discrete sum over the
Matsubara frequencies; for deeper insights on thermal field theory, see e.g. [81]. In
the classical theory, we neglect quantum fluctuations altogether, meaning the fields
do not change along the imaginary-time direction. This is equivalent to only taking
into account the zeroth Matsubara mode, and just evaluating

Zclpβq “

ż

Drφse´βV pφq. (4.4)

In case of the Landau-Ginzburg-Wilson model, V pφq “ Hpφq as defined in Eq. (2.82)
in continuum respectively Eq. (2.120) on the lattice. Computing expectation values
of observables then amounts to calculating the integral

xOpφqy “

ż

DrφsOpφqe´βHpφq. (4.5)

We solve these expressions by employing a hybrid Monte-Carlo method outlined in
Chapter 3, Section 3.0.4. In most cases we record 104 trajectories after the system
has thermalized. The raw data is then further subjected to jackknife resampling, in
order to obtain sensible error estimates despite remaining autocorrelation.

The basic observables we want to look at are the order parameter in form of the
magnetization M and the corresponding susceptibility χ, which are defined as

M “
1

V

ÿ

x

φx, (4.6)

χ “
B xMy

BJ
“
V

T

`@

M2
D

´ xMy2
˘

. (4.7)

Since in the absence of explicit symmetry breaking (J “ 0) the magnetization defined
in Eq. (4.6) vanishes identically xMy “ 0 in any finite volume, we instead consider

MpJ “ 0q “
1

V

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

x

φx

ˇ

ˇ

ˇ

ˇ

ˇ

(4.8)
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in that case.
When extracting the spatial correlation length ξ, we compute the plane-correlation

function Ḡpnq between the field-average Spnq over lines for d “ 2 (respectively planes
for d “ 3):

Spnq ” L1´d
N
ÿ

jp,kq

φnex`jeyp`kezq, (4.9)

Ḡpnq “ Ld´1
`

xSpnqSp0qy ´M2
˘

, (4.10)

which for sufficiently large separations n is expected to follow an exponential behavior
of the form [85]

Ḡpnq “ A pexpp´n{ξq ` exp ppn´ Lq{ξqq . (4.11)

Based on this behavior, we deduce an effective correlation length ξeff.pnq from the
data by considering the logarithmic derivative

ξeff.pnq “
´1

ln
`

Ḡpn` 1q{Ḡpnq
˘ . (4.12)

and subsequently look for a plateau in a range of separations n, which is then used
to determine the spatial correlation length ξ.

We provide a compact summary of our static results in Figs. 4.1 to 4.3, where
we show the behavior of the order parameter M and susceptibility χ (Fig. 4.1),
visualize the extraction of the spatial correlation length (Fig. 4.2), and illustrate the
behavior of the correlation length ξ as a function of temperature T and external field
J (Fig. 4.3). We follow common procedure and express the temperature dependence
of our results in terms of the reduced temperature τ

τ “
T ´ Tc
Tc

, (4.13)

where Tc is the critical temperature given in Table 4.2. For all of the aforementioned
observables, we approach the thermodynamic limit: By comparing data points of at
least two different lattice volumes for any given point in the phase diagram, we can
select a range of data where finite volume effects are negligible.

Based on our results in Figs. 4.1 and 4.3, we extract the non-universal amplitudes
of the critical power laws either as functions of τ at vanishing external field, J “ 0, or
as functions of a dimensionless variable J̄ ” J{J0 ě 0 at τ “ 0. We follow the notation
of [86] and distinguish the various non-universal amplitudes by superscripts, marking
the region of the phase diagram that they describe. Specifically, the superscript of
X˘ indicates the sign of τ and marks the amplitude on the J “ 0 axis, whereas
Xc denotes the corresponding amplitude on the τ “ 0 axis. Motivated by [86] and
[87], we extract the critical temperature and non-universal amplitudes, including
the leading scaling corrections, by fitting the following ansätze to correspondingly
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Figure 4.1: Near-critical behavior of the order parameter M and susceptibilities χ in
d “ 2 (left panels) and d “ 3 (right panels) spatial dimensions. Solid lines show fits to
Eq. (4.14) ff., with the corresponding χ2-values given in each figure. By taking into account
the first two sub-leading corrections to scaling, we obtain excellent agreement between data
and fits.
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Figure 4.2: Extraction of the correlation length ξpτ, Jq from the two-point function Ḡpnq.
Upper panels show exemplary data for the slice correlator Ḡpnq at different temperatures τ ;
lower panels show the effective correlation length ξeff.pxq defined by Eq. (4.12). We extract
the correlation length ξpτ, Jq by looking for a plateau in ξeff.pxq and fitting a constant if
possible. Black lines with vertical marks in the lower plots indicate both range and result
of the fit.

Table 4.2: Asymptotic amplitudes and corrections to scaling, as obtained from fits to
Eq. (4.14) ff. The given uncertainties only include statistical errors. If a correction amplitude
does not improve the χ2{d.o.f. of a fit, it is set to zero and denoted by a dash.

2D 3D
Tc 4.4629(10) 9.37074(28)
B 2.0203(16) 1.937(17)
C` 1.4059(63) 0.830(42)
f` 0.9176(76) 0.918(27)
Bc 1.7425(13) 1.5291(22)
Cc 0.1222(16) 0.3173(97)
f c 0.3489(95) 0.537(16)

2D 3D
B1 -1.1(2) 0.9(1)
B2 0.56(3) -1.0(3)
Bc

1 - 0.83(1)
Bc

2 20.4(8) -
C`1 - 2.8(8)
C`2 1.33(8) -5.2(1.9)
C´1 - 2.6(2)
C´2 -9.7(3) -
Cc

1 302(48) 2.2(4)
f`1 11.6(1.9) 0.4(2)
f´1 - 0.5(3)
f c1 - 1.5(6)
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Figure 4.3: Near-critical behavior of the spatial correlation length ξpτ, Jq as function of
the reduced temperature τ at vanishing symmetry breaking J “ 0 (top panels), respectively
as function of J at the critical temperature τ “ 0 (lower panels). Solid lines show fits to
Eq. (4.18) with the corresponding χ2-values indicated in each figure.

selected points,

xMpτqy “ Bp´τqβ p1`B1p´τq
ων
´B2τq , τ ă 0 , (4.14)

@

MpJ̄q
D

“ BcJ
1{δ
0 J̄1{δ

`

1`Bc
1J̄

ωνc `Bc
2J̄
˘

, (4.15)
χpτq “ C˘|τ |´γ

`

1` C˘1 |τ |
ων
` C˘2 |τ |

˘

, (4.16)
χpJ̄q “ CcJ´γc0 J̄´γc

`

1` Cc
1J̄

ωνc
˘

, (4.17)
ξpτq “ f˘|τ |´ν

`

1` f˘1 |τ |
ων
˘

, (4.18)
ξpJ̄q “ f cJ´νc0 J̄´νc

`

1` f c1 J̄
ωνc

˘

, (4.19)

where γc ” γ{βδ “ 1´1{δ and νc ” ν{βδ “ p1`1{δq{d from scaling and hyperscaling
relations. We note that J0 is chosen such that BcJ

1{δ
0 “ B, and CcJ´γc0 “ B{pδJ0q

(as well as J´νc0 “ pBc{Bqν{β); and in the absence of scaling corrections, the magnetic
equation of state can be written in the Widom-Griffiths form, y “ fpxq, with
dimensionless magnetization ĎM “M{B,

y “ J̄{ĎM δ, x “ τ{ĎM1{β (4.20)

and normalization fp0 “ 1q, fp´1q “ 0.
By virtue of the Z2 symmetry of our model, we know that its critical behavior

is described within the Ising universality class. Our model and method are not
optimized for computing static critical exponents; we therefore reduce the degrees of
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freedom in our calculations by taking the critical exponents from the literature. In
d “ 2 spatial dimensions, the critical exponents are exactly known from the analytic
solution by Onsager [82]. For the numeric values of the exponents in d “ 3 spatial
dimensions, we take those obtained by the conformal bootstrapping method [83, 84],
which are listed in Table 4.1 alongside their counterparts in d “ 2.

The asymptotic scaling amplitudes along with the coefficients of the scaling
corrections extracted from the fits to the data are listed in Table 4.2. The comparison
between ansatz and data is shown in Figs. 4.1 and 4.3. For most quantities, we
obtain a χ2{d.o.f. close to unity, indicating sufficient agreement between fit and data.
For d “ 2, our procedure for the correlation length at J “ 0 does not work too
well, especially for τ ă 0, leading to a relatively large resulting value of χ2. This is
primarily due to heavily fluctuating data in the low-temperature phase, as well as
probably an underestimation of the error of the correlation length ξ in our extraction.

It is a useful cross-check to validate the measured amplitudes by comparing the
known universal amplitude ratios. We use a subset that relates all of the amplitudes
we measure:

U2 “ C`{C´, (4.21)
Uξ “ f`{f´, (4.22)

Rχ “ C`Bδ´1
{ pBc

q
δ , (4.23)

Q2 “
`

f c{f`
˘2´η

C`{C´, (4.24)
δ “ Bc

{Cc. (4.25)

The ratios we measured are shown alongside their literature values in Table 4.3. For
most of the ratios, we find results in the right ballpark, with exception of Uξ and Q2

in d “ 2 dimensions: Those ratios are the ones including amplitudes of ξ.
Different definitions of ξ lead to slightly different Uξ, see e.g. the difference between

second-moment correlation length and inverse mass gap in [86]. Since our definition
again differs from the aforementioned ones, we are bound to get (slightly) different
amplitudes. Nevertheless, it is strongly related to the definition by the inverse mass
gap, so we would expect Uξ « 2. Since we do not rely on exact estimates of the
correlation length for the purpose of this study, we accept these residual ambiguities
for now.

When studying dynamic critical behavior, we will normalize our results using
the non-universal amplitudes. In this process, we will also obtain a timescale by
fitting the amplitude f`t of the correlation time ξt, which will be determined in
a later section (see Eq. (4.92) in Sec. 4.3.3). If not stated otherwise, we give all
results in terms of dimensionless scaling variables, which are indicated by a bar and
constructed as follows:

J̄ “ J{J0 “ JpBc
{Bqδ, (4.26)

p̄ “ pf`, (4.27)
t̄ “ t{f`t , (4.28)
ω̄ “ ωf`t . (4.29)
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Table 4.3: Universal amplitude ratios. The given uncertainties only include statistical
errors. The ratios are shown alongside their literature values, which were taken from [86].

2D 3D
meas. lit. meas. lit.

U2 40.05(35) 37.69 4.29(24) 4.76(2)
Uξ 3.14(38) 2 1.939(90) 1.896(10)
Rχ 6.40(10) 6.778 1.331(80) 1.660(4)
Q2 2.12(11) 2.836 0.913(93) 1.195(10)
δ 14.26(19) 15 4.82(15) 4.78984(1)

4.2 Spectral functions of the order parameter

Based on our analysis of static critical phenomena, we will now investigate the
behavior of the spectral function at different points in the phase diagram. We proceed
as outlined in the beginning of this chapter and calculate the classical-statistical
spectral function of the order parameter field first in mean-field approximation and
then non-perturbatively from lattice simulations using Eq. (2.144) resp. Eq. (2.146).
We prepare „ 30 independent thermal configurations as initial conditions, which we
then evolve for „ 104 ´ 105a, using and Euler-Maruyama scheme. Notably, we find
that in the vicinity of the critical point, the time step ∆t in the integrator has to be
chosen sufficiently small to avoid discretization errors. If not stated otherwise, we
employ ∆t “ .00625 a, and we have checked that discretization errors are negligible
for the results presented here.

By recording the evolution of the Fourier modes of the order parameter field, we
subsequently compute the spectral function ρpt, pq from Eqs. (2.144) and (2.146).
Statistical errors are estimates from point-wise averages of ρpt, pq and respectively
ρpω, pq over different configurations. If not stated otherwise, the spectral functions
shown in this section are obtained for vanishing external field J “ 0 on lattice volumes
of 2562 respectively 2563, where we have the smallest remaining finite volume effects.

4.2.1 Mean-field spectral functions

To build the correct expectations, it is instructive to consider the system in mean-field
approximation, which coincides with the limit of low temperatures T Ñ 0 of the
classical system. For negative square mass m2 ă 0, one has non-trivial minima of the
Hamiltonians HA{B where φ2 “ ´6m2{λ ” φ̄2. Expanding H around φ “ φ̄ yields a
mean-field effective squared mass of m̄2 “ ´2m2.

To evaluate the spectral function in the mean-field approach, we consider the
equations of motion (2.83) and (2.85) in Fourier space, upon which we get

piωq2φpω,pq “ ´
“

pµp2
q
α
pm̄2

` p2
q ` γpiωq

‰

φpω,pq ` pµp2
q
αJp´ω,´pq (4.30)

ô
“

´ω2
` iωγ ` pµp2

q
α
pm̄2

` p2
q
‰

φpω,pq “ pµp2
q
αJp´ω,´pq, (4.31)

where we abbreviate p “ |p|, and the variable α differentiates between dissipative
Model-A (α “ 0) and diffusive Model-B (α “ 1) dynamics. One obtains the statistical
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two-point function by taking the derivative w.r.t. the external source term J

xφφ1y “
B

BJ 1
xφy “

pµp2qα

pµp2qα pp2 ` m̄2q ´ ω2 ` iγω
δ pω ` ω1q δ pp` p1q . (4.32)

From there one can calculate the spectral function by taking the imaginary part of
the correlator (4.32). This yields for dissipative Model-A dynamics induced by the
equation of motion (2.83)

ρApω,pq “
γω

pω2 ´ pp2 ` m̄2qq
2
` γ2ω2

, (4.33)

and for diffusive Model-B dynamics under the equation of motion (2.85)

ρBpω,pq “
µp2γω

pω2 ´ µp2 pp2 ` m̄2qq
2
` γ2ω2

. (4.34)

We thus expect the spectral function at least at low temperatures to be described
by a Breit-Wigner shape with dispersion ω2

p “ pm̄2 ` p2q for Model A and ω2
p “

µp2pm̄2 ` p2q for Model B. One obtains of course the same result taking the spectral
function directly from the Israel-Stewart two-point function given in Appendix B
after inserting the correct model parameters.

It will be useful to be aware of the extremal behavior of the mean-field spectral
function. We list the relevant limits for a single extremal parameter below, making
again use of the parameter α P t0, 1u distinguishing the dynamical models.

lim
ωÑ0

ρpω,pq “
pµp2qαγω

ω4
p

`O
`

ω3
˘

(4.35)

lim
ωÑ8

ρpω,pq “
pµp2qαγ

ω3
`O

`

ω´5
˘

(4.36)

lim
pÑ0

ρpω,pq “
pµp2qαγω

pω2 ´ p1´ αqm2q
2
` γ2ω2

`O
`

p2`α
˘

(4.37)

lim
pÑ8

ρpω,pq “
γω

pµp2qαp4
`O

`

p´6´α
˘

(4.38)

lim
γÑ0

ρpω,pq “
pµp2qαγω

pω2 ´ pµp2qα pp2 `m2qq
2 `O

`

γ3
˘

(4.39)

lim
γÑ8

ρpω,pq “
pµp2qα

γω
`O

`

γ´3
˘

(4.40)

4.2.2 Overview

In Figs. 4.4 and 4.5, we give an overview over the behavior of spectral functions for
dissipative (Model A/C) dynamics at different temperatures. At high temperatures
(T " Tc), the spectral function is well approximated by a relativistic Breit-Wigner
peak shape, with the peak position shifting with spatial momentum p according to
the relativistic dispersion relation ω2 ´ p2 “ m2pT q. This is compatible with earlier
studies: In [39], the zero-momentum (p “ 0) mode of the spectral function was
investigated in a scalar theory without phase transition. The study was done at high
temperatures, so that T " ω in the region of interest and the classical-statistical
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Figure 4.4: Overview of the behavior of the spectral function ρpω, pq for dissipative
dynamics (Model A, γ “ 0.1) at different points in the phase diagram, above Tc (top
panels), near Tc (central panels), and below Tc (bottom panels) in 2+1 (left panels) and
3+1 (right panels) dimensions. Heat maps at the bottom of each panel visualize support
and spectral strength in the pp, ωq plane. The axes are scaled logarithmically, and the
smallest non-zero momentum modes are highlighted by a black solid line on the 3D surface.
Spectral functions away from the critical temperature are dominated by a Breit-Wigner
structure with dispersion relation ω2

c “ pm
2 ` p2q and close to constant decay width. Close

to the critical point, the dispersion relation changes, and a very broad structure emerges in
the infrared.
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Figure 4.5: Overview of the behavior of the spectral function ρpω, pq for Hamiltonian
dynamics (Model C, γ “ 0) at different points in the phase diagram, illustrated analogously
to Fig. 4.4. While the general spectral shapes stay the same as in Fig. 4.4 at γ “ 0.1, the
structures overall become narrower. At low temperatures, a pronounced low-frequency
mode with a different dispersion relation indicative of a soft collective excitation emerges.
From this presentation, one can already guess that this soft mode turns into the dominant
infrared divergence at the critical temperature.
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Figure 4.6: Overview of the behavior of the spectral function ρpω, pq for diffusive dynamics
(Model B, γ “ 0.1) at different points in the phase diagram, illustrated analogously to
Fig. 4.4. Spectral functions away from the critical temperature are dominated by a Breit-
Wigner structure with dispersion relation ω2

c “ µp2pm2 ` p2q. Decay widths are bounded
from below by the Langevin damping parameter γ, and otherwise increase with some power
of the spatial momentum p. Since the central frequencies do not have a lower bound (as
opposed to the case with dissipative dynamics), the structures become relatively broad
in the infrared. Close to the critical point, the dispersion relation changes, and central
frequencies at low spatial momentum shift even further into the infrared, leading to a
dominating broad structure at low frequencies.
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Figure 4.7: Overview of the behavior of the spectral function ρpω, pq for diffusive dynamics
(Model D, γ “ 0) at different points in the phase diagram, illustrated analogously to Fig. 4.4.
Spectral functions away from the critical temperature are still dominated by a Breit-Wigner
structure with dispersion relation ω2

c “ µp2pm2 ` p2q, but much narrower than at finite
heat-bath coupling in Fig. 4.6. Decay widths follow some power of the spatial momentum p
unbounded from below, leading to very narrow peaks at the lower end of the momentum
range. Close to the critical point, the effective thermal mass vanishes and both central
frequencies and widths presumably become regular in momentum p. While the shift of
central frequencies towards the infrared still yields relatively broad structures at low spatial
momentum, they are much more distinct compared the case of γ “ 0.1 in Fig. 4.6. In 3+1D,
even the modes with lowest spatial momentum retain a rather narrow peak structure at
the critical point.
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approach was justifiable. It was found that both masses and widths of the measured
spectral function agree well with the analytical predictions from resummed two-loop
perturbation theory. We find here a very similar Breit-Wigner shape, and since we
also calculate the spectral function at finite spatial momenta, we can check for the
correct dispersion relation of the quasi-particle mass.

When the system approaches criticality from above, the effective mass m2pT q
decreases, and the quasi-particle peak becomes less and less pronounced. Close
to the critical point, an infrared power law behavior builds up at low frequencies
and momenta which, as we will discuss shortly in Section 4.3, encodes the dynamic
critical behavior of the spectral function. The slope of this power law is related
to the dynamic critical exponent z, which is the main subject of the next section.
With increasing spatial momentum p, the cut-off imposed by p suppresses the critical
contribution. Specifically, at high momenta the spectral function retains its Breit-
Wigner shape even in this near-critical regime, however with significantly smaller
quasi-particle mass. Comparing the different columns of Fig. 4.5 one further notices
that the window of reduced temperatures τ , where a critical enhancement of the
spectral function can be observed, is much smaller in 3+1 than in 2+1 dimensions, as
can be expected from the larger influence of infrared fluctuations in lower dimensions.

Below the critical temperature, in the ordered phase, the effective quasi-particle
mass m2pT q increases again, and gradually approaches its mean-field value of?
´2m2 “

?
2 in the limit T Ñ 0, where all thermal fluctuations are suppressed.

However, in addition to the quasi-particle peak, a second low-frequency excitation
arises for finite spatial momenta, with a different spectral shape and a dispersion
relation indicative of soft collective excitations such as thermally driven capillary
waves, see Appendix D. While in 3+1 dimensions the contributions from this soft
mode only carry a small fraction of the spectral weight, it is more pronounced in
2+1 dimensions, where by looking at the lower left panel of Fig. 4.5, one can easily
discern the valley in the spectral function that separates it from the quasi-particle
peak.

By comparing the spectral functions in the symmetry-broken phase at τ ă 0 and
the vicinity of the critical point τ « 0 in Fig. 4.5, one is led to speculate that it is
this second excitation at τ ă 0 that might turn into the critical IR divergence close
to the critical point. Indeed, by tracing the maxima of both excitations, one observes
an avoided-crossing behavior near Tc, before the low-frequency mode eventually
disappears at τ ą 0. A similar avoided crossing was already observed in the classical-
statistical lattice simulations of O(4)-model spectral functions in 3+1 dimensions
in [41]. Although this study was restricted to vanishing spatial momenta where,
in agreement with the results presented here, there is no comparable soft mode in
the longitudinal σ-spectral function of the order parameter fluctuations, an avoided
crossing does nevertheless show up at zero momentum in the transverse π-spectral
function of the O(4)-model.

Figures 4.6 and 4.7 show the spectral functions of the systems with order-
parameter–conserving dynamics (Model B/D) at different points in the phase diagram
for 2+1 and 3+1 dimensions. We find that the spectral functions are well described
by a single Breit-Wigner structure over a wide range of parameters. At vanishing
Langevin-coupling γ “ 0, the peaks in the spectral functions are generally very
narrow, only becoming relatively wide at the critical temperature in 2+1D. If the
heat-bath coupling is set to a finite value of γ “ 0.1, this changes dramatically, and in
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all cases the spectral functions at low spatial momentum become much more broad,
while high-momentum modes stay narrow. Clearly, the dispersion relation is not that
of a quasi-particle, as the central frequencies do not approach a fixed value at low
spatial momentum. There is however a visible kink in the momentum-dependence of
the central frequencies for temperatures away from the critical point.

Close to the critical point, the central frequencies at low spatial momentum
visibly shift into the infrared, indicating a change in the dispersion relation akin to a
drop in the effective mass. For finite heat-bath coupling γ “ 0.1, the absolute decay
widths stay mostly the same. However, since the central frequencies decrease, the
low-frequency part of the spectral functions is then dominated by structures with
large relative widths, which closely fit the limit of diverging Γ Ñ 8 of the mean-field
spectral function in Eq. (4.40).

4.2.3 Dispersion relations of Breit-Wigner structures

Based on the results in Figs. 4.4 to 4.7 we will now quantitatively investigate some
properties of the spectral functions extracted from lattice data.

First, we focus on dissipative dynamics (Model A/C). We start by confirming the
relativistic dispersion relation of the quasi-particle peak, before going on to study
the temperature dependence of the peak parameters and analyze the effect of the
Langevin damping γ on the spectral function. In order to compute the dispersion
relation, we fit the peaks in the spectral function with a relativistic Breit-Wigner
ansatz

ρBWpω, pq “
Γppqω

pω2 ´ ω2
c ppqq

2 ` ω2Γ2ppq
, (4.41)

where the central frequency of the effective mass resonance is expected to follow the
relativistic energy-momentum relation

ω2
c ppq “ m2

eff ` p
2. (4.42)

Visualizations of the fits to the spectral function are given in the left panels
of Fig. 4.8, where the top left panel shows the symmetric phase τ ą 0 and the
bottom left panel the ordered phase (τ ă 0), while Fig. 4.9 shows the extracted
values of the peak-frequency ωp and damping rates Γppq. Clearly, the fit to the
Breit-Wigner function describes the spectral function very well at high temperatures,
where the quasi-particle excitation is the only discernible structure. While in the low
temperature phase, shown in the bottom left panel of Fig. 4.8, the Breit-Wigner fit
still accurately describes the dominant quasi-particle peak, one also clearly observes
the additional low-energy excitation for finite spatial momenta (p ą 0) additional to
a subdominant peak on the high-frequency shoulder of the quasi-particle excitation.

