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Abstract.We summarize known results on the transformation monoid of nondeterministic finite
automata (NFAs) from semigroup theory. In particular, we list what is known from the literature
on the size of monoids induced by NFAs and their (minimal) number of generators—a comprehen-
sive list of these generators is given in the Appendix. It is shown that any language accepted by

an n-state NFA has a syntactic monoid of size at most 2n2

. This bound is reachable by the genera-
tors of the semigroup Bn of n×n Boolean matrices with the usual matrix multiplication except that
we assume 1 + 1 = 1. The number of these generators grows exponentially in n. This is a significant
difference to the deterministic case, where three generators suffice to generate all elements of Tn.
Moreover, we prove a lower bound for the NFA-to-DFA conversion using Lambert’s W function.
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1 Introduction

We assume the reader to be familiar with the notion of finite automata, in particular, with
deterministic finite automata (DFAs). Let A = (Q,Σ, δ, q0, F ) be a DFA with δ : Q × Σ → Q.
Then every letter a ∈ Σ defines a total function a : Q → Q in the natural way, that is, a(p) = q
if δ(p, a) = q. The functions a, for a ∈ Σ, are the generators of a transformation monoid that is
a subset of Tn with n = |Q|. Obviously, the size of Tn is upper bounded by nn. The generators of
the transformation monoid Tn are nicely characterizable. The kernel of a transformation α is the
equivalence relation ≡, which is induced by i ≡ j if and only if (i)α = (j)α (function application
is to the left). Then by Salomaa [15] the following result was shown, which was re-discovered
several times during the years; for instance see Dénes [2].

Theorem 1 (Salomaa). Assume n ≥ 3. Then three elements of Tn generate all transforma-

tions of Tn if and only if two of them generate the symmetric group Sn and the third has kernel

size n− 1. Moreover, no less than three elements generate all transformations from Tn.

This gives us the result, that the largest subsemigroup of Tn generated by three or more
elements has full size nn. The size of the largest subsemigroup for two generators was studied
in [6], where a lower bound of nn(1 − 2√

n
) and a trivial upper bound of nn − n! + g(n) was

obtained—here g(n) refers to Landau’s function on the largest order of permutations on n
elements. A slightly better lower bound of nn(1− 4

n
) for odd n ≥ 70 was presented in [12].

The syntactic monoid for a given language L ⊆ Σ∗, is defined by the syntactic congruence ∼L

over Σ∗ where v1 ∼L v2 if and only if uv1w ∈ L ⇐⇒ uv2w ∈ L for every u,w ∈ Σ∗. Then
the syntactic monoid is the quotient monoid M(L) = Σ∗/ ∼L, where the concatenation of
equivalence classes [u]∼L

· [v]∼L
= [uv]∼L

serves as the monoid operation. The syntactic monoid
of a regular language L is the smallest monoid recognizing the language under consideration
(with respect to the division relation) and it is isomorphic to the transformation monoid of the
minimal deterministic finite automaton accepting L. Here a language L ⊆ Σ∗ is recognizable if
and only if there exists a finite monoid M , a morphism ϕ : Σ∗ → M , and a subset N ⊆ M
such that L = ϕ−1(N), which in turn is equivalent to the regularity (acceptance by a finite state
machine) of L.

2 Transformation Monoid of a NFA

Next let us define a transformation monoid for nondeterministic finite automata (NFA). To
this end we use the monoid of binary relations on a set of size n—this algebraic structures
is isomorphic to the semigroup Bn of n × n Boolean matrices with the usual matrix multi-
plication except that we assume 1 + 1 = 1. Any binary relation R on the n-set {1, 2, . . . , n}
can be represented naturally by a n × n Boolean matrix A = (aij) such that aij = 1 if and
only if iR j. We closely follow the lines of [13] and [14]. Let an NFA A = (Q,Σ, δ, q0, F )
be given. Here we assume that δ : Q × Σ → 2Q. Then for every letter a ∈ Σ define the
relation Ra ⊆ Q × Q as follows: (p, q) ∈ Ra if and only if q ∈ δ(p, a). As operation on
the relations we use composition of relations. Then the morphism h : Σ∗ → Q×Q defined
via h(a) = Ra, for every a ∈ Σ, recognizes the language L(A), i. e., we can write L(A) = h−1(S),
where S = {R ⊆ Q×Q | (q0, q) ∈ R, for some q ∈ F }. The size of the relation monoid is upper
bounded by 2n

2
with n = |Q|.

