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Abstract: Hepatitis C Virus (HCV) mainly infects liver hepatocytes and replicates its single-stranded
plus strand RNA genome exclusively in the cytoplasm. Viral proteins and RNA interfere with the
host cell immune response, allowing the virus to continue replication. Therefore, in about 70%
of cases, the viral infection cannot be cleared by the immune system, but a chronic infection is
established, often resulting in liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Induction
of cancer in the host cells can be regarded to provide further advantages for ongoing virus replication.
One adaptation in cancer cells is the enhancement of cellular carbohydrate flux in glycolysis with
a reduction of the activity of the citric acid cycle and aerobic oxidative phosphorylation. To this
end, HCV downregulates the expression of mitochondrial oxidative phosphorylation complex core
subunits quite early after infection. This so-called aerobic glycolysis is known as the “Warburg Effect”
and serves to provide more anabolic metabolites upstream of the citric acid cycle, such as amino acids,
pentoses and NADPH for cancer cell growth. In addition, HCV deregulates signaling pathways like
those of TNF-β and MAPK by direct and indirect mechanisms, which can lead to fibrosis and HCC.

Keywords: HCV; HCC; hepatocellular carcinoma; fibrosis; oxidative phosphorylation; mitochondrial
respiratory chain; NADH-ubiquinone oxidoreductase; cytochrome c oxidase; ATP-Synthase;
warburg effect

1. Hepatitis C Virus Replication in the Liver

Infection with Hepatitis C Virus (HCV) is one of the major causes for liver damage. Although
HCV can cause acute infection with severe and sometimes fatal outcomes, the main problem with HCV
infection is that in about 70% of all infections, the virus establishes chronic replication in the liver [1].
In these cases, HCV manages to escape the innate and adaptive immune responses to allow the virus
to replicate in the hepatocytes “under the radar” [2,3]. In such cases, the infection usually remains
inapparent and undiagnosed, and such chronic infection over the years often leads to liver fibrosis,
cirrhosis and in many cases, finally, to liver cancer (hepatocellular carcinoma, HCC) [4]. Since the
liver is quite a soft organ that is functionally largely homogenous and is equipped with a redundant
capacity to regulate the body’s metabolite flux requirements in normal conditions, impaired liver
function becomes apparent only when the liver is heavily infiltrated by the cancer. Therefore, patients
show up with symptoms often very late, resulting in high recurrence rates after surgery and deaths
from liver cancer, even after treatment of the HCV infection [4–7].
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HCV comes as a so-called lipo-viro particle (Figure 1A) [8,9]. The particle is a fusion between
viral and cellular components, with the involvement of cellular components largely exceeding what is
usually recruited by other enveloped viruses. This is due to the close association of HCV’s assembly
pathway with the assembly of Very Low-Density Lipoproteins (VLDL) [8,9]. Cellular proteins included
in the lipo-viro particles are apolipoproteins (Apo) A-I, B, C-II and E (Figure 1A). The viral genome is
covered by the HCV core protein, and the viral envelope contains proteins E1 and E2. Binding of HCV
to hepatocytes and its uptake into the cells is conferred by several cellular receptors (comprehensively
reviewed in [9–11]).

Figure 1. Hepatitis C Virus (HCV). (A) The HCV particle comes as a fusion lipo-viro particle
associated with components of very low-density lipoprotein (VLDL) particles [8]. The single-stranded
HCV RNA genome of positive polarity is covered by the core protein. In the host cell-derived
lipid membrane, the HCV envelope proteins E1 and E2 are localized. The HCV lipo-viro particle
dynamically acquires various amounts of lipids to additionally form a VLDL-like portion of the fusion
particle, which is associated with the apolipoproteins (apo) B, E, A-I and C-II. (B) The HCV genome
of about 9600 nucleotides encodes a single polyprotein open reading frame (ORF) which is co- and
post-translationally processed into the mature gene products, including the structural core and envelope
proteins and the non-structural (NS) proteins of the replication complex. The NS5B protein constitutes
the viral replicase, an RNA-dependent RNA polymerase. The 5- and 3-untranslated regions (UTRs)
harbor the sequences and RNA secondary stem-loop (SL) structures that are involved in the regulation
of viral genome translation and replication; in the 5UTR, these stem loops are numbered with roman
numerals. The actual AUG start codon is part of SL IV. The SLs II to IV constitute the Internal Ribosome
Entry Site (IRES). In the 3UTR, the highly conserved so-called 3X region contains SLs 1 to 3 (numbered
from 3 to 5), preceded by a poly(U/C) tract and a variable region (VR). Regulation of viral genome
replication requires several additional signals also in the coding regions, prominently represented here
by the cis-replication element (CRE). Binding sites in the 5UTR, the NS5B coding region and the VR for
the liver-specific microRNA-122 are represented by grey boxes. For more details, please refer to [12]
and [13].