So far we have focused on the general behavior of the spectral function for
Hamiltonian dynamics (Model C), which we will now compare to the spectral functions
for Langevin dynamics (Model A). Since the key difference between Hamiltonian and
Langevin dynamics lies in the introduction of an additional frequency-independent
damping and noise coupling to the heat bath, one naturally expects the additional
damping to contribute to the resonance decay width Γppq of the (non-critical) spectral
functions. Explicit comparisons of the results for Hamiltonian (γ “ 0) and Langevin
(γ “ 0.1) dynamics, shown in Fig. 4.9, confirm this expectation, indicating further
that differences in the numerically extracted damping rates Γγ“0.1ppq ´ Γγ“0ppq » γ

48



4.2. SPECTRAL FUNCTIONS OF THE ORDER PARAMETER

10−4

10−2

100

10−3 10−2 10−1 100

ρ
(ω
,p
)

ω

p = 0.02
p = 0.10
p = 0.77

Model A, τ = 1.69, γ = 0.1

10−4

10−2

100

10−4 10−3 10−2 10−1 100

ρ
(ω
,p
)

ω

Model B, τ = 1.69, γ = 0.1

10−4

10−2

100

102

10−3 10−2 10−1 100 101

ρ
(ω
,p
)

ω

Model C, τ = −0.33, γ = 0

10−4

10−2

100

10−3 10−2 10−1 100
ρ
(ω
,p
)

ω

Model D, τ = −0.33, γ = 0

Figure 4.8: Cuts of the spectral function at different spatial momenta p along the frequency
axis, in the symmetric (top panels) as well as the ordered phase (bottom panels), for both
dissipative (left panels) and diffusive dynamics (right panels). While for the upper panels
there is a finite heat-bath coupling γ “ 0.1, we set γ “ 0 in the lower panels to enhance
the visibility of the soft mode in the ordered phase. Black lines represent a fit to the
Breit-Wigner ansatz (4.41), where the γ- and momentum-dependence of the parameters is
given by Eq. (4.42) resp. Eqs. (4.43) to (4.45), leaving only two free parameters per panel,
namely the thermal mass mpT q and the amplitude of the decay widths Γ̄pT q.

are in fact close to the value of the Langevin coupling. While far away from criticality,
especially at high temperatures, the qualitative and quantitative features of the
spectral functions are very similar between conservative and weakly dissipative
systems, the change in conservation laws does subtly affect the dynamic critical
behavior, as we will discuss in more detail in Section 4.3.

We continue our analysis by considering the systems with order-parameter-
conserving diffusive dynamics (Models B and D). In contrast to the systems with
non-conserved order parameter, there are no additional excitations visible in either
2+1D or 3+1D anywhere in the phase diagram (compare Figs. 4.6 and 4.7). Thus, we
fit the full spectral functions with the ansatz Eq. (4.41), with the central frequency
ωp and the decay width Γ as free parameters. The results for ω2

p, Γ are shown in
Fig. 4.10. Our findings for the central frequencies ω2

p nearly perfectly satisfy the
mean-field–like dispersion

ω2
p “ µp2

pm2
pT q ` p2

q (4.43)

far from the critical point, with no measurable dependence on the Langevin coupling.
For the width of the spectral function we find that the Langevin coupling γ appears
as an additional momentum-independent shift

Γpp, γq “ Γpp, γ “ 0q ` γ, (4.44)

and we obtain for the momentum dependence of the decay width without the heat
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Figure 4.9: Resulting parameters of Breit-Wigner fits in Model A/C given in lattice
units. Red data corresponds to a Langevin coupling parameter of γ “ 0, green data to
γ “ 0.1. Fits to an ansatz for the momentum dependencies are shown as dotted lines for
Γ and dash-dotted lines for ω2

p. Top panels depict results in the symmetric phase at high
temperatures, bottom panels show results from the ordered phase corresponding to low
temperatures. Central frequencies ω2

p are fitted with a function of the form ω2
p “ m2 ` p2.

In all cases, the decay widths Γppq appear close to constant in spatial momentum.

bath

Γpp, γ “ 0q “ Γ̄pT q ¨

#

p, T ! Tc,

p2, T " Tc.
(4.45)

In fact, Eqs. (4.43) to (4.45) capture the momentum dependence of the spectral
function so well, that one can satisfyingly describe the spectral functions at different
temperatures and γ by just two parameters, namely the effective mass mpT q and the
amplitude of the decay power law Γ̄pT q. This is demonstrated in the right panels of
Fig. 4.8, where we show comparisons between fixed-momentum cuts of the spectral
function and the parametrizations given by Eqs. (4.41) to (4.45), both deep in the
ordered and the symmetric phase. Even though there are only two free parameters
per panel, the fit describes the data nearly perfectly, with some minor deviations at
low temperatures and γ “ 0 in the ultraviolet.

We conclude our discussion of the non-critical spectral functions by investigating
the temperature dependence of the central frequencies and decay widths of the Breit-
Wigner structures for both dissipative and diffusive dynamics, which are summarized
in Fig. 4.11. By defining meff “

a

pµp2q´αω2
c ppq ´ p

2, curves for different momenta p
should coincide whenever the quasi-particle peaks satisfy the dispersion relation in
Eq. (4.42) for dissipative (α “ 0) dynamics, or Eq. (4.43) in case of diffusive (α “ 1)
dynamics. Starting from the low temperature phase, the resonances turn into sharp
δ-peaks in the limit T Ñ 0, where meffpT “ 0q “

?
´2m2 assumes its mean-field

value and the decay width ΓpT “ 0q “ 0 vanishes.
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Figure 4.10: Resulting parameters of Breit-Wigner fits in Model B/D given in lattice
units. Red data corresponds to a Langevin coupling parameter of γ “ 0, green data to
γ “ 0.1. Fits to an ansatz for the momentum dependencies are shown as dotted lines for Γ
and dash-dotted lines for ω2

p. Central frequencies ω2
p are fitted with a function of the form

ω2
p “ µp2pm2 ` p2q. In the disordered phase at high temperatures (top panels), we find

a momentum dependence of widths suggestive of Γppq9p2. Bottom panels depict results
in the ordered phase corresponding to low temperatures. In this regime, the momentum
dependence of the widths fits Γppq9p.

Even at the lowest temperatures shown, the effective masses are still rather large,
but then decrease as the system approaches the critical temperature, while the decay
width ΓpT q increases simultaneously. For diffusive dynamics, the dispersion relation
(4.43) is no longer fulfilled as precisely as for the even lower temperature shown
in Fig. 4.8. Near the critical temperature, the behavior of the spectral function
for dissipative dynamics at low momentum can no longer be described by a simple
quasi-particle structure, as already seen in Fig. 4.5. However, when increasing the
temperature above the critical point, the quasi particle structure at low momentum
is restored, with the mass increasing monotonously as a function of temperature
for T ą Tc. Conversely, for the modes with large spatial momenta, this process is
continuous. While the effective mass reaches a finite minimum at τ “ 0, the spectral
function retains its Breit-Wigner form across the transition. For diffusive dynamics,
the spectral shape stays similar to the Breit-Wigner form even near to the critical
point, with some deviations close to the peak at low momentum. The dispersion
relation however changes to an algebraic one, as we show in the next section. At
high temperatures, the effective masses converge again and the mean-field dispersion
relation (4.43) is restored. Effective masses then increase monotonously as a function
of temperature for T ą Tc, where again this process is completely continuous for
high-momentum modes. Decay widths exhibit a non-trivial momentum dependence
that changes its analytical form as the system crosses the critical point, however all
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Figure 4.11: Temperature dependence of the effective mass parametermeff ” ppµp
2q´αω2

p´

p2q1{2 and damping rates Γppq as a function of reduced temperature. Left panels show
dissipative dynamics (α “ 0), right panels show diffusive dynamics (α “ 1), both in 2+1D
(top panels) and 3+1D (bottom panels). Results shown are obtained at vanishing Langevin
coupling γ “ 0, which affects only the damping rates. Immediately, one notices that the
effective masses have about the same magnitude in both dissipative and diffusive dynamics.
Near the critical point (τ « 0) the effective mass drops and the damping rate generally
increases. While at low momentum p the spectral function is no longer exactly described
by a Breit-Wigner structure, the behavior of high-momentum modes is remarkably smooth
across the phase transition.

with an absolute maximum close to the critical temperature.
In summary we find that, in the non-critical regime, the measured spectral

functions behave mostly as expected. The mean-field dispersion relation is fulfilled
by the dominant excitations, and we find the expected temperature dependence on
both sides of the phase transition.

In Models A and C, it is interesting to see how, for low spatial momenta p ! 1, the
spectral shape and dispersion relation changes at different temperatures and shows
critical scaling, while at larger spatial momenta p ą 1, the spectral function retains
its Breit-Wigner shape and moves across the transition in a completely continuous
fashion. In the non-critical regime, introducing a finite Langevin damping γ leads
to broadening of resonances, as one expects from the structure of the equations of
motion. Close to the critical point, we see the same effect of the Langevin damping
γ on the remaining quasi-particle contribution to the spectral function, whereas the
infrared-divergent critical part appears qualitatively unchanged. However, as we
will show in detail in Section 4.3, the slope of the infrared divergent power law is
modified slightly.
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For diffusive systems (Models B and D), the spectral shape changes hardly at
all, with only minimal deviations from the Breit-Wigner shape even at criticality.
The introduction of a finite Langevin damping γ leads to an additive broadening of
the Breit-Wigner resonance in all cases. Close to the critical point, the dispersion
relation changes as the effective mass vanishes, and the momentum dependence of
the decay widths transforms as well. Similar to the case of Models A and C, these
processes appear continuous at higher spatial momenta. In the next section, we will
find that the changes in the infrared dispersion are compatible with critical scaling
laws.

4.3 Critical dynamics and scaling functions

In the following section we investigate the critical behavior of spectral functions. We
focus on the determination of a universal scaling function for the spectral function,
as well as the extraction of the dynamic critical exponent z.

Dynamic critical phenomena have been studied since the late 60s, with the first
numerical results for Ising models in the 90s [88, 89, 49, 50, 52, 14, 90, 91]. These
studies were mostly concerned with finding the dynamic critical exponent z of the
Ising model with Glauber dynamics (2D Model A), where a multitude of results
ranging from z “ 1.7 to z “ 2.7 have been published, however slowly converging
towards z « 2.2. Nightingale and Blöte [14] were the first to calculate z in 2D Model
A in an Ising model with high precision using a variance-reducing Monte Carlo
algorithm, albeit on rather small lattices up to 15ˆ 15. They found z “ 2.1665p12q,
quoting a two-sigma error, in accordance with the former trend.

In 2004, Dunlavy and Venus measured critical slowing down in ferromagnetic
ultra-thin films [92], governed by 2D Model A dynamics as well. The resulting critical
exponent of 2.09p6q, giving the 95% confidence interval, is close to the Monte Carlo
result, but the difference of nearly 2.5σ is somewhat large.

The most recent result by Zhong et al. [93] for a two-dimensional scalar φ4 model
with local Metropolis updates seems to confirm the results for 2D Model A by
Nightingale and Blöte from [14], as they find zA “ 2.17p3q and zA “ 2.19p3q for
two different values of the coupling constant. Additionally, they demonstrated that
quantities derived from the two-point function follow a scaling behavior.

In 2010, a precursor study [40] of the present one first tried to confirm the dynamic
critical exponent in 2D Model C, z “ 2` α{ν “ 2 for an Ising-like scalar field theory
with conservative dynamics, and found z “ 2.0p1q.

Naturally, numerical simulations in d “ 3 are more expensive than in d “ 2, and
thus there are fewer and less precise results for the dynamic critical exponents. Studies
from the nineties for 3D Model A yield values of e.g. z “ 2.05p5q [49], or a compatible
2.09p4q [50]. A very recent and precise result from Monte-Carlo simulations of an
improved Blume-Capel model by Hasenbusch [94] shows z “ 2.0245p15q for 3D Model
A, taking into account corrections to the leading scaling behavior. In Ref. [94] the
reader can also find a thorough historical overview of previous results both from
field theory methods and Monte-Carlo simulations. Although experimental evidence
on the dynamic critical exponent is sparse, a recent study on critical slowing down
near the multiferroic phase transition in MnWO4 by Niermann et al. [95] found
νz « 1.3, which implies z « 2.06, compatible with the result by Hasenbusch within
the assumed uncertainty of the measurement. We are not aware of any previous
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Monte-Carlo studies on the dynamic critical exponent of Model C in d “ 3; however,
based on the classification scheme by Halperin and Hohenberg the dynamic critical
exponent is known there by virtue of the same scaling relation (z “ 2 ` α

ν
) as in

d “ 2, which amounts to z « 2.17 for a model in the 3D Ising universality class.
Changing the dynamic equations such that now the order parameter is constant

over time, i.e. diffusive dynamics, the classification scheme by Hohenberg and Halperin
[13] suggests that we are dealing with the dynamics of Model B in case of the theory
coupled to the heat bath (γ ą 0). A dynamic renormalization group analysis
shows that, due to the order parameter being conserved, there are no ε-dependent
contributions to the response propagator, therefore conventional theory holds [96,
13, 97]. One thus has for the dynamic critical exponent of the order parameter
zB “ 4´ η.

If the heat-bath coupling is turned off (γ “ 0), there is an additional conserved
quantity in the system, namely the energy density. For the first-order non-relativistic
version of Model D (as defined e.g. in [96, 97]), one can show that the additional
conserved density compared to Model B does not affect the dynamic critical exponent,
but the secondary density itself is governed by a different exponent zC “ 2` α{ν,
the same as for the order parameter in Model C. We will see that this is not the case
in our relativistic version of Model D, since the way we achieve energy conservation
by setting γ “ 0 fundamentally alters the low-energy spectrum of the theory and we
obtain for the order parameter (and later also the energy density) a dynamic critical
exponent close to that of Model C.

An early numerical study by Yalabik and Gunton [98] applied the Monte-Carlo
renormalization group approach on a 2D Ising model with Kawasaki dynamics,
finding z “ 3.80 in very good agreement with 4´η “ 3.75. In 2001, Zheng [55] found
in a study on the critical dynamics of the two-dimensional Ising model with Kawasaki
dynamics, i.e. nearest-neighbor spin flips, found that short-time correlations exhibit
scaling behavior with a dynamic critical exponent z “ 3.95p10q, slightly larger than
expected. When changing to a different scheme where spin exchanges happen over
larger distances, such that the spin is no longer locally, but still globally conserved,
they found a different exponent z “ 2.325p10q. Such a drastic change of z upon
seemingly slight changes of the dynamics is not unheard of in systems with conserved
order parameter: A study on a quasi-2D lipid bi-layer in water [99] (Models B/H/HC)
found that the exponent of the time scale of time-dependent correlation functions
changed from zeff „ 2 to zeff „ 3, depending on the ratio of the correlation length of
the fluctuations to a hydrodynamic length scale set by transport coefficients.

4.3.1 Overview

We start with some remarks on the shape of the critical spectral functions. Exemplary
data of fixed-momentum cuts is shown in Fig. 4.12. For dissipative dynamics without
order-parameter conservation (Models A/C), one observes a dominating structure
emerging at low spatial momenta in the infrared, which is clearly distinct from the
quasi-particle peak. On the other hand, for diffusive dynamics (Models B/D), fixed-
momentum cuts of spectral functions are still well described by a single Breit-Wigner
shape even at the critical temperature. Only at low to intermediate momenta and
finite heat-bath coupling, the spectral functions differ from the Breit-Wigner shape
around the peak. We will see that in all cases, the infrared structure of the spectral
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Figure 4.12: Spectral functions of the order parameter in 2+1D at the critical temperature,
at spatial momentum p “ .025 (red), p “ .098 (green), p “ .390 (blue). Left panels show
results for dissipative dynamics, Model A in the top and Model C in the bottom panel,
right panels the diffusive Models B (upper) and D (lower). Since the results for Models B
and D very much retain the Breit-Wigner shape, we include in the right panels black lines
representing the mean-field form Eq. (4.41) with algebraic dispersion ω2

p „ p4´η, Γ „ pzΓ .
Extracted fit parameters are illustrated in Fig. 4.13. Results for 3+1D qualitatively agree
and are thus omitted.
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diffusive dynamics (Models B and D) to the Breit-Wigner shape (4.41). Numerical values
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behavior, ω2
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widths at vanishing heat-bath coupling γ “ 0 seem to follow a power law Γppq ´ γ „ pzΓ as
well, with a much smaller exponent.
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function is controlled by an underlying universal scaling function.
Encouraged by the qualitative assessment, we proceed by fitting the critical

spectral functions obtained with diffusive dynamics (Models B and D) to the Breit-
Wigner ansatz (4.41). Results for central frequencies ω2

p and decay widths Γ are
shown in Fig. 4.13. Both the central frequencies and decay width at vanishing
Langevin coupling γ “ 0 evidently follow some power law, suggestive of dynamic
scaling. The exponent of the power law controlling the central frequencies matches
ω2
p „ p4´η “ pzB the dynamic critical exponent of Model B, independently of the

heat-bath coupling. For the decay widths Γ, we find that at vanishing heat-bath
coupling it follows a power-law shape Γpγ “ 0q „ pzΓ with some exponent zΓ « 2.
The additive relation Γpγq “ Γpγ “ 0q ` γ still holds.

For dissipative dynamics (Models A/C), the infrared part of the critical spectral
functions does not fit a Breit-Wigner structure. One finds however that the Langevin-
coupling γ hardly has any effect on the qualitative features of the infrared structure,
while smearing out the remnant of the quasi-particle excitation at larger momenta.

4.3.2 Dynamic scaling functions

Since the spectral function is derived directly from the two-point correlation function,
one expects the critical behavior to be governed by the following scaling form [40]

ρ pω, p, τq “ s2´ηρ
´

szω, sp, s
1
ν τ
¯

, (4.46)

in the limit of small ω, p, and τ Ñ 0, where we omit any residual dependencies
on the finite volume. If not stated otherwise, we will restrict ourselves to positive
frequencies pω ą 0q to compactify notation, noting that the behavior for negative
frequencies pω ă 0q is trivially obtained from the symmetry of the spectral function
ρp´ω, p, τq “ ´ρpω, p, τq.

We give our results for the universal scaling functions in terms of dimensionless
scaling variables normalized by the related critical amplitudes, namely

p̄ “ pf`, (4.47)
ω̄ “ ωf`t , (4.48)
t̄ “ t{f`t , (4.49)

where f`t denotes the amplitude of the correlation time with temperature in the
limit of small but nonzero spatial momentum, i.e.

lim
pÑ0

ξtpp, τ ą 0q “ f`|τ |´νz. (4.50)

If the order parameter is not conserved, the limit is continuous and we measure
ξtpp “ 0, τ ą 0q in Section 4.3.3.

In Models B and D however, this amplitude is not directly accessible, since it
involves taking the limit of vanishing spatial momentum; compare Section 4.3.3.
If one assumes that the correlation time is related to the correlation length via a
temperature-independent amplitude as ξt „ aξz, one can obtain it by using the
universal ratio

ft|p|
´z

|p|´z
“
ξt
ξz
“

f`t |τ |
´νz

pf`|τ |´νqz
“ const. (4.51)

ñ ftpf
`
q
z
“ f`t . (4.52)
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The scaling law in Eq. (4.46) allows us to define three alternative scaling functions
fω, fp and f˘τ according to

ρ pω, p, τq “ ω̄´p2´ηq{z fω

´

p̄z{ω̄, τ{ω̄1{νz
¯

, (4.53)

ρ pω, p, τq “ p̄´p2´ηq fp

´

ω̄{p̄z, τ{p̄1{ν
¯

, (4.54)

ρ pω, p, τq “ |τ |´γ f˘τ

´

ω̄{|τ |νz, p̄1{ν
{|τ |

¯

, (4.55)

where γ is the static susceptibility exponent with γ “ νp2´ ηq from static scaling
relations.

Since the scaling functions in Eqs. (4.53) to (4.55) are all derived from the
scaling behavior of the spectral function, the scaling functions fω,fp and f˘τ are not
independent. Denoting the natural arguments of the respective scaling functions as

xω “ p̄z{ω̄, yω “ τ{ω̄1{νz, (4.56)

xp “ ω̄{p̄z, yp “ τ{p̄1{ν , (4.57)

xτ “ ω̄{|τ |νz, yτ “ p1{ν
{|τ |, (4.58)

one finds the following relations between the scaling functions

fppxp, ypq “ x´p2´ηq{zp fω
`

1{xp, yp{x
1{νz
p

˘

, (4.59)
fppxp, ypq “ |yp|

´γ f˘τ
`

xp{|yp|
νz, 1{|yp|

˘

, (4.60)

f˘τ pxτ , yτ q “ x´p2´ηq{zτ fω
`

yνzτ {xτ ,˘1{x1{νz
τ

˘

, (4.61)

where the super-script in f˘τ is used to distinguish sgnpτq “ sgnpypq “ ˘1 above/below
Tc. Similarly, the Fourier transform of Eq. (4.46) yields in the time domain

ρ pt, p, τq “ sp2´η´zqρ
`

s´zt, sp, s1{ντ
˘

, (4.62)

from which one can derive the time-domain scaling functions analogous to Eqs. (4.53)
to (4.55).

In the following, we aim to extract the scaling functions fω, fp, f˘τ and their
asymptotic behavior from numerical data. Since the critical spectral functions
show qualitatively very different characteristics depending on the type of dynamic
equations, we split our analysis in two parts, starting with the scaling behavior of
dissipative dynamics.

Models A and C

Indeed, the scaling behavior predicted in Eqs. (4.53) to (4.55) is clearly visible in
our classical-statistical simulations, as can be seen from Figs. 4.14 to 4.19, where we
present results for the scaled spectral functions in the vicinity of the critical point.
We note that in order to perform the axis re-scaling in Figs. 4.14 to 4.19, one also
needs the value of the dynamic critical exponent z, and if not stated otherwise, we
employ the values in last row of Table 4.7, labeled combined, with exception of d “ 3
Model C, where we used the analytic value of z « 2.17.

By comparing our results for the scaling functions in Figures 4.16 and 4.17, we
find that in general, the scaling regions are larger in d “ 2 than in d “ 3, and
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Figure 4.14: Scaling function fωpxω, 0q of the critical spectral function at non-zero spatial
momentum for the different critical scenarios with dissipative dynamics. Solid black lines
represent the amplitude fω obtained from the fit of the universal scaling function in Fig. 4.16
at large xp. Due to availability of data, we use τ “ 0.0009p2q (d “ 2) resp. τ “ ´0.00008p5q
(d=3) as a proxy for the critical temperature. Note that, despite τ « 0, finite size effects
are not relevant here due to finite spatial momentum.

similarly larger for Model A than for Model C. Specifically, for d “ 3, it seems that
in some cases the standard volumes (N “ 256) are still not large enough to show
critical effects of reasonable strength. Hence, in order to achieve some sufficient
overlap for extracting the universal scaling function at finite spatial momentum p,
we have generated a single additional data set at T « Tc with N “ 512 in d “ 3,
which allows us to investigate very small spatial momenta, with p ă 0.05 in lattice
units. By inspecting e.g. the upper right panel in Fig. 4.16, it is then clear that for
very small p, the overlap region does indeed extend to the right of the maximum,
where the slope in the logarithmic plot is determined by the critical power law.

