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Infection and inflammation are relevant entities of male reproductive disorders that can
lead to sub-/infertility. Associated damage of the testis of affected men and in rodent
models include leukocytic infiltration, edema formation, fibrosis, germ cell loss and
reduced androgen levels. Negative effects on spermatogenesis are thought to be
elicited by oxidative stress sustained mostly by increased levels of ROS and pro-
inflammatory cytokines. Under normal conditions these cytokines have physiological
functions. However, increased levels as seen in inflammation and infection, but also in
obesity and cancer are harmful for germ cells and impair steroidogenesis. As a summary,
there is mounting evidence that the activation of inflammatory pathways is a rather
common feature in various forms of male testicular disorders that extends beyond
established infectious/inflammatory cues. This mini review will focus on relevant entities
and the mechanisms of how a dysbalance of local testicular factors contributes to
disturbances of spermatogenesis and steroidogenesis.

Keywords: testicular infection, testicular inflammation, autoimmunity, paracrine regulation, oxidative stress, ROS,
cytokines, chemokines
CONDITIONS LEADING TO TESTICULAR AND
EPIDIDYMAL INFLAMMATION AND THEIR
INFLUENCE ON HORMONE LEVELS,
STEROIDOGENESIS, SPERMATOGENESIS
AND SEMEN QUALITY

The testis is an immune privileged organ that tolerates the introduction of sperm autoantigens at the
onset of puberty without eliciting an inflammatory immune response (1). The testis in mammals
evolved multiple strategies to preserve this immunocompromised status, namely, the formation of
the blood-testis-barrier (BTB) between adjacent Sertoli cells that secludes most of the developing
germ cells from the interstitial compartment where leukocytes reside (1, 2). Besides the BTB the
Sertoli cells display important immunoprotective functions that may also contribute to immune
privilege. This has been shown when Sertoli cells were co-transplanted with allo- or xenografts
thereby prolonging the survival of pancreatic islets (3), hepatocytes (4) and neurons (5) as well as
other types of cells (6). Moreover, through Sertoli cells, antigens protected from transcellular leakage
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by the BTB can egress via transcytosis into the interstitial space
where antigen-presenting cells (dendritic cells, macrophages)
help to maintain Treg tolerance to meiotic antigens. Depletion
of the Treg leads to autoimmune orchitis emphasizing the
importance of the Sertoli cell-macrophage-Treg axis in
maintaining immune privilege (7).

Evidence suggests that immunological and infectious
etiologies contribute substantially to male infertility
[accounting for 13–15% of cases (2)], a medical and social
problem which in total is increasing worldwide (8). The
contribution of inflammatory infertility may be underestimated
as immune cell infiltration is observed in 20% of testicular
biopsies of azoospermic infertile patients (9). Moreover,
increased infiltration of immune cells into the testes with
concomitant impairment in testicular functions is associated
with certain chronic diseases, namely atherosclerosis and
cancer (10–12). Given that infection and inflammation are
critical drivers of male infertility, we will highlight how these
entities can impair the archetypical functions of the male gonad,
i.e. spermatogenesis and steroidogenesis.

Local inflammatory conditions of the testis, because of acute
infection or inflammatory testicular reactions of unknown origin
as well as systemic inflammatory conditions, all can negatively
impact spermatogenesis and steroidogenesis. They can do so at
the following levels: (a) direct impairment of spermatogenesis,
sperm quality and function, e.g. by germ cell death, oxidative
stress and impaired mitochondrial activity, (b) disruption of
steroidogenesis due to perturbation of the hypothalamic-
pituitary-testicular axis, (c) obstruction of the male genital
tract or (d) dysfunction of accessory glands (13–15). The
following sections will elaborate in more detail on relevant
factors and mechanism of disease.

Bacterial infections
In the clinic, Escherichia coli (E. coli), Proteus mirabilis,
Staphylococcus aureus, Streptococcus veridans, Ureaplasma
urealyticum, Mycoplasma hominis and Chlamydia trachomatis
are commonly isolated pathogens in liquid biopsies of men with
genitourinary tract infection (16, 17). Among these bacteria, E.
coli and Chlamydia trachomatis are the most clinically relevant
pathogens and thus are frequently used in animal studies to
mimic the human condition (16). Currently, rodent models
propose two routes of infection for these microbes with
uropathogenic E. coli (UPEC) reaching the epididymis and
testis via ascending canicular infection after injection into the
vas deferens. Alternatively, for Chlamydia muridarum, a murine-
specific pathovar, macrophages were suggested as a vector as
luminal spread from the infection site at the urethral orifice was
excluded by vasectomy (18–20). Although not seen as vectors for
UPEC, infiltrating monocyte-derived macrophages also appear
to be crucial in the immunopathology associated with acute
epididymo-orchitis which was convincingly shown in Ccr2-/-

mice, which lack blood monocytes due to defective egress from
the bone marrow (21).