The HCV genome is a single-stranded RNA of about 9.6 kilobases with positive orientation
(Figure 1B) [14], i.e. after uncoating, the viral RNA can be directly translated in the cytoplasm of the
cell [15]. The single open reading frame (ORF) encodes a polyprotein that is cleaved into the mature gene
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products by viral and cellular proteases [12,16]. These proteins include the above-mentioned structural
proteins as well as non-structural (NS) proteins, including the viral RNA-dependent RNA polymerase
(replicase) NS5B. In contrast to cellular mRNAs, the HCV genomic RNA is not capped at its 5 end,
but translation initiation is mediated by an Internal Ribosome Entry Site (IRES) (Figure 1B) [17–20].
This strategy comes with essentially two advantages. On the one hand, the viral RNA can escape
translational downregulation during the cellular innate immune response that affects cap-dependent
translation initiation [21]. On the other hand, this strategy avoids the need to have translation
regulation signals like a 5-cap nucleotide and a poly(A) tail at the very 5- and 3ends of the viral RNA
genome, leaving these ends free for replication signals that allow the viral replicase to initiate genome
replication [12,13,22].

Viral proteins produced in the pilot round of translation associate with cellular membranes of
the Endoplasmic Reticulum (ER) and induce the formation of an assembly of membrane vesicles,
the so-called membranous web [23–25] (Figure 2). In these vesicles, viral genome replication and the
following assembly of virus particles are spatially coordinated, with the RNA replication complex
formed by NS2-NS5B proteins. At the very 3 end of the viral plus strand genome, the viral replicase
NS5B initiates the synthesis of antigenome minus strands. This process is regulated by several RNA
sequences and secondary structures that are located at the very 3 end but also within the polyprotein
coding region, mostly in the NS5B coding region [12,13,22,26–28]. The minus strand antigenome then
serves as the template for the production of excess plus strands that finally are encapsidated into new
progeny virus particles in the assembly pathway [8,29]. In addition, the initiation of plus strand RNA
synthesis is regulated by RNA signals that reside at the 3 end of the minus strand [30,31].

HCV RNA genome stability, translation and replication are positively regulated by the liver-specific
microRNA (miR)-122 [32–34]. miR-122 expression is quite unusual among microRNAs (miRNAs)
since it constitutes about 70% of all liver microRNA [35] and is nearly absent from other tissues [36].
Therefore, the liver specificity of HCV replication is considered not only to be due to the combination of
a variety of cellular surface receptors that are involved in virus particle attachment and uptake [9–11],
but also largely due to the intracellular enhancement of HCV replication by miR-122 [32–34]. There
are five or six binding sites for miR-122 in the HCV genome (depending on genotype) [37]. Two sites
are located at the very 5 end in the 5UTR [38]. The binding of miR-122 to these sites in the 5UTR
occurs cooperatively [39,40] and has been shown to be involved in three different effector functions,
namely overall genome replication [32], translation stimulation [33,41–43], as well as RNA genome
stabilization against nucleases [34,44]. One additional conserved miR-122 binding site is located in the
3UTR and two or three other sites are located in the NS5B coding region. Although some studies have
investigated binding of miR-122 to these sites and the possible consequences for the control of viral
translation and replication [45–47], the actual functions of these conserved miR-122 binding sites in the
HCV replication cycle are still largely unknown.
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Figure 2. Brief overview over the HCV replication cycle. In the space of Disse in the liver sinusoids,
the HCV lipo-viro particle (top) attaches to the basolateral surface of the hepatocyte by virtue of a
variety of receptors (not shown in detail here) which include heparan sulfate proteoglycans (HSPGs),
the LDL receptor, the scavenger receptor SR-BI, CD81 as well as claudin 1 (CLDN1) and occludin
(OCLN) [11]. After endocytosis, pH-dependent fusion with the lysosome triggers uncoating and release
of the viral RNA. Following the initial (“pilot”) round of the IRES-mediated translation of the HCV
genomic RNA, viral replication proteins recruit membranes from the Endoplasmic Reticulum (ER) to
form the closely ER-associated “Membranous web” [23–25] which is the site of viral replication. There,
new virus particles are formed in close association with the metabolism of lipid droplets (LDs) and
VLDLs [8,24,29,48–50], and the new viruses are released from the cell.

Compared with some other RNA viruses (e.g. picornaviruses like poliovirus or foot- and-mouth
disease virus) [51], HCV does not completely take over the cells’ capacities, resulting in rapid dead-end
cell lysis but replicates quite slowly and at a low level [46,52,53]. In this context, it is interesting to note
that the HCV IRES element is quite weak compared to cap-dependent translation [54]. In combination
with viral counter-measures against the cellular innate immune system and the body’s adaptive immune
response [2,55,56], this allows the establishment of long-term ongoing chronic HCV replication, which
eventually is a very successful strategy of a virus for “under-cover” spread among host individuals.
However, although in most cases, HCV replication in the liver does not lead to complete organ failure
within a short time, the virus subtly takes over control of cellular gene expression to promote viral
replication [2]. Moreover, the induction of cancer growth in cells that chronically replicate a virus can
be regarded as an overall advantage for that virus, since the cells replicating the virus even multiply by
themselves and escape the body’s immune system.

