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 Introduction 

 

1.1 Lung anatomy and respiratory system 

The lungs are the main organs of the respiratory system in humans as well as many other 

animals and are crucial for gas exchange. In humans, the right lung consists of three, 

while the left lung consists of two major lobes because of the asymmetrical placement 

of the heart 1, 2. The lung lies along the upper and lower respiratory tract. The upper 

respiratory tract consists of nose, nasal cavity, sinuses, and pharynx3, while the lower 

respiratory tract consists of trachea, main bronchus, lobar bronchus, segmental 

bronchus, subsegmental bronchus, conducting bronchiole, terminal bronchiole, 

respiratory bronchiole, alveolar duct, alveolar sac and alveolus4. Human and other 

mammals are critically dependent on gas exchange, which takes place in the alveoli. 

They need oxygen (O2) for energy production and have to dismiss the produced carbon 

dioxide (CO2). O2 is required for a metabolic process called cellular respiration, which 

takes place in the mitochondria. Cellular respiration converts biochemical energy from 

nutrients into adenosine triphosphate (ATP)5. Those steps involve an electron transfer 

to O2
5
. There are two types of cellular respiration, aerobic and anaerobic respiration. 

Aerobic respiration requires O2, however when O2 is limited , anaerobic respiration is 

used for survival6. Aerobic respiration makes total 30-32 ATP while anaerobic 

respiration 2 ATP. ATP has a role in providing energy to cells, regulating biochemical 

processes, driving active transport of macromolecules (proteins and lipids) into and out 

of the cell, cell signaling and muscle contraction7. In this regard, the respiratory system 

has a critical function in keeping the organism alive5. 

When atmospheric air has been brought to the surface of the lungs, O2 will start moving 

from the air space (alveoli) into the blood (alveolar capillaries). Oxygenated blood is 

then pumped via the left ventricle into the systemic circulation, delivering O2 to the 

body´s cells. CO2 moves the reverse direction5. CO2 is produced during cellular 

respiration. It moves out from the cells, enters the bloodstream, moves back to the lungs, 

and is then expired out of the body during exhalation8. Both O2 and CO2 move passively 

via diffusion. Diffusion describes the movement of molecules from a higher to a lower 

concentration9. If there is an increase in the surface area of the lung for gas exchange, 

the O2 diffusion rate increases5. In the lung, a partial pressure gradient for O2 and CO2 

exists. Since the partial pressure of O2 (PO2) in the atmosphere is greater than the PO2 
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of the blood, the net diffusion of O2 is always from the atmosphere to the blood and for 

CO2 vice versa9. Next to the surface area size, the thickness of the diffusion barrier 

affects the diffusion rate5. An increase in the alveolar-capillary membrane thickness, 

leads to an attenuated diffusion5. Thus, an optimal respiratory system should have the 

following main features:  

1) A short distance for O2 and CO2 diffusion,  

2) A large surface area for gas exchange  

3) A system that maximizes the partial pressure gradient for O2 and CO2 and avoids 

edema formation5.  

Pulmonary edema is characterized by an abnormal accumulation of fluid in the lung 

impairing gas exchange10, due to an increase in diffusion distance. Since humans have 

high metabolic rates and high requirements for O2, the human respiratory system is 

associated with those main features for maximizing the rate of O2 uptake from the 

atmosphere5. The human respiratory system has a large surface area for gas exchange 

(100m²-145 m2) and an excessively thin but robust barrier (0.2 µm) for gas diffusion5, 

11. 

The respiratory system, which is critically involved in gas exchange, closely works with 

the circulatory system. The blood circulatory system, also called cardiovascular system, 

contains the heart and a network of blood vessels, delivering nutrients and O2 via the 

blood stream to all body´s cells12. Arteries carry the blood away from the heart, whereas 

veins carry the blood back to the heart12. The system of blood vessels has a tree-like 

structure. The main artery (aorta) branches into large arteries, smaller vessels, a 

capillary network and finally to a network of tiny vessels12. Pulmonary artery and 

bronchus lie next to each other, keeping diffusion distance as short as possible, ensuring 

optimal blood oxygenation under physiological conditions12.  

However, besides the structure of the air-blood barrier and the close proximity of 

bronchus and artery, there is a physiological phenomenon called hypoxic pulmonary 

vasoconstriction (HPV), increasing the efficiency of gas exchange.   
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1.2 Hypoxic pulmonary vasoconstriction 

Hypoxic pulmonary vasoconstriction (HPV) is a vascular feedback control mechanism 

in the lung, which was first described by von Euler and Liljestrand in 194613. In this 

mechanism, a drop in alveolar O2 concentration (hypoxia) causes a constriction of small 

pulmonary vessels, shifting blood away from poorly ventilated (hypoxic) areas into 

better ventilated (normoxic) areas of the lung, ensuring optimal blood oxygenation 

(Figure 1)14. The effect of hypoxia differs in the pulmonary and systemic circulation, 

which typically vasodilates in response to hypoxia15. In the lung, acute, regional 

hypoxia and HPV occurring within seconds to minutes is beneficial, matching perfusion 

of the lung to ventilation. However, global hypoxia and thus generalized HPV due to 

chronic hypoxia, which occurs at high altitude or during respiratory diseases, is 

detrimental16. Generalized HPV leads to a global increase in pulmonary vascular 

resistance (PVR) and mean pulmonary arterial pressure (mPAP)17. Moreover, under 

generalized hypoxia, vasoconstriction is fixed by pulmonary vascular remodeling 

leading to PH. In addition to vessel constriction, pulmonary vascular remodeling causes 

vessel lumen obliteration and vessel wall thickening, leading to insufficient oxygenation 

of arterial blood and poor oxygen supply of the body17. The condition of chronic 

elevated mPAP within the pulmonary arteries is known as pulmonary hypertension 

(PH)17. 

 

 

 

 

 

 

Optimization of gas exchange by matching perfusion to ventilation. In a healthy individual, 

blood flow is directed to the areas of the lung that are well ventilated and oxygenated (O2) 

(depicted by large blue circles). Here, an optimal gas exchange and oxygenation of the blood 

(shown in red) is ensured. A very small proportion of the blood reaches areas that are badly 

ventilated and oxygenated (smaller and medium blue circles). In individuals with lung diseases, 

the mechanism of hypoxic pulmonary vasoconstriction is disturbed, causing perfusion of not or 

poorly ventilated areas of the lung and thus leads to a reduced/decreased oxygenation of the 

blood (shown in blue/purple). Blue arrows show the constriction of pulmonary arteries, black 

arrows show the direction of blood flow. The big circles symbolize a high, small a low pO2
18

. 
(Figure is reproduced with permission of the © ERS 2019). 

Figure 1: Hypoxic pulmonary vasoconstriction 
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1.3 Pulmonary hypertension 

Pulmonary hypertension (PH) is a severe disease, causing high mortality19. The 

estimated prevalence of PH is about 15 cases per million patients20. PH is a 

pathophysiological condition defined by an increase in the mPAP of ≥ 25 mmHg at rest, 

accompanied by right heart hypertrophy and eventually right heart failure21, 22. 

Early symptoms of PH include shortness of breath during routine activity, chest pain, 

fatigue, racing heartbeat, decreased appetite and pain in the upper right side of the 

abdomen. Later symptoms include feeling light-headed especially during physical 

activity, fainting, bluish lips or skin and swelling in the ankles or legs23. Factors causing 

PH are: drugs and chemicals, diseases (chronic obstructive lung disease (COPD), 

scleroderma, human immunodeficiency virus (HIV), liver cirrhosis, etcetera), 

phenotype (age, gender), mutations (bone morphogenic protein receptor 2, BMPR2), 

single nucleotide polymorphisms, possible epigenetic inheritance, environmental 

triggers, chronic hypoxia, vasoconstrictor/vasodilator and/or growth factor imbalance22, 

24.  

The diagnosis of PH needs a wide evaluation such as, history of the patient, physical 

examination, laboratory tests which include biomarker testing such as brain natriuretic 

peptide and N-terminal pro-brain natriuretic peptide, pulmonary function testing, 

echocardiography, cardiac catheterization, connective tissue disease serology and some 

tests to exclude chronic thromboembolic disease21, 25. By pulmonary function testing, 

normal lung volumes or a mild restriction can be seen26. Echocardiography, which is a 

sonogram of heart, is mostly used as a first diagnostic test to check the possibility of 

PH27. However, if diagnostic evaluation suggests PH, right heart catheterization will be 

used for confirmation and determination of the severity of PH25. This helps to exclude 

left-sided heart disease25. Lung scintigraphy, computed tomography, cardiac magnetic 

resonance imaging, positron emission tomography scanning and exercise testing are 

used as well28. To see the enlarged central pulmonary arteries and right heart dilation, 

chest radiographs are performed. Electrocardiogram, which records the electrical 

activity of heart, can show right axis deviation and RV hypertrophy26. 

PH is associated with a broad spectrum of histological patterns and abnormalities and 

occurs in a variety of clinical situations22, 29. Since it has such a diversity, a classification  
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system for PH has been developed and recently modified to organize the diseases into 

categories based on common clinical parameters, potential etiologic mechanisms and 

responses to treatment30. 

The clinical classification of PH was first proposed in 1998, during the 2nd World 

Symposium on Pulmonary Hypertension held in Evian, France31 and modified in 2003 

during the 3rd Symposium on Pulmonary Hypertension in Venice29. In the 4rd 

Symposium on Pulmonary Hypertension in Dana Point, 2008, PH was divided in five 

groups32. Group 1 is pulmonary arterial hypertension (PAH), group 2 is PH associated 

with left heart disease, group 3 is PH associated with lung diseases and/or hypoxemia, 

group 4 is PH due to chronic thrombotic and/or embolic disease and category 5 is PH 

with unclear multifactorial mechanisms. Modifications and updates were proposed in 

the 6th World Symposium on Pulmonary Hypertension held in Nice, 2018 (19, 33; Table 

1). Two subgroups “pulmonary arterial hypertension (PAH) long-term responders to 

calcium channel blockers”, due to the specific prognostic and management of these 

patients, and “PAH with overt features of venous/capillaries (pulmonary veno-occlusive 

disease/pulmonary capillary haemangiomatosis) involvement”, due to evidence 

suggesting a continuum between arterial, capillary and vein involvement in PAH were 

added in group 133. 

Table 1: Clinical classification of PH according to the 6th World Symposium in Nice, 

France (Modified from Simonneau 201833) 

1. Pulmonary Arterial Hypertension (PAH) 

 1.1 Idiopathic PAH 

  1.2 Heritable PAH 

   1.2.1 BMPR2 

   1.2.2 ALK-1, ENG, SMAD9, CAV-1, KCNK3 

   1.2.3 Unknown 

  1.3 Drug or toxin induced 

  1.4 Associated with: 

   1.4.1 Connective tissue diseases 

   1.4.2 HIV infection 

   1.4.3 Portal hypertension 

   1.4.4 Congenital heart disease 

   1.4.5 Schistosomiasis 
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1.5 Long-term responders to calcium channel blockers 

1.6 With overt features of venous/capillaries  

1.7 Persistent pulmonary hypertension of the newborn (PPHN) 

2. Pulmonary hypertension due to left heart disease 

 2.1 Due to heart failure with preserved LVEF 

  2.2 Due to heart failure with reduced LVEF 

  2.3 Valvular heart disease 

 2.4 Congenital/acquired cardiovascular conditions leading to post-capillary     

            PH 

3. Pulmonary hypertension due to lung disease and/or hypoxia 

 3.1 Obstructive pulmonary disease  

 3.2 Restrictive lung disease  

  3.3 Other pulmonary diseases with mixed restrictive and obstructive pattern 

  3.4 Hypoxia without lung disease 

  3.5 Developmental lung disorders 

4. Pulmonary hypertension due to pulmonary artery obstructions 

4.1 Chronic thromboembolic pulmonary hypertension (CTEPH) 

4.2 Other pulmonary artery obstructions 

5. Pulmonary hypertension with unclear multifactorial mechanisms 

  5.1 Hematologic disorders 

  5.2 Systemic disorders 

  5.3 Others 

  5.4 Complex congenital heart disease 

 

BMPR2: bone morphogenetic protein receptor, type 2, ALK1: activin receptor-like kinase-1, 

HIV: human immunodeficiency virus. CAV-1:  caveolin-1, ENG: endoglin, KCNK3: potassium 

channel subfamily K member 3; LVEF: left ventricular ejection fraction; SMAD9: mothers 

against decapentaplegic 9. 

 

 Group 1 

After the 2nd World Symposium in 1998, different subcategories of Group 1 (PAH) 

have markedly developed in 2013 and additional modifications were made in the Nice 

classification. All subcategories have similar pathological abnormalities, primarily in 

the small pulmonary arterioles19. The subgroups include: 
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Idiopathic PAH  

Idiopathic PAH is a heterogeneous group, which includes idiopathic forms of the 

disease, known as idiopathic PAH (IPAH)22. In IPAH neither a family history of PAH, 

nor an identified risk factor, is known22. 

Heritable PAH 

In heritable PAH, mutations of the bone morphogenetic protein receptor type 2 

(BMPR2), a member of the tumor growth factor (TGF)-β super family, can be identified 

in 80% of the families. More rarely, mutations in other genes belonging to the TGF-β 

super family, which are activin-like receptor kinase-1 (ALK1)34, endoglin (ENG)35, and 

mothers against decapentaplegic 9 (Smad 9) can be identified in 5% of the patients 36. 

Recently, two new gene mutations have been identified, occurring in caveolin-1 

(CAV1)37 and KCNK3, a gene encoding the outwardly rectifying potassium channel 

super family K member 338. 

Drug- and Toxin-Induced Pulmonary Hypertension 

Classic drugs causing PAH include anorexigens, aminorex and fenfluramine 

derivatives, and toxic rapeseed oil39. 

PAH Associated With Connective Tissue Diseases 

The rate of prevalence of PAH in systemic sclerosis patients is between 7% and 12% 

40,41. Most of the long-term studies showed that the outcome of patients with PAH 

associated with systemic sclerosis is markedly worse than that of patients with IPAH, 

despite the use of modern therapies42. 

PAH Associated With HIV Infection 

The prevalence of PH associated with human immunodeficiency virus (HIV) infection 

has been estimated to be 0.5%43. In the early 1990s, the development of specific PAH 

drugs and highly active antiretroviral therapies were extremely poor as well as, the 

prognosis for HIV-PAH. The mortality rate in a year was 50%44.
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PAH Associated With Portal Hypertension 

Portopulmonary hypertension (POPH) means the development of PAH in association 

with elevated pressure in the portal circulation45, 46. Some of the hemodynamic studies 

revealed that, 2% to 6% of patients with portal hypertension have PH47, 48. 

PAH Associated With Congenital Heart Disease in Adults 

Untreated patients with congenital heart disease (CHD), in particular those with relevant 

systemic-to-pulmonary shunts, will develop PAH49. 

PAH Associated With Schistosomiasis 

In 2008, schistosomiasis-associated PAH (Sch-PAH) was included in Group 1. Today, 

Sch-PAH is potentially the most prevalent cause of PAH worldwide19. 

PAH long-term responders to calcium channel blockers 

In 1992, patients with an acute vasodilator response to calcium channel blockers had 

effectively improved survival when treated with long-term calcium channel blockers33. 

In 2005, 6.8% of patients had a long-term clinical and hemodynamic improvement in 

using calcium channel blockers33. Long-term response to calcium channel blockers is 

characterized by clinical improvement (New York Heart Association Functional Class 

I or II) and sustained hemodynamic improvement after at least 1 year, only using 

calcium channel blockers33.  

PAH with overt features of venous/capillaries  

Pulmonary veno-occlusive disease (PVOD) and pulmonary capillary hemangiomatosis 

(PCH) do not share common conditions with PH, but they have been categorized as 

reasons of PH32. As PVOD and PCH have similar clinical presentations and pathologic 

features, e.g. pulmonary parenchyma changes, these disorders are combined in one 

subgroup in the PH classification system22. 

Persistent pulmonary hypertension of the newborn 

Persistent pulmonary hypertension of the newborn (PPHN) is a syndrome defined by 

sustained elevation of pulmonary vascular resistance (PVR) and is often related with 

normal or low systemic vascular resistance (SVR)50. 
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 Group 2 

PH due to left heart disease belongs to group II and it is the most common cause of 

PH51. Left-sided ventricular or valvular diseases may elevate left atrial pressure, with 

passive backward transmission of the pressure that leads to elevation of PAP30. 

 Group 3 

In Group III (PH due to lung diseases and/or hypoxia), the main cause of PH is alveolar 

hypoxia22. Hypoxia in the lung can occur due to impaired control of breathing, residence 

at high altitude or lung diseases22. Triggers are chronic obstructive pulmonary disease 

(COPD), obstructive sleep apnea (OSA), interstitial lung disease (ILD), alveolar 

hypoventilation disorders, developmental lung abnormalities and chronic exposure to 

high altitude52. Elevation of pulmonary vascular resistance, inflammation of lung tissue 

and airways, fibrotic lung changes, hypoxic vasoconstriction are the main pathological 

features found in this group53. 

 

 Group 4 

Group 4 (chronic thromboembolic pulmonary hypertension) is characterized by 

occlusion of pulmonary arteries which increase PVR and mPAP54. Severe CTEPH can 

lead to right heart failure due to progressive right ventricular dysfunction54. 

 

 Group 5 

Group 5 contains several forms of PH with unclear multifactorial mechanisms22. The 

first subgroup contains several hematologic disorders 22, the second subgroup comprises 

systemic disorders, which are associated with an increased risk of developing PH55. The 

third subgroup includes metabolic disorders22 and the fourth subgroup contains a 

number of miscellaneous conditions such as tumor growth in the central pulmonary 

arteries56. The present thesis mainly deals with PH group one and three, thus in the 

following paragraphs focuses on pulmonary vascular remodeling in these two groups.
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1.4 Pulmonary vascular remodeling 

PH is characterized by pulmonary vascular remodeling, affecting all three layers of the 

blood vessel wall57. Each layer consists of a special cell type. The adventitia consists of 

fibroblasts, the media of pulmonary arterial smooth muscle cells (PASMC) and the 

intima of endothelial cells, which face the blood. Hypertrophy (cell growth) and/or 

hyperplasia (proliferation) of those cell types finally leads to lumen occlusion58. 