Let me give an example. Consider the NFA A = (Q, {a, b}, δ, q0 , F ) with state set Q = {1, 2},
initial state q0 = 1, set of final states F = {2}, and δ(1, a) = {1, 2}, δ(1, b) = {2}, and fi-
nally δ(2, a) = δ(2, b) = {2}. The automaton A is depcited in the left of Figure 1. On the right
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Fig. 1. The NFA A (left) and the minimal DFA (right) accepting the language L(A). The transition monoid of A
has size 3, while the transition monoid, which is equivalent to the syntactic monoid of L(A), contains only 2
elements.

of the figure the minimal DFA accepting L(A) is shown. The transformation monoid induced
by A contains the three elements id, a, and b satisfying a2 = a and ab = ba = b2 = b. These
elements represent the matrices

id =

(

1 0
0 1

)

, a =

(

1 1
0 1

)

, and b =

(

0 1
0 1

)

.

On the other hand, the transformation monoid of the corresponding minimal DFA accept-
ing L(A), which is isomorphic to the syntactic monoid of L(A), has only two elements, namely id

and a with the equations a = b and a2 = ab = ba = b2 = a.
Before we continue we introduce some further notations on semigroup theory. Let S be a

semigroup. For a and b in S, we say that aL b if they generate the same left ideal, i. e., S1a = S1b,
where S1 is S with an identity adjoined, and aR b if they generate the same right ideal, that
is, aS1 = bS1. We also define the two-sided ideal D = L ∨ R, the smallest equivalence relation
containing both L andR. These equivalence relations are well-known and called Greens relations.
The relations L and R commute, and D = D ◦ R = R ◦ L. An element a of a semigroup S is
regular if there exists an element b in S such that aba = a. Moreover, a semigroup S where
every element is regular is said to regular. Finally, we introduce notations particular for Bn. A
Boolean matrix α in Bn is called prime if α is not in Sn and whenever α = βγ, where both
elements β and γ are in Bn, then either β or γ is in Sn. Finally, two matrices α and β in Bn are
similar if α can be obtained by row and/or column permutation from β. Now we are ready to
continue our journey on generators for Bn.

Concerning the number of generators the situation is more involved compared to the sym-
metric group Sn, where two generators suffice, and that of Tn, with three ones. In [9] it is proven
that the semigroup Br

n generated by the regular elements of Bn has a generating set consisting
of four elements.1 These are the following four elements
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1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . 1 0
0 0 0 . . . 0 0



















.

Here the first matrix describes the n-cycle
(

1 2 . . . n
)

and the second one the transposition
(

1 2
)

.
Thus, both generate Sn. Thus, we refer to these four elements as π (permutation), τ (transposi-
tion), ν (nondeterminism), and ǫ (erase). In contrast with the above results, the size of a minimal

1 Observe, that B
r

n itself is not a regular semigroup, since the set of all regular elements in Bn is not closed
under multiplication. Observe, that Br

4 contains 63.904 elements, where 40.408 are regular. Note that B4 is of
size 65.536. Moreover, the monoid B

r

5 is of size 32.311.832, where 8.683.982 elements are regular, and B5 is of
size 225 = 33.554.432.
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generating set of Bn grows exponentially with n. Devadze [4] stated without a proof that any
set consisting of the four generators of Br

n and representatives of the so called prime D-classes
of Bn is a generating set of Bn with the smallest number of elements. Later Devadze’s result on
the number of generators of Bn was formally proven in [11]; see also, e. g., [8].

Theorem 2 (Devadze). Assume n ≥ 3. Then the following elements of Bn generate all

Boolean matrices of Bn if and only if two of them generate the symmetric group Sn, one is sim-

ilar to the third, another similar to the fourth matrix of generators of the regular semigroup Br
n,

and all other elements are any representatives of the prime D-classes of Bn. Moreover, no less

than these elements generate all of Bn.

A size estimate of 2
n
2

4
−O(n) on the number of generators for Bn can be found in [5, 8, 11].

Also in [5] it was shown that the minimal number of generators of the monoid of n×n Boolean
matrics induces the sequence—this is sequence A346686 of the Online Encyclopedia of Integer
Seqeunces (OEIS):

2, 3, 5, 7, 13, 68, 2142, 459153, . . .

The size of the largest semigroup generated by one n × n Boolean matrix is studied in [3].
To our knowledge the exact value is unknown, but for n < 19 the sizes are n2 − 2n + 2, which
gives the OEIS sequence A217990:

1, 2, 5, 10, 17, 26, 37, 50, 65, 82, 101, 122, 145, 170, 197, 226, 257, 290, 420, . . .