Changes in gene expression in the HCV-infected cells that induce fibrosis and HCC not only
affect signaling cascades to regulate cell growth, induce the cell cycle and suppress apoptosis [2,57,58],
but cancer cell growth also requires reprogramming the metabolism of the cells [59,60]. These changes
in metabolism in cancer cells include an enhanced uptake and metabolization of glucose by the main
carbohydrate breakdown pathway, glycolysis. However, the consumption of oxygen is slowed down
but not completely abolished, while the cells secrete large amounts of lactate. This condition is called
“aerobic glycolysis”; it has been described by Otto Warburg [61] and is now known as the “Warburg
Effect”. While Otto Warburg considered this effect to be a cause of cancer [61,62], we now know that
cancer is induced in cells by changes in gene expression affecting the regulation of growth, apoptosis
and cell cycle [59]. However, aerobic glycolysis is a condition that is generally observed in many
cancer cells [59]. Consistently with the reprogramming of cancer cells to also grow under low oxygen
conditions, HCV replication was shown to be even enhanced at low oxygen pressure [63].
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In the following section, we consider the nature of the Warburg Effect and the contribution of
HCV replication, resulting in a revised view of the metabolic changes in the Warburg Effect, and we
discuss some selected gene expression changes HCV replication applies to the cells in terms of growth
and differentiation control.

2. The Warburg Effect—Enhanced Glycolysis Flux to Provide Anabolic Metabolites in
Cancer Cells

Cancer cells need large amounts of anabolic metabolites for fast growth and cell division. Cancer
cells may also need to grow and replicate, even under low oxygen conditions, since regular blood
vessels may not be sufficient to provide enough oxygen for their fast growth, while blood vessels
newly induced by the tumor still need to grow. For these reasons, cancer cells usually undergo
a metabolic switch, which enhances metabolite flux through glycolysis (see Figure 3) towards its
end-product pyruvate (Pyr). At the same time, further downstream metabolite consumption by
mitochondrial pyruvate dehydrogenase (PDH), citric acid cycle (or tricarboxylic acid [TCA] cycle) and
oxidative phosphorylation is reduced but not completely abolished to still allow for sufficient ATP
production [64–66]. The change to this so-called aerobic glycolysis in tumor cells [61,62] was named
the Warburg Effect.

Figure 3. Metabolite flux through glycolysis and oxidative phosphorylation and some of the
modifications induced in cancer cells and during HCV replication. Abbreviations: Glc, glucose;
G-6-P, glucose-6-phosphate; F-6-P, fructose-6-phosphate; F-1,6-BP, fructose-1,6-bisphosphate; DHAP,
dihydroxyacetone-phosphate (= glyceron-3-phosphate); G-3-P, glyceral(dehyde)-3-phosphate; PEP,
phosphoenolpyruvate; Pyr, pyruvate; Ac-CoA, Acetyl-Coenzyme A; GLUT, glucose transporter; GK,
glucokinase; HK2, hexokinase 2; PFK-1, phosphofructokinase-1; PK, pyruvate kinase, LDHA, lactate
dehydrogenase A; SQSTM1, Sequestosome 1; PDH, pyruvate dehydrogenase; PDK, PDH kinase; c,
cytochrome c; ATP syn, ATP synthase. More explanations are given in the main text.
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In this condition, enhanced glucose consumption with a bottleneck downstream of pyruvate allows
for the withdrawal of considerable amounts of glycolysis intermediates in order to provide metabolites
for anabolic purposes. Such metabolites include amino acids for protein synthesis, riboses for nucleotide
synthesis, and the reduced form of the anabolic electron carrier nicotinamide-adenine-dinucleotide
phosphate (NADPH) which is required for many biosynthesis reactions. Riboses and NADPH are mainly
produced from glucose-6-phosphate (G-6-P) in the pentose phosphate pathway (PPP, see Figure 3),
while many amino acids are derived from the C3 glycolysis intermediates glyceraldehyde-3-phosphate
(G-3-P), phosphoenolpyruvate (PEP) and pyruvate. Moreover, the flux of citrate from the mitochondrion
to the cytosol is elevated to allow for enhanced biosynthesis of lipids for growth [67]. In contrast to
widely accepted assumptions, the activity of PKM2, the pyruvate kinase (PK) isoform that is often
expressed in cancer cells, is not rate-limiting but has the highest specific activity of all glycolytic
enzymes [68].

The conditions of enhanced metabolite flux through glycolysis in the cancer cells also lead to
an excess of the catabolic electron carrier nicotinamide-adenine-dinucleotide (NADH) in the cytosol
(Figure 3). Under conditions of limiting oxidative phosphorylation, not all of the cytosolic NADH that
is produced in the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) reaction can be reoxidized
to NAD+ in the mitochondrion. However, the NAD+ is required in the cytosol to run the GAPDH
reaction; otherwise, metabolite flux through glycolysis would stop. Therefore, the electrons from a
fraction of the cytosolic NADH must be disposed of in some other way to allow reoxidation of NADH to
NAD+. For this reason, the electrons from a fraction of the cytosolic NADH are transferred to pyruvate
to yield lactate in the lactate dehydrogenase (LDH) reaction. The lactate is then released from the
tumor cells [59–61,69] and reused in the liver to produce glucose (known as the “Cori cycle” which is
obligatory in the case of muscle working under anaerobic conditions as well as for erythrocytes which
do not have mitochondria) [70].