One important advantage of working with finite spatial momenta p ą 0 is that
finite volume effects are essentially irrelevant, as the relevant infrared cut-off is set
by the momentum p rather than the system size. Conversely, at p “ 0, finite volume
effects inevitably appear close to criticality, i.e. for very small τ , as can be seen e.g. in
Figs. 4.17 and 4.19.

By closer inspection of the results in Figures 4.16 and 4.17, e.g. when comparing
models A (upper row) to models C (lower row), one further notices that the spectral
functions ρpω, p, τq start to deviate from the scaling function when reaching the
remnants of the quasi-particle peak, which appear as additional “shoulders” at the
high-frequency end. Clearly, this effect is more pronounced in Model C, where high-
frequency fluctuations do not receive the additional damping due to the coupling
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Figure 4.15: Scaling function fωp0, yωq of the spectral function at vanishing spatial
momentum for the different critical scenarios with dissipative dynamics. Solid black lines
represent the amplitude fω resulting from the fit of fppxp, 0q at large xp in Fig. 4.16, which
also describes the behavior of fωp0, yωq when the second argument is small, indicating that
the limits p Ñ 0 and τ Ñ ˘0 commute. Note that based on the available lattice sizes,
finite-size effects start to play a role at very small τ .
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Figure 4.16: Scaling function fppxp, 0q of the spectral function for the different critical
scenarios with dissipative dynamics. Due to availability of data, we use τ “ 0.0009p2q
(d “ 2) resp. τ “ ´0.00008p5q (d “ 3) as a proxy for the critical temperature. Solid lines
represent the fit to the ansatz in Eq. (4.70), we fit fω and ap as free parameters, and the
exponent of the power law for large xp is given by p2´ ηq{zcomb. Note that finite size effects
are not relevant here due to finite spatial momentum. To achieve the comparatively very
low p in d “ 3, a single set of data at N “ 512 very close to Tc was generated.

to the heat bath. By looking at the results for τ ă 0 in Fig. 4.17 we also note that
the universal scaling of the spectral functions, when approaching criticality from the
ordered phase, does not appear to emerge from the remnants of the quasi-particle
peak, even in close vicinity of the critical point. Instead, as previously alluded to in
the context of the discussion of Fig. 4.5, it rather seems that the universal critical
behavior of the spectral function emerges from the soft collective low-frequency
excitation in the ordered phase.

We can exploit this scaling behavior to extract the dynamic critical exponent z
by minimizing the deviations from perfect scaling, which we quantify in terms of the
L2-norms of pairwise distances of rescaled functions over some frequency interval
rωl, ωhs. Specifically, for the p-rescaled critical spectral functions as depicted in
Figure 4.16, based on Eq. (4.54), this amounts to minimizing the quantity

∆2
pzq “

ÿ

pi

ÿ

piăpj

ωh
ż

ωl

dω

ˇ

ˇp2´η
i ρppziω, pi, 0q ´ p

2´η
j ρppzjω, pj, 0q

ˇ

ˇ

2

`

p2´η
i ∆ρppziω, pi, 0q

˘2
`
`

p2´η
j ∆ρppzjω, pj, 0q

˘2 , (4.63)

where ∆ρ denotes the statistical error of the measured spectral functions, which is
used to weight the deviations. Similarly, an analogous functional is minimized to
optimize the scaling of the τ -rescaled spectral functions at vanishing momentum in
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Figure 4.17: Scaling functions f˘τ pω̄{|τ̄ |νz, 0q of critical spectral functions at vanishing
momenta above (top four) and below (bottom four) Tc for the different critical scenarios
with dissipative dynamics. Solid lines represent the fit to the ansatz in Eq. (4.71), where
we obtain a˘τ by fitting Eq. (4.71) to the data at small x, keeping fω as obtained from
the ansatz in Eq. (4.70) to the data in Fig. 4.16, and z “ zcomb.. Note that based on the
available lattice sizes, finite-size effects start to play a role at small τ .
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Figure 4.18: Scaling functions f̃p pp̄z t̄, 0q of the critical spectral functions in the time
domain for the different critical scenarios with dissipative dynamics; cf. Eq. (4.72). Solid
lines represent the numerical Fourier transform of the fit to the data in frequency space.

Figure 4.17.
Even though this procedure is in principle very robust, we were not able to

completely eliminate the dependence on the upper limit ωh of the frequency interval.
Since this dependence is particularly strong for the τ -rescaled spectral functions, we
have disregarded them in the final estimate. By the principle of least sensitivity,
i.e. by looking for a plateau in the results for different ωh, we can then estimate
reasonable values for ωh in case of the p-rescaled spectral functions, which yield a set
of plausible values for the dynamic critical exponents that are shown in Table 4.7 in
the row labeled scaling. However, since the systematic uncertainties associated with
this procedure are still somewhat uncontrolled, we have also explored two alternative
methods to calculate the dynamic critical exponent z, one of which is based on the
limiting behavior of the scaling functions detailed below.

Based on the results of [40], we expect the scaling function fωpxω, yωq to be
regular in the origin for Models A and C (α “ 0), with a constant value fω ” fωp0, 0q,
such that the critical zero-momentum spectral function obeys the infrared power law

ρpω, 0, 0q “ fω ω̄
´p2´ηq{z. (4.64)

This expectation is verified in Figs. 4.14 and 4.15, where we present simulation
results for fωpxω, 0q “ ωp2´ηq{zρpω, p, 0q as a function of xω at τ 9 yω “ 0 (Fig. 4.14)
and respectively fωp0, yωq “ ωp2´ηq{zρpω, 0, τq as a function of yω at p9xω “ 0
(Fig. 4.15). Generally, one observes an excellent scaling collapse of the data for
different momenta(reduced temperatures), with deviations only at very small values
of xω(yω) where the residual contributions from the quasi-particle peak at finite
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Figure 4.19: Scaling functions f̃˘τ pt̄{̄|τ |´νz, 0q of the spectral functions at vanishing spatial
momentum in the time domain for the four different critical scenarios; cf. Eq. (4.73). Solid
lines represent the numerical Fourier transform of the fit to the data in frequency space.
Finite size effects again shift the data at small τ away from the scaling function.

momentum(reduced temperature) effectively acts as a cut-off. Specifically, for small
arguments xω or yω the two data sets in Figs. 4.14 and 4.15 appear to converge
towards the same value fω indicated by a solid black line, demonstrating that fω
is indeed finite and that the limits p Ñ 0 and τ Ñ 0 commute at small but finite
frequency ω̄ ‰ 0.

Due to the above relations between the scaling functions fω, fp and f˘τ , we
can further exploit the regularity of fω near the origin pxω, yωq “ p0, 0q to deduce
the behavior of the scaling functions fp and f˘τ for large values of the arguments
xp “ 1{xω and xτ “ 1{|yω|

νz as

p̄2´ηρpω, p, 0q “ fppxp, 0q
xpÑ8
Ñ fω x

´p2´ηq{z
p ,

|τ |γρpω, 0, τq “ f˘τ pxτ , 0q
xτÑ8
Ñ fω x

´p2´ηq{z
τ . (4.65)

This fixes the high-frequency (ω " 1{ξtpτ, pq) behavior of the critical scaling function
fppxp, 0q at very low momenta, and that of the zero-momentum scaling function
f˘τ pxτ , 0q very close to criticality at the same time. The characteristic time ξtpτ, pq
for this asymptotic behavior, from the definition of our scaling variables, behaves as
ξtp0, pq „ 1{pz and ξtpτ, 0q „ 1{|τ |νz at small p and τ , respectively.

Conversely, the low-frequency pω ! 1{ξtpτ, pqq behavior of the spectral function is
determined by the behavior of fωpxω, 0q and fωp0, yωq at asymptotically large values
of xω and yω, which conversely can be determined from the behavior of fppxp, 0q and
f˘τ pxτ , 0q at small values of the arguments xp “ 1{xω and xτ “ 1{|yω|

νz. Numerically,
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we find from Figs. 4.16 and 4.17 that the leading behavior at small xp and xτ is well
described by

fppxp, 0q “ ap xp ` ¨ ¨ ¨ ,

f˘τ pxτ , 0q “ a˘τ xτ ` ¨ ¨ ¨ , (4.66)

which corresponds to

fωpxω, 0q Ñ ap x
´p2´ηq{z´1
ω , xω Ñ 8 ,

fωp0, yωq Ñ a˘τ |yω|
´γ´νz , yω Ñ ˘8 . (4.67)

Specifically, for the critical spectral function (τ “ 0) at finite spatial momentum,
Eq. (4.67) implies an infrared behavior, valid asymptotically for ω̄ ! p̄z, of

ρpω, p, 0q “ ap p̄
´p2´ηq ω̄{p̄z ` ¨ ¨ ¨ . (4.68)

Comparing Eq. (4.68) with Eq. (4.64), we see that the limits pÑ 0 and ω Ñ 0 do not
commute, as the critical spectral function is non-analytic in the origin. In particular,
we have limωÑ0 ρpω, 0, 0q “ 8, while limpÑ0 ρp0, p, 0q “ 0. Physically, this has the
intuitive interpretation that any finite momentum p introduces an effective IR cutoff
for the correlation length ξ „ 1{p, which in turn is associated with a finite correlation
time ξtp0, pq „ ξz „ 1{pz, that defines the characteristic frequency ω̄ „ p̄z where the
power law changes from (4.64) to (4.68).

Similarly, for the zero-momentum spectral function off criticality we conclude
that the infrared behavior for ω̄ ! |τ |νz is modified as

ρpω, 0, τq “ a˘τ |τ |
´γ ω̄{|τ |νz ` ¨ ¨ ¨ , (4.69)

so that for all τ “ 0 we also have limωÑ0 ρpω, 0, τq “ 0, with the characteristic
frequency where the power law changes from (4.64) to (4.69) given by ω „ |τ |νz.
Once again, this simply reflects the finiteness of the correlation time at non-vanishing
τ , where we now have ξtpτ, 0q „ ξz „ 1{|τ |νz.

So far we have analyzed the limiting behavior of the scaling functions for very
large and very small arguments. Now, in order to interpolate between these two
limits, we observe that the inverse of the scaling functions fppx, 0q and f˘τ px, 0q is
globally very well described by a sum of the reciprocal power laws (4.65) and (4.66)
for large and small x. We therefore use the following parametrizations of the scaling
functions to fit our data,

fppxp, 0q “
1

pap xpq´1 ` f´1
ω x

p2´ηq{z
p

for xp “ ω̄{p̄z , (4.70)

f˘τ pxτ , 0q “
1

pa˘τ xτ q
´1 ` f´1

ω x
p2´ηq{z
τ

for xτ “ ω̄{|τ |νz . (4.71)

Our results are compactly summarized in Figures 4.16 and 4.17, where we show
these parametrizations for the scaling functions fppω̄{p̄z, 0q and f˘τ pω̄{|τ |νz, 0q fitted
to our data for p̄p2´ηqρpω, p, 0q and |τ |γρpω, 0, τq respectively. The regions where the
points overlap are used to determine the universal scaling functions. The numerical
results for the parameters ap, a˘τ , fω obtained from the fits with fixed z are listed in
Table 4.4. Corresponding plots for the scaling laws in the time domain are shown in
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Table 4.4: Extracted fit parameters from fitting Eqs. (4.70) and (4.71) to the scaling
functions. The first line corresponds to the results of the fits of Eq. (4.76) with z as a fit
parameter, with an estimate of the systematic error. The other lines represent the values
obtained by fitting the data in Figs. 4.16 and 4.17 with a fixed value for the dynamic critical
exponent, corresponding to the last row of Table 4.7 labeled combined, see below. For the
latter ones we only give the statistical fit error.

2D 3D
Model A Model C Model A Model C

fω 0.73(9) 0.50`0.23
´0.14 0.56(35) 1.14`0.25

´0.56

fωpzcomb.q 0.592(4) 0.536(2) 0.69(1) 0.544(7)
ap 0.56(1) 0.51(1) 0.46(37) 1.13(10)
a`t 1.30(9) 1.43(6) 1.20(10) 1.13(16)
a´t 0.0038(2) 0.0032(1) 0.111(8) 0.14(1)

Figs. 4.18 and 4.19, where we plot the Fourier transformed scaling functions f̃ppx, 0q
and f̃`τ px, 0q from the analogous definitions

ρpt, p, τq “ p̄´p2´η´zq f̃ppp̄
z t̄, τ{p̄1{ν

q , (4.72)

ρpt, p, τq “ |τ |´p2´η´zq f̃˘τ p|τ |
νz t̄, p̄1{ν

{|τ |q . (4.73)

By looking at Figures 4.16 and 4.17, one finds that scaled data sets for the spectral
functions at different momenta/reduced temperatures overlap with each other to
rather good accuracy, and that, apart from f˘τ pxτ , 0q in d “ 2 spatial dimensions,
the ansätze in Eqs. (4.70) and (4.71) match the overlapping data points exceptionally
well. Moreover, the characteristic frequencies ω̄c „ p̄z and ω̄c „ τ νz mentioned above
can be read off directly from the coinciding maxima in the respective scaling variables
xp and xτ . The above fits (4.70) and (4.71) in turn imply that the frequency scaling
function fωpxω, yωq, either at criticality (yω “ τ{ω̄1{νz “ 0) or at zero momentum
(xω “ p̄z{ω̄ “ 0), is equally well described by

fωpxω, 0q “
fω

1` pfω{apqx
p2´ηq{z`1
ω

, (4.74)

fωp0, yωq “
fω

1` pfω{a˘τ q |yω|
νz`γ

, (4.75)

with a˘τ for sgnpyωq “ ˘1 above and below Tc, which provides a complete description
of the scaling function fωpxω, yωq along the two coordinate axes.

We introduce here additionally a second method of extracting the dynamic critical
exponent z from our data, exploiting the large xp and xτ behavior of the scaling
functions fppxp, 0q and f˘τ pxτ , 0q. Based on the scaling form of the spectral function
in Eq. (4.53), we extract the infrared power law (4.64) from either the critical spectral
function at τ “ 0 and some sufficiently small momentum p, or that at zero momentum
sufficiently close to criticality. For example, Eq. (4.70) entails that the frequency
dependence of the critical spectral function (τ “ 0), at a given fixed value of p, is of
the form

ρpωq “
1

paωq´1 ` bωσ
. (4.76)

Likewise, cf. Eq. (4.71), the same form should also describe the frequency dependence
of the zero-momentum spectral function at fixed small τ “ 0, with σ “ p2´ ηq{z in
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each case. We note that the power-law amplitude b “ f`t
σ
{fω is fixed by the constant

fω governing the regular behavior of fωpxω, yωq near the origin at xω “ yω “ 0,
whereas the parameter a is related to the amplitudes governing the leading small xp
resp. xτ behavior of fppxp, 0q resp. fτ pxτ , 0q via the relations

ap “ a pp̄fitq
z`2´η , (4.77)

a˘τ “ a |τfit|
νz`γ , (4.78)

where p̄fit, τfit designate the spatial momentum resp. reduced temperature where the
fit was performed.

By fitting this ansatz with the amplitudes a, b and the exponent σ as free
parameters to the critical spectral functions (τ “ 0) at fixed momentum we obtain
reasonably stable results for the dynamic critical exponent z, which are listed in the
second row of Table 4.7 with the label IR power law. In practice, we simultaneously fit
the spectral functions for the smallest two (d “ 3) or three (d “ 2) spatial momentum
indices to improve statistics. Unfortunately, in d “ 3 even for our largest possible
lattices we can not reach small enough spatial momenta p to obtain a reasonably
well constrained signal for z, especially in Model C.

In order to estimate the uncertainty in z, we vary the upper limit of the frequency
interval where we fit Eq. (4.76) to the data in a sensible range. We eliminate one
third of the results with the largest χ2{d.o.f. Of the remaining results, we take the
highest and lowest values for z as bounds on the confidence interval, and calculate the
average of z weighted with the statistical uncertainty. If the weighted average of z is
not near the center of the confidence interval, we separately note the uncertainties in
both directions.

If one naively repeats this process for the zero-momentum spectral functions at
small τ , one arrives at implausible values of z, which drift towards the result at finite
spatial momentum upon approaching the critical point at τ “ 0. This is due to the
fact that, as can be seen in Fig. 4.17, the universal scaling function f˘τ deviates from
the asymptotic power law for intermediate x, but converges to it for large x. We
take the convergence of f˘τ for large x to the same power law that describes fppx, 0q
for x Á 1 as an indicator that this power law describes the true asymptotic behavior
of the universal scaling functions. Nevertheless, since fp converges much earlier, we
believe that the results for z from fits to the spectral function at τ “ 0 and small
momentum p are much more reliable.

Models B and D

Results from Breit-Wigner fits of the critical spectral function in Models B and
D are suggestive of scaling behavior as well. We therefore apply the dynamic scaling
hypothesis to the data for diffusive dynamics, in order to extract underlying universal
scaling functions.

In order to identify scaling behavior in our classical-statistical simulations, we
present results for the spectral function at the critical point in a rescaled manner
in Figs. 4.20 and 4.21. Regions of overlapping data reveal an underlying scaling
function fωpxω, 0q resp. fppxp, 0q. One observes an excellent scaling collapse of the
data obtained with finite coupling to the heat bath γ “ 0.1 (Model B), in both
2+1D and 3+1D. For illustration purposes, we use the analytic value for the dynamic
critical exponent zB “ 4´ η if not stated otherwise. Conversely, for vanishing heat
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Figure 4.20: Scaling function fωpxω, 0q of the critical spectral function. Due to availability
of data, we use τ “ 0.0009p2q (d “ 2) resp. τ “ 0.00008p5q (d=3) as a proxy for the critical
temperature. The data was obtained on lattices of volumes 10242 respectively 2563. The
power law emerging for γ “ 0.1 towards xω Ñ 0 indicates the limiting behavior of the scaling
function, which vanishes towards zero in a regular fashion as limxµÑ0 fωpxω, 0q „ x0.5, which
is shown as a black line. Even though there is hardly any overlap visible for γ “ 0, one can
suspect that the scaling function would start to follow fω „ x0.5

ω as well for small enough
spatial momentum p.

bath coupling γ “ 0 (Model D), the range of spatial momenta where we observe
critical scaling is much narrower, and we can only just recognize the onset of critical
scaling behavior at minuscule spatial momentum in 2+1D. For 3+1D, critical scaling
behavior is not observed at the momentum scales accessible in feasible lattice volumes.
Guided by our results for the autocorrelation times ξtppq (see Section 4.3.3), we use
the dynamic critical exponent of Model C zC “ 2 ` α{ν, and find that it yields a
reasonably good scaling collapse of the data.

Since for a conserved order parameter, the dynamics at vanishing spatial momenta
are trivial and the spectral function vanishes identically ρpω, p “ 0, τq ” 0, we can
only consider data at finite spatial momentum, precluding any dependence on the
finite volume.

Upon close inspection of results given in Fig. 4.21, one notices that in contrast
to Models A and C (compare Fig. 4.16), the deviations from the scaling function
are not as distinctly marked. Rather, we find that the region of overlap in Model B
is given by the range of frequencies ω ă Γ smaller than the decay width. Only the
high-frequency tails of the Breit-Wigner structures, where ρpωq „ ω´3 (see Eq. (4.36))
do not overlap after rescaling. Although by the given data it is hard to tell, at least
the lower left panel of Fig. 4.21 suggests that this does not change in the limit of
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Figure 4.21: Scaling function fppxp, 0q of the critical spectral function. The data points
are the same as in Fig. 4.20. Solid lines represent a fit to the Breit-Wigner function (4.41),
with Γ and w2

p as free parameters. Except for some small region around the peak, the
scaling function of Model B (γ “ 0.1) of the spectral function is perfectly described by
a Breit-Wigner shape with large decay width Γ " ωp. Comparing with the limits of the
Breit-Wigner function, we can read off the limiting behavior of the scaling function fppxp, 0q
for both small (fppxp, 0q „ xp) and large (fppxp, 0q „ 1{xp) values of the argument. At
γ “ 0 (Model D), there is hardly any universal scaling behavior visible for d “ 3, whereas
for d “ 2 one can vaguely discern a region of overlapping data points right of the peak. To
observe scaling behavior in 3+1D at γ “ 0, one would need to simulate on much larger
lattices.

γ Ñ 0 (Model D), even though the dynamic critical exponent changes dramatically.
Exploiting the scaling behavior to extract the dynamic critical exponent z, we

repeat the process outlined for Models A and C and minimize the L2-norms of
pairwise distances of rescaled functions given by the quantity ∆2pzq in Eq. (4.63).
We find similar problems as before, insofar as the results tend to depend on the upper
limit ωh of the considered frequency interval. Again applying the principle of least
sensitivity, we estimate reasonable values for ωh, which lead to the results for the
dynamic critical exponent z given in Table 4.7 in the row labeled scaling. Especially
in the limit of vanishing Langevin damping γ Ñ 0 (Model D), where the regions of
overlap are very narrow, this procedure essentially amounts to a visual estimate.

We now turn to the asymptotic behavior of the scaling functions. For dissipative
dynamics (Models A and C), we found the scaling function of frequencies fωp0, 0q ą 0
to be regular at the origin. This must change when the order parameter is conserved,
since in the limit of vanishing spatial momentum pÑ 0 the spectral function must
always go to zero, and thus its scaling function fωp0, 0q

!
“ 0 must vanish as well.
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It seems natural to expect the limiting behavior of the scaling function to be of
algebraic form, i.e.

lim
xÑ0

fωpxω, 0q „ xσ, (4.79)

with some positive exponent σ ą 0. This of course via Eq. (4.59) relates directly to
the large-xp behavior of the scaling function fppx, 0q, for which then holds

lim
xpÑ8

fppxp, 0q „ x´p2´ηq{z´σp , (4.80)

fixing the asymptotic high-frequency pω " 1{ξtppqq behavior of the critical scaling
function fppxp, 0q. Furthermore, this implies for the ultraviolet behavior of the critical
spectral function

ρpω̄, p̄, 0q „ ω̄´p2´ηq{zpp̄z{ωqσ “ ω̄´p2´ηq{z´σp̄σz. (4.81)

Studying Fig. 4.20 we find that the small-x behavior of the scaling function is
given by a power law

fωpxω, 0q „ xσω, σ “ 0.50p3q (4.82)

in case of Model B, which is compatible with our considerations above. Unfortunately,
the scaling region in Model D is too small to reliably extract the exponent σ in that
case.

In Fig. 4.21, we show the rescaled critical spectral functions revealing the scaling
function fppxp, 0q. Also shown as solid lines are fits of the scaling function to a
Breit-Wigner shape, which describes the data for Model B surprisingly well over a
wide range of values of xp. Indeed, only in a small region around the peak in 2+1D
are there significant deviations, while the limiting behavior seems to match exactly.
For Model B, the large-xp limit of the scaling function fppxp, 0q seems to correspond
to the limit of large decay width Γ of (4.41), where the Breit-Wigner function is
proportional to the inverse frequency ω´1, particularly

lim
ΓÑ8

p2´ηρBpω, pq “
p4´η

Γω
ñ lim

xpÑ8
fppxp, 0q “

1

Γxp
, (4.83)

where we use that in this case the dynamic critical exponent is given by z “ 4´ η.
By virtue of Eq. (4.59), we thus find for the small-xω limit of fωpxωq

lim
xωÑ0

fωpxω, 0q9x
p1´ 2´η

z q
ω . (4.84)

Comparing Eq. (4.84) to Eq. (4.82), we find both observations compatible within
the estimated error range, since

0.5 « σ “ 1´
2´ η

4´ η
“

#

8
15
« .53 d “ 2,

0.5046 d “ 3.
(4.85)

Re-inserting this result to obtain the ultraviolet behavior of the singular contribution
to the critical spectral function (4.81), we find that it is equal to the over-damped
limit of the mean-field spectral function given in Eq. (4.40), namely

ρpω̄, p̄, τ “ 0q „ p̄2
{ω̄. (4.86)
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Note however that the true ultraviolet behavior is of course not given by critical
contributions, and the large-frequency limit of the critical spectral function is given
by the high-frequency limit of the Breit-Wigner structure as ρpω, p, τ “ 0q „ p2{ω3.