Stimuli inducing pulmonary vascular remodeling can be mechanical stretch and shear 

stress (physical stimuli) and/or hypoxia, vasoconstrictor/vasodilator and growth factor 

imbalance (chemical stimuli)58. 

In the adventitia, fibroblasts are activated by a variety of potentially injurious stimuli59, 

leading to increased cell proliferation, expression of contractile and extracellular matrix 

(ECM) proteins and increased secretion of chemokines, cytokines, and 

growth/angiogenic factors59, stimulating PASMC proliferation59. Moreover, hyper-

proliferative fibroblasts can differentiate in SMC, migrating in the media layer59. 

However, media hypertrophy is suggested as the main pathological hallmark of PH60. It 

takes place consistently in arteries, at all levels of the pulmonary arterial tree, and less 

constantly in veins61. Especially in distal pulmonary arteries the abnormal 

muscularization and thus the vessel lumen occlusion is of major importance, since those 

arteries are normally non-muscularized and mainly determine the pulmonary vascular 

resistance (PVR)62. The de-novo muscularization is caused by migration of PASMC 

from proximal to distal and/or by differentiation of pericytes into PASMC that 

subsequently proliferate (Figure 2)62. 

In addition to adventitial and medial changes, endothelial dysfunction contributes to 

pulmonary vascular remodeling. Under physiological conditions endothelium regulates 

vascular tone, production of growth factors, homeostasis (coagulation) and barrier 

function63. However, under pathophysiological conditions, impaired vasoconstriction, 

aberrant endothelial-mesenchymal transition and altered production of endothelial 

vasoactive mediators (nitric oxide (NO), prostacyclin, endothelin-1) and growth factors 

vascular endotheial growth factor (VEGF), platelet-derived growth factor (PDGF) 

occurs64. In addition, hyper-proliferation of endothelial cells leads to plexiform lesion 

formation63. Plexiform lesions are most abundant in small pulmonary artery branches, 

immediately after their origin from a parent artery65. They consist of proliferating 
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myofibroblasts, endothelial and/or fibrillary cells, embedded in an ECM66-68. Moreover, 

encroachment of myofibroblasts and deposition of ECM proteins leads to neo-intima 

formation69 (Figure 2) which is a characteristic response of arteries to several forms of 

injury70. The neo-intima is located between the endothelium and the internal elastic 

lamina70. Besides media hypertrophy, a rise in neo-intima increases PVR64. The initial 

stimulus or injury causing endothelial hyper-proliferation is unknown, but may include 

hypoxia, shear stress, reactive oxygen species, inflammation, or response to drugs or 

toxins on a background of genetic susceptibility63, 71. Moreover, apoptosis of endothelial 

cells (EC) and/or pericytes could lead to the loss of small precapillary arteries72. 
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Pulmonary vascular remodeling involves structural changes in the normal architecture of 

pulmonary arteries, including dysregulated proliferation, migration and apoptosis of pulmonary 

arterial smooth muscle cells (PASMC), fibroblasts and endothelial cells and deposition of 

extracellular matrix proteins. Due to PASMC dysregulation media hypertrophy (ii) and 

abnormal muscularization of previous non-muscularized distal pulmonary arteries occurs (i), 

leading to narrowing and lumen occlusion. In addition, in severe PH forms, vessel loss (iii), 

neo-intima (iv), and plexiform lesion (v) formation takes place69, 72. (Confirmation number of 

figure:1177972569). 

 

Next to vascular cells, ECM structure proteins (collagen, elastin, fibronectin, laminin, 

etc.), providing structural support of surrounding cells, contribute to vessel wall 

thickening and lumen occlusion61. The ECM has a role in determining the physical 

properties of tissues such as mechanical stability, stiffness, porosity, insolubility73 and 

characteristics of the cells within them74. Several studies showed that modifications in 

the composition of ECM lead to the onset and progression of vascular lesions75. Besides 

structure proteins, matricellular proteins are located in the ECM. They do not participate 

directly in the organization or physical properties of structures75. However, they possess 

regulatory cell functions such as angiogenesis, adhesion, migration and proliferation76-

78. They are able to modulate cell-matrix interactions and they possess binding sites for 

many cell surface receptors, growth factor receptors and ECM structure proteins79. In 

this regard, matricellular proteins are expressed at high levels during development and 

responses to injury. The original group of matricellular proteins are thrombospondin-1 

(TSP1), SPARC (secreted protein, acidic and rich in cysteine), tenascin-C, osteopontin 

(OPN) and tenascin X76-78.  

The mitogen transforming growth factor β (TGF-β), among other functions, is a potent 

modulator of ECM synthesis. It stimulates matrix synthesis in wounds and remodeling 

processes80. Other growth factors involved in dysregulation of cellular functions in PH 

are PDGF, VEGF, epidermal growth factor (EGF) and basic fibroblast growth factor 

(bFGF). They are involved in the abnormal proliferation and migration of vascular 

cells81-85. In this regard, it was shown that VEGF is highly expressed in EC of plexiform 

lesions in severe PAH86. PDGF acts as a potent mitogen and chemoattractant for SMC82. 

Both, PDGF and bFGF induce SMC and fibroblast proliferation and migration and thus 

work as key mediators in the progression of PH87. EGF is involved in a tenascin 

dependent SMC proliferation75. Studies revealed the colocalization of EGF with 

tenascin in PH lesions, suggesting a direct role in disease progression87. 

Figure 2: Pulmonary vascular remodeling. 
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Beside of growth factors there are also transcription factors (TFs) which are implicated 

in the pathogenesis of PH88. TFs are sequence-specific DNA-binding proteins that 

control the process of transcription88. Some of the TFs in PH are forkhead box O1 

(FOXO1), krüppel-like factor 4 (KLF4), peroxisome proliferator–activated receptor γ 

(PPARG1), snail family zinc finger 2 (SLUG), signal transducers and activators of 

transcription 3 (STAT3), nuclear factor of activated T-cells, cytoplasmic, calcineurin-

dependent 2 (NFATc2), hypoxia-inducible factor 1α (HIF1α) and hypoxia-inducible 

factor 2α (HIF2α)88. HIFs are main regulators of the molecular response to hypoxia and 

strongly implicated in the pathogenesis of PH by targeting genes controlling 

vascularization, cellular proliferation, migration and metabolism89, 90. 
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1.5 Treatment options 

Over the past 20 years, more and more treatment options for PH came up91, however 

PH is still not curable.  

Conventional medical therapies with oral, inhaled and intravenous options are used for 

the treatment for PH. Heart or lung transplant may also be an option depending on the 

severity of PH92. Conventional medical therapies used in PH include: Calcium channel 

blockers, Digoxin, diuretics, oxygen and Warfarin (Coumadin®)92. Calcium channel 

blockers inhibit the calcium influx in cells and thus impair calcium-dependent 

vasoconstriction. They are the first vasodilator agents used in the treatment of PH93. 

However, calcium channel blockers are only appropriate for a small minority of patients, 

demonstrating a favorable response to vasodilator-testing during heart catheterization92. 

Digoxin supports the heart contractility92. Diuretics are used to increase diuresis and 

thereby decreasing blood pressure92. Oxygen therapy helps to improve blood 

oxygenation. Patients generally inhale oxygen by a nasal cannula or a face mask92. 

Warfarin prevents blood clotting and thus thrombus formation92.  

Next to conventional treatment options, oral, inhaled or intravenous medications are 

available. For several years prostacyclin analogues, phosphodiesterase 5 (PDE-5) 

inhibitors and endothelin receptor antagonists were used for treatment of PH94. These 

medications target prostacyclin, endothelin (ET)-1, and nitric oxide (NO) pathways that 

are dysregulated in PH95.  

Prostacyclin initiates vasodilation by cyclic adenosine monophosphate and has both 

anti-proliferative and anti-coagulative effects96. Available prostacyclins are: 

Treprostinil (Orenitram®), Iloprost (Ventavis®), Treprostinil (Tyvaso™ and 

Remodulin®) and Epoprostenol (Flolan® and Veletri®)92.  

ET-1 is an efficient vasoconstrictor, which is produced and secreted by the vascular 

endothelium97. Blockage of ET -1 receptors by Macitentan on PASMC reverses 

pulmonary vasoconstriction98, 99. Next to Macitentan (Opsumit®), Ambrisentan 

(Letairis®) and Bosentan (Tracleer®) are available endothelin receptor antagonists92. 

NO vasodilates the pulmonary arterial circulation by diffusing across the alveolar-

capillary membrane into the pulmonary artery smooth muscle. It activates soluble 

guanylate cyclase and increases the levels of cyclic guanosine 3′5′-monophosphate 

(cGMP)100. 
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PDE 5 inhibitors increase endogenous cGMP levels. Available PDE 5 inhibitors for 

treatment of PH are Sildenafil (Revatio™) and Tadalafil (Adcirca®)92.  

Newer approved drugs are: Riociguat (Adempas®), Treprostinil and Selexipag 

(Uptravi®)91, 101. Riociguat is a soluble guanylate cyclase stimulator, producing cGMP, 

which causes blood vessel relaxation. The pulmonary blood pressure decreases and the 

heart function is improved102-104. The advantages of the new approved drugs are 

delaying the time of clinical worsening94, improving the  6-minute walk distance 

(6MWD), cardiopulmonary hemodynamics105 and exercise capacity94. 

Targeting those pathways improves symptoms, survival and quality of life106. However, 

many of the medications have complex administration regimens and considerations, 

along with significant side effects and monitoring requirements94. 

However, until now there is no drug available which can fully reverse PH, thus research 

is still needed, identifying new pathways and targets91. 
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1.6 Animal models of pulmonary hypertension 

Using animal models of PH is a valuable tool to study the various underlying 

pathobiological mechanisms and to test new treatment strategies107. 

The most commonly used animal models of PH are the chronic hypoxia model in 

different species and the monocrotaline injury model in rats107. Both models are widely 

available, have well-described histopathological characteristics and possess good 

reproducibility107. 

However, nowadays, various additional experimental PH models are available. Those 

models include, physically, chemically and genetically-induced models as well as single 

and multiple stimuli models (Figure 3). Every model has its specific characteristics and 

thus is used to investigate a particular category of human PH.  

 

 

 

 

 

 

 

 

 

 

Physical, chemically-induced, genetic and multiple stimuli models used in PH research108. 

 

Figure 3: List of animal models used in PH research 
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An ideal PH model reflects the key clinical, hemodynamic and histopathological 

features of human PH109. However, until now each models has its limitations. So far, 

there is no perfect and ideal animal model that fully reflects the complex 

pathophysiological changes of human PH30. There are species-specific differences and 

the three critical points of the human disease: obliteration of pulmonary arterioles, non-

reversibility and development of the right ventricle failure (RVF) are not reflected in 

each model108. In this regard, multiple stimuli approaches reflect the human disease 

better than single stimuli approaches110. However, single stimuli approaches are 

suggested to reflect the characteristics of early PH110. 

In the present thesis mice were exposed to chronic hypoxia, thus the following 

paragraphs provides more details about this specific model. 
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1.7 Chronic hypoxia-induced Pulmonary Hypertension  

In a wide variety of animal species, such as mouse, pig, rat, and cattle, normobaric 

(normal pressure but reduced O2 concentration (10% O2, balanced by N2) and hypobaric 

(O2 concentration is constant and pressure is reduced (380mmHg ≈ 5500m)) hypoxia 

are frequently used to induce PH108, 109. As variety of genetically modified mice are 

available, they are a desirable tool for studying chronic hypoxia-induced PH30.  

Pathological findings from animals exposed to chronic hypoxia are muscularization of 

small previous non-muscularized arterioles, increased mPAP and right heart 

hypertrophy30, 109. 

Besides rats, mice are the most commonly used animals in this model30. Both develop 

similar pathological changes following exposure to chronic hypoxia. However, the 

degree of remodeling and hemodynamic changes are more severe in rats108, 109. In 

normoxic mice, RVSP is between 10-20 mmHg, whereas in hypoxic mice it is between 

14-26 mmHg108. Moreover, factor of right ventricular hypertrophy (RVH) (RV/LV+S) 

in normoxic mice is 0.24, while it is 0.32 in hypoxic mice108. In normoxic rats, RVSP 

is 21 mmHg and in hypoxic rats is 47 mmHg111. RVH in normoxic rats is 0.18 and in 

hypoxic rats 0.44112. 

Limitations of the chronic hypoxia-induced animal models are;  

1) The response to hypoxia is variable among animal species and age of animals, 

2) There is a lack of right ventricular failure109  

3) There is no intimal cell proliferation and  

4) There are no complex pulmonary vascular lesions.  

Moreover, when the hypoxic stimulus stops and mice/rats re-oxygenate to room air 

oxygen concentration, chronic hypoxia-induced PH is reversible, a process called 

reverse-remodeling113. The following paragraph deals with this phenomenon.   
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1.8 Reverse remodeling in mice  

In 1960s it was observed that high altitude hypoxia leads to PH in humans114, which can 

be partially reversed after returning to sea level115. In 1971, experimental studies showed 

that exposure of rats to hypobaric pressure (5500m) leads to PH, including right heart 

hypertrophy and muscularization of small pulmonary arteries116. The increase in right 

ventricular weight and muscularization was reversible after 37 days recovery116. 

In 1973, an experiment in rats was conducted, increasing the recovery time after chronic 

hypoxic exposure to 5 weeks. It was found that right ventricular hypertrophy was 

partially reversible. The thickness of the main pulmonary artery and the volume of the 

hypertrophied carotid body decreased117. 

The reversal of right heart hypertrophy and pulmonary artery muscularization after re-

exposure of rats to normoxia was confirmed in 1977118. 

In 2014, reverse remodeling findings in rats were transferred to mice, revealing that 

chronic hypoxia-induced PH is fully reversible upon re-exposure to normoxia. Right 

heart hypertrophy as well as pulmonary vascular remodeling was completely 

reversible113 (Figure 4). 

 

 

 

 

 

 

 

Chronic hypoxic exposure leads to pulmonary vascular remodeling, which is reversible upon 

re-exposure to normoxia A: Adventitia, M: Media, E: Endothelium.  

Figure 4: Reverse remodeling 
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1.9 Aim of the study 

Until now, research in the field of PH concentrates mostly on the onset and development 

of PH. In this study, we focus on mechanisms underlying the reversal of PH. It was 

previously shown that chronic hypoxia-induced vascular remodeling in mice can be 

reversed by re-exposure to normoxia113. In this regard, a microarray analysis from 

murine lung homogenate was performed, screening for potential candidate genes 

contributing to reverse remodeling. S-adenosylmethionine decarboxylase 1 (AMD-1) 

was identified as a novel potential candidate gene. AMD-1 is elevated expressed in 

chronic hypoxic mice and down-regulated following re-oxygenation of mice. 

Furthermore, it is critically involved in dysregulated PASMC proliferation and 

apoptosis. In addition, AMD-1 knockout mice possess less chronic hypoxia-induced PH 

than respective controls113. 

Going beyond this approach, we now wanted to specifically focus on the gene 

expression alterations in the lung vasculature, possibly enhancing the chance to detect 

additional relevant new pathways and targets for pulmonary vascular remodeling. In 

this regard, pulmonary vessels from mice, exposed under normoxia, chronic hypoxia 

and chronic hypoxia with subsequent normoxic exposure for different time points, will 

be laser-microdissected followed by microarray analysis. Expression of identified 

targets will be validated in chronic hypoxic mice, in IPAH patients and on cellular level. 

Moreover, the functional role will be assessed in vitro as well as in vivo by using 

respective knockout mice. 