3. HCV Reprograms the Metabolism of Infected Cells towards a Cancer-Like State

Although progression of liver cells to histologically detectable fibrosis, cirrhosis and finally,
hepatocellular carcinoma, usually takes years [4,58,71–73], HCV appears to induce metabolic changes
that direct the cell towards the Warburg Effect quite quickly, within a few days or weeks after infection
of a cell. In a recent study, we found that the expression of some key components of the mitochondrial
respiratory chain complexes were downregulated only 6 days after the start of HCV replication [74].
These key components are the subunits MT-ND1, MT-ND3, MT-ND4, and MT-ND4L of complex I
(NADH-ubiquinone oxidoreductase) and MT-CO2 of complex IV (cytochrome c oxidase). MT-ND1, 3,
4 and 4L are core subunits of complex I, which are located directly within the inner mitochondrial
membrane and are involved in the enzymatic activity of the complex [75,76]. Similarly, MT-CO2 is a
catalytically essential core subunit of complex IV and this subunit is located directly within the inner
mitochondrial membrane [77]. These subunits are still encoded in the animal mitochondrial genomes
which have essentially—except for genes for mitochondrial ribosomes—lost all protein-coding genes
that do not encode largely hydrophobic respiratory chain complex subunits [75,78]. Keeping the genes
for these respiratory chain key subunits in the mitochondrial genome was considered to be essential
to allow for a short-circuit redox regulation [79]. In an experiment with HCV infected CD8+ T cells,
in addition to MTND and COX also the Fo/F1 ATP synthase was found to be downregulated at later
time points (4 weeks and more) [80,81]. Taken together, these findings show that HCV systematically
limits the activity of oxidative phosphorylation (see Figure 3).

Another limitation is the PDH reaction, which is the entrance gate to complete oxidation of
the carbohydrate chains in the mitochondrion [66,82,83]. The PDH kinase (PDK) is induced by the
transcription factor Hypoxia-inducible factor 1 alpha (HIF-1α), and HIF-1α in turn is induced during
HCV replication [84,85]. HIF-1α is normally hydroxylated under normoxic conditions and then
degraded, whereas under hypoxic conditions, HIF-1α regulates the response of the cell to cope with the
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hypoxic conditions [86]. The degradation of HIF-1α under normoxic conditions involves the ubiquitin
ligase VHL subunit, which is related to von Hippel-Lindau disease [87].

Upstream of the PDH bottleneck reaction, HCV activates enzymes of glycolysis and the pentose
phosphate pathway (Figure 3). Consequently, higher metabolite concentrations were found in
HCV-infected subjects, including lactate, pyruvate and amino acids [88]. Both HIF-1α and the
proto-oncogene c-MYC were expressed at significantly higher levels in HCV-infected human liver
and hepatocytes than in uninfected controls, and HIF-1α and c-MYC, in turn, induce the expression
of several glycolysis key enzymes [84,85]. These glycolytic key enzymes are glucokinase (GK),
phosphofructoinase-1 (PFK-1) and pyruvate kinase (PK) which together, control metabolite flux
through the glycolysis. In addition, the expression of hexokinase 2 (HK2) is upregulated [64] and
the activity of hexokinase is increased by its interaction with HCV protein NS5A [89]. In addition,
HCV activates the phosphatidyl-inositol-3-kinase (PI3K) - Akt - mammalian target of rapamycin
(mTOR) pathway [90–93] that is usually activated by growth hormones in the presence of sufficient
amino acid levels. In particular, HCV translation is upregulated by this pathway [94,95].

In addition, microRNAs (miRNAs) contribute to the upregulation of glycolytic enzymes. HIF-1α
mRNA is a direct target of microRNA-199a (miR-199a). miR-199a itself binds to the HCV RNA
genome [96,97]. Since miR-199a is not very abundant in cells [36], the several thousand HCV genomes
replicating in the infected cell [12,46,53] can be considered to sequester miR-199a and thus, withdraw
it from the HIF-1α 3UTR, leading to upregulation of HIF-1α. Moreover, the PKM2 mRNA is a direct
target of miR-122 [98]. This microRNA binds to five or six sites (depending on the genotype) in the
HCV genome [32,37,47]. Therefore, HCV is also considered to sequester miR-122 to a considerable
extent [46], even though several tens of thousands molecules miR-122 are present in the hepatocyte [35].

In addition to glycolytic enzymes, the enzymes of the pentose phosphate pathway are also
upregulated during HCV infection and in hepatocellular carcinoma related to HCV [99–101].
The elevated expression of pentose phosphate pathway enzymes in HCC is a good indicator for
enhanced metabolite flux towards riboses and NADPH for nucleotide and lipid biosynthesis pathways,
as well as enzymes involved in the biosynthesis of glutathione [100,101]. The TCA cycle and oxidative
phosphorylation were also found to be largely upregulated a short time after infection, whereas after a
longer infection, these pathways essentially changed back to normal or lower activity, while glycolysis
and PPP enzymes remained upregulated [99,100]. Consistently, two recent studies found that oxidative
phosphorylation is rather downregulated several days after HCV infection [74,80].

HCV promotes this metabolic reprogramming through expression of SQSTM1 and thus, induces
the PPP enzymes. SQSTM1/p62 is a protein that is involved in regulation of autophagy, the oxidative
defense system [102] and nutrient sensing and inflammation [103]. Since SQSTM1 is upregulated in
hepatoma cells 6 days after the beginning of HCV replication [74], we conclude that SQSTM1 may be
one of the key regulators that induce metabolic reprogramming in HCV infected cells towards the
development of hepatocellular carcinoma. Synergistically, alcohol abuse predisposes individuals to
the development of HCC and heightens HCC risk in patients infected with HCV [104,105].