Unfortunately, our data does not allow to extend this analysis to the limit of
vanishing heat-bath coupling γ Ñ 0 (Model D). While it looks as if Eq. (4.82) might
still hold, we can not confidently claim that it describes the small-xω limit of the
scaling function fωpxω, 0q here.

Similar to our findings for Models A and C before, we deduce from the numeric
results given in Fig. 4.21 that the leading low-frequency pω ! 1{ξtppqq behavior of
the critical spectral function in Model B is well described by

lim
xpÑ0

fppxp, 0q “ apxp ` . . . , (4.87)

corresponding to
lim
xωÑ8

fωpxω, 0q Ñ apx
´p2´ηq{z´1
ω (4.88)

for the critical scaling function fωpx, 0q. One can thus infer the asymptotic infrared
behavior of the critical spectral function for frequencies ω ! 1{ξtppq,

lim
p,ωÑ0

ρpω, p, 0q “ app
´p2´ηq´zω. (4.89)

We interpret this behavior as an effective IR cutoff introduced by any finite p on
the correlation length ξ „ 1{p, which is associated with a finite correlation time
ξt „ ξz „ p´z. One observes that Eq. (4.89) for z “ 4´ η perfectly corresponds to
the low-frequency limit of the mean-field form given in Eq. (4.35).

4.3.3 Critical behavior of the auto-correlation time ξt
We continue by showing explicitly the existence of a singularity in the characteristic
time scale of the systems. By use of Eq. (4.62) and setting s “ t̄1{z, the spectral
functions in the time domain satisfy the following scaling relation

ρ pt, p, τq “ t̄p2´ηq{z´1 ft

´

p̄z t̄, τ t̄ 1{νz
¯

. (4.90)

where the presence of the scaling variables τ t̄ 1{νz and p̄z t̄ explicitly show that
there are temperature-dependent characteristic time scales ξtpp, τ “ 0q „ p´z and
ξtpp “ 0, τq „ |τ |´νz associated with the auto-correlation time of the dominant slow
mode. The argument can be made explicitly by defining the auto-correlation time
by a ratio of integrals and then inserting the scaling (4.90), such that at the critical
point one has

ξtpp, τ “ 0q “

ş8

0
tρpt,p, τ “ 0qdt

ş8

0
ρpt,p, τ “ 0qdt

“

ş8

0
tfpptp

zqdt
ş8

0
fpptpzqdt

“
p´2z

ş8

0
ufppuqdu

p´z
ş8

0
fppuqdu

” ftp
´z.

(4.91)

Analogously, one finds

ξtpp “ 0, τq “ f˘t |τ |
´νz, Uξ,t ” f`t {f

´
t , (4.92)

where we define as Uξ,t the ratio of power-law amplitudes f`t above and f´t below
the critical temperature, which is universal as well.
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Figure 4.22: Correlation time ξt at τ “ 0 as a function of spatial momentum p at different
values of the Langevin coupling γ. Dashed lines indicate power law fits to the data, the
resulting amplitudes and exponents are shown in Table 4.5. Fit intervals were chosen
to minimize χ2{d.o.f. In Models A and C, the literature values for the dynamic critical
exponents differ by less than ten percent, which is reflected in the results being very similar.
We find that the heat-bath coupling γ has only a weak effect on the amplitude. For Models
B and D, the exponents differ much more. The correlation times at vanishing heat-bath
coupling γ appear to act as a lower bound on those at finite γ, and we find a strong
dependence of the amplitude ftpγq for γ ą 0.

We start by exploring the divergence of ξtpp, τ “ 0q at the critical temperature
for finite spatial momentum. Since at least for diffusive dynamics (Models B/D),
the spectral function largely still follows the Breit-Wigner shape, we expect the
correlation time to be proportional to the ratio Γ{ω2 in the region of low momentum
p (see appendix C for a sketch of the derivation). Based on our findings illustrated
in Fig. 4.13 we thus expect to find that the correlation times strongly depend on
the Langevin coupling γ. For low spatial momentum, where the decay width Γ is
bounded from below by γ, we expect ξt „ ω´2

p „ p´4`η with an amplitude dependent
on γ, which at some point should merge into another power law with a different
exponent, as soon as the momentum dependence of the decay width becomes relevant.
For vanishing heat-bath coupling γ Ñ 0, the autocorrelation times ξtppq are expected
to all follow this second power law.

The critical spectral functions for the models A and C do not follow a Breit-
Wigner shape, precluding attempts to infer expectations about the behavior of ξt in
the way as described above. However, since their critical exponents are very close to
each other, it may represent a challenge to determine them accurately from the data.

Results for the correlation times obtained from the measured spectral functions
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Models: A B C D

2D z 2.130(28) 3.716(17) 1.95(8) 2.25(3)
ft 0.391(20) 0.223(9) 0.58(10) 0.47(4)

3D z 1.99(7) 3.91(6) 2.148(28) 2.031(23)
ft 0.195(25) 0.119(13) 0.108(10) 1.24(7)

Table 4.5: Amplitudes and exponents obtained from fits to the data in Fig. 4.22, with the
data for Models A and B obtained for γ “ 0.1. Errors given here are statistical uncertainties
only and generally underestimate the true uncertainties slightly. For Models A and C, the
values are close to the expected ones, although lacking in precision. While the exponent of
the data at large γ coincides well with the expected dynamic critical exponent in Model B
of z “ 4 ´ η, the data at lower γ seems to converge to a different power law with much
smaller exponent, closer to that of Model C, where zC “ 2`α{ν. Amplitudes are generally
smaller in 3+1D.

are illustrated in Fig. 4.22, where we find our conjecture outlined above confirmed.
Generally, the data closely follows the expected power-law behavior. It is hard
to discriminate between Models A and C, since the exponents of the power laws
describing the divergence of the correlation times are very close, and we find a weak
dependence of the amplitude of the power law on the Langevin parameter γ.

For diffusive dynamics, i.e. Models B and D, the correlation times ξtppq show the
expected behavior in both 2+1 and 3+1 dimensions. For large heat-bath coupling
γ “ 1, the results are clearly described by a power law ξtppq „ p´zB with the dynamic
critical exponent of Model B zB “ 4´ η. The amplitude of this power law depends
on the magnitude of the heat-bath coupling γ. For intermediate values of order
γ “ 0.1, the correlation times still follow the power law ξtppq „ p´zB at low spatial
momentum, but merge into a power law with much smaller exponent at higher
momentum p. At vanishing Langevin coupling γ “ 0, there is only the second power
law left. Generally, amplitudes are smaller in 3+1D, with the most pronounced
difference for γ “ 0, i.e. Models C and D.

We extract the dynamic critical exponent from numerical data via a χ2-fit to a
power law of the form ftp

´z. Results for the exponents and amplitudes are given
in Table 4.5. While the exponents for finite heat-bath coupling γ ą 0 confirm the
prediction by Model B, namely zB “ 4´η, the exponents at vanishing γ “ 0 are much
smaller, and generally more compatible with the Model-C exponent zC “ 2` α{ν,
albeit slightly higher.

We continue with the analysis of the correlation time ξtpp “ 0q at vanishing
spatial momentum, but finite distance |τ | ą 0 to the critical point. For Models B
and D, the zero-momentum mode of the spectral function ρpt, p “ 0, τq ” 0 vanishes
identically. Thus, the following analysis is naturally limited to Models A and C.

We found in Fig. 4.19 that the spectral function near criticality at times larger
than the characteristic correlation time pt{ξtpτq ą 1q is well described by a product
of a power law and an exponential,

f̃`τ pτ
νz t̄, 0q “ pτ t̄ 1{νz

q
νp2´η´zq ft

`

0, τ t̄ 1{νz
˘

9 t̄ p2´ηq{z´1 exp
`

´ t{ξtpτq
˘

. (4.93)

This is used to extract the correlation time ξt by fitting the spectral function data
with an ansatz of the above form, yielding additional data points to those obtained
by the integration method.
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Figure 4.23: Behavior of the correlation time ξtpτq extracted from fits and integration
of the spectral function, as a function of reduced temperature τ . Note that in order to
minimize finite volume effects, we only include results for |τ |L1{ν ą 2.5 for d “ 2, and
|τ |L1{ν ą 5 for d “ 3 obtained on 2562 and 1283 lattices. Solid black lines show a fit
according to Eq. (4.96); the regular contribution is shown separately as a black dashed line.

Before we present our results, some further remarks are in order. Since we focus on
the behavior of modes with vanishing spatial momentum p “ 0, their auto-correlation
time ξtpτq diverges at the critical point as ξtpτq „ 1{|τ |νz in an infinite system.
However, in our simulations the divergence of the auto-correlation time is limited by
the finite system size L, which in the immediate vicinity of the critical point τ « 0
becomes the relevant infrared cut-off. Based on the dynamical finite-size scaling
hypothesis, one expects that in this regime the auto-correlation time behaves as

ξtpτ, Lq “ LzgξpτL
1{ν
q, (4.94)

where gξpxq is the finite-size scaling function of the auto-correlation time analogous
to the ratio R “ ξ{L used for static finite-size scaling. While for all finite values
of the finite-size scaling variable x “ τL1{ν the divergence of the auto-correlation
time is effectively regulated by the finite volume, in order to recover the infinite-
volume scaling in Eq. (4.92), one needs asymptotically large values of ˘x, where this
finite-size scaling function satisfies

gξpxÑ ˘8q Ñ f˘t |x|
´νz. (4.95)

We present our results for the auto-correlation time in Figs. 4.23 and 4.24, where
we study the dependence of ξtpτ, LqL´z as a function of the finite-size scaling variable
τL1{ν in Fig. 4.24 and subsequently estimate the magnitude of singular and regular
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Figure 4.24: Behavior of the auto-correlation time as a function of the finite-size scaling
variable |τ |L1{ν . Different symbols correspond to extractions of the correlation time using
fits (filled symbols) and integration (open symbols) of the spectral function; upper curves
in each panel correspond to ξtpτ ą 0q, while lower curves correspond to ξtpτ ă 0q. Solid
lines in each panel correspond to a power law fit according to Eq. (4.95), from which we
extract the dynamic critical exponent z along with the non-universal amplitudes f˘t .

contributions to the correlation length ξtpτq in Fig. 4.24. Generally, the results of
the two different extraction methods (fit and integration) agree very well with each
other, although for τ ă 0 the integrated ξt are somewhat closer to the power law,
and the slope of this power law fit produces slightly smaller results for z in Model A.
Strikingly, one also observes from Fig. 4.24 that the data exhibits a clear finite-size
scaling across different lattice sizes, which we can exploit to extract the dynamic
critical exponent as explained in the following.

In order to obtain the dynamic critical exponent z, we first apply finite-size
scaling with a plausible estimate for z, to find a region where the data for different
lattice sizes shows sufficient overlap. Based on the results depicted in Fig. 4.24 it
becomes obvious that this hardly works at τ ă 0, but gives a clear power law at large
values of τL1{ν , for τ ą 0. We then fit the power law in Eq. (4.95) for τ ą 0 to the
un-scaled data in the selected region, to get both the amplitude f`t and the exponent
νz. Subsequently, we estimate the amplitude ratio Uξ,t as far as possible by fitting a
power law with the exponent obtained earlier to a few data points with τ ă 0. Errors
are obtained in a similar way as for the power law fit of the IR divergence of the
spectral function. By varying the temperature interval where we fit the power law
to the correlations times ξtpτq and keeping two-thirds of the results with the lowest
χ2{d.o.f. as well as eliminating outliers with χ2 ą 2χ2

min, we compute the averages
weighted by statistical uncertainties and estimate the confidence interval by taking
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Table 4.6: Non-universal amplitude f`t and universal amplitude ratio Uξ,t of the correlation
time ξt, obtained by fits of the data to Eq. (4.92), shown in Fig. 4.24. Since the extraction of
the amplitudes is strongly correlated with the extraction of the exponent, the uncertainties
are rather large.

2D 3D
Model A Model C Model A Model C

f`t 0.43`0.10
´0.04 0.54`0.07

´0.11 0.08`0.11
´0.04 0.028(6)

Uξ,t 8.2`4.2
´0.9 9.0(2.7) 2.7`0.6

´0.3 1.2`0.5
´0.2

the highest and lowest values for ξt, f`t and Uξt . We remark that these parameters
are strongly correlated, so a large uncertainty in the dynamic critical exponent z
leads to large uncertainties in both f`t and Uξt .

The results of this procedure for the non-universal amplitude f`t and the ratio
Uξ,t are given in Table 4.6. Those for the dynamic critical exponent z are shown in
the row denoted by “ξt power law” of Table 4.7. Especially the two large amplitude
ratios Uξ,t in d “ 2 seem quite remarkable when compared to the analytically known
amplitude ratio of the spatial correlation length Uξ “ 2 [86]. Although the d “ 2
data for ξt below the critical temperature pτ ă 0q does not necessarily justify a power
law fit all that well, by looking at Fig. 4.24 one is led to conclude that we might
rather underestimate this ratio.

While in Fig. 4.24 the data at least in 2+1D perfectly fits a power law above the
critical temperature τ ą 0, we find that a precise extraction of z remains difficult
with the available data. In order to improve the accuracy, one could generate data
closer to τ Á 0 in large volumes to minimize finite-size effects. Below the transition
temperature in both 2+1D and 3+1D, we find that the data for the correlation time
ξt deviates strongly from the expected power law behavior. One reason for this is
the (much) smaller value of the non-universal amplitudes f´t , which in combination
with relatively large regular contributions leads to a suppression of the critical signal.
We try to capture the regular contributions by fitting a regular function up to linear
order in addition to the power law

ξtpτq “ f˘t |τ |
´νz

` fr,0 ` fr,1 ¨ τ (4.96)

The comparison between the resulting fit and the data is shown in Fig. 4.23. The fit
now also describes the data away from τ “ 0 much better, which is dominated by the
regular part, shown in Fig. 4.23 as a dashed line, especially on the low temperature
side. However, by introducing these additional degrees of freedom in the fit, we
lose precision in the estimate of the dynamic critical exponent z, both in terms of
statistical and systematic uncertainties.

Besides providing an alternative means to extract z, one additional advantage
of the auto-correlation time method is that it allows for a direct comparison of
the critical dynamics of different models. In particular, to estimate the difference
between the dynamic critical exponents z of Models A and C, one can look at the
ratio of the correlation times at the same (reduced) temperature, which satisfy

ξt,Apτq

ξt,Cpτq
τą0
“

f`t,A
f`t,C

¨ τ´νpzA´zCq (4.97)
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Figure 4.25: Dependence of the ratio of auto-correlation times in Models A and C, on
the finite size scaling variable τL1{ν . Solid lines in the left and right panels show a power
law fit of the large τL1{ν behavior, from which we extract the difference νpzC ´ zAq of the
dynamic critical exponents (cf. Eq. (4.97)). Dashed lines indicate the confidence interval of
the extraction of νpzC ´ zAq, which is also presented in the figure.

in the infinite volume limit. Such a direct comparison between Models A and C
is presented in Figure 4.25, where we show the ratio of the correlation lengths in
Eq. (4.97) for the symmetric phase (τ ą 0q as a function of the finite-size scaling
variable τL1{ν . Even though this ratio reveals some tension between the two different
extraction methods (exponential fit and integration), the general trends are clearly
visible, where in d “ 2 dimensions, zC ą zA, and the power law at large τL1{ν slopes
downwards; while in d “ 3 dimensions, the difference changes sign zC ă zA and the
slope of the power law is positive. By performing a power law fit to the ratio, we can
obtain a direct estimate of zC ´ zA, which is also indicated in Figure 4.25, with the
quoted errors obtained in the same way as for the power law fit of the correlation
times.

So far we have only considered the critical behavior of the spectral function in
absence of explicit symmetry breaking (J “ 0). When introducing a non-zero explicit
symmetry breaking (J ‰ 0), the magnetic scaling hypothesis states that the singular
part of the free energy density can be written as

fsingpτ, J̄q “ s´dfsps
1{ντ, sβδ{ν J̄q (4.98)

allowing one to express the singular behavior of the free energy in terms of scaling
functions f̂˘, fJ (note that νd “ 2´ α)

fsing
`

τ, J̄
˘

“ |τ |2´αf̂˘
`

J̄{|τ |βδ
˘

, (4.99)

fsing
`

τ, J̄
˘

“ |J̄ |p2´αq{βδf̂J
`

τ{|J̄ |1{βδ
˘

, (4.100)

which depend on a single variable τ{|J̄ |1{βδ that combines the τ and J̄ dependence.
Similarly, one expects an analogous magnetic scaling behavior for unequal-time
correlation functions, such that e.g. the auto-correlation time ξt is expected to obey
the scaling form

ξtpτ, J̄q “ szξtps
1{ντ, sβδ{ν J̄q, (4.101)
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Figure 4.26: Magnetic scaling of the correlation time ξtpτ, Jq. Overlapping data
points correspond to the universal magnetic scaling function of the auto-correlation times
ξ̂t,Jpτ{|J̄ |

1{βδq (cf. Eq. (4.101)). Scaling breaks down when J̄ becomes too large, as indicated
by the blue data points.

Table 4.7: Extracted values for the dynamic critical exponent z for dissipative dynamics
(Models A and C).

2D 3D
dissipative z Model A Model C Model A Model C

scaling 2.03(9) 2.00(8) 1.83(17) 2.13(16)
IR power law 2.24(8) 1.98`0.12

´0.21 1.88`0.10
´0.27 2.47`0.10

´0.25

ξt power law 2.03`0.05
´0.08 2.00`0.07

´0.04 2.17`0.31
´0.18 2.48`0.10

´0.07

combined 2.10(4) 2.00(5) 1.92(11) 2.41(7)

diffusive z Model B Model D Model B Model D
scaling 3.70(15) 2.2(1) 3.9(2) 2.25(9)

ξt power law 3.68p15q 2.09p6q 4.01p8q 2.29p14q

combined 3.69(11) 2.12(5) 3.99(7) 2.26(8)

which by analogy allows to define the magnetic scaling function

ξtpτ, J̄q “ |J̄ |
´zν{βδ ξ̂t,Jpτ{|J̄ |

1{βδ
q. (4.102)

We investigate this behavior in Fig. 4.26, where the auto-correlation time ξtpτ, J̄q
obtained by integration for different values of J̄ is rescaled to recover the underlying
magnetic scaling function ξ̂t,J as a function of τ{|J̄ |1{βδ. Data points for the two
smaller values of J̄ largely overlap confirming the magnetic scaling of the auto-
correlation time. Even though the magnetic scaling starts to break down for the
larger J̄ , as one departs from the critical region, it is clear that in a certain (model
dependent) range of J̄ and τ , one can extrapolate ξtpJ, τq from the overlap region in
Fig. 4.26.

We provide a summary of our results for the dynamic critical exponent z for the
different Models in Table 4.7, where we give the results from the different extraction
methods, alongside an error-weighted combined average. The table is split to be able
to better compare the closely related models with the same equations of motion. For
Model A in 2+1D, the overlap method and the power law fit to the correlation times
ξt give a surprisingly small result for z with a relatively large error. The power law

77



CHAPTER 4. ORDER PARAMETER DYNAMICS IN EQUILIBRIUM

fit to the infrared divergence of the spectral function yields a result closer to the one
of [14], albeit even a bit larger. Combining the results leads to a z that is closer to,
but still smaller than the result of [14]. Incidentally, our combined result for Model
A in 2+1D is fully consistent with the experimentally measured value of z “ 2.09p6q
from Ref. [92]. For Model C in 2+1D, we find a value that closely matches the
analytic result z “ 2, with all methods agreeing within their respective statistical
errors. In 3+1D, the non-critical effects on the spectral function are strong, leading
to very large uncertainties in the power law fits. Since the critical window is smaller
than in 2+1D, the uncertainty of the overlap method increases as well. Nevertheless,
the combined results in 3+1D for both Model A and Model C are compatible with
earlier studies, and with the value predicted from the scaling relation z “ 2` α{ν
for Model C.

In case of Model B, we find that in both 2+1D and 3+1D our results are
compatible with the scaling relation z “ 4´η. Especially at large heat-bath coupling
γ, the power law fit to the correlation time ξt at finite spatial momentum yields
relatively precise results. In the limit of vanishing heat-bath coupling (Model D), we
find that the dynamic critical exponent changes drastically. We find results for z of
the order of 2, just marginally larger than what one would expect for Model C.

We note that, in order to obtain more precise results e.g. for Models A and C in
3+1D, it would be highly beneficial to consider an improved action and/or larger
volumes at temperatures closer to the critical point. For Model A, it may also be
beneficial to redo the study for significantly larger heat-bath couplings γ. In 2+1D
with larger volumes, one could probe smaller spatial momenta at τ “ 0 and increase
the precision of the IR power law method. When considering 3+1D, our results
in Fig. 4.17 compared to those in Fig. 4.16 clearly indicate that, with our present
setup, we were not able to probe low-enough momentum regimes away from the
critical temperature. In both cases we are limited by small critical amplitudes of the
correlation time ξt, especially below the critical temperature at τ ă 0.

While our results for Model B leave little to be desired, the critical behavior of
Model D needs to be probed at much lower spatial momentum, i.e. simulated on
much larger lattices.

4.4 Conclusions

We used the classical field approximation close to a second order phase transition to
perform a first-principles calculation of the order-parameter spectral functions of the
relativistic Z2 model. We employed two different sets of dynamic equations, such
that we were able to study the model with and without conservation of either energy
or the order parameter. By including finite spatial momenta in our analysis, we were
able to provide a comprehensive overview of the behavior of the spectral function in
all distinct parts of the phase diagram at finite temperature.

We found that generally, the spectral functions of the model with conserved
order parameter are well described by a Breit-Wigner shape with a mean-field-
like dispersion relation and momentum-dependent decay rate bounded from below
by the heat-bath coupling. For dissipative dynamics, when the Z2 symmetry is
spontaneously broken below the critical temperature, we find an additional excitation
at low frequencies with a different spectral shape and dispersion indicative of a soft
collective mode. At all temperatures, we observed a Breit-Wigner quasi-particle
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excitation with relativistic dispersion relation and only weakly momentum-dependent
decay rate. The effective masses for both dynamical models generally match. While
the effective mass at sufficiently large spatial momenta behaves continuously across
the transition, we found clear indications for singular behavior and an IR divergence
at the critical point. For the diffusive dynamics, this change is solely mitigated by
the vanishing effective mass and therefore mononomial dispersion relation. In case
of dissipative dynamics, the second low-frequency mode is the one that transforms
into the dominant IR contribution. Since our results have been obtained from first-
principles numerical studies in the classical-statistical limit, it may be insightful to
compare these results quantitatively to others obtained e.g. by the use of functional
methods on the Keldysh contour.