For n ≥ 19 the size of the largest semigroup by one n × n Boolean matrix is only known to be
lower bounded by g(n) and upper bounded by n2 − 2n + 2 + g(n). Also the case of two n × n
Boolean matrix generators were considered in the literature [10], which appears to be quite
difficult. Roughly speaking the size of such a semigroup vary greatly with the number of ones
in the matrices and can be exponentially. Even the case of three generators was considered, see,
e. g., sequence A358784 of OEIS.

Next let us consider the NFA that is induced by the four generators of Br
n and its equiv-

alent minimal DFA in more detail. To this end define the NFA A = (Q, {a, b, c, d}, δ, q0 , F ),
where Q = {1, 2, . . . , n}, the initial state q0 = 1, the set of final states F = {n}, and the
transition function is given by

– δ(i, a) = {i+ 1}, for 1 ≤ i < n, and δ(n, a) = {0},
– δ(1, b) = {2}, δ(2, b) = {1}, and δ(i, b) = {i}, for 3 ≤ i ≤ n,
– δ(1, c) = {1}, δ(2, c) = {1, 2}, and δ(i, c) = {i}, for 3 ≤ i ≤ n, and
– δ(i, d) = {i}, for 1 ≤ i < n.

The automaton A is depicted in Figure 2. For this NFA we can prove the following result, for
which we introduce the following notation: we refer to the DFA obtained from a finite state
device A = (Q,Σ, δ, q0, F ) by the powerset construction2 as P(A) = (2Q, Σ, δ′, {q0}, F

′), where

δ′(P, a) = ∪p∈P δ(p, a),

for P ∈ 2Q and a ∈ Σ, and F ′ = {P ∈ 2Q | P ∩ F 6= ∅ }. Here 2Q refers to the powerset of Q.

Theorem 3. Let A = (Q, {a, b, c, d}, δ, q0 , F ) be the n-state NFA defined above. Then the pow-

erset automaton P(A) is minimal and has 2n initially reachable states.

2 Sometimes this construction is also called the subset construction in the literature. The deterministic automa-
ton P(A) is also called the powerset automaton of A.
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1 2 3 . . . n−1 n

a, b
a a a a

a

b, c

b, c, d b, c, d b, cc, d c, d

Fig. 2. The n-state NFA with input letters a, b, c, and d induced by the n × n Boolean matrics π, τ , ν, and ǫ,
which minimal DFA accepting L(A) requires 2n states.

Proof. The upper bound is trivial. For the lower bound we argue as follows: In order to prove
the above statement it is sufficient to show that all states of the powerset automaton B := P(A)
are reachable and belong to different equivalence classes with respect to the Myhill-Nerode
equivalence relation. Let δ′ refer to the transition function of the powerset automaton.

Let R and S be two distinct states in 2Q. Without loss of generality, we assume that state i
in Q belongs to R but not to S. Since the letter a is a cyclic permutation we find the situation
that n ∈ δ′(R, an−i) but n 6∈ δ′(S, an−i). This shows that R and S are not in the same equivalence
class.

Now we are going to show that all states R in 2Q are reachable. Clearly, we do have the
situation δ′({1}, (ac)n−1) = {1, 2, . . . , n}. Thus, the full set is reachable. Then we proceed by
induction on the number k := |Q\R| of missing elements from R w. r. t. the full set Q. Let k ≥ 1.
Consider the state R = {i1, i2, . . . , in−k−1} with k+1 missing elements of the powerset automa-
ton. We may assume 1 ≤ i1 < i2 < · · · < in−k−1 ≤ n and let i be any element not in R. By
induction hypothesis the set S = {i}∪{i1, i2, . . . in−k−1}, where the union is disjoint, is reachable
from the initial state {1}, since the cardinality of Q \S is k. Then R is reachable from S by the
input word z = an−idai since

δ′(S, z) = δ′({i} ∪ {i1, i2, . . . in−k−1}, z)

= δ′(({i} ⊕ (n− i)) ∪ ({i1, i2, . . . in−k−1} ⊕ (n − i)), dai)

= δ′({n} ∪ ({i1, i2, . . . in−k−1} ⊕ (n− i)), dai)

= δ′(({i1, i2, . . . in−k−1} ⊕ (n− i)), ai)

= ({i1, i2, . . . in−k−1} ⊕ (n− i))⊕ i

= {i1, i2, . . . in−k−1},

where ⊕ is the operation defined as follows: on a set R ⊆ Q and a number j ≥ 0 let

R⊕ j = { 1 + (i− 1 + j) mod n | i ∈ R }.