Moreover, glutaminolysis is activated in HCV-infected HCC cells [99–101], likely since the NH2
groups released from glutamine are used for incorporation into amino acids during cell growth,
while the carbon backbone of glutamine can be used as a carbon source for cell growth when
glutamate is used to replenish the TCA cycle by the anaplerotic aminotransferase reaction producing
2-oxoglutarate [99,100]. The glutamate derived from the glutamine is also used for the production of
glutathione which is required to combat oxidative stress. Consistently, Glutamate-Cystein ligase is also
activated in order to provide more glutathione [101].

In contrast to the above findings that suggest a stimulation of glycolysis in HCV-infected
hepatocellular carcinoma cells, other studies, including many studies using animal models and
analyzing the state of human HCV patients, showed that HCV infection causes insuline resistance in
the HCV-infected cells, leading to elevated glucose levels in the blood and a prediabetic or diabetic
state of the patient (reviewed in [106–108]). In this condition, intracellular key enzymes of glucose
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synthesis were found to be upregulated, like phosphoenolpyruvate carboxykinase (PEPCK) and
glucose-6-phosphatase (G6Pase), while the insulin signaling pathway was compromised [106–110].
However, this notion is challenged by a study that showed that the degree of insulin resistance in HCV
patients appeared to vary largely due to other risk factors rather than HCV infection [111]. Interestingly,
the expression of the bidirectional glucose transporters (GLUT) in HCC can vary among HCC samples.
One review [64] cites many studies in which GLUT1 as well as GLUT2 (the low affinity glucose
transporter that is preferentially used in the liver for slow uptake or release of glucose) are upregulated
in HCC. In contrast, several studies are reported to have shown downregulation of GLUT2 [106–109].
In the latter case, this condition appears unsuitable for enhanced glucose release from the liver cells,
in spite of the fact that gluconeogenesis enzymes are often upregulated. The fact that GLUT2 is
downregulated rather argues for the consumption of the carbohydrates produced by gluconeogenesis
within the HCC cell itself (e.g. for growth) under conditions of limited release of excess glucose, rather
than hormone-regulated release to support the body’s needs for glucose. This would indicate a switch
from glucose uptake to the preferential use of amino acids (e.g. glutamine, see above) as carbohydrate
backbone sources. We do not know how these contradictory findings relate to the above-mentioned
results showing the activation of glycolysis in HCV-infected cancer cells in vitro. We can only speculate
that the often observed insulin resistance is a symptom for the tendency of the HCV-infected cells
to escape from paramount hormonal control and to reprogram the cell´s metabolism for cancer cell
growth, irrespective if glucose or glutamine uptake provides the carbohydrate backbones for growth.

4. A Revised View of the Metabolic Conditions in the Warburg Effect

The above considerations about metabolite flux under different conditions in cancer cells—also
caused by HCV infection—become even more plausible when taking into account the KM values of
the active enzymes. Pyruvate can be converted to Acetyl-Coenzyme A (Acetyl-CoA, Ac-CoA) by the
mitochondrial PDH. In the cytosol, it can be converted to alanine by alanine aminotransferase (ALT)
and subsequently metabolized to other amino acids. Alternatively, pyruvate can be converted to lactate
by LDH. The direction of metabolite flow at this pyruvate junction depends on the activities of the
enzymes, on their regulation and on downstream metabolite concentrations.

One of the most important key reactions of carbohydrate catabolism branching from the pyruvate
junction is the conversion of pyruvate to Acetyl-CoA by the mitochondrial PDH complex [112].
PDH has a very low KM value (i.e. very high affinity) for pyruvate of about 0.01 mM [113]. Although
the turnover rate of the PDH complex is not very high due to the complicated series of reactions in the
complex [113], the multimeric PDH complex of about 9 MDa [114] in its fully activated form can be
considered to bind pyruvate with very high affinity and efficiently metabolize it to Ac-CoA. The Ac-CoA
is then oxidized in the citric acid cycle and the electrons are used in oxidative phosphorylation for ATP
production. Although the PDH kinase (PDK) is induced in cancer cells [84,85] (see below), the allosteric
feed-back inhibition of PDH activity (indirectly via PDK) by metabolites like NADH and Ac-CoA or its
activation by NAD+, ADP and pyruvate [70] allows rapid metabolization of pyruvate if required for
ATP production.

The second important key reaction branching from the pyruvate junction is the alanine
aminotransferase (ALT) reaction. The KM of ALT for the educt pyruvate is about 0.3 mM, and the KM

for the product alanine is 28 mM [115,116]. Thus, in cancer cells, the ALT reaction can be regarded to
favor the production of alanine from pyruvate, while alanine feedback inhibits the upstream PKM2
activity according to the requirements for the respective amino acids. In contrast, in normal hepatocytes,
the inhibition of PK by alanine would save glucose for the brain under conditions when enough amino
acids, including alanine, come into the liver from the periphery.

