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Abstract
Transcranial alternating current stimulation (tACS) is a unique form of non-invasive brain stimulation. Sinusoidal alternating 
electric currents are delivered to the scalp to affect mostly cortical neurons. tACS is supposed to modulate brain function and, 
in turn, cognitive processes by entraining brain oscillations and inducing long-term synaptic plasticity. Therefore, tACS has 
been investigated in cognitive neuroscience, but only recently, it has been also introduced in psychiatric clinical trials. This 
review describes current concepts and first findings of applying tACS as a potential therapeutic tool in the field of psychiatry. 
The current understanding of its mechanisms of action is explained, bridging cellular neuronal activity and the brain network 
mechanism. Revisiting the relevance of altered brain oscillations found in six major psychiatric disorders, putative targets for 
the management of mental disorders using tACS are discussed. A systematic literature search on PubMed was conducted to 
report findings of the clinical studies applying tACS in patients with psychiatric conditions. In conclusion, the initial results 
may support the feasibility of tACS in clinical psychiatric populations without serious adverse events. Moreover, these results 
showed the ability of tACS to reset disturbed brain oscillations, and thus to improve behavioural outcomes. In addition to its 
potential therapeutic role, the reactivity of the brain circuits to tACS could serve as a possible tool to determine the diagnosis, 
classification or prognosis of psychiatric disorders. Future double-blind randomised controlled trials are necessary to answer 
currently unresolved questions. They may aim to detect response predictors and control for various confounding factors.

Keywords Transcranial alternating current stimulation (tACS) · Non-invasive brain stimulation (NIBS) · Psychiatry · 
Schizophrenia · Depression · OCD
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SANS  Scale for the Assessment of Negative 

Symptoms
SAPS  Scale for the Assessment of Positive 

Symptoms
SMA  Supplementary motor area
STDP  Spike-timing-dependent plasticity
SUMD  Scale to Assess Unawareness of Mental 

Disorder
tACS  Transcranial alternating current stimulation
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Introduction

Transcranial alternating current stimulation (tACS) is a 
widely used non-invasive brain stimulation (NIBS) method. 
It has been used for more than a decade in different fields, 
such as cognitive neuroscience [1, 2]. However, its use in 
psychiatric clinical research began with case reports [3], 
and only recently have the first well-structured double-blind 
randomized controlled trials examined its efficacy for the 
treatment of psychiatric disorders [4]. tACS involves direct 
delivery of alternating electric currents to the scalp. The 
current travels through the skull to affect mostly cortical 
neurons. Such alternating current has a sinusoidal waveform 
where the voltage changes gradually from positive to nega-
tive every half-cycle. Therefore, the current flows from an 
anodal electrode to a cathodal electrode in one half-cycle 
and in the reverse direction in the second half-cycle [5].

The concept underlying alternating current is to simulate 
the naturally occurring rhythmic pattern of electrophysiolog-
ical activity of the brain, which can be detected by electroen-
cephalography (EEG) and magnetoencephalography (MEG) 
[6]. Such rhythmic patterns, oscillating at a certain fre-
quency, are called brain oscillations. Various specific brain 
oscillations have been coupled with diverse brain functions 
and states [7]. Moreover, connectivity and communication 
between distant cortical regions were shown to be associated 
with the synchronization of brain oscillations within these 
regions [8, 9]. In that sense, tACS is also used to couple or 

decouple two connected neuronal circuits by synchronizing 
or desynchronizing their oscillations, respectively. Accord-
ingly, tACS might represent a potential therapeutic tool by 
modifying altered brain oscillations and connectivity pat-
terns that were previously identified in various psychiatric 
disorders.

The typical setup of tACS involves the application of 
electrodes onto the scalp, whose position and size can be 
modified to specifically target a certain brain region [10, 11]. 
For this purpose, positioning of the electrodes is designed 
according to computational models to optimize the stimula-
tion parameters [12, 13]. Furthermore, the parameters of 
the alternating current itself can be customized in terms of 
frequency, amplitude, phase shape, phase timing, and the 
duration and number of stimulation sessions. The stimula-
tion frequency is usually set to EEG frequencies to modulate 
the brain processes associated with them. Other parameters 
may vary according to the study question and brain elec-
tric activity to be modulated (some examples are discussed 
below; for more details, see this review: [14]).

Mechanism of action

Although the exact mechanisms of action of tACS are still 
not well understood, there is growing evidence of possible 
explanations. Electrophysiological methods have been exten-
sively used to elucidate these mechanisms, as well as the 
effects of tACS, mostly EEG and, to a lesser degree, MEG, 
in humans, and intracranial and local field potential record-
ings in animals [15, 16]. Those methods have shown two 
main categories of tACS effects: online effects (those that 
coincide with the stimulation duration), and offline effects 
or after-effects (those that outlast the stimulation period). 
Both involve entrainment of brain oscillations to the stimu-
lation frequency and coupling or decoupling of long-range 
oscillatory connectivity between distant brain regions [17, 
18]. To understand these effects and their underlying electro-
physiological processes, we summarize previous literature 
bridging the gap between cellular and whole network levels.

Upon tACS application to the skull, some of this alternat-
ing current reaches the brain. As a result, it causes the cell 
bodies and dendrites of the cortical neurons to alter their 
membrane potential towards depolarization or hyperpolari-
zation in an oscillatory fashion [16]. This alternating change 
in the membrane potential is thought to be sufficient to alter 
the probability of a neuron generating action potentials [19]. 
However, it is not strong enough to change the rate of action 
potentials, as it controls only their timing in a frequency- and 
location-specific manner [20]. That is why this stimulation 
seems to be a type of sub-threshold stimulation that does not 
directly fire neuronal spikes [14, 21].
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The influence of tACS depends not only on the amplitude 
and frequency but also on the three-dimensional orienta-
tion of both neurons and the penetrating current [22]. Its 
effects result from manipulating the membrane potential of 
neurons that are aligned with the introduced electric field, 
mostly pyramidal cells in layer V. These cells are extremely 
sensitive to current changes due to their elongated soma-
dendritic axis [22, 23]. Moreover, they have characteristic 
properties, including intrinsic resonance, neuroplastic activ-
ity and cortico-cortical projections [24–26]. Therefore, these 
cells, once stimulated by tACS, show specific frequency res-
onance, long-term after-effects and long-range oscillatory 
cortical connectivity (more details on resonance and after-
effects are discussed below). Similarly, the direction of the 
electric stimulation substantially changes the properties of 
the resulting field, and thus, its effects on the neurons [27].

In 2018, Liu et al. suggested five different neuronal mech-
anisms that could translate the previously mentioned cellular 
effects of tACS into whole network activity at a larger scale 
[28]. First, stochastic resonance: a wide range of tACS-
affected neurons, differing in their momentary probability 
to generate action potentials, will react stochastically to be 
either polarized or hyperpolarized. This leads to the absence 
of a theoretical ‘minimum effective threshold’. Second, 
rhythm resonance: this occurs when the tACS frequency is 
the same as that of the endogenous oscillations. This ends 
with the stimulatory current wave striking the endogenous 
one at a similar phase every cycle. Third, temporal biasing 
of spikes: the spike timing of neurons is regulated by the 
interaction between the stimulation and internal currents, 
which may work synergistically to excite the same group of 
neurons during each cycle of stimulation. Fourth, network 
entrainment: the entrainment of an endogenous irregular 
activity necessitates an external current with sufficiently 
stronger amplitude. Finally, imposed pattern: to overcome 
endogenous regular oscillations and introduce a new oscil-
lation, the strongest stimulation is required [28].

These mechanisms support the explanation by Vosskuhl 
et al. [14] of the large-scale effects of tACS. The authors 
attributed the online and offline tACS effects to two syner-
gistic phenomena: entrainment and neuroplasticity, respec-
tively. Entrainment, by definition, takes place when an 
external rhythmic system affects another naturally occur-
ring one, forcing it to follow its own oscillating frequency. 
During tACS, the external driving current forces the endog-
enous brain oscillations to follow in terms of frequency and 
phase [14, 29]. Such entrainment has two crucial properties: 
“Arnold tongue”, and harmonics. Arnold tongues describe 
the relationship between the stimulation amplitude and its 
corresponding range of frequencies at which tACS can 
entrain endogenous brain oscillations. When the amplitude 
of this stimulation increases, it entrains brain oscillations in 
a wider range of frequencies [30]. Harmonics describe the 

preference of an intrinsic oscillator to be trained by tACS 
at multiple frequencies that have an n:m relationship to the 
endogenous frequency, e.g., at twice or half the endogenous 
frequency [23, 31].

For the neuroplasticity to elicit offline effects, long-term 
plasticity should occur in one form among two primary 
mechanisms: Long-term-potentiation (LTP) and long-term-
depression (LTD), two results of spike-timing-dependent 
plasticity (STDP) [32]. LTP is the potentiation of a synap-
tic connection when the presynaptic action potential comes 
before the post-synaptic potential. In contrast, LTD is the 
weakening of the synapse if the presynaptic action potential 
follows the post-synaptic one. Therefore, these phenomena 
are the primary culprits that elicit offline tACS effects by 
increasing or decreasing neural synchronization [33]. This 
explanation has been confirmed by many studies [33–36], 
which may explain why the offline effects of tACS have been 
shown to last for 70 min after one stimulation session lasting 
20 min [37].

From this standpoint, we try to refer to some unique fea-
tures of tACS as a neuromodulator in contrast to other forms 
of NIBS, yet it is relatively new and the least studied form. 
Transcranial direct current stimulation (tDCS), a closely 
related type of NIBS that constantly depolarizes or hyper-
polarizes the affected neurons [38], specifically changing 
axonal membrane potential [39]. In fact, tACS is a specific 
version of tDCS where the current is set to fluctuate sinu-
soidally between the electrodes rather than exhibiting con-
stant polarity. Similar to tACS, tDCS effects depend on the 
orientation of the neurons relative to the current direction 
[40, 41], and it can induce both online and offline neuro-
plastic effects [42, 43]. Equivalently, tDCS does not directly 
affect the neuronal firing rate, but rather its probability and 
spontaneous activity via subthreshold voltage changes [44]. 
Although tDCS is shown to modulate oscillatory brain activ-
ity [45], tACS is more effective at entraining the endogenous 
brain oscillations as it mimics the alternating nature of brain 
oscillations [2, 14, 46] (For more details about the mecha-
nisms of action of tDCS, see these reviews: [47–51]).

Another more studied method of NIBS is transcranial 
magnetic stimulation (TMS), which is approved for the 
treatment of some psychiatric disorders [52–54]. In TMS, 
a magnetic field is produced by a coil applied to the scalp 
and then travels through the skull to elicit electric fields 
in the cortical neurons [55]. Compared to tACS, TMS, a 
suprathreshold stimulator, produces action potentials in 
silent neurons [56] in the form of two successive volleys. 
While the first volley (direct waves) represents direct acti-
vation of pyramid tract axons, the second (indirect waves) 
reflects synaptic activation of the same neurons [57]. As 
expected, TMS evokes long-term synaptic changes and 
thus after-effects beyond the stimulation period [58] (For 
more details about the mechanisms of action of TMS, see 
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these reviews: [59–63]). However, practically, tACS exhibits 
superior cost, portability, tolerability, and safety profiles [64, 
65]. In other words, tACS is a feasible tool that reshapes or 
re-synchronizes intrinsic brain rhythms, manipulating the 
associated brain functions without adding extra excitatory 
or inhibitory burden. Given that (1) tACS clinical research 
is still in its infancy, and (2) tACS possesses such unique 
features, we aim, in this review, to encourage more tACS 
usage in psychiatric research.

Altered brain oscillations and tACS 
applications in psychiatric disorders:

Given the association between EEG brain oscillations 
and various brain functions, many researchers have man-
aged to successfully modulate normal cognitive functions 
by manipulating brain oscillations or connectivity pat-
terns using tACS (for more details see these reviews [7, 
14, 65–67]). Motivated by successful tACS applications 
in cognition, future investigations could aim to normalize 
pathological brain oscillations, and identify beneficial tACS 
roles in the management of psychiatric disorders. In this 
section, we focus on such electrophysiological alterations 
that could benefit researchers in designing tACS clinical tri-
als in psychiatric patients. Moreover, we review previous 
clinical trials that have already examined the role of tACS 
in psychiatry. Six psychiatric disorders are discussed, where 
a subsection is devoted to each disorder.

It is noteworthy to state two caveats here to properly 
understand the current state of the literature regarding dis-
turbed brain oscillations in psychiatry. First, this is not a 
comprehensive overview of disturbed brain oscillations in all 
psychiatric disorders, but rather, it presents six of the most 
studied and major disorders. Hence, this section is intended 
to provide only a glimpse of this interesting electrophysi-
ological approach in psychiatric pathophysiology. Second, 
because of the heterogeneity of the studies and the limited 
knowledge of some disturbed oscillations, we tried to selec-
tively focus on some of the more replicated and reproduced 
findings supported by different studies. Therefore, the fol-
lowing electrophysiological changes should be extrapolated 
with extreme caution before building around them to design 
tACS protocols.

The results of tACS clinical studies were identified 
according to a systematic search on PubMed using two key-
words with the Boolean operator “AND”. The first keyword 
was “tACS” or “alternating current stimulation” through-
out the search process. The second term was changeable to 
signify several psychiatric disorders (“ADHD”, “Insomnia”, 
“Depression”, “Schizophrenia”, “Bipolar”, “OCD”, “Anxi-
ety”, “PTSD”, “Dementia”, and “Alzheimer”). The search 
process, last performed in June 2020, yielded a total of 151 

records, including 68 duplicates. The original 83 publica-
tions were screened to exclude 31 non-tACS relevant articles 
and 15 reviews. After a careful assessment of the remain-
ing 37 studies, a stroke-related article and 18 non-clinical 
experiments were excluded. Five publications actually 
applied cranial electrotherapy stimulation (CES) rather than 
tACS, and thus were excluded. The remaining 13 eligible 
articles, which show the experimental application of tACS 
in patients with any psychiatric disorder, were included (see 
Fig. 1  [68]).

The included articles comprise study designs with dif-
ferent levels of evidence: three randomized double-blind 
controlled trials, two single-blind randomized controlled 
trials, an open-label non-controlled clinical trial, a longi-
tudinal case–control study, two case series, and four case 
reports (see Table 1). They cover five different psychiat-
ric disorders: one study on attention-deficit/hyperactivity 
disorder (ADHD), three publications on depression, seven 
on schizophrenia, one on dementia, and one case series on 
OCD. Some of the included articles conducted a relatively 
non-robust study design, such as case reports. However, we 
will consider them in further discussion due to the limited 
number of clinical trials and the variety of investigated psy-
chiatric disorders. Accordingly, the reader could appreciate 
the shortage of evidence to apply tACS in psychiatry. After 
discussing the included articles for each disorder, we state 
some general remarks on the application of tACS in partici-
pants with psychiatric illnesses.

Schizophrenia

With the aid of EEG and MEG, a great bulk of research has 
already identified characteristic alterations of brain oscilla-
tions in patients with schizophrenia [69]. These electrophysi-
ological fingerprints of schizophrenia have been shown to 
be heterogeneous but task-/state-, location, and frequency-
specific, where they, in turn, correlate with the severity of 
certain symptoms [70]. However, such heterogeneity is not 
surprising given the heterogeneity of clinical presentations 
in schizophrenia [71]. Pertaining to the task/state aspect, 
three distinctive patterns of brain oscillations were identi-
fied: evoked, induced and resting-state [69]. Each type could 
be compromised peculiarly in schizophrenia, so tACS strate-
gies should precisely consider which one/ones to modify.

Regarding the frequency and location domains, the results 
might be harmonious in the low-frequency range (alpha and 
theta), whereas they are not in the high-frequency range (beta 
and gamma). A general persistent finding in schizophrenia is 
reduced alpha power, especially in the resting-state, which 
might be linked to the increased state of arousal and abnor-
mal self-referential processing [70, 72–76]. Delta and theta 
waves are mostly elevated [77–79], but only theta activity 
is decreased, especially in the frontal lobe [80], correlating 
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with an impairment in working memory [81, 82]. Further-
more, theta-band connectivity was shown to be increased, 
especially between the frontal and parietal regions, during 
the resting state [83, 84]. Although beta activity in schizo-
phrenia is not well-studied, some studies showed that it was 
decreased in both resting-state and task-related brain activity 
[85, 86]. Alterations of gamma-band oscillations have been 
extensively investigated as a neurobiological correlate of dif-
ferent stages and symptoms of schizophrenia [87] and are 
commonly interpreted as an imbalance between excitation 

and inhibition (E/I-balance), which is considered a crucial 
mechanism in the pathophysiology of schizophrenia [88].

A major and often replicated finding in schizophrenia is 
the reduction of stimulus-evoked task-related gamma power 
and coherence between different brain regions [85, 89–95], 
which, besides the chronic illness, appears across different 
stages and models of the disease, including in patients with 
their first episode of psychosis [95, 96], in healthy relatives 
of patients [97, 98], in subjects at high risk for developing 
psychosis [99], and in the ketamine model of schizophrenia 

Fig. 1  PRISMA Flow Diagram of the included articles [68]. ADHD attention deficit hyperactivity disorder, CES cranial electrotherapy stimula-
tion, OCD obsessive-compulsive disorder
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[100]. Most of the studies showing reduced task-related 
gamma oscillations examined impaired cognitive function 
[101]. However, there are also reports linking increased 
stimulus-related gamma-synchrony to positive schizophre-
nia symptoms [102]. As well, in terms of gamma power, 
the evoked visual gamma-band response is correlated with 
positive and disorganised schizophrenia symptoms [103], 
and even with positive schizotypal personality traits [104]. 
Moreover, spontaneous gamma oscillations and/or gamma-
band connectivity measured in resting state conditions are 
enhanced in patients with schizophrenia [105–113], espe-
cially in patients with positive or reality distortion symptoms 
(hallucinations and delusions) [114].

Revisiting the binding theory of mental representa-
tions [115], which assigns mental imagery to the interac-
tion between distant brain regions (a synchronization in 
the gamma range) [116], such an increase or decrease in 
gamma oscillations may explain different phenotypes of 
schizophrenia. For example, the increase in gamma-band 
power and phase locking (i.e., connectivity) could be related 
to the emergence of new perceptual representations that are 
normally absent in healthy individuals, such as auditory hal-
lucinations. In contrast, the decrease in gamma oscillations 
could be a sign of brain disintegration, and thus, the cause 
of the impairment or deterioration of normal cognitive func-
tions in normal people. According to these observations, we 
consider schizophrenia a combination of different clinical 
presentations that are associated with dysconnectivity [117], 
not disconnectivity, of the brain, where the differential con-
tributions of different dysconnectional (connection or dis-
connection) patterns of the patients’ brain determine their 
explicit clinical picture. This functional dysconnectivity is 
also confirmed by the aberrant underlying anatomical and 
cellular dysconnectivity [117–119].

In accordance with this assumption, cognitive impair-
ments and negative symptoms in schizophrenia have been 
linked to reductions in gamma power and phase coherence, 
whereas positive symptoms are associated with increased 
gamma activity. In this regard, tACS may help with the diag-
nosis of and differentiation between different schizophrenic 
clinical syndromes, in addition to its role in treatment. 
Future research could exploit tACS-directed characterization 
of specific oscillatory endotypes in distinct schizophrenic 
presentations.

One of the main positive symptoms of Schizophrenia is 
the presence of auditory hallucinations that are sometimes 
treatment-resistant [120]. In EEG studies, auditory halluci-
nations in people with schizophrenia are significantly cor-
related with functional connectivity between both primary 
auditory cortices. Such enhanced functional connectivity is 
manifested in the phase synchronization between brain oscil-
lations in both auditory cortices in the range of gamma-band 
frequencies [102, 121]. Interestingly, this phenomenon was Ta
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further confirmed by structural changes using diffusion ten-
sor imaging (DTI) [122]. These findings, in turn, support the 
interhemispheric miscommunication hypothesis of auditory 
hallucinations [123]. In the light of these discoveries, tACS 
was able to manipulate auditory perception in healthy par-
ticipants by decoupling this interhemispheric connectivity. