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Abstract:
Statistical model specification and validation raise crucial foundational problems whose
pertinent resolution holds the key to learning from data by securing the reliability of
frequentist inference. The paper questions the judiciousness of several current practices,
including the theory-driven approach, and the Akaike-type model selection procedures,
arguing that they often lead to unreliable inferences. This is primarily due to the fact
that goodness-of-fit/prediction measures and other substantive and pragmatic criteria
are of questionable value when the estimated model is statistically misspecified. Foisting
one’s favorite model on the data often yields estimated models which are both statistically
and substantively misspecified, but one has no way to delineate between the two sources
of error and apportion blame. The paper argues that the error statistical approach can
address this Duhemian ambiguity by distinguishing between statistical and substantive
premises and viewing empirical modeling in a piecemeal way with a view to delineate
the various issues more effectively. It is also argued that Hendry’s general to specific
procedures does a much better job in model selection than the theory-driven and the
Akaike-type procedures primary because of its error statistical underpinnings.

1. Introduction

A glance through the recent International Encyclopedia of Statistical Science
(see Lovric 2010) reveals that there have been numerous noteworthy develop-
ments in frequentist statistical methods and techniques since the late 1930s.
Despite these impressive technical advances, most of the foundational problems
bedeviling the original Fisher-Neyman-Pearson (F-N-P) model-based approach
to frequentist modeling and inference remained largely unresolved (see Mayo
2005).

Foundational problems, like the abuse and misinterpretations of the accept/
reject rules, the p-values and confidence intervals, have created perpetual con-
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fusions in the minds of practitioners. This confused state of affairs is clearly
reflected in the startling dissonance and the numerous fallacious claims made
by different entries in the same encyclopedia (Lovric 2010).

In the absence of any guidance from the statistics and/or the philosophy of
science literatures, practitioners in different applied fields, including psychol-
ogy, sociology, epidemiology, economics and medicine, invented their own ways
to deal with some of the more pressing foundational problems like statistical vs.
substantive significance. Unfortunately, most of the proposed ‘solutions’ added
to the confusion instead of elucidating the original foundational problems be-
cause they ended up misusing and/or misinterpreting the original frequentist
procedures (see Mayo and Spanos 2011).

Along side these well-known foundational problems pertaining to frequen-
tist inference, there have been several modeling problems that have (inadver-
tently) undermined the reliability of inference and largely derailed any learn-
ing from data. The two most crucial such problems pertain to statistical model
specification [where does a statistical model Mθ(z) come from?] and model
validation [are the probabilistic assumptions comprising Mθ(z) valid for data
z0:=(z1, ..., zn)?]. These two foundational problems affect, not just frequentist in-
ference, but all forms of modern statistical analysis that invoke the notion of a
statistical model. It turns out that underlying every form of statistical analysis
(estimation, testing, prediction, simulation) of a scientific (substantive) model
Mϕ(z) is a distinct statistical model Mθ(z) (often implicit). Moreover, all sta-
tistical methods (frequentist, Bayesian, nonparametric) rely on an underlying
statistical model Mθ(z) whose form might be somewhat different. Statistical
model validation is so crucial because the presence of statistical misspecifica-
tion plagues the reliability of frequentist, Bayesian and likelihood-based (Sober,
2008) inferences equally badly. To be more specific, a misspecified Mθ(z) stip-
ulates an invalid distribution of the sample f (z;θ), and thus a false likelihood
L(θ;z0), which in turn will give rise to erroneous error probabilities (frequentist),
incorrect fit/prediction measures (Akaike-type procedures) and wrong posterior
distributions π(θ|z0)=π(θ)L(θ;z0) (Bayesian).

Despite its crucial importance for the reliability of inference, statistical model
specification and validation has been neglected in the statistical literature:

“The current statistical methodology is mostly model-based, without
any specific rules for model selection or validating a specified model.”
(Rao 2004, 2)

The main argument of the paper is that the error statistical approach addresses
these two modeling problems by proposing specific rules for model specification
and validation that differ considerably from the criteria used by traditional ap-
proaches like theory-driven modeling and Akaike-type model selection proce-
dures. In particular, the key criterion for securing the reliability of inference is
statistical adequacy [the probabilistic assumptions comprising Mθ(z) valid for
data z0]. Goodness-of-fit/prediction and other substantive and pragmatic crite-
ria are neither necessary nor sufficient for that.
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Mayo (1996) has articulated an “error statistical philosophy” for statistical
modeling in science/practice that includes the interpretation and justification
for using the formal frequentist methods in learning from data. As she puts
it, she is supplying the statistical methods with a statistical philosophy. What
does this philosophy have to say when it comes to model specification and model
validation? Where do the contemporary foundational debates to which Mayo,
in this volume, calls our attention meet up with the issues of modeling? That is
what I will be considering as a backdrop to my discussion of the meeting grounds
of statistical and substantive inference.

To offer a crude road map of the broader context for the discussion that fol-
lows, a sum-up of the foundational problems that have impeded learning from
data in frequentist inference is given in section 2. In section 3 the paper offers a
brief sketch of the common threads underlying current practices as they pertain
to model specification and validation. Section 4 uses the inability of the theory-
driven approach to secure the reliability of inference to motivate some of the key
elements of the error statistical approach. The latter approach distinguishes, ab
initio, between statistical and substantive premises and creates the conditions
for addressing the unreliability of inference problem, as discussed in section 5.
This perspective is then used in section 6 to call into question the reliability of
models selected using Akaike-type model selection procedures. The latter proce-
dures are contrasted with Hendry’s general to specific procedure that is shown
to share most of its key features with the error statistical perspective.

2. Foundational Problems in Frequentist Statistics

Fisher (1922) initiated a change of paradigms in statistics by recasting the then
dominating descriptive statistics paradigm, relying on large sample size (n) ap-
proximations, into a frequentist model-based induction, grounded on finite sam-
pling distributions and guided by the relevant error probabilities.

The cornerstone of frequentist inference is the notion of a (parametric) sta-
tistical model is formalized in purely probabilistic terms (Spanos 2006b):

Mθ(z)={ f (z;θ), θ ∈Θ}, z ∈Rn
Z , for θ∈Θ⊂Rm, m < n,

where f (z;θ) denotes the (joint) distribution of the sample Z: =(Z1, ..., Zn). It
is important to emphasize at the outset that the above formulation can accom-
modate highly complex models without any difficult. For the discussion that
follows, however, we will focus on simple models for exposition purposes.

Example. The quintessential statistical model is the simple Normal:

Mθ(z): Zk vNIID(µ,σ2), θ:=(µ,σ2)∈R×R+, k∈N:=(1,2, ...n, ...), (1)

where ‘NIID’ stands for ‘Normal, Independent and Identically Distributed’ and
R+:=(0,∞) denotes the positive real line.
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The distribution of the sample f (z;θ) provides the relevant error probabili-
ties based the sampling distribution Fn(t) of any statistic Tn=g(Z) (estimator,
test or predictor) via:

F(t;θ):=P(Tn ≤ t;θ)=
∫ ∫

· · ·
∫

︸ ︷︷ ︸
{z: g(z)≤t; z∈Rn

Z }

f (z;θ)dz.
(2)

Example. In the case of the simple Normal model (1), one can use (2) to derive
the following sampling distributions (Cox and Hinkley 1974):

(Zn= 1
n

∑n
k=1 Zk)vN(µ, σ

2

n ), (n−1)s2=∑n
k=1(Zk−Zn)2 vσ2χ2(n−1), (3)

where ‘χ2(n−1)’ denotes the chi-square distribution with (n−1) degrees of free-
dom. In turn, (3) can be used to derive the sampling distribution(s) of the test
statistic τ(Z)=pn(Zn−µ0)/s for testing the hypotheses:

H0: µ=µ0, vs. H1: µ>µ0, µ0 - prespecified,

[i] τ(Z)
H0v St(n−1), [ii] τ(Z)

H1(µ=µ1)
v St(δ1;n−1), δ1=

p
n(µ1−µ0)/σ, µ1 >µ0,

where ‘St(n−1)’ denotes the Student’s t distribution with (n−1) degrees of free-
dom. The sampling distribution in [i] is used to evaluate both the type I error
probability:

P(τ(Z)> cα; H0)=α,

as well as the p-value: P(τ(Z)> τ(z0); H0)= p(z0), where z0:=(z1, ..., zn) de-
notes the observed data. The sampling distribution in [ii] is used to evaluate
both the type II error probability:

P(τ(Z)≤ cα; H1(µ=µ1))=β(µ1), for all µ1 >µ0,

as well as the power of the test: P(τ(Z)> cα; H1(µ=µ1))=π(µ1), for all µ1 >µ0.
The mathematical apparatus of frequentist statistical inference was largely in
place by the late 1930s. Fisher (1922; 1925; 1935), almost single-handedly, cre-
ated the current theory of ‘optimal’ point estimation and formalized significance
testing based on the p-value reasoning. Neyman and Pearson (1933) proposed an
‘optimal’ theory for hypothesis testing, by modifying/extending Fisher’s signifi-
cance testing. Neyman (1937) proposed an ‘optimal’ theory for interval estima-
tion analogous to N-P testing. However, its philosophical foundations concerned
with the proper form of the underlying inductive reasoning were left in a state
of muddiness (see Mayo 1996). The last exchange between these pioneers took
place in the mid 1950s (see Fisher 1955; Neyman 1956; Pearson 1955) and left
the philosophical foundations of frequentist statistics in a state of befuddlement,
raising more questions than answers.