Note that (R⊕ (n− j))⊕ j = R. This proves the stated claim on the reachability of all subsets
of 2Q. ⊓⊔

Observe, that in the proof of the previous theorem the letter b is not used in the argumen-
tation at all. Moreover, a careful inspection of the previous proof also reveals that the initial
state and the singleton set of accepting states can be chosen arbitrarily without changing the
statement of Theorem 3. With the next theorem we can conclude that there are n-state NFAs,
whose NFA-to-DFA conversion is maximal (the minimal DFA requires 2n states), that induce
fairly different size syntactic monoids.
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The next theorem is a straight-forward observation that relates the algebraic structure in-
duced by the NFA with the syntactic monoid of its accepted language or equivalently with the
transition monoid of its equivalent minimal DFA.

Theorem 4. The monoid on n×n Boolean matrices induced by the NFA A is isomorphic to the

syntactic monoid of L(A), if the initially reachable sub-automaton of the DFA P(A) is minimal.

⊓⊔

From this theorem we deduce the following corollary:

Corollary 5. For every n there is an n-state NFAs that accepts a language of syntactic monoid

complexity 2n
2
, which is maximal w. r. t. nondeterministic finite state devices. ⊓⊔

3 A Lower Bound on the NFA-to-DFA Conversion

Theorem 4 can be used to prove a lower bound for the NFA-to-DFA conversion. Let A be an n-
state NFA that induces a size r(n) monoid of Boolean n × n matrices. Next assume that the
initially reachable sub-automaton of the DFA P(A) is minimal. Then this sub-automaton has
to have a certain size (number of states) in order to induce enough elements in the syntactic
monoid or equivalently in the transition monoid of the minimal m-state DFA accepting L(A).
Hence,

mm ≥ r(n) (1)

is required. Solving this inequality requires the Lambert W -function, which is the solution
to W (x · ex) = x. This function is well studied, see, e. g., [1], and satisfies the asymptotics

W (x) = lnx− ln lnx+ o(1).

Next we solve Equation (1) for m as follows:

mm ≥ r(n) ⇐⇒ m lnm ≥ ln r(n) (taking logarithms)

⇐⇒ elnm lnm ≥ ln r(n) (replace m by elnm)

⇐⇒ W (elnm lnm) ≥ W (ln r(n)) (apply the W -function)

⇐⇒ lnm ≥ W (ln r(n)) (use W -identity)

⇐⇒ elnm ≥ eW (ln r(n)) (take exponentials)

⇐⇒ m ≥ eW (ln r(n)) (replace elnm by m).

With the asymptotics mentioned above we can estimate

m ≥ eln ln r(n)−ln ln ln r(n)+o(1)

or m = Ω( ln r(n)
ln ln r(n)). Let us summarize:

Theorem 6. Let A be an n-state NFA which induces a size r(n) monoid of n × n Boolean

matrices and whose initially reachable sub-automaton of P(A) is minimal. Then the minimal

DFA, which is isomorphic to the initially reachable sub-automaton of P(A), accepting the lan-

guage L(A) has Ω(ln r(n)/ ln ln r(n)) states. ⊓⊔
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A more precise bound (without Ω-notation) can be given if we use the fact from [7] that

lnx− ln lnx+
ln lnx

2 ln x
≤ W (x) ≤ lnx− ln lnx+

e

e− 1

ln lnx

lnx
,

for every x ≥ e, which results in

m ≥
ln r(n)

ln ln r(n)
· e

e

e−1
ln ln ln r(n)
ln ln r(n) =

ln r(n)

ln ln r(n)
· (ln ln r(n))

e

e−1
1

ln ln r(n) ,

for r(n) ≥ ee ≈ 15, 1543. A more readable bound of

m ≥
ln r(n)

ln ln r(n)
(1 + e−1),

with the same condition for r(n) follows, if we use, for x ≥ e, the upper bound estimate

W (n) ≤ lnx− ln lnx+ ln(1 + e−1),

which is also from [7]. It is clear that this lower bound is weak, since the largest r(n) that we
can obtain is r(n) = 2n

2
, which results in a lower bound of

n2 ln 2

2 lnn+ ln ln 2
.

Thus, taking the NFA A induced by the generators of Bn, we get this lower bound for NFA-to-
DFA conversion, since by Theorem 3 the initially reachable part of the powerset automaton P(A)

is minimal and of maximal size 2n. Observe, that n2 ln 2
2 lnn+ln ln 2 ∈ o(2n) as n tends to infinity.
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