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2 Introduction

Studies reported here will address the interaction of the transforming growth factor
(TGF)–β and retinoid signaling systems in the context of lung development. The
development of the mature, adult lung from the primitive foregut is a complex and
lengthy process that is known to be regulated, at least in part, by both the TGF–β
and retinoid signaling systems. No study to date has addressed how these two
systems interact in the context of lung development. This is all the more important,
since retinoid supplementation is being considered as a clinical management strategy
in premature infants, where lung development is impacted. However, controversy
remains as to whether this clinical approach has positive or deleterious effects, and
understanding the interaction of the TGF–β and retinoid systems may yield insights
into the effects of retinoids on the development of the immature lung.

2.1 Normal lung development

2.1.1 Stages of normal lung development

Lung development serves to maximize the gas exchange surface area while minimiz-
ing at the same time the thickness of the blood-air barrier. This aim is achieved by
the process of branching, where the formation of conducting airways takes place and
septation, where subdivision of airspaces increases the surface area of the lung [1].
Lung growth is physically influenced by the increasing size of the intrathoracic space,
by lung liquid volume and pressure as well as the amniotic fluid volume [2]. During
lung development there are several signaling pathways involved such as the canoni-
cal TGF–β pathway and the vitamin A pathway, which drive lung development by
growth factor-mediated communication [3]. During the process of branching and
septation, retinoic acid (RA) was shown to be an important mediator of develop-
ment [4]. In later studies it was shown that dysregulation of TGF–β, vitamin A and
other growth factors can effect normal development and, therefore, disturb normal
organ function for the entire period of life [5]. The phases of normal development of
the lung can be divided into five chronological stages [2]. The lung developmental
stages correspond roughly to different weeks of gestation as follows: the embryonic
period (1st - 7th week post conception, (WPC)), the pseudoglandular (7th - 16th
WPC), the canalicular (16th until 26th - 28th WPC), saccular (26th - 28th until
32nd - 36th WPC) as well as the alveolar stage (32nd - 36th WPC until the 2nd
year of life)[6]. The beginning and ending of the developmental stages described
vary individually and, therefore, differ minimally from person to person [7].

During the embryonic stage (1st - 7th WPC), initial ventral outpouching initiates
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from the primitive foregut, later generating the primary bronchi. During further de-
velopment, two main bronchi, constructed of respiratory epithelial cells, grow into
the mesenchyme and later divide in a dichotomic manner. Pulmonary arteries are
formed next to the bronchial tree and pulmonary veins develop in the mesenchymal
septa. The stage ends with the development of broncho-pulmonary segments [8].
The pseudo-glandular stage, with further branching, is placed in-between the em-
bryonic and fetal period of child development (7th - 16th WPC). The mesenchyme
tissue differentiates around the epithelial tubes into smooth muscle, connective tis-
sue and cartilage. During the canalicular stage of lung development (16th - 27th
WPC) the surface area increases by an increasing number of bronchioles and cap-
illaries forming the prospective gas-exchange area [9]. In addition, the cuboidal
epithelium differentiates into type I cells which form the structure of the alveolar
wall and type II cells capable of producing surfactant [10]. During the saccular stage
(24th WPC until birth) the air spaces increase in size while the lung parenchyma
becomes thinner. The previously described type I cells build the endings of the
airway tree by forming transitory airspaces or sacculi. The type II cells now start
to produce surfactant, which increases pulmonary compliance and reduces surface
tension, necessary for later lung unfolding. Following the saccular stage, the pro-
cess of alveolarization takes place as early as in the 32nd week of gestation. It is
characterized by an increasing number of alveolar spaces, primarily developing after
birth. The division of secondary septa is called septation. During this process, the
sacculi are further subdivided by secondary septa, forming smaller units, called the
alveoli [1]. The amount of connective tissue decreases between the two layers of
capillary meshwork, reducing the distance of the blood-air barrier. The complex
process of capillary remodeling takes place until around one and a half years of age
when the lung begins to resemble the adult structure [11]. Microvascular maturation
concomitantly takes place with alveolarization, starting from the first month after
birth until the age of two to three years of age [12].

2.1.2 Reference time points of lung development in mice and humans

Lung development follows a similar course in mice and humans, yet in mice over a
much shorter period of time. In mice, stages are measured in days post partum, in
humans time points are distinguished by weeks post conception. The developmental
steps correspond to each other, as listed in table 1 modified from [1].
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Table 1: Lung development stages in humans and mice. Event stages are differentiated by weeks
post conception (WPC) for humans and embryonic (E ) and days post partum (P) for mice.

event phase humans mice
embryonic stage WPC 4–7 E9.5–E12
pseudoglandular WPC 5–17 E12–E16.5

canalicular WPC 16–26 E16.5–E17.5
saccular WPC 24–38 E17.5–P4
alveolar WPC 36– infancy P4–P14

2.2 Historical background of bronchopulmonary dysplasia

The disease bronchopulmonary dysplasia (BPD) was first described by Northway et
al. as a chronic pulmonary syndrome in preterm infants [13]. BPD resulted from
prolonged mechanical ventilation and oxygen therapy applied to infants suffering
from respiratory distress. In the past, another term for BPD was hyaline membrane
disease (HMD) due to the histopathological picture of hyaline membrane formation
and necrosis of lung parenchyma [13]. The diagnostic criteria described by Bancalari
et al. included signs of chronic respiratory disease requiring oxygen supplementation
with intermittent positive airway pressure ventilation for more than 28 days during
the first weeks of life as well as an abnormal chest X-ray [14]. Today, this defini-
tion still has relevance but new diagnostic and therapeutic possibilities in neonatal
intensive care medicine require a more complex definition of the disease [15]. When
steroid application to mothers with suspected preterm infants was established af-
ter first the trials in the 1980s [16], severity and occurrence rates of this neonatal
lung disease were reduced significantly [17]. Today, early surfactant administration
[18] is routinely performed in preterm infants and has a proven positive outcome
[19, 20, 21]. Clinical outcome and survival rates have improved over the past years
also following new treatment options such as inhaled nitric oxide (iNO) [22] as well
as inhaled prostacyclin [23]. Due to the available treatment options mentioned, the
clinical and histopathological presentation of the disease have changed over time, re-
sulting in two descriptions: namely old and new BPD, further described in sections
2.4, 2.5 and 2.6.

2.3 Defining bronchopulmonary dysplasia

There are two classifications used today for the diagnosis of BPD. Jobe and Ban-
calari proposed in their 2001 Workshop Summary a definition based on three sever-
ity grades [24]. This classification of BPD used by the National Institute of Child
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Health and Human Development (NICHD), is defined by the three different lev-
els, mild, moderate and severe, depending on the amount and duration of oxygen
supplementation, described in table 2.

Table 2: Diagnostic criteria for bronchopulmonary dysplasia according to Jobe and Bancalari.
This table is modified from Jobe and Bancalari [24]. Abbreviations: BPD, bronchopulmonary
dysplasia; nCPAP, nasal continuous positive pressure; PMA, post menstrual age; PPV, positive
pressure ventilation.

Gestational Age <32 weeks ≥32 weeks

Time point
assessment

36 weeks PMA or discharge to
home

>28 but <56 days postnatal age
or discharge to home

Treatment with oxygen >21% for at least 28 days, plus

Mild BPD
Breathing room air at 36 weeks
PMA or discharge*

Breathing room air by 56 days
postnatal age or discharge*

Moderate BPD
Need for <30% oxygen at 36
weeks PMA or discharge*

Need for <30% oxygen at 56
days postnatal age or discharge*

Severe BPD

Need for ≥30% oxygen and/or
positive pressure (PPV or
nCPAP) at 36 weeks PMA or
discharge*

Need for ≥30% oxygen and/or
positive pressure (PPV or
nCPAP) at 56 days postnatal
age or discharge*

*Whichever comes first
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This definition is well accepted and employed in several representative studies
[25]. A second definition described by Walsh et al. in 2003 is based on the phys-
iological parameters oxygen saturation, the need for oxygen supplementation, and
ventilatory support. This definition was described as a reliable, feasible and pre-
cise diagnosis of BPD. According to Walsh et al. the diagnosis of BPD was certain
when an infant needed continuous positive airway pressure, mechanical ventilation
or oxygen with a concentration above FiO2 0.30. Infants failing to tolerate a stepwise
reduction in oxygen supplementation <0.30 were also diagnosed with BPD. Patients
were excluded from the diagnosis when saturation exceeded 88% while treated with
room air or when a patient tolerated the previously described reduction test [26].
The existence of multiple diagnostic criteria and definitions confounds the assess-
ment of incidence of BPD. Walsh et al. redefined these previously described criteria
by changing the cutoff point for oxygen supplementation from 88% to 90%, observing
a significant change in incidence rates [27].

Table 3: Diagnostic criteria for bronchopulmonary dysplasia according to Walsh et al.. This table
is modified from Walsh et al. [26]. Abbreviations: BPD, bronchopulmonary dysplasia; CPAP,
continuous positive pressure; PMA, post menstrual age.

Time of assessment 36 weeks PMA
>30% and/or ventilatory support or CPAP

BPD or
>02 saturation <88% after at room air

reduction test, or 02 saturation <88% after
1 hour observation

2.4 The “old” bronchopulmonary dysplasia

Old or classic BPD was first described by Northway et al. in 1967 where oxygen
toxicity and lung overexpansion due to high pressure ventilation was postulated
as a major reason for the development of BPD. Electron microscope analysis re-
vealed the histopathological changes, where BPD was described as a bronchiolitic
presentation with fibrosis [28]. Further investigations by O’Brodovich, Mellins and
colleagues in 1985 revealed deeper insights into the pathogenesis of the disease.
Their studies supported the hypothesis that mechanical ventilation contributed to
the development of BPD [29]. Ventilatory support was needed in preterm infants
due to respiratory distress even though it was known already that positive pressure
ventilation may lead to permanent impairment of alveolar development [30]. The
clinical features and pathological remodeling consisted of extrapulmonary air leaks,
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emphysematous changes, epithelial metaplasia and peribronchial fibrosis [31, 32].
Further histopathological changes were metaplasia of the squamuus epithelial layer,
destruction of the ciliated epithelium as well as an inhomogeneous lung structure [6].
Most infants suffering from BPD were born between 28 and 32 weeks of gestation
with birth weights varying from 1000 g up to 1500 g. Surviving infants sometimes
developed a massive fibrosis of lung vessels causing pulmonary hypertension includ-
ing cor pulmonale resulting in death via right heart failure [28, 33]. Later studies
regarding the pathological sequelae of BPD did reveal the existence of a different
histopathological presentation of BPD. Preterm infants suffering from BPD had al-
most no interstitial fibrosis and presented with uniform enlargement of air spaces
[34]. Further investigation of these findings contributed to the introduction of a
definition of “new” BPD.

2.5 The “new” bronchopulmonary dysplasia

Changes in the past years from the old to new BPD occurred due to widespread use
of prenatal corticosteroids, postnatal surfactant replacement therapy, less invasive
ventilatory support and better nutritional options [35]. The new BPD has a different
histopathological picture compared to the old BPD, characterized primarily by ex-
cessive elastin and collagen deposition, smooth muscle overgrowth, interstitial fluid
accumulation and alveolar and capillary hypoplasia disrupting distal lung growth
rather than parenchymal fibrosis and fibroproliferative airway damage [36, 37]. The
new treatment options (mentioned in section 2.8) resulted in a less severe presenta-
tion of the disease with subsequent higher surviving rates in preterm infants causing
BPD to be the most frequent presentation of chronic lung disease (CLD) of early
infancy [21]. According to recent studies, approximately two thirds of the infants
born with a birth weight below 1000 g later develop BPD even though never suffer-
ing from serious RDS [35]. The development of new BPD is thought to be driven by
a combination of exposure to oxygen enriched gas and inflammatory processes [38].

2.6 Incidence of bronchopulmonary dysplasia

In the United States of America, 20.0000 out of the 500.000 infants born prematurely
present with a birth weight below 1000 g, defined also as extremely low birth weight
infants (ELBWI). Ehrenkranz et al. identified the relevance of the birth weight as
a major risk factor BPD, since infants who later developed BDP had significantly
lower birth weights [15]. Another study by Stevenson et al. in 1998 found the
incidence rates of BPD to be around 29% of the preterm infants with a birth weight
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from 501 g to 1500 g [39]. Another survey concluded in 2001 incidence rates of BPD
in ELBWI as low as 23% [40]. Due to different BPD definitions and a different
cutoff for weight, these data can only be in partly compared. However, incidence
rates of BPD as well as the time of hospitalization did change over the last years.
A large study using the US nationwide database revealed a decrease in incidence
over the years 1993-2006, correlating with an increase in the use of non-invasive
respiratory support [41]. Recent publications in Germany report BPD to be present
in 29% of infants born less than 32 weeks of gestational age [42], and as high as
51% for infants born in-between 26-27 weeks of gestation. Mortality rates from
affected infants differed depending on the gestational age (GA). Premature infants
born at GA below 26 weeks had mortality rates as high as 28.6%, whereas infants
affected by BPD at a GA between 31-32 weeks had a mortality rate of 8.8% [43].
A European cohort study with 4.185 preterm infants born in 2003 revealed strong
regional incidence differences of BPD, possibly explained by different local practices
[44]. However, a low GA appeared to be the strongest predictor for the development
of BPD, rather than the geographic region [45, 44].

2.7 Bronchopulmonary dysplasia in the context of other preterm

infant diseases

BPD seems to have a relevant impact on motor skills such as speech development
and gross motor function. A correlation was seen in infants with the disease where
speech development was impaired as well as retarded psychomotor development
[46, 47]. Not only motor skills seem to be impaired in infants suffering from BPD
but also academic and cognitive achievements seem to be lower. This was shown in
an eight-year follow-up study including n=98 infants suffering from BPD compared
to n=75 infants having only very low birth weight (VLBW). Cognitive function and
intelligence quotient (IQ) scores were significantly lower, and enrollment in special
education speech and language programs was more frequent in infants diagnosed
with BPD [48]. Re-hospitalization was seen in up to 50% of diseased children in
the first two years of life due to recurrent respiratory insufficiency requiring hospital
stays. A lot of readmissions are reported from children receiving home oxygen ther-
apy subsequently infected with the respiratory syncytial virus (RSV) [49]. Although
the peak of re-hospitalization is during the first three years of life, school aged chil-
dren as well as adolescents earlier diagnosed with BPD still suffer more frequently
from respiratory symptoms than their colleagues, requiring higher rates of utilization
of health service resources emphasizing the prolonged significance of the disease in
later life [50]. Home oxygen requirement in the first years of life as well as infections
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with RSV seem to be associated with increased chronic respiratory morbidity caus-
ing high rates of readmission and increased costs of care [49, 51]. The question was
addressed whether sudden infant death syndrome (SIDS) and BPD are somehow
associated. Werthammer and colleagues published incidence rates of SIDS to be
seven times higher in infants with BPD compared to the control group [52]. Later
studies, however, could not detect an increased incidence of SIDS in preterm infants
diagnosed with BPD [53]. Long-term studies in adult life indicate an association of
BPD in early childhood with a decline in forced expiratory volume in one second
(FEV1) [54]. As FEV1 is an important measure for chronic obstructive pulmonary
disease (COPD) as well, reduced values might indicate susceptibility of infants suf-
fering from BPD to develop COPD in later life. Since physiological changes such
as alveolar loss and increased airway size are partly characteristics of both diseases,
the hypothesized association has to be looked at with caution since physiological
features of BPD and COPD overlap to some degree [55, 56]. Emphysema, a key
characteristic of COPD also has been identified in young adults with a history of
BPD. Computer tomography (CT) scans were employed as well as measurements
of FEV1 which is inversely linked to the extent of radiological emphysema [57, 58].
Even though the pathological changes described for childhood have the potential
to reduce in severity in later adult life due to remodeling of the lung architecture,
impairment in lung function objectively measured by reduced expiratory flow rates
can still be appreciated [59, 50].

2.8 Current treatment options for bronchopulmonary dyspla-

sia

2.8.1 Nasal continuous positive airway pressure

Nasel continuous positive airway pressure (nCPAP) is a non-invasive ventilatory
support, which is a continuous airflow performed without intubation or mechanical
ventilation, thus the risks of infection, barotrauma or volutrauma are extremely low.
Rapid initiation of nCPAP especially for infants born at 25 to 28 weeks of gestation
reduces the likelihood of later intubation, and the incidence rates of BPD and death
[60]. Controversially, in a study comparing the outcome of early intubation or
nCPAP in preterm infants, higher incidence rates of pneumothorax were seen in
the group receiving nCPAP. This did not adversely affect infants even thought half
of the infants that develop a pneumothorax subsequently underwent mechanical
ventilation. Thus, application of nCPAP was still recommended [61]. Even though
positive long-term effects can thus be appreciated, delivery room intubation rates
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[62] for preterm infants with a GA below 28 could not be reduced by early application
of nCPAP [63]. In summary, less interventional ventilation is linked to reduced
incidence rates of BDP and lower death rates, suggesting the use of late intubation
and early non-invasive ventilatory support such as nCPAP are favored in infants
suffering from respiratory distress [64, 65, 66].