We explicitly verified the dynamic scaling hypothesis by analyzing spectral
functions at criticality, and performed a detailed analysis of the scaling properties as
a function of frequency, momentum, and (in case of dissipative dynamics) reduced
temperature. From those, we extracted the correlation time ξt, analyzed its divergence
close to the critical point, and demonstrated its finite-size and magnetic scaling
properties.

Modifying the classical equations of motion to couple to a heat bath and/or
conserve the order parameter, we were able to simultaneously study the behavior
in multiple dynamic universality classes. We found the impact of the heat-bath
coupling on the shape of spectral functions for Models A and C rather minor, with a
hardly measurable change in the dynamic critical exponent. For diffusive dynamics,
the changes were much more drastic, since the structure of low-frequency excitations
changes as the heat-bath coupling vanishes, leading to a stark change in the dynamic
critical exponent.

We successfully extracted the universal scaling functions, which describe the
infrared properties of the spectral functions, and carefully assessed the implications
for the behavior of spectral functions at small frequencies and momenta. Furthermore,
we developed a complete parametrization of the scaling functions in the special cases
where either spatial momentum or reduced temperature vanish. By virtue of magnetic
scaling, we are further able to predict the dynamic critical properties of the systems
in a certain radius around the critical point, which provides the baseline for studying
possible signatures of criticality for non-equilibrium systems approaching the critical
point in the phase diagram.
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5 | Energy-momentum tensor on the
lattice

Since it became clear that the Quark-Gluon plasma (QGP) generated in heavy-
ion collisions at RHIC or the LHC exhibits strong fluid-like collective behavior
[100, 101, 102], relativistic hydrodynamic methods attracted tremendous interest
outside their traditional applications in cosmology and astrophysics. Even though
the theoretical foundations have existed for several decades [61, 62], there are many
interesting developments in the direction of efficient numerical simulation methods,
which may be able to describe the collective dynamics of quite diverse systems,
ranging from fireballs of QGP to merging neutron stars.

When describing dynamic processes close to the QCD critical endpoint, the low-
energy degrees of freedom match those of Model H in [13], the dynamic universality
class describing the critical dynamics of binary fluids or gas-liquid transitions [15].
Therefore, we aim to lay the groundwork for a possible classical realization of a
relativistic version of Model H, e.g. as a lattice field coupled to a fluid. There is of
course a possible pitfall for such a hybrid lattice fluid model. The conservation of the
energy-momentum tensor is one of the constituitive equations for any hydrodynamic
description. It stems from a continuous translation symmetry in spacetime, which
is reduced to a discrete symmetry on a lattice. It therefore seems natural for us
to investigate the energy-momentum tensor T µν in our lattice models more closely,
and understand how the reduction of translational symmetry affects its conservation.
Furthermore, we aim to develop an understanding of how far a lattice theory can
accurately reproduce hydrodynamic degrees of freedom and collective phenomena, as
e.g. reflected in transport coefficients.

Additionally, a major difference between the dynamical Models A/B and their
counterparts with vanishing heat-bath coupling, Models C/D, lies in the exact
conservation of energy in the latter ones. We hope to be able to deepen our
understanding of the difference in their low-energy degrees of freedom and critical
behavior by studying the dynamic properties of the energy density.

We start by defining the energy-momentum tensor T µν , which is non-trivial in the
case of diffusive dynamics. Subsequently, we roughly estimate the effects of a finite
lattice spacing on the conservation law BµT µν , and check the corresponding numerical
results. Additionally, in light of recent studies calculating the shear viscosity using
classical simulations of a scalar theory on the lattice [103, 104], we raise some concerns
about the reliability of those studies regarding the breakdown scales of momentum
conservation. Although we find that the method to obtain the shear viscosity via
Kubo formulae is at least questionable, we reproduce the aforementioned studies and
extend the analysis to our models defined in Section 2.2. We then proceed with a
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detailed analysis of the autocorrelation and spectral functions of the energy density,
studying its dynamic degrees of freedom at different points in the phase diagram.
We finish with an analysis of its dynamic scaling behavior close to the second order
phase transition.

5.1 Definition

We start by deriving the energy-momentum tensor of the continuum theories. Since
the Lagrangian density of Model C with non-conserved order parameter (2.101) is a
function only of φ and Bµφ and only implicitly depends on the spatial coordinate,
we can explicitly calculate the tensor from the Lagrangian and its partial derivative
w.r.t. to the field derivatives as

T µνC ”
BL

B pBµφq
B
νφ´ gµνL, (5.1)

with the independent components

T 00
C “

BL
B 9φ

9φ´ L “ 1

2

´

9φ2
` p∇φq2

¯

` V pφq ” ε, (5.2)

T 0i
C “

BL
B 9φ
B
iφ “ ´ 9φ∇iφ “ T i0C ” Πi, (5.3)

T iiC “
BL
BpBiφq

B
iφ` L “ p∇iφq

2
`

9φ2

2
´

1

2
p∇φq2 ´ V pφq ” P i, (5.4)

T ikC “
BL
BpBiφq

B
kφ “ p∇iφqp∇kφq, (5.5)

which we identify as the energy (ε), momentum (Π), pressure (P) and shear-stress
density respectively. To compute the energy-momentum tensor from the lattice data,
we discretize the expressions above in such a manner that three criteria are met:

1. T 00 directly relates to the Hamiltonian density in Eq. (2.121),

2. the trace T µµ vanishes exactly for the scale-free case of m2 “ 0 in 3+1D, and

3. all elements are topologically on-site and symmetric.

These lead to the definitions

T 00
x “

1

2
9φ2
x `

1

4

ÿ

i

“

pφx`ei ´ φxq
2
` pφx ´ φx´eiq

2
‰

` V pφxq, (5.6)

T 0i
x “´

1

2
9φx pφx`ei ´ φx´eiq , (5.7)

T iix “
1

2

“

pφx`ei ´ φxq
2
` pφx ´ φx´eiq

2
‰

(5.8)

`
9φ2
x

2
´

1

4

ÿ

i

“

pφx`ei ´ φxq
2
` pφx ´ φx´eiq

2
‰

´ V pφxq,

T ikx “
1

4
pφx`ei ´ φx´eiqpφx`ek ´ φx´ekq. (5.9)
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In case of diffusive dynamics in Model D, the Lagrangian density (2.115) depends
on the auxiliary field K as well. Therefore, it also shows up in the energy-momentum
tensor, which reads

T µνD “
BL

B pBµφq
B
νφ`

BL
BpBµKq

B
νK ´ gµνL (5.10)

“
`

uµK `∇λφ∆λµ
˘

B
νφ` µ p∇λKq∆λµ

B
νK ´ gµνL (5.11)

with the transverse projector ∆µν ” gµν´uµuν , the transverse derivative∇µ ” ∆µνB
ν ,

and its longitudinal counterpart Dτ ” uµBµ, defined in relation to the local rest-frame
four-velocity uµ. We use a constant heat-bath rest frame of uµ “ δµ0 , and thus find
for the energy density in this frame

T 00
D “K 9φ´ L “ ´µ

2
p∇µKq∇µK ´

1

2
p∇µφq∇µφ` V pφq (5.12)

“
µ

2
p∇Kq2 ` 1

2
p∇φq2 ` V pφq, (5.13)

in agreement with the Hamiltonian density in Eq. (2.96). The nabla symbol either
index-less or with Latin index∇i denotes the usual spatial derivative. The momentum
density components frame become non-symmetric, and we find

T 0i
D “ ´K∇iφ, (5.14)

T i0D “ ´
9φ∇iφ´ µ 9K∇iK “ µp∇iφqp∇2Kq ´ µp∇iKq p∆φ´ V

1
pφqq , (5.15)

where we inserted the equations of motion to eliminate the time-derivative of K.
Energy flux T i0 and momentum density T 0i are not identical. While generally, the
canonical energy-momentum tensor is not necessarily symmetric, it also cannot be
symmetrized via a Belinfante-Rosenfeld construction [105, 106] in this case. To
understand this, it is useful to consider the generalized angular momentum

Mµ
νλ “ pxνT

µ
λ ´ xλT

µ
ν q ` S

µ
νλ , (5.16)

where Sµνλ contains the contribution of intrinsic spin. If angular momentum is
locally conserved, then

BµM
µ
νλ “ 0 (5.17)

ñ BµS
µ
νλ “ Tλν ´ Tνλ, (5.18)

and the anti-symmetric part of the energy momentum tensor relates to the sources
of spin in the system. However, in our case of Model D, there is no field carrying
spin. Instead, by introducing explicitly a dependence on the local rest-frame velocity
uµ, some components of generalized angular momentum are no longer conserved.

The purely spatial components receive some corrections as well, namely

T ikD “ p∇iφqpBkφq ` µp∇iKqp∇kKq ´ g
ikL. (5.19)

While the purely spatial components are at least symmetric for our choice of rest-
frame uµ “ δµ0 , we will nevertheless limit our study of the energy-momentum tensor in
this model to the energy density for practical reasons. We discretize this component
as

T 00
x “

1

2
9φxKx `

1

4

ÿ

i

“

pφx`ei ´ φxq
2
` pφx ´ φx´eiq

2
‰

` V pφxq, (5.20)

where we compute ´µKx “ p∇´2 9φqx as the inverse discrete Fourier transform of
|k|´2 9φk, forcing the zero-momentum mode 9φk“0 “ 0 to vanish.
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5.1.1 Conservation laws on the lattice

In the continuum, the energy-momentum tensor is the conserved Noether current
generated by the symmetry w.r.t. spacetime translations; i.e.

BµT
µν
“ 0. (5.21)

On the lattice, the continuous symmetry reduces to a discrete one. While we discretize
space, we treat the time direction as quasi-continuous in our calculations, justified by
the small ratio of at{a “ 1{160. In the following, we calculate the lattice equivalent
of BµT µν to gauge the extend to which hydrodynamic treatments are justified, and
to find out how exactly (5.21) is violated by the discretization of space. Due to
availability of data, we focus on Model-C dynamics.

Looking at the ν “ 0 component of the conservation law (5.21), corresponding to
translation symmetry in the time direction and therefore conservation of energy, we
find

BµT
µ0
C “ BtT

00
C ´∇pπ∇φq !

“ 0, (5.22)
B0T

00
C “ BtH “ π∇2φ` p∇φqp∇πq “ ∇pπ∇φq “ ´BiT i0C . (5.23)

When replacing the derivatives with their discrete counterparts, this is still fulfilled
up to order Opa3q,

BµT
µ0
“ pπ1φ2 ` πφp3qqa3

`Opa4
q. (5.24)

We therefore expect the lattice data to fulfill the relation BµT µ “ 0 over a wide range
of parameters. For the spatial components of the conservation law (5.21), we find in
the continuum

BµT
µi
“ ´Bt pπ∇iφq `∇ ¨ p∇φqp∇iφq `∇iL (5.25)
“ ´π∇iπ ´

`

∇2
kφ´ V

1
pφq

˘

∇iφ`∇kp∇kφ∇iφq

` π∇iπ ´ V
1
pφq∇iφ´

1

2
∇ip∇kφq

2
(5.26)

“ ´p∇2
kφq∇iφ` p∇2

kφq∇iφ`∇kφ∇k∇iφ´∇kφ∇i∇kφ “ 0, (5.27)

where we sum over the repeated spatial index k. On the lattice however, we find
that the leading discrepancies are of the form

0 ‰ ´π∇iπ `
1

2
∇iπ

2
“ a2

`

pπ1xq
2
` π2xπx

˘

`Opa3
q, (5.28)

0 ‰ ∇iV pφq ´ V
1
pφq∇iφ “

a2

2

ˆ

m2
xpφ

1
xq

2
`
λ

2
pφxφ

1
xq

2

˙

`Opa3
q. (5.29)

While the former indicates a breakdown of BµT µi at large aT , the latter becomes
more relevant if there are large fluctuations of the field φ. Additionally, since these
effects are of order a2, we expect to see stronger deviations from conservation of
momentum BµT

µi than from conservation of energy BµT µ0.
In order to numerically check the validity of Eq. (5.21) on the lattice, we introduce

a short-hand notation for the autocorrelation functions of the energy-momentum
tensor

FTµν pt,xq ” xT
µν
pt,xqT µνp0, 0qy , (5.30)
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wherefrom FTµν pω,pq is obtained using a discrete Fourier transform. Evaluating
Eq. (5.21) in Fourier space leads to a linear relationship between the individual
components

0 “ BtT
0µ
pt,xq `

ÿ

k

BkT
kµ
pt,xq ô 0 “ ωT 0ν

pω,pq `
ÿ

k

pkT
kν
pω,pq. (5.31)

For modes where the spatial momentum p “ pe1 points along the first direction,
this implies a linear relation between the (connected) autocorrelation functions as
well. By virtue of Parseval’s theorem, it is easily demonstrated1 that for the Fourier
transform of the autocorrelation one has

FTµν pω,pq “ |T
µν
pω,pq|2 (5.32)

ñ ω2FT 0ν pω,pq “ |ωT 0ν
pω,pq|2 “ |pT 1ν

pω,pq|2 “ p2FT 1ν pω,pq. (5.33)

This mode of comparison allows us to identify a range of frequencies ω and momenta
p where the conservation law Eq. (5.33) holds.

Numerical results for the energy-momentum tensor autocorrelation functions in
Fourier space are illustrated in Figs. 5.1 and 5.2. The autocorrelation functions are
rescaled in a manner that allows to read off the region where Eq. (5.33) holds true by
checking where the presented data overlaps. We find that for low spatial momentum
p, the temporal component of Eq. (5.21), i.e. the continuity equation of the energy
density, holds over a wide range of frequencies ω, independent of temperature. With
increasing spatial momentum p, the range of overlap shrinks to a region near the
peak, as can be seen in Fig. 5.1. While broadly matching our conjecture, there seems
to be a systematic deviation in the ordered phase, where the strong quasi-particle–like
UV peak at high spatial momentum p in the energy density autocorrelation does not
appear in the longitudinal momentum, in both 2+1D and 3+1D.

In contrast, there is strong evidence that the spatial component of Eq. (5.21),
i.e. the continuity equation of the momentum density, is violated on the lattice.
While there is some correlation of the mid-frequency peaks at medium to high spatial
momentum p, there is no overlap of the appropriately scaled transverse momentum
and shear-stress density autocorrelation functions in Fig. 5.2. In Section 5.2, Figs. 5.4
and 5.5, we explore the parameter space further and find better in a massless theory
agreement at low coupling λT .

Figure 5.3 shows the longitudinal-momentum autocorrelation function in the time
domain at finite spatial momentum p. If the total momentum was conserved, the
autocorrelation functions FT 0ipt, p “ 0q would become a constant. We find a strong
temperature dependence of the conservation of momentum, i.e. at high temperatures
the zero-momentum mode drops off significantly earlier than at low temperatures.
This effect is so strong that in 2+1D at τ « 1.7, the first finite-momentum modes
overlap with the zero-momentum mode, meaning that in those cases the IR cutoff
is given not by the spatial momentum p but the decorrelation time scale of total
momentum. At low temperature, there is nearly an order of magnitude separating
the decorrelation time scale of the first finite-momentum mode and that of the zero-
momentum mode, therefore the relevant scale here is indeed the spatial momentum
p. We observe a similar, albeit much weaker effect in 3+1D, where the temperature
window we are operating in is much narrower in terms of absolute values (T P r9, 10s

1FT ptq “
ş

dτT˚pτ ` tqT pτq “ 1
2π

ş

dωT˚pωqeiωtT pωq “ F´1r|T pωq|2sptq
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Figure 5.1: Illustration of the conservation law (5.33) in 2+1D, specifically the component
encoding energy conservation. Red data show the autocorrelation function of the energy
density, green data the autocorrelation function of the longitudinal momentum density.
Temperature increases from left to right, starting in the ordered phase, over the critical
point in the center panels, to high temperatures deep in the symmetric phase to the right.
Spatial momentum increases from top to bottom. We see that, as expected, conservation of
energy (Eq. (5.33)) is fulfilled over a wide range of parameters, with some discrepancies
emerging at large wavenumber p and large frequencies ω. Not shown here are the results
obtained in 3+1D, which agree qualitatively.
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Figure 5.2: Illustration of the conservation law (5.33) in 2+1D, specifically the component
encoding conservation of transverse momentum. Red data show the autocorrelation function
of the transverse momentum, green data the autocorrelation function of the shear-stress
density. In general, there is hardly any overlap, indicating that the reduced translational
symmetry on the lattice has a strong effect on momentum conservation. Only for rather
larger spatial momentum p at intermediate frequencies do we see similar features around
the peak.
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Figure 5.3: Longitudinal momentum autocorrelation functions in Model C at low (left
panels) and high temperature (right panels), in 2+1D (top panels) and 3+1D (bottom
panels). If momentum were conserved, the data points for vanishing wavenumber p “ 0
would be constant in time. As the temperature increases, the decorrelation time scale of
the total momentum density (p “ 0) decreases, and imposes a non-physical IR cut-off on
the modes with non-zero wavenumber. Then, the first finite-wavenumber modes overlap
with the p “ 0 mode, as is visible in the top right panel. Although not illustrated here, we
find very similar results for the transverse momentum density.

vs. T P r3, 12s in 2+1D). While close to each other, there remains always a significant
difference between p “ 0 and the first mode at p ą 0.

Conclusion

We have calculated the energy-momentum tensor of the continuum models both with
and without the order parameter as a dynamically conserved quantity. The former
yields a rather complicated expression, leading us to limit ourselves to studying the
energy density, which can be obtained from the lattice variables with justifiable effort.
For the model without order parameter conservation, we have demonstrated that
some considerations are necessary when choosing the discretization of the individual
components. By a brief analytical inspection, we have shown that the continuity
equation of the energy density holds on the lattice with deviations of order a3, while
momentum conservation receives corrections of order a2. A numerical study on
autocorrelation functions of components of the energy-momentum tensor has yielded
compatible results. While energy continuity can numerically be confirmed over a
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wide range of temperatures at low to medium spatial momentum, the continuity of
momentum density is only given in a narrow region of intermediate time scales and
spatial momenta. The total momentum also is not conserved, with a breakdown
scale strongly depending on the temperature.

We conclude that it seems reasonable to treat the energy density as a slow
conserved field at most scales, however keeping in mind that hydrodynamic reasoning
involving in some way conservation of momentum may not apply.

5.2 Transport coefficients

In a recent study [104] by Matsuda et al., the authors extract the shear viscosity
of a massless scalar field using the classical field approximation. They consider the
Lagrangian (2.101) with vanishing bare mass m2 “ 0, respectively the corresponding
discretized Hamiltonian

H “
1

2

ÿ

x

„

π2
x ` pBiφq

2
x `

λ

12
φ4
x



, (5.34)

where Biφx ” φx`ei ´ φx denotes the forward derivative, yielding the same equations
of motion as in Eqs. (2.122) and (2.123) with m2 “ 0 and γ “ 0 (Model C). They
define the off-diagonal spatial elements of the energy-momentum tensor as

Tik “ pB
c
iφxqpB

c
kφxq, (5.35)

where Bci ” pφx`ei ´ φx´eiq{2 denotes the central derivative, claiming that this
definition, since it is located on the same point as the field φx and symmetric in
space directions, gives a better definition than using the forward difference.

To obtain the shear viscosity, one may employ the Green-Kubo formula from
linear response theory, which yields the shear viscosity η as the low-frequency limit
of the shear-stress autocorrelation function, i.e.

η ”
V

T

ż 8

0

dt
@

T ijpt,p “ 0qT ijp0,p “ 0q
D

“
V

2T
lim
ωÑ0

FT ijpω,p “ 0q, (5.36)

reusing the definition of the autocorrelation function resp. its Fourier transform from
Eq. (5.30).

Observing the “scaling property”, i.e. that the equations of motion are invariant
under transformations of the form

φÑ φ1 “ φ{
?
α, π Ñ π1 “ π{

?
α, λÑ λ1 “ λα, (5.37)

with some arbitrary positive parameter α, one can relate results at different T, λ by
comparing

T pλq “ xπ2
xyλ “ α xπ2

xyαλ “ αT pαλq, (5.38)
FT ijpω, λ, T q “ α2FT ij pt, αλ, T {αq , (5.39)

ηpλ, T q “ αηpαλ, T {αq. (5.40)

These imply scaling functions for the shear-mode autocorrelation and thus the shear
viscosity as

λ2FT ijpω, λ, T q “ fFT ,λpω, λT q, (5.41)
λ2Tηpλ, T q “ fη,λpλT q. (5.42)
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As it stands, we see two problems with this approach to calculating the shear
viscosity. One is related to an inconsistency with the technical definition of the shear
stress in Eq. (5.35), which we explain in more detail in the next section. The other,
arguably more grave, concerns the fact that the physical momentum density is not
perfectly conserved on the lattice, i.e. the Navier-Stokes equation is not satisfied on
all scales.

In the original study, the authors show results obtained on 3+1D lattices with
sizes L P t16, 32, 64u and couplings λT P r0.5, 30s. In the following sections, we show
results obtained on 643 lattice volumes, with couplings λT P r1, 50s.

5.2.1 Trace

One property of the massless theory in 3+1D is scale invariance. As the coupling
rλs “ 1 is dimensionless and m2 “ 0, there are no dimensional parameters in the
Lagrangian. Therefore, the expectation value of the trace of the energy-momentum
tensor should vanish, which can be shown by employing the equipartition theorem

xxm
δH

δxn
y “ δmnT (5.43)

to compute expectation values of variations of the Hamiltonian w.r.t. the fields as

xπ
δH

δπ
y “ xπ2

y “ T, xφ
δH

δφ
y “ xφ

`

´∇2φ` V 1pφq
˘

y “ T (5.44)

ñ xφV 1pφqy “ T ´ xp∇φq2y “ xπ2
´ p∇φq2y ” xBνφBνφy , (5.45)

and inserting into the trace

xT µµ y “ x
1´ d

2
BνφB

νφ` pd` 1qV pφqy (5.46)

“ pd` 1q xV pφqy ´
d´ 1

2
xφV 1pφqy , (5.47)

that indeed vanishes for d “ 3 if V pφq9φ4.
If one now defines the spatial components of the energy-momentum tensor in

analogy to Eq. (5.35) as

Tik “ pB
c
iφxqpB

c
kφxq ` δikL, (5.48)

one finds that the expectation value differs from zero by a term proportional to
pBciφxq

2 ´ pBiφxq
2, i.e. the difference between the central and forward derivative.

While the definition via the central derivative surely is more practical, the resulting
inconsistency is somewhat alarming. To further investigate this one could study a
theory with a modified Hamiltonian, where the derivative term entails the central
derivative as well, leading to slightly modified equations of motion. For the moment
however, we stay with the current definition and just keep in mind that there
may be some subtleties when comparing diagonal to off-diagonal elements of the
energy-momentum tensor.
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5.2.2 Navier-Stokes

In the hydrodynamic framework, one solves equations of motion of the form

Bµj
µ
“ 0, BµT

µν
“ 0 (5.49)

where jµ denotes some matter current and T µν the relativistic stress-energy tensor,
plus some additional equation of state for the coarse-grained quantity. Considering
the spatial components of the continuity equation of the energy-momentum tensor,
one finds that they are related to the classical Navier-Stokes equation of conserved
momentum

BµT
µi
“ 0 Ñ Btpρviq ` BjΠji “ 0, (5.50)

with the Newtonian stress tensor Πij “ pδij ` ρvivj ´ Σij, whose dissipative part is
parametrized as

Σij ” η

ˆ

Bivj ` Bjvi ´
2

3
δijBkvk

˙

` ζδijBkvk, (5.51)

containing the shear (η) and bulk (ζ) viscosities. It seems therefore that conservation
of momentum (BµT µi “ 0) is a necessary condition to extract a meaningful value
for the shear viscosity. As we found however, this is generally not the case for the
lattice theory with finite bare mass m2 “ ´1, compare e.g. Fig. 5.2. Naturally, we
repeat our investigation for the massless case. We argued that to check BµT µν “ 0,
it is sufficient to compare the autocorrelation functions as

ω2FT 0ν pω,pq “ p2FT iν pω,pq, (5.52)

where for ν “ 0 one has the energy conservation law BµT µ0, and momentum conser-
vation otherwise.

In Figs. 5.4 and 5.5 we show the autocorrelation functions related to energy
conservation BµT µ0 (top panels) as well as transverse momentum conservation BµT µ2

(bottom panels). One can read of regions where the respective conservation law is
satisfied as the interval where the data points overlap. Figure 5.4 illustrates the
dependence on spatial momentum p with fixed coupling λT , and Fig. 5.5 vice versa.

Energy conservation is fulfilled within the error bars over all couplings λT P r1, 25s
considered here for low wavenumber p À 0.1. As p increases, we find that the data
overlaps only around some intermediate frequency, where the main peak in the
autocorrelation functions is located.

In case of conservation of the transverse momentum, we find that its behavior
is essentially the inverse. Even for small λT “ 1, momentum conservation is only
fulfilled in some intermediate frequency region around the main peak (compare
lower panels in Fig. 5.4). For larger couplings λT ą 1, the situation gets worse, as
can be seen in the lower panels of Fig. 5.5. If the coupling becomes very large at
λT “ 25, there is no overlap over any part of the observed frequency interval. This
is somewhat problematic, as one is supposed to extract the shear viscosity η from
the low-frequency limit, where we find no overlap. Therefore, in the range where one
wants to extract the shear viscosity, physical momentum is not conserved, i.e. the
Navier-Stokes equation does not hold. Ideally, one should be able to extract the
same η from the infrared limit of pω{pq2FT 02pω, pq as well. Figure 5.5 shows that this
is essentially never the case.
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Figure 5.4: Illustration of the conservation law (5.33). Top panels show the energy density
vs. longitudinal momentum, bottom panels transverse momentum vs. the corresponding
shear stress modes. From left to right, spatial momentum increases while the coupling
λT “ 1 is held constant. The frequency window where the energy flux balances the time
derivative of the energy density shrinks with increasing spatial momentum. In contrast,
the second component of Eq. (5.33) independently of the spatial momentum has a narrow
range of validity shifting with the peak; it is hardly affected as the wavenumber increases.

Nevertheless, the former arguments only hold for finite wavenumber p, and for
example Fig. 5.4 might suggest that at least in the limit pÑ 0, the low-frequency
plateau wherefrom η is extracted becomes a region of overlap and momentum
conservation holds. However, we also found that total momentum is not conserved
either, with the decorrelation time scale depending strongly on λT . Comparing
now the autocorrelation functions of total transverse momentum and shear stress
in Fig. 5.6, we find that the decorrelation time scales match almost exactly over
all observed λT P r1, 25s. It is therefore standing to reason that the relevant effect
dominating the IR part of the shear stress autocorrelation (and thus the extracted
η) is the breakdown of momentum conservation, not hydrodynamic dissipation.

To estimate the quantitative effect this has on the computed shear viscosities,
we revisit the numerical procedure Matsuda et al. use in [104]. After showing that
the shear-stress autocorrelation function is dominated by an exponential decay, they
find that the most reliable way to obtain the integral over time and thus the shear
viscosity is to first fit the correlation function to an exponential ansatz, and then
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Figure 5.5: Illustration of the conservation law (5.33). Top panels show the energy density
vs. longitudinal momentum, bottom panels transverse momentum vs. the corresponding
shear stress modes. From left to right, λT increases while spatial momentum is held
constant. While the first component of Eq. (5.33) (i.e. conservation of energy) holds
very well regardless of λT , the second component is hardly satisfied at any finite spatial
momentum for λT ą 1.
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Figure 5.6: Comparison of the autocorrelation functions of total transverse momentum
and shear stress in the time domain. Dashed lines indicate fits to an exponential decay.
In this illustration, it seems as if the relevant IR cutoff is supplied not by hydrodynamic
dissipation, but by the decorrelation of momentum.
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Table 5.1: Comparison between the decay constant Γ1 of the transverse momentum density
autocorrelation and the decay constant Γ of the shear stress autocorrelation. Conservation
of physical momentum implies Γ1 Ñ 0. We find that the decay scales are very close for
λT Á 10, casting doubts whether a meaningful result for the shear viscosity can be obtained
from Γ.

λT 1 3 5 10 25 50
Γ1{Γ 0.766(5) 0.83(3) 0.83(3) 1.00(8) 0.91(4) 1.04(7)

take the analytic result for the integral, i.e.

FT ijpt,p “ 0q « A exp p´Γtq (5.53)

ñ η “
V

T

ż 8

0

FT ij pt,p “ 0q «
V

T

A

Γ
. (5.54)

We find that the transverse-momentum autocorrelation also nearly perfectly follows
an exponential decay

FT 02pt,p “ 0q “ A1 expp´Γ1tq. (5.55)

As long as the decay of the shear correlator is much faster than that of the momentum
autocorrelation (Γ1{Γ ! 1), it seems reasonable to assume that the main effect on
the shear correlator is dissipative in nature.

Tabulated in Table 5.1 are the ratios of measured decay constants Γ1{Γ as well
as their statistical errors as obtained from our data set. We find however that for
medium to large values of λT Á 10, the ratio of decay constants is very close to
Γ1{Γ « 1. Therefore it is at least uncertain if meaningful results for the shear viscosity
can be obtained in this range of parameters.

5.2.3 Shear viscosities

Nevertheless, we reproduce here the results by Matsuda et al., and extend their study
to our models. To this end, we record the shear-mode autocorrelation functions at a
set of different combinations of coupling λ and temperature T to span roughly the
same region of λT as in [104], and confirm that they are dominated by a long-time
nearly-exponential decay, with a few initial fluctuations. While in the precursor
study [104], autocorrelation functions were fit with an exponential ansatz in the time
domain, we extract the infrared limit by fitting a constant to the data points at the
lowest frequencies ω. To generate the data, we employ the same process as for the
spectral functions of the order parameter outlined in Section 4.2.

By comparing our results at different couplings λT we can check our evaluation
mechanism and extract the scaling functions as in Eq. (5.42). Resulting rescaled
shear viscosities are given in Fig. 5.7. Since no numerical values were tabulated in
[104], we give as the right panel a reprint of their Fig. 7 as a basis of comparison to
our results in the left panel. The results appear to match ours inside of numerical
uncertainties, leading to the conclusion that we were able to exactly replicate their
framework.

We also extend this study to the Model-C dynamics with spontaneous symmetry
breaking (m2 “ ´1) and investigate the effect of a finite heat-bath coupling γ “ 0.1
(Model A). Results for 2+1D and 3+1D are shown in Fig. 5.8. In 2+1D, we find that
the product of temperature and shear viscosity Tη increases weakly with temperature
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Figure 5.7: Extracted shear viscosities ηpT, λq in the massless theory in 3+1D, re-scaled
to reveal the underlying scaling function fηpλT q. The left panel shows our results, the right
is a reprint of Figure 7 from [104], depicting the results by Matsuda et al. in the same
fashion for lattice volumes 163, 323 and 643. We only show results for V “ 643. While their
results were obtained by keeping the temperature T “ 1 constant and varying λ, we chose
two values for λ P t1, 5u and varied T . Although we do not have exact numerical values to
compare, the results look sufficiently similar.
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Figure 5.8: Rescaled shear viscosities, extracted at finite bare mass m2 “ ´1, with the
critical temperature marked on the λT -axis. We find that generally, the viscosities at finite
heat-bath coupling γ “ 0.1 are much smaller than at γ “ 0. While in 3+1D, we observe
some enhancement around the critical point at T “ Tc in accordance with a study by
Homor and Jakovac [103], we do not find any signs of critical enhancement in 2+1D.
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for vanishing Langevin coupling γ “ 0. For γ “ 0.1, the shear viscosities are much
smaller, but also increasing with temperature. It seems as if they are offset by some
finite amount compared to the results at γ “ 0. We see no enhancement around the
critical temperature Tc.

In 3+1D, we find the product Tη to be roughly constant over the observed
temperature range. Again, the results for finite heat-bath coupling γ “ 0.1 are much
smaller and also roughly constant over the temperature T . Here we find a slight
enhancement at the critical temperature T “ Tc, which is however too weak to even
begin to analyze critical scaling.

In summary, we are able to reproduce and extend the studies in [104]. There
remains however significant doubt about their robustness in terms of the interpretation
of the results as transport coefficients. If one were to look deeper into this issue,
we recommend studying the theory while decreasing the spatial lattice spacing a,
simultaneously monitoring conservation of spatial momentum and shear viscosity.
The argument here is that with decreasing lattice spacing a, spatial momentum
should be conserved on longer time scales, excluding the decorrelation of momentum
by discretization effects as a potential error source. Ideally, the measured shear
viscosities should then become independent of a for small enough (but finite) lattice
spacing.

95



CHAPTER 5. ENERGY-MOMENTUM TENSOR ON THE LATTICE

5.3 Equilibrium dynamics of the energy density

So far in this chapter, we found that the energy density seems to be the component
of the energy-momentum tensor least affected by discretization effects. This section
is therefore concerned with its equilibrium dynamics as seen in its autocorrelation
and spectral functions. We investigate its behavior in our relativistic models with
and without order parameter conservation and/or coupling to a heat bath (Models
A through D) in both 2+1 and 3+1 dimensions. Starting with an overview over the
general behavior of the spectral function of the energy density at different points in
the phase diagram, we move on to extract its dispersion relation in the symmetric
phase. We subsequently turn to investigate the critical scaling behavior of the energy
density autocorrelation in the time domain and extract its underlying universal
scaling function, before closing this chapter with some final remarks.

5.3.1 Overview

In analogy to the spectral functions of the order parameter (c.f. Eqs. (2.140)
and (2.143)), we obtain the spectral functions of the energy density in the clas-
sical limit via the fluctuation-dissipation-relation

ρT 00pω,pq “
ω

T
FT 00pω,pq (5.56)

from the energy-density autocorrelation.
Figures 5.9 and 5.10 show the spectral functions of the energy densities for the

different models at different points in the phase diagram in 2+1D, Fig. 5.11 shows
planes of fixed spatial momentum p. We observe that, generally, the spectral function
of the energy density seems to be comprised of two excitations. In all models, the
low-momentum region is dominated by a structure whose dispersion strongly depends
on the heat-bath coupling γ. While for γ “ 0, the right panels of Figs. 5.9 and 5.10
indicate that the central frequencies scale with some power of spatial momentum, the
left panels at the same place suggest a lower boundary of order γ “ 0.1 on the central
frequencies, acting as a kind of finite mass. In Models A and C with dissipative
dynamics, there is a second excitation which, judging from its shape and position,
appears to be related to the quasi-particle excitation of the order parameter with
a dispersion relation ω2

p “ m2 ` p2. However, its amplitude also increases strongly
with spatial momentum, such that it is best visible at low temperatures τ ă 0, high
frequencies, and large spatial momentum p Á 1. Its dispersion is hardly affected
by the heat-bath coupling γ, i.e. only the width changes as one would expect. For
the diffusion dynamics of Models B and D, there also is a double-peak structure
at low temperatures, however it is hardly visible in Fig. 5.10. We therefore show
cuts of the spectral function of the energy density at fixed spatial momentum in
Fig. 5.11, where in the ordered phase (lower right panel) one can observe two peaks
close together, with a distinct valley in between. The relative position of those local
maxima hardly changes with momentum, indicating that they both follow a similar
dispersion relation closely related to (4.43). We assume that, similarly to the case of
Models A and C, one of these peaks may be related to the excitation of the order
parameter.

At the critical point, we observe stronger contributions in the IR in all models,
which may be related to the dynamic critical behavior of the mode related to the
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Figure 5.9: Overview of the behavior of the spectral function of the energy density
ρT 00pω, pq for dissipative dynamics in 2+1D, with Model A (γ “ 0.1) in left panels, Model
C (γ “ 0) in right panels, in the symmetric phase (top panels), near the critical point
Tc (central panels), and in the ordered phase (bottom panels). Generally, one finds two
distinct excitations. Dominating the low-momentum region is a broad structure with central
frequencies bounded from below by ω2

p ą γ and otherwise nearly quadratic dispersion. At
high spatial momentum, a sharp quasi-particle peak appears at large frequencies, which is
suppressed as the temperature increases. Its position and shape suggest that it is related
to the quasi-particle excitation of the order-parameter mode.
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Figure 5.10: Overview of the behavior of the spectral function of the energy density
ρT 00pω, pq for diffusive dynamics in 2+1D, with Model B (γ “ 0.1) in left panels, Model
D (γ “ 0) in right panels, in the symmetric phase (top panels), near the critical point
Tc (central panels), and in the ordered phase (bottom panels). Similarly to the case of
dissipative dynamics in Fig. 5.9, dominating the low-momentum region is a broad structure,
with central frequencies bounded from below by the heat-bath coupling ω2

p ą γ and
otherwise nearly quadratic dispersion. Close to the critical point in Model B (center left
panel), one notices an emerging infrared contribution independent of the main excitation.
At low temperatures and vanishing heat-bath coupling γ “ 0, the peak seems to split at low
to intermediate spatial momentum, revealing a second excitation with a similar dispersion
relation, however with central frequencies slightly offset by a factor close to 2 and not
bounded from below by the Langevin coupling.
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Figure 5.11: Cuts of the spectral functions of the energy density ρT 00pω, pq at fixed
spatial momentum p, for dissipative dynamics (Model C, left panels) as well as diffusive
dynamics (Model D, right panels) with vanishing heat-bath coupling γ “ 0 in 2+1D. At
low temperatures (bottom panels) in Model C, one can clearly see the quasi-particle peak
building up at large momentum. In Model D, one can make out the double-peak at low to
intermediate momentum. At high temperatures, there is only the one dominant structure
visible in both models. Results for 3+1D agree qualitatively and are thus omitted.

order parameter. This is best visible in Model B (center left panel of Fig. 5.10):
At low wavenumbers and frequencies a separate structure emerges, which is clearly
distinct from the main energy-diffusion mode, which has its central frequency at
low spatial momentum bounded from below by the Langevin coupling γ. A more
detailed analysis of possible scaling behavior follows in the next section.

At high temperatures in the symmetric phase, the excitation related to the order
parameter is suppressed, and the spectral function of the energy density is dominated
by a single structure, whose dispersion and other properties are similar as for low
temperatures, with the heat-bath coupling γ again acting as a mass-like parameter.
Since in this case there is only one dominant structure visible, we attempt to extract
its quantitative behavior via fits to a Breit-Wigner ansatz, the results of which are
illustrated in Fig. 5.12. While one obtains reasonable results with χ2{d.o.f. « 1
for vanishing heat-bath coupling γ “ 0 and intermediate spatial momentum p, the
fit starts to break down for finite γ “ 0.1 and very low wavenumbers, where the
structures become relatively broad.

Nevertheless, we find that the squares of the central frequencies roughly scale with
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Figure 5.12: Results of a Breit-Wigner fit to the spectral functions of the energy density
ρT 00pωq in 2+1D in the symmetric phase for different values of the heat-bath coupling γ.
Numerical values are given in lattice units. The left panel shows results from dissipative
dynamics, the right panel shows diffusive dynamics, where the order parameter is conserved.
The dispersion is reminiscent of a diffusive mode (compare Eq. (4.43)), with the decay width
coincidentally approaching a constant value of Γppq « 0.1 at low spatial momentum for
γ “ 0. Clearly, the Langevin coupling γ acts as a lower bound on the square mass-like term
ω2
p, while additionally increasing the decay widths substantially. If the spatial momentum
p becomes too small, the decay widths at γ “ 0.1 grow very large and the fit breaks down.
Again, results in 3+1D agree qualitatively.

the square of spatial momentum p2, but are bounded from below by the heat-bath
coupling γ. The decay widths in all cases are relatively large. Coincidentally, for
vanishing Langevin coupling γ “ 0 they approach a fixed value of Γppq « 0.1 in the
limit of small spatial momentum pÑ 0. For finite heat-bath coupling γ “ 0.1, the
decay widths are generally larger, and increase even further towards small momenta
along with their uncertainty.

The effect of the Langevin coupling γ on the central frequencies is easily under-
stood in the time domain. At γ “ 0, the total energy is conserved, implying that
any fluctuations of the energy density must be purely diffusive. This is given to high
precision even on the lattice, as shown before in Section 5.1 and illustrated addition-
ally in Fig. 5.13, where we show the autocorrelation functions of the energy density
in the time domain in the symmetric phase. In the right panel, where the Langevin
coupling γ “ 0 is turned off, we see that the mode with zero spatial momentum
p “ 0 is up to output precision given by a constant. Not shown here is the connected
autocorrelation function, where we subtracted the constant contribution. There, one
then finds that the remaining fluctuations on top of the constant are separated by
ten orders of magnitude from modes at finite momentum. Additionally, it is clear
that the characteristic time scale of the autocorrelation function depends strongly
on spatial momentum p. For non-zero γ however, the dissipation and fluctuations
introduced into Eqs. (2.83) and (2.85) allow fluctuations of the total energy on a
time scale given by 1{γ, limiting the range of the autocorrelation functions in the
top panel of Fig. 5.13.
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Figure 5.13: Energy density autocorrelation in the time domain for dissipative dynamics
in the symmetric phase at high temperature. The data at vanishing momentum p “ 0 in
Model C is scaled by a factor of 10´4 to better fit the frame. At finite heat-bath coupling
γ “ 0.1 (left panel), all modes below a certain spatial momentum coincide, since the IR
cut-off is given by 1{γ. If the Langevin coupling γ “ 0 vanishes (right panel), the total
energy is conserved, and the cut-off scale at late times is given by the spatial momentum p.
Not shown here is the connected part of the autocorrelation function at vanishing spatial
momentum, where one finds that the remaining fluctuations are smaller by ten orders of
magnitude. We find qualitatively very similar results for diffusion dynamics (Models B/D)
and in 3+1D, which are thus omitted.

5.3.2 Critical behavior

Focusing on the critical behavior of the energy-density autocorrelation, we find that
there are strong late-time contributions emerging (compare Fig. 5.14). In contrast to
the energy-diffusion modes at high temperature, these are not suppressed at times
t ą 1{γ larger than the inverse Langevin coupling. As such, they may be the result
of scale invariance in the system.

Reformulating the dynamic scaling hypothesis for the energy-density autocorrela-
tion, one finds

FT 00pt,p, τq “ sα{νFT 00

`

s´zt, sp, s1{ντ
˘

, (5.57)

ñ FT 00pt,p, τq “ p´α{νfp,T 00 pt{pzq , (5.58)

where in the second line we have explicitly chosen s “ 1{p, and introduced a
universal scaling function fp,T 00 . Its canonical scaling dimension only is non-zero in
d “ 3, where α “ .11. If the late-time contributions originate from dynamic critical
phenomena, one should observe them to scale with some time scale ξt „ p´z.

Illustrations in Figs. 5.15 and 5.16 confirm this hypothesis. By rescaling the
energy-density autocorrelation functions to reveal the underlying universal scaling
function fp,T 00pt{pzq, we find an excellent scaling collapse for the modes with lowest
spatial momentum p when rescaling the time axis with the same critical exponents
as the order parameter in Section 4.3. At higher spatial momentum p̄ Á 0.1, we find
strong non-critical contributions for Models A and C.

For the Models B and D with conserved order parameter, the scaling collapse
extends to even higher spatial momentum. We find however that in Model B the
modes with the smallest momentum indices do not collapse on the scaling function,
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Figure 5.14: Energy density autocorrelation in the time domain for dissipative dynamics
at the critical point. The data at vanishing momentum p “ 0 in Model C is scaled by
a factor of 10´4 to better fit the frame. We observe that in addition to a non-critical
component limited by 1{γ, there is a “long-range” correlation related to the critical behavior
of the order parameter. Again, we observe qualitatively similar results for 3+1D and/or
diffusive dynamics (Models B and C), the difference in the latter scenario being a much
larger scaling exponent in case of γ “ 0.1 (4 ´ η “ zB ą za « 2.17), i.e. more severely
diverging late-time contributions.

which is especially striking in 3+1D (upper right panel of Fig. 5.16). This is due to
the limited total simulation time: The characteristic time scales of modes with low
spatial momentum diverge as p´z, and the dynamic critical exponent of Model B
zB “ 4 ´ η is large. Thus, one needs to evolve the system for very large absolute
times to fully resolve the dynamic behavior at lowest momentum. The deviation
for wavenumbers p̄ ă .05 in the upper right panel of Fig. 5.16 are caused by the
limited simulation runtime, i.e. we simply did not generate data on these time scales.
However, at intermediate momentum scales, the scaling collapse is excellent, therefore
we see no reason to invest the necessary computation time to extend the analysis
further.

Since for Models A and B with γ “ 0.1 also the autocorrelation function of the
total energy density T 00pt, p “ 0q is non-trivial, we can conduct a finite-size scaling
analysis. At criticality, the autocorrelation time of the infinite system diverges with
the spatial correlation length as ξt „ ξz. In our simulations however, the divergence
of the correlation length and therefore the autocorrelation time is limited by the
finite system size L, which becomes the relevant cut-off scale in the infrared at the
critical point. Extending the dynamic scaling hypothesis onto the system size, one
expects for the autocorrelation functions

FT 00pt, L, τq “ sα{νFT 00

`

s´zt, L{s, s1{ντ
˘

(5.59)

s “ Lñ FT 00pt, L, τ “ 0q “ Lα{νfL,T 00pt{Lz, 1, 0q, (5.60)
(5.61)

introducing the volume dependence of the time scale ξt „ Lz.
Illustrated in Fig. 5.17 is the data rescaled according to Eq. (5.61). Overlap in the

data revealing the scaling function fL,T 00 confirms the extended scaling hypothesis.
Although we find stronger non-critical contributions at small volumes for Model
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Figure 5.15: Rescaled energy density autocorrelation in the time domain for diffusive
dynamics (Models A/C). Overlapping data reveal the scaling function fp,T 00 pt̄{p̄zq. Modes
with lowest spatial momentum start to overlap at x “ t̄p̄z « 1 for Model A. For higher
spatial momentum, the critical contribution is suppressed compared to the non-critical
part. In Model C, scaling behavior is barely visible even for the modes of lowest spatial
momentum.

A, the dynamic scaling exponents of the order parameter yield excellent overlap at
larger volumes. For Model B, we find a deviation for the largest volume, where the
autocorrelation function seems to break down too early, which is again explained by
the limited total simulation time, obscuring correlations at even later time scales.