The foundational problems bedeviling frequentist inference since the
1930s can be classified under two broad categories.
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A. Modeling
[a] Model specification: how does one select the prespecified statistical

model Mθ(z)?
[b] the role of substantive (subject matter) information in statistical mod-

eling (Lehmann 1990; Cox 1990),
[c] the nature, structure and role of the notion of a statistical model

Mθ(z), z ∈Rn
Z ,

[d] model adequacy: how to assess the adequacy of a statistical model
Mθ(z) a posteriori, and

[e] model re-specification: how to respecify a model Mθ(z) when found
misspecified.

B. Inference
[f] the role of pre-data vs. post-data error probabilities (Hacking 1965),
[g] safeguarding frequentist inference against:

(i) the fallacy of acceptance: interpreting accept H0 [no evidence
against H0] as evidence for H0; e.g. the test had low power to
detect existing discrepancy,

(ii) the fallacy of rejection: interpreting reject H0 [evidence against
H0] as evidence for a particular H1; e.g. conflating statistical
with substantive significance (Mayo 1996; Mayo and Spanos
2010; 2011), and

[h] a frequentist interpretation of probability that provides an adequate
foundation for frequentist inference (Spanos 2011).

The present paper focuses almost exclusively on problems [a]–[e], paying partic-
ular attention to model validation that secures the error reliability of inductive
inference (for extensive discussions pertaining to problems [f]–[h] see Mayo and
Cox 2006; Mayo and Spanos 2004; 2006 and Spanos 2000; 2007). These papers
are relevant for the discussion that follows because, when taken together, they
demarcate what Mayo (1996) called the ‘error statistical approach’ that offers a
unifying inductive reasoning for frequentist inference. This is in direct contrast
to widely propagated claims like:

“this statistical philosophy [frequentist] is not a unified theory rather
it is a loose confederation of ideas.” (Sober 2008, 79)

The error statistical perspective provides a coherent framework for all frequen-
tist methods and procedures by bringing out the importance of the alterna-
tive forms of reasoning underlying different inference methods, like estimation
(point and interval), testing and prediction; the unifying thread being the rele-
vant error probabilities.

In this sense, error Statistics can be viewed as a refinement/extension of the
Fisher-Neyman-Pearson (F-N-P) motivated by the call for addressing the above
foundational problems (Mayo and Spanos 2011). In particular, error statistics
aims to:
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[A] refine the F-N-P approach by proposing a broader framework with a view
to secure statistical adequacy, motivated by the foundational problems
[a]–[e], and

[B] extend the F-N-P approach by supplementing it with a post-data sever-
ity assessment with a view to address problems [f]–[g] (Mayo and Spanos
2006).

In error statistics probability plays two interrelated roles. Firstly, f (z;θ), z ∈Rn
Z

attributes probabilities to all legitimate events related to the sample Z. Sec-
ondly, it furnishes all relevant error probabilities associated with any statistic
Tn=g(Z) via (2). Pre-data these error probabilities quantify the generic capacity
of any inference procedures to discriminate among alternative hypotheses. That
is, error probabilities provide the basis for determining whether and how well
a statistical hypothesis—a claim about the underlying data generating mecha-
nism, framed in terms of an unknown parameter θ—is warranted by data x0 at
hand (see Spanos 2010d). Post-data error probabilities are used to establish the
warranted discrepancies from particular values of θ, using a post-data severity
assessment. For the error statistician probability arises, post-data, not to mea-
sure degrees of confirmation or belief in hypotheses, but to quantify how well
a statistical hypothesis has passed a test. There is evidence for a particular
statistical hypothesis or claim just to the extent that the test that passes such
a claim with x0 is severe: that with high probability the hypothesis would not
have passed so well as it did if it were false, or specific departures were present
(see Mayo 2003).

3. Model Specification/Validation: Different Approaches

As observed by Rao (2004) in the above quotation, modern empirical modeling
is model-based, but the selection and validation of these models is characterized
by a cacophony of ad hoc criteria, including statistical significance, goodness-
of-fit/prediction, substantive meaningfulness and a variety of pragmatic norms
like simplicity and parsimony, without any discussion of the conditions under
which such criteria are, indeed, appropriate and relevant.

A closer look at different disciplines reveals that empirical models in most ap-
plied fields constitute a blend of statistical and substantive information, ranging
from a solely data-driven formulation like an ARIMA(p,d,q) model, to entirely
theory-driven formulation like a structural (simultaneous) equation model (e.g.
DSGE model) (see Spanos 2006a; 2009b). The majority of empirical models lie
someplace in between these two extremes, but the role of the two sources of in-
formation has not been clearly delineated. The limited discussion of the role
of the two sources of information in the statistical literature is often combined
with the varying objectives of such empirical models [description, prediction,
explanation, theory appraisal and policy assessment] to offer a variety of clas-
sifications of models in such a context (see Lehmann 1990; Cox 1990). These
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classifications, however, do not address the real question of interest: the respec-
tive roles of statistical and substantive information in empirical modeling and
how they could be properly combined to learn from data.

Despite the apparent patchwork of different ways to specify, validate and use
empirical models, there are certain common underlying threads and invoked
criteria that unify most of these different approaches.

The most important of these threads is that if there is some form of sub-
stantive information pertaining to the phenomenon being modeled, the selected
model should take that into account somehow. Where some of the alternative
approaches differ is how one should take that information into account. Should
such information be imposed on the data at the outset by specifying models that
incorporate such information, or could that information be tested before being
imposed? If the latter, how does one implement such a procedure in practice? If
not the theory, where does a statistical model come from? It is also important to
appreciate that substantive information varies from specific subject matter in-
formation to generic mathematical approximation knowledge that helps narrow
down the possible models one should be entertaining when modeling particular
phenomena of interest. For example, the broad ARIMA(p,d,q) family of models
stems from mathematical approximation theory as it relates to the Wold decom-
position theorem (see Cox and Miller 1968).

Another commonly used practice is to use goodness-of-fit/prediction as crite-
ria for selecting, and sometimes validating models. Indeed, in certain disciplines
such measures are used as the primary criteria for establishing whether the es-
timated model does ‘account for the regularities in the data’ (see Skyrms 2000).

The key weakness of the overwhelming majority of empirical modeling prac-
tices is that they do not take the statistical information, reflected in the prob-
abilistic structure of the data, adequately into account. More often than not,
such probabilistic structure is imposed on the data indirectly by tacking unob-
servable (white-noise) error terms on structural models, and it’s usually nothing
more than an afterthought. Indeed, it is often denied that there is such a thing
as ‘statistical information’ separate from the substantive information.

In the next few sections we discuss several different approaches to model
specification and validation with a view to bring out the weaknesses of current
practice and make a case for the error statistical procedure that can ensure
learning from data by securing the reliability of inductive procedures.

4. Theory-driven Modeling: The CAPM Revisited

4.1 The Pre-Eminence of Theory (PET) Perspective
The Pre-Eminence of Theory (PET) perspective, that has dominated empirical
modeling in economics since the early 19th century, views model specification
and re-specification as based exclusively on substantive information. The empir-
ical model takes the form of structural model—an estimable form of that theory
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in light of the available data. The data play only a subordinate role in avail-
ing the quantification of the structural model after some random error term is
tacked on to transform it into a statistical model. In a certain sense, the PET
perspective denies the very existence of statistical information separate from
any substantive dimension (see Spanos 2010a).

In the context of the PET perspective the appropriateness of an estimated
model is invariably appraised using three types of criteria:

[i] statistical (goodness-of-fit/prediction, statistical significance),
[ii] substantive (theoretical meaningfulness, explanatory capacity),

[iii]) pragmatic (simplicity, generality, elegance).
An example of such a structural model from financial economics is the Capital
Asset Pricing Model (CAPM) (Lai and Xing 2008):(

rkt−r f t
)=βk(rMt−r f t)+εkt, k=1,2, ...,m, t=1, ...,n, (4)

where rkt—returns of asset k, rMt—market returns, r f t— returns of a risk free
asset. The error term εkt is assumed to satisfy the following probabilistic as-
sumptions:

(i) E(εkt)= 0, (ii) V ar(εkt)=σ2
k −β2

kσ
2
M =σ2

εk,
(iii) Cov(εkt,ε`t)=vk`, k 6=`, k,`=1, ...,m,
(iv) Cov(εkt, rMt)=0, (v) Cov(εkt,εks)=0, t 6=s, t, s=1, ...,n.

(5)

The economic principle that underlies the CAPM is that financial markets are
information efficient in the sense that prices ‘fully reflect’ the available infor-
mation. That is, prices of securities in financial markets must equal funda-
mental values, because arbitrage eliminates pricing anomalies. Hence, one can-
not consistently achieve returns

(
rkt−r f t

)
in excess of average market returns

(rMt−r f t) on a risk-adjusted basis. The key structural parameters are the betas
(β1,β2, · · · ,βm), where βk measures the sensitivity of asset return k to market
movements, and σk=

√
σ2
εk +β2

kσ
2
M , the total risk of asset k, where β2

kσ
2
M and

σ2
εk denote the systematic and non-systematic components of risk; σ2

εk can be
eliminated by diversification but β2

kσ
2
M is non-diversifiable.