2.8.2 Nasal intermittent positive pressure ventilation

Nasal intermittent positive pressure ventilation (NIPPV) is another non-invasive
ventilatory technique and has similar advantages than nCPAP over invasive options
such has endotracheal tube ventilation [62]. No matter whether NIPPV or syn-
chronized nasal intermittet positive pressure ventilation (SNIPPV) was used, both
treatment options resulted in lower BPD rates compared to nCPAP given to preterm
infants [67]. Even though several meta-analysis data favors NIPPV over nCPAP, fur-
ther clinical trials have to be completed since investigated study groups still remain
small and these data can only be partly compared since the time of administration
of surfactant differed [66].

2.8.3 Surfactant

Exogenous surfactant, introduced twenty years ago into clinical practice, is nowadays
routinely used in preterm infants at risk for BPD [68]. Surfactant was investigated
in several clinical trials examining the prophylactic application of natural as well as
synthetic exogenous surfactant therapy. Surfactant has proven to reduce mortality
from BPD, but incidence rates of BPD could not be decreased with prophylactic
treatment [20, 69, 19, 70]. The new generation protein-containing surfactant, also
referred as lucinactant, could not reduce occurrence rates of RDS or BPD when
applied prophylactically [71, 72, 73, 74].

2.8.4 Vitamin A

The importance of vitamin A for the development of several organs such as the geni-
tals, kidneys, eyes and lung was described decades ago [75]. Further investigation on
the specific role of vitamin A in lung development hinted that vitamin A deficiency
might lead to impaired branching of the lobar units, leading to a decrease in normal
lung function [76, 77]. A meta-analysis revealed vitamin A to be beneficial in the
reduction of infant death, or the requirement of supplemental oxygen at one month
of age. Further positive side effects of vitamin A did reveal reduced incidence of
retinopathy of prematurity, another important disease of preterm born infants [78].
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Effective incidence reduction rates of BPD were reported by combining antenatal
vitamin A supplementation of mothers at risk for preterm infants, with continuing
supplementation of vitamin A to newborns [79].

2.8.5 Caffeine

Even though caffeine (methylxanthine) is a well-known substance with a long history
as a medical drug, routine application in neonatology is fairly new. A convenient
advantage of the drug caffeine is the very wide therapeutic index where constant
drug monitoring is not necessary [80]. Application of caffeine is dated back to
1977 [81], where respiratory outcome was positively influenced by methylxanthine
application. Recent studies support these data where incidence rates of BPD could
be reduced while survival rates improved under therapy. Application of the drug also
demonstrated safety with respect to side effects such as neurological development,
supporting the overall benefits of methylxanthine therapy for preterm infants at risk
for BPD [82].

2.8.6 Steroids

Prenatal application of corticosteroids to mothers for suspected preterm birth are
described as promising treatment options to reduce severity and occurrence of neona-
tal lung disease. Antenatal corticosteroid administration resulted in a reduction of
RDS and neonatal death by 50% but incidence rates of RDS were not reported to be
lower [83, 68]. Data from clinical trials are still rare and further investigations need
to be performed [17, 84]. Late (>7 days) application of corticosteroids was assessed
in a study described in the Cochrane Database. Side effects like adverse neurological
outcome from corticosteroid therapy were identified, limiting the recommendation
for steroids only to infants who cannot be weaned of from mechanical ventilation
[85]. Early (<8 days) postnatal application of steroid did not reduce incidence rates
of BPD either and adverse reactions such as abnormal neurological examination and
cerebral palsy was more often seen, reducing the recommendation of for application
in preterm born infants [86]. New options with inhaled corticosteroids were dis-
cussed to be advantageous over systemic application due to fewer side effects [87].
However, the efficiency of inhaled corticosteroids in children at risk for BPD could
still not be proven until now since the seperate or combined outcomes of death or
BPD could not be reduced [88]. Further studies are needed to evaluate the long
terms risks and benefits of inhaled corticosteroids.
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2.8.7 Inhaled nitric oxide

The physiological effects of nitric oxide (NO) administrationto to the lung were
studied already twenty years ago. NO given to preterm infants had potentially pos-
itive effects on respiratory distress, and further investigation suggested especially
the early use of minimal amounts of inhaled nitric oxide (iNO) to improve oxygen
saturation levels and decrease the likelihood of developing severe hypoxemic respi-
ratory failure [42, 57]. Some studies did report consistent saturation improvements
and positive short-term effects under application of NO [89, 90, 91] while others
still question the positive clinical outcome from iNO [92]. In summary, due to an
absence of long term results and enormous treatment costs, the routine use of iNO
is currently not recommended for preventive application of BPD [93].

2.9 Pathogenesis of bronchopulmonary dysplasia

The pathogenesis of BPD is multifactorial. Oxidative stress, fetal and postnatal
infections, inflammation, antenatal steroids and nutritional support during early
infancy can modulate severity and progression of the disease. These factors will
now be considered in detail. Preterm infants especially in earlier days were venti-
lated with very high oxygen concentrations when suffering from respiratory distress
[94]. Early approaches suspected the toxicity of oxygen free radicals to overwhelm
the anti-oxidant defense of the host organism and thus be important for the devel-
opment of the disease [95, 13]. After the toxicity of oxygen was identified, lower
concentrations of supplemental oxygen were suggested and employed for ventilation
[96]. But not only oxygen was identified to be damaging to the lung, recent studies
showed that prolonged mechanical ventilation with physiological oxygen concentra-
tions directly inhibited septation and angiogenesis with increasing apoptosis of the
lung parenchyma. Thus, not only free oxygen radicals, but prolonged mechanical
ventilation itself contributes to the development of BPD [97]. Brown and colleagues
were the first to describe an association of BPD with the occurrence of a patent
ductus arteriosus (PDA) [98]. This phenomenon was of interest in several studies,
confirming that a PDA increases the risk for developing CLD [99, 100]. Gonzales et
al. found an increased risk for the development of BPD in infants with a PDA in
combination with a birth weight below 1000 g [101]. Increasing incidence rates of
BPD were also seen in infants with a PDA and simultaneous comorbidities such as
sepsis [98, 102].

Infections with several species such as cytomegalovirus (CMV), mycoplasma and
ureaplasma spp. are suspected to predispose for the development of BPD. Several
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studies showed incidence rates of BPD to be twice as high compared to non-infected
infants [38, 103, 104]. Prenatal infections such as chorioamnionitis can contribute
to disrupted alveolar development, partly mediated by bacterial endotoxin able to
effect the fetus, leading to a decreased number of alveoli [105]. Several cytokines
involved in this inflammatory process, such as interleukin (IL)-6, IL-8 and IL-1β,
precede the neutrophil influx, and contribute to the inflammatory cascade. Hence,
prenatal infections are linked to increasing incidence rates of BPD, supporting the
inflammatory process to be crucial for development of BPD [106, 107, 108, 109].

Vitamin A is important for the development of the lung by stimulating alveolar-
ization and reepithelialization, therefore, several studies aimed to test the therapeu-
tic benefit of vitamin A supplementation. Tyson et al. and Darlow et al. reported
reduced vitamin A deficiency with subsequent slightly decreased incidence rates of
BPD in ELBWI receiving vitamin A supplementation [110]. Several studies aimed
to find out the optimal amount of applied vitamin A to reduce incidence rates of
BPD. A study from the NICHD recommended 5000 IU vitamin A three times per
week for a maximum of four weeks via intramuscular injections. When vitamin A
levels were studied in those infants receiving vitamin A, 25% remained with low
vitamin A stores. Thus, later trials used higher doses while examining incidence
rates of BPD. However, these new regimens tested were not able to diminish rates
of BPD. Likewise, metabolites of vitamin A including RA await further investigation
[111, 112, 110]. Interestingly, vitamin A is both important for proper immune system
function as well as for the development of the lung. Patients suffering from inflam-
matory conditions exhibit low levels of vitamin A and increased levels of IL-1β [113].
Increased IL-1β levels caused downregulation of proteins involved in mediation of the
cellular response to vitamin A in mice that are necessary for lung development. In
sum, IL-1β was shown to disturb normal lung development by inhibiting the proper
action of vitamin A [114]. Special nutritional regimens including vitamin A and
inositol are important for the prevention and recovery of BPD. Significant reduc-
tions in the incidence and death from BPD were reported with oral administration
of vitamin A, suggesting vitamin A supplementation even though evidence-based
guidelines do not exist at this point of time [115, 116, 110].

Twin studies have revealed that the status of the first twin is a highly signif-
icant predictor for BPD for the second twin. Genetic factors could account for
as much as 53% of liability for BPD [117]. Recent studies with interest in ge-
netic susceptibility to BPD identified several genes contributing to the develop-
ment of BPD. Several polymorphisms in genes such as angiotensin-converting en-
zyme [118] glutathione-S-transferase (GST) surfactant protein (SP)-A, SP-B and
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tumor necrosis factor (TNF)-α-238G→A are able to modify incidence rates of BPD
[119, 120, 121, 122, 123]. Surfactant is necessary for lung unfolding, thus surfactant
deficiency contributes to the development of BPD. Surfactant genes such as SP-A,
SP-B, SP-C and SP-D modulate surfactant levels. Genetic polymorphisms such as
dominant mutations, deletions and allelic variations in these suspected genes have
been shown to modulate incidence rates of RDS and BPD [124, 122, 123].

Many signaling and transcription factors are known to regulate lung morphology,
among them thyroid transcription factor-1, β-catenin, GATA, SOX, and the ETS
family members. Also proteins including FOX1, POD1, GLI and HOX, TGF–β,
vascular endothelial growth factor (VEGF), keratinocyte growth factor (KGF) and
granulocyte macrophage colony stimulating factor (GM-CSF) were shown to effect
lung development and have been the aim of several studies [125, 126, 127, 128,
129, 130, 131, 132, 133]. VEGF is an invaluable stimulant necessary for vascular
and alveolar development, involved in lung repair mechanisms, and suspected to be
involved in the pathogenesis of BPD. Bronchoalveolar lavage (BAL) fluid analysis
from infants suffering from BPD showed low levels of VEGF. Thus, low VEGF
concentrations found in BAL from infants suffering from BPD could well reflect a
mechanistic process of adverse lung development, even leading to the proposition to
identify preterm infants at risk for BPD by measurement of VEGF levels [134, 135].

In recent years, the significance of growth factor cascades such as TGF–β have
been investigated with increasing interest in disrupted lung development. It is al-
ready known that TGF–β is necessary for lung development including morphogenesis
and epithelial differentiation and repair processes, since concentrations of TGF–β are
physiologically elevated during development [136]. TGF–β is also involved in fibrotic
changes in lung tissue, correlating with severity of lung function abnormalities [137].
In addition, it was shown that infants suffering from CLD had signs of inflamma-
tory processes in their BAL with increased levels of cytokines such as IL-6 and IL-8,
neutrophils and neutrophil elastase [138, 139, 140]. To study the role of TGF–β in
inflammatory processes, BAL was performed in infants at risk for CLD. BAL anal-
ysis revealed increased concentrations of TGF–β. Thus it was hypothesized that
dysregulation of the TGF–β machinery may contribute to disrupted lung develop-
ment leading to BPD with characteristics such as abnormal alveolar structure and
vascular development [106, 141, 142, 143]. Connective tissue growth factor (ctgf ) is
an important regulatory molecule for tissue development as well as a downstream
mediator of the TGF–β signaling. The expression of CTGF is not only upregu-
lated by TGF–β, but also by several factors contributing to the clinical picture of
BPD, such as mechanical ventilation and oxygen [144]. Recent studies performed

23



in vivo and in vitro provided evidence that ctgf induces epithelial and endothelial
cell dysfunction resulting in pathological changes to the lung structure [145, 146].
Another important target gene of the TGF–β machinery is the plasminogen acti-
vator inhibitor (PAI)-1, encoded by the serpine1 gene. PAI-1 was analyzed in a
study where samples of BAL were obtained from preterm infants at risk for BPD.
Increased gene expression levels correlated with a more severe presentation of RDS.
Thus, PAI-1 and ctgf seem to be important genes involved in the pathogenesis of
BPD [147, 148].

2.10 Pathophysiology

Tachypnea, respiratory wheezing, shallow and paradoxical breathing characterizes
the clinical sequelae of BPD. On thorax auscultation, rales, wheezes and coarse
rhonchi can be appreciated [68]. The areas of the lung not participating in gas
exchange are described as dead ventilatory space, located in the upper respiratory
tract. Due to shallow breathing, the ventilatory dead space is more ventilated. In
addition, damage to the airways (described in 2.9) results in ventilation of unper-
fused lung segments, worsening ventilation-perfusion matching. Edema, intestinal
fibrosis, small airspace narrowing and atelectasis further damage the lung, leading to
a decrease in lung compliance. The pathological features described all contribute to
deteriorating oxygen saturations, an important hallmark for the diagnosis of BPD.
Looking at follow-up pulmonary function tests in children who suffered from BDP,
a typical course can be appreciated. First, pulmonary function is reduced in early
stages, due to atelectasis. This is followed by gas trapping with subsequent hy-
perinflation. Even though this pattern is characteristic, it has to be interpreted
with care since excessive chest wall distortion in patients with BPD my act as a
confounder, leading to huge individual differences in lung volume [149, 150]. Pul-
monary function tests are also used for long term follow-up, depicting substantial
airway damage even in later years of childhood [59]. Structural changes to the lung
vessels result in reduced diameter and subsequent increase of the pulmonary arterial
pressure. In addition, the pulmonary arterial vessels present an abnormal vasoreac-
tivity, contributing as well to pulmonary hypertension with consecutive development
of cor pulmonale [149, 151]. Pulmonary hypertension, even though the pathogenic
mechanisms are still not fully understood, somehow correlate with a more severe
progression of BPD [152, 153, 154].
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2.11 Vitamin A and its receptors

Vitamin A is involved in regulating numerous organ development steps of the lung,
heart, urogenital tract as well cell apoptosis [155, 156]. Vitamin A (retinol) and
vitamin A active derivatives (retinoids) can be classified according to biochemical
structure. Retinoid derivatives include all-trans RA (ATRA), the 9-cis RA and
the 13-cis RA (isotretinoin). It is believed that several actions from the 13-cis RA
are mediated by ATRA, or possibly 9-cis RA after isomerization to these isoforms.
However, 13-cis RA also directly mediates some biological response [157]. Two
nuclear RA receptors, the retinoid acid receptor (RAR) [125] and the retinoid X
receptor (RXR), each consist of three separate subtypes α, β and γ. RAR is able
to bind all isoforms of RA whereas RXR only binds 9-cis RA stereoisomers. RAR’s
form heterodimers with the three RXR subtypes and RXR’s form heterodimers with
members of nuclear receptors, peroxisome proliferator activated receptor (PPAR)
[158]. The PPAR consists the three isoforms α, β/δ and γ each having distinct ligand
specificities. Gene transcription is then modulated by ligand-activated PPAR-RXR
heterodimers binding to peroxisome proliferating response elements (PPREs). In
sum, PPAR can act as activators and repressors in gene transcription also affecting
other transcriptional factors with trans-repressions. The RA signaling pathway is
crucial in numerous steps in organ developing with a highly complex interplay of
the RXR, RAR and PPAR receptors [159].

2.12 TGF–β signaling

TGF–β signaling is involved in physiological and pathological processes such cell
division, differentiation, migration, organization, adhesion, immune functions, ex-
tracellular matrix modeling (ECM), tumor invasion, angiogenesis, cell-death and
apoptosis [160]. The TGF–β signaling encompasses ligand binding to the recep-
tor, activation of the receptor and downstream signaling to the nucleus via Smad
proteins [160, 161]. The pathway will now be described in detail.

2.12.1 The TGF–β signaling pathway

The current understanding of TGF–β signal transduction suggests the following
course of events. First, an active TGF–β ligand binds to the serine/threonine kinase
domain of the type II receptor. The TGF–β receptors type I is than phosphory-
lated in the GS domain by the type II receptor, leading to activation of the kinase
with subsequent intracellular signaling to the nucleus. The cytoplasmic transport to
the nucleus occurs via phosphorylation of mediators belonging to the Smad family.
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Receptor-regulated Smad (R-Smad) proteins (further described in section 2.12.4) are
directly activated by phosphorylation of the type I receptor kinases. The Co-Smads
such as Smad4 form heteromeric complexes with the R-Smads. These complexes are
translocated into the nucleus where they act as transcriptional factors, modulating
gene response via transcription. This is done via direct interaction with DNA or in
association with DNA binding elements. In humans, inhibitory (I)-Smads (Smad6
and Smad7) are also expressed which act as inhibitors of the TGF–β/bone morpho-
genetic proteins (BMPs) signaling pathways. Inhibition occurs through competition
of the inhibitory Smads and the R-Smads for binding at the activated receptor
[162, 163].