In clinical practice, epididymitis is almost exclusively of
infectious origin. Leukocytospermia is seen often in the acute
phase of disease; however, approximately 40-50% of epididymitis
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patients show persistent impaired semen parameters affecting
sperm concentrations, motility and morphology (22). In up to
60% of all cases, the testis is also affected in a combined
epididymo-orchitis as follow-up biopsies revealed severe
hypospermatogenesis indicated by loss of germ cells in the
adluminal compartment of the seminiferous epithelium,
massive infiltration of the interstitial and even tubular
compartment by immune cells, a thickened lamina propria and
interstitial fibrosis. These alterations were accompanied by
increased FSH levels (23, 24). Of note, persistent azoospermia
in 10% and oligozoospermia in 30% of men suffering from acute
epididymitis is detected (15, 22). Interestingly, sperm proteome
analysis in patients after recovery from epididymitis (3 months)
demonstrated long-term alterations in protein composition (25).
Besides changes in the proteome, the glycome of sperm was
altered in men with a history of epididymitis as seen by a
substantial reduction of sialic acid residues on the surface of
spermatozoa (26).

Viral infections
Several viruses, namely human immunodeficiency virus (HIV-
1), Zika virus (ZIKV), Ebola and Marburg viruses as well as the
mumps orthorubulavirus (MuV) can infect not only the testes
but also the entire male reproductive tract of human and non-
human primates through the hematogenous route (14). These
viruses silently propagate inside the organ for an extended time.
Recent studies suggest that the testicular macrophages are the
reservoir for a few viruses and are critical for initiating infection
and later dissemination into other testicular cells. For example,
the ZIKV colonized the interstitial CD206+ testicular
macrophages and then spread infection into the seminiferous
tubules (27). Similarly, another study demonstrated that the
S100A4+ macrophages were susceptible to ZIKV infection that
facilitated ZIKV dissemination and persistence in the
seminiferous tubules (28). After internalizing ZIKV, testicular
macrophages skewed towards a pro-inflammatory phenotype
and secreted pro-inflammatory cytokines. These disturb the
BTB in a paracrine fashion by down-regulating claudin-1
expression and facilitating S100A4+ macrophage entry into the
seminiferous tubules (28). In contrast to ZIKV, Marburg virus
mainly colonized Sertoli cells leading to a disruption of the BTB.
In addition, infection with Marburg virus results in increased
infiltration of immune cells in the testis, namely CD68+

macrophages/monocytes, CD3+ T cells and B cells in both the
interstitial space and seminiferous tubules leading to
spermatogenic cell loss and severe testicular damage (29).

Viral infection alters endocrine, sperm and semen parameters
by targeting the male reproductive tract directly and indirectly
(systemic). In relation to systemic infections (e.g. influenza),
fever could result in increased testicular temperature and
subsequent d i s tu rbances in spermatogenes i s and
steroidogenesis by perturbation of the hypothalamo-pituitary-
gonadal axis (30, 31). In the context of viral infections, alterations
in spermatozoal (count, motility, morphology) and semen
parameters (e.g. volume of seminal plasma, viscosity, pH,
enzyme concentrations) were reported, in some cases
accompanied by orch i t i s (32–37) . Impai rment of
April 2022 | Volume 13 | Article 897029
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spermatogenesis could be related to different mechanisms
including inflammatory reactions in the reproductive organ,
disruption of the testicular cytokine milieu, decreased
testosterone production by Leydig cells, disturbances in the
paracrine control by somatic cells, change in testicular
temperature due to fever and viral replication within cells of
the male genital tract. Of note, macrophages, Sertoli cells and
germ cells may serve as viral reservoirs [reviewed in (14)]. In
chronic viral orchitis, histology of affected seminiferous tubules
reveal degeneration of the germinal epithelium accompanied by
thickening of the lamina propria, which ultimately may result in
complete hyalinization and fibrosis of the tubules leading to the
formation of so called “tubular shadows” (38). In Leydig cells,
viral replication can lead to decreased testosterone production
(39–41) an observation that was reported to be accompanied by
changes in LH, FSH or inhibin B levels (32, 33, 36, 37, 41).