The third key enzyme at the pyruvate junction is lactate dehydrogenase (LDH). The isoform LDHA
(i.e. the “M” isoform of LDH, usually expressed in muscle and liver) has a KM value of 0.275 mM
for pyruvate, whereas LDHB (i.e. the heart and erythrocyte isoform H) has a KM value of 0.066 mM
for pyruvate [117]. In the heart, the low KM of LDHB may serve to rapidly utilize lactate for aerobic
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energy production, whereas in the erythrocytes, efficient lactate production is required to dispose
electrons in the form of lactate in order to ensure ongoing glycolysis in the absence of mitochondria.
In metabolically reprogrammed cancer cells, the LDHA isoform with the higher KM for pyruvate
was found to be induced even more, while the LDHB isoform was repressed [60]. This may serve
to allow flux of pyruvate to lactate only when the pyruvate concentration is high enough to allow
the withdrawal of pyruvate for anabolic purposes without shutting down ATP production via PDH,
citric acid cycle and oxidative phosphorylation.

A considerable fraction of electrons obtained from the oxidation of carbohydrates in the GAPDH
reaction in the cytosol must be imported into the mitochondria for efficient ATP production. For this
purpose, essentially, two electron shuttle systems are available. The first electron shuttle system is
the malate shuttle [70]. Here, cytosolic malate dehydrogenase (cMDH) transfers the electrons from
cytosolic NADH to oxaloacetate and thereby generates malate. The malate is transported into the
mitochondrion in exchange for 2-oxoglutarate (α-ketoglutarate). In the mitochondrion, malate is
oxidized to oxaloacetate also generating mitochondrial NADH, resulting in the net transfer of the
two electrons from cytosolic NADH to mitochondrial NAD+. In the cytosol, the 2-oxoglutarate is
converted to glutamate in an aminotransferase reaction and the glutamate is transported back to
the mitochondrion in exchange to aspartate. The cytosolic aspartate delivers its amino group (e.g.
in the urea cycle), regenerating the cytosolic oxaloacetate. The KM of cytosolic MDH is 0.05 mM
for oxaloacetate and 0.77 mM for malate, 0.017 mM for NADH and 0.042 mM for NAD+ [118],
supporting the idea that the malate shuttle is preferentially used for electron transfer from the cytosol
to the mitochondrion.

The second electron shuttle system is the glycerophosphate shuttle. The cytosolic
glycerol-3-phosphate dehydrogenase (cG3PDH) transfers electrons from cytosolic NADH
to glycerone-3-phosphate (dihydroxyacetone-phosphate, DHAP), generating cytosolic
glycerol-3-phosphate and reoxidized NAD+. Then, the glycerol-3-phosphate is oxidized by
the mitochondrial glycerol-3-phosphate dehydrogenase (mG3PDH), which is located on the outside of
the inner mitochondrial membrane and transfers the two electrons directly to the ubiquinone pool of
the respiratory chain in the inner mitochondrial membrane. The KM of the cytosolic cG3PDH for
glycerone-3-phosphate is 0.05 mM, its KM for glycerol-3-phosphate is 0.14 mM, i.e. the KM values are
in favor of producing glycerol-3-phosphate. Thus, this glycerophosphate shuttle serves to oxidize
cytosolic NADH to NAD+ and transfers the electrons to ubiquinone.

Unfortunately, introduction of the electrons from cytosolic NADH directly to ubiquinone but not
via the mitochondrial NADH-ubiquinone oxidoreductase (complex I) wastes some ATP. However,
under conditions of high glucose consumption, this aspect of energy efficiency may not be so important.
Moreover, the inwards transport of electrons into the mitochondrion by the malate shuttle may be
hampered by the fact that in cancer cells, the cytosolic aspartate that is required for running the
malate shuttle may be withdrawn for anabolic purposes. This argues for the idea that in cancer cells,
the glycerophosphate shuttle may be preferentially used to reoxidize the cytosolic NADH.

Reprogramming of the metabolism can be analyzed preferentially by measuring enzyme
concentrations. Three interesting studies showed that key enzymes of carbohydrate metabolism
are regulated in cancer cells. In a proteomic study, Bentaib and coworkers [60] showed that in
cancer cells, several key enzymes of glycolysis are upregulated; this also includes upregulation of
PKM2. LDHA is upregulated, while LDHB is downregulated. In contrast, mitochondrial enzymes
of the citric acid cycle are downregulated. Moreover, the cytosolic G3PDH was found to be strongly
upregulated, while the cytosolic MDH is slightly downregulated [60]. Thus, in cancer cells, electrons
from cytosolic NADH that are required for ATP production may be preferentially transported into
the mitochondrion by the glycerophosphate shuttle, while the malate shuttle may be hampered by
the withdrawal of aspartate for biosyntheses. Interestingly, Bentaib and coworkers also measured
the oxygen consumption of cancer cells and found that it is reduced by about 50% in comparison
to normal cells [60]. Complementary to the above findings, two other studies [100,101] showed that
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in HCV-infected hepatocellular carcinoma cells, key enzymes of the pentose phosphate pathway
(see Figure 3) are upregulated, like glucose-6-phosphate dehydrogenase (G6PD), phosphogluconate
dehydrogenase (PDG), transaldolase (TALDO), and transketolase (TKD), as well as the cytosolic malic
enzyme (malate dehydrogenase, decarboxylating, NADP+ dependent) that also serves to provide
NADPH for biosyntheses. Accordingly, downstream nucleotide synthesis key enzymes are also
upregulated [99,100].Liponeogenesis is also upregulated, which, in turn, is essential for feeding HCV
assembly via lipid droplets and the VLDL biosynthesis pathway [8,24,25]. To this end, TCA enzymes
are only downregulated downstream of citrate synthase [60] to allow flux of citrate to the cytosol
as a source for C2-units for liponeogenesis [67], while enzymes involved in lipid biosynthesis are
upregulated [67,100].