Another important feature of the above substantive model is that its prob-
abilistic structure is specified in terms of unobsevable error terms instead of
the observable processes {ykt:=(rkt−r f t), k=1,2, ...,m, X t:=(rMt−r f t), t∈N}. This
renders the assessment of the appropriateness of the error assumptions (i)–(v)
at the specification stage impossible.

To test the appropriateness of the CAPM the structural model (4) is usually
embedded into a statistical model known as the stochastic Linear Regression:

ykt =αk +βk X t +ukt, k=1, ..,m, t=1, ...,n, (6)

subject to the restrictions on β0:=(α1,α2, · · · ,αm)=0, which can be testing using
the hypotheses:

H0: β0=0, vs. H1:β0 6= 0. (7)
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Empirical example (Lai and Xing 2008, 72–81). The relevant data Z0 come
in the form of monthly log-returns (∆ lnPt) of 6 stocks, representing different
sectors [Aug. 2000 to Oct. 2005] (n=64): Pfizer Inc. (PFE)—pharmaceuticals,
Intel Corp. (INTEL)—semiconductors, Citigroup Inc. (CITI)—banking, Ameri-
can Express (AXP)—consumer finance, Exxon-Mobil Corp. (XOM)—oil and gas,
General Motors (GM)—automobiles, the market portfolio is represented by the
SP500 index and the risk free asset by the 3-month Treasury bill (3-Tb) rate.

For illustration purposes let us focus on one of these equations for Citigroup
Inc. Estimating the statistical model (6) yields:

Structural model: yt =α+βX t +εt, εtvNIID(0,σ2),

Estimated (CITI): (r3t−µ f t)=.0053
(.0033)

+1.137
(.089)

(rMt−µ f t)+ ε̂3t
(.0188)

,

R2 = .725, s = .0188, n = 64.

(8)

On the basis of this estimated model, the typical assessment will go something
like:

(a) the signs and magnitudes of the estimated coefficients are in accordance
with the CAPM (α=0 and β> 0),

(b) the beta coefficient β3 is statistically significant, on the basis of the t-test:

τ(z0;β3)= 1.137
.089 =12.775[.000],

where the p-value is given in square brackets,
(c) the CAPM restriction α3=0 is not rejected by the data, at a 10% signifi-

cance level, using the t-test:

τ(z0;α3)= .0053
.0033=1.606[.108],

(d) the goodness-of-fit is reasonably high (R2=.725), providing additional sup-
port for the CAPM.

Taken together (a)–(d) are regarded as providing good evidence for the CAPM.
Concluding that the above data confirm the CAPM, however, is unsubstan-

tiated because the underlying statistical model has not been validated vis-à-vis
data z0, in the sense that no evidence has been provided that the statistical
premises in (5) are valid of this data. This is necessary because the reliabil-
ity of the above reported inference results relies heavily on the validity of the
statistical premises (5) implicitly invoked by these test procedures as well as
the R2. Hence, unless one validates the probabilistic assumptions in (5) in-
voked by the inferences in question, the reliability of any inductive inference
based on the estimated model is, at best, unknown. It is often claimed that
the error assumptions in (5) are really innocuous and thus no formal testing
is needed. As shown below, these innocuous looking error assumptions imply
a number of restrictive probabilistic assumptions pertaining to the observable
process {Zt:=(yt, X t), t∈N} underlying data z0, and the validity of these assump-
tions vis-à-vis z0 is ultimately what matters for the trustworthiness of the above
results.
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Any departures from these probabilistic assumptions—statistical misspecifi-
cation—often induces a discrepancy between actual and nominal error probabil-
ities—stemming from the ‘wrong’ f (z;θ) via (2)—leading inferences astray. The
surest way to draw an invalid inference is to apply a .05 (nominal) significance
level test when its actual type I error probability is closer to .99 (see Spanos
2009a for several examples). Indeed, any inferential claim, however informal,
concerning the sign, magnitude and significance of estimated coefficients, as well
as goodness-of-fit, is likely to be misleading because of the potential discrepancy
between the actual and nominal error probabilities due to statistical misspecifi-
cation. What is even less well appreciated is that, irrespective of the modeler’s
stated objectives, the above criteria [i]–[iii] are undermined when the estimated
model is statistically misspecified.

4.2 The Duhem problem
This neglect of statistical adequacy in statistical inference raises a serious philo-
sophical problem, known as the Duhem problem (Chalmers 1999; Mayo 1997):

“It is impossible to reliably test a substantive hypothesis in isola-
tion, since any statistical test used to assess this hypothesis invokes
auxiliary assumptions whose cogency is unknown.”

That is, theory-driven modeling raises a critical problem that has devastated the
trustworthiness of empirical modeling in the social sciences. When one imposes
the substantive information (theory) on the data at the outset, the end result is
often a statistically and substantively misspecified model, but one has no way to
delineate the two sources of error:

(I) the substantive information is false, or
(II) the inductive premises are mispecified, (9)

and apportion blame with a view to address the unreliability of inference prob-
lem.

The key to circumventing the Duhem problem is to find a way to disentangle
the statistical from the substantive premises (Spanos 2010c).

5. The Error-Statistical Approach

The error statistical approach differs from the other approaches primarily be-
cause, ab initio, it distinguishes clearly between statistical and substantive in-
formation as underlying two (ontologically) different but prospectively related
models, the statistical Mθ(z) and the structural Mϕ(Z), respectively.

5.1 Statistical vs. Substantive Premises
The CAPM, a typical example of a structural model Mϕ(Z):(

rkt−r f t
)=βk(rMt−r f t)+εkt, k=1,2, ...,m, t=1, ...,n, (10)
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is naturally viewed by the PET adherents as the sole mechanism (premises) as-
sumed to underlie the generation of data such as Z0. What often surprises these
advocates is the idea that when data Z0 exhibit ‘chance regularity patterns’ one
can construct a statistical mechanism (premises) that could have given rise to
such data, without invoking any substantive information. This idea, however,
is not new. Spanos (2006b) argues that it can be traced back to Fisher (1922),
who proposed to view the initial choice (specification) of the statistical model as
a response to the question:

“Of what population is this a random sample?” (313), emphasizing
that: “the adequacy of our choice may be tested a posteriori.” (314)

What about the theory-ladeness of observation? Doesn’t the fact that data
Z0 were selected on the basis of some substantive information (theory) render it
theory-laden? If anything, in fields like economics, the reverse is more plausible:
theory models are data-laden so that they are rendered estimable. Theories aim-
ing to explain the behavior of economic agents often need to be modified/adapted
in order to become estimable in light of available data. However, such data in
economics have been invariably gathered for purposes other than assessing the
particular theory under consideration. They are usually gathered by govern-
ment and other agencies for their own, mostly accounting purposes, and do not
often correspond directly to any theory variables (see Spanos 1995). Moreover,
the policy makers are interested in understanding the behavior of the actual
economy, routinely giving rise to such data, and not the potential behavior of
certain idealized and abstracted economic agents participating in an idealized
economy.

5.2 Is There Such a Thing as ‘Statistical’ Information?
Adopting a statistical perspective, one views data Z0 as a realization of a generic
(vector) stochastic process {Zt:=(yt, X t), t∈N}, regardless of what the variables
Zt measure substantively, thus separating the ‘statistical’ from the ‘substantive’
information. This is in direct analogy to Shannon’s information theory based
on formalizing the informational content of a message by separating ‘regularity
patterns’ in strings of ‘bits’ from any substantive ‘meaning’:

“Frequently the messages have meaning; that is they refer to or are
correlated according to some system with certain physical or concep-
tual entities. These semanticspects of communication are irrelevant
to the engineering problem.” (Shannon 1948, 379)

Analogously, the statistical perspective formalizes statistical information in
terms of probability theory, e.g. probabilistic assumptions pertaining to the pro-
cess {Zt, t∈N} underlying data Z0, and the substantive information (meaning) is
irrelevant to the purely statistical problem of validating the statistical premises.
The point is that there are crucially important distinctions between both the na-
ture and warrant for the appraisal of substantive, in contrast to the statistical,
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adequacy of models. Indeed, this distinction holds the key to untangling the
Duhem conundrum.

The construction of the relevant statistical premises begins with a given data
Z0, separate from the theory or theories that led to the particular choice of Z0.
Indeed, once selected, data Z0 take on ‘a life of their own’ as a particular re-
alization of an underlying stochastic process {Zt, t∈N}. The connecting bridge
between the real world of data Z0 and the mathematical world of the process
{Zt, t∈N} is provided by the key question:

‘what probabilistic structure pertaining to the process {Zt, t∈N}
would render Z0 a truly typical realization thereof?’

That presupposes that one is able to glean the various chance regularity pat-
terns exhibited by Z0 using a variety of graphical techniques as well as relate
such patterns to probabilistic assumptions (see Spanos 1999). A pertinent an-
swer to this question provides the relevant probabilistic structure of {Zt, t∈N},
and the statistical premises Mθ(z) are constructed by parameterizing that in a
way that enables one to relate Mθ(z) to the structural model Mϕ(z).

To shed some light on the notions of statistical information, chance regu-
larities, truly typical realizations and how they can be used to select Mθ(z) in
practice, let us consider the t-plots of different data in figures 1–4. Note that no
substantive information about what these data series represent is given. The
chance regularities exhibited by the data in figure 1, indicate that they can be
realistically viewed as a typical realization of a NIID process. In this sense,
the simple Normal model in (1) will be an appropriate choice. In practice, this
can be formally confirmed by testing the NIID assumptions using simple Mis-
Specification (M-S) tests (see Spanos 1999).

In contrast, the data in figures 2–4, exhibit chance regularities that indicate
a number of different departures from the NIID assumptions. Hence, if one
adopts the simple Normal model in (1) for any of the data in figures 2–4, the es-
timated model will be statistically misspecified; this can be easily verified using
simple M-S tests (see Mayo and Spanos 2004). In particular, the data in fig-
ure 2 exhibit a distinct departure from Normality since the distribution chance
regularity indicates a highly skewed distribution. The data in figure 3 exhibit
a trending mean and variance; a clear departure from the ID assumption. The
data in figure 4 exhibit irregular cycles which indicate positive t-dependence; a
clear departure from the Independence assumption.

Having chosen the appropriate probabilistic structure for {Zt, t∈N}, the next
step is to parameterize it in the form of the statistical model Mθ(z) in such a way
so as to nest (embed parametrically) the structural model, i.e. Mϕ(z)⊂Mθ(z) and
the embedding takes the general form of implicit restrictions between the sta-
tistical (θ) and structural (ϕ) parameters, say G(θ,ϕ)=0. The technical details on
how one goes from {Zt, t∈N} to the statistical model, via probabilistic reduction,
are beyond the scope of this paper (but see Spanos 1995; 2006a).
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Example. Consider a situation where all m data series exhibit chance regu-
larities similar to figure 1, and one proceeds to assume that the vector process
{Zt:=(Z1t, Zmt, ...Zmt), t∈N} has the following probabilistic structure:

Zt vNIID(µ,Σ), Σ> 0, t∈N.

The statistical model Mθ(Z) in table 1 can be viewed as a parameterization of
{Zt, t∈N}. In practice the parameterization associated with Mθ(Z) is selected to
meet two interrelated aims:

(A) to account for the chance regularities in data Z0, in a way so that
(B) Mθ(z) nests (parametrically) the structural model Mϕ(z).

An example of such a statistical model is given in table 1 in terms of a statistical
Generating Mechanism (GM) and the probabilistic assumptions [1]–[5]. The
nesting restrictions take the form of β0= 0, where β0:=(α1,α2, ...,αm), and can be
formally tested using the hypotheses in (7).
In relation to the specification in table 1, it is important to highlight the fact that
assumptions [1]–[5] define a complete set of internally consistent and testable
assumptions (statistical premises) in terms of the observable process {Zt, t∈N},
replacing an incomplete set of assumptions pertaining to an unobservable error
term:

{(ut|X t)vNIID(0,V)},
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Statistical GM: yt =β0 +β1X t +ut, t∈N
[1] Normality: Zt:=(yt, X t)vN(., .)
[2] Linearity: E(yt|σ(X t))=β0 +β1X t,
[3] Homosk/city: V ar(yt|σ(X t))=V> 0,
[4] Independence: {Zt, t∈N} independent process,
[5] t-invariance: θ:=(β0,β1,V) do not change with t.
β0 = E(yt)−β1E(X t), β1= Cov(X t,yt)

V ar(X t)
,V=V ar(yt)−β1Cov(yt, X t)

Table 1: Stochastic Normal/Linear Regression model

as given in (5). This step is particularly crucial when the statistical model is
only implicitly specified via the probabilistic assumptions pertaining to the er-
ror term of structural (substantive) model. In such cases one needs to derive
the statistical model by transferring the error probabilistic assumptions onto
the observable process {(yt|X t), t∈N} with a view to ensure a complete and in-
ternally consistent set of assumptions because the error assumptions are often
incomplete and sometimes internally inconsistent. Indeed, one of the most cru-
cial assumptions, [5], is only implicit in (5) and is rarely validated in practice.
Moreover, the traditional way of specifying such regression models interweaves
the statistical and substantive premises in ways that makes it impossible to un-
tangle the two (see Spanos 2010c). The quintessential example of this muddle
is the assumption of no omitted variables, which clearly pertains to substantive
adequacy and has nothing to do with statistical adequacy. Attempting to secure
both the statistical and substantive adequacy simultaneously is a hopeless task
in practice (see Spanos 2006c).

5.3 A Sequence of Interconnected Models
In any scientific inquiry there are primary questions of interest pertaining to the
phenomenon of interest, and secondary ones that pertain to how to address the
primary questions adequately. Spanos (1986, 12) suggested that a most effective
way to bridge the gap between the phenomenon of interest and one’s explana-
tions or theories is to use a sequence of interlinked models [theory, structural
(estimable), statistical], linking actual data to questions of interest. An almost
identical idea was independently proposed by Mayo (1996) using a different ter-
minology for the various models; primary, experimental and data models.

As Mayo (1996) emphasizes, splitting up the inquiry into levels and models
is not a cut and dried affair. However, because of the way in which models ‘be-
low’ have to be checked, and given how questions ‘above’ shape the variables
of interest in the structural or statistical models, as the ways in which those
questions determine the relevant criteria for scrutinizing the outputs of the sta-
tistical analysis, there is a back and forth process that constrains the modeling.
Despite the fact that one might have started out from a different entry point or
conjectured model, there is a back and forth multi-stage process of model spec-
ification, misspecification testing, respecification that is anything but arbitrary.
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It is a mistake, however, to regard such an interconnected web of constraints
as indicative of a Quinan-style “web of beliefs” (Quine and Ullian 1978), where
models confront data in a holist block. Instead, taking seriously the piece-meal
error statistical idea, we can distinguish, for a given inquiry, the substantive
and statistical appraisals.

5.4 Statistical Adequacy and M-S Testing
A prespecified model Mθ(z) is said to be statistically adequate when its assump-
tions (the statistical premises) are valid for data Z0. The question is ‘How can
one establish the statistical adequacy of Mθ(z)?’ The answer is by applying
thorough Mis-Specification (M-S) testing to assess the validity of the statistical
premises vis-à-vis data Z0. For an extensive discussion of how one can ensure
the thoroughness and reliability of the misspecification diagnosis see Mayo and
Spanos 2004. As mentioned above, the substantive information plays no role
in the purely statistical problem of validating the statistical premises. This en-
ables one to assess the validity of the statistical premises before the probing
of the substantive information, providing the key to circumventing Duhemian
ambiguities.

The crucial role played by statistical adequacy stems from the fact that such
a model constitutes statistical knowledge (similar to Mayo’s experimental knowl-
edge) that demarcates the empirical regularities that need to be explained us-
ing the substantive information. That is, data Z0 determine to a very large
extent what kinds of models can reliably be used to learn about a phenomenon
of interest. This is radically different from attaining a mere ‘good fit’, however,
you measure the latter! It is also crucial to emphasize that the information
used to infer an adequate/inadequate statistical model with severity is separate
and independent of the parameters of the statistical model that will be used to
probe the substantive questions of interest (see Mayo and Spanos 2004; Spanos
2010b).

Having secured the statistical adequacy of Mθ(z), a necessary first step in
securing the substantive adequacy of a structural model Mϕ(z)—parametrically
nested within Mθ(z)—is to test the validity of the p=(m−r) > 0 restrictions in
G(θ,ϕ) = 0, where the number of structural parameters (ϕ) r, is less than the
number of statistical parameters (θ) m. The p restrictions imply a reparameter-
ization/restriction of the generating mechanism described by Mθ(z) with a view
to transform the statistical knowledge into substantive knowledge that sheds
additional light on the phenomenon of interest and the underlying mechanism.
Questions of confounding factors and deep structural parameters should arise at
this stage and not before. Let us illustrate some of these issues using the above
empirical model.

5.5 Statistical Misspecification and Its Implications
For the CAPM the relevant nesting restrictions G(θ,ϕ) = 0, relating the sta-
tistical model Mθ(z) in table 1 with the structural model Mϕ(z) in (4), takes
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the form of the statistical hypotheses in (7). The appropriate F-test yields:
F(z0;α)=2.181[.058], which does not reject H0 at .05 level (Lai and Xing 2008).
This result, however, is reliable only if Mθ(z) in table 1 is statistically adequate
for the above data.

Mis-Specification (M-S) testing. Several simple M-S test results, based on
simple auxiliary regressions, are reported in table 2 (see Spanos and McGuirk
2001 for the details of the reported M-S tests). The small p-values associated
with the majority of the tests indicate clear departures from model assumptions
[1] and [3]–[5]! That is, Mθ(z) is clearly misspecified, calling into question the
reliability of all inferences reported above in (a)–(d), (mis)interpreted as con-
firming the CAPM.