2.12.2 The TGF–β ligands

The TGF–β family consists of more than 30 members encompassing the TGF–β
family as well as the BMPs, growth and differentiation factors, activins, inhibins,
anti-Müllerian hormone (AMH), growth and differentiation factors (GDFs), nodal
and others [161, 164]. TGF–β signaling is initiated by binding of one of the isoforms
termed TGF–β1, –β2 and –β3, all present in mammals, where TGF–β1 is mostly
present in the lung. However, prior to proper function of the three isoforms, bi-
ological processing is performed intracellularly and extracellularly. The precursor
proteins, called latent associated (L)-TGF–β molecule contain a carboxy-terminal
region also called latency-associated peptide (LAP) [114], and the amino-terminal
region, serving as the potentially bioactive region. Activation is accomplished by
either cleavage of the LAP region from L-TGF–β or by a conformational change in
which LAP is not released but exposed to the TGF–β receptor binding site enabling
activation of the TGF–β cascade [165].

2.12.3 The TGF–β receptors

TGF–β ligands bind to three different receptors, which are classified as type I (53
kDa) type II (73-95 kDa) and type III (110 kDa). The type I and the type II
receptors contain a serine/threonine protein kinase, whereas the type III receptor
lacks this domain. The type I receptor is also called TGF–βR1, or activin-like
kinase (ALK)-5 or Acvrl1 (also called ALK-1) depending on the cell type. The
type II receptor is sometimes also described as TGF–βR2 [166]. A unique feature
of the type I receptor is the GS domain, named after the characteristic SGSGSG
region. The GS domain serves as a key regulatory part, involved in controlling
of the catalytic activity of the type I receptor. Signal transduction is initiated by
binding of a ligand to the type II receptor. This complex causes phosphorylation
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of the GS region with subsequent activation of the type I receptor kinase. The
activated kinase then phosphorylates Smad proteins, mediating gene response from
TGF–β ligand binding [167, 168]. TGF–β signaling is modulated by the type III
receptor, consisting of Tgfbr3 (also called betayglycan) and endoglin. The type
III receptor lacks any cytoplasmic serine/threonine kinase domain, thus leading to
the assumption that the receptor is not directly involved in signal transduction
but might control ligand binding to the receptor, since cells expressing betaglycan
showed elevated binding of TGF–β [169].

2.12.4 The Smad proteins

Smad proteins function in downstream signal transduction to the nucleus when
ligands bind to the TGF–β receptor. The name is a fusion of the two genes Mad
Drosophilia mothers against decapentaplegic and sma genes in Caenorhabditis [170].
According to their function, the eight members of the Smad family are subdivided
as followed:

• R-Smads, acting as regulatory substrates from the TGF–β family (Smad1,
Smad2, Smad3, Smad5 and Smad8)

• common-Smads (co-Smads) Smad4 and Smad4–β serve as partners for the
R-Smads

• I-Smads interfering with Smad-Smad and receptor interactions (Smad6 and
Smad7)

The R-Smads can be further divided into two distinct groups:

• Smad2 and Smad3 as substrates of the TGF–β, nodal and activin receptors

• Smad1, Smad5 and Smad8 serve as substrates of the BMP and anti-Müllerian
receptors

The Smad proteins consist of two Mad-Homology (MH) domains. MH1 is located at
the N-terminal part, MH2 is located at the C-terminal end. When cytosolic R-Smads
interact with their MH2 domain on the type I TGF–β receptor, the C-terminal serine
residue becomes phosphorylated. The MH2 domains interact with the Co-Smads
while forming heteromeric complexes. This complex is transported to the nucleus
where interaction with DNA target genes controls gene transcription. The role of
the I-Smads is by direct interaction with the type I receptor, regulating response
to the R-Smads. The Co-Smads forming complexes with the R-Smads also have

27



the MH1 domains previously mentioned. Due to a different configuration at the C-
terminus though, the Co-Smads cannot be activated by the type I receptor directly.
Gene transcription is then initiated by binding of the MH domain from the R-and
Co-Smads to specific Smad-binding elements (SBE) on the DNA. A single Smad
protein interacting with one SBE has only very little affinity. Sufficient binding
affinity is achieved by the oligomeric presentation of the Smad proteins, causing
concomitant binding to several SBEs at the same time [171, 161]. Smad proteins,
as mentioned in section 2.12.1 build complexes with the TGF–β receptors prior to
realization of its nuclear effects. This Smad protein/TGF–β receptor interaction
can be modified by several factors, such as the Smad anchor for receptor activation
(SARA), Dok-1, Disabled-2 and several others. These factors are interesting due to
their ability to modify TGF–β signaling by a varying affinity of the Smad proteins
to the TGF–β receptor, showing that several molecules can interact with the TGF–β
cascade [172, 161, 173].

To summerize, TGF–β signal transduction is initiated by binding of a TGF–β
ligand to the TGF–β RII. The TGF–β RI recruits with the TGF–β RII, result-
ing in phosphorylation of the TGF–β RI. After phosphorylation of the TGF–β RI,
phosphorylated Smad2 and phosphorylated Smad3 molecules dissociate from the
receptor and complex with Smad4. The Smad2/3/4 complex translocates to the
nucleus where gene transcription together with other cofactors is then modulated
[163].

2.13 The role of TGF–β and vitamin A in bronchopulmonary

dysplasia

The new BPD displays marked histopathological changes including capillary and
vascular dysplasia, excessive elastin and collagen deposition, smooth muscle over-
growth and disrupting distal lung growth [37, 36]. After TGF–β and RA were identi-
fied to be both important for normal lung development [75, 174], several subsequent
studies investigated a possible involvement of these molecules for the development
of the disease BPD. The first insight that TGF–β signaling might be dysregulated
during BPD was obtained when BAL was performed on infants suffering from BPD,
and revealed increased concentrations of TGF–β [106]. Further investigation of the
TGF–β signaling cascade was done by Vicencio et al. in 2002, showing in a trans-
genic mouse model that overexpression of TGF–β1 resulted in disrupted alveolar
development, resembling the histological picture of BPD. Another study done by
Gauldi and coworkers, using a rat model, could produce supporting data that ex-
cess TGF–β during lung development impairs branching and morphogenesis of the
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alveolar structure [175, 143]. A study done by Chen and colleagues compared lung
morphology in Smad3 knockout mice with wild type mice. Smad3 is an important
downstream protein, transducing TGF–β signals from the receptor to the nucleus
[162]. Comparison of both groups showed retarded alveogenesis in neonatal mouse
lungs followed by centrilobular emphysema in the Smad3 knockout mouse. Thus,
impaired TGF–β signaling, here done via Smad3 knockout seems to impair proper
lung development underlining the significance of TGF–β for proper alveolarization
[176].

Other studies employed a hyperoxic mouse model to mimic a major contributing
factor for the pathogenesis of BPD (please refer to section 2.9 for more details). The
hyperoxic mice exhibited arrest in alveolar formation and septation while TGF–β
signaling was up-regulated [177]. The inhibition of TGF–β signaling was success-
ful performed by using TGF–β neutralizing antibodies by Nakanishi and colleagues.
Dampening of TGF–β signaling was achieved with subsequent restoring of normal
alveolar architecture [178]. The studies mentioned and numerous others investigat-
ing the pathogenesis of BPD in early and late lung development have led to TGF–β
signaling being accredited with a key role in the process of alveolarization as well
as in the maintenance of alveolar structure. In sum, both excess and a lack of
TGF–β appears to affect proper lung development negatively, and dysregulation of
the signaling cascade seems to modulate the development steps [179].

Vitamin A is known to alter numerous processes in lung development includ-
ing maturation as well as lung repair after injury and to support the maintenance
and integrity [180]. The crucial role of vitamin A for the respiratory system led to
close investigation for a possible treatment option for distorted lung architecture.
Massaro et al. investigated RA effects in rats, where elastase-induced emphysema
was abrogated by treatment with RA [181]. RA was not only studied in the patho-
genesis of emphysema, but as well in a hyperoxic mouse model, done by Nabeyrat
and colleagues. In their model, TGF–β signaling was upregulated in the presence
of RA, whereas toxic oxidants which induced growth arrest could be reduced by
administration of RA [182]. ATRA was also studied in other cells lines such as
human leukemia (HL)-60 cells where ATRA is known to be an inhibitor of cell
differentiation and apoptosis. Combined treatment with TGF–β1 and ATRA was
able to inhibit the ATRA-induced apoptosis and increases cell viability [118]. Other
studies in HL-60 cells reported ATRA to inhibit TGF–β1 induced phospho-Smad2
and phospho-Smad3 levels and nuclear accumulation. These data showed evidence
of a cross-talk between ATRA and TGF–β pathways [183]. In other studies using
different cells, it was reported that RA was able to prevent TGF–β induced collagen
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production by lung fibroblasts [184] and downregulation of TGF–β receptors type I
and type II was reported in a rat model of glomerulonephritis [185]. In sum, RA
has different effects on the TGF–β machinery depending on the cell type and the
experimental setup. Until now, RA was accepted as central role in triggering alve-
olar development and maintaining alveolar structure. However, clinical trials using
vitamin A could only demonstrate minimal beneficial effects of RA administration.
A better understanding of the biological mechanisms including interactions with
other signaling pathways, especially the TGF–β machinery which is a key player in
the disease BPD, are wanted [186, 187].
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3 Aims of the study

The TGF–β family is one of the most extensively studied growth factor families.
Involvement of the TGF–β/BMP family members have been described in numerous
processes, regulating a wide range of responses in differentiation, proliferation, ad-
hesion, migration and cell apoptosis. Vitamin A and its biochemical derivatives are
essential in several organ development steps, repair processes and have an increasing
importance as therapeutic agents. TGF–β and vitamin A have been implicated not
only in the development of the human lung but also in the onset and progression of
the disease BPD. This study aims to describe crosstalk of ATRA with the TGF–β
machinery in NIH/3T3 cells and MLE-12 cells, analyzed in genes known to be im-
portant in connective tissue remodeling contributing to the clinical picture BPD. In
this context, the research focus was:

• Expression analysis of TGF–β responsive genes in MLE-12 and NIH/3T3 cells

• Effects of RA on the TGF–β canonical pathway
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4 Materials and reagents

4.1 Materials

ABI PRISM 7500 Sequence Detection System Applied Biosystems, USA
Cell Culture Incubator; Cytoperm2 Heraeus, Germany
Developing machine; X Omat 2000 Kodak, USA
Electrophoresis chambers Bio-Rad, USA
Film cassette Sigma-Aldrich, Germany
Filter Tip FT: 10, 20, 100, 200, 1000 Greiner Bio-One, Germany
Filter units 0.22 �m syringe-driven Millipore, USA
Freezer -20 °C Bosch, Germany
Freezer -40 °C Kryotec, Germany
Freezer -80 °C Heraeus, Germany
Fridge +4 °C Bosch, Germany
Fusion A153601 Reader Packard Bioscience, Germany
Gel blotting paper 70 × 100 mm Bioscience, Germany
Glass bottles: 250, 500, 1000 ml Fischer, Germany
GS-800™ Calibrated Densitometer Bio-Rad, USA
Incubator for cell culture Heraeus, Germany
Luminometer Berthold Technologies GmbH, Germany
Mini spin centrifuge Eppendorf, Germany
Miniox II monitor Catalyst Research, USA
Multifuge centrifuge, 3 s-R Heraeus, Germany
Multipette® plus Eppendorf, Germany
Nanodrop® Peqlab, Germany
PCR-thermocycler MJ Research, USA
Petri dish Greiner Bio-One, Germany
Pipetboy Eppendorf, Germany
Pipetman: P10, P20, P100, P200, P1000 Gilson, France
Pipette tip: 200, 1000 �l Sarstedt, Germany
Pipette tip: 10, 20, 100 �l Gilson, USA
Power Supply; Power PAC 300 Bio-Rad, USA
Radiographic film X-Omat LS Sigma-Aldrich, Germany
Radiographic film Kodak, Germany
Serological pipette: 5, 10, 25, 50 ml Falcon, USA
Test tubes: 15, 50 ml Greiner Bio-One, Germany
Thermo-Fast® 96 PCR Plate Thermo Scientific, USA

32



Tissue culture dish 100 mm Greiner Bio-One, Germany
Tissue culture flask 250 ml Greiner Bio-One, Germany
Tissue culture plates: 6, 96 well Greiner Bio-One, Germany
Western Blot Chambers: Mini Trans-Blot Bio-Rad, USA
Vortex machine Eppendorf, Germany
Vacuum centrifuge Eppendorf, Germany

4.2 Reagents

13-cis retinoic acid Sigma-Aldrich, Germany
all-trans-retinoic acid Sigma-Aldrich, Germany
Acetone pure Merck, Germany
Acrylamide solution, Rotiphorese Gel 30 Roth, Germany
Agarose Invitrogen, UK
Albumine, bovine serum Sigma-Aldrich, Germany
Ammonium persulfate Promega, Germany
Bromophenol blue Sigma-Aldrich, Germany
Cell lysis reagent Promega, USA
Citrate buffer pH 6.0 Invitrogen, UK
Complete™ protease inhibitor cocktail Roche, Germany
D-(+)-Glucose Sigma-Aldrich, Germany
D-MEM + GlutaMAX™ -I (1×) medium Gibco BRL, Germany
D-MEM/F12 + GlutaMAX™ -I (1×) medium Gibco BRL, Germany
Dimethyl sulfoxide (DMSO) Sigma-Aldrich, Germany
DNA Ladder (100 bp, 1 kb) Promega, USA
Dulbecco’s phosphate buffered saline 10× PAA Laboratories, Austria
Dulbecco’s phosphate buffered saline 1× PAA Laboratories, Austria
ECL Plus Western Blotting Detection System Amersham Biosciences, UK
β-estradiol Sigma-Aldrich, Germany
Ethanol absolute Riedel-de-Haën, Germany
Ethidium bromide Roth, Germany
Ethylendinitrilo-N,N,N�,N�,
-tetra-acetic-acid (EDTA)

Promega, USA

Ethylene glycol-bis
(2-amino-ethylether)-N,N,N�,N�
-tetraacetic-acid (EGTA)

Sigma-Aldrich, Germany

Foetal calf serum (FCS) PAA Laboratories, Austria
Gel extraction kit Promega, Germany Roth, Germany
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L-Glutamine 200 mM (100×) PAA Laboratories, Austria
Glutathione Sepharose beads GE Healthcare, Germany
Glycine Merk, Germany
GoTaq® Flexi DNA polymerase Promega, USA
Hydrocortisone Sigma-Aldrich, Germany
Hydrochloric acid Sigma-Aldrich, Germany
2-(4-2-hydroxyethyl)-piperazinyl-1-
ethansulfonate (HEPES)

Sigma-Aldrich, Germany

Igepal CA-630 Sigma-Aldrich, Germany
Insulin Invitrogen, UK
Lipofectamine™ 2000 Invitrogen, UK
Luria-Bertani Medium Invitrogen, UK
Magnesium chloride Sigma-Aldrich, Germany
Methanol Fluka, Germany
MuLV Reverse Transcriptase Applied Biosystems, USA
N,N,N�,N�-tetramethyl-ethane-1,2-diamine
(TEMED)

Bio-Rad, USA

Opti-MEM medium Gibco BRL, Germany
PCR Nucleotide Mix Promega, USA
Penicillin-streptomycin PAA Laboratories, Austria
PeqGold total RNA kit Peqlab, Germany
Potassium acetate Sigma-Aldrich, Germany
Potassium chloride Merck, Germany
Potassium phosphate Sigma-Aldrich, Germany
Precision Plus Protein™ Standards Bio-Rad, USA
2-Propanol Merck, Germany
Pure Yield Plasmid Midiprep System Promega, Germany
Quick Start™ Bradford Dye Reagent Bio-Rad, USA
Random Hexamers (50 �M) Applied Biosystems, USA
RNase inhibitor Applied Biosystems, USA
RNaseZAP® Sigma-Aldrich, Germany
Roti®-Quick-Kit Roth, Germany
Select Agar Invitrogen, UK
siRNA control (10 �M) Ambion, Germany
Sodium acetate Sigma-Aldrich, Germany
Sodium chloride Merck, Germany
Sodium dodecyl sulfate (SDS) Promega, USA
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Sodium ortho vanadate Sigma-Aldrich, Germany
Sodium phosphate Sigma-Aldrich, Germany
Sulfo-NHS-LC-Biotin Pierce Biotechnology, USA
SuperSignal® West Pico Chemiluminescent
Substrate

Thermo Scientific, USA

Streptavidin Agarose Resin Thermo Scientific, USA
SYBER® Green PCR Kit Invitrogen, UK
T4 DNA ligase Promega, Germany
Transferin Invitrogen, UK
Transforming growth factor (TGF)–β1 R&D Systems, USA
Tween 20 Sigma-Aldrich, Germany
Tris Roth, Germany
Triton X-100 Promega, USA
Trypsin/EDTA Gibco BRL, Germany

4.3 Software

Adobe Photoshop CS6® Adobe Systems GmbH, Germany
Microsoft Excel® Microsoft, USA
Microsoft Power Point® Microsoft, USA
Microsoft Word® Microsoft, USA
Graph Pad Prism 5® GraphPad Software Inc., USA
Lyx 1.6.9© Lyx Document Processor, USA
BibDesk 1.5.4© BibDesk Bibliographer, USA
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5 Methods

5.1 Cell lines

The NIH/3T3 mouse fibroblast-like cell line (CRL-1658™) and the mouse distal alve-
olar epithelial cell-derived MLE-12 cell line (CRL-2110™) were obtained from the
American Type Culture Collection (ATCC, http://www.atcc.org).

5.2 Cultivation of cell lines

In this study the NIH/3T3 cell line was employed. These cells are mouse fibroblasts,
which were first derived at the National institute of Health (NIH) Bethesda, USA.
The NIH/3T3 cells were divided in three equal portions every third day with trypsin
for further growth [188]. The medium used for cell culture in this study is described
below. The second cell line used was the MLE-12 cell line. Kathryn A. Wikenheiser
first established this cell line from pulmonary mouse tumors [189]. The medium
employed is listed below and was mixed after recommendation from the American
Type Culture Collection, (Catalog number CRL-2110). The cell lines were processed
twice weekly by harvesting. The cell layer was washed with 1× PBS and directly
removed via suction, followed by detaching the cells with trypsin. The cells were
diluted with medium and seeded in a 1:3 ration in 75 cm² flasks. All cultures were
maintained in an incubator (Heraeus) at 37 °C in a 95% humidified atmosphere with
5% CO2 and 21% O2. When the cells reached 70-90% confluence after 3 or 4 days,
they were seeded for further experiments.

5.3 Cell line stimulation

The following table (table 7) depicts the experimental set-up employed in this study.
For all experiments performed in this study, stimulation of NIH/3T3 cells and MLE-
12 cells were initiated after cells reached a confluency of 70-90%. When not differ-
ently described, the reagents used for cell line stimulation were: TGF–β 0.2 ng/ml
and ATRA 10 �M. The ATRA employed was diluted in DMSO (0.5%), thus, 0.5%
DMSO served as a vehicle control.
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Table 6: Medium for MLE-12 cells and NIH/3T3 cells

Medium for MLE-12 cells
D-MEM Dulbecco’s medium

Insulin 0.005 mg/ml
Transferrin 0.01 mg/ml
Sodium selenite 30 nM
Hydrocortisone 10 nM
β-estradiol 10 nM
HEPES 10 mM

L-glutamine 2 mM
(in addition to that in the base medium)

fetal calf serum 2%

Medium for NIH/3T3 cells
D-MEM Dulbecco’s medium

fetal calf serum 10%

Table 7: NIH/3T3 cell and MLE-12 cell line stimulation

cells were grown until 70% confluency
medium change was done, followed by stimulation for 12 h with

DMSO DMSO ATRA ATRA
↓ ↓ ↓ ↓
medium change was done, followed by stimulation for 12 h with

DMSO DMSO + TGF–β ATRA ATRA + TGF–β
↓ ↓ ↓ ↓

Harvesting and lysis was followed by processing cells for protein isolation,
mRNA isolation and luciferase assay readout

5.4 Plasmids employed in this study

The plasmids employed in this study fall into two separate groups: (i) expression
plasmids, for the over-expression of molecules of interest in the cells under study,
and (ii) reporter plasmids, where a luciferase-based system was used to quantify
changes in the level of active TGF–β signaling in the cells under study.

(i) For the expression plasmid, the gene encoding Smad3 (NM_016769, 5090
bp mRNA) was kindly by provided by Dr. Wang, Duke University Medical Center
Durham. The 1277-bp Mus musculus smad3 open-reading frame was amplified using
forward (5’-GAA TTC CAT GTC GTC CAT CCT GCC CTT C-3’) and reverse
(5’-GAA TTC CTA AGA CAC ACT GGA ACA GCG-3’) primers containing
built-in EcoRI sites (in bold), T/A cloned into pGEM-T Easy (Promega, appendix
figure 12) and subcloned using EcoRI into pIRES-hrGFPII (Agilent, appendix figure
13). The resulting pIRES::smad3 construct was over-expressed in cells of interest
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by transient transfection under control of the SV40 promoter (appendix figure 14).
The pIRES::smad3 construct was validated by sequencing.

(ii) For reporter plasmids, the Smad-binding element (p(CAGA)9) was employed
along with the pGL3–basic (appendix figure 15) or pRL–TK (appendix figure 16)
vectors, which served as normalization standards for the luciferase readout. In
case of the pGL3–basic, this normalization standard represents the “empty” vector,
carrying a promoterless firefly luciferase gene while the pRL–TK carries the Renilla
luciferase control reporter vector and serves as an internal control value to which
expression of the firefly luciferase reporter gene is normalized. In this study we
used the (CAGA)9-firely luciferase [p(CAGA)9-luc] [190] construct, obtained from
Dr. Daizo Koinuma, University of Tokyo.

These plasmids were transformed into competent E. coli cells. Thereby, the
growth of the transfected bacteria increased the amount of transfected plasmids,
respectively. The following steps, including plasmid maxi preparation was done to
clean and increase the concentration of the DNA. To verify the plasmids, enzyme
digestion with restriction endonucleases, followed by agarose gel-electrophoreses was
performed. The plasmids were stored for later use at -20 °C.

5.5 Elution of DNA

The acquired plasmids were eluted in 100 �l Tris solution by incubation for 30 min
at room temperature. For later experimental use, 2 �l of DNA solution were stored
on ice, the leftover was stored at -20 °C.

5.6 Preparation of competent E. coli DH5α bacterial cells

The competent E. coli DH5α bacterial cells used for transformation of the plasmids
and later maxipreparation were produced after the protocol from Hanahan [191].
Competent cells were stored in the -80 °C freezer for later use.

5.7 Transformation of plasmid DNA into competent E. coli
cells

5 µl of plasmid DNA were mixed with 80 µl of competent E. coli cells slowly thawed
on ice. After incubation on ice for 30 min, a heat shock for 45 s at 42 °C was
performed, allowing the plasmid to enter the bacteria. Cells were cooled down on
ice for 5 min before 900 µl of LB medium was added and the culture was further
incubated for 1.5 h at 37 °C with gentle shaking.

38



5.8 Plating and cultivation of E. coli cells

An aliquot of transfected E. coli cells were spread on LB-agar plates, containing the
appropriate antibiotic for the construct used, and incubated at 37 °C for 8–15 h. On
the following day, only antibiotic-resistant colonies were grown on the LB plates.
One colony was selected from the plate and transferred to liquid culture. The
selected E. coli colony was added to 500 ml LB media containing the appropriate
antibiotic to suppress non antibiotic resistant bacteria. For bacterial growth, the
culture was shaken at 37 °C for 8-16 h. The medium was then ready to use for maxi
preparation.

Table 8: E. coli cultivation components

LB Medium (Luria-Bertani Medium) Additives
1% (m/v) bacto tryptone 50 µg/ml ampicillin

0.5% (m/v) bacto yeast extract 30 µg/ml kanamycin
1% (m/v) NaCl 20 µg/ml X-gal

1.5% (m/v) agar* 0.1 mM isopropyl-β-
thiogalactopyranoside (IPTG)

*only for plate preparation

5.9 Plasmid maxi preparation

According to the manufacture’s instructions from Pure Yield™ Plasmid Midiprep
System from Promega, plasmid purification was performed. All steps were done at
room temperature, as advised in the protocol. The liquid LB medium containing
the propagated transfected E. coli bacterial was distributed into Falcon tubes. The
tubes were centrifuged for 10 min at 4500 g. The lysate was poured into clearing
columns containing a filter and incubated for 2 min. To fully clean the lysate,
centrifugation of the columns was done twice for 5 min with 1500 g. The filtered
lysate was poured through a binding column and centrifuged for 3 min at 1500 g. To
clear the lysate from RNA, endotoxin, endonucleases and protein, was washed with
5.0 ml of endotoxin removal wash solution, provided from the kit and centrifuged
at 1500 g for 3 min. The lysate was poured into DNA binding columns, washed
with 20 ml wash solution containing alcohol and centrifuged at 1500 g for 5 min and
again for 10 min with 1500 g to ensure complete removal of ethanol. The eluate
was proceeded to DNA concentration measurement, described in section 4.10.2. To
verify the plasmids, vector digestion was done. Plasmids were verified by sequencing.
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5.10 Vector digestion using DNA restriction endonucleases

for plasmid verification

For the verification of the plasmids, restriction endonucleases were employed. In
this study, the following restriction endonucleases with the recognition and cleavage
sites shown in brackets were employed: SalI (G↓TCGAC), XhoI (C↓TCGAG ), Notl
(GC↓GG
CCGC). These nucleases recognize short DNA sequences and cut DNA by digestion
of phosphodiester bonds in-between nucleotides. The enzymes are able to recognize
specific palindromic sequences on the DNA strand and therefore cut DNA bindings
very specific. The cut DNA strands are short base pair DNA sequences that are
compatible and able to be ligated. This property is also described as ‘sticky ends’.
DNA digestion was performed at 37 °C for 2 h using the following reaction mix.

Table 9: Vector digestion components. Abbreviations: EDTA, Ethylendinitrilo-N,N,N�,N�-tetra-
acetic-acid.

Components Amount

10× restriction endonuclease buffers 2 µl
Restriction endonuclease 1 to 5 U/µg DNA

DNA sample in H2O or Tris-EDTA-buffer 0.1 to 4 µg
Autoclaved, deionized water up to 20 µl

5.11 Luciferase assay

The luciferase assay system is an extremely sensitive technique for quantitative
measurement of gene activity in cells, represented by different levels of luminescence
activity of the promoter-tagged luciferase gene. A further advantage of this readout
assay is its linear result over at least eight orders of magnitude of enzyme concentra-
tion. The light emitted from the luciferase assay is stable for at least one minute and
detectable with a luminometer, in our case the Fusion A Reader (Packard Bioscience,
Germany) was employed.

5.12 Transient transfection using Lipofectamine™ 2000

Either NIH/3T3 cells or MLE-12 cells were grown for 24 h on a 96-well dish until 60%
confluence. On the following day, the transfection process was performed. OptiMEM
(GIBCO, 31985) was first added to a suspension containing the firefly luciferase
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plasmid construct p(CAGA)9-luc and the Renilla luciferase control reporter pRL-
SV40, to form a total volume of 50 �l. This suspension was mixed carefully and left
to incubate for 15 min at room temperature. Then, 49.25 �l of OptiMEM were added
to 0.75 �l of lipofectamine (Lipofectamine 2000™, 1 mg/ml, Invitrogen P/N 52887)
and also left to incubate for 15 min at room temperature. These two mixtures were
then added together to form a total volume of 100 �l (amount/well), mixed carefully
and left to incubate for another 20 min at room temperature. Media was then
removed from each well and cells were washed with ice cold 1× PBS solution. After
removing the 1× PBS solution from each well, 100 �l of the transfection mixture
was pipetted into each well and left to incubate for 5 h at 37 °C, 5% CO2, and
95-100% humidity. Depending on the experiment, cells were also exposed to Opti-
MEM or Lipofectamine™ 2000 only, transfected with the constitutively active Renilla
luciferase plasmid pRL-SV40 for luminescence-based dual luciferase assay (DLR)
or the promoterless firefly luciferase gene pGL3-basic to control the transfection
process.

5.13 NIH/3T3 cell line transfection with small interfering

RNA

The NIH/3T3 cells were trypsinized and plated in growth medium for approximately
16 h to obtain 60-70% confluency prior to transfection. Specific small interfering
RNA (siRNA) oligonucleotides against mouse smad3 (obtained from Santa Cruz
Biotechnology, USA) as well as silencer® negative control siRNA (Ambion, Ger-
many) were used in this study. NIH/3T3 cells were transiently transfected with
200 nM of specific smad3 siRNA as well as non specific siRNA to serve as a nega-
tive control for siRNA-mediated ablation of the according gene mRNA expression.
Lipofectamine™ 2000 was added to OptiMEM and incubated for 5 min while siRNA
was combined with OptiMEM before mixing both solutions. The mix was incubated
for another 15 min at room temperature. The siRNA-transfection reagent complexes
were added to the cells. After this last incubation period, a certain amount of this
mixture was then added directly to cell medium (see section 5.12). Following trans-
fection, cells were used for further experiments (section 5.15 and table 7). Luciferase
assay readout was done and efficiency of knockdown was monitored by Western blot
analysis.
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5.14 Transfection of cells with overexpression plasmid con-

structs

The gene encoding smad3 (provided by Dr. Wang, Duke University Medical Center
Durham) was over-expressed in cells of interest by transient transfection of the
plasmid carrying this gene. Cells were transfected with overexpression plasmids
(section 5.4) using lipofectamine™ 2000 and OptiMEM. In order to control these
experiments, cells were also treated with empty pIRES hrGFPII pcDNA plasmids
to serve as a negative control. First, OptiMEM was added to the plasmid construct
to form a total volume of 50 �l. This suspension was mixed carefully and left to
incubate for 15 min. Then, 49.25 �l of OptiMEM were also added to 0.75 �l of
lipofectamine™ 2000 and also left to incubate for 15 minutes at room temperature.
These two mixtures were then added together to form a total volume of 100 �l
(amount/well), mixed carefully and left to incubate for another 20 min at room
temperature. Media was then removed from each well and cells were washed with
ice cold 1× PBS solution. After removing 1× PBS solution from each well, 100 �l of
transfection mixture was pipetted into each well and left to incubate for 5 h at 37°C,
5% CO2, and 95-100% humidity. After 5 h of incubation, transfection mixture was
removed from each well and cells were stimulated according to protocol (see sections
5.15 and 5.26).

5.15 Luciferase assay

The experimental setting in this study was applied to both MLE-12 cells and
NIH/3T3 cells. The cells were grown on 96-well plates in the incubator. After
24 h, upon reaching 60-70% confluence, the transfection was performed as described
in section 5.11. Following transfection, the cells were stimulated for 2× 12 h with
different media: TGF–β (R&D Systems, USA) and ATRA (Sigma-Aldrich, Germany
R2625). The first stimulation was done for 12 h as follows:

Medium alone, or
Medium plus ATRA (10 �M)

After 12 h, a medium change was performed by gently removing the medium via
aspiration. New medium was then added to the wells in the setting as described
below for again 12 h.
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Medium alone, or
Medium plus TGF–β (0.2 ng/ml), or
Medium plus TGF–β (0.2 ng/ml) plus ATRA (10 �M), or
Medium plus ATRA (10 �M)

After stimulation, the plates were taken out of the incubator and washed three
times with Dulbecco’s phosphate-buffered saline (PBS). The PBS was removed via
aspiration and the plates were then either directly subjected to cells lysis followed
by analysis, or stored in the -80 °C freezer for later use.

5.16 Protocol for cell lysis using cell culture lysis 5× reagent

Prior to use, the cell lysis buffer was equilibrated to room temperature. Four volumes
of purified water were added to one volume of cell culture lysis 5× reagent (Promega,
E 194 A). For the preparation of the 96-well dishes for readout the growth medium
was removed by suction and each well was washed with 1× PBS solution. 100 �l
of the 1× cell lysis reagent was added to the wells. The plates were placed on a
rocking motion shaker, ensuring complete lysis of cells.

5.17 Protocol for luciferase measurement

When the cells were completely lysed, 40 �l of the cell lysate was transferred from
each well of the 96-well plates into a different 96-well plate designed for luciferase
analysis. Finally, 50 �l of a fluorescent luciferase reagent (Promega, USA) was
added to each well in a strictly defined order. The flourescence which is emitted
during the enzymatic reaction was measured by a microplate luminometer (Berthold
Technologies GmbH & Co. KG, Germany). The result was expressed as an absolute
value and transferred to an excel file. All samples were measured as a quadruplicate
of 4 and their mean value was calculated.

5.18 RNA isolation, cDNA synthesis and PCR

RNA isolation

Isolation of RNA from cultured cells material was performed according to the man-
ufacturer’s instructions provided with Roti® Quick-Kit.
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Determining RNA concentration

The concentration of isolated RNA was determined according to a protocol from
Peqlab by applying 1.5 �l of the sample to a Nanodrop® spectrophotometer.

Reverse transcriptase polymerase chain reaction

Reverse transcription polymerase chain reaction (RT-PCR) is an enzymatic process
carried out by reverse transcriptase, which synthesizes complementary (c) DNA
using RNA as a template. In order to perform RT-PCR, 500 ng of mouse total
RNA was added to autoclaved water up to 10 �l of total volume. The reaction
mixture was heated to 70 °C for 15 min and chilled on ice. Finally, the following
RT reagents were added:

Table 10: Reverse transcriptase reaction components Abbreviations: RT, reverse transcriptase;
dNTP, deoxynucleotide triphosphate; RNA, ribonucleic acid.

RT reaction component Volume Final concentration

10× RT Buffer II (MgCl2 free) 2 �l 1×
25 mM MgCl2 4 �l 5 mM

10 mM dNTP mix 1 �l 0.5 �M
Random hexamers (50 �M) 1.5 �l 3.75 �M
RNAse inhibitor (20 U/�l) 0.5 �l 10 U

Reverse transcriptase (50 U/�l) 1 �l 50 U
RNAse free water variable

For the amplification of cDNA, the reaction mixture was incubated at 20 °C for
10 min, then at 43 °C for 75 min and at 99 °C for 5 min. Synthesized cDNA was
stored either at -20 °C or used for other experiments immediately.

5.19 Polymerase chain reaction

The polymerase chain reaction (PCR) is a method that allows million-fold amplifi-
cation of DNA segments. The enzyme DNA polymerase amplificates the segments
using cDNA, previously reverse-transcribed from RNA. Each PCR cycle consists of
three steps:

Denaturation: separation of double-stranded DNA into single strands
Annealing: primer binding to the target sequence of single DNA strands
Elongation: amplification of a sequence of interest by DNA polymerase
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5.20 Semi-quantitative reverse transcription polymerase chain

reaction

For a semi-quantitative RT-PCR, amplification of DNA was performed according to
the manufacturer’s instructions provided with the GoTaq® Flexi DNA Polymerase.
The following components were combined in a 0.5 ml microcentrifuge tube, on ice.

Table 11: Semi-quantitative PCR reaction components Abbreviations: PCR, polymerase chain
reaction; dNTP, deoxynucleotide triphosphate; DNA, deoxyribose nucleic acid.

PCR reaction component Volume Final concentration

5× PCR Buffer (free MgCl2) 10 �l 1×
25 mM MgCl2 5 �l 2.5 mM

10 mM dNTP mix 1 �l 0.2 �M
10 �M forward primer* 1 �l 0.2 �M
10 �M reverse primer* 1 �l 0.2 �M

Taq DNA Polymerase (5u/�l) 0.25 �l 1.25 U
cDNA template 1 �l not applicable

H2O (autoclaved) up to 50 �l not applicable

* All primer sequences are listed in table 20.
To perform effective amplification of DNA, the following program was run:

Table 12: Semi-quantitative reverse transcription polymerse chain reaction cylces

Step Time Temperature

First denaturation 5 min 95 °C
Second denaturation 1 min 95 °C

Annealing 0.5-1 min 57-60 °C
Elongation 1 min 72 °C

Final extension 10 min 72 °C

The steps were repeated for 22-33 cycles depending on the amplified sequence
please refer to table 20, for the exact cycle number used. Newly generated DNA
was immediately separated by agarose gel electrophoresis and visualized by staining
with ethidium bromide.
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5.21 Real-time reverse transcription polymerase chain reac-

tion

Simultaneous quantification and amplification of specific DNA sequences can be
realized by using quantitative real-time RT-PCR. The procedure follows the PCR
strategy but the DNA is quantified after each amplification cycle. Quantification
is performed by means of fluorescent dye–SYBR® Green I – which directly binds
to double-stranded DNA. The attached dye generates a signal that is proportional
to the DNA concentration. Reactions were performed according to the manufac-
turer’s instructions provided with a SYBR® Green PCR Kit. PCR reaction mix
was prepared as follows:

Table 13: Real-time reverse transcription polymerase chain reaction components Abbreviations:
PCR, polymerase chain reaction; DNA, deoxyribose nucleic acid.

Polymerase chain reaction component Volume Final concentration

Platinum®Sybr®Green qPCR SuperMix-UDG 13 �l 1×
50 mM MgCl2 1 �l 2 mM

10 �M forward primer* 0.5 �l 0.2 �M
10 �M reverse primer* 0.5 �l 0.2 �M

cDNA template 2 �l not applicable
H2O (autoclaved) up to 25 �l not applicable

The amplification and quantification of cDNA was carried out by means of fol-
lowing program:

Table 14: Real-time reverse transcription polymerase chain reaction cycles

Step Time Temperature

Activation of polymerase enzyme 2 min 50 °C
First denaturation 5 min 95 °C

Second denaturation 5 s 95 °C
Annealing 5 s 59-60 °C
Elongation 30 s 72 °C

Dissociation step 1 15 s 95 °C
Dissociation step 2 1 min 60 °C
Dissociation step 3 15 s 95 °C
Dissociation step 4 15 s 60 °C

The steps were repeated for 45 cycles. A ubiquitously and equally-expressed gene
that is free of pseudo genes was used as the reference gene in all quantitative real-
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time RT-PCR reactions. The relative transcript abundance of a gene was presented
as ∆CT values (∆CT = CT reference – CT target). Relative changes in transcript
levels compared to controls were displayed as ∆∆CT values (∆∆CT = ∆CT treated
– ∆CT control).

5.22 DNA agarose gel electrophoresis

Agarose gel electrophoresis was performed in order to separate and analyze nu-
cleotide acid fragments obtained by PCR. Depending on the size of the DNA am-
plicon 1-2% agarose gels were used. Agarose gels contained 0.5 �g/ml ethidium bro-
mide, prepared in 1× tris-acetate-EDTA (TAE) buffer (40 mM Tris-acetate, pH 8.0,
1 mM EDTA, pH 8.0). The components were heated to allow agarose to melt and
after adding ethidium bromide (a fluorescent intercalating dye that enables visual-
ization of the DNA fragments under ultraviolet light), the gel solution was poured
in a casting frame provided with a comb for the wells. The DNA samples along with
the loading dye (0.01% bromphenol blue, 40% glycerol, 1× TAE buffer) were loaded
into the gel wells and electrophoresis was performed at 5 V/cm in 1× TAE buffer for
45-60 min. Finally, the electrophoresis result was illuminated with short wavelength
ultraviolet light (λ=254 nm), and photographed with Kodak camera connected to
analyzing software. The size of the DNA fragments was determined by a DNA
molecular weight standard marker.

5.23 Protein isolation

The protein isolation from NIH/3T3 cells and MLE-12 cells was equally performed
by the following protocol:

After washing twice with PBS, confluent monolayers of cells were detached by
scraping of the layers, which were previously covered with cell lysis buffer. Cell
lysis buffer consisted of 20 mM Tris-HCl, pH 7.5, 150 mM NaCl, 1 mM EDTA,
0.5% Igepal CA-630 and 1 mM Ethylene glycol-bis (2-amino-ethylether)-N,N,N�,N�-
tetraacetic-acid (EGTA). Collected cells were passed 5–8 times through a 0.9 mm
gauge needle to obtain a homogenous lysate. Lysates were then incubated for 30
min on ice and centrifuged 15000× g for 15 min at 4 °C. Resulting supernatants were
used as cell extracts and stored at -20 °C for further experiments. In addition, 1
mM Na3VO4, phosphatase inhibitor was added immediately prior to homogenization
Complete™, protease inhibitor mix – added immediately prior to homogenization.
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Table 15: Loading-buffer ingredients. Abbreviations: SDS, sodium dodecyl sulphate.

625 mM Tris-HCl, pH = 6.8
50% (v/v) glycerol
20% (w/v) SDS

9% (v/v) β-mercaptoethanol
0.3% (w/v) bromophenol blue

5.24 Protein quantification measurement

Protein concentrations in cell extracts were spectrophotometrically determined using
Quick Start™ Bradford Dye Reagent and a Fusion A153601 Reader according to the
manufacturer’s instructions. The protein assay is based on the color change of
Coomassie Brilliant Blue G-250 dye after binding proteins. The dye binds primarily
to basic and aromatic amino acids residues. Ten �l of sample was mixed with 200 �l
of Bradford Dye Reagent and transferred to a 96-well plate. Six dilutions of protein
standard, bovine serum albumin, 0.05–0.5 �g/�l, were prepared and mixed with
Bradford Dye Reagent in the same ratio as the sample of unknown concentration.
Reaction mixtures were incubated for 15 min at room temperature. The absorbance
of the samples was measured at 570 nm. The unknown amount of protein in the
sample was determined by interpolation, reading the concentration of protein on the
standard curve that corresponded to its absorbance.

5.25 Separation of proteins by SDS poly-acrylamide gel elec-

trophoresis

For the analytical separation of proteins, extracts were separated with the SDS
poly-acrylamide gel electrophoresis (SDS-PAGE). Before loading, 20 �g of protein
were mixed with 10× SDS-loading buffer and denaturated by heating for 5 min at
95 °C. The separation of proteins was performed in gels consisting of 10% stacking
gel and 10% resolving gel. The separation gel mix was poured between two glasses
with space holders and the gel was allowed to polymerase. After polymerization,
the stacking gel was poured of top of the separating gel and a comb was inserted to
form the wells. Electrophoresis was carried out in SDS-running buffer at 120 V.
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Table 16: Stacking gel (for 20 ml). Abbreviations: APS, ammonium persulphate; SDS, sodium
dodecyl sulphate; TEMED, N,N,N�,N�-tetramethyl-ethane-1,2-diamine.

Component Volume

dH2O 13.6 ml
30% Acrylamide 3.32 ml

1.5 M Tris-HCl, pH 6.8 2.25 ml
10% SDS 200 �l
10% APS 200 �l
TEMED 20 �l

Table 17: Resolving gel (for 40 ml). Abbreviations: APS, ammonium persulphate; SDS, sodium
dodecyl sulphate; TEMED, N,N,N�,N�-tetramethyl-ethane-1,2-diamine.

Component Volume

dH2O 15.9 ml
30% Acrylamide 13.3 ml

1.5 M Tris-HCl, pH 8.8 10 ml
10% SDS 400 �l
10% APS 400 �l
TEMD 16 �l

5.26 Western blotting

Proteins separated by SDS-PAGE were transferred to 0.25 �m nitrocellulose mem-
brane using Bio-Rad transfer chambers. Transfer was performed in transfer buffer
(25 mM Tris, 192 mM glycine, 20% methanol) at 120 V for 1 h.

For protein detection, membranes were blocked in blocking solution (5% non-fat
dry milk in PBS and 0.1% (vol/vol) Tween-20) for 1 h at room temperature and
incubated overnight at 4 °C with the desired primary antibody. Primary antibody
concentration varied depending on the antibodies used in the experiment and are
represented in table 18. After transfer of the antibody, membranes were washed
three times for 10 min with 1× Phosphate-buffered saline + 0.1% Tween 20 (PBST)
buffer, incubated with horseradish peroxidase-labeled secondary antibody (Pierce
Biotechnology, Rockford IL) for 1 h at room temperature, and then washed five
times for 10 min with 1× PBST each.

To re-probe the membranes with another antibody, the blots were stripped with
stripping buffer (62.5 mM Tris-HCl, pH 6.8, 2% SDS and 100 mM β-mercaptoethanol)
for 15 min at 52 °C at and then probed again with a new antibody as described pre-
viously. The detection of specific bands was performed by using the Enhanced
Chemiluminescence Immunoblotting System Plus reagent (Amersham Biosciences,
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Table 18: Primary antibodies employed in Western blot analysis

Primary Antibodies Host Dilution Company

Phospho-Smad2 mouse 1:1000 Cell Signaling

Smad2/3 mouse 1:1000 Cell Signaling

Phospho-Smad3 rabbit 1:1000 Cell Signaling

Lamin rabbit 1:10000 Cell Signaling

β-Actin rabbit 1:1000 Cell Signaling

Table 19: Secondary antibodies employed in Western blot analysis

Secondary Antibodies Host Dilution Company

HRP-conjugated anti-mouse IgG goat 1:3000 ZyMax
HRP-conjugated anti-rabbit IgG goat 1:3000 ZyMax

Uppsala, Sweden) on a radiographic film (Kodak). In order to re-probe membranes
with another antibody, membranes were stripped with stripping buffer for 15 min
and subsequent protein detection was performed as described above. Primary an-
tibody concentrations varied depending on the antibodies used in the experiment,
and are presented in table 18. Densitometric analysis of immunoblot bands was
performed using the Multi Gauge MFC Application version 3.0.0.0.

5.27 Statistical analysis of data

Values are indicated as mean ± S.D. Statistical comparisons were made between
two samples with an unpaired Student�s t-test, or by one way ANOVA followed
by a Bonferroni post-hoc test (for more than two samples) or Dunnett�s test for
multi-one-comparisons, to evaluate changes between mean values. All experiments
were performed at least three times. P -values of p<0.05 shown as *, p<0.001 shown
as ** or p<0.0001 shown as *** were considered statistically significant, depending
on the experiment.
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5.28 Primer table

Table 20: Primer employed for semi-quantitative RT-PCR

GenBank™

Accession

Number

Forward

Primer 5�-3�

Reverse

Primer 5�-3�

Amplicon

size bp

Cycle

Number

Annealing temp.

(°C)

acvrl1

NM_009612.2

ATGACCTTGGGGAG

CTTCAG

GAGGACCGGATCT

GCAGCCAG

1380 23 60

gapdh

NM_008084.3

ACCCAGAAGACTGT

GGATGG

TGTGAGGGAGATGC

TCAGTG

548 21 60

endoglin

NM_001146348.1

GAGTCGGCTGTGAT

CTACAGCCTGTGG

CTGATGATCACCTC

ATTGCTGACC

898 22 60

tgfbr1

NM_009370.2

CTGTGAGACAGATG

GTCTTTGC

CATCACTCTCAAGG

CCTCAC

1273 27, 29 60

tgfbr2

NM_009371.2

CCAAGTCGGATGTG

GAAATGGAA

CTATTTGGTAGTGT

TCAGCGAGCCATC

1694 25 60

tgfbr3

NM_011578.3

CCCTGTGTTTGTCCT

GATGAGCGCCTGCC

CCTATGTCTAGTAC

CACAGCCATTC

1501 27 60

serpine1

NM_008871

ATGCAGATGTCTTC

AGCCCTTG

CTCTGAGGTCCACT

TCAGTC

931 25 60

ctgf

NM_010217.2

ATGCTCGCCTCCGT

CGCAGGTCCC

TTACGCCATGTCTC

CGTACATCTT

1047 27 62

smad2

NM_010754.3

CTCCGGCTGAACTG

TCTCCTACT

TTACAGCCTGGTGG

GATCTTACA

405 26 60

smad3

NM_016769.4

GAATTACGGGCCAT

GGAGCTCTGT

TCGGGAATGGAATG

GCTGTAGTCA

182 27 69

smad4

NM_008540.2

ACAGTGTCTGTGTG

AATCCA

TCAGTCTAAAGGCT

GTGGGTCC

1286 25 60
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Table 21: Primer employed for real time RT-PCR

GenBank™

Accession

Number

Forward

Primer 5�-3�

Reverse

Primer 5�-3�

Amplicon

size bp

Amplicon

Region

Annealing

temp. (°C)

ctgf

NM_010217.2

AATGCTGCAAGGAG

TGGTGTGTG

AGGCAGTTGGCTCG

CATCATAG

124 757-880 60

tgfbr3

NM_011578.2

ATGGCAGTGACATC

CCACCACAT

AGAACGGTGAAGCT

CTCCATCA

152 1-152 60

gapdh

NM_008084.3

ATGGTGAAGGTCGG

TGTGAAC

TCATACTGGAACAT

GTAGACC

143 50-210 60

endoglin

NM_001146348.1

CGTGCTACTCATGT

CCCTGAT

CAGGACAAGATGGT

CGTCAGT

162 1052-

1214

60

smad3

NM_016769.4

CTGGATGACTACAG

CCATTCCATT

CTGTGGTTCATCTG

GTGGTCACTG

140 456-596 60

smad4

NM_008540.2

TCATCCTAGCAAGT

GTGTCACC

CTCCACAGACGGGC

ATAGAT

101 603-704 60

tgfbr1

NM_09370.2

CAGAGGGCACCACC

TTAAA

AATGGTCCTGGAAG

TTC

110 502-622 60
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6 Results

6.1 ATRA enhances TGF–β signaling assessed by p(CAGA)9

induction

Activation of the TGF–β responsive Smad3 binding element p(CAGA)9 was mea-
sured in this study by using a DLR. The firefly luciferase p(CAGA)9–luc construct
was employed to assess activation of the TGF–β machinery by ATRA (or 13-cis RA)
using DLR. The NIH/3T3 cells were transfected with the p(CAGA)9–luc reporter
construct and expression levels were assessed using DLR as described in section 5.11.
First, NIH/3T3 cells were stimulated with ATRA (0, 0.01, 0.1, 1, 10 µM) or 13-cis
RA (10 µM) for 12 h. This was followed by co-stimulation with TGF–β (0.2 ng/ml)
and ATRA or 13-cis RA for a further 12 h. TGF–β activated the p(CAGA)9 element
of the p(CAGA)9–luc construct, and this activation was significantly enhanced by
ATRA in a dose-dependent manner (figure 1 A). All-trans-retinoic acid and 13-cis
RA alone were not able to increase activation of the p(CAGA)9–luc construct in
NIH/3T3 cells (figure 1 B).

Figure 1: ATRA enhances TGF–β signaling in NIH/3T3 cells. Expression analysis of
the p(CAGA)9-luc construct in NIH/3T3 cells after stimulation with ATRA (0, 0.01, 0.1, 1, 10
µM), 13-cis RA (10 µM), and TGF–β (0.2 ng/ml), assessed by dual-luciferase promoter assay.
NIH/3T3 cells were stimulated with ATRA or 13-cis RA for 12 h and subsequently exposed to
TGF–β (A). In panel (B) NIH/3T3 cells were exposed to ATRA or 13-cis RA only. All values were
normalized for firefly luciferase transcriptional acitivity using the pGL3-basic control construct.
The values used are representative for at least three independent experiments. Data indicate mean
from quadruplicates ± S.D. Statistically significant differences (P<0.05; by ANOVA followed by
Dunnett�s test for multi-one-comparisons) are marked by *.
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Figure 2: ATRA effects on phospho-Smad2 and phospho-Smad3 levels in NIH/3T3

cells. Phospho-Smad2, phospho-Smad3 and total Smad2/3 levels were assessed in NIH/3T3 cells.
Stimulation was done with ATRA (10 µM) or DMSO (0.5%) for 12 h, followed by stimulation
with TGF–β (0, 0.02, 0.2 and 2 ng/ml). (A) Phospho-Smad3 as well as phospho-Smad2 levels are
affected by TGF–β and ATRA. The toal Smad3 levels only respond to stimulation with ATRA,
whereas toal Smad2 levels remain unchainged. (B-E) Data were quantified by densitometry for
toal Smad2 and total Smad3, where data indicate mean ± S.D. from three plots. P -values were
assessed by unpaired Students’s t-test. Gels are representative of three independent experiments.

6.2 ATRA effects on TGF–β signaling assessed by Smad phos-

phorylation using Western blot

In this set of experiments, Smad proteins were studied in NIH/3T3 cells after ex-
posure to TGF–β and ATRA. Smad proteins are known as intracellular mediators
transducing downstream signaling of the TGF–β machinery, after phosphorylation,
to the nucleus, able affect transcription activity of target genes [167, 161].
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The NIH/3T3 cells were grown in the presence of ATRA (10 �M in 0.5% DMSO)
or with DMSO (0.5%) as a control for 12 h. This was followed by stimulation
with TGF–β for 30 min at different dilutions. Cellular proteins were analyzed by
SDS–PAGE where total Smad2 and Smad3 and phospho-Smad2 and phospho-Smad3
as well as lamin A antibodies were used in Western blotting (further described in
table 18). NIH/3T3 cells had increased levels of phospho-Smad2 after stimulation
with ATRA, when co-stimulated with TGF–β phospho-Smad2 levels were as well
increased. To further study this phenomenon, phospho-Smad3 and total Smad3
levels, which are also part of the regulatory Smad family, were assessed in NIH/3T3
cells (regulatory Smads are described in detail in section 2.12.4). Stimulation with
higher concentrations of TGF–β resulted in higher levels of phospho-Smad3. Co-
stimulation with ATRA resulted in even higher levels of phospho-Smad3 (figure 2
A).

Data was quantified by densitometry and examplary, results are shown for stimu-
lation of the cells with 0.2 ng/ml TGF–β for total Smad3 and total Samd2. The lev-
els of total Smad3 were significantly increased without co-stimulation with TGF–β
(figure 2 B) and with co-stimulation of the cells with TGF–β (figure 2 C). Total
Smad2 levels did not change throughout the experiments (figure 2 D, E). These re-
sults further support the hypothesis of a possible influence of ATRA on the TGF–β
machinery in NIH/3T3 cells, specifically on total Smad3.

6.3 Identification of TGF–β-responsive genes in NIH/3T3 cells

and MLE-12 cells

To determine mRNA levels of TGF–β responsive genes, visualization and quantifi-
cation was conducted by means of semi-quantitative RT-PCR analysis. Genes po-
tentially responsive to TGF–β stimulation were studied both in NIH/3T3 cells and
MLE-12 cells. Cells were stimulated with 0.2 ng/ml TGF–β or 10 ng/ml TGF–β or
with DMSO (0.5%) for 12 h. The serpine1 gene was responsive in both cell lines
to TGF–β stimulation. The ctgf gene exhibited similar trends. The mRNA level of
the loading control gene gapdh used in this study did not change expression levels
throughout TGF–β stimulation (figure 3).
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Figure 3: TGF–β responsive genes in NIH/3T3 cells and MLE-12 cells. Gene expression
patterns of TGF–β responsive genes performed in NIH/3T3 cells (A) and MLE-12 cells (B). Stim-
ulation was done with TGF–β (0.2, 2 and 10 ng/ml). The mRNA expression analyses assessed
by semi-quantitative RT-PCR. The TGF–β responsive genes ctgf and serpine1 were responsive to
TGF–βstimulation in both cell lines. The gapdh mRNA was used as a loading control. Gel pictures
are representative of three independent experiments.

6.4 ATRA impacts expression of TGF–β-responsive genes in

NIH/3T3 cells

After the identification of genes responsive to TGF–β stimulation in NIH/3T3 cells,
the question was addressed whether these genes are also responsive to ATRA. There-
fore, the following four different experimental set-ups were employed in 100 mm petri
dishes as described in table 7 and analyzed by means of semi-quantitative RT-PCR.

Figure 4: TGF–β target gene expression patterns in NIH/3T3 cells. Gene expression
patterns in NIH/3T3 cells after stimulation with ATRA (10 �M) or DMSO (0.5%) with or without
TGF–β (0.2 ng/ml). The mRNA level expression analyses were done by semi-quantitative RT-
PCR. The gapdh mRNA was used as a loading control. Gel pictures are representative of three
independent experiments.

NIH/3T3 cells stimulated with 0.2 ng/ml TGF–β alone demonstrated upregula-
tion of mRNA levels both for the ctgf gene as well as for the serpine1 gene. Exposure
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to ATRA (10 �M) alone resulted in the ctgf gene in a minimal upregulation of gene
expression, the serpine1 gene was minimally downregulated (figure 4). Exposure to
12 h of ATRA (10 �M), followed by 12 h of ATRA (10 �M) together with TGF–β
0.2 ng/ml resulted in marked upregulation of the serpine1 gene. The ctgf gene
expression levels were as well increased in the double stimulation condition (TGF–β
plus ATRA). The gapdh mRNA was used as a control.

To verify the results from the semi-quantitative RT-PCR, the same experimental
setting mentioned above was employed and analyzed with real-time RT-PCR. To get
a deeper understanding of the different effects of retinoids, this study was extended
by exposure of the cells to 13-cis RA. Time of exposure and concentration of the
13-cis RA was equal to ATRA.

When cells were stimulated with TGF–β compared to DMSO, a significant two-
fold upregulation of the ctgf gene was assessed (figure 5). Exposure to ATRA
compared to DMSO resulted in a significant 1.8-fold induction of ctgf gene expres-
sion levels. Compared to TGF–β treated cells, ctgf gene expression levels while cells
were exposed to ATRA plus TGF–β resulted in a significant three-fold induction.
When cells were stimulated with 13-cis RA, gene expression levels of ctgf did not
change. The combined exposure of 13-cis RA plus TGF–β resulted in a significant
two-fold upregulation compard to DMSO. Stimulation of cells with TGF–β caused
a significant two-fold upregulation of the gene serpine1 compared to DMSO. Cell
stimulation with both ATRA or 13-cis RA caused significant downregulation of the
serpine1 gene compared to exposure to DMSO only. Combined exposure to ATRA
and TGF–β resulted in a three-fold induction of serpine1. This degree of upregula-
tion was significant when compared to stimulation with TGF–β only. Simultaneous
stimulation of 13-cis RA and TGF–β caused a significant two-fold upregulation of
gene expression levels, which were equivalent to that seen for TGF–β alone.

To summarize these results, different chemical derivatives of RA are able to have
very complex effects on TGF–β target genes in NIH/3T3 cells. ATRA seems to
enhance TGF–β mediated gene induction for the ctgf and serpine1 gene in NIH/3T3
cells. ATRA alone is able to upregulate ctgf gene expression levels but does not have
a significant effect on the serpine1 gene. Gene expression levels are not altered by
stimulation with 13-cis RA alone, but co-stimulated of cells with 13-cis RA enhances
TGF–β mediated gene expression levels.
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Figure 5: TGF–β target gene expression patterns in NIH/3T3 cells after stimulation

with ATRA. Gene expression patterns in NIH/3T3 cells after stimulation with DMSO (0.5%)„
ATRA (10 �M) or 13-cis RA (10 �M) with or without TGF–β (0.2 ng/ml). The mRNA level
expression analyses readout for serpine1 and ctgf were done with real-time RT-PCR. The graphs
shown are representative of three independent experiments. The gapdh gene was used a house keep-
ing gene. Data indicate mean ± S.D. from two measurements. Statistically significant differences
by (P<0.05; by ANOVA followed by a Bonferroni post-hoc test) are marked by *.

6.5 ATRA impacts expression of TGF–β-responsive genes in

MLE-12 cells

TGF–β responsive genes studied previously in NIH/3T3 cells were now assessed
in MLE-12 cells to identify possible changes in expression levels in epithelial cells.
MLE-12 cells were stimulated with 0.2 ng/ml TGF–β and treated with ATRA (10
�M) or DMSO (0.5%) as a control (please refer to table 7 for further details where
the experimental set-up is described). Upregulation of mRNA levels was present
both for the ctgf as well as for the serpine1 gene (figure 6). The serpine1 and
ctgf gene were upregulated after exposure with ATRA (10 �M) or ATRA (10 �M)
followed by 12 h ATRA (10 �M) and TGF–β (0.2 ng/ml). The mRNA level of the
loading control gapdh used in this study did not change expression levels throughout
the experiments.

To verify the results from the semi-quantitative RT-PCR, the same experimental
setting was analyzed with real time RT-PCR (figure 7). To get a deeper understand-
ing of the different effects of retinoids, this study was extended by exposure of the
cells to 13-cis RA. Time of exposure and dilution of the 13-cis RA was equal to
ATRA. A significant 1.5-fold upregulation of the ctgf gene was assessed in the pres-
ence of TGF–β compared to DMSO. Exposure to ATRA only resulted in a significant
2.5-fold upregulation of the gene compared to DMSO. When cells were stimulated
with ATRA plus TGF–β, the ctgf gene expression levels exhibited a three-fold in-
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Figure 6: Gene expression patterns in MLE-12 cells after stimulation with ATRA and

TGF–β. MLE-12 cells were stimulated with ATRA (10 �M) or DMSO (0.5%) with or without
TGF–β (0.2 ng/ml). The mRNA level expression analyses readout of ctgf and serpine1 was done
with semi-quantitative RT-PCR. The gapdh gene was used as a loading control. Gel pictures are
representative of three independent experiments.

duction of gene expression levels. Compared to stimulation with TGF–β only, this
upregulation was significant. Neither exposure to 13-cis RA nor co-stimulation to
13-cis RA plus TGF–β did change gene expression levels of the ctgf gene signif-
icantly. When investigating the serpine1 gene, stimulation of cells with TGF–β
caused a significant two-fold upregulation of the gene compared to DMSO. Com-
bined exposure of ATRA plus TGF–β resulted in a five-fold induction of serpine1.
This altitude of upregulation was significant when compared to stimulation with
TGF–β only. Cell stimulation with ATRA only resulted in a significant 3.8-fold
induction of the serpine1 gene compared to DMSO. Stimulation with 13-cis ATRA
only or co-stimulation with 13-cis ATRA plus TGF–β did not result in markedly
changes of serpine1 gene levels.

To summarize these results, ATRA is able to enhance TGF–β mediated gene
induction both of the serpine1 as well as the ctgf gene in MLE-12 cells. Cell
stimulation with ATRA alone does have notable effects on gene expression of both
genes as well, but co-stimulation of TGF–β and ATRA seem to affect each other
positively. When looking at 13-cis RA, treatment of the cells did not result in
significant gene expression level changes, neither alone nor when co-stimulation with
TGF–β was performed.

6.6 ATRA effects the expression of components of the TGF–β

signaling machinery in NIH/3T3 cells

ATRA effects on the TGF–β receptor subunits were also studied in NIH/3T3 cells.
We looked at tgfbr1, tgfbr2 as well as on the accessory receptors tgfbr3 and endoglin
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Figure 7: Gene expression patterns of TGF–β target genes in MLE-12 cells after stim-

ulation with ATRA. Gene expression patterns in MLE-12 cells after stimulation with DMSO
(0.5%), ATRA (10 �M) or 13-cis RA (10 �M) with or without TGF–β (0.2 ng/ml). The mRNA
level expression analyses readout for serpine1 and ctgf gene was done with real time RT-PCR.
The graphs shown are representative of three independent experiments. The gapdh gene was used
a house keeping gene. Data indicate mean ± S.D. from two measurements. Statistically significant
differences (P<0.05; by ANOVA followed by a Bonferroni post-hoc test) are marked by *.

and smad2, smad3 and smad4 by using semi-quantitative RT-PCR. During the ex-
periments, cells were exposed to ATRA (10 �M) dissolved in DMSO (0.5%) or only
DMSO (0.5%) for 12 h, respectively. While stimulation did not significantly change
tgfbr1, tgfbr2 and tgfbr3 gene expression levels, gene levels of smad3 were strongly
upregulated by ATRA. Gene expression levels of the other accessory receptor en-
doglin were higher compared to the DMSO control. The Smad2, smad3 and smad4
gene were studied to assess effects of ATRA on the downstream signaling proteins
of the TGF–β machinery. While smad2 and smad4 did not presented with changes
in gene expression levels, smad3 was upregulated in the presence of ATRA (figure
8 A).

These data acquired from the semi-quantitative RT-PCR was quantitatively con-
firmed by means of real time RT-PCR. NIH/3T3 cells were grown and stimulated
with the same conditions employed for the semi-quantitative RT-PCR using ATRA
(10 �M) or DMSO (0.5%) treatment for 12 h. In NIH/3T3 cells treated with ATRA,
the smad3 gene expression levels changed by 2.844 �CT units. Gene expression lev-
els of the tgfbr1, tgfbr3, smad4 and endoglin gene did not change significantly in
the presence of ATRA (figure 8 B). These results assessed by means of the real time
RT-PCR quantitatively support findings from the semi-quantitative RT-PCR.

To summarize, ATRA has significant effects on the regulatory smad3 gene (sec-
tion 2.12.4) molecule, transducing downstream signaling from the TGF–β receptor
to the nucleus is sensitive to stimulation with ATRA visible by the increased abun-
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Figure 8: Gene expression patterns of the TGF–β receptor and TGF–β signaling Smads

in NIH/3T3 cells after stimulation with ATRA. Expression analysis of the tgfbr1 (using a
cycle number of 27), tgfbr2 , the accessory tgfbr3 , and endoglin gene as well as downstream signaling
genes smad2, smad3, smad4 was assessed via semi-quantitative RT-PCR (A) and real-time RT-
PCR (B). Cells were treated with ATRA (10 �M) or with vehicle (DMSO). The gapdh gene was
used as a loading control. (B) Changes in mRNA expression were assessed by real time RT-PCR.
Results are representative of three independent experiments. Data indicate mean ± S.D. from two
measurements. Statistically significant differences (P<0.001; by ANOVA followed by a Bonferroni
post-hoc test) are marked by ***.

dance of the gene (figure 8A,B). In sum, ATRA seem to have significant regulatory
effects on the canonical TGF–β pathway most importantly on the downstream sig-
naling molecule Smad3.

6.7 ATRA effects the expression of components of the TGF–β

signaling machinery in MLE-12 cells

The effects of ATRA on the TGF–β receptor subunits were also studied in MLE-12
cells. We looked at tgfbr1, tgfbr2 as well as on the accessory receptors tgfbr3 and
endoglin and smad2, smad3 and smad4 by using semi-quantitative RT-PCR. In the
experimental setting, cells were exposed to ATRA (10 �M) for 12 h or to DMSO
(0.5%) for 12 h. The tgfbr2 gene was the only member of the receptor family able
to be activated by stimulation with ATRA. Gene expression of the tgfbr2 gene
was slightly downregulated by ATRA. The mRNA levels of the accessory receptor
endoglin were not affected by ATRA. The tgfbr3 gene which is extremely weak
expressed in MLE-12 cells was not detectable. Gene expression levels of smad2,
smad3 and smad4 did not change during stimulation with ATRA (figure 9).
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These trends assessed by semi-quantitative RT-PCR suggest that ATRA alone
does not have significant effects on the TGF–β receptor in MLE-12 cells since the only
subunit affected was the tgfbr2 gene, which was downregulated. This hypothesis is
further supported by the lacking response of the downstream signaling genes smad2,
smad3, smad4 following ATRA treatment.

6.8 Smad3 modulates TGF–β signaling in NIH/3T3 cells

In the previous studies (please refer to section 6.2 and 6.6 for more information),
significant upregulation of mRNA and protein levels of Smad3 was observed in
NIH/3T3 cells treated with ATRA. With the knowledge that ATRA drives up Smad3
levels, it was now asked in which way Smad3 affects TGF–β signaling. The following
experiments were done to assess the impact of the smad3 molecule on the TGF–β
machinery.

Figure 9: Gene expression patterns of the TGF–β receptor and signaling Smads in MLE-

12 cells after stimulation with ATRA. Expression analysis of tgfbr1 (using a cycle number of
29), tgfbr2 , the accessory tgfbr3 , endoglin and smad2, smad3 and smad4 was performed using
semi-quantitative RT-PCR in MLE-12 cells. Cells were exposed to the vehicle DMSO (0.5%), or
to ATRA (10 �M). The gapdh gene was used as a loading control. Gels pictured are representative
of three independent experiments.

First, NIH/3T3 cells were transfected with scrambled (scr) RNA or with specific
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smad3 small interfering (si) RNA followed by treatment with TGF–β and ATRA,
as described in section 5.13. Activity of the TGF–β machinery was measured by the
p(CAGA)9/Renilla ratio using DLR. The p(CAGA)9/Renilla ratio was significantly
downregulated in cells transfected with the smad3 siRNA when stimulated with
TGF–β or TGF–β and ATRA (figure 10).

In the second experimental setting, cells were transfected with the expression
plasmid pIRES::smad3 (section 5.12). Increased activity of the TGF–β machinery is
represented by a higher value of the luciferase firefly p(CAGA)9-luc/Renilla ratio us-
ing DLR. Overexpression of Smad3 increased significantly the p(CAGA)9-luc/Renilla
ratio in cells exposed to DMSO and TGF–β compared to cells transfected with scr
siRNA (figure 10 A). The most profound increase in p(CAGA)9-luc/Renilla ratio
could be appreciated in Smad3 transfected cells exposed to ATRA and TGF–β. Ab-
lation of Smad3 using siRNA resulted in a significant decrease in p(CAGA)9-luc/Renilla
ratio in cells exposed to TGF–β and ATRA plus TGF–β, compared to untransfected
cells (figure 10 panel B). The siRNA mediated gene knockdown of Smad3 as well
as overexpression was performed and assessed by Western blot to obtain further
insights into changing Smad protein levels (figure 10 C and D). Overexpression of
pIRES::smad3 resulted in a profound increase of total Smad3 (figure 10 C). Ablation
of Smad3 reduced Smad3 levels while Smad2 levels remained unchanged (figure 10
D).

In summary, Smad3 levels impact the TGF–β signaling. When cells have lower
amounts of Smad3, achieved by transfection with smad3 siRNA, TGF–β signaling is
damped via reduction of Smad3 and not Smad2. When cells contain more Smad3,
the TGF–β signaling is enhanced, revealed by increased expression levels of the
TGF-–β responsive element p(CAGA)9. Hence, it can be concluded that the TGF–β
signaling downstream molecule Smad3 is crucial for TGF–β signaling.

From the results acquired in this section, it can be concluded that Smad3
is crucial for TGF–β signaling. As described in section 2.12.4, TGF–β signaling
is mediated downstream to the nucleus via the Smad proteins. Phospho-Smad2
and phospho-Smad3 are necessary for activation of TGF–β target genes in the nu-
cleus. Interestingly, while phospho-Smad3 is able to directly bind DNA sequences,
phospho-Smad2 does not has this property. Phospho-Smad2 can only affect TGF–β
target genes when binding concomitantly with phospho-Smad3 to DNA [192, 193].
Several experiments in this section provide further evidence that Smad3 is a key sig-
naling protein for TGF–β signaling. Overexpression of the Smad3 protein resulted in
a strong activation of the TGF–β target gene sequence p(CAGA)9, whereas Smad3
knockdown damped TGF–β signaling massively (figure 10). Interestingly, TGF–β
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Figure 10: Smad3 modulates responsiveness to TGF–β and ATRA in NIH/3T3 cells.

(A) To validate the expression of smad3 (with ATRA alone or in combination with TGF–β) a
luminescence-based dual luciferase assay was performed employing p(CAGA)9-luc and pRL-SV40,
in the presence of either pIRES::smad3 , or pIRES as empty vector. (B) The smad3 gene expression
was knocked-down by siRNA transfection, and the effects of ATRA and TGF–β, alone, or in
combination, were assessed in a luminescence-based dual luciferase assay employing p(CAGA)9-
luc and pRL-SV40. Data indicate mean ± S.D., statistically significant differences (P -values of
p<0.05 shown as *, p<0.01 shown as ** or p<0.001 shown as ***) were studied by ANOVA
followed by a Bonferroni post-hoc test. Samples were measured in quadruplicates (C). The impact
of the overexpression of smad3 in NIH/3T3 cells on Smad2/3 levels was assessed by immunoblot,
employing pIRES::smad3 for smad3 overexpression, or pIRES as empty vector. (D), The impact
of reduced smad3 expression on total Smad2/3 levels induced by ATRA and TGF–β stimulation
(alone, or in combination), was assessed by immunoblot. These data is representative of three
independent experiments.

signaling was not totally abolished in cells lacking Smad3, evidencing that TGF–β
downstream signaling is not only mediated by Smad3.

6.9 Smad3 is crucial for TGF–β signaling in NIH/3T3 cells

To examine the functional contribution of Smad3 to TGF–β signaling, the gene ex-
pression of smad3 was ablated by transfection of NIH/3T3 cells with siRNA directed
against smad3 and with scrambled siRNA serving as a negative control. Performing
real time RT-PCR smad3 mRNA levels were reduced in a dose dependet pattern.
Transfection with 25 nM siRNA resulted in 0.367 ± 0.1635-fold increase, 50 nM
siRNA in 0.0558 ± 0.097-fold decrease, 100 nM siRNA in 1.323 ± 0.0686-fold and 200
nM siRNA in 1.722 ± 0.08372-fold decrease, respectively. Using a luciferase-based
DLR assay, TGF–β signaling was damped with increased doses of smad3 siRNA,

64



evidenced by a significant decrease of the TGF–β sensitive p(CAGA)9-luc/Renilla
ratio (figure 11 panel B), confirming that smad3 is necessary for TGF–β signal-
ing. Consistent with these data presented in panel B, immunoblot analysis from
NIH/3T3 cells transfected with smad3 siRNA resulted in decreased levels of smad3
with increasing doses of smad3 siRNA, (panel C). These DLR data as well as the
real time RT-PCR and immunoblot data confirm that smad3 impacts the respon-
siveness to TGF–β in a dose dependent manner. The means of quadruplicates ±
S.D. are shown, representative of three independent experiments

Figure 11: Dose dependent effects of Smad 3 expression on TGF–β signaling. Expression
of the Smad3 molecule was assessed by real-time RT-PCR in NIH/3T3 cells. Expression of the
smad3 gene was significantly reduced with increasing doses of smad3 siRNA. Changes in mRNA
expression levels for the real time RT-PCR are reflected as fold change, ��CT values. Data
represent mean ± S.D., statistically significant differences (P -values of p<0.05; by ANOVA followed
by a Bonferroni post-hoc test) are marked by *, n=3. Samples were measured in duplicates (A). The
expression of smad3 was ablated by siRNA-mediated knock-down, and the induction of p(CAGA)9-
luc was assessed in a luminescence-based dual luciferase assay employing p(CAGA)9-luc and pRL-
SV40. Data represent mean ± S.D., statistically significant differences (P -values of p<0.05; by
ANOVA followed by a Bonferroni post-hoc test) are marked by *, n=3. Samples were measured
in quadruplicates (B). The efficiency of Smad3 knock-down mediated by siRNA was confirmed by
immunoblot, where the faint Smad3 band is almost lost from NIH/3T3 cell extracts. β-actin served
as a loading control (C). Data are representative of three independent experiments.
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7 Discussion

Bronchopulmonary dysplasia remains one of the main reasons for morbidity in pre-
term infants with a birth weight below 1000 g [40]. Depending on regional differences
and treatment options, approximately 30% of the affected children later develop
BPD and a lot of the diseased children are at risk for developing pulmonological
and neurological complications [194]. Therefore, BPD bears an importance until
adulthood since the associated complications are able to impact the entire period of
life including emotional stress for affected families and high costs for health systems
[195].

Considering the pathogenesis of BPD, a multifactorial etiology has been discussed
and several factors are currently described which may contribute to the development
of the disease. Hyperoxia is mentioned not as obligate, but as very important factor
for disease progression [99, 37, 102]. Several studies validated this theory in animal
models where chronic hyperoxia was able to negatively affect normal postnatal lung
maturation [196, 95]. This study focused on the TGF–β signaling pathway which
is known to be dysregulated in BPD [56] and retinoic acid which is an important
regulator of lung development [75], and has been discussed as a treatment option
for BPD [187, 186]. Particular attention was paid to the interaction of the TGF–β
and retinoic acid pathway.

7.1 TGF–β signaling is critical for lung development

TGF–β signaling is required for both early and late lung development, although this
requirement needs to be finely-tuned since too much and too little TGF–β signaling
negatively impacts alveolarization [175, 143, 176]. Several studies have addressed
the impact of TGF–β signaling in the developing lung [179, 177, 175]. The necessity
of TGF–β signaling for lung development was proven in a study where complete
blockade of TGF–β signaling by ablation of Smad3 in neonatal mice arrested alve-
olarization [176]. On the other hand, too much TGF–β signaling also negatively
affects proper lung development as excessive TGF–β during lung development also
inhibits alveolarization [143, 175].

In this study, the fibroblast derived NIH/3T3 cell line and the MLE-12 distal
epithelial cell line were investigated. Both, fibroblast and epithelial cells are impor-
tant for lung development and are present in the mouse lung [1, 197]. A critical
hallmark of late lung development is the process of alveolarization, in which TGF–β
plays a key role [9]. It was shown that TGF–β signaling molecules Smad2, Smad3
and Smad4 are present during this phase of late lung development [198]. Alejandre-
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Alcázar et al. revealed changing patterns of expression of Smad2 and Smad3 during
this phase of lung development, suggesting a critical role of these two molecules in
the process of alveolariziation [179]. Generally speaking, as normal lung develop-
ment proceeds, there is reduced TGF–β signaling and progressively decreasing Smad
expression levels. In contrast, when lung development is disturbed by high oxygen
concentrations, this pattern of Smad expression (and TGF–β signaling) is altered,
where prolonged “high” Smad2 and Smad3 expression levels, and increased TGF–β
signaling, are associated with disturbances to alveolarization [177].

The observations on Smad3 expression and TGF–β signaling reported here, where
ATRA can increase Smad3 protein levels in NIH/3T3 cells, and can thus potentially
increase TGF–β signaling in the developing lung, are consistent with findings from
in vivo studies reporting that too much ATRA can negatively influence lung devel-
opment [4]. Similarly, in a clinical setting, ATRA (or vitamin A) administration in
clinical trails has failed to prove beneficial effects when used in pre-term infants at
risk for BPD [199, 187].

7.2 Vitamin A is critical for lung development

Vitamin A is known to be involved in numerous processes in the lung including
maturation, lung repair after injury, and the maintenance and integrity of lung
structure [180]. The RA pathway can effect all stages of lung development, and
RA signaling needs to be finely tuned to promote proper lung maturation [200, 201,
4]. Given the crucial role of vitamin A in the respiratory system, led to several
studies which investigated the vitamin A pathway as a target to promote proper
lung development and to restore normal alveolar spaces [181, 202]. As the lung
architecture is damaged during BPD [68], several groups have assessed the impact
or RA in models of BPD [203, 182, 184]. RA is discussed as a treatment option in
preterm children suffering from BPD [204], even though clinical trials could reveal
only minimal beneficial effects of RA administration [187, 199].

7.3 ATRA affects Smad3 protein levels in culture

In the present study, complex effects of ATRA on the TGF–β signaling cascade
were identified. The expression of components of the TGF–β machinery, including
downstream signaling molecules Smad2 and Smad3, as well as the levels of phospho-
Smad2 and phospho-Smad3, were assessed in NIH/3T3 cells. ATRA was able to in-
crease the phospho-Smad2 and phospho-Smad3 levels significantly in NIH/3T3 cells
(analyzed via Western blot, section 6.2). This effect was enhanced when TGF–β was
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administered to the ATRA treated cells concomitantly (section 6.2). Interestingly,
while TGF–β alone (or vehicle alone) did not change total Smad3 levels, administra-
tion of ATRA alone was able to increase the abundance of total Smad3 significantly
(figure 2). In addition, mRNA levels of Smad3 assessed by real time RT-PCR re-
vealed a significant increase in smad3 mRNA levels in NIH/3T3 cells exposed to
ATRA (section 6.6). Interestingly, supporting data for an interplay of Smad3 and
TGF–β signaling has been described by other authors in other cell types. One study
has revealed that RA binds directly to and sequesters Smad proteins [205] in human
lung fibroblasts; and another study identified RA to be able to increase both nuclear
and cytoplasmic expression of Smad3 in adipocytes [206].

Smad3 and RA interaction was further investigated using a luciferase-based tran-
scriptional reporter assay, employing the specific TGF–β responsive promoter ele-
ment p(CAGA)9. Increased TGF–β signaling in cells exposed to TGF–β and ATRA
together were identified (figure 1). However, cells exposed to ATRA alone did not
have an increased activity of the p(CAGA)9 promoter element (figure 1). This im-
portant observation suggested that ATRA could alter the expression of the TGF–β
signaling machinery in TGF–β treated cells, which would have consequences for
TGF–β signaling in those cells. To this end, the expression of key TGF–β receptors
and key TGF–β intracellular signaling molecules was determined in cells treated
with ATRA (section 6.6). While ATRA did have the ability to influence expression
levels of a variety of molecules, only Smad3 expression was significantly impacted by
ATRA treatment (figure 8). This finding has, to our knowledge, not been described
in literature so far.

7.4 Retinoids regulate TGF–β signaling at the level of Smad3

in NIH/3T3 cells

It was also aim of this study to investigate how changing Smad3 lelvels might affect
TGF–β signaling in NIH/3T3 cells. Smad3 was overexpressed in NIH/3T3 cells,
and the activity of the TGF–β machinery was assessed by DLR using the promoter
element p(CAGA)9 as well as by Western blot analysis for phospho-Smad2 and
phospho-Smad3 (figure 10). In NIH/3T3 cells transfected with the smad3 gene,
increased baseline p(CAGA)9 activity was noted, even in the absence of exogenous
TGF–β. Thus, the overexpression of the smad3 gene may have made the NIH/3T3
cells “more sensitive” to TGF–β already present in the fetal calf serum in the cell-
culture medium. When cells overexpressing smad3 were stimulated with exogenous
TGF–β, the p(CAGA)9 signal was dramatically elevated, consistent with this the-
ory. Thus, it seems that when Smad3 levels are increased, as would be the case after
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exposure to ATRA, the TGF–β signaling capacity of the cell is also increased. In-
terestingly, when NIH/3T3 cells that overexpress smad3 were stimulated first with
ATRA and then with exogenous TGF–β, a further enhancement of the p(CAGA)9

signal was noted (figure 10). This may reflect the added Smad3 expression driven
by ATRA, on top of the over-expression driven by the pIRES::smad3 vector.

A Smad3 knockdown approach was also employed, where Smad3 was depleted
from NIH/3T3 cells by a siRNA-mediated approach. When Smad3 was depleted
from NIH/3T3 cells, a strong decrease in the p(CAGA)9 signal was noted. Indeed,
the same p(CAGA)9 signal was obtained after TGF–β stimulation, irrespective of
whether cells were concomitantly stimulated with ATRA or vehicle alone (figure
10). These data support the idea that the impact of ATRA on Smad3 signaling is
attributable largely to the effects of ATRA on Smad3 levels in NIH/3T3 cells.

The question of whether the levels of Smad3 induced by ATRA in NIH/3T3
cells were sufficient to alter TGF–β signaling was also addressed. In this experi-
mental setting a dose range of smad3 siRNA was employed, to knock down smad3
expression levels to varying degrees, and the impact of different smad3 expression
levels on TGF–β signaling (assessed by p(CAGA)9 reporter) was investigated (fig-
ure 11). It is clear from these data that a change of one �CT in smad3 expression
levels is sufficient to generate a significant change in p(CAGA)9 responsiveness to
exogenous TGF–β stimulation. In NIH/3T3 cells treated with ATRA, the smad3
expression levels changed by up to three �CT units. To summarize, the levels to
which ATRA may influence smad3 gene expression are certainly relevant in terms
of TGF–β signaling.

Interestingly, other studies have reported an interplay of RA and TGF–β signal-
ing in other cell types [207, 205]. It has been shown in mink lung epithelial (MvIlu)
cells that TGF–β signaling and the RA pathway might cooperate with each other
and thus result in an inhibition of cell growth via Smad proteins [207]. Further inves-
tigation revealed an interplay of Smad3 with TGF–β signaling in human embryonic
kidney (HEK) 293 cells [207]. Smad3 phosphorylation by TGF–β was enhanced
due to specific interaction of the RA receptor (RAR)-α and Smad3. It was shown
that Smad3 and RAR-α cross-talk with each other in a TGF–β-dependent manner,
extending the knowledge about an interaction of these two pathways [207]. Further
evidence for an interplay of the two molecules was provided by Pendaries where
the MH2 domain of Smad3 was identified to interact directly with the RARγ [205]
and studies done in NIH/3T3 cells demonstrated RA to regulate nuclear uptake of
Smad2 and the availability of Smad2 for phosphorylation [203]. Taken together,
several studies support that RA is able to affect downstream signaling molecules
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(Smads) of the TGF–β machinery.
But what is the role of Smad3 for lung development, and how might lung matura-

tion be affected by changing levels of Smad3? In this study, the impact of changing
levels of Smad3 on TGF–β signaling in NIH/3T3 cells - a model for lung fibroblasts
- was assessed. It was revealed that ATRA can increase Smad3 levels in NIH/3T3
cells, leading to increased TGF–β signaling (figure 2 and 1). Further evidence for
a potentially negative impact of increased TGF–β signaling for lung development
and specifically increased levels of Smad3 is given by other authors where it was
shown that Smad3 ablation resulted in stimulation of embryonic lung branching
and maturation [208]. As Smad3 levels were identified to be physiologically reduced
during late lung development [179], and a potentially negative effect of too much
Smad3 during lung development has been suggested [208], the increased abundance
of Smad3 in response to ATRA administration seen in this study should be kept in
mind when considering ATRA administration for the treatment of BPD.

As fibroblasts are believed to be key players in lung development, the modu-
lation of fibroblast function by TGF–β is potentially important, particularly since
increased levels of TGF–β signaling in the developing lung have been accredited with
a negative impact on lung development [68, 209]. How might this occur? Fibroblasts
are key producers of the lung ECM, including collagen, elastin, and other ECM com-
ponents [177]. The production of ECM components by fibroblasts is largely TGF–β
regulated [210]. Thus, the increased TGF–β signaling in fibroblasts, as a conse-
quence of ATRA exposure, may well cause the production of too much ECM, or
may cause an imbalance in the proper levels of the components of the ECM, leading
to difficulties in forming the correct matrix structure, or the reshaping (“remodel-
ing”) of existing matrix structures. This may well cause problems in the formation
of the lung architecture. Indeed, several studies have already reported that when
ECM production and remodeling in the lung are disturbed, there is a strong impact
on alveolarization [211, 212].

The use of retinoids such as ATRA and vitamin A, is currently debated as a
means to improve lung development in patients where lung development is usually
less effective or abnormal, such as in premature infants with respiratory distress
syndrome, who are at risk for BPD [187, 199]. However, the clinical trials attempted
to date have yielded conflicting and often unsatisfactory results [199, 79, 187]. It may
well be that ATRA or vitamin A supplementation have different effects on different
cell types in the lung, and the underlying pathology may influence whether ATRA or
retinoids in general have an overall positive or negative effect. For example, ATRA
is thought to impact epithelial cell differentiation [213], which is also relevant to lung
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development. The balance of a “good” effect on epithelial cells may overcome the
“bad” effect on fibroblasts, to yield an overall improvement, however the reverse may
also be true. As such, the complex effects of retinoids on different cell types may
account - in part - for the failure of retinoids as a therapeutic option in a clinical
setting.

The morphogenesis of the developing lung is also affected by changing levels of
RA binding receptors [159]. As previously said, ATRA exerts effects by binding to
the RAR (section 2.11). During lung development, levels of RA are finely tuned
by several enzymes causing degradation as well as synthesis of RA, which modifies
the usage of RA [4, 214, 215]. Interestingly, prolonged high concentrations of RA
exposure are able to activate RAR receptors in the lung [4], and there have been
increasing evidence that abnormal activation of RARs in the lung seems to negatively
influence lung maturation, characterized by failure to form typical distal buds [4].
Hence, it can be speculated that the constant application of vitamin A might have a
negative affect on lung maturation through activation of RAR receptors in the lung.

Furthermore, the RARα was described to be critically involved in lung matu-
ration and differentiation [216]. Downregulation of the receptor is necessary for
development of alveolar type I and type II pneumocytes [217]. Interestingly, Smad3
has been described to directly interplay with the RARα [207], and in this study,
increased levels of Smad3 have been identified in NIH/3T3 cells exposed to ATRA
(section 6.4). Hence, it can be speculated that ATRA might negatively affected lung
maturation by increasing Smad3 levels, which then might increase the activation of
the RARα.

7.5 Perspectives and conclusion

To summarize these findings in this study, the TGF–β signaling pathway inter-
plays with vitamin A. Increased activity of the TGF–β machinery could be appreci-
ated in cells exposed to ATRA and TGF–β, and Smad3 is suggested to be involved in
this process. In addition genes important for pulmonary remodeling, including ser-
pine1 and ctgf have also been modulated by vitamin A. In summary, novel findings
in this study can be summarized as follows:

• ATRA is able to enhance TGF–β signaling in NIH/3T3 fibroblasts.

• ATRA exhibits an effect on TGF–β signaling through modulation of the ex-
pression of Smad3.

In this study, the NIH/3T3 cells and MLE-12 cell lines were employed, which are
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both derived from the mouse. NIH/3T3 cells and MLE-12 cells have been used
already in previous studies where TGF–β signaling has been investigated in the
context of BPD. Numerous studies employed NIH/3T3 cells in order to understand
lung fibrosis and TGF–β signaling in the developing lung [218, 219, 220, 221]. How-
ever, some studies employed at the same time primary cells lines or even performed
experiments in animals [177, 212]. It is a weakness of this study that experiments
were only performed in NIH/3T3 cells and MLE-12 cells rather than primary cell
lines as well. Hence, results from this study have to be interpreted with caution
and can only be in parts transferred to in vivo conditions. Also, it may well be that
retinoids have very different effects on different cell types, which would be important
to know, when considering the effects in the context of the entire lung, not only the
fibroblast compartment.

Future studies should comply with current recommendations how to control gene
expression levels. Currently, at least three house-keeping genes are recommended.
Even though gene expression levels of the house-keeping gene gapdh did not change
througout the represented experiments, it is a weakness of this study that only
one house-keeping gene was employed and the here presented results should be
intepreteted with caution.

There are established models for BPD in mice, and TGF–β signaling has been
studied closely in several studies [177, 179, 202]. It would be advisable to study the
effect of ATRA on the TGF–β machinery, with special focus on Smad3 in a mouse
model of BDP. Investigating the interplay of ATRA and TGF–β in vivo from whole
lung homogenates is advantageous since not only lung fibroblasts and epithelial cells
which were the focus of this study are investigated, but also all the other cells which
are parts of the lung including for example smooth muscle cells and endothelial cells.
In addition, histomorphometric analyzation can then be performed from the mice
lungs using the mean linear intercept which is inversely proportional to the alveolar
surface area [1, 222, 223] and is commonly employed to study lung architecture.
Furthermore, the mean septal thickness could be assessed, calculated by the width
of alveolar septs divided by their number [5, 223] which might provide a further
understanding of the lung architecture.

In summary, the present study reveals new and interesting evidence for a direct
interplay of ATRA and TGF–β signaling in a lung fibroblast cell-line model. This
interaction highlights the interaction of two key pathways that regulate lung devel-
opment, extending the knowledge from previous studies about these systems. It is
still not known what cross-talk exists of vitamin A and TGF–β signaling in primary
cell lines and in in vivo models of BPD. Transferring experiments from this study
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to primary cells as well as in a mouse model of BPD, which are closer to in vivo
conditions might reveal further insights. It was mentioned, that TGF–β signaling
cross-talks with other signaling pathways as well. It remains to be assessed whether
the impact of ATRA on TGF–β signaling in lung fibroblasts is advantageous or
deleterious. The crucial importance of vitamin A for lung development, as well
as the desperate need for therapeutic treatment options for BPD justifies further
experiments in this field.
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8 Abstract

There is currently much interest in using retinoids such as all–trans retinoic acid
(ATRA), or retinoid analogs such as vitamin A (retinol), in the management of pre-
mature neonates at risk for the development of bronchopulmonary dysplasia (BPD).
Current clinical evidence is contradictory, with some reports suggesting benefits,
while other reports suggest no impact, or a deleterious effect of retinoid administra-
tion. In contrast, retinoids generally perform very well in animal models of BPD,
and serve to stimulate lung development, particularly alveolarization. In this study,
we attempted to evaluate the impact of retinoids on the activity of the transforming
growth factor (TGF)–β signaling pathway, a pathway that has been credited with
high importance in driving lung development and alveolarization.

We employed NIH/3T3 mouse fibroblasts to study the impact of ATRA on
TGF–β signaling. While the NIH/3T3 cell line differs in some important aspects to
that of lung fibroblasts, it is reasonable to assume that NIH/3T3 have a similar bio-
logical behavior to that of airway fibroblasts in tissue. We observed that ATRA had
a dramatic effect on TGF–β signaling in NIH/3T3 cells. Pre-treatment of NIH/3T3
cells with ATRA caused a strong increase in TGF–β signaling, as assessed by phos-
phorylation of Smad3, and by a luciferase-based promoter-reporter assay. Further
studies revealed that this effect was caused by the ability of ATRA to strongly
increase Smad3 expression levels in NIH/3T3 cells. Using plasmid-mediated over-
expression of the smad3 gene, we confirmed these observations, and showed that
increased Smad3 levels in NIH/3T3 cells can indeed make the NIH/3T3 cells more
responsive to TGF–β. To further support these data, we also down-regulated smad3
gene expression using siRNA directed against Smad3, and demonstrated that by
down-regulating smad3 expression, the pro-TGF–β signaling effect of ATRA was
lost. We also demonstrated that the degree of change in smad3 gene expression
caused by ATRA stimulation is sufficient to cause a significant change in the TGF–β
signaling pathway.

Together, these data demonstrate that ATRA administration can upregulate
TGF–β signaling in NIH/3T3 cells. This may have important consequences for lung
development, since TGF–β drives multiple fibroblast functions such as extracellular
matrix (ECM) production, as well as ECM reshaping in developing organs. Future
studies should address the cross-talk of TGF–β and retinoid signaling on other lung
cell types, primary cells, and in animal models of BPD, in order to complete the pic-
ture of how retinoids may influence lung organogenesis. With a better understanding
about the impact of retinoids on lung fibroblasts function and lung development one
might be able to optimize the administration of retinoids in patients with BPD and
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thus improve clinical outcome.

9 Zusammenfassung

Aktuell besteht ein großes Forschungsinteresse in der Verwendung von Retinoiden
wie Vitamin A Säure (englisch: all–trans retinoic acid (ATRA)) oder Retinoid-
Analoga wie Vitamin A (Retinol) bei der Behandlung von Frühgeborenen, welche
an Bronchopulmonaler Dysplasie (BPD) erkrankt sind. Der klinische Effekt von
Vitamin A bei der Behandlung von BPD ist sehr widersprüchlich. Manche Stu-
dien berichten Erfolge, wobei andere Studien keinen Effekt oder sogar schädliche
Auswirkungen bei der Verwendung von Vitamin A berichten. Hierzu steht im Wider-
spruch, dass Retinoide meist eine sehr gute Wirksamkeit in BPD Tiermodellen
zeigen, wo sie die Lungen-entwicklung, insbesondere die Alveolarisierung fördern.
In dieser Studie untersuchten wir die Auswirkung von Retinoiden auf die trans-
formierende Wachstumsfaktor–β (eng-lisch: transforming growth factor (TGF)–β)
Signalkaskade. Der TGF–β Signalkas-kade wird eine wichtige Bedeutung für die
Lungenentwicklung und Alveolarisierung zugeschrieben.

Zur Untersuchung des Einflusses von ATRA auf die TGF–β Signalkaskade ver-
wendeten wir NIH/3T3 Maus-Fibroblasten. Diese unterscheiden sich in einigen
wichtigen Aspekten von Lungenfibroblasten, jedoch wird angenommen, dass NIH/3T3
Zellen ähnliche biologische Funktionen wie Lungenfibroblasten erfüllen. Wir kon-
nten zeigen, dass ATRA einen dramatischen Effekt auf die TGF–β Signalkaskade
in NIH/3T3 Zellen hat. Die Vorbehandlung von NIH/3T3 Zellen mit ATRA re-
sultierte in einer starken Zunahme der TGF–β Signaltransduktion, was durch die
Bestimmung der Phosphorilisierung von Smad3 und in einem Luciferase Promoter-
Assay untersucht wurde. Weiterhin konn-te gezeigt werden, dass dieser Effekt durch
ATRA hervorgerufen wurde, welches die Fähigkeit besitzt, die Smad3 Expression in
NIH/3T3 Zellen zu erhöhen. Wir konnten mit Hilfe einer Plasmid-vermittelten
Überexpression des smad3 Gens diese Beobachtung bestätigen und konnten zeigen,
dass durch eine Erhöhung von Smad3 in NIH/3T3 Zellen diese Zellen gegenüber
TGF–β sensibilisiert werden. Um diese Beobachtung zu bestätigen, unterdrück-
ten wir die Smad3 Gen Expression unter der Verwendung von siRNA gegen smad3
und zeigten durch die Reduktion der smad3 Expression einen Verlust der ATRA-
abhängigen TGF–β Stimulation. Des Weiteren konnte beobachtet werden, dass das
Ausmaß der smad3 Gen Expression durch ATRA intensiv genug ist, um signifikante
Veränderungen in der TGF–β Signalkaskade zur Folge zu haben.

Zusammenfassend konnte festgestellt werden, dass die Administration von ATRA
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die Aktivität der TGF–β Signalkaskade in NIH/3T3 Zellen erhöhen kann. Diese
Beobachtung könnte wichtige Auswirkungen auf die Lungenentwicklung haben, da
TGF–β verschiedene Funktionen von Fibroblasten reguliert. Hierzu zählt die Pro-
duktion von extrazellurärer Matrix (ECM), aber auch der Umbau der ECM bei sich
entwickelnden Organen. Ergebnisse dieser Studie bilden eine Basis für zukünftige
Studien, welche die Interaktion von TGF–β und Retinoiden in anderen Zelltypen
wie z.B. primären Zellen, aber auch in BPD Tiermodellen untersuchen sollten, um
den Einfluss von Retinoiden bei der Organentwicklung weiter zu verstehen. Mit
einem besseren Verständnis über die Bedeutung von Retinoiden auf die Funktion
von Fibroblasten und auf die Lungenent-wicklung besteht das Potential, den ther-
apeutischen Einsatz von Retinoiden bei BPD zu optimieren und den Verlauf der
Erkrankung positiv zu beinflussen.
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11 Appendix

Figure 12: The pGEM-T Easy vector map. This figure is modified from Promega (Promega
Germany, www.promega.com).

Figure 13: The pIRES-hrGFPII vector map. This figure is modified from Agilent (Agilent
USA, www.agilent.com).
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Figure 14: The pRL-SV40 vector map. This figure is modified from Promega (Promega
Germany, www.promega.com).

Figure 15: The pGL3-basic vector map. This figure is modified from Promega (Promega
Germany, www.promega.com).
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Figure 16: The pRL–TK vector map. This figure is modified from Promega (Promega Germany,
www.promega.com).
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