Taken together with the above-mentioned slight downregulation of oxidative phosphorylation [74,
80] without shutting it down completely [60], all these changes in cancer cells make sense in order
to enhance the production of anabolic metabolites while still running oxidative phosphorylation
strongly enough to yield enough energy for growth. Regarding the use versus the disposal of electrons
produced in the GAPDH reaction of the highly active glycolysis, a fraction of the cytosolic NADH can
transfer its electrons to the mitochondrion for the use in oxidative phosphorylation for efficient ATP
production. At the same time, another fraction of NADH can transfer its electrons to that fraction of
pyruvate that remains after the withdrawal of C3 metabolites from the glycolysis for anabolic purposes.
This is—besides the above-mentioned possible bottlenecks in oxygen supply—one important reason
why fast-growing cancer cells consume oxygen for oxidative phosphorylation but at the same time
release lactate.

In summary, the above findings and considerations suggest a slightly revised view of the metabolic
requirements and conditions (so-called Warburg Effect) in cancer cells (Figure 4). The priorities for
carbohydrate metabolite flux under this condition are in this order: first, a guarantee for reduced but
sufficient ATP production by oxidative phosphorylation; secondly, providing C6 and C3 metabolites
for anabolic purposes; and only thirdly, disposal of “overflow” electrons from excess cytosolic NADH
in the form of lactate, which is secreted from the cell. Thus, during cancer cell growth, the production
of lactate can be regarded as a collateral event rather than an actual requirement for growth, and it
may occur just because oxidative phosphorylation and the withdrawal of upstream metabolites cannot
be balanced and fine-tuned in a way that no excess electrons from the GAPDH reaction need to
be disposed.

Figure 4. Metabolite flux at the pyruvate junction in fast-growing cancer cells.
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In summary, the above findings and considerations suggest a slightly revised view of the metabolic
requirements and conditions (the so-called Warburg Effect) in cancer cells (Figure 4). The priorities for
carbohydrate metabolite flux under this condition are in this order: first, a guarantee for reduced but
sufficient ATP production by oxidative phosphorylation; secondly, providing C6 and C3 metabolites
for anabolic purposes; and only thirdly, disposal of “overflow” electrons from excess cytosolic NADH
in the form of lactate, which is secreted from the cell. Thus, during cancer cell growth, the production
of lactate can be regarded as a collateral event rather than an actual requirement for growth, and it
may occur just because oxidative phosphorylation and the withdrawal of upstream metabolites cannot
be balanced and fine-tuned in a way that no excess electrons from the GAPDH reaction need to
be disposed.

5. HCV Induces Fibrosis and Cancer Growth

In addition to reprogramming the metabolism of the infected cell, HCV also induces many gene
expression changes in the cells that drive the cells towards the establishment of cancer, which have
been detailed in excellent reviews [58,73,119–121]. Here, we focus on some transcriptome changes that
emerged from the experiments of our previous study [74] but were not detailed before. KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathway analyses [122] using GAGE software (v2.34.0) [123] of
cellular transcriptome changes in hepatocellular carcinoma cells that replicate HCV for 6 days [74]
revealed osteoclast differentiation, MAPK signaling, TGF-β signaling, and retinoate metabolism as the
four most important upregulated pathways (see Figure 5).

Figure 5. The interplay between HCV infection and changes in cellular gene expression and metabolic
programming, leading to liver fibrosis, cirrhosis and cancer. Pathways which were found to be affected
by HCV replication in our previous study [74] are marked in bold. For details, please see the main text.

It is unclear whether the activation of osteoclast differentiation by HCV and the resulting increase
in serum Ca2+ concentration is somehow related to the role of increased Ca2+ concentrations in
the cytosol and in mitochondria during the stress response activated by HCV infection [124,125].
Similarly, it is not clear whether the HCV infection itself or the events involved in development of
fibrosis induced by the HCV infection are related to the increase in the risk of osteoporosis. However,
abnormal bone metabolism that results in low bone mineral density (BMD) and osteoporosis is known
to be associated with liver disease and HCV infection correlates with events related to osteoclast
differentiation. As a general finding, the risk of osteoporosis was approximately 65% higher among
HCV-infected patients compared with those without HCV infection, and HCV infection was speculated
to be an independent risk factor for post-menopausal BMD loss and fractures [126–128]. Cirrhosis
patients have been shown to have increased expression of the receptor-activator ratio of nuclear factor
kappa ligand (RANKL) as well as of osteoprotegerin (OPG), which results in increased bone resorption.
In addition, liver inflammation caused by HCV infection modulates the bone-remodeling pathway



Cells 2019, 8, 1410 12 of 19

through pro-inflammatory cytokines such as interleukin (IL)-1, IL-6, and IL-17 and tumor necrotic
factor (TNF)-α, which may promote the development of osteoclasts.