5.3.3 Conclusions

Studying the spectral functions of the energy density, we find that there are at
least two excitations in all but the symmetric phases. At low spatial momentum,
the spectral functions of the energy density are dominated by a structure whose
spectral shape and dispersion is reminiscent of a diffusion mode, but with a lower
limit on central frequencies given by the heat-bath coupling γ. The second excitation
generally seems closely related to the dominant order parameter excitation. For
models without conserved order parameter, this is a quasi-particle excitation, which
is enhanced at high spatial momentum and low temperatures. In case of the diffusive
dynamics of Model D, the second excitation seems to follow the same dispersion
relation as the dominant energy diffusion mode, with central frequencies only differing

103



CHAPTER 5. ENERGY-MOMENTUM TENSOR ON THE LATTICE

10−5

10−4

10−3

10−2

10−1

100

101

10−2 100 102

p̄
α
/
ν
〈F
T

0
0
(t
,p

)〉

t̄p̄z

p̄ = 0.188
p̄ = 0.094
p̄ = 0.047
p̄ = 0.023

d = 2, Model B

10−4

10−3

10−2

10−1

100

101

10−4 10−2 100 102

p̄
α
/
ν
〈F
T

0
0
(t
,p

)〉

t̄p̄z

p̄ = 0.183
p̄ = 0.091
p̄ = 0.046
p̄ = 0.023

d = 3, Model B

10−5

10−4

10−3

10−2

10−1

100

101

10−2 100 102

p̄
α
/
ν
〈F
T

0
0
(t
,p

)〉

t̄p̄z

p̄ = 0.188
p̄ = 0.094
p̄ = 0.047
p̄ = 0.023

d = 2, Model D

10−3

10−2

10−1

100

101

10−2 100 102

p̄
α
/
ν
〈F
T

0
0
(t
,p

)〉

t̄p̄z

p̄ = 0.183
p̄ = 0.091
p̄ = 0.046
p̄ = 0.023

d = 3, Model D

Figure 5.16: Rescaled energy density autocorrelation in the time domain for diffusive
dynamics (Models B/D). Overlapping data reveal the scaling function fp,T 00 pt̄{p̄zq. We
observe an excellent scaling collapse in Model B (γ “ 0.1), with some outliers at the lowest
spatial momentum. These outliers are caused by the limited total simulation runtime,
i.e. we did simply not let the simulation run long enough to record the full extend of the
late-time correlations. In Model D, the lowest-momentum modes collapse as expected,
while modes at higher momentum receive strong non-critical contributions and therefore
start to deviate from the universal scaling function.

by a constant factor. Autocorrelation functions in the time domain are generally
suppressed after time scales proportional to the inverse Langevin coupling 1{γ.

Tuning the external parameters to their critical values, we however find late-time
contributions that persist much longer, especially at low spatial momentum. By
rescaling the autocorrelation functions of the energy density at the critical point in
an extension of the dynamic scaling hypothesis, we show that the late-time behavior
is controlled by underlying universal scaling functions. In all models, the dynamic
critical exponent z seems identical to that controlling the critical behavior of the
order parameter.
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Figure 5.17: Rescaled total energy density autocorrelation in the time domain for finite
Langevin coupling γ “ 0.1 in 2+1D. Overlapping data reveal the finite-size scaling function.
In Model A, data for the largest volumes collapse, while smaller volumes are largely
dominated by non-critical contributions. For Model B, we observe an excellent scaling
collapse even for rather small volumes. Deviations for the data at largest volumes are due
to the limited total simulation time (compare caption of Fig. 5.16).
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6 | Non-equilibrium phenomena

The case for studying non-equilibrium phenomena using the classical lattice model is
strong. In context of the search of the QCD critical endpoint in heavy-ion collisions, a
deep understanding of the out-of-equilibrium dynamics of the system will be necessary
to make well-grounded predictions for signatures in final states. As the system comes
close to the critical point, it will at some point inevitably fall out of equilibrium as
the relaxation times diverge, and evolve in an out-of-equilibrium state before either
re-equilibrating further away from criticality, or freezing out. In-depth knowledge
about the evolution of observables like the correlation length during thermalization
is therefore valuable, especially since it was shown by Berdnikov and Rajagopal
[45] that the sensitivity of the final state on the passing distance to the critical
point is rather low. Recent studies [47, 48] furthermore demonstrate the value of
universal scaling functions describing the off-equilibrium evolution of higher-order
cumulants, which are highly sensitive to the correlation length and thus interesting
as signatures of a second-order phase transition. Using the classical lattice model
developed in earlier chapters naturally offers itself, as the changes needed to enable
non-equilibrium studies are negligible, and boil down to dynamically changing two
external parameters.

While there are a multitude of possible ways to drive the system out of equilibrium,
the simplest but still interesting approach is to impose a sudden quench on an
equilibrated system. After the quench, the system may exhibit different sorts of
non-equilibrium behavior depending on the specific dynamic equations governing the
evolution. In case of Model-A dynamics, it will slowly relax to equilibrium. Janssen
et al. [107] and Huse [108] found independently that the short-time dynamics of a
classical system after a quench to the critical point show universal scaling behavior.
These universal non-equilibrium dynamics introduce a new dynamic critical exponent
θ1, related to the scaling dimension of the order parameter at the initial time sheet,
and manifesting itself in an algebraic increase of the order parameter during the early
phase of thermalization. After some time, the initial conditions become irrelevant
and the order parameter starts an algebraic aging decay, with an exponent containing
the equilibrium dynamic critical exponent z. The whole process is controlled by an
underlying universal non-equilibrium scaling function. Knowing this function, one
can exactly predict the evolution of the order parameter, the only input being its
initial value.

While there is also recent progress in studying the dynamic critical exponents
of Model A with a functional renormalization-group scheme [109], these processes
are very amenable to high-precision Monte-Carlo studies. Since one does not need
to prepare a system in thermal equilibrium at the critical point, one can efficiently
extract critical exponents from the short-time critical dynamics on large-volume
lattices with plenty different models [51, 53, 54, 110]. To maximise the signal on
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critical exponents, it is beneficial to control the initial conditions very precisely, and
prepare the initial state at either zero or very high temperature. Thereby, one can
isolate the initial-slip increase from the late-time aging decay, which most of the
aforementioned studies do. Here, we aim to connect the two scaling regimes by
extracting the underlying universal scaling function, starting from a range of initial
values of the order parameter, mediated by thermal initial conditions at different
points in the phase diagram.

This chapter is organized as follows: We start by defining the extension of our
classical model which enables us to drive the system out of equilibrium, and shortly
recap the universal short-time scaling theory. We show that the evolution of the
correlation length itself is also governed by a (in case of Model A non-trivial) universal
scaling function. Subsequently, we investigate our numerical results and extract the
initial-slip exponent θ1 as well as the dynamic critical exponent z. Using those results,
we rescale the data to obtain the universal non-equilibrium scaling function and its
dependence on the initial conditions for both the order parameter and the correlation
length, which allows us to fully uncover the “phase diagram” of critical quenches.
The last section then gives a summary of our results, and highlights possible further
applications of this framework.

6.1 Setup and Theory

We extend the lattice theory defined by Eqs. (2.121) to (2.123) by making both the
temperature of the heat bath T as well as the symmetry-breaking term J functions
of the simulation time t, such that the equations of motion for the order parameter
field φx on the lattice read

Btφx “
BHA

Bπx
, Btπx “ ´

BHA

Bφx
´ γ πx `

a

2γT ptq ηxptq, (6.1)

where the partial lattice derivatives are given by

BHA

Bπx
“ πx,

BHA

Bφx
“ ´

ÿ

y„x

pφy ´ φxq `

ˆ

m2
`
λ

6
φ2
x

˙

φx ` Jptq, (6.2)

and the lattice spacing was set to a “ 1 for simplicity. This setup enables us to
drive the system out of equilibrium and observe its non-equilibrium dynamic critical
behavior.

For this study, we choose for the time-dependence of external field and temperature
the following parametrization

Jptq ” J0Θptq ´ tq, (6.3)
T ptq ” Tc ` pT0 ´ TcqΘptq ´ tq, (6.4)

with the Heaviside step function Θptq. Resulting quench trajectories in the phase
diagram are illustrated in Fig. 6.1. The system thermalizes for times t ă tq at some
point J “ J0, T “ T0 in the phase diagram. At t “ tq, the parameters are instantly
changed to their critical values J “ 0, T “ Tc, quenching the system onto the critical
point. To ease notation, we set tq ” 0.

The evolution of the system after the quench can be separated into three time
scales. For very short times t ă t0, the fastest modes equilibrate to the heat bath.
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Figure 6.1: Qualitative phase diagram with quench trajectories. The labeled quench
trajectories are color-coded to match the data shown in Fig. 6.2. Quench (A) corresponds
to very small initial magnetization m0 “ xMy pT0, J0q, which leads to a long initial-slip
regime. Trajectories (B) and (C) start at higher m0, leading to an earlier onset of the aging
decay.

Processes on this scale are strictly dependent on microscopic properties of the system
and thus do not exhibit universal behavior. In the asymptotic long-time regime for
t Ñ 8, when all modes but the slowest order-parameter mode are in equilibrium
and any initial conditions are irrelevant, the system dynamics are characterized by
the equilibrium dynamic critical exponent z. It was first shown by Janssen, Schaub
and Schmittmann [107] that in between those scales exists a temporal window where
initial conditions are still relevant, but the dynamics are already governed by universal
functions and an additional critical exponent.

Specifically, the evolution of the k-th moment of the order parameter

M pkq
“

˜

1

V

ÿ

x

φx

¸k

(6.5)

after a quench to J “ 0, τ is given by the scaling form

M pkq
pt, τ,m0q “ s´kβ{νM pkq

`

s´zt, s1{ντ, sx0m0

˘

, (6.6)

where m0 denotes the order parameter Mpt “ tqq on the initial time sheet, and
s is an arbitrary scale parameter. At the critical point, the reduced temperature
τ ” T {Tc´ 1 vanishes. By letting s “ t1{z, one then has for the evolution of the k-th
moment of the order parameter

M pkq
pt, τ “ 0,m0q “ t

´kβ
νz M pkq

p1, 0, tx0{zm0q. (6.7)

with the universal non-equilibrium scaling functions M pkqp1, 0, xq. Since in the limit
of late times, the magnetization and its higher moments should become independent
of the value m0 of the magnetization on the initial time sheet, the large-x behavior
of the scaling function must be given by

lim
xÑ8

M pkq
p1, 0, xq „ const, (6.8)

leading to an algebraic decay of the moments of the order parameter as M pkqptq „
t´kβ{νz. Inversely, its small-x limit is given by

lim
xÑ0

M pkq
p1, 0, xq „ xk, (6.9)
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as the system responds linearly to the initial condition. This leads to the order
parameter increasing algebraically at early times as

M pkq
pt, τ “ 0,m0q “ tkp

´β
νz
`
x0
z qm0 „ tkθ

1

, (6.10)

with the initial-slip exponent θ1 ” x0{z ´ β{νz compactifying the notation. When
focusing on the early-time behavior, it is useful to rewrite Eq. (6.7) as

M pkq
pt, τ “ 0,m0q “ t

´kβ
νz M pkq

p1, 0, tx0{zm0q (6.11)

“ mk
0t
kp´βνz `

x0
z q

ˆ

M pkqp1, 0, tx0{zm0q

ptx0{zm0q
k

˙

(6.12)

” mk
0t
kθ1fM,kpm0t

θ1`β{νz
q, (6.13)

where we defined the universal non-equilibrium scaling function
fM,kpxq „M pkqp1, 0, xq{xk. Its limits can be easily deduced from Eqs. (6.8) and (6.9)
as

lim
xÑ0

fM,kpxq „ const, (6.14)

lim
xÑ8

fM,kpxq „ x´k. (6.15)

While previous studies exist that determine the initial-slip exponent θ1 in Ising-like
models (see e.g. [111] for a review), they typically control the initial conditions very
precisely, and start from a sharp distribution for the initial magnetization m0. Since
this is hardly a valid assumption for natural systems, for example in the context of
heavy-ion collisions, we investigate how a more realistic (i.e. thermal) distribution of
the initial magnetization effects the emergence of universal behavior. Additionally,
we aim to quantify the connection between short-time universal behavior controlled
by the initial-slip exponent θ1 and long-time decay controlled by the dynamic critical
exponent z, which is mediated by the universal non-equilibrium scaling function
fkpxq defined above. This will enable us to identify the “phase-diagram” of critical
quenches by relating the dominant short-time behavior to the starting point of the
critical quench in the phase diagram of the theory.

Additionally, we consider the evolution of the correlation length ξptq. In analogy
to Eq. (6.6), we write down a scale-invariant ansatz for the evolution of the correlation
length as some universal function governing the time evolution depending on the
final reduced temperature τ and the initial condition m0 as

ξpt, τ,m0q “ sξps´zt, s1{ντ, sx0m0q. (6.16)

By letting s ” t1{z, we remove the dependence on the first parameter and define the
scaling function gpx, yq of the correlation length, such that its evolution is given by

ξpt, τ,m0q “ t1{zgptx0{zm0, t
1{νzτq. (6.17)

At finite distance to the critical point |τ | ą 0, the correlation length saturates at its
equilibrium value in the limit of large waiting time tÑ 8. Therefore, the dependence
on the time t must cancel in this limit, and we have

lim
tÑ8

ξpt,m0, τq “ lim
tÑ8

t1{zgptx0{zm0, t
1{νzτq Ñ f˘|τ |´ν . (6.18)
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This holds true independently of the initial condition m0, thus fixing the limits of
the scaling function for diverging second argument, namely

lim
yÑ˘8

gp0, yq “ lim
yÑ˘8

lim
xÑ8

gpx, yq “ f˘|y|´ν . (6.19)

If the system is quenched to the critical point, i.e. τ “ 0, we instead have

ξpt, τ Ñ 0,m0q “ t1{zgptx0{zm0, 0q. (6.20)

At large times t, the correlation length must again become insensitive to the initial
condition, yielding

lim
xÑ˘8

gpx, 0q “ const. ” g8 (6.21)

Concerning the small-x limit, we remark that for symmetry reasons, one expects
gpx, 0q “ gp´x, 0q to be even in its first argument and regular at x “ 0. We thus
write

gp0, 0q ” g0 ą 0. (6.22)

If the initial magnetization vanishes, e.g. when starting the quench in the symmetry-
restored phase with m0 “ 0, the correlation length will grow algebraically with
the same exponent as for large m0, but possibly with a different amplitude. For
intermediate values of x, the scaling function gpx, 0q might not be constant, as the
two limits g8 and g0 are not necessarily identical. Nevertheless we certainly should
find that rescaling data as

t´1{zξpt, τ “ 0,m0q “ gptx0{zm0, 0q (6.23)

reveals the scaling function of the correlation length, asymptotically approaching a
constant for both small and large values of the argument x “ tx0{zm0.

6.2 Non-equilibrium scaling

We start our numerical studies by observing the evolution of the order parameter.
Data presented here is typically obtained by averaging over „ 100 ensembles with
sizes 5122 respectively 5123 if not stated otherwise. Since the systems thermalize at
some distance to the critical point, equilibration from a hot start does not take too
long, but we use teq “ 1000 in 2+1D and teq “ 250 in 3+1D in lattice units to be on
the safe side. Any observables are averaged over the independent ensembles.

In Fig. 6.2 we show time histories of the expectation value xMptqy after a quench
to the critical point with different initial conditions. We see that generally, the
lower the initial magnetization, the longer becomes the initial-slip phase where the
order parameter first grows, before it hits the late-time decay. The amplitude of
the late-time decay is independent of the initial conditions, confirming Eqs. (6.8)
and (6.15). This matches the qualitative predictions from the limiting behavior of
the universal non-equilibrium scaling function fM,1pxq. The initial algebraic growth
of the order parameter is controlled by the initial-slip exponent θ1. We find it is
weaker in 3+1D than in 2+1D, which would imply that the corresponding initial-slip
exponent θ1 is smaller. Combined with the fact that the decay exponent β{νz is
much larger in 3+1D, this means that to observe long enough initial slip to obtain a
sufficient signal, one has to start at very small values of the initial magnetization

110



6.2. NON-EQUILIBRIUM SCALING

0.1

1

100 101 102 103 104

〈M
(t
)〉

t

τ0 = 0.16, J0 = 0.01
τ0 = 0.10, J0 = 0.01
τ0 = 0.06, J0 = 0.10

d = 2

0.01

0.1

1

100 101 102 103 104

〈M
(t
)〉

t

τ0 = 0.014, J0 = 0.0003
τ0 = 0.014, J0 = 0.0010
τ0 = 0.014, J0 = 0.0100

d = 3

Figure 6.2: Order parameter over time after an instant quench to the critical point from
different thermal initial states τ0, J0. The lower the initial magnetization m0, the longer
the initial slip takes before the curves collapse onto the late-time decay, which in contrast
is independent of m0. The initial-slip exponent θ1 is ostensibly smaller in 3+1D, since the
initial growth of the order parameter is much less steep.
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Figure 6.3: Logarithmic derivative w.r.t. ln t of the order parameter, to extract the
initial-slip exponent θ1 as outlined in Eq. (6.24) Data in 2+1D was averaged over 9000
ensembles of size 2562 to minimize noise. In 3+1D, we only have about 120 ensembles of
volume 5123, leading to much larger fluctuations in the effective exponent and thus larger
uncertainty. We determine the plateau used to fit the initial-slip exponent θ1 by minimizing
χ2{d.o.f. for the fit to a constant over different intervals.

m0, which can only be realized on relatively large lattices. In 2+1D however, the
larger θ1 and smaller β{νz mean that one can obtain a sufficient signal already with
larger m0 and thus smaller lattice volumes.

We proceed by extracting the exponent θ1 from the time history of xMptqy of
ensembles with sufficiently small initial magnetization m0 maximize the signal while
keeping computation times ecologically sensible. Equation (6.10) implies that we
can obtain the exponent by taking the logarithmic time-derivative

θ1effptq “ tBt lnMptq, (6.24)

where we look for a plateau in the data, which we then fit with a constant to estimate
the true θ1. We illustrate the numerical procedure in Fig. 6.3. We find θ1 “ .196p4q
for 2+1D and θ1 “ .097p7q for 3+1D, which is in range of the results θ1 “ .191p3q
in 2+1D and θ1 “ .104p3q in 3+1D obtained in the Ising model on large lattices by
Grassberger [51].
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Figure 6.4: Illustration of Eq. (6.25) to extract the dynamic critical exponent z in a
fashion analogous to Fig. 6.3. Note that now the effective exponent corresponds to ´ β

νz .
For this data set, 1000 ensembles were averaged for the 2+1D data and about 120 for 3+1D.
In both cases, we used lattices of size L “ 512, to maximize the time before decorrelation
due to finite-size effects limiting the correlation time ξt.

With the same technique, illustrated in Fig. 6.4, we extract the dynamic critical
exponent z from the decay of the order parameter at late times, again taking the
logarithmic derivative to obtain

z´1
“ ´

ν

β
ptBt lnMptqq. (6.25)

In contrast to before, we now take a data set with comparatively large magnetization
m0 on the initial time sheet, so that the data immediately collapses onto the large-x
branch of the scaling function fM,1pxq „ x´1. We find significantly stronger noise,
leading to a larger error on the extracted exponents z “ 2.20p4q in 2+1D and 2.10p7q
3+1D, compared to z “ 2.172p6q and z “ 2.032p4q by Grassberger [51]. Our results
are also compatible with those obtained by the analysis of the scaling behavior of
the spectral functions in Section 4.3.

Now that we extracted and confirmed the relevant dynamic critical exponents,
we proceed with rescaling the time histories of xMptqy shown in Fig. 6.2 to reveal
the underlying scaling function. In Fig. 6.5, we show that the curves given in
Fig. 6.2 are well described by a universal non-equilibrium scaling function, with the
only exception of microscopic relaxation times at t ă γ´1 “ 10 of the order of the
inverse heat-bath coupling. Taking for the initial magnetization m0 ”Mpt “ 0q and
rescaling the data to reveal fM,1pxq from Eq. (6.13), we find that the data points fall
nicely onto a single curve. The qualitative shape of the universal function shown in
Fig. 6.5 indicates that the limiting small-x behavior of fM,1pxq „ constant is indeed
observed.

We parametrize the universal function describing the crossover between initial-slip
and aging using the heuristic ansatz

fM,1pxq “
a

pb` xcq1{c
, (6.26)

with free parameters a, b, c. This function describes the curve connecting the initial-
slip with the aging decay surprisingly well. While a corresponds to the amplitude of
the aging decay, c controls the radius of the curve, and the combination a{b1{c yields
the small-x limit.
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Figure 6.5: Order parameter over time, rescaled to reveal the universal non-equilibrium
scaling function. With exception of the microscopic equilibration time scale „ 1{γ, the
data is well described by a single function fM,1pxq. Both the small-x limit fM,1pxq Ñ const
(dashed line) as well as the large-x limit fM,1pxq Ñ 1{x (dotted line) can be observed. Solid
lines show a simple heuristic parametrization using three parameters defined in Eq. (6.26).

Having established a parametrization of the universal non-equilibrium scaling
function fM,1pxq for all x, we can predict the time history of the magnetization
xMptqy after a quench to the critical point for any starting point in the phase diagram.
The only ingredient missing so far is the initial magnetization m0pτ, Jq, for which
we can also extract a universal function controlling its critical contribution. In a
region around the critical point, we can use scale invariance again to derive for the
equilibrium magnetization

xMy pτ, Jq “ s´β{ν xMy ps1{ντ, sβδ{νJq (6.27)
“ |τ |´βm˘p|τ |

βδ
{Jq, (6.28)

where we set s “ ´|τ |ν and inverted the dependence on the symmetry breaking
without changing the physical content. Thus, we have mpxq as the universal scal-
ing function of the magnetization in equilibrium. Figure 6.6 shows exemplary
results for mpxq in 2D. By interpolating the data, one can infer the initial condition
xMy pT0, J0q ” m0 for thermal initial conditions at T0, J0. We therefore have all
necessary prerequisites to predict the evolution of Mptq for any quench trajectory
starting in a neighborhood of the critical point.

Finally, we investigate the time evolution of the correlation length ξptq, which we
extract from line-(plane-)correlation functions Gpnq at separation n as

ξeff.pnq “
´1

ln
`

Ḡpn` 1q{Ḡpnq
˘ , (6.29)

where we subsequently identify a plateau in ξeff. to fit ξ, analogously to the procedure
outlined in Section 4.1, Eqs. (4.10) to (4.12). Since in the finite lattice volume, the
correlation length is bounded from above by the system size ξ ď L, it will saturate at
some time tf „ Lz, after which other observables will be compromised by finite-size
effects as well. Therefore it is a useful sanity check to see if our numerical setup can
show the anticipated non-equilibrium behavior of the order parameter, by examining
whether the correlation length ξptq saturates within the time-scale of our observations.
Figure 6.7 shows the algebraic growth of the correlation length after a quench to
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Figure 6.6: Universal scaling function mpτβδq of the equilibrium magnetization. One can
infer the expectation value of the order parameter in a region around the critical point.
Using the result as input for the universal non-equilibrium scaling function fM,1pxq allows
us to predict the evolution of Mptq after a critical quench starting at any T0, J0 in a region
around the critical point.
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Figure 6.7: Correlation length ξptq over time after an instant quench from τ , J to the
critical point in Model A at γ “ 0.1. Dashed lines exemplary show the predicted algebraic
growth „ t1{z. After some microscopic relaxation time of the order of the inverse heat-bath
coupling strength γ´1, the correlation length starts to grow algebraically as expected. There
is indication of the correlation length saturating at ξ „ L in 2+1D at large t „ 104, as the
data was generated on lattice volumes of 2562. For 3+1D, saturation is not reached in the
observed time frame.
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Figure 6.8: Rescaled time histories of ξptq to reveal the universal non-equilibrium scaling
function gpx, 0q. Since the correlation length is extracted indirectly, one observes rather
large fluctuations. Especially if ξptq becomes large, the method described in Eq. (6.29)
becomes less reliable. Nevertheless we find clear evidence that gpx, 0q is not constant for
intermediate values of x „ 1, and that the limits differ as well, with gt,0 ą gt,8.

the critical point. The first few time steps show that during the initial microscopic
relaxation time, which is of the order of the inverse heat-bath coupling γ´1 “ 10,
the correlation length hardly changes. Afterwards, it begins to grow algebraically as
t´1{z with the dynamic critical exponent z, until it runs into its finite-volume limit
at ξptq „ L. We find however that for the ensembles we investigate, the saturation
time tf " 104 at L “ 512 is sufficiently large to fully take advantage of all the data
gathered in the following.