Autoimmunity
Autoimmune orchitis is an inflammation of the testis, where
autoimmune reactions against spermatic antigens cause damage
to germ cells, and also to testicular somatic cells. It is a rare
disease in men with the potential to impede the normal function
of the testis. Mutation in the autoimmune regulator (Aire) gene
results in human autoimmune polyendocrine syndrome APS-
type 1 (APS-1), which is characterized by autoimmune reactions
in several organs, including the testes (42). This observation is
corroborated in Aire-deficient mice that reproduced many
clinical signs of APS-1 in human (43).

In men, histopathological analysis of testicular biopsies with
inflammatory lesions of idiopathic origin show that lymphocytic
infiltrates correlate with tubular damage, visible as partial or
complete loss of the germinal epithelium, thickening of the
lamina propria and tubular fibrosis. These changes are associated
with reduced testicular volume and score counts for
spermatogenesis, while FSH levels are not increased in these
patients (2, 38). Similar histopathological changes are also seen in
a mouse model of autoimmune-based epididymo-orchitis (EAEO)
elicited by injection of testicular homogenate. Here, the disease can
develop progressively up to the formation of granulomas. In rodent
EAEO, FSH levels are concomitantly increased, while testosterone
levels are reduced. This possibly points to a negative local paracrine
influence on Leydig cell steroidogenesis. This assumption is
supported by the observation that basal and hCG stimulated
production of testosterone is elevated in isolated primary Leydig
cells from EAEO rats compared to control. TNF-a abolishes this
increase in testosterone [reviewed in (2, 44)].

In addition, systemic low grade inflammatory conditions
associated with obesity including complications leading to
cardiovascular disease, type 2 diabetes mellitus, malignancy
and accelerated aging are connected with alterations in the
hypothalamic-pituitary-gonadal axis, poor semen quality and
disruption of testicular steroidogenesis. Obesity impacts
negatively semen parameters (sperm concentration, motility,
viability, morphology) and sperm function (chromatin
condensation, DNA fragmentation, apoptosis and epigenetic
signatures [reviewed in (45, 46)].
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INFLAMMATORY DISORDER RELATED
MECHANISMS AND PATHWAYS

Influence of Oxidative Stress on
Spermatogenesis and Steroidogenesis
Reactive oxygen species (ROS) play an important role both in the
maintenance of fertility in men, but also in pathological
alterations of sperm parameters such as viability, motility,
maturation, capacitation, hyperactivation and acrosome
reaction (47). While ROS is required to combat pathogens and
thus account for an effective anti-microbial immune response
(48), supraphysiological levels of ROS, particularly for extended
periods of time, can induce intense oxidative stress with toxic
consequences for cells in general. In this regard, spermatozoa are
particularly vulnerable due to their unique cytoarchitecture and
biochemical characteristics (49–51). Spermatozoa possess a
plasma membrane that is highly enriched in polyunsaturated
fatty acids, particularly docosahexaenoic and arachidonic acids
making them extremely susceptible to ROS-induced damage
(52). Increased ROS production coupled with poor antioxidant
capabilities in sperm can result in sperm DNA fragmentation
(SDF) (Figure 1) (53). Elevated SDF alters the ultrastructure of
sperm by leading to vacuolization in the nucleus along with other
severe sperm morphological abnormalities that altogether can
hinder fertilization by adversely affecting hyperactivation,
capacitation and acrosome reaction (54). In this light, it is not
surprising that SDF was reported in couples with unexplained
recurrent pregnancy loss (55). Moreover, an initiation in the lipid
peroxidation cascade can ultimately reduce sperm motility and
viability owing to the fact that ROS-induced lipid peroxidation
decreases mitochondrial membrane potential with concomitant
structural damage in the adjacent axoneme (56, 57). The
generation of lipid peroxidation products, particularly lipid
aldehydes such as 4-hydroxynonenal (4-HNE), can negatively
influence sperm motility as 4-HNE can bind to the dynein heavy
chain in the sperm tail and to protein kinase anchoring protein 4
(AKAP4) in the sperm fibrous sheath (51) (Figure 1). In
developing germ cells, oxidative stress can mediate cell death
via several apoptotic pathways including activation of death
receptors (Fas and TNFR1) and mitochondrial pathways
(caspase 9) (58–60). The increased co-expression of Fas and
FasL in germ cells implies that cell death via the Fas/FasL-
mediated apoptotic signal transduction pathway could occur via
autocrine and/or paracrine mechanisms (59). The susceptibility
of germ cells to apoptosis via Fas/FasL could be regulated by
Sertoli cells when the intracellular death domain of Fas reacts
with FasL receptors on Sertoli cells (61, 62). Activated
macrophages also play a role in the apoptosis of germ cells by
releasing the stress response protein HMGB1 in response to
inflammation-induced oxidative stress (Figure 1). In turn,
HMGB1 causes germ cell death by inducing a decrease in anti-
apoptotic Bcl-2 levels and a concomitant increase in pro-
apoptotic Bax protein levels, cytochrome c and caspase 3
activity (63).