We found that the MAPK signaling pathway as well as the transcription factor c-Jun are
up-regulated in HCV replicating HCC cells [74]. Moreover, Deng and coworkers found that c-Jun
expression and the MAPK pathway are activated in HCV infected and HCC patients, and Jun activation
resulted in cell cycle progression [129]. c-Jun and STAT3 are widely accepted critical regulators of
liver cancer development and progression. We recently demonstrated that activation of c-Jun and
STAT3 as well as DNA repair were also induced by an extract from schistosome eggs [130]. Clinical
studies demonstrated that the coinfection of HBV and HCV in combination with S. mansoni aggravate
the clinical course of hepatitis but also of hepatocellular carcinogenesis [131]. Thus, the permanent
activation of c-Jun and STAT3 as critical regulators in liver cancerogenesis could directly influence
hepatocarcinogenesis and chronic HCV infection might reinforce these mechanisms. Moreover,
cell cycle progression is promoted by the NS5B protein of HCV which binds to the retinoblastoma
protein (Rb) and promotes its degradation [73,132].

Accordingly, the HCV envelope protein E2 was shown to specifically activate the MAPK/ERK
pathway via its receptors and to greatly promote cell proliferation [133]. Intracellularly, the HCV core
protein enhances cell proliferation by inhibiting the synthesis of tumor suppressor p53, the downstream
p21 CDK inhibitor and E2F-1, and the HCV core protein induces the phosphorylation of the tumor
suppressor Retinoblastoma protein (pRb) [134]. Thus, HCV activates growth factor-related signaling
pathways which promote cancer cell growth, while pathways involved in the possible activation of
apoptosis are rather inhibited.

The signaling pathway of transforming growth factor beta (TGF-β) was also activated during HCV
replication [74]. TGF-β is a multifunctional profibrotic cytokine that plays a key role in the pathogenesis
of liver inflammation, fibrosis, cirrhosis and HCC [135]. Members of the TGF-β family control numerous
cellular functions including proliferation, apoptosis, differentiation, epithelial-mesenchymal transition
(EMT) and migration. In early stages of cancer, TGF-β exhibits tumor suppressive effects by inhibiting
cell cycle progression and promoting apoptosis. However, in late stages of cancer, TGF-β exerts tumor
promoting effects, increasing tumor invasiveness and metastasis. Elevated TGF-β activity has been
associated with poor clinical outcome [136]. HCV-infected hepatocytes were reported to release TGF-β1
and other profibrogenic factors that differentially modulate the expression of several key genes involved
in liver fibrosis in hepatic stellate cells (HSCs) [137]. Quiescent HSCs are known as vitamin-A-storing
cells in the liver. Moreover, during injury, they are activated and become proliferative, fibrogenic
and contractile myofibroblasts and now are well established as a central driver of fibrosis [71]. Thus,
elevated TGF-β expression in HCV-replicating cells contributes to fibrosis.

All-trans-retinoic acid (“retinoate” in the following) is involved in the regulation and promotion
of differentiation [138]; cancer cells in which CYP26A1 expression was suppressed had reduced
tumorigenicity [139]. Thus, a decrease in retinoate levels may be an indicator for a tendency of cells to
approach or maintain a less differentiated state (like cancer cells). As a consequence, the loss of hepatic
retinoic acid function leads to the development of steatohepatitis and liver tumors [140], whereas
the application of retinoate reduced the amount of histologically detectable fibrosis and oxidative
stress [141].

In KEGG analyses of our previous transcriptome sequencing data from HCV replicating
hepatoma cells, we found that genes involved in the pathway for inactivation of retinoate are
induced [74]. This particularly includes CYP26A1, which is essential for the regulation of embryonic
development [139]. Because retinoate can easily distribute in the body, the regulation of its synthesis
as well of its degradation are key for its activity. Misregulation of retinoate concentrations can cause
severe distortions of embryonic development and stem cell differentiation; therefore, too low as well
as too high concentrations of retinoate may cause similar defects [138]. As a general rule, retinoate
can be regarded to be required for proper differentiation. As a consequence, enhanced inactivation of
retinoate, e.g. by CYP26A1, may result in less differentiation of cells and tissues [139]. This notion is
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consistent with the finding that HCV manipulates the infected cells to be in a less differentiated state
and may contribute to the development of hepatocellular carcinoma [74].

6. Conclusions

Although HCV comes with a genome of less than 10 kilobases in length, HCV infection of
hepatocytes induces a wide variety of changes in cellular gene expression and regulation in the
infected cells. These changes include early programming of the infected cells to develop cancer,
and metabolic switches are induced in the cancer cells that results in enhanced metabolite flux through
glycolysis to allow for increased production of anabolic metabolites while still producing enough ATP
by oxidative phosphorylation. In contrast, even though results can be variable, in HCC, patients often
an upregulation of key enzymes of gluconeogenesis can be found, with concurrent downregulation of
the GLUT2 transporter that would be required for glucose release from the cancer cell. This suggests
that whatever condition occurs, it must be suspected not to fulfill the body’s needs for glucose release
from the liver, but the glucose must be suspected to be produced for cancer cell growth.

In conditions of enhanced glycolysis, the increased lactate release from the cancer cells may be
regarded largely as a collateral damage rather than a strict metabolic requirement for cancer cell growth.
This lactate release may occur mainly because the cells are not able to fine-tune and balance anabolic
metabolite production and pyruvate consumption by the TCA cycle and oxidative phosphorylation
so accurately that electron disposal in the form of lactate in order to provide reoxidized NAD+ for
running the GAPDH reaction in glycolysis could be completely avoided.
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