[1] Normality: Small(12)=46.7[.000]∗
[2] Linearity: F(6,55)= 7.659[.264]
[3] Homoskedasticity: F(21,43)=55.297[.000]∗
[4] Independence: F(8,56)= 55.331[.021]∗
[5] t-homogeneity: F(12,52)=2.563[.010]∗

Table 2: System Mis-Specification (M-S) tests

For expositional purposes let us focus our discussion on one of these estimated
equations for CITI (r3t), where the numbers in brackets below the estimates
denote the standard errors. Not surprisingly, the single equation M-S results
largely reflect the same misspecifications as those for the whole system of equa-
tions.

(r3t−µ f t)= .0053
(.0032)

+1.137
(.089)

(rMt−µ f t)+ û3t
(.0188)

,

R2=.725, s=.0188,

Mis-Specification (M-S) tests
[1] Normality: S−W = 0.996[.098]
[2] Linearity: F(1,61)= .468[.496]
[3] Homoskedasticity: F(2,59)= 4.950[.010]∗
[4] Independence: F(1,59)= 6.15[.016]∗
[5] t-homogeneity: Fβ(2,60)= 4.611[.014]∗

A less formal, but more intuitive way to construe statistical adequacy is in terms
of the non-systematicity (resulting from assumptions [1]–[5]) of the residuals
from the estimated model. When Mθ(Z) is statistically adequate, the systematic
component defined by E(yt|σ(X t))=β0 +β1X t ‘captures’ the systematic (recur-
ring) statistical information in the data, and thus the residuals ut = yt−β̂0−β̂1X t
are non-systematic in the sense of being an instantiation of a particular type of
a ‘white-noise’ process; formally it is a ‘martingale difference’ process resulting
from assumptions [1]–[5]; see Spanos (1999). The t-plot of the residuals from
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the estimated equation in (8), shown in figure 5, exhibit systematic information
in the form of a trend and irregular cycles.

the same misspecifications as those for the whole system of equations.

(3−) = 0053
(0032)

+1137
(089)
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(0188)



2=725 =0188

Mis-Specification (M-S) tests

Normality: − = 0996[098]

Linearity:  (1 61) = 468[496]

Homoskedasticity:  (2 59) = 4950[010]∗

Independence:  (1 59) = 615[016]∗

t-homogeneity: (2 60) = 4611[014]
∗

A less formal, but more intuitive way to construe statistical adequacy is in terms

of the non-systematicity (resulting from assumptions [1]-[5]) of the residuals from the

estimated model. WhenM(Z) is statistically adequate, the systematic component

defined by (|())=0 + 1 ‘captures’ the systematic (recurring) statistical

information in the data, and thus the residuals  = − b0− b1 are non-systematic

in the sense of being an instantiation of a particular type of a ‘white-noise’ process;

formally it is a ‘martingale difference’ process resulting from assumptions [1]-[5]; see

Spanos (1999). The t-plot of the residuals from the estimated equation in (8), shown

in fig. 5, exhibit systematic information in the form of a trend and irregular cycles.

6 05 55 04 54 03 53 02 52 01 51 051

3

2

1

0

- 1

- 2

t im e

St
an

da
rd

iz
ed

 R
es

id
ua

l

t -p l o t  o f  th e  r e s i d u a l s
( r e s p o n s e  is  y 3 ( t) )

Fig. 5: t-plot of the residuals from (8)
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Figure 5: t-plot of the residuals from (8)

Of crucial interest is the departure from the t-invariance of the parameter β1
parameter. An informal way to demonstrate that this assumption is invalid for
the above data is to plot the recursive and 25-window estimates of β1 shown in
figures 6–7 (see Spanos 1986). The non-constancy of these estimates indicates
that [5] is invalid. These departures stem primarily from the t-heterogeneity
of the sample mean and variance exhibited by data z0, shown in figures 8–9.
Both t-plots exhibit a distinct quadratic trend in the mean and a decrease in the
variation around this mean after observation t=33. In light of the fact that the
statistical parameters relate to the mean and variance of Zt:=(yt,X t) via:

β0=E(yt)−β1E(X t), β1= Cov(X t,yt)
V ar(X t)

, σ2=V ar(yt)−β1kCov(yt, X t)

the estimates of these parameters exhibit the non-constancy observed in figures
6–7.

Statistical misspecification and model evaluation criteria. The ques-
tion that naturally arises is:

What does the above misspecification results imply for the traditional crite-
ria: [a] statistical, [b] substantive and [c] pragmatic, used to evaluate empirical
models? It is clear that the presence of statistical misspecification calls into
question, not only the formal t and F tests invoked in (8) assessing the validity
of the substantive information, but also the informal evaluations of the sign and
magnitude of the estimated coefficients, as well as the goodness-of-fit/prediction
measures. In light of that, any claims pertaining to theoretical meaningful-
ness and explanatory capacity are clearly unwarranted because they are based
on inference procedures of questionable reliability; the invoked nominal error
probabilities are likely to be very different from the actual ones! In general:

No evidence for or against a substantive claim (theory) can be se-
cured on the basis of a statistically misspecified model.
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In this sense, statistical adequacy provides a precondition for assessing sub-
stantive adequacy: establishing that the structural model Mϕ(x) constitutes an
adequate explanation of the phenomenon of interest. Without it the reliabil-
ity of any inference procedures used to assess the substantive information is
at best unknown; As argued in Spanos (2010a), a statistically adequate model
Mθ(z) gives data z0 ‘a voice of its own’ in the sense that any adequate explana-
tion stemming from Mϕ(x) should, at the very least, account for the empirical
regularities demarcated by Mθ(z).

What about pragmatic criteria like simplicity and parsimony? A statistical
model Mθ(z) is chosen to be as elaborate as necessary to secure statistical ade-
quacy, but no more elaborate. Claims like ‘simple models predict better’ should
be qualified to read: simple, but statistically adequate models, predict better
than (unnecessarily) overparameterized models. Without statistical adequacy
pragmatic criteria, such as simplicity, generality and elegance, are vacuous if
such models will be used as a basis of inductive inference; they impede any
learning from data (Spanos 2007).

What about pragmatic criteria like goodness-of-fit/prediction ? Perhaps the
most surprising implication of statistical inadequacy is that it calls into question
the most widely used criterion of model selection, the goodness-of-fit/prediction
measures like:

R2=1−
∑n

t=1(yt− ŷt)2∑n
t=1(yt−y)2 , MSPE=∑n+p

t=n+1(yt− ŷt)2,
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where ŷt=α̂+ β̂X t, t=1,2, ...,n, denote the fitted values. Intuitively, what goes
wrong with the R2 is that, in the presence of t-heterogeneity in the mean and
variance of Zt:=(yt,X t), the statistics:

1
n

∑n
t=1(yt− ŷt)2 and 1

n
∑n

t=1(yt−y)2

constitute unreliable (inconsistent) estimators of the conditional [V ar(yt|X t)]
and marginal variance [V ar(yt)], respectively. As argued in Spanos 2007, good-
ness-of-fit/prediction is neither necessary nor sufficient for statistical adequacy.
This is because such criteria rely on the smallness of the residuals instead of
their non-systematicity. Residuals can be small but systematically different
from white-noise, and large but non-systematic.

This would seem totally counter-intuitive to theory-driven modelers whose
intuition would insist that there is something right-headed about the use of
such goodness-of-fit/prediction measures. This erroneous intuition stems from
conflating statistical and substantive adequacy. In a case where a structural
model Mϕ(x) is data-acceptable, in the sense that its overidentifying restrictions
G(θ,ϕ)=0 are valid vis-à-vis a statistically adequate model Mθ(x), such criteria
become relevant for substantive adequacy. They measure a model’s comprehen-
siveness (explanatory capacity/predictive ability) vis-à-vis the phenomenon of
interest. It should be re-iterated that when goodness-of-fit/prediction criteria
are used without securing statistical adequacy, they are vacuous and potentially
highly misleading. Statistical adequacy does not ensure that. It only ensures
that the actual error probabilities of any statistical inference procedures based
on such a model approximate closely the nominal ones. That is, statistical ade-
quacy sanctions the credibility of the inference procedures invoked by the mod-
eler, including probing the substantive adequacy of a model.

5.6 When Probing for Substantive Adequacy is a Bad Idea
To illustrate what can go wrong is attempting to assess substantive adequacy
when the estimated model is statistically misspecified, let us return to the above
estimated model (8) and ask whether (r6(t-1)−µ f (t-1)), the previous period ex-
cess returns of General Motors, constitute a relevant variable in explaining
(r3t−µ f t)—excess returns of Citibank. Estimating the augmented model yields:

(r3t−µ f t)=.0027
(.0032)

+1.173
(.087)

(rMt−µ f t) -.119
(.048)

(r6(t-1)−µ f (t-1)) + v̂3t
(.0181)

,

R2=.753, s=.0181,

Hence, the answer is yes if the t-test (τ(z0)= .119
.048=2.479[.017]) is taken at face

value! However, this is misleading because any variable with a certain trend-
ing structure is likely to appear significant when added to the original model,
including generic trends and lags:

(r3t−µ f t)=.0296
(.0116)

+1.134
(.119)

(rMt−µ f t) -.134
(.065)

t+ .168
(.083)

t2 + v̂3t
(.0184)

,

R2=.745, s=.0184,



Foundational Issues in Statistical Modeling 165

(r3t−µ f t)=.0023
(.003)

+1.251
(.099)

(rMt−µ f t) -.134
(.065)

(r3(t-1)−µ f (t-1)) + v̂3t
(.0182)

.

R2=.750, s=.0182.

That is, statistical misspecifications are likely to give rise to highly unreliable
inferences concerning, not only when probing for omitted variables, but any form
of probing for substantive adequacy (see Spanos 2006c).

5.7 Addressing Duhemian Ambiguities
Viewing empirical modeling as a piecemeal process that relies on distinguishing
between the statistical Mθ(x) vs. substantive premises Mϕ(x), and proceeds by
securing statistical adequacy before any probing of the substantive premises,
enables one to circumvent the Duhemian ambiguities that naturally arises in
the PET approach discussed above. By insisting that the warranted inference
be related to the particular error that might arise to impede learning from data,
the error statistical framework distinguishes the following two questions:

(a) is model Mθ(x) inadequate for accounting for the chance regularities in
data x0?

(b) is model Mϕ(x) inadequate as an explanation (causal or otherwise) of the
phenomenon of interest?

That is, statistical models need to be justified as: (a) valid for the data x0, and (b)
relevant for learning from data about phenomena of interest. It is important to
emphasize that (b) does not necessarily coincide with finding a ‘true’ substantive
(structural) model Mϕ(x). One can learn a lot about a particular phenomenon of
interest without requiring that Mϕ(x) is a substantively ‘true’ model, whatever
that might mean.

As argued in the next section, the modeling problems raised above are not
unique to economics. These problems also arise in the context of two other ap-
proaches that seem different because they are more statistically oriented. It
turns out, however, that their primary difference is that they often rely on alter-
native forms of substantive information.

6. Akaike-type Model Selection Procedures

Akaike-type procedures, which include the Akaike Information Criterion (AIC),
the Bayesian (BIC), the Schwarz (SIC), the Hannan-Qinn (HQIC) and the Min-
imum Description Length (MDL), as well as certain forms of Cross-Validation;
(Rao and Wu 2001; Burnham and Anderson 2002; Konishi and Kitagawa 2008),
are widely used in econometrics, and other applied disciplines, as offering objec-
tive methods for selecting parsimonious models because they rely on maximizing
the likelihood function subject to certain parsimony (simplicity) constraints.

A closer look at the Akaike-type model selection procedures reveals two ma-
jor weaknesses. First, they rely on a misleading notion of objectivity in inference.
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Second, they ignore the problem of statistical adequacy by taking the likelihood
function at face value.

6.1 Objectivity in Inference
The traditional literature seems to suggest that ‘objectivity’ stems from the mere
fact that one assumes a statistical model (a likelihood function), enabling one to
accommodate highly complex models. Worse, in Bayesian modeling it is often
misleadingly claimed that as long as a prior is determined by the assumed sta-
tistical model—the so called reference prior—the resulting inference procedures
are objective, or at least as objective as the traditional frequentist procedures:

“Any statistical analysis contains a fair number of subjective ele-
ments; these include (among others) the data selected, the model
assumptions, and the choice of the quantities of interest. Reference
analysis may be argued to provide an ‘objective’ Bayesian solution
to statistical inference in just the same sense that conventional sta-
tistical methods claim to be ‘objective’: in that the solutions only
depend on model assumptions and observed data.” (Bernardo 2010,
117)

This claim brings out the unfathomable gap between the notion of ‘objectivity’
as understood in Bayesian statistics, and the error statistical viewpoint. As ar-
gued above, there is nothing ‘subjective’ about the choice of the statistical model
Mθ(z) because it is chosen with a view to account for the statistical regularities
in data z0, and its validity can be objectively assessed using trenchant M-S test-
ing. Model validation, as understood in error statistics, plays a pivotal role in
providing an ‘objective scrutiny’ of the reliability of the ensuing inductive proce-
dures.

Objectivity does NOT stem from the mere fact that one ‘assumes’ a statistical
model. It stems from establishing a sound link between the process generating
the data z0 and the assumed Mθ(z), by securing statistical adequacy. The sound
application and the objectivity of statistical methods turns on the validity of the
assumed statistical model Mθ(z) for the particular data z0. Hence, in the case
of ‘reference’ priors, a misspecified statistical model Mθ(z) will also give rise to
an inappropriate prior π(θ).

Moreover, there is nothing subjective or arbitrary about the ‘choice of the
data and the quantities of interest’ either. The appropriateness of the data is
assessed by how well data z0 correspond to the theoretical concepts underlying
the substantive model in question. Indeed, one of the key problems in model-
ing observational data is the pertinent bridging of the gap between the theory
concepts and the available data z0 (see Spanos 1995). The choice of the quan-
tities of interest, i.e. the statistical parameters, should be assessed in terms of
the statistical adequacy of the statistical model in question and how well these
parameters enable one to pose and answer the substantive questions of interest.
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For error statisticians, objectivity in scientific inference is inextricably bound
up with the reliability of their methods, and hence the emphasis on thorough
probing of the different ways an inference can go astray (see Cox and Mayo
2010). It is in this sense that M-S testing to secure statistical adequacy plays a
pivotal role in providing an objective scrutiny of the reliability of error statistical
procedures.

In summary, the well-rehearsed claim that the only difference between fre-
quentist and Bayesian inference is that they both share several subjective and
arbitrary choices but the latter is more honest about its presuppositions, consti-
tutes a lame excuse for the ad hoc choices in the latter approach and highlights
the huge gap between the two perspectives on modeling and inference. The ap-
propriateness of every choice made by an error statistician, including the statis-
tical model Mθ(z) and the particular data z0, is subject to independent scrutiny
by other modelers.

6.2 ‘All models are wrong, but some are useful’
A related argument—widely used by Bayesians (see Gelman, this volume) and
some frequentists—to debase the value of securing statistical adequacy, is that
statistical misspecification is inevitable and thus the problem is not as crucial
as often claimed. After all, as George Box remarked:

“All models are false, but some are useful!”

A closer look at this locution, however, reveals that it is mired in confusion.
First, in what sense ‘all models are wrong’?
This catchphrase alludes to the obvious simplification/idealization associated

with any form of modeling: it does not represent the real-world phenomenon of
interest in all its details. That, however, is very different from claiming that the
underlying statistical model is unavoidably misspecified vis-à-vis the data z0. In
other words, this locution conflates two different aspects of empirical modeling:

(a) the realisticness of the substantive assumptions comprising the structural
model Mϕ(z) (substantive premises), vis-à-vis the phenomenon of interest,
with

(b) the validity of the probabilistic assumptions comprising the statistical
model Mθ(z) (statistical premises), vis-à-vis the data z0 in question.

It’s one thing to claim that a model is not an exact picture of reality in a sub-
stantive sense, and totally another to claim that this statistical model Mθ(z)
could not have generated data z0 because the latter is statistically misspecified.
The distinction is crucial for two reasons. To begin with, the types of errors
one needs to probe for and guard against are very different in the two cases.
Substantive adequacy calls for additional probing of (potential) errors in bridg-
ing the gap between theory and data. Without securing statistical adequacy,
however, probing for substantive adequacy is likely to be misleading. Moreover,
even though good fit/prediction is neither necessary nor sufficient for statistical
adequacy, it is relevant for substantive adequacy in the sense that it provides
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a measure of the structural model’s comprehensiveness (explanatory capacity)
vis-à-vis the phenomenon of interest (see Spanos 2010a). This indicates that
part of the confusion pertaining to model validation and its connection (or lack
of) to goodness-of-fit/prediction criteria stem from inadequate appreciation of the
difference between substantive and statistical information.

Second, how wrong does a model have to be to not be useful?
It turns out that the full quotation reflecting the view originally voiced by

Box is given in Box and Draper (1987, 74):

“[. . . ] all models are wrong; the practical question is how wrong do
they have to be to not be useful.”

In light of that, the only criterion for deciding when a misspecified model is or
is not useful is to evaluate its potential unreliability: the implied discrepancy
between the relevant actual and nominal error probabilities for a particular in-
ference. When this discrepancy is small enough, the estimated model can be
useful for inference purposes, otherwise it is not. The onus, however, is on the
practitioner to demonstrate that. Invoking vague generic robustness claims, like
‘small’ departures from the model assumptions do not affect the reliability of
inference, will not suffice because they are often highly misleading when ap-
praised using the error discrepancy criterion. Indeed, it’s not the discrepancy
between models that matters for evaluating the robustness of inference proce-
dures, as often claimed in statistics textbooks, but the discrepancy between the
relevant actual and nominal error probabilities (see Spanos 2009a).

In general, when the estimated model Mθ̂(z) is statistically misspecified, it
is practically useless for inference purposes, unless one can demonstrate that its
reliability is adequate for the particular inferences.

6.3 Trading Goodness-of-fit/prediction against Simplicity
These Akaike-type model selection procedures aim to address the choice of a pre-
specified model by separating the problem into two stages. In stage 1, a broader
family of models {Mϕi (z), i=1, ...m} is selected using substantive information. It
is important to emphasize that substantive information comes in a variety of
forms including mathematical approximation theory. In stage 2, a best model
Mϕk (z) within this family is chosen by trading goodness-of-fit/prediction against
parsimony (simplicity). In philosophy of science such modeling selection pro-
cedures are viewed as providing a pertinent way to address the curve fitting
problem (see Forster and Sober 1994).

Example. Consider the case where the broader family of models {Mϕi (z),
i=1,2, ...m} is the Gauss-Linear model (Spanos 2010b):

yt =∑m
i=0αiφi(xt)+εt, εt vNIID(0,σ2(m)), (11)

where ϕi=(α0,α1, ...,αi, σ2(i)), and φi(xt) i=1,2, ...m, are known functions; often
orthogonal polynomials . This family of models is often selected using a combina-
tion of substantive subject matter information and mathematical approximation
theory.
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The stated objective is motivated by the curve-fitting perspective and the se-
lection is guided by the principle of trading goodness-of-fit against overfitting.
The rationale is that when the goal is goodness-of-fit, the key problem in se-
lecting the optimal value of m is thought to be overfitting, stemming from the
fact that one can make the error ε(xt;m)=yt−∑m

i=0αiφi(xt) as small as desired
by increasing m. Indeed, it is argued that one can make the approximation
error equal to zero by choosing m=n−1 (see Skyrms 2000). That is, the parame-
ter estimates ϕ̂i are ‘fine-tuned’ to data-specific patterns and not to the generic
recurring patterns. Hence, as this argument goes, goodness-of-fit cannot be the
sole criterion for ‘best’. To avoid overfitting one needs to supplement goodness-of-
fit with pragmatic criteria such as simplicity (parsimony, which can be justified
on prediction grounds, since simpler curves enjoy better predictive accuracy (see
Forster and Sober 1994; Sober 2008).

Akaike’s Information Criterion (AIC) is based on penalizing goodness-of-fit,
measured by the log-likelihood function (-2lnL(θ)), using the number of un-
known parameters (K) in θ:

AIC =
goodness-of-fit︷ ︸︸ ︷
−2lnL(θ̂;z0)+

penalty︷︸︸︷
2K .

For the model in (11) the AIC takes the particular form:

AIC= n ln(σ̂2)+2K , or AICn = ln(σ̂2)+ 2K
n , (12)

where σ̂2= 1
n

∑n
t=1(yt−∑m

i=0 α̂iφi(xt))2 and K=m+2.
Attempts to improve the AIC criterion gave rise to several modifications/ex-

tensions of the penalty function g(n,K). Particular examples based on (11) are:

BICn= ln(σ̂2)+K ln(n)
n , HQICn= ln(σ̂2)+ 2K ln(ln(n))

n , MDLn=(BICK /2). (13)

6.4 What Can Go Wrong with Akaike-type Procedures
As argued above, goodness-of-fit/prediction criteria are neither necessary nor
sufficient for securing statistical adequacy, and the latter provides the only cri-
terion for when a statistical model Mθ(z) ‘accounts for the regularities in data’.
Where does this leave these Akaike-type model selection procedures?

These procedures (AIC, BIC, HQIC, MDL, etc.) are particularly vulnerable
to statistical misspecification, because they take the likelihood function at face
value, assuming away the problem of model validation (see Lehmann 1990).
When the prespecified family {Mϕi (z), i=1,2, ...m} is statistically misspecified,
the very notion of goodness-of-fit/prediction is called into question because the
likelihood function is incorrect and these procedures will lead to erroneous
choices of a ‘best’ model with probability one.

To illustrate what goes wrong with the goodness-of-fit/prediction criteria let
us return to the above example in (11) and assume that the Normality assump-
tion is false, and instead, the underlying distribution is Laplace:

f (yt;θ)= 1
2σ exp{

{−|yt −∑m
i=0αiφi(xt)|/σ

}
, θ:=(α,σ)∈Rm+1×R+, yt∈R.
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In this case the the likelihood function based on the Normal distribution yields:

−2lnLN (θ̂;z0) =n ln( 1
n

∑n
t=1(yt−∑m

i=0 α̂iφi(xt))2),

where (α̂i, i=1,2, ...,m) denote the least-squares estimators, will provide the
wrong measure. The correct measure of goodness-of-fit stemming from the La-
place distribution is:

−2lnLL(θ̂;z0) =2n ln( 1
n

∑n
t=1

∣∣(yt−∑m
i=0 α̃iφi(xt))

∣∣),
where (α̃i, i=1,2, ...,m) denote the least absolute deviation estimators (see Shao
2003). Similarly, in the case where the true distribution is Uniform:

f (yt;θ)= 1
2σ , −σ≤ [yt −∑m

i=0αiφi(xt)]≤σ,

the correct likelihood-based goodness-of-fit measure will take the form:

−2lnLU (θ̂;z0) =2n ln([ max
t=1,..,n

[yt−∑m
i=0 ᾰiφi(xt)],

where (ᾰi, i=1,2, ...,m) denote the minimax estimators (see Spanos 2010b).
This suggests that there is nothing ‘natural’ about defining the goodness-

of-fit/prediction criterion in terms of the sum of squares of the errors, as often
claimed in the literature (see Forster and Sober 1994; Sober 2008). The ‘natu-
ralness’ depends crucially on the assumed distributional and other probabilistic
assumptions underlying Mθ(z). Hence, when Mθ(z) is statistically misspecified,
not only is the reliability of the inference procedures called into question, but
also the validity of the goodness-of-fit/prediction criteria.

More broadly, viewing the Akaike-type model selection procedures from the
error statistical perspective (Mayo 1996), calls for:

(a) delineating the notion of a ‘best’ model as it relates to the various ob-
jectives [description, prediction, explanation, theory/policy appraisal, etc.]
associated with using Mϕk (z), and

(b) probing all the different ways the final inference: M∗
ϕk

(z) is the ‘best’ model
within the prespecified family {Mϕi (z), i=1,2, ...m}, might be in error.

In a closer look at the various different objectives, one thing stands out: all these
objectives invoke, directly or indirectly, some form of inductive inference! Hence,
minimally, a ‘best’ model should be statistically adequate, otherwise these objec-
tives are imperiled.

The first potential error arises when the prespecified family {Mϕi (z), i=1, ...m}
does not include an adequate model. This will invariably lead one astray because
the Akaike-type procedures will select an ‘erroneous’ model with probability one.
What about circumventing this problem by securing the statistical adequacy of
{Mϕi (z), i=1, ...m} using trenchant Mis-Specification (M-S) testing? That will
automatically address the problem of selecting a particular model within this
family (stage 2), rendering these Akaike-type procedures redundant (Spanos
2010b). Selecting a statistical model on statistical adequacy grounds effectively
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annuls the use of simplicity to circumvent the problem of overfitting. Statistical
adequacy addresses overfitting because the latter induces artificial systematic
information in the residuals which can be detected using discerning M-S testing.
Moreover, statistical adequacy calls into question the pertinence of ‘expected’
predictive success as a selection criterion because, as argued above, good predic-
tion should be measured in terms of the prediction errors being non-systematic,
not ‘small’!

A second potential error arises when the family {Mϕi (z), i=1, ...m} does in-
clude a statistically adequate model, say Mϕ j (z), but is different from the se-
lected model Mϕk (z), j 6=k. This error is inherent to the Akaike-type procedures
because they ignore the relevant error probabilities associated with their stage 2
selection of a ‘best’ model with the particular family. Spanos (2010b) shows that
the ranking of the different models within the family {Mϕi (z), i=1, ...m} is equiv-
alent to formal Neyman-Pearson (N-P) testing comparisons among these models,
with one crucial difference: there is no ‘controlling’ of the relevant error prob-
abilities. Moreover, different model selection procedures (AIC, BIC, etc.) select
different models primarily because the (implicit) relevant error probabilities dif-
fer from one method to another. Indeed, it is shown that the type I error prob-
ability implicitly invoked by these procedures is often closer to α=.20 than to
the usual α=.05. In addition, securing statistical adequacy also circumvents the
overfitting problem these selection procedures allegedly address (Spanos 2007).
Moreover, conflating the statistical and substantive premises, as these proce-
dures do, will invariably raise the Duhem problem that cannot be addressed in
the Akaike-type context.

In summary, the Akaike-type procedures are vulnerable to two serious prob-
lems stemming from the fact that they:

[a] assume away the problem of model validation, and that undermines the
credibility of the likelihood function as the relevant measure of goodness-
of-fit/prediction,

[b] ignore the relevant error probabilities associated with their selection of the
‘best’ model with the broader family. It is ironic that some modelers claim
that the primary advantage of Akaike-type procedures over Neyman-
Pearson methods on objectivity grounds is that the minimization upon
which such procedures are based avoids the ‘arbitrariness’ of choosing a
pre-data significance level (see Sober 2008).

Contrary to the conventional wisdom that Akaike-type procedures are needed to
address inadequacies in frequentist methods, the above discussion shows that
the only way to bring an objective scrutiny to those model selection procedures
is to keep track of the relevant error probabilities; not ignore them under the
pretense of some irrelevant trade-off between goodness-of-fit/prediction and sim-
plicity!
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7. Hendry’s General to Specific Procedure

To shed further light on the weaknesses of the above theory-driven and Akaike-
type procedures, let us compare them to Hendry’s general to specific procedure
(Campos et al. 2003) which shares some of its key features with the error sta-
tistical approach, including ‘controlling’ the relevant error probabilities and the
due emphasis on statistical adequacy.

To make the discussion more specific, let us consider the model selection
problem within the family of Normal, linear regression models:

Mm : yt =β0 +∑m
i=1βixit +ut, ut vNIID(0,σ2), t∈N, (14)

whose statistical adequacy has been secured. The primary objective is to chose
the substantively relevant subset x1t ⊂ xt of the explanatory variables
xt:=(x1t, x2t, ..., xmt), but without sacrificing statistical adequacy. In the context
of such probing goodness-of-fit/prediction measures, theoretical meaningfulness
and simplicity, can play an important role, but not at the expense of statistical
adequacy. For securing the latter one needs a more complete specification of
the statistical premises in terms of probabilistic assumptions pertaining to the
observables (table 3).

Statistical GM: yt =β0 +β>
1 xt +ut, t∈N:=(1,2, ..,n, ...)

[1] Normality: (yt | Xt=xt)vN(., .),
[2] Linearity: E (yt | Xt=xt)=β0 +β>

1 xt,
[3] Homoskedasticity: V ar (yt | Xt=xt)=σ2,
[4] Independence: {(yt | Xt=xt) , t∈N} indep. process,
[5] t-invariance: θ:=

(
β0,β1,σ2)

are not varying with t,


t∈N.

β0=
[
µ1 −β>

1 µ2
]∈R, β1=

[
Σ−1

22σ21
]∈R, σ2 = [

σ11 −σ>
21Σ

−1
22σ21

]∈R+,
µ1=E(yt), µ2=E(Xt), σ11=V ar(yt), σ21=Cov(Xt, yt), Σ22=Cov(Xt).

Table 3: Normal/Linear Regression model

Controlling the error probabilities. In contrast to Akaike-type procedures,
Hendry’s (1995) general to specific keeps track of the relevant error probabili-
ties by framing the selection problem as a descending Neyman-Pearson (N-P)
sequential selection procedure (Anderson 1962), and without neglecting statis-
tical adequacy. In the case of the family of models in (14), the hypotheses of
interest are arranged in a descending order beginning with the most general
model and ending with the most specific:
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H(m+1)
0 : the unconstrained model

H(m)
0 : βm = 0,

H(m−1)
0 : βm =βm−1 = 0,

...
...

H(1)
0 : βm =βm−1 = ·· · =β1 = 0.

In view of the fact that (β0,β1, ..., ,βm)∈Θ:=Rm+1, we can see that the succes-
sive hypotheses define a decreasing sequence of subsets of the parameter space
Θ. This order ensures that the validity of a particular hypothesis implies the
validity of all the proceeding ones; this is because: H(m)

0 ⊂ H(m−1)
0 ⊂ ·· · ⊂ H(1)

0 .
The sequential N-P formulation of the null and alternative hypotheses takes
the form:

H(m)
0 vs. H(m−1)

0

} {
if H(m−1)

0 rejected, end and accept H(m)
0 ,

if H(m−1)
0 accepted, test next hypothesis:

H(m−2)
0 vs. H(m−1)

0

} {
if H(m−2)

0 rejected, end and accept H(m−1)
0 ,

if H(m−2)
0 accepted, test next hypothesis:

...
...

H(1)
0 vs. H(2)

0

} {
if H(1)

0 rejected, end and accept H(2)
0 ,

if H(1)
0 accepted, stop.

This sequential testing continues until a null hypothesis H(k)
0 is rejected and

thus H(k+1)
0 is accepted. For each k the hypotheses of interest are:

H(k)
0 :βk−1=0, vs. H(k+1)

0 :βk−1 6=0, k = 1,2, ....m

and the test statistic, based on the assumptions [1]–[5] in table 3, is either a
two-sided Student’s t or equivalently, an F test based on:

Fk(y)=
[
(
σ̂2

k−σ̂2
k+1

σ̂2
k+1

)
(

n−k−2
1

)] H(k)
0v F(1,n−k−2), k=1,2, ...,m,

where σ̂2
k= 1

n
∑n

t=1(yt− β̂0−∑k
i=1 β̂ixit)2. A sequence of F-tests is defined in terms

of the rejection regions:

C(k)
1 :={Fi(y)> cαk }, k=1,2, ...,m,

where αk denotes the significance level in testing hypothesis H(k)
0 and cαk the

corresponding threshold. It can be shown that this sequence of tests is Uni-
formly Most Powerful Unbiased (UMPU).

A major advantage of this general to specific procedure is that, under H(k)
0 the

statistics Fm(y), Fm−1(y), · · ·Fk(y) are mutually independent of Fk−1(y), Fk−2(y),
· · ·F1(y) (see Anderson 1962). This property enables us to derive the type I error
probability at each stage of the testing sequence as follows:

P(reject H(k)
0 ; H(k)

0 is true ) = 1−P(accept H(k)
0 ; H(k)

0 is true)
= 1−∏m

i=k(1−αi), for k=1,2, ...,m.
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In contrast, if one were to arrange the hypotheses of interest in an ascending
order, from specific to general, this cannot be achieved because the test statistic
Fk(y) is no longer independent of (Fk−1(y),Fk−2(y), · · · ,F1(y)); one needs to in-
voke crude upper bounds such as the Bonferroni (see Wassermann 2006). The
crudeness of such upper bounds often defeats the whole purpose of ‘controlling’
the relevant error probabilities.

This general to specific procedure has been elaborated and extended in
Hendry 2011 (this volume) into a systematic model selection algorithm that
takes into account the different possible orderings (selection paths) of the ex-
planatory variables xt:=(x1t, x2t, ..., xmt). In addition, the algorithm can be ap-
plied to highly complex models where there are more variables than observa-
tions m > n, and can accommodate any form of substantive information from
highly specific to very vague. Its effectiveness stems primarily from the combi-
nation of adopting general specifications that deal with many potentially rele-
vant variables, long lags, non-linearities, breaks and outliers to ensure a con-
gruent selection, retaining the theory model, and using multi-path search con-
strained by encompassing and congruence (see Castle et al. 2011). This oppugns
claims that traditional frequentist methods cannot handle highly complex mod-
els with numerous variables.

It is important to bring out the fact that the autometrics algorithm shares a
lot of its main features with the error-statistical model specification and valida-
tion approach articulated in section 4. In addition to ‘controlling’ the relevant
error probabilities and the emphasis on statistical adequacy, Hendry’s model
selection algorithm identifies the primary aim of empirical modeling as build-
ing models and designing probative procedures with a view to ‘find things out’
and learn from data about the phenomenon of interest. This does not require
one to adopt a strictly instrumentalist stance about the nature of theories. It
simply acknowledges the distinction between statistical and substantive ade-
quacy: a substantive model Mϕ(z) may always come up short in fully capturing
or explaining a phenomenon of interest, but a statistical model Mθ(z) could be
entirely adequate to reliably test and assess the substantive questions of in-
terest, including confounding effects, omitting relevant or admitting irrelevant
variables, as well as appraising the appropriateness of Mϕ(z) and other com-
peting substantive models. Indeed, a statistically adequate Mθ(z) provides a
benchmark for any aspiring theory in the sense that it establishes ‘what there is
to explain’ given data z0. In this respect, Hendry’s model selection procedure at-
tempts to systematize certain aspects of ‘model discovery’ within a prespecified
family of models, by demonstrating that there are intelligent ways to carry out
such probing effectively, as well as certain impertinent ways to be avoided (see
also Hendry 2009).
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8. Summary and Conclusions

Statistical adequacy [the probabilistic assumptions comprising the statistical
model are valid for the particular data] is of paramount importance when learn-
ing from data is a key objective in empirical modeling. Without it, the reliability
of any inductive inference is at best unknown, calling into question any probing
of substantive questions of interest. In short, statistical adequacy can be ignored
at the expense of any learning from data about the phenomena of interest.

Despite the crucial importance of securing the reliability of statistical infer-
ence, statistical adequacy has been seriously neglected in the empirical liter-
ature. Instead, the focus has been on using substantive information to spec-
ify statistical models and appraising their appropriateness using goodness-of-
fit/prediction and other criteria, which are of questionable value when the esti-
mated model is statistically misspecified. It was argued that, not only theory-
driven modeling, but also the Akaike-type model selection procedures, often give
rise to unreliable inferences, primarily because the probabilistic structure of the
data is indirectly imposed on the data via arbitrary error terms and its appro-
priateness is not assessed using thorough misspecification testing. The latter
also calls into question the reliance on asymptotically justifiable inference proce-
dures. Foisting one’s favorite theory on data often yields estimated models which
are both statistically and substantively misspecified, but one has no way to de-
lineate between the two sources of error and apportion blame, raising serious
Duhemian ambiguities. The error-statistical approach addresses this problem
by adopting a purely probabilistic construal of statistical models that enables
one to separate the statistical and substantive premises, creating the conditions
for securing statistical adequacy before appraising the substantive information.
in contrast to the theory-driven and the Akaike-type procedures, some of the
key features of the error statistical approach are shared by Hendry’s general
to specific procedure that does a much better job in selecting a model within a
prespecified family.
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