It is hypothesized that, the microarray technique leads to identification of new candidate 

genes and their relevant signaling pathways underlying pulmonary vascular remodeling 

which will help to identify novel treatment strategies for PH. 
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 Materials and Methods 

 

2.1 Materials 

 

 Equipment 

Catheter - MiniVent type 848  Elektronik-Harvard Apparatus, March,  

Hugo Sachs      Germany 

Cell incubator HERAcell 150  Thermo Scientific, Dreieich, Germany 

Centrifuge Hematocrit 210   Hettich, Tuttlingen, Germany 

Centrifuge Rotanta 460R   Hettich, Tuttlingen, Germany                                                               

CFX Connect™ Real-Time PCR  Biorad, Munich, Germany 

Detection System  

ChemiDocTM Touch Imaging   Biorad, Munich, Germany 

System 

ChemiDocTM XRS+    Biorad, Munich, Germany 

Cooling Plate EG 1150C   Leica Microsystems, Wetzlar, Germany 

Computer Q 550 IW    Leica Microsystems, Wetzlar, Germany 

Digitale Camera DC 300F   Leica Microsystems, Wetzlar, Germany 

GenePix 4100A Scanner   Axon Instruments, Union City, NJ, USA 

Glass plates (1.5 mm)   Biorad, Munich, Germany 

Hematocrit 210 Centrifuge   Hettich, Tuttlingen, Germany 

Heating Block     VWR, Bruchsal, Germany 

Heating Plate Hi 1220   Leica Microsystems, Wetzlar, Germany 

HLC Heating-ThermoMixer DITABIS Digital Biomedical Imaging 

Systems, Pforzheim, Germany 

Homeothermic plate    AD Instruments, Spechbach, Germany 

Homogenizer PRECELLYSR24  PeqLab, Erlangen, Germany 

Hotplate/Stirrer (371)    VWR, Bruchsal, Germany 
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Infinite M200     Tecan, Männedorf, Switzerland 

Laser Microdissection system  Leica Microsystems, Wetzlar, Germany  

LMD 600 

Low Voltage Power Supplies  Biometra, Analytic Jena, Jena, Germany 

Power pack P25T 

Magnet for Tubes   Thermo Fisher Scientifc Inc. Waltham, 

(DynaMagTM-Spin Magnet)   USA 

Micro-tip catheter SPR-671NR  Millar Instruments, Houston, USA 

MiniVent type 845 Hugo Sachs  Elektronik, March-Hugstetten, Germany 

Multimode microplate reader  Tecan, Männedorf, Switzerland 

Infinite 200 PRO  

Multimode microplate reader Spark® Tecan, Männedorf, Switzerland 

NanoDrop (ND-1000)   Kisker-Biotech, Steinfurt, Germany 

Ultrapure Milli-Q®    Millipore, Schwalbach, Germany 

Paraffin cooling station    Leica, Wetzlar, Germany 

Leica EG 1150C  

Paraffin embedding station   Leica, Wetzlar, Germany 

Leica EG 1140H 

PCR Plate sealer PX1    Biorad, Munich, Germany 

PEN membrane slides   Leica Microsystems, Wetzlar, Germany 

pH meter-766 Calimatic   Knick, Berlin, Germany 

Rectal thermometer    Indus Instruments, Houston, TX, USA 

Table Centrifuge Mikro 200R  Hettich, Tuttlingen, Germany 

Thermocycler, Tpersonal   Biometra, Analytic Jena, Jena, Germany 

Thermocycler, T3000    Biometra, Analytic Jena, Jena, Germany 

Tissue Tek     Sakura Finetek, Staufen, Germany 

Ultrapure water-Milli Q®   Millipore, Schwalbach, Germany 

Vortexer MS1 Minishaker   IKA GmbH, Staufen, Germany 
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Waterbath     Memmert, Schwabach, Germany 

 

  Chemicals and consumables 

0,9 % NaCl-Solution    B.Braun, Melsungen, Germany 

Aceton     Sigma-Aldrich, Munich, Germany 

Agarose     Fermentas, St. Leon-Rot, Germany 

Amersham ECL Plus Western Blotting GE Healthcare, Munich, Germany 

Detections System                                                               

Ammonium persulfate (APS)  Promega, Mannheim, Germany 

Ampuwa®     Fresenius Kabi, Bad Homburg, Germany 

Antibody Diluent    Zytomed Systems, Berlin, Germany 

β-Mercaptoethanol    Sigma-Aldrich, Munich, Germany 

Bovines Serum Albumin (BSA)  Sigma-Aldrich, Munich, Germany 

BSA-Solution     Biorad, Munich, Germany 

Cell lysis buffer Cell Signaling Technology, Cambridge, 

UK 

Cpd 22, Calbiochem®    Merck, Darmstadt, Germany 

Deionised Water (dH2O)   Milliporanlage in Laboratory 

Deoxynucleotide (dNTP)   Promega, Mannheim, Germany 

Distilled Water (dH2O, DNAse-/  GibcoTM Invitrogen, Karlsruhe, Germany 

RNAse-free) 

Disodiumhydrogenphosphate (Na2HPO4) Merck, Darmstadt, Germany 

Double distilled Water (ddH2O)  Carl Roth, Karlsruhe, Germany 

Dimethylsulfoxid (DMSO)   Sigma-Aldrich, Munich, Germany 

Ethanol 70 %, 96 % und 100 % Otto Fischer GmbH, Saarbrücken, 

Germany 

Ethanol (pure) for molecular biology Merck, Darmstadt, Germany 

Ethylenediaminetetraacetic acid (EDTA) Sigma-Aldrich, Munich, Germany 
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Flexi Buffer     Promega, Mannheim, Germany 

Glycerol     Sigma-Aldrich, Munich, Germany 

Glycin      Carl Roth, Karlsruhe, Germany 

GoTaq polymerase    Promega, Mannheim, Germany 

Hematoxylin     Biocare Medical, Pacheco, CA 

Hydrochloride (HCl)    Carl-Roth, Karlsruhe, Germany 

Hydrogen peroxide (H2O2)   Merck, Darmstadt, Germany 

Isopropylalcohol (2-Propanol)  Merck, Darmstadt, Germany 

Lysis Buffer (9803S)     Cell Signaling Danvers, MA, USA 

Magnesium Chloride (MgCl2)  Promega, Mannheim, Germany 

Monopotassiumdihydrogenphosphate Merck, Darmstadt, Germany 

(KH2PO4) 

Methanol     Sigma-Aldrich, Munich, Germany 

Methyl green Vector Laboratories, Burlingame, CA, 

USA 

Microarray Slides Mouse whole  Agilent Technologies, Palo Alto, CA, USA 

Genome 4x44K 

Paraformaldehyde    Carl Roth, Karlsruhe, Germany 

Phenylmethansulfonylfluorid (PMSF) Sigma-Aldrich, Munich, Germany 

Phenylmethylsulfonyl Fluoride  Pall Corporation, Dreieich, Germany 

(PVDF)-membrane  

Potassiumchloride (KCl)   Merck, Darmstadt, Germany 

Proteinase K NovocastraTM   Leica, Wetzlar, Germany 

Skimmed milk powder   Sigma-Aldrich, Munich, Germany 

Sodiumchloride (NaCl)   Carl Roth, Karlsruhe, Germany 

Sodium dodecyl sulfate (SDS)  Promega, Mannheim, Germany 

Sodium hydroxide (NaOH)   Carl Roth, Karlsruhe, Germany 
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Sodium ortho vanadate (Na3VO4)  Sigma-Aldrich, Munich, Germany 

SYBR® Safe     Invitrogen, Karlsruhe, Germany 

SYBR® Safe DNA gel stain   Invitrogen, Karlsruhe, Germany 

T-EDTA Buffer pH 9.0   Zytomed Systems, Berlin, Germany 

Tetramethylethylenediamine   Carl Roth, Karlsruhe, Germany 

(TEMED)      

Tergitol® (NP-40)    Sigma-Aldrich, Munich, Germany 

TRIS Base     Sigma-Aldrich, Munich, Germany 

TRIS-HCl     Sigma-Aldrich, Munich, Germany 

Triton-X     Sigma-Aldrich, Munich, Germany 

Tween® 20     AppliChem, Darmstadt, Germany 

Xylol      Carl Roth, Karlsruhe, Germany 

 

 Cell culture 

Canule 16G, 18 G    BD Microlane, Franklin Lakes, USA 

Cell culture dishes,    Sarstedt, Nümbrecht, Germany 

(35er, 60er) 

Cell culture flasks,    Greiner bio-one, Frickenhausen, Germany  

(T-25, T-75) 

Cell culture plate    Greiner bio-one, Frickenhausen, Germany  

(6, 12, 24, 96 well)  

Cell scrapers     Greiner bio-one, Frickenhausen, Germany 

Cryo Tubes     Sarstedt, Nümbrecht, Germany 

Falcon-Tubes     Greiner bio-one, Frickenhausen, Germany  

Fetal calf serum (FCS)   PAA Laboratories, Cölbe, Germany 

Filtered tips, 10, 100, 1000 µl  Nerbe plus, Winsen, Germany 

Heparin, Heparin-Natrium   Ratiopharm GmbH, Ulm, Germany 
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-5000-ratiopharm®  

Ketaminhydrochlorid 100 mg/mL,  Bela-Pharm, Vechta, Germany 

Ketamin®, 10%ig  

Lipofectamine 2000    Invitrogen, Karlsruhe, Germany 

Medium 199 (M199)    GIBCO Invitrogen, Karlsruhe, Germany 

Micro tube 0.5, 1.5, 2.0 ml   Sarstedt, Nümbrecht, Germany 

Micro tube 0.5, 1.5, 2.0 ml   Sarstedt, Nümbrecht, Germany 

DNA-/DNase-/RNase-/PCR- 

inhibitor free 

Neubauer counting chamber LO Laboroptik GmbH, Bad Homburg, 

Germany 

Opti-MEM Medium    Gibco, Darmstadt, Germany 

PCR Plate 96-Well,    Biorad, Munich, Germany 

MultiplateTM PCR Plates, clear 

Penicilin/Streptomycin (Pen Strep, P/S) Gibco, Life Technologies, Carlsbad, USA 

Phosphate puffered saline (PBS)  PAN Biotech, Aidenbach, Germany 

Pulmonary arterial smooth muscle cells Lonza, Köln, Germany 

(PASMC) 

Serological pipette 5, 10, 25, 50 ml  BD Falcon, Heidelberg, Germany 

Smooth Muscle Cell Basal Medium  PromoCell, Heidelberg, Germany 

Smooth Muscle Cell Growth Medium 2 PromoCell, Heidelberg, Germany 

Smooth Muscle Supplement 2 mix  Promo cell, Heidelberg, Germany 

Sterile filter 0,22 µm    Millipore, Schwalbach, Germany 

Trypsin/EDTA (10x)    PAN-Biotech, Aidenbach, Germany 

Xylazinhydrochlorid, Xylazin® 2%ig  Ceva Tiergesundheit, Düsseldorf, 

Germany 

 

 Ligands and inhibitors 

Epidermal growth factor (EGF, human) Peprotech, Hamburg, Germany 
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Platelet -derived growth factor  Peprotech, Hamburg, Germany 

(PDGF-BB, human)     

Rapamycin     Sigma Aldrich, Munich, Germany 

Transforming growth factor beta 1  Peprotech, Hamburg, Germany 

(TGF-β1, human)     

Vascular endothelial growth factor  Peprotech, Hamburg, Germany 

(VEGF, human)       

Wortmannin     Sigma Aldrich, Munich, Germany 

 

 siRNA 

 

HIF-1α ON-TARGETplus SMARTpool DharmaconThermo Scientific, Schwerte, 

L-004018-00 Germany 

HIF-2α ON-TARGETplus SMARTpool DharmaconThermo Scientific, Schwerte, 

L-004814-00     Germany 

ILK ON-TARGETplus SMARTpool DharmaconThermo Scientific, Schwerte,  

L-004499-00 Germany 

L-004499-00 siRNA Negative Control   Eurogentec Cologne, Germany 

SR-CL000-005 

SPARC ON-TARGETplus SMARTpool DharmaconThermo Scientific, Schwerte, 

L-003710-00     Germany 

 

 

 Markers and enzymes 

GeneRuler™ 100 bp DNA Ladder  Fermentas, St. Leon-Rot, Germany 

GoTaq Polymerase    Promega, Madison, USA 

Precision plus ProteinTM Dual Color  Biorad, Munich, Germany 

Standards 

 

 

 Kits and assays 

AP Polymer System    Zytomed Systems, Berlin, Germany 

BCA assay     Pierce, Rockford, IL, USA 

Cell proliferation ELISA, BrdU  Roche, Mannheim, Germany 
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(colorimetric)  

DAB Peroxidase Substrate Kit Vector Laboratories, Burlingame, CA, 

USA 

Dual-color QuickAmp Kit   Agilent, Palo Alto, CA, USA 

iScript cDNA Synthesis Kit   Biorad, Munich, Germany 

ImmPRESS Anti-Rabbit Ig Polymer  Vector Laboratories, Burlingame, CA, 

Detection-Kit     USA 

Mouse-on-mouse HRP-Polymer Kit  Zytomed Systems, Berlin, Germany 

RNeasy®Mini Kit    Qiagen, Hilden, Germany 

RNeasy®Micro Kit    Qiagen, Hilden, Germany 

TGX FastCast Kit (12% gels)  Biorad, Munich, Germany 

VECTOR VIP Peroxidase Substrate Kit Vector Laboratories, Burlingame, CA, 

USA 

VECTOR NovaRED Peroxidase Substrate Vector Laboratories, Burlingame, CA,  

Kit      USA 

Warp Red Chromogen Kit   Biocare Medical, Pacheco, CA, USA 

 

 Antibodies 

2.1.8.1 Primary antibodies 

AKT (#9272S)    Cell Signaling, Danvers, MA, USA 

β-Actin (A228)    Sigma-Aldrich, Munich, Germany 

Cyclin D1     Abcam, Cambridge, UK 

(#ab134175) 

ERK1/2     Cell Signaling, Danvers, MA, USA 

(137F5, #4695S)                               

HIF-1α     Cayman Chemical, Ann Arbor, MI USA 

(#10006421)                                      

HIF-2α     Novus Biologicals, Wiesbaden, Germany 

(#NB100-132) 

ILK (#3862)     Cell Signaling, Danvers, MA, USA 

IgG      Millipore, Schwalbach, Germany 
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phospho-AKT     Cell Signaling, Danvers, MA, USA 

(S473, #9271S)                        

phospho-ERK1/2    Cell Signaling, Danvers, MA, USA 

(T202/Y204, #9101S)         

SPARC     Cell Signaling, Danvers, MA, USA 

(D10F10, #8725s)                               

Von-Willebrand-Factor   Dako, Hamburg, Germany 

(A0082)                      

α-smooth muscle actin   Sigma-Aldrich, Munich, Germany 

(A2547)            

            

2.1.8.2 Secondary antibodies 

Horseradish-peroxidase–labeled  Promega, Mannheim, Germany 

secondary antibodies             

Anti-mouse W4011  

Anti-rabbit W4021  

 

 

 Computer programes 

GraphPad Prism Version 7 GraphPad Software, Inc., La Jolla, CA, 

USA 

Image Lab Version 4.1   Biorad, Munich, Germany 

LabChart 7     AD Instruments, Spechbach, Germany 

PowerLab data acquisition system  AD Instruments, Spechbach, Germany 

(MPVS-Ultra Single Segment  

Foundation System) 

Qwin software    Leica, Wetzlar, Germany 

 

 

 Animals 

C57Bl/6J Charles River Laboratories, Sulzfeld, 

Germany  

Secreted protein acidic and rich in  Jackson Laboratory, Bar Harbor, Maine,  

cysteine knockout mice (SPARC-/-)  USA  
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(JAX stock #003728)    

B6129SF2/J Jackson Laboratory, Bar Harbor, Maine, 

USA 

  

https://www.jax.org/strain/101045
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2.2 Methods  

 

 Experimental design 

For microarray analysis, adult C57BL/6J mice were exposed to chronic hypoxia (10% 

O2) in a ventilated chamber to induce pulmonary vascular remodeling as previously 

described113. Briefly, animals were age-matched and randomly distributed to groups that 

are either exposed to 21 days to normobaric normoxia [inspiratory O2 fraction (FiO2) 

0.21] or normobaric hypoxia [FiO2 of 0.10] with subsequent re-exposure to normoxia 

for 1, 3, 7 and 14 days.  

For deciphering the role of SPARC in chronic hypoxia-induced PH, B6129SF2/J and 

SPARC-/- mice were obtained from Jackson Laboratory for breeding. Briefly, animals 

were age-matched and randomly distributed to groups that are either exposed to 28 days 

normoxia (21% O2) or 28 days hypoxia (10% O2). 

All animal experiments were approved by the local authorities GI 20/10 22/2000, GI 

20/10 77/2015 (Regierungspraesidium, Giessen, Germany). 

 

 Patient characteristics and measurements 

Tissue samples from human explanted lungs were obtained from 11 donors (mean age 

42 ± 31, 6 female, 5 male) and 14 IPAH patients (mean age 33 ± 28, 9 female, 5 male). 

Lung tissue was either snap-frozen in liquid nitrogen directly after explantation or 

placed in 4% m/v paraformaldehyde within 30 min. after lung explantation. The study 

protocol was approved by the Ethik-Komission des Fachbereichts Medizin (AZ 10/06) 

of the Justus-Liebig-University Giessen, Germany. 

 

 

https://www.jax.org/strain/101045
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 Genotyping 

DNA isolation was performed from mouse tail cuts or ear marks. Per sample, 300 µl of 

50 mM NaOH was added, following incubation in an HLC heating thermomixer (95oC, 

800l/min, 15 min.). Afterwards, samples were vortexed for 10 sec. at 595g. After that, 

50 µl 1 M Tris was added and samples were centrifuged for 5 min. at 16089g. 

After the DNA isolation, PCR was performed using GoTaq polymerase. The following 

reaction conditions were used for PCR in the thermocycler T3000: 3 min. at 94°C, (30 

sec. at 94°C, 1 min. at 65°C, 1 min. at 72°C) 35 times 30 sec. at 94°C, 5 min. at 72°C 

and stop at 10°C. The following master mix per sample was prepared and Table 2 shows 

primer sequences used for genotyping. 

 

Ampuwa®    3.80 µl 

FlexiBuffer    3.00 µl 

MgCl2     1.20 µl 

dNTPs     0.30 µl  

Primer 1    1.50 µl  

Primer 2    1.50 µl  

Primer 3    1.50 µl  

GoTaq-Polymerase   0.20 µl 

DNA      2.00  μl 

          15   μl 
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Table 2: Primer sequences for genotyping 

Gene Sequence 

Primer 1 TTCTTCCTTGCAACCCTCTC 

Primer 2 GGGGTTTGCTCGACATTG 

Primer 3 TGTGGAGCTTCCTCTGTCCT 

 

Following PCR, gel electrophoresis was performed to identify the genotype. An agarose 

gel (1.5%) was prepared as described below (Table 3), (Table 4). The gel 

electrophoresis was performed at 400 Volt, 250 mA for 15 min. The gel was visualized 

using a ChemiDocTM XRS+ device. As shown in Figure 5, a double band referred 

heterozygous SPARC, lower single band referred homozygous SPARC-/- and the upper 

single band at the gel referred homozygous SPARC WT. 

 

Table 3: Preparation of Agarose gel for Genotyping 

Reagents Amount 

Agarose 0.75 g 

1x SB Buffer 50 ml 

SYBR® Safe Gel Stain 2 μl 

 

Table 4: Preparation of SB Buffer for Genotyping 

 

 

 

 

 

 

 

 

  

Reagents Amount 

1x SB Buffer 50 ml 20x SB Buffer 

950 ml dH2O 

 

20x SB Buffer 

8 g NaOH 

42 g boric acid 

1000 ml dH2O 
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Figure 5: Gel electrophoresis for genotyping 

Bands referring to heterozygous, KO and WT between the size of 240 to 385 bp.  

 

 Hemodynamic measurements  

Hemodynamic measurements done by Karin Quanz. For hemodynamic measurements, 

normoxic/hypoxic wild-type/SPARC-/- mice were anesthetized with inhaled isoflurane 

in room air supplemented with 100% O2. The mouse was placed supine on a 

homeothermic plate and after tracheotomy connected to a small animal ventilator 

MiniVent type. The body temperature was controlled by a rectal probe connected to the 

control unit and was kept at 37°C during the catheterization. The right external jugular 

vein was catheterized with a SPR-671NR micro-tip catheter and advanced into the right 

ventricle to assess the right ventricular systolic pressure (RVSP). Data were collected 

and analyzed using the PowerLab data acquisition system and LabChart 7 for Windows 

software. After exsanguination, the left lung was fixed for histological investigations in 

3.5% neutral buffered formalin. The right lung was snap-frozen in liquid nitrogen for 

molecular biological investigations. For measuring the right heart hypertrophy, the right 

ventricle (RV) was separated from the left ventricle plus septum (LV+S) and the 

RV/(LV+S) ratio (fulton index) was determined.  

 

 Echocardiography 

Echocardiography was done by Dr. Simone Kraut and performed as previously 

described113. In short, mice were anesthetized with isoflurane gas (3%) and maintained 

with 1.5% isoflurane in room air supplemented with 100% O2. For monitoring heart rate 

(HR), mice were set in a flat position on a heating platform with all legs taped to ECG 

electrodes. A rectal thermometer was used to monitor the body temperature. After 
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shaving, a pre-warmed ultrasound gel was spread over the chest wall for providing a 

coupling medium for the transducer. A Vevo 2100 high-resolution imaging system 

equipped by a 55-MHz transducer (VisualSonics, Toronto, Canada) was used for 

transthoracic echocardiography. Cardiac output (CO) is the volume of blood being 

pumped by the heart, in particular by the left or right ventricle, per unit time119. CO was 

calculated as the product of the velocity-time integral of the pulsed-Doppler tracing in 

the LV outflow tract, the cross-sectional area of the LV outflow tract, and the heart 

rate113. Cardiac index (CI) relates heart performance to the size of the individual.  CI 

was calculated by dividing CO by body weight. Following, B-mode derived right 

ventricular internal diameter (RVID) was measured. Right ventricular wall thickness 

(RVWT) was measured in AM-mode. AM-mode represents images in higher 

magnification than in the commonly used M-mode, allowing a more precise analysis.  

 

 Paraffin embedding, immunohistochemical staining and microscopy 

Lungs were flushed with saline, using a vascular pressure of 22 cm H2O and a tracheal 

pressure of 12 cm H2O. A catheter from MiniVent type 848 into trachea and one saline 

catheter into pulmonary artery was inserted. Stroke volume of MiniVent was adjusted 

to 150-200 µl. Next, a catheter was put into pulmonary artery and afterwards, organs 

were harvested for molecular biological experiments. Finally, MiniVent pressure was 

decreased to <100 µl stroke volume and left lung was harvested and fixed by immersion 

in a 3.5% paraformaldehyde solution113. 

The left lungs were dissected in tissue blocks for paraffin embedding. Three μm sections 

of paraffin embedded lungs were used for the investigations. For assessing the degree 

of pulmonary vessel muscularization, lung sections were stained with antibodies against 

α-smooth muscle actin (α-sma) and von Willebrand factor (vWF) as described in the 

Table 5. As negative control, an isotype (IgG) control staining was performed. 

 

Table 5: Protocol for double immunostaining against α-sma and vWF 

Incubation 

time 

Reagents Comments 

60 min. by 58oC  

10 min. Xylol  

10 min. Xylol  

10 min. Xylol  
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5 min. Ethanol absolute 99.6%  

5 min. Ethanol absolute 99.6%  

5 min. Ethanol 96%  

5 min. Ethanol 70%  

20 min. H2O2- methanol mixture 3% 180 ml methanol + 20 ml 

H2O2 30% 

2x5 min. Aqua dest. (Millipore) Shake 

2x5 min. 1x-PBS Shake 

30 min. Proteinase K 1,6 ml diluent + 1 drop of 

Proteinase K (40 x) 

3x5 min. 1x-PBS Shake 

20 min. 10 % BSA  

3x5 min. 1x-PBS Shake 

30 min. Rodent Block M 

(Mouse on Mouse HRP Polymer) 

Zytomed Systems Blue 

3x5 min. 1x-PBS Shake 

30 min. Primary antibody (α-actin) 1:700 with antibody diluent 

200 µl/slide 

4x5 min. 1x-PBS Shake 

20 min. Mouse on Mouse HRP Polymer Zytomed systems yellow 

3x5 min. 1x-PBS Shake 

 

 

1 to 4 min. 

 

 

Vector Vip. Substrat Kit 

5 ml PBS + 3 drops from 

Reagent 1 

+ 3 drops from Reagent 2 

+ 3 drops from Reagent 3 

+ 3 drops from H2O2 

5 min.  H2O Shake 

2x5 min. 1x-PBS Shake 

20 min. 10 % BSA  

3x5 min. 1x-PBS Shake 

20 min. Serum Block 1 2.5 % Normal Horse Serum 

ImmPRESS kit 

Anti-Rabbit Ig Kit 



  Materials and Methods 

37 

 

30 min. Primary antibody (37oC) (vWF) 1:1400 with antibody diluent 

200 µl/slide 

4x5 min. 1x-PBS Shake 

30 min. Secondary antibody ImmPRESS REAGENT Anti-

Rabbit Ig Peroxidase Kit 

4x5 min. 1x-PBS Shake 

1-40 sec. DAB Substrate kit 5 ml aqua dest 

+2 drops from buffer pH 7.5 

+4 drops from DAB Substrate 

+2 drops from  H2O2 

5 min. H2O  

1-3 min. Methylgreen on heating block (60oC) 

1 min. Aqua dest  

5 sec. Ethanol 96 %  

5 sec. Ethanol 96 %  

5 sec. 2-Propanol  

5 sec. 2-Propanol  

2 min. Xylol  

2 min. Xylol  

2 min. Xylol  

 Cover the slide with Pertex  

 

After staining, the sections were analyzed with the help of a computer-aided analysis 

system. The macros used were developed by the company Leica. All sections were - 

counted blinded. Morphometric quantification was done with a microscope using the 

Qwin software. Firstly, vessels were marked, then the vessel volume was detected. After 

that, the vessel lumen was confirmed, the vessel wall area was marked and in the end, 

the muscularization of vessel was determined. Staining of α-sma, depicting the 

muscularized parts of the vessel wall, is in purple, whereas staining of vWF, depicting 

the endothelium of the vessels and thus the non-muscularized areas of the vessel wall, 

is in brown. The degree of muscularization was assessed from small (external diameter 

of 20 – 70 μm), medium (external diameter of >70 – 150 μm) and large (external 

diameter of >150 μm) pulmonary vessels from WT and SPARC-/- mice which are kept 

28 days under normoxia (21% O2) or hypoxia (10% O2). Vessels were categorized as 
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fully- (>70% vessel circumference α-sma positive), partially- (5%-70% vessel 

circumference α-sma positive) or non-muscularized (<5% vessel circumference α-sma 

positive). The vessels were marked manually at a magnification of 400 times and their 

interior automatically detected by the computer to determine the degree of 

muscularization. 85 vessels of an outer diameter of 20-70 μm were analyzed from each 

lung lobe. The values measured automatically were transferred to Excel (Microsoft 

Corporation). 

For assessing the localization of SPARC lung tissue of normoxic (N, 21% O2, 28 days) 

or chronic hypoxic (H, 10% O2, 28 days) mice was used. The protocol for detection of 

SPARC is given in Table 6. As negative control, an isotype (IgG) control staining was 

performed. 

Table 6: Protocol for immunostaining against SPARC for mice 

DAY 1 

Incubation 

time 

Reagents Comments 

60 min. by 58oC  

10 min. Xylol 
 

10 min. Xylol 
 

10 min. Xylol 
 

5 min. Ethanol absolute 99.6% 
 

5 min. Ethanol absolute 99.6% 
 

5 min. Ethanol 96% 
 

5 min. Ethanol 70% 
 

2x5 min. Aqua dest. (Millipore) Shake 

15 min. 

20-25 min. 

 

10 min. 

30 min. 

Waiting for boiling 

Cooking with T-EDTA Buffer, pH 

9.0 

Switch off the cooker 

Cooling in room room temperature 

 

10x T-EDTA Buffer 

Per 1 cuvette: 90 ml Aqua 

dest.+10 ml T-EDTA Buffer 

 

60 min. 10 % BSA  

4x5 min. 1x-PBS Shake 
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30 min. Rodent Block M (blocking solution) 

at room temperature 

Zytomed System 

4x5 min. 1x-PBS Shake 

overnight Primary antibody (SPARC), +4oC 1:200 with antibody diluent 

200µl/slide  

DAY 2 

Incubation 

time 

Reagents Comments 

6x20 min. 1x-PBS Shake 

30 min. AP Polymer AP Polymer kit 

4x5 min. PBS Shake 

 

1 to 4 min. 

 

Warp Red Chromogen Kit 

Add 1 drop of Warp Red 

Chromogen to 2.5 ml of Warp 

Red Buffer  

5 min. 1x-PBS Shake 

1 min. Aqua dest Shake 

2-3 sec. Hematoxylin Dilute hematoxylin with 

Aqua dest (1:10) 

1 min. Aqua dest  

1 min. PBS  

5-10 min. Tap water  

1 min. Ethanol 96%  

1 min. Ethanol 96%  

2 min. 2-Propanol  

2 min. 2-Propanol  

2 min. Xylol  

2 min. Xylol  

2 min. Xylol  

 Cover the slide with Pertex  
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 Laser-microdissection  

Cryo-sections (10 μm) of Tissue Tek-embedded lung tissue from C57BL/6J mice were 

mounted on PEN membrane slides. For visualization of cell nuclei, sections were 

stained with hemalaun for 45 sec., following immersion in water, 70% ethanol, 96% 

ethanol, and then stored in 100% ethanol until use. Intrapulmonary arteries with a 

diameter of 50–100 μm were selected and microdissected under optical control using 

the Laser Microdissection 6000. Microdissected material was collected in Eppendorf 

tubes filled with RNA lysis buffer with 1% β-mercaptoethanol and finally snap-frozen 

in liquid nitrogen until use. 

 

 Microarrays 

Pulmonary vessels were laser-microdissected followed by RNA isolation and 

microarray analysis. Microarray was done by Dr. Friederike Weisel and Dr. Oleg Pak. 

In total vessels from 76 animals (23 controls – hypoxia, and 8-12 per time point) were 

analyzed by dual-color hybridizations in a balanced dye-swap design. RNA was isolated 

using the RNeasy Mini Kit following the kit’s instructions. RNA quality was measured 

by capillary electrophoresis using the Bioanalyzer 2100.  Purified total RNA was 

amplified and Cy-labeled using the dual-color QuickAmp Kit following the 

manufacturer’s instructions. 1μg of total RNA was used per reaction. Cy3- and Cy5-

labeled RNA were hybridized to 4x44K 60mer oligonucleotide spotted microarray 

slides (Mouse Whole Genome 4x44K, design ID 014868). Hybridization and 

subsequent washing and drying of the slides was performed following the Agilent 

hybridization protocol. The slides were scanned using a GenePix 4100A scanner. 

Images of Cy3 and Cy5 signals were analyzed using GenePix Pro 5.1 software, and 

calculated values for all spots were saved as GenePix results files. Stored data were 

evaluated using the R software120 and the limma package121 from BioConductor122. Log 

mean spot signals were taken for further analysis. Signals of replicate spots (same 

probes) within arrays were averaged. M/A data were LOESS normalized123 before 

averaging over arrays. Genes were ranked for differential expression using a moderated 

t-statistic124. Pathway analyses were done using gene set tests on the ranks of the t-

values121.
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 cDNA synthesis and quantitative real-time PCR 

Total RNA was isolated from human PASMC and from human and mouse lung 

homogenate by using the RNeasy Mini Kit according to the manufacturer’s instructions. 

200 ng / µl RNA was reverse-transcribed using the iScript cDNA Synthesis Kit 

according to manufacturer's instructions. The following reaction conditions were used 

for cDNA synthesis in the TPersonal thermocycler: 5 min. at 25°C, 20 min. at 46°C and 

1 min. at 95°C and stop at 4°C.  

Quantitative real-time polymerase chain reaction (q(RT)-PCR) was performed using the 

iQ SYBR Green Supermix according to the manufacturer’s instructions.  

 

iQ SYBR Green Supermix    5.0   μl 

Ampuwa®      3.5   μl 

Forward primer (10 pmol/μl)      

                        +     0.5   μl 

Reverse primer (10 pmol/μl)                                   

cDNA (template)     1.0   μl 

 

10   μl 

 

q-PCR was carried out in a CFX Connect™ Real-Time PCR Detection System under 

the following conditions: 1 cycle at 95°C for 10 min., then 40 cycles at 95°C for 10 sec., 

59°C for 10 sec., 72°C for 10 sec., followed by a dissociation curve. Primers were 

designed by using Primer BLAST from NCBI and purchased from Metabion 

(Martinsried, Germany) Table 7 shows the primer sequences for human and Table 8 

shows the primer sequences for mice. The Ct values were normalized to the endogenous 

control, porphobilinogen deaminase (PBGD) or beta-2-microglobulin (B2M), using the 

equation:  

ΔCt = Ctreference – Ctgene of interest 
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Table 7: Primer sequences for human 

Gene Forward primer ( 5`→3`) Reverse primer (5→  3`) 

PBGD CCCACGCGAATCACTCT

CAT 

TGTCTGGTAACGGCAATGCG 

SPARC CCCTGTACACTGGCAGTT

CG 

ACATTGGGGGAAACACGAAG 

Ki67 GCAAGCACTTTGGAGAG

C 

TCTTGACACACACATTGT 

PCNA CCTGTGCAAAAGACGGA

GTG 

TGAACTGGTTCATTCATCTCTAT

GG 

HIF-1α TTACAGCAGCCAGACGA

TCATG 

TGGTCAGCTGTGGTAATCCACT 

HIF-2α CTGATGGCCATGAACAG

CATCT 

TCCTCGAAGTTCTGATTCCCGA 

mTOR  TTAGAGGACAGCGGGGA

AGG 

AGGTCCGGTTCCAAGCATCT 

Tenascin 

C 

TCTGGTGCTGAACGAAC

TGC 

GTTTTCCAGAAGGGGCAGGG 

ILK1 GGCTGGACAACACGGAG

AAC 

ATCTCAACCACAGCAGAGCG 

 
Table 8: Primer sequences for mouse 

Gene Forward primer ( 5`→3`) Reverse primer (5→  3`) 

B2M AGCCCAAGACCGTCTAC

TGG 

TTCTTTCTGCGTGCATAAATTG 

PBGD GGTACAAGGCTTTCAGC

ATCGC 

ATGTCCGGTAACGGCGGC 

SPARC GGCCCGAGACTTTGAGA

AGA 

AATGTTCCATGGGGATGAGG 

FSTL1 CGAGCACGATGTGGAAA

CGA 

CTCTGTGACGGCACATTCCC 

SMOC1 CCGCATCCAACCTGCTGT

C 

CGGTCATGAACGGCGGAG 
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SMOC2 TGACAAGTCCATCACCG

TGC 

TCAGCATTTCCTCTGGGGGT 

SPOCK1 CGTGGTGCTTCCTCCAAG

TG 

GGTTCCAGTACTTGTCACGGTC 

 
PBGD: porphobilinogen deaminase, SPARC: secreted protein acidic and rich in cysteine,  PCNA: 

proliferating-cell-nuclear-antigen, HIF-1α: hypoxia inducible factor 1 alpha HIF-2α: hypoxia inducible 

factor 2 alpha  mTOR: the mammalian target of rapamycin,  ILK: integrin linked kinase, B2M: beta-2-

microglobulin FSTL1: follistatin like protein 1,  SMOC1: secreted modular calcium binding protein 1,  

SMOC2: secreted modular calcium binding protein 2,  SPOCK1:  SPARC/osteonectin, CWCV, and 

kazal-like domains proteoglycans 1.  

 

 Cell culture 

Primary human PASMC (hPASMC) were purchased from Lonza and maintained in 

Smooth Muscle Growth Medium 2, containing Smooth Muscle Supplement 2 mix. Cells 

were incubated at 37°C in a humidified atmosphere of 5% CO2. Experiments were 

performed in between passage 3 to 8 using 10.000 cells/1cm2.  

Mouse PASMC (mPASMC) were isolated from pre-capillary pulmonary artery vessels 

from WT and SPARC-/- mice.  

For cell isolation, mice were anesthetized and anticoagulated with a mixture of ketamine 

(100 mg/kg body weight), xylazine (20 mg/kg body weight) and heparin (1000 I.U/kg 

body weight). The lung preparation for cell isolation was performed with the help of the 

technical assistant Carmen Homberger and Dr. Monika Brosien. Tail and foot of the 

mice was pinched with forceps before starting to insure that the animal was fully 

anaesthetized. The skin was removed starting at the abdomen and the incision was 

vertically extended along the midline to the level of the mandible, exposing the trachea 

and a ligature was put around it. An incision was placed into the trachea which was 

subsequently cannulated with a tracheal tube or catheter. Following, the ligature was 

pulled tight. The abdomen was opened up and the diaphragm was removed from the 

thorax. Pericardium was removed carefully and the thorax was opened. Thymus was 

removed and an open ligature was placed around the aorta and the pulmonary artery. 