One thing that stands out is that the time histories of ξptq seem to distinctly fall
into two “channels” depending on the initial conditions, and at some point switch
from a power-law with a larger amplitude to one with lower amplitude. It turns
out that the time scale of this crossing-over is identical to the time scale on which
the order parameter behavior changes from initial-slip growth to aging decay. This
is compatible with the assumption that the evolution of ξptq is governed by an
underlying scaling function gptx0{zm0, 0q with the same argument as the scaling
function of the order parameter fMptx0{zm0q. We thus present in Fig. 6.8 the time
histories of ξptq rescaled in such a way to reveal the underlying scaling function
gpx, 0q. As expected, we find that both its small-x and large-x limit are given by
constants, and we find in both 2+1D and 3+1D that g0 ą g8. For intermediate
values of x „ 1, the universal scaling function gpx, 0q decreases monotonically. The
two “channels” observed in the un-rescaled version in Fig. 6.7 correspond to the two
different constant limits.

The function gpx, 0q in combination with the knowledge of m0 “ xMy pτ0, J0q

allows to exactly predict the evolution of ξptq for times t Á γ´1 after a quench to the
critical point. If the initial magnetizationm0 ą 0 is small but nonzero, the correlation
length will grow as ξptq “ g0t

1{z up to some cross-over timescale tc « m
´z{x0

0 , where
growth will slow down temporarily, until it resumes growing with g8t1{z. For larger
m0, the first two stages happen faster and the system crosses over to ξptq „ g8t

1{z

earlier. If there is no initial magnetization, the evolution of the correlation length is
given by a single power law ξptq „ g0t

1{z.
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6.3 Conclusions

We have investigated the non-equilibrium critical behavior after a quench to the
critical point of a relativistic scalar theory with a Z2 order-parameter symmetry in
2+1D and 3+1D. During the relaxation process, we observed the expected universal
scaling behavior of the order parameter, interpolating between an initial increase gov-
erned by the initial-slip exponent θ1 depending on the initial condition, and algebraic
decay at late times governed by the equilibrium dynamic critical exponent z. We
obtained the exponents by investigating the logarithmic derivative w.r.t. logarithmic
time. The accuracy of this process proved sufficient to rescale the data to reveal the
underlying universal non-equilibrium scaling function governing the evolution of the
order parameter. Using a heuristic parametrization of this function, we are now able
to predict the critical contribution of the time evolution of the order parameter after
quenching to the critical point from some arbitrary thermal initial state in a region
around the critical point.

We ensured that finite-size effects do not affect our results by observing the
evolution of the correlation length and its saturation time scale. Using the exponents
obtained from the evolution of the order parameter, we were able to rescale the data
for the correlation length to reveal its underlying universal non-equilibrium scaling
function as well. We found non-trivial behavior around the same region as for the
scaling function of the order parameter.

With these tools, we are now well equipped to explore more realistic non-
equilibrium processes. The most trivial extension would be to quench the system to
a point close to, but not directly at the critical endpoint, and investigate how much
of the time evolution is still given by the non-equilibrium universal function. We
conjecture that, as long as the equilibrium correlation length is much larger than the
actual one, quench-like behavior will be dominant.

This study can be extended to more possible non-equilibrium processes, where
the heat-bath temperature and external field are changed continuously over time
and closely pass the critical point. Such a study on this model is currently in
preparation, planning to test the applicability of the Kibble-Zurek framework [112]
and investigating the non-equilibrium evolution of higher-order cumulants, which are
especially interesting in the context of the search for the QCD critical point [113].
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We have demonstrated the power of the classical-statistical approach to study
real-time properties of a relativistic Z2 field theory in 2+1D and 3+1D. We have
developed continuum models with two distinct sets of dynamic equations sharing
the same stationary equilibrium, however with very different dynamic properties.
Deriving lattice representations of these models and their dynamics enabled us
to non-perturbatively calculate static as well as dynamic observables from first
principles.

Computing the spectral function of the order parameter enabled us to identify
the relevant dynamic degrees of freedom for the different dynamics in all regions of
the phase diagram. We have observed that for the diffusive dynamics with conserved
order parameter, the spectral function generally stays similar to its mean-field form,
while in Models A and C an additional soft collective excitation appears in the
ordered phase at low frequencies, which vanishes in the symmetric phase. Close to
the critical point, we found singular behavior in the characteristic relaxation time
scales, supportive of the dynamic universality hypothesis. When determining the
dynamic critical exponents, we found the expected behavior for Models A, B, and C,
while confirming that our relativistic definition of Model D shows critical dynamics
which are fundamentally different from its non-relativistic counterpart. Furthermore,
we were able to extract two-variable universal dynamic scaling functions, which
describe the critical contributions to the spectral functions exactly.

Studying the energy-momentum tensor of our models, we found that while energy
conservation could be fulfilled to numerical accuracy, the reduction of the continuous
spatial translation symmetry to a discrete one leads to deviations from momentum
conservation. We highlighted several resulting problems of earlier studies aiming to
extract transport coefficients from lattice calculations, and reproduced those studies
with our models. We concluded that studies at smaller spatial lattice spacings are
required to clarify how the computed quantities are related to physical transport
coefficients. Additionally, we have analyzed autocorrelation- and spectral functions
of the energy density in a manner similar to our analysis of the order parameter
equilibrium dynamics. We were able to observe critical scaling behavior of the energy
density as well, which matched our observations of the critical dynamics of the order
parameter.

After trivially extending our model to account for dynamic changes in external
symmetry-breaking field and heat-bath temperature, we have investigated universal
non-equilibrium behavior of Model A after an instant quench to the critical point.
In particular, we have observed the anticipated universal scaling behavior of both
order parameter and correlation length, and we were able to compute the relevant
dynamic critical exponents with sufficient accuracy. This enabled us to extract the
respective universal non-equilibrium scaling functions and their limits, allowing us to
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predict the evolution of correlation length and magnetization after instant quenches
to the critical point starting in a large region around the critical point.

Now that we have demonstrated the power of universal scaling functions in both
equilibrium and non-equilibrium settings, a natural next target lies in the analysis
of more complex non-equilibrium phenomena involving finite quenching rates to
be analyzed in the context of the Kibble-Zurek framework [112]. One might study
more realistic trajectories, e.g. adiabatic processes, and investigate if there is any
measurable difference in observed final states. Conceivably, one may also modify the
framework to study the classical dynamics of expanding systems. This could serve as
a rigorous test of the back-of-the-envelope calculation in [45]. The ultimate goal is to
develop a reconstruction protocol for the location of the critical endpoint, based only
on knowledge about some thermal initial conditions and the observed final state.

At some point, one would however have to introduce a more complex QCD-
like model, which shares not only the static 3D Ising universality class, but whose
dynamics are also described by Model H in [13]. Here, we made an important step
by introducing a relativistic lattice version of Model B. The extension to Model H
involves the coupling of the Model-B order parameter to a conserved transverse vector
field via an advection term. We are as of today unsure of how to implement this;
some first ideas involve for example a coupled system of a lattice order parameter
and a relativistic fluid, whose equations of motion could be solved with a relativistic
lattice Boltzmann method (see [114] for a review).

On a similar note, it may be beneficial to extend our study on the energy-
momentum tensor of classical lattice theories to components other than the energy
density, studying in detail the regions where the systems main excitations can
effectively be described by hydrodynamic equations. Not only crucial to gauging the
validity of computing transport coefficients on the lattice, this might also help with
our understanding of the dynamics of Model H.

While we have shown that we can learn a lot from classical-statistical models, it
is interesting and important to quantify the corrections to this limit due to quantum
fluctuations. Exciting new approaches to that end include the development of func-
tional renormalization group methods on the Keldysh contour [115]. These encounter
their own new challenges, since additionally to choosing a suitable truncation scheme,
one has to make sure that the regulator functions preserve causality. First-principles
classical-statistical simulations can function as a very effective benchmark for scalar
theories, since the classical theory is recovered by simply eliminating the quantum
interaction vertex and all associated diagrams. Preliminary results for spectral
functions of the relativistic scalar theory with Model-A dynamics are very promising
in this regard.

Another approach currently under development is the Gaussian state approxi-
mation [116, 117]. Assuming that the full quantum state is given by an ensemble
of Gaussian states, one can derive classical equations of motion for a system with
N `N2 degrees of freedom, evolving both expectation values as well as two-point
correlation functions in time. Challenges of applying this method to a field theory
include the computational effort growing quadratically with the volume, as well
as consistently constructing a heat bath. A review comparing the Gaussian state
approximation to both the classical-statistical method as well as FRG on the Keldysh
contour is currently in preparation.
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A | Vertex structure

Fourier Transformation

We define the Fourier transformation as

φ̃pkq “

ż

ddxφpxqe´ikx (A.1)

φpxq “

ż

ddk

p2πqd
φ̃pkqeikx (A.2)

for the field and analogous for the conjugate momentum π. The variational/partial
derivatives become

δφ̃pkq

δφpxq
“ e´ikx, (A.3)

δφpxq

δφ̃pkq
“ eikx, (A.4)

which necessitates the absorbption of the factor p2πqd into δ{δφ̃pkq to not introduce
inconsistencies.

Four-point vertex for diffusive dynamics

We proposed in Eq. (2.100) a possible alternative Hamiltonian for diffusive dynamics,
where the field only appears in form of even powers of its gradient ∇φ. While it
is easy to write down for the free theory, the interaction term is not immediately
obvious.

The expected equation of motion for Model B contains a non-local interaction
term of the form 4∇2φ2pxq, which should arise via a variation of the Hamiltonian
w.r.t. the field as

δ

δφpxq
H1
I “ 4∇2φpxq3 “

ż

ddkddk1ddk2k
2φpk1qφpk2qφp´k´ k1 ´ k2qe

ikx (A.5)

To find H1
I , we start with a generic ansatz, assuming spatial translation symmetry

and thus conservation of momentum,

H1
I “

ż

ddkddk1ddk2f pk,k1,k2q φ̃pkqφ̃pk1qφ̃pk2qφ̃p´k´ k1 ´ k2q, (A.6)
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where fpk,k1,k2q is a scalar function of the momenta. Variation w.r.t. φ̃pk1q gives

δ

δφ̃pk1q
H1
I “

δ

δφ̃pk1q

ż

ddkddk1ddk2f pk,k1,k2q φ̃pkqφ̃pk1qφ̃pk2qφ̃p´k´ k1 ´ k2q

(A.7)

“

ż

ddk1ddk2fpk
1,k1,k2qφ̃pk1qφ̃pk2qφ̃p´k

1
´ k1 ´ k2q

`

ż

ddkddk2fpk,k
1,k2qφ̃pkqφ̃pk2qφ̃p´k´ k1 ´ k2q

`

ż

ddkddk1fpk,k1,k
1
qφ̃pkqφ̃pk1qφ̃p´k´ k1 ´ k1q

`

ż

ddk1ddk2fp´k
1
´ k1 ´ k2,k1,k2qφ̃p´k

1
´ k1 ´ k2qφ̃pk1qφ̃pk2q

(A.8)

“

ż

ddk1ddk2φ̃pk1qφ̃pk2qφ̃p´k
1
´ k1 ´ k2q

¨ rfpk1,k1,k2q ` fpk1,k
1,k2q ` fpk2,k1,k

1
q ` fp´k1 ´ k1 ´ k2,k1,k2qs

(A.9)
!
“

ż

ddk1ddk2k
12φ̃pk1qφ̃pk2qφ̃p´k

1
´ k1 ´ k2q, (A.10)

where we renamed kÑ k1,2 in the second step. This leads to the defining equation
for f

k12
!
“ rfpk1,k1,k2q ` fp´k

1
´ k1 ´ k2,k1,k2q ` fpk1,k

1,k2q ` fpk2,k1,k
1
qs ,
(A.11)

and thus

f pk,k1,k2q “
k4

2 pk2 ` kk1 ` kk2 ` k2
1 ` k1k2 ` k2

2q
(A.12)

“
k4

k2 ` k2
1 ` k2

2 ` pk` k1 ` k2q
2 , (A.13)

whereby we find for the interaction term up to maybe a sign and some factors of 2π

H1
I “

ż

ddkd2dk1,2
k4φ̃pkqφ̃pk1qφ̃pk2qφ̃p´k´ k1 ´ k2q

k2 ` k2
1 ` k2

2 ` pk` k1 ` k2q
2

, (A.14)

which will turn into a non-local and probably very complicated expression in coordi-
nate space.
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B | Hydrodynamic Green’s functions

We compute in the following the propagator of the field evolving under Israel-Stewart
hydrodynamics [61, 62]. Starting point is the conservation law and the definition of
the current

Bµj
µ
“ 0 , jµ “ φuµ ` νµ, (B.1)

such that φ “ jµuµ and νµ “ ∆µ
νj
ν with ∆µν “ gµν ´ uµuν , where uµ denotes the

local rest-frame velocity, and we employ the metric convention gµν “ diagp`,´,´,´q.
Without loss of generality the evolution equation then takes the form

uµBµφ` θφ “ ´∇µν
µ , (B.2)

where θ “ Bµu
µ is the expansion rate and ∇µ “ ∆µνBν denotes the transverse

derivative. In Israel-Stewart hydrodynamics, the dissipative field obeys the equation
of motion

uµBµν
µ
“ ´

1

τR
pνµ ´ νµNSq , (B.3)

relaxing to the Navier-Stokes limit νµNS “ D∇µφ with relaxation time τR. Thus, in
the limit of vanishing relaxation times τR for a static fluid uµ “ const, the evolution
equation takes the form of a simple diffusion equation

uµBµφ “ D∆φ , (B.4)

where ∆ “ ´∇µ∇µ is the transverse Laplacian.

Spectral function for Israel-Stewart Hydrodynamics

In the following, we operate under the assumption of uµ “ p1, 0, 0, 0q “ const to
facilitate notation. We define the Laplace transform of the field φpt,xq as

φpz,kq “

ż 8

0

dteizt

ż

d3xe´ikxφpt,xq , (B.5)

and remark that under this transformation, the time derivative transforms as
9φpt,xq Ñ ´izφpz,kq ´ φpt “ 0,kq. Abbreviating the longitudinal components
of the dissipative currents as ν} “ ∇µν

µ, we find that the constituitive equations
(B.1) and (B.3) transform as

´izφpz,kq ` ν}pz,kq “φpt “ 0,kq , (B.6)
´izτRν}pz,kq “τRν}pt “ 0,kq ´ pν}pz,kq ´Dk2φpz,kqq . (B.7)
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Solving for the Laplace transform of the field, we obtain

φpz,kq “
´τRν}pt “ 0,kq

p´iz `Dk2qp1´ izτRq
`
p1´ izτRqφpt “ 0,kq

p´izp1´ izτRq `Dk2q
. (B.8)

If we further assume that the initial conditions are uncorrelated (xν}p0,kqφp0,kqy “
0), we find the field propagator

Gpz,kq ”

ż

dteizt

ż

ddxe´ikxΘptq xφpt,xqφp0,0qy (B.9)

“
p1´ izτRqTχpkq

Dk2 ´ τRz2 ´ iz
(B.10)

with the static susceptibility χpkq ” T´1 xφpt “ 0,kqφpt “ 0,´kqy. The two-point
function has poles at

z “
´i

2τR
˘

i

2τR

a

1´ 4Dk2τR . (B.11)

In the limit of small spatial momentum kÑ 0, we recover Navier-Stokes dynamics
plus an additional non-hydrodynamic mode

zhydro “ ´iDk2 , znon´hydro “ ´
i

τR
. (B.12)

Comparing our model

We repeat here the equation of motion for diffusive dynamics, disregarding the noise
such that we have

uµBµν
µ
“ ´γ

ˆ

νµ ´
µ

γ
∇µ
pV 1pφq ´∇2φq

˙

. (B.13)

Comparing to the Israel-Stewart equation of motion (B.3) and comparing coefficients
leads us to identify

τR ” γ´1, (B.14)

D ”
µ

γ
pm2

eff ` k
2
q. (B.15)

The poles of the propagator are therefore located at

z “
´iγ

2
˘

iγ

2

c

1´ 4
µ

γ2
pm2

eff ` k2qk2 . (B.16)

While for finite Langevin coupling γ the limit of low momentum still contains
the Navier-Stokes–like mode, the limit γ Ñ 0 fundamentally changes the infrared
structure of the dynamics. We are then in the limit of infinite relaxation times, with
only real poles at

z “ ¯
b

µpm2
eff ` k2q|k|. (B.17)

We can therefore realistically expect also the critical behaviour to change significantly,
as opposed to the case of the non-relativistic Model D described e.g. in [96, 97].
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C | Breit-Wigner function

The order-parameter spectral functions obtained from mean-field calculations in the
models considered are of Breit-Wigner shape, i.e.

ρpωq9
ω

pω2 ´m2
pq

2 ` γ2ω2
, (C.1)

where the central frequencies are given by m2
p “ p̄αpm2 ` p2q. To transform it into

the time domain, one first performs a slight reparametrization of the form

M2
p “ m2

p ´
γ2

2
, (C.2)

Γ2
“
γ2

2

4m2
p ´ γ

2

2m2
p ´ γ

2
, (C.3)

such that the spectral functions become

ρpωq9
ω

pω2 ´M2
p q

2 ` Γ2M2
p

. (C.4)

The Fourier transform of the latter form can be expressed as

ρ̃ptq9e´A|t|
`

eiBt
´ e´iBt

˘

(C.5)

with parameters

A ” im

g

f

f

e

1

2
`

d

1`
Γ2

M2
p

, (C.6)

B ” ´
m

c

1´
b

1` Γ2

M2
p

. (C.7)

Breit-Wigner autocorrelation time

Starting with the mean-field shape of the spectral function (4.33), we find
ż 8

0

tρptqdt
ρptq odd
“

1

2

ż 8

´8

tρptqdt “ i
d

dω
ρpωq

ˇ

ˇ

ˇ

ˇ

ω“0

9
Γ

ω4
p

, (C.8)
ż 8

0

ρptqdt “

ż 8

´8

Θptqρptqdt “

ż

dω1F rΘptqs pω1qρpω ´ ω1q
ˇ

ˇ

ˇ

ˇ

ω“0

(C.9)
ż

dω1
ˆ

´i

ω1
` πδpω1q

˙

ρpω1q (C.10)
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but since ρpω “ 0q “ 0, the δ-term does not contribute. For the remaining integral,
we employ the residue theorem. We note that the function

ρBWpω,pq{ω “
paΓ

`

ω2 ´ ω2
p

˘2
` Γ2ω2

(C.11)

has four first-order poles in ω, namely

ω2
R “ ´

Γ2 ´ 2ω2
p

2
˘

d

ˆ

Γ2 ´ 2ω2
p

2

˙2

´ ω4
p (C.12)

“ ´
1

2
pA˘Bq , (C.13)

where we abbreviate A ” Γ2 ´ 2ω2
p, B ” Γ

a

Γ2 ´ 4ω2
p. One can thus express

ρBWpωq

paΓω
“

„ˆ

ω2
`

1

2
pA`Bq

˙ˆ

ω2
`

1

2
pA´Bq

˙´1

(C.14)

“

„ˆ

ω `
i
?

2
pA`Bq1{2

˙ˆ

ω ´
i
?

2
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” rpω ´ ω1q pω ´ ω2q pω ´ ω3q pω ´ ω4qs
´1 , (C.16)

where of course ω1 “ ´ω2 and ω3 “ ´ω4. One now has to distinguish two cases for
the real parameters Γ, ωp: By Taylor expansion of B one quickly finds

case 1 : Γ ą 2ωp ą 0 : ñ A ą B ą 0, ñ =pω2q ą 0, =pω4q ą 0,
(C.17)

case 2 : 2ωp ą Γ ą 0 : ñ <pBq “ 0, =pBq ą 0 ñ =pω2q ą 0, =pω3q ą 0.
(C.18)

By Taylor expansion of B one quickly finds that A ą B ą 0 if Γ2 ą 2ω2
p, which is

a reasonable assumption for low momentum p (compare Fig. 4.13). We choose to
complete the integration contour by a semi-circle over the positive half plane, where
always two of the poles lie. For the residues one finds

Resω2 “ rpω2 ´ ω1q pω2 ´ ω3q pω2 ´ ω4qs
´1 (C.19)
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Resω4 “
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, (C.23)
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For the critical spectral function at low spatial momentum, mostly Γ " ωp, so we
consider here only the first case, and find

ż

dω
ρBWpωq

paΓω
“ 2πi tResω2 ` Resω4u (C.24)

“ 2πi

"

?
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"

1

2Γ2
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ω2
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*
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π
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p

. (C.26)

where we used that A2 ´ B2 “ 4ω4
p and, for Γ " ωp one has A « B « Γ2. This

implies for the autocorrelation time the relation

ξt,BW “

ş8

0
tρptqdt

ş8

0
ρptqdt

„
Γ

ω2
p

. (C.27)
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D | Structure of the spectral func-
tion at low temperatures

In the ordered phase, at τ ă 0, the spectral functions show not only a quasi-particle
structure, but also a second mode at lower frequencies. If one plots the spectral
function over the squares of spatial momentum and frequency, it becomes apparent
that the two structures are separated by the light cone, i.e. the low-frequency
excitation inhabits the space-like region. Tracking the maximum ρpωmax, pq “
max ρpω, pq|ω2ăp2 of the spectral function in that region, one finds for the dispersion
relation roughly a power-law behavior of the form,

ω2
max9 p

d, (D.1)

in d spatial dimensions. For d “ 3 this agrees with the well-known dispersion relation
of thermally driven capillary waves. In d “ 2 spatial dimensions the situation seems
less clear. In Ref. [118] for example, the excitation spectra of two-dimensional fluid
droplets have been studied with resulting dispersion relations that depend on the
details of the fluid parameters.

In Fig. D.1 we show exemplary low-temperature spectral functions in d “ 2 and 3
spatial dimensions, as functions of frequency and momentum squared. The time-like
and space-like parts are separated by different colors, and the light-cone is shown as
a solid line in the colormap projection in the bottom plane. The light-cone marks
the separation between the quasi-particle and the soft mode. In d “ 3 dimensions
this soft mode closely follows the power-law dispersion relation of thermally driven
capillary waves as seen in the bottom right panel of Fig. D.1 where we plot a solid line
with ω “ p3{2 for comaprison. Bottom left we show the corresponding quasi-particle
mode above and soft mode below the light-cone in d “ 2 dimensions together with
an ideal sound-wave dispersion ω “ p{

?
3 to guide the eye.

Close to the critical temperature, the low-frequency part grows in magnitude and
seems to merge with the quasi-particle. In the symmetric phase, at τ ą 0, there is
only the quasi-particle peak left.
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Figure D.1: Spectral functions in the low-temperature phase for Hamiltonian dynamics
(Model C, γ “ 0) in d “ 2 (left) and d “ 3 (right) spatial dimensions. Time-like parts (where
ω2´ p2 ą 0 are plotted with green lines, space-like parts (where ω2´ p2 ă 0) with red lines.
The colormap-projections at the bottom also show solid lines where ω2 ´ p2 “ 0, indicating
the light-cone. In the bottom panels we show the corresponding dispersion relations of
the quasi-particle peaks (above) and the soft modes (below the light-cone), by tracing the
positions of the respective local maxima in the spectral function. For comparison, we also
plot solid lines, for an ideal sound-wave dispersion relation ω2 “ p2{3 in d “ 2 (left), and
for cappillary waves with ω2 “ p3 in d “ 3, to guide the eye. At high spatial momenta p,
the soft mode dissolves in 3+1D.
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