Alongside apoptosis, autophagy was reported as a pathway
involved in disruption of spermatogenesis. In this context,
April 2022 | Volume 13 | Article 897029
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increased expression of autophagy-related gene 7 (Atg7) was
observed in spermatocytes after heat treatment of mice (64). The
knockdown of Atg7, a factor required for formation of
autophagosomes (65), via siRNA injected into the seminiferous
tubules of these mice led to significant protection against heat-
induced autophagy that was accompanied with decreased rates of
germ cell apoptosis (64).

Intense oxidative stress can also affect Leydig cell
steroidogenesis eventually leading to infertility. ROS can
disturb Leydig cell mitochondria in diminishing the expression
of steroidogenic acute regulatory protein (StAR) which in turn
can decrease mitochondrial transport of cholesterol and
consequently reduces synthesis of androgens (66, 67). This
negative influence on steroidogenesis was reported to be a
result of oxidative stress-induced activation of the p38 MAPK
protein (68). C-Jun, a further stress responsive MAPK subfamily
member, was also shown to be involved in suppressing the
expression of steroidogenic enzymes as ROS mediated
signaling upregulation of c-Jun inhibits Nur77 transactivation
(69). Orphan nuclear receptors like Nur77 are known to be key
transcriptional factors regulating the gene expression of
steroidogenic enzymes (70, 71). Moreover, steroidogenesis can
be downregulated in a paracrine fashion. This is elicited by TNF-
a released by activated macrophages which addresses the TNF-a
receptor TNFR1 expressed on neighboring Leydig cells. This
leads to Leydig cell apoptosis and to activation of p38 MAPK
Frontiers in Endocrinology | www.frontiersin.org 4
signaling pathway resulting in decreased serum testosterone
levels (72).

Paracrine Influence of Cytokines,
Chemokines and Growth Factors on
Spermatogenesis and Steroidogenesis
Signaling molecules especially cytokines and growth factors and
their receptors are widely produced by testicular cells. These
signaling molecules play crucial roles in normal testis
development and function when expressed at physiological
levels, whereas increased levels can lead to disturbed organ
function (73, 74). As an example, the activation of toll-like
receptors (TLR) following binding of microbial pathogen-
associated molecular patterns (PAMPs) and endogenous
ligands such as alarmins (which are released during tissue
damage) can initiate a cascade of signal transduction pathways
which ultimately can culminate in the secretion of a range of
signaling molecules including pro-inflammatory cytokines TNF-
a, interleukin (IL)-1b and IL-6 in addition to chemokines
(CXCL8 and CXCL10) (75) that all act in a paracrine fashion.
Pathological consequences are indicated by neutralization of
TNF-a in conditioned media of testicular macrophages, which
results in decreased apoptosis of germ cells (74). Furthermore,
murine Tnf-a-/- Sertoli cells were protected from MuV-induced
down-regulation of occludin and zonula occludin-1 thus
safeguarding the integrity of the BTB. Inhibition of TNF-a
FIGURE 1 | Effect of cytokines and oxidative stress on spermatogenesis and steroidogenesis. Under normal conditions, levels of anti- and pro-inflammatory
cytokines, chemokines as well as anti-and pro-oxidants are balanced maintaining steroidogenesis and spermatogenesis. Sterile inflammation and microbial infection
both cause an invasion of monocyte derived macrophages that together with increased production of pro-inflammatory cytokines such as IL-6, TNF-a, IL-17, IL-1b
and chemokines such as CCL2, CXCL10 by resident testicular cells as well as recruited immune cells result in a shift towards higher levels of pro-inflammatory
factors that negatively impact spermatogenesis and steroidogenesis. As a consequence, germ cell death and lower levels of androgens are observed e.g. by ROS
diminishing the expression of StAR. ROS induced damage of spermatozoa also occurs during epididymal transit (axoneme damage, decreased mitochondrial
potential = DYM, sperm DNA fragmentation =SDF). Figure created with BioRender.com.
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production by the immunomodulatory drug pomalidomide in
MuV infected Sertoli cells also prevented the disruption of the
tight junction integrity of the BTB. Similar observations were
made in vivo where TNF-a deficiency prevented the MuV
induced disruption in the BTB and loss in spermatids (76).

TNF-a can also induce the production of CXCL10 in Sertoli
cells in an autocrine manner, which can in turn induce apoptosis
of germ cells via caspase-3 activation after binding to CXCR3 on
these cells. As a control, the experimental deletion of the genes
for CXCL10 or TNF-a in a co-culture of germ cells and Sertoli
cells inhibits MuV-induced germ cell apoptosis (77). To add,
CXCL10 and another chemokine ligand, CCL2, which is
produced by Sertoli cells, Leydig cells and testicular
macrophages in response to inflammation could recruit
leukocytes resulting in a negative impact on spermatogenesis
(Figure 1) (78). The role of a dysregulated CCL2/CCR2 axis on
spermatogenesis was clearly shown in Ccr2−/− mice that were
protected from germ cell loss otherwise seen in acute bacterial
epididymo-orchitis (21) TNF-a can also lead to elevated
expression of activin A - a member of the transforming growth
factor-b (TGFb) family of cytokines - in Sertoli cells (Figure 1).
Inhibiting activin A in vivo by elevating circulating levels of its
antagonist follistatin reduced the overall severity of EAEO,
associated germ cell loss and fibrotic damage (79). Further
credence of a negative role of upregulated pro-inflammatory
cytokines on spermatogenesis is derived from in vivo and in vitro
experiments (74, 80–82). Testicular injection of IL-6 or IL-17A
induced germ cell sloughing and disruption of the integrity of the
BTB, a finding corroborated in vitro when murine Sertoli cells
cultured with excess IL-6 or IL-17A exhibited a disrupted BTB
integrity and permeability concomitant with a decrease in
transepithelial electrical resistance that was associated with
changes in the distribution of tight junction protein expression
(occludin, claudin 11) (81, 83) (Figure 1). IL-6 can also directly
induce apoptosis of germ cells in vitro (74, 84). Infection with
Sars-Cov-2 was shown to increase the levels of pro-inflammatory
cytokines mainly IL-6, TNF-a, IL-1b and this was accompanied
with disruption in the expression of junctional proteins
(occludin, claudin-11, connexin-43) along with decreased
numbers of Sertoli cells and decreased sperm counts (85–87).

Increase in the aforementioned pro-inflammatory cytokines
and chemokines can also negatively influence the ability of
Leydig cells to synthesize testosterone mainly by acting as
repressors of steroidogenic enzyme gene expression (88–90).
TNF-a and TGF- b were found to be implicated in disrupting
steroidogenesis directly via the competitive inhibitory action of
NF-kB subunits on the transactivation of Nur77 and other
orphan nuclear receptors (88, 91–93). Activated macrophages,
which are physically interacting with Leydig cells, were shown to
Frontiers in Endocrinology | www.frontiersin.org 5
produce pro-inflammatory cytokines such as IL-1 and TNF-a
that can inhibit Leydig cell steroidogenesis (66). In this co-
culture setting of Leydig cells with activated testicular
macrophages (via lipopolysaccharide stimulation), mRNA
expression of steroidogenesis related genes (SF1, StAR and 3b-
HSD) was inhibited (94). Moreover, IL-1b added to murine
Leydig cells can induce the expression of CCL2, which in turn
can decrease steroidogenic enzymes such as CYP17A1 and
induce apoptosis as evidenced by cleaved caspase-3. This effect
was also documented in human Leydig cells (95). Overexpression
of another chemokine -CXCL10- in murine tumor Leydig cells
also inhibit StAR expression and decrease cAMP-induced
progesterone synthesis in a paracrine fashion (77).
SIGNIFICANCE AND CONCLUSION

Cytokines and chemokines play an important role in the
regulation of normal testicular function. They display direct
paracrine effects on spermatogenic and Leydig cells that in the
case of an upregulation during inflammatory episodes can
impose harmful consequences. However, a degree of caution is
necessary as a considerable amount of data relies on in vitro
studies using isolated cells. Moreover, definitive functions of pro-
inflammatory factors are difficult to determine as their action is
context dependent and influenced by other mediators acting at
the same target cell. Research harvesting breakthrough
technologies like scRNA-seq and spatial transcriptomic is just
about to unravel the overlap of the immune and testicular system
and how they are linked in normal and pathological condition.
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