One incision was placed into the right ventricle and a catheter was inserted into the 

pulmonary artery. A second incision was placed in the left ventricle for drainage. Lungs 

were perfused with 3 ml Dulbecco's phosphate-buffered saline (DPBS). Afterwards, 15 
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mg agarose + 15 mg iron mixture was instilled. Following, 30 mg agarose was instilled 

into the trachea until the lung was completely filled. The catheter in the pulmonary 

artery was pulled out and the ligature was closed. Finally, the lung was transferred to 

ice cold (4°C) DPBS solution. The heart, trachea and coarse tissue residues were 

removed under the laminar flow hood and the five lung lobes were mechanically minced 

using the three-shaving technique. The iron-filled tissue pieces were washed several 

times in DPBS using a magnetic concentrator. Following, the tissue pieces were 

enzymatically digested in 37°C warm collagenase solution for 1 h. The tissue fragments 

were then mechanically sheared by 15 G and 18 G cannulas and separated from the iron-

filled vessel pieces with the magnetic concentrator. M199 medium with 10% FBS and 

1% Penicilin/Streptomycin was used to stop collagenase activity. The isolated vessel 

pieces were taken up in SMC medium with 10% FBS and 1% Penicilin/Streptomycin 

and seeded on cell culture dishes (seed 1, passage 0). Following 5 to 10 days, the vessel 

pieces were removed from the culture dish, washed in DPBS and transferred to a fresh 

culture dish in fresh SMC medium with 10% FBS and 1% Penicilin/Streptomycin (seed 

2, passage 0). Those steps were also done for seed 3, passage 0. After 18 days of 

isolation, seeds 1 to 3 were detached by 1-fold trypsin, centrifuged at 338 g (1200 rpm) 

for 5 min. After cell counting in a Neubauer counting chamber, 5000 cells/1cm2 cells 

were seeded on culture dishes for experiments (passage 1). 

Hypoxia experiments were performed in a chamber equilibrated with a water-saturated 

gas mixture of 1% O2, 5% CO2 and 94% N2 at 37°C. hPASMC and mPASMC were 

incubated in normoxic or hypoxia conditions for the indicated time points.  

For growth factor stimulation experiments hPASMC were serum-starved overnight and 

stimulated with human TGF-β1 (2ng/ml), PDGF-BB (5ng/ml), VEGF (2ng/ml), or EGF 

(50ng/ml), for the indicated time-points.  

The mTOR pathway was blocked using 0.5 μM rapamycin 20 h prior to TGF-β1 

stimulation for 4 h. For AKT inhibition, cells were treated with 50 nM wortmannin 20 

h prior to TGF-β1 stimulation for 4h. For ILK inhibition cells were treated with 1mM 

Cpd22 for 24 h.  A solvent control was carried out for each experiment. 

After experiment, cells were washed twice with ice cold PBS. Either, cells were 

harvested for protein or RNA isolation, using NP-40 respectively RLT buffer, or cells 

were used for proliferation assays. 
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 siRNA transfection 

Gene silencing was performed in hPASMC using siRNAs targeting SPARC, HIF-1α, 

HIF-2α, ILK and non-targeting control. hPASMC (90,000 cells/10cm2) were transfected 

in serum-free medium with 100 nM small-interfering RNA (siRNA) diluted in Opti-

MEM I medium,  using Lipofectamine®  2000 reagent (0.5 µl/cm2). The medium was 

replaced 8 h after transfection. Following siRNA transfection for the indicated time 

points, either RNA or proteins were isolated, or transfected cells were used for 

functional investigations. 

 

 Proliferation assay 

Primary hPASMC were seeded on 6-well plates and transfected with control siRNA 

(siR) or siSPARC. 24, 48 or 72 h post siRNA transfection, proliferation was assessed 

by cell counting in a Neubauer counting chamber. Values were normalized to siR as 

depicted in the paragraph statistical analysis 2.2.15. 

mPASMC from WT and SPARC-/- mice were seeded on 24-well plates. 1 μL BrdU-

labeling solution per 1 mL was added to the each well and incubated for 24 h. 

Proliferation was performed by using the Roche cell proliferation ELISA Kit, according 

to the manufacturer’s instructions. Measurment was performed in a Tecan SPARK® 

multimode microplate reader at an absorbance of 370 nm for 20 min. 

 

 Western blot analysis 

hPASMCs were scraped in 200 µl NP-40 buffer, containing 1 mM 

phenylmethylsulfonyl fluoride (PMSF). Human and mouse lung samples were grinded 

in 200 μl tissue lysis buffer containing 1mM PMSF using a homogenizer. After 

incubation on ice for 15 min., samples were centrifuged (10 min., 14000g, 4°C) and 

supernatant was transferred to a new tube. Protein concentrations were determined by a 

spectrophotometric assay (BCA assay). 20 μg/μl of protein extract was used for Western 

blotting. Samples were run on a 12% sodium dodecyl sulphate-polyacrylamide gel, 

following transfer to a polyvinylidene fluoride (PVDF) membrane. Membranes were 

blocked in blocking buffer. The following antibodies were applied over night at 4°C: 

SPARC, phospho-ERK1/2 (T202/Y204), ERK1/2, phospho-AKT (S473), AKT, ILK 

(all raised in rabbit and 1:1.000 diluted), rabbit cyclin D1 (1:10.000 diluted) and mouse 

β-actin (1:50.000 diluted). After washing 3 times for 10 minutes with PBS-T buffer, the 
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membrane was incubated for 1 h with horseradish-peroxidase–labeled secondary 

antibodies (1:5.000 diluted). Afterwards, the membranes were washed 3 x 15 min. with 

PBS-T buffer. Proteins were detected by Clarity™ Western ECL blotting substrate. 

Antigen-antibody complex was removed by incubating the membrane for 30 min. with 

stripping buffer prior to incubation with a new primary antibody. Table 9 and Table 10 

shows the protocols for preparation of buffers used for Western blotting and 

immunohistochemistry. 
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Buffer                                                     Substance                                Amount 

NP-40 buffer (Protein-Isolation)  TRIS Base   20 mM;  

pH 7.6 

NaCl    150 mM 

EDTA    1 mM,  

pH 8.0 

EGTA    1 mM,  

pH 8.0 

NP-40    0.5% (v/v) 

1x Elektrophoresis-Buffer   TRIS-Base   3.02 g 

(Western blotting)    Glycin    18.8 g 

SDS     (10%); 10 ml 

H2O    900 ml 

1x Blotting-Buffer    Methanol   200 ml 

(Western blotting)    TRIS-Base   2.42 g 

Glycin    11.2 g 

H2O    700 ml 

Stripping-Buffer    Glycin    1 M; 5 ml 

(Western blotting)    H2O    10 ml 

25 % HCl   0.750 ml 

  

Table 9: Preparation of buffers used for Western blotting 
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 Buffer                                                        Substance                              Amount  

1x PBS; pH 7.4    NaCl    8 g 

(Western blotting,    KCl    0.2 g 

Immunohistochemistry)   Na2HPO4   1.44 g 

KH2PO4   0.24 g 

H2O    1000 ml 

PBS-T      1x-PBS   999 ml 

(Western blotting)    Tween 20   1 ml 

Blocking Buffer    Skimmed Milk powder 6 g 

(Western blotting)    PBS-T    100 ml                                   

 

12% Gel for Western blotting  

TGX FastCast 12% gels were prepared in 1.5 mm Biorad glass plates for Western 

blotting as described in the Table 11.  

 
Table 11: TGX FastCast protocol 

Resolver solution for 1 gel Resolver solution in total 

Resolver A + Resolver B + 10% APS + TEMED 

      3 ml               3 ml              30 µl            3 µl 

6 ml 

Stacker solution for 1 gel Stacker solution in total 

Stacker A + Stacker B + 10% APS + TEMED 

      1 ml            1 ml              10 µl            2 µl   

2 ml 

Polymerization for 30 min.  

 

 

Table 10: Preparation of buffers used for Western blot and immunohistochemistry 



  Materials and Methods 

49 

 

 Promoter Analysis 

Sense and antisense strands of the human SPARC promoter were screened upstream of 

the coding sequence of the SPARC gene (NM_002859) for potential hypoxia response 

elements (HRE:gcgtg). The SPARC promoter sequence was obtained online 

(http://www.ncbi.nlm.nih.gov/mapview). 

 

 Statistical analysis 

The statistical evaluation of the cDNA microarrays was carried out by Dr. Jochen 

Wilhelm. Data were presented as mean ± SEM. Student’s t-test was performed for 

comparing two groups. Differences between more than two groups were analyzed by 

one or two way ANOVA followed by Dunnett’s, Bonferroni or Tukey`s multiple 

comparison post hoc tests. The evaluations were done by using GraphPad Prism 7 and 

Excel. The normalization was carried out according to the following formula: (xi, treatment-

xi, control) / (xi, control); where xi is the measured value of the experiment i.  A p value less 

than 0.05 was considered significant for all analyzes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.ncbi.nlm.nih.gov/mapview
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 Results 

Pulmonary hypertension (PH) is a severe and until now not curable disease22. In a 

previous study in mice, AMD-1 was identified as a novel key protein for the 

development and the reversal of PH. In this regard, it was shown that AMD-1 knockout 

mice possess less chronic hypoxia-induced PH than wild-type mice. Thus, targeting 

AMD-1 may represent a promising strategy for PH treatment.  

Along these lines, the present work/thesis aims to identify further key candidates for 

pulmonary vascular remodeling and its reversal by using a microarray approach, 

possibly identifying additional treatment strategies for PH.  

 

3.1 SPARC expression is attenuated in laser-microdissected pulmonary vessels 

following re-oxygenation of chronic hypoxic mice 

To screen for candidate genes involved in reverse remodeling, C57BL/6J mice were 

either exposed to normoxia (21% O2, 21 days, control group), hypoxia (10% O2, 21 

days, control group) or hypoxia (21 days) with a subsequent re-exposure to normoxia 

for 1, 3, 7, or 14 days (treatment group) (Figure 6A). Pulmonary vessels of those mice 

were laser-microdissected. To decipher gene expression alterations, whole-genome 

DNA microarray analysis was performed, revealing secreted protein acidic and rich in 

cysteine (SPARC), a matricellular glycoprotein, as one gene consistently down-

regulated in all re-oxygenation time-points investigated, compared to hypoxic controls 

(Figure 6B and C). SPARC is also known as osteonectin or basement membrane 

protein-40 (BM-40)125. SPARC is suggested to be involved in in cell-matrix interactions 

during tissue remodeling and embryonic development126. Moreover, elevated SPARC 

levels correlate with cell proliferation, cancer metastasis127 and the progression of 

bleomycin-induced pulmonary fibrosis128. 

As SPARC is suggested to be involved in hyper-proliferative diseases such as cancer 

and fibrosis, it is well conceivable that SPARC may play a major role in hypoxia-driven 

pulmonary vascular remodeling and its reversal. To confirm the down-regulation of 

SPARC following re-oxygenation, laser-microdissection of pulmonary vessels and 

q(RT)-PCR was performed from C57BL/6J mice, showing attenuated SPARC 

expression following 14 days of re-oxygenation (Figure 6D). Moreover, there was no 
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difference in SPARC expression between the normoxic and hypoxic control group in 

the microarray as well as in the q(RT)-PCR analysis (Figure 6B-D). 
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C  D 

A. Schematic of the study design. Chronic hypoxic mice (H, 21 days, 10% O2) were re-exposed 

to normoxia (N, 21 days, 21% O2) for 1, 3, 7 and 14 days. B. Volcano plot: regulation versus 

statistical significance. Genes with log odds values ≥5 were considered to be regulated; black 

spot shows SPARC regulation in laser-microdissected pulmonary vessels isolated from mice 

after induction of PH (N-H) and reversal of PH (H-N1; H-N3, H-N7, H-N14). C. SPARC 

regulation in the pulmonary vasculature for the indicated time points of re-oxygenation. D. 

q(RT)-PCR depicting SPARC mRNA expression in the pulmonary vasculature during the 

reversal of PH. n=4 animals per time point. SPARC expression was normalized to B2M. 

*p<0.05 vs respective control (hypoxia). 
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Figure 6: Down-regulation of secreted protein acidic and rich in cysteine (SPARC) in the 

pulmonary vasculature during the reversal of hypoxia-induced pulmonary hypertension 

(PH). 



  Results 

52 

 

C 

3.2 SPARC expression is elevated in the pulmonary vasculature of chronic 

hypoxic mice and idiopathic pulmonary arterial hypertension patients 

Next, possibly altered SPARC expression in chronic hypoxic mice and in human 

idiopathic pulmonary arterial hypertension (IPAH) patients was assessed. Analysis of 

lung tissue samples from normoxic (21% O2, 21 days) and chronic hypoxic (10% O2, 

21 days) mice showed no changes in SPARC mRNA expression. However, SPARC 

protein level was increased in chronic hypoxic mice (Figure 7A and B). 

Immunohistochemical staining showed predominant localization of SPARC in the 

pulmonary vessel wall (Figure 7C). Furthermore, hypoxia-induced SPARC expression 

seems to be specific for the pulmonary vasculature. In the systemic vasculature (Aorta) 

SPARC was not regulated (Figure 7D).  
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A. q(RT)-PCR depicting SPARC mRNA expression in lung homogenate from normoxic (N, 

21% O2, 28 days) or chronic hypoxic (H, 10% O2, 28 days) mice. n=6 animals per time point. 

SPARC expression was normalized to B2M. B. Representative Western blot analysis and 

densitometry of SPARC expression in lung homogenate from normoxic or chronic hypoxic 

mice. n=6. C. Immunohistochemical staining of SPARC (in red) in normoxic and chronic 

hypoxic mouse lungs. D. q(RT)-PCR showing SPARC mRNA expression in isolated Aorta 

from normoxic and chronic hypoxic mice. n=8.  

 

SPARC expression was elevated in an animal model of PH. Thus, next, its expression 

in human IPAH patients was assessed, demonstrating up-regulation of SPARC in lung 

homogenate from IPAH patients on both mRNA and protein level, compared to healthy 

donors (Figure 8A and B).  
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Figure 7: Elevated SPARC expression in the pulmonary vasculature of chronic hypoxic 

mice. 
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A. q(RT)-PCR depicting SPARC mRNA expression in lung homogenate from donor and 

idiopathic pulmonary arterial hypertension (IPAH) patients. n=11-14. SPARC expression was 

normalized to PBGD. B. Representative Western blot analysis and densitometry of SPARC 

expression in lung homogenate from donor and IPAH patients. n=12. 

 

3.3 Hypoxia regulates SPARC expression via HIF-2α  

Since abnormal proliferation of PASMC has a major role in pathogenesis of PH 72 and 

SPARC was localized in the medial layer, PASMC were used for in vitro studies. To 

unravel the molecular mechanisms regulating SPARC expression in vitro, primary 

hPASMC were exposed to normoxia (21% O2), hypoxia (1% O2) or hypoxia with a 

subsequent re-exposure to normoxia. SPARC mRNA expression was elevated 

following hypoxia and reversed following re-oxygenation (Figure 9A). SPARC protein 

level trended higher in hypoxic cells and was significantly down-regulated in re-

oxygenated PASMC (Figure 9B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

A. q(RT)-PCR analyzing SPARC expression in primary hPASMC exposed to normoxia (48h 

H, 21% O2), hypoxia (48h H, 1% O2) or hypxia with subsequent re-exposure to normoxia (24h 

H - 24h N). n=4. SPARC expression was normalized to PBGD. B. Representative Western blot 

analysis and densitometry of SPARC expression in normoxic, hypoxic or hypoxic with 

subsequent re-oxygenated PASMC. n=8. Control (24h N) was set to 100%. *p<0.05 vs 

respective control. 
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Figure 8: Elevated SPARC expression in the pulmonary vasculature of IPAH patients. 

Figure 9: Hypoxia-dependent SPARC expression in primary hPASMC is reversed by re-

oygenation. 
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Hypoxia triggers SPARC expression in vivo as well as in vitro, indicating that hypoxia-

inducible factor (HIF), which is one of the main transcription factors regulating hypoxic 

effects129, might be involved in regulating SPARC expression. For this purpose, HIF-

1α and HIF-2α, respectively were silenced in hPASMC by specific siRNA transfection. 

Both, HIF-1α and HIF-2α knockdown led to significantly reduced HIF-1α and HIF-2α 

mRNA levels, respectively (Figure 10A and C). Moreover, following HIF-1α silencing 

SPARC mRNA expression was not altered. However, HIF-2α knockdown significantly 

impaired SPARC mRNA expression in hypoxic PASMC (Figure 10B and D). Promoter 

analysis revealed two potential hypoxia response elements (HRE) in the SPARC 

promoter region (Figure 10E), confirming our results. 
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A. q(RT)-PCR analyzing HIF-1α mRNA expression in hypoxic (H; 24h; 1% O2) PASMC after 

siRNA transfection against HIF-1α (siHIF-1α) in comparison to control (siR). n=5. B. q(RT)-

PCR depicting SPARC mRNA expression in hypoxic PASMC after siRNA transfection against 

HIF-1α in comparison to control. n=5. C. q(RT)-PCR showing HIF-2α mRNA expression in 

hypoxic PASMC after siRNA transfection against HIF-2α (siHIF-2α) in comparison to control. 

n=9. D. q(RT)-PCR analyzing SPARC mRNA expression in hypoxic (24h) PASMC after 

siRNA transfection against HIF-2α in comparison to control. n=9. E. SPARC promoter analysis. 

Potential hypoxia response elements (HRE) in the 2000bp promoter region are shown. The 

coding sequence of the SPARC gene is marked with +1. 
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Figure 10: HIF-2α regulates SPARC expression in hypoxic primary hPASMC 
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3.4 TGF-β1-induced SPARC expression 

To further identify factors regulating SPARC expression, primary hPASMC were 

stimulated with growth factors implicated in PH pathogenesis. Transforming growth 

factor-β1 (TGF-β1) induced a time-dependent increase in SPARC mRNA expression. 

A plateau was reached after 4 h of stimulation (Figure 11A). SPARC protein expression 

was elevated following 24 h of TGF-β1 stimulation (Figure 11B). Moreover, treatment 

of primary hPASMC with both, hypoxia and TGF-β1 induced no additive effect on 

SPARC mRNA expression (Figure 11C).  
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A. q(RT)-PCR analyzing SPARC mRNA expression in primary hPASMC stimulated with 2 

ng/ml TGF-β1 for 2, 4, 6 and 24h in comparison to control (unt., solvent control). n=4. SPARC 

expression was normalized to PBGD. B. Representative Western blot analysis and densitometry 

of SPARC expression in TGF-β1 stimulated PASMC. n=8. Control (untreated) was set to 100%. 

C. q(RT)-PCR demonstrating SPARC mRNA expression in TGF-β1 (4h) stimulated normoxic 

or hypoxic (24h) PASMC. n=7. SPARC expression was normalized to PBGD. *p<0.05 vs 

respective control (untreated).   

 

In addition, effect of PDGF-BB, EGF and VEGF stimulation was assessed on SPARC 

expression. However, none of those growth factors affected SPARC mRNA and protein 

expression (Figure 12A-F). 
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Figure 11: TGF- β1-induced SPARC expression in primary hPASMC 
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A. q(RT)-PCR analyzing SPARC mRNA expression in primary hPASMC stimulated with 5 

ng/ml PDGF-BB (n=3-7) for the indicated time points in comparison to control (unt., solvent 

control). SPARC expression was normalized to PBGD. B. Representative Western blot analysis 

and densitometry of SPARC expression in PDGF-BB stimulated PASMC. n=7. Control was set 

to 100%. C. q(RT)-PCR depicting SPARC mRNA expression in primary hPASMC stimulated 

with 50 ng/ml EGF (n=5-6) for the indicated time points in comparison to control (solvent 

control). SPARC expression was normalized to PBGD. D. Representative Western blot analysis 

and densitometry of SPARC expression in EGF stimulated PASMC. n=6. Control was set to 

100%. E. q(RT)-PCR showing SPARC mRNA expression in primary hPASMC stimulated with 

2 ng/ml VEGF (n=6) for the indicated time points in comparison to control (solvent control). 

SPARC expression was normalized to PBGD. F. Representative Western blot analysis and 

densitometry of SPARC expression in VEGF stimulated PASMC. n=7. Control was set to 

100%. 

 

3.5 SPARC regulates PASMC proliferation in vitro 

Since abnormal PASMC function significantly contributes to PH pathogenesis, next, 

the functional role of SPARC in vitro was assessed. In this regard, SPARC was silenced 

in primary hPASMC by specific siRNA transfection. 24, 48 and 72 h post transfection, 

SPARC was significantly downregulated on mRNA and protein level, compared to 

control (siR) (Figure 13A and B). Since SPARC knockdown was successful, role of 

SPARC in expression of pro-proliferative proteins was examined. Western blot and 

q(RT)-PCR depicted attenuated cyclin D1, PCNA and Ki67 levels following SPARC 

silencing (Figure 13C - E). Moreover, knockdown of SPARC significantly impaired 

PASMC proliferation, assessed by cell counting, 24 and 72 h post silencing (Figure 

13G).  
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Figure 12: SPARC expression expression is not regulated via PDGF-BB, EGF and VEGF 
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A. q(RT)-PCR analyzing SPARC mRNA expression in primary hPASMC after siRNA 

transfection against SPARC (siSPARC) for the indicated time points in comparison to control 

(siR). n=3-8. SPARC expression was normalized to PBGD. B. Representative Western blot 

analysis and densitometry after SPARC silencing. n=7. Control was set to 100%. C. 

Representative Western blot analysis and densitometry for cyclin D1 after SPARC silencing. 

n=4-7. Control was set to 100%. q(RT)-PCR depicting D. PCNA (n=3-8) and E. Ki67 (n=6-7) 

mRNA expression. F. Proliferation of  primary hPASMC assessed by cell counting after 

knockdown of SPARC (siSPARC) for 24, 48 and 72 hours in comparison to control. n=5-8. 

Control was set to 100%. *p<0.05 vs respective control (siR).   
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Figure 13: SPARC regulates PASMC proliferation 
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3.6 SPARC affects PASMC proliferation via the PI3K/AKT/mTOR signaling 

pathway 

Since SPARC affects PASMC proliferation, next, possible regulatory role of SPARC in 

pro-proliferative phosphatidylinositol 3-kinase (PI3K)-AKT and extracellular signal-

regulated kinase (ERK1/2) signaling pathways was assessed. Western blot analysis 

showed less phosphorylation of AKT following SPARC silencing (Figure 14A), while 

ERK1/2 phosphorylation was not affected (Figure 14B), suggesting that SPARC 

regulates PASMC proliferation via the PI3K-AKT signaling pathway.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
A. Representative Western blot analysis and densitometry for AKT phosphorylation after 

SPARC silencing for the indicated time points. n=7. Control (siR) was set to 100%.  B. 

Representative Western blot analysis and densitometry for ERK phosphorylation after SPARC 

silencing. n=6. Control was set to 100%. *p<0.05 vs respective control (siR). 
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Figure 14: SPARC regulates PASMC proliferation via the PI3K/AKT signaling 
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Since SPARC silencing negatively affected AKT phosphorylation, next, AKT was 

inhibited by wortmannin. TGF-β-induced SPARC mRNA expression was reversed 

following wortmannin application (Figure 15A). To further characterize the 

downstream signaling of SPARC/AKT, we focused on mammalian target of rapamycin 

(mTOR). mTOR is a downstream effector of AKT signaling130. It is implicated in 

pathogenesis of PH and possesses a role in PASMC proliferation131. SPARC silencing 

attenuated mTOR mRNA expression (Figure 15B). However, blocking the mTOR 

pathway by rapamycin did not affect SPARC mRNA expression (Figure 15C). 

Moreover, mTOR mRNA level was elevated in lung homogenate derived from IPAH 

patients compared to donor lungs (Figure 15D).  
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A. q(RT)-PCR assessing SPARC mRNA expression in TGF-β1-stimulated (4h) primary 

hPASMC after AKT pathway inhibition by 50 nM wortmannin for 20 h. n=4. B. q(RT)-PCR 

assessing mTOR mRNA expression after siRNA transfection against SPARC (siSPARC) for 

the indicated time points in comparison to control (siR). n=9.  C. q(RT)-PCR assessing SPARC 

mRNA expression after mTOR pathway inhibition with 0.5 μM rapamycin for 20h prior to 

TGF-β1 stimulation for 4 h. n=7.  D. q(RT)-PCR depicting mTOR mRNA expression in lung 

homogenate from donor and idiopathic pulmonary arterial hypertension (IPAH) patients. n=7-

8. mTOR expression was normalized to PBGD.*p<0.05 vs respective control (siR). 

 

3.7 ILK is located upstream in the SPARC signaling pathway 

Besides signaling pathways located downstream of SPARC, upstream signaling was of 

interest. It has been shown that integrin linked kinase (ILK) plays a role in PASMC 

proliferation in PAH132. Moreover, it was observed that SPARC binds to ILK in glioma 

migration, activating proliferation via the PI3K/AKT pathway133. To decipher the 

possible role of ILK in SPARC signaling in primary hPASMC, knockdown experiments 

were performed, revealing that SPARC silencing did not influence ILK mRNA and 

protein expression (Figure 16A and B). However, knockdown of ILK (Figure 16C and 

D) led to attenuated SPARC mRNA and protein expression (Figure 16E and F). In 

addition, ILK inhibition by Cpd 22 led to diminished SPARC mRNA expression 

(Figure 16G). Moreover, ILK was more prominent expressed in IPAH patients 

compared to healthy donors (Figure 16H). 
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Figure 15: Role of mTOR in SPARC signaling pathway 
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A. q(RT)-PCR depicting ILK mRNA expression in primary hPASMC after siRNA transfection 

against SPARC (siSPARC) for the indicated time points in comparison to control (siR). n=7. 

ILK expression was normalized to PBGD. B. Representative Western blot analysis and 

densitometry for ILK after SPARC silencing for the indicated time points. n=3. Control (siR) 

was set to 100%. C. q(RT)-PCR showing ILK mRNA expression after siRNA transfection 

against ILK (siILK) in comparison to control. n=5. D. Representative Western blot analysis and 

densitometry for ILK after ILK silencing for the indicated time points. n=3. Control (siR) was 

set to 100%. E. q(RT)-PCR analyzing SPARC mRNA expression in after siRNA transfection 

against ILK for the indicated time points in comparison to control. n=4. SPARC expression was 

normalized to PBGD. F. Representative Western blot analysis and densitometry for SPARC 

after ILK silencing for the indicated time points. n=3. Control (siR) was set to 100%. G. q(RT)-

PCR analyzing SPARC mRNA expression in PASMC after ILK inhibition by Cpd 22 (1 µm) 

for 24 h in comparison to control (DMSO). n=6. H. q(RT)-PCR analyzing ILK mRNA 

expression in lung homogenate from donor and idiopathic pulmonary arterial hypertension 

(IPAH) patients. n=7-8. ILK expression was normalized to PBGD. *p<0.05 vs respective 

control (siR). 

 

3.8 No in vivo effect of SPARC deletion in chronic hypoxia-induced pulmonary 

hypertension in mice 

In order to investigate the in vivo function of individual genes, knockout mice can be 

used. In this regard, homozygous SPARC knockout (SPARC-/-) mice and their littermate 

controls (wild-type, WT) were used to assess the role of SPARC in chronic hypoxia-

induced PH. The mice were either exposed to normoxia (21% O2, 28 days) or chronic 

hypoxia (10% O2, 28 days), followed by echocardiography and hemodynamic 

measurements to evaluate RV remodeling and function. An overview about the time 

schedule and the different groups is depicted in (Figure 17A). Protein levels from the 

lung homogenate of WT and SPARC-/- mice showed absence of SPARC in the knockout 

mice (Figure 17B). Chronic hypoxia did not cause any changes in right ventricular 
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Figure 16: ILK is upstream of SPARC 
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internal diameter (RVID), cardiac output (CO) and cardiac index (CI), whereas right 

ventricular wall thickness (RVWT) (Figure 17C-E) was enhanced in WT mice. 

However, right heart catheterization revealed an increase in right ventricular systolic 

pressure (RVSP) in both WT and SPARC-/- mice. (Figure 17F). Moreover, right heart 

hypertrophy, depicted by the fulton index (RV/(LV+S)) was more pronounced in 

chronic hypoxic WT and SPARC-/- mice (Figure 17G). Left ventricular weight was not 

affected by genotype and experimental condition. In all parameters assessed, SPARC-/- 

mice did not differ from WT mice in their response to chronic hypoxia (Figure 17C-

G).  
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A. Time table of the experimental design. Wild-type (WT) and SPARC-/- mice were kept under 

normoxic (N, 21% O2) or chronic hypoxic (H, 10% O2) conditions for 28 days. 

E=echocardiography, H=hemodynamic measurement. B. Representative Western blot analysis 

of SPARC protein expression in lung homogenate of wild-type (WT) and SPARC-/- mice. C. 

Right ventricular wall thickness (RVWT). n=13. D. Right ventricular internal diameter (RVID). 

n=8-13. E. Cardiac index (CI). n=13-14. F. Cardiac output (CO). n=13-15. G. Right ventricular 

systolic pressure (RVSP). n=12-14. H. Fulton index depicted by the mass of the right ventricle 

(RV) / (mass of the left ventricle (LV) + septum (S)). n=13-15. *p<0.05 vs respective control. 

ns=not significant different.  

 

 

PH is characterized by pulmonary vascular remodeling. In this regard, influence of 

SPARC on muscularization was assessed, revealing that hypoxia significantly reduced 

the number of small non-muscularized pulmonary vessels in the WT group. Same trend 

was observed in SPARC-/- mice, however did not reach statistical significance (Figure 

18A). Moreover, amount of full muscularized vessels trended to increase under hypoxia. 

Representative pictures for muscularization of small pulmonary vessels are shown in 

(Figure 18B). In summary, SPARC-/-does not affect muscularization of small 

pulmonary vessels. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n o n

p a rtia l

fu ll

D
e

g
re

e
o

f
m

u
s

c
u

la
ri

z
a

ti
o

n

[%
 o

f
to

ta
l 

v
e

s
s

e
l
c

o
u

n
t]

  
  

(2
0

 –
7
0

µ
m

)

*

N                   H

0

60

100

20

120

40

80

A 

Figure 17: SPARC knockout does not influence echocardiographic and hemodynamic 

parameters in chronic hypoxic mice 
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A. Degree of muscularization of small pulmonary vessels in chronic hypoxic (H, 10% O2, 28 

days) wild-type (WT) and SPARC-/- mice. Values are given for non-muscularized, partially 

muscularized, or fully muscularized vessels (outer diameter, 20–70 μm) from paraffin-

embedded lung sections co-stained against α-smooth mucle actin (α-sma) and von Willebrand 

factor. n=14-15. B. Representative images of the degree of muscularization from one animal per 

group. *p<0.05 vs respective control (WT N).  

 

3.9 Possible compensatory effect in SPARC-/- mice 

SPARC-/- mice did not differ from WT mice in their response to chronic hypoxia. 

However, a prominent effect of SPARC on PASMC proliferation in vitro might point 

towards a possible compensatory mechanism in vivo, in SPARC-/-mice. In this regard, 

expression level of SPARC family members in lung homogenate was assessed. 

Expression of follistatin-like protein 1 (FSTL1), secreted modular calcium binding 

protein 1 (SMOC1) and 2 (SMOC2) and SPARC (osteonectin), cwcv and kazal like 

domains proteoglycan 1 (SPOCK1) did not show any compensatory mechanism in 

hypoxic SPARC-/- lung homogenate (Figure 19A-D). 
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Figure 18: SPARC knockout does not affect pulmonary vascular remodeling 
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q(RT)-PCR analyzing A. FSTL1, B. SMOC1, C. SMOC2 and D. SPOCK1 mRNA expression 

in lung homogenate from chronic hypoxic (H, 10% O2, 28 days) wild-type (WT) and SPARC-/- 

mice. n=5-6. SPARC expression was normalized to B2M.  
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Figure 19: SPARC ablation does not influence expression of SPARC family members in 

lung homogenate derived from chronic hypoxic mice 
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Since SPARC family member expression was not counter regulated in lung homogenate 

from hypoxic SPARC-/- mice, possible direct compensatory mechanism on PASMC 

function was assessed.  In this regard, PASMC from SPARC-/- and their littermate 

controls were isolated and incubated for 24 h under hypoxic conditions. Interestingly, 

PASMC derived from SPARC-/- mice possessed a higher degree of proliferation than 

respective cells from WT animals (Figure 20A). Moreover, the level of AKT 

phosphorylation was enhanced in SPARC-/- mice (Figure 20B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
A. Proliferation of WT and SPARC-/- mPASMC following 24 h hypoxic (1% O2) 

treatment,assessed by thymidine analogue 5-bromo-2'-deoxyuridine (BrdU) incorporation. The 

assay was performed in passage 1. n = 4-6. B. Representative Western blot analysis and 

densitometry for AKT phosphorylation in mPASMC isolated from WT and SPARC-/- mice and 

incubated for 24 h under hypoxic conditions. n=4-6. 
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Figure 20: Elevated hypoxia-induced poliferation and AKT phosphorylation in PASMC 

isolated from SPARC-/- mice 
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 Discussion 

In general, the major findings of the present thesis are: 

1. Laser-microdissection followed by the microarray technique is a powerful tool to 

identify novel genes regulated in the pathogenesis of PH. In this regard, secreted 

protein acidic and rich in cysteine (SPARC) was identified as one gene down-

regulated in murine vessels following re-oxygenation of chronic hypoxic mice.  

2. Up-regulation of SPARC was observed in chronic hypoxic mice as well as in human 

idiopathic pulmonary arterial hypertension patients. 

3. Immunohistochemical staining predominantly localized SPARC to the pulmonary 

vasculature. 

4. Hypoxia-dependent SPARC regulation was confirmed in primary hPASMC.  

5. Molecular analysis revealed HIF-2α-dependent SPARC expression under hypoxia.  

6. Next to hypoxia, TGF-β1 up-regulated SPARC expression. However, PDGF-BB, 

EGF, and VEGF stimulation did not affect SPARC expression. 

7. Functional importance of SPARC in PASMC proliferation was shown in vitro, 

following SPARC silencing. 

8. Regulation of PASMC proliferation occurred via the PI3K/AKT/mTOR pathway.  

9. Integrin linked kinase was identified upstream of the SPARC signaling pathway. 

10. However, in an in vivo approach SPARC-/- mice were not protected from hypoxia-

induced PH. 

11. As a compensatory mechanism, an increased AKT phosphorylation and PASMC 

proliferation was observed in SPARC-/- mice under hypoxic conditions. 

We suggest SPARC as a novel protein associated with PH and PASMC function. 
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4.1 Selection of the animal model 

In the present thesis, the mouse model of chronic hypoxia-induced PH was used, 

representing group three (PH secondary to lung disease and/or hypoxia) in the 6th World 

Symposium classification30, 33, 134. In mice, chronic hypoxic exposure  (10% O2) leads 

to muscularization of small, normally nonmuscular arteries, elevated pulmonary arterial 

pressure and structural remodeling of the pulmonary vessels, resulting in an increase in 

pulmonary vascular resistance and right heart hypertrophy30. Moreover, the chronic 

hypoxic mouse model is highly predictable and highly reproducible within a selected 

strain. However, the three critical points of human PH, obliteration of pulmonary 

arterioles, non-reversibility and development of the right ventricle failure108 are not 

represented in this model. In this regard, there is only a slight increase in pulmonary 

arterial pressure following chronic hypoxia135. Thus, the model of chronic hypoxia-

induced PH in mice is a widely used model to investigate milder forms of human PH 

such as PH associated with residence at high altitude85. Further one, chronic hypoxia-

induced PH in mice is reversible when the stimulus stops113, 118 even without therapeutic 

intervention. As the aim of the present thesis was to screen for novel candidate genes 

involved in pulmonary vascular remodeling and its reversal following re-oxygenation, 

the chronic hypoxic mouse model was the ideal/best available model. Availability of 

SPARC knockout mice additionally indicated for this model.  

However, as the chronic hypoxic PH model in mice is a model for less severe forms of 

PH, in further experiments, it might be recommendable to confirm elevated SPARC 

levels in PH in other more severe models. In this regard, the MCT-induced PH model 

is a well characterized and often used model. MCT is a toxic pyrrolizidine alkaloid agent 

present in the plant Crotalaria spectabilis110. It is mostly used in rats, while mice are 

not able to metabolize MCT to its active metabolite dehydromonocrotaline. 

Metabolization requires a CYP3A isoenzyme, which is lacking in the mouse liver108. A 

single MCT injection in rats induces endothelial damage, vascular inflammation and 

edema formation, followed by an increase in pulmonary vascular resistance. Finally 

vascular remodeling, including media hypertrophy, right heart hypertrophy and even 

right heart failure occurs82, 108, 109. However, the response to MCT is variable among 

species, strains and even animals. The different pathophysiology in this model makes it 

an attractive and interesting second model for studying SPARC dysregulation in PH.  
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4.2 Identification of a candidate gene for reverse remodeling 

In a previous study, Weisel et al., screened for potential candidates genes contributing 

to reverse remodeling by using the DNA microarray technique113. In this regard, mice 

were exposed to normoxia, chronic hypoxia or chronic hypoxia with subsequent re-

exposure to normoxia for different time points, followed by microarray analysis from 

lung homogenate. S-adenosylmethionine decarboxylase 1 (AMD-1) was identified as a 

novel candidate gene for pulmonary vascular remodeling processes. AMD-1 was 

elevated expressed in chronic hypoxic mice and down-regulated following re-

oxygenation of mice. Furthermore, AMD-1 was critically involved in dysregulated 

PASMC proliferation and apoptosis. In addition, AMD-1 knockout mice possessed less 

chronic hypoxia-induced PH than respective controls113. 

Going beyond this approach, the present thesis focused on the gene expression 

alterations in the lung vasculature by using the laser-microdisection/microarray-

technique. Laser microdissection of pulmonary vessels will possibly enhance the chance 

to detect additional relevant new genes/pathways for vascular remodeling which 

predominantly takes place in small pulmonary arteries72. Using the laser 

microdissection technique allows the isolation and thus the expression analysis of a 

specific compartment136, 137. In contrast, using lung homogenate for microarray analysis 

will display expression alterations of a complete organ137. In this regard, possible gene 

expression changes occurring specifically in the vascular compartment might be not 

detectable137.    

The microarray technique is used for large scale screening and expression studies138. In 

this regard, it allows the simultaneous characterization of gene expression alterations of 

thousands of genes and thus signaling pathways in healthy and disease state113, 139. 

Moreover, the microarray technique can be used for identification of prognostic markers 

for certain diseases139. Thus, while microarrays are useful in a large variety of 

applications, they have some disadvantages140. Firstly, microarrays can lead false 

positive results with the generation of enormous data masses  and with degraded 

mRNA138, 140. Secondly, the use of cDNA microarrays is also very expensive and results 

are dependent on the purity of RNA138, 140. And thirdly, a DNA array can only detect 

sequences which are specific for the detection138, 140. 

In this regard, mice were exposed to normoxia (21 days), chronic hypoxia (21 days) and 

chronic hypoxia (21 days) with subsequent re-exposure to normoxia followed by laser-

microdissection of pulmonary vessels. 
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Of all differentially expressed genes, the present thesis focused on SPARC. SPARC, 

also called osteonectin or basement membrane protein-40 (BM-40), is a 42 kDa 

multifunction glycoprotein125. SPARC is expressed in endothelial cells, vascular smooth 

muscle cells, macrophages, fibroblasts, and the alveolar epithelium141-143. SPARC is 

involved in regulation of various cellular processes such as cell proliferation, migration 

and angiogenesis144 as well as changing cell shape, inhibiting cell-cycle progression, 

and influencing the synthesis of extracellular matrix (ECM) proteins145. Among other 

functions, SPARC regulates wound healing, responses to injury and tissue 

remodeling141. In this regard, association of SPARC with several cancer forms and 

pulmonary fibrosis was observed57, 146. 

SPARC was consistently down-regulated in all re-oxygenation time-points investigated. 

Moreover, it is critically involved in several cellular processes that are dysregulated in 

PH and is associated with several hyper-proliferative diseases. Thus, it might be a 

promising novel potential target gene for pulmonary vascular remodeling processes 

underlying PH. In addition, involvement of several SPARC interaction, partners with 

what PH pathogenesis are already known for: Signal transducers and activators of 

transcription-3 (STAT3)147, transforming growth factor beta-1 (TGF-β1)80, AKT1148, 

MAPK1149, Caveolin 1 (CAV1)150, murine double minute 2 (Mdm2)151] and integrin 

linked kinase (ILK)132. 

Since the microarray technique can lead to false results, results should be validated by 

additional methods. In this regard, SPARC regulation in pulmonary vessels isolated 

from normoxic, hypoxic and re-oxygenated hypoxic mice was confirmed on mRNA 

level by q(RT)-PCR. In detail, in both techniques, there were no differences in SPARC 

regulation between the normoxic and hypoxic group and down-regulation following re-

oxygenation.  

In further experiments, SPARC regulation in lung homogenate obtained from mice 

suffering from chronic hypoxia-induced PH as well as from human IPAH patients was 

analyzed on mRNA and protein level. In addition, functional importance of SPARC was 

assessed by in vitro experiments. Finally, SPARC knockout mice were used to decipher 

the role of SPARC in PH in vivo. 
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4.3 Characterization of SPARC expression in chronic hypoxia-induced PH and 

in IPAH patients 

In the present thesis, lung homogenate from mice exposed to chronic hypoxia and 

patients with IPAH was used. Similar to the pulmonary vasculature, there was no 

induction of SPARC mRNA expression in lung homogenate derived from chronic 

hypoxic mice. However, SPARC protein expression was enhanced in lungs of chronic 

hypoxic mice, depicting that RNA and protein regulation not necessarily correlates. In 

addition, in IPAH patients, both SPARC mRNA and protein levels were enhanced in 

comparison to donor lungs. Elevated SPARC levels in chronic hypoxic mice as well as 

IPAH patients might point that there are no species-dependent differences in SPARC 

regulation.  

Involvement of SPARC in hyperproliferatives disease is already known from previous 

studies. In this regard, it has been showed that, SPARC may contribute to the 

progression of pulmonary fibrosis128, 152-154, breast cancer, melanoma and 

glioblastoma146. Enhanced SPARC levels were also observed in heat shock-, heavy 

metal- or endotoxin-induced tissue injury models in mice, chick embryo and dog155-158.  

Together, the role of SPARC in fibrosis, cancer and injury models points towards an 

important function of SPARC in hyper-proliferative diseases such as PH, most likely 

by affecting tissue remodeling processes. In this regard, in the present thesis, SPARC 

was predominantly localized to the pulmonary vessel wall, the site of the pulmonary 

vascular remodeling57. Vascular specific SPARC expression in the lung was already 

observed in bleomycin‐induced pulmonary fibrosis in mice152. In addition, elevated 

SPARC expression in chronic hypoxic mice was specific for the pulmonary vasculature 

as there were no changes in expression in the systemic vasculature (aorta). 
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4.4 Hypoxia as a critical factor of SPARC expression  

Elevated SPARC expression in chronic hypoxia-induced PH in mice might point 

towards hypoxia as a critical factor in SPARC regulation. As SPARC was localized in 

the medial layer of the vasculature wall and PASMC are critically involved in 

pulmonary vascular remodeling72, primary human PASMC were chosen for in vitro 

experiments. In this regard, PASMC were exposed to normoxia, hypoxia or hypoxia 

with a subsequent re-exposure to normoxia, mimicking the reverse remodeling approach 

in vivo. Hypoxia led to an increase in SPARC expression which was reversed by re-

oxygenation of cells. Hypoxia-dependent SPARC expression was already shown in 

human malignant glioma cells159. 

Since chronic hypoxic mice and hypoxic primary human PASMC possessed enhanced 

SPARC levels, next potential involvement of hypoxia inducible factors (HIF) in 

regulation of SPARC expression was assessed. Under normoxic conditions HIF‐α is 

hydroxylated by prolyl hydroxylase domain (PHD) proteins at conserved prolines 402 

and 564160, 161 in the oxygen‐dependent degradation domain162. However, under hypoxic 

conditions, HIF‐α hydroxylation by PHD is inhibited,160 causing HIF‐α accumulation 

and translocation to the cell nucleus. In the nucleus,  HIF‐α  dimerizes with the HIF‐β 

subunit, forming together with transcriptional co‐activators such as CREB‐binding 

protein and p300, an active transcription factor129. Binding of the active transcription 

factor to hypoxia response elements leads to expression of hypoxia‐specific genes129 

which can ensure sufficient O2 delivery, O2 transport and metabolic adaptations as well 

as vascular remodeling129, 163. 

In this regard, HIF levels were enhanced in the pulmonary vasculature of chronic 

hypoxic mice, in plexiform lesions of IPAH patients as well as in fawn-hooded rats86, 

164, 165. 

In the present thesis, HIF-1α silencing did not alter SPARC expression in hypoxic 

primary hPASMC. However, HIF-2α knockdown impaired SPARC expression in 

hypoxic cells. HIF-dependent SPARC expression was already shown in human 

malignant glioma cell lines following HIF-1α silencing159. Role of HIF-2α in regulation 

of SPARC transcription is until now unknown. However, analysis of the SPARC 

promoter revealed two potential HIF binding sites in the 2000bp promoter region. If 

HIF-2α directly or indirectly regulates SPARC expression in primary hPASMC has to 

be addressed in further experiments, such as electrophoretic mobility shift assays 

(EMSA) or chromatin immunoprecipitation (ChIP).  
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In addition to HIF, binding of SRY (sex‐determining region Y) ‐ box 5 (SOX‐5) to the 

SPARC promoter is known166. However, next to HIF and SOX-5, there might be 

additional not yet identified transcription factors, playing a role in SPARC regulation 

as well. 

Taken together, SPARC expression was increased in IPAH patients and chronic hypoxic 

mice. In vitro, SPARC expression was regulated via the hypoxia/HIF-2α pathway in 

primary hPASMC. Next to hypoxia, SPARC expression was regulated by TGF-β. 
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4.5 Effects of growth factor stimulations on SPARC expression 

Several growth factors, including TGF-β180, PDGF81, 82, EGF83and VEGF84, have been 

implicated in the pathogenesis of PH, by influencing abnormal proliferation and 

migration of pulmonary arterial vascular cells87.  

Thus, next, influence of those growth factors  on SPARC expression was assessed. In 

literature, SPARC interaction with several growth factors, including TGF-β1, VEGF 

and PDGF is described146. In bleomycin-induced lung fibrosis in mice TGF-β increases 

SPARC expression in mice fibroblasts128. Additionally, TGF-β upregulates SPARC 

expression in human gingival fibroblasts, human dermal fibroblasts, and human pulp 

cells167, 168. Blocking the TGF-β signaling leads to significantly attenuated SPARC 

levels and degree of fibrosis128. EGF and PDGF downregulates SPARC expression in 

human pulp cells and also in rabbit chondrocytes168. Moreover, SPARC binding to 

VEGF inhibits VEGF-stimulated proliferation of endothelial cells169. 

Experiments in the present thesis in primary hPASMC revealed an induction of SPARC 

expression following TGF-β1 stimulation, which is in line with the literature in 

fibroblasts. However, PDGF-BB, EGF and VEGF were not able to induce SPARC 

expression.  
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4.6 Functional role of SPARC 

Since SPARC expression is up-regulated in PH, next, its possible functional role was of 

major interest. In this regard, its impact on primary hPASMC proliferation was assessed. 

Abnormal PASMC proliferation is one of the key features in PH pathogenesis72. SPARC 

mRNA and protein expression was down-regulated by specific siRNA transfection in a 

time-dependent manner. Indeed, SPARC knockdown negatively affected PASMC 

proliferation. Impact of SPARC in proliferation was already observed in ovarian cancer 

cells, gastric cancer cells, glioma cells and melanoma cells127. Modulation of hPASMC 

proliferation most probably occurred via the proliferation markers cyclin D1, Ki67 and 

PCNA, since those were attenuated following SPARC silencing.  

Ki-67 is a nuclear antigen expressed during the G1, S, and G1–M phases of the cell 

cycle in proliferating cells170. PCNA is a highly conserved nuclear protein, which is 

expressed during cell replication and DNA repair170. Next to Ki67 and PCNA, cyclin 

D1 is one of the key genes controlling cell cycle and thus proliferation by influencing 

transition of cells between the G1 phase and the S phase171. 

Together, these results clearly indicated that SPARC affects PASMC proliferation. 

Finally, the involved pathway was of major interest. 
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4.7 SPARC signaling pathway  

PI3K/AKT and extracellular signal–regulated kinase (ERK1/2) signaling pathways are 

closely connected with pro-proliferative processes in hyperplastic diseases such as 

fibrosis, cancer and PH148, 172, 173. In detail, the PI3K/AKT signaling pathway is known 

to be involved in vascular development and normal vascular function by influencing 

proliferation of rat PASMC148. In this regard, PI3K/AKT signaling inhibition by 

triciribine led to impared rat PASMC proliferation148. The MAPK pathways consist of 

ERK1/2, c-Jun NH2-terminal kinase (JNK) and p38 MAPK, regulating cellular  

proliferation149. In this regard, elevated levels of ERK1/2 expression and 

phosphorylation were observed in proliferating pulmonary vascular  SMC from 

broilers174. 

Consequently, SPARC expression was silenced and the impact on AKT/ERK activation 

(phosphorylation) was assessed, indicating attenuated phosphorylation of AKT 

following SPARC silencing. Moreover, inhibition of AKT by wortmannin led to 

attenuated TGF-β1-induced SPARC expression, indicating a bidirectional regulatory 

role of SPARC and AKT. However, SPARC silencing did not impair ERK activation. 

A connection of SPARC with the AKT signaling pathway was already found in a recent 

publication, revealing less phosphorylation of AKT following SPARC depletion in 

human melanoma cell lines175. 

 

In addition to PI3K/AKT, mTOR, an AKT downstream effector, plays a major role in 

proliferation176 and PH pathogenesis 177. In detail, increased levels of mTOR (Ser-2481) 

phosphorylation and activation were found in hypoxic primary human and rat 

pulmonary arterial vascular smooth muscle cells (PAVSMC), causing elevated cell 

proliferation177. In this regard, in the present thesis, mTOR dysregulation in IPAH 

patients was confirmed. 

Moreover, SPARC silencing reduced mTOR expression in hPASMC. However, mTOR 

inhibition by rapamycin did not influence TGF-β-induced SPARC expression, 

indicating that mTOR is located down-stream of SPARC in the signaling pathway. 

Taken together, SPARC affects PASMC proliferation most probably via the 

PI3K/AKT/mTOR signaling pathway Figure 21.  

After identifying members of the downstream signaling pathway of SPARC, upstream 

signaling was addressed. ILK is a serine-threonine kinase localized in focal adhesion 

complexes178. Elevated ILK expression and activation occurs in several types of 
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cancers, including leukemia and glioblastoma179. ILK acts as an intracellular adaptor 

and kinase, linking integrins, (cell-adhesion receptors), and growth factors to a range of 

signaling pathways179. The kinase activity of ILK is modulated by cell–ECM 

interactions179. Intracellular, there is a direct interaction between ILK and actin and α-

actinin-binding proteins such as the parvins, affixin and paxillin180-182. Moreover, 

blockage of ILK expression and activity is anti-tumorigenic. Thus, ILK is an attractive 

target for cancer therapeutics179. Previous reports depicted SPARC binding to ILK, 

leading to human glioblastoma multiform cell migration by inducing the downstream 

phosphorylation of the AKT and ERK pathways133.  

In the present thesis, first ILK expression was assessed after SPARC silencing, revealing 

no influence on expression. However, ILK silencing negatively affected SPARC 

expression, clearly indicating that ILK is located upstream in the SPARC signaling 

pathway. Cpd 22 is a cell-permeable compound which acts as an ILK inhibitor183. Cpd 

22 possess a pro-apoptotic role in human prostate and breast cancer cell lines183. Similar 

than ILK silencing, ILK inhibition by Cpd 22 migtates SPARC expression. Next to 

SPARC and mTOR, ILK is enhanced expressed in IPAH patients. Elevated ILK 

expression in IPAH patients was already observed in a previous study132. However, the 

connection of ILK to SPARC and AKT/mTOR signaling in hPASMC is to the best of 

our knowledge new. In this regard, pharmacological intervention of SPARC might be a 

possible novel treatment strategy for PH pathogenesis.  

In head and neck cancer, SPARC expression is a poor prognostic factor for disease 

outcome184. However, SPARC might favor tumor response to nab-paclitaxel treatment 

in a clinical setting in those tumors. In detail, SPARC has been suggested as an 

important factor that affects drug accumulation. Via its albumin binding site and its high 

abundance in several tumor forms such as neck and head tumor, SPARC gathers the 

albumin-bound drug, nab-paclitaxel to tumor tissue184-186. However, further verification 

and several larger ongoing clinical studies are required in multiple tumor types for 

approving SPARC as a predictive biomarker for nab-paclitaxel treatment184. 
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4.8 In vivo relevance of SPARC  

Since SPARC affects PASMC function in vitro, SPARC might possess an in vivo 

function as well. In this regard, global SPARC-/- mice and their littermate controls (wild-

type, WT) were exposed to chronic hypoxia for 28 days. Following, echocardiography, 

hemodynamic measurements and muscularization were assessed. The RV has an 

important role in the determination of functional state and prognosis in PH134. Under 

physiological conditions the RV has a very thin walled crescent shaped structure and is 

designed to pump blood through a low pressure and high flow pulmonary vascular 

system187. However, under pathophysiological conditions such as chronic hypoxia, 

pulmonary vascular resistance and pressure increases due to narrowing of the 

pulmonary vascular lumen, leading to pressure overload of the right ventricle. An 

adaption mechanism leads to right heart hypertrophy188. However, at a certain time 

point, hypertrophy is no longer compensated and right ventricular failure might occur189.  

In the present thesis, RV remodeling and function is depicted by RVWT, RVID, CO 

and CI. RVID, CO and CI were regulated neither by hypoxia nor by genotype. RVWT 

was increased in WT mice following chronic hypoxia, but did not reach statistical 

significance in SPARC-/- mice. In conclusion, echocardiography parameters assessed 

indicate same degree of RV function and remodeling in the WT and knockout group. 

Elevated RVSP and fulton index in chronic hypoxic WT mice and decreased amount of 

non-muscularized vessels were already observed in numerous previous studies108, 113, 

190. Taken together, echocardiography and hemodynamic data indicate that possible 

hemodynamic changes occurred prior to changes in the heart. 

Moreover, remarkably there was;  

1) An obvious variability in the single experimental groups in echocardiographic and 

hemodynamic values assessed. 

2) An upward shift in already under baseline conditions (normoxia), especially for 

RVSP. 

SPARC-/- mice used for the in vivo experiments in the present thesis possessed a mixed 

genetic background, consisting of C57BL/6 and 129Sv191, 192. Since littermate controls 

were used, the control was as similar to the experimental group as feasibly and other 

possible confounders could be excluded.  
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Normally, RVSP in normoxic C57BL6/J mice ranges between 10-20 mmHg, whereas 

in hypoxic C57BL6/J mice it is between 14-26 mmHg108. Moreover, RVSP in normoxic 

129Sv mice ranges between 27-30 mmHg, whereas in hypoxic 129Sv mice it is 42-45 

mmHg193. Results in the present thesis showed RVSP 20-30 mmHg in normoxic and 

30-40 mmHg in hypoxic WT mice.  

Moreover, due to animal availability, the experimental groups contained higher 

numbers of females than males, which in addition can cause variations in experimental 

groups. In detail, previous studies observed that female gender and/or estrogens can be 

protective in experimental models of PH, such as the hypoxic and monocrotaline 

models194. 

Taken together all those factors might cause that SPARC-/- mice did not differ to WT 

mice in their response to chronic hypoxia, neither in RV remodeling and function, nor 

in hemodynamic data, fulton index and degree of muscularization of small pulmonary 

vessels. However, additional reasons might be the occurance of compensatory 

mechanisms in global SPARC-/- mice or the usage of the wrong model. Possibly, 

SPARC-/- does not affect pulmonary vascular remodeling but reverse remodeling.    
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4.9 SPARC family members  

SPARC is a member of a gene family possessing structural similarities in one or more 

protein domains195. The family members are: secreted modular calcium binding protein 

(SMOC) 1 and 2, follistatin like protein 1 (FSTL-1), testican 1 (SPARC/osteonectin, 

CWCV, and Kazal-like domains proteoglycans, SPOCK)196. SMOC1 binds tenascin 

C197 which is involved in PH pathogenesis72. SMOC2 is highly expressed in heart and 

muscle198 and has a role in proliferation in human hepatocellular carcinoma cells199. 

FSTL-1 has a role in respiratory distress and multiple defects in lung development200. 

SPOCK1 is involved in the development and progression of tumors201. 

Since SPARC-/- mice are not protected from chronic hypoxia-induced PH and SPARC 

family members are involved in hyperproliferative diseases and/or lung pathologies, 

next screening of possible compensatory mechanisms in SPARC-/- mice were 

performed. In this regard, expression levels of SPARC family members was assessed in 

WT and SPARC-/- mouse lung homogenate. However, degree of expression for FSTL-

1, SMOC1, SMOC2 and SPOCK1 did not differ between WT and SPARC-/-, revealing 

no compensatory expression in SPARC family members in SPARC-/- mice.  
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4.10 Possible compensatory mechanisms 

In the present thesis SPARC regulates PASMC proliferation via the PI3K/AKT/mTOR 

pathway. However SPARC-/- mice did not differ from WT mice in their response to 

chronic hypoxia, neither in RV remodeling and function, nor in hemodynamic data, 

fulton index and degree of muscularization of small pulmonary vessels. Moreover, as a 

compensatory mechanism, degree of expression for SPARC family members also did 

not differ between WT and SPARC-/-. Taken together, other possible compensatory 

mechanisms might be the reason for the in vivo results in the present thesis.  

Indeed, a direct compensatory mechanism on PASMC function was observed in vitro. 

PASMC isolated from SPARC-/- mice and incubated under hypoxic conditions 

possessed a higher level of AKT phosphorylation and proliferation than respective cells 

from WT animals. Compensatory upregulation of those two processes might explain 

why WT and SPARC-/- mice did not differ in their response to chronic hypoxia Figure 

21. 

For the in vivo studies, global SPARC-/- mice and littermate controls were used. A global 

KO leads to a permanent deletion of a specific gene in the whole animal, in every cell 

of the organism202. In future, conditional KO mice might be more beneficial while in 

this model the gene of interest is temporally controllable at a given time-point in 

preferable adult animals prior to start of the experiment with the usage of external 

inducer-agents such as tamoxifen or tetracycline203. Finally, inducible cell type specific 

SPARC-/- mice might help to decipher the role of SPARC in vivo in a specific cell type.  

Next to the conventional KO, SPARC-/- mice can be induced via clustered regularly 

interspaced short palindromic repeats (CRISPR)/CRISPR-associated genes 

(CRISPR/Cas) and adeno associated virus (AAV)202, 203. 

CRISPR/Cas is a new system which allows editing of the mice genome much faster than 

previously used techniques. Moreover, in this system multiple mutations can be made 

in a single experiment. Until now, it is the easiest method for obtaining a viable 

knockdown mouse model, which can be used for experiments204, 205. 

Selective gene silencing by RNA interference (RNAi) is another possible approach. 

Short hairpin RNA (shRNA) is an artificial RNA molecule which targets a specific gene, 

causing stable gene silencing206, 207. Additionally, viral vectors have been used as the 

delivery method in many studies207. It has been observed that, shRNA delivery by AAV 
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systems are more efficient in gene silencing than alternative methods such as retroviral 

or lentiviral systems207. 

In conclusion, experiments using time-point specific (conditional) and/or cell type 

specific SPARC-/- mice will be needed to avoid the occurrence of compensatory 

mechanisms and to assess the role of SPARC in vivo. Finally, a therapeutic intervention 

can be taken in consideration for treatment of patients. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SPARC is elevated expressed in IPAH patients, in chronic hypoxic mice and in primary 

hPASMC following TGF-β1 stimulation or hypoxic treatment. Hypoxia-induced SPARC 

expression is regulated via HIF-2α. Re-oxygenation of PASMC reversed enhanced SPARC 

expression under hypoxic conditions. Silencing of SPARC inhibits PASMC proliferation via 

the PI3K/AKT/mTOR signaling pathway. ILK is located upstream in the SPARC signaling 
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pathway. SPARC-/- are not protected from chronic hypoxia-induced PH, possibly because of 

enhanced AKT phosphorylation and PASMC proliferation in hypoxic SPARC-/- PASMC. 

AKT: Protein kinase B, ECM: extracellular matrix, GF: growth factor, HIF: hypoxia inducible factor, 

ILK: integrin linked kinase, IPAH: idiopathic pulmonary arterial hypertension, mTOR: the mammalian 

target of rapamycin, PASMC: pulmonary arterial smooth muscle cells, PCNA: proliferating-cell-nuclear-

antigen, SPARC: secreted protein acidic and rich in cysteine, TGF-β1: transforming growth factor beta.  
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 Summary 

Pulmonary hypertension (PH) is a life-threatening disease, characterized by excessive 

pulmonary vascular remodeling, leading to elevated pulmonary arterial pressure and 

right heart hypertrophy. PH is caused among others by chronic hypoxia, 

vasoconstrictor/vasodilator and/or growth factor imbalance leading to pulmonary 

arterial smooth muscle cell (PASMC) dysregulation. Upon re-exposure to normoxia, 

hypoxia-induced PH in mice is reversible.  

Until now, research in the field of PH concentrates mostly on the onset and development 

of PH. In this thesis, we aim to identify novel candidate genes for pulmonary vascular 

remodeling and its reversal specifically in the pulmonary vasculature.  

Reverse remodeling was investigated in adult mice (C57BL/6J) either exposed to 

normoxia (21% O2), chronic hypoxia (10% O2), or chronic hypoxia with subsequent re-

exposure to normoxia for 1, 3, 7, 14 days. Pulmonary vessels were laser-microdissected 

followed by RNA isolation and microarray analysis. In addition, the functional role of 

the candidate gene was confirmed in vitro in human primary PASMC and in vivo in 

respective knockout mice.   

In laser-microdissected murine pulmonary vessels, secreted protein acidic and rich in 

cysteine (SPARC) was identified as one gene consistently down-regulated in all re-

oxygenation time points investigated. Up-regulation of SPARC specifically in the 

pulmonary vasculature was observed in chronic hypoxic mice and in idiopathic 

pulmonary arterial hypertension patients. Furthermore, TGF-β1 or hypoxia-HIF-2α 

signaling pathway induced SPARC expression. In in vitro studies, SPARC silencing in 

primary human PASMC led to reduced proliferation and diminished PI3K/AKT/mTOR 

activation. However, SPARC in vivo knockout did not attenuate chronic hypoxia-

induced PH, possibly due to elevated AKT activation and PASMC proliferation under 

hypoxic conditions in SPARC knockout PASMC.  

In summary, SPARC was identified as a novel gene involved in dysregulation of 

primary human PASMC proliferation. Moreover, to the best to our knowledge this is 

the first evidence about its associated with the human PH disease.  
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 Abbreviations 

 

α-sma      Alpha smooth muscle actin 

ALK1      Activin receptor-like kinase 1 

AKT      Serin/Threonin Protein-Kinase Akt 

AMD-1     S-adenosylmethionine decarboxylase 1  

APS      Ammoniumpersulfat 

ATP      Adenosine triphosphate 

BCA      Bicinchoninic acid assay 

bFGF      Basic fibroblast growth factor 

B2M      β2-Microglobulin 

BM-40     Basement membrane protein-40  

BMPR2 Bone Morphogenetic protein receptor, type 

2 

Bp      Basepairs 

BSA      Bovines Serum-Albumin 

°C      Celsius 

CAV1      Caveolin-1  

cDNA      Complementary DNA 

cGMP      Cyclic guanosine monophosphate 

CI      Cardiac index  

CH      Chronic hypoxia 

CHD      Congenital heart disease  

ChIP      Chromatin immunoprecipitation  

CO      Cardiac output  
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CO2      Carbondioxide 

COPD      Chronic obstructive pulmonary disease  

CTEPH Chronic thromboembolic pulmonary 

hypertension 

d      Day  

DNA      Deoxyribonucleicacid 

dNTP      Deoxyribonucleotidtriphosphate 

DPBS      Dulbecco's phosphate-buffered saline 

EC      Endothelial cells  

ECM      Extracellular matrix components  

EDTA      Ethylenediaminetetraacetic acid  

EGF      Epidermal growth factor  

EF      Ejection fraction 

EMSA      Electrophoretic mobility shift assays  

ENG      Endoglin  

Erk1/2 Extracellular signal-regulated Kinases 1 

and 2 

ET-1      Endotelin 1 

FBS      Fetal bovine serum 

FDA      Food and Drug Administration 

FiO2      Fraction of inspired oxygen 

FOXO1     Forkhead box O1  

FP      Forward Primer 

FSTL1      Follistatin like protein 1 

g      Gram 
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GF      Growth factor 

h      Hours 

H      Hypoxia 

HCl      Hydrochloric acid 

HIF      Hypoxia-inducible factor 

HIF-1α     Hypoxia-inducible factor 1 alpha 

HIF-2α     Hypoxia-inducible factor 2 alpha 

HIV      Human immunodeficiency virus  

H2O      Water 

H2O2      Hydrogen peroxide 

hPASMC     human PASMC 

HPV      Hypoxic pulmonary vasoconstriction  

HR      Heart rate  

IgG      Immunoglobulin g 

ILD      Interstitial lung disease  

ILK      Integrin linked kinase  

IPAH      Idiopathic pulmonary hypertension 

JNK      c-Jun NH2-terminal kinase  

K+      Potassium 

kDa      Kilodalton 

kg      Kilogram 

KH2PO4     Monopotassium phosphate 

KCNK3 Potassium channel super family K 

member-3 

KLF4      Krüppel-like factor 4  
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KO      Knock out 

LV      Left ventricle 

µ      Micro (10-6) 

μg      Microgram 

μl      Microliter 

m      Mili (10-3) 

m2      Square meters 

M      Molar (Mol per Liter) 

MAPK     Mitogen-activated Protein-Kinase 

MCT      Monocrotaline 

Mdm2      Murine double minute 2  

mg      Milligram 

min      Minute 

mM      Milimolar 

mmHg      Milimeter mercury 

mPAP      Mean pulmonary arterial pressure  

mPASMC     Mouse PASMC  

MRI      Magnetic resonance imaging 

mRNA     Messenger RNA 

mTOR      The mammalian target of rapamycin 

mTORC1     mTOR complex 1  

mTORC2     mTOR complex 2  

n      Number of experiments 

N      Normoxia 

N2       Nitrogen 
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Na+      Sodium 

NaCl      Sodium chloride 

Na2HPO4     Disodium phosphate 

Na3VO4     Sodium ortho vanadate 

NC      Negative control 

NFATc2 Nfatc2      Nuclear factor of activated T-cells,  

cytoplasmic, calcineurin-dependent 2  

nm      Nanometer 

NO      Nitric Oxide 

O2      Oxygen 

OSA      Obstructive sleep apnea  

OPN      Osteopontin 

2-Propanol     Isopropylalcohol 

PAGE      Polyacrylamide gel electrophoresis 

PA      Pulmonary artery 

PAH      Pulmonary Arterial Hypertension 

PASMC     Pulmonary arterial smooth muscle cells 

PBGD      Porphobilinogen Deaminase 

PBS      Phosphate Buffered Saline  

PCNA      Proliferating Cell Nuclear Antigen 

PCR      Polymerase chain reaction  

PCH      Pulmonary capillary hemangiomatosis 

PDE-5      Phosphodiesterase 5  

PDGF      Platelet-derived growth factor  

PAEC      Pulmonary arterial endothelial cells 
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PH      Pulmonary Hypertension 

PHD      Prolyl hydroxylase domain  

PI3K      Phosphatidylinositol 3-kinase  

pmol      Pikomol 

POPH      Portopulmonary hypertension  

PO2      Partial pressure of O2  

PPH      Primary pulmonary hypertension  

PPHN Persistent pulmonary hypertension of the 

newborn  

PPARG1 Peroxisome proliferator–activated receptor 

γ 1 

PVDF      Polyvinylidenfluoride 

PVOD      Pulmonary veno-occlusive disease 

PVR      Pulmonary vascular resistance  

RIPA      Radioimmunoprecipitation assay buffer  

ROCK      Rho-Kinase 

RP      Reverse Primer  

RNA      Ribonucleicacid 

rpm      rounds per minute  

RV      Right ventricle 

RVID      Right ventricular internal diameter  

RVF      Right ventricle failure  

RVH      Right ventricular hypertrophy  

RVP      Right ventricular pressure 

RVWT     Right ventricular wall thickness  
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s      Seconds 

SAP      Systemic arterial pressure 

Sch-PAH     Schistosomiasis-associated PAH  

SDS      Sodium dodecyl sulfate 

SDS-PAGE Sodium dodecyl sulfate-Polyacrylamide 

gel electrophoresis 

SERT      Serotonin receptor 

siRNA      small-interfering RNA  

SEM      Standard error of the mean  

SLUG      Snail family zinc finger 2  

SMA      Smooth muscle actin  

SMAD 9     Decapentaplegic 9 

SMC      Smooth muscle cells  

SMOC1 Secreted modular calcium binding protein 

1 

SMOC2 Secreted modular calcium binding protein 

2 

SOX‐5      SRY (sex‐determining region Y) ‐ box 5  

SPARC     Secreted protein acidic and rich in cysteine 

SPOCK1 SPOCK1     SPARC/osteonectin, CWCV, and Kazal- 

like domains proteoglycans 1 

STAT3 Signal transducers and activators of 

transcription 3  

SVR      Systemic vascular resistance  

Tab.      Table 

TAPSE     Tricuspid annular plane systolic excursion  
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TBE      TRIS-Borat-EDTA 

TBS-T      Tris Buffer Saline with 0,1% Tween20 

TEMED     Tetramethylethylenediamine 

TGFβ      Transforming growth factor beta  

TF      Transcription factors 

TRIS      Tris(hydroxymethyl)-aminomethane 

TSP1      Thrombospondin 1 

U      Unit 

q(RT)-PCR  Quantitative real-time polymerase chain 

reaction  

V      Voltage 

VEGF      Vascular endothelial growth factor  

VIP      Vasoactive Intestinal Peptide 

v/v      Volume per Volume 

vWF      von Willebrand factor  

Watt      Watt 

WB      Western Blot 

w/v      Weight per Volume 

WT      Wild-type 

5-HTT      5-Hydroxytryptamintran 

6MWD     6-minute walk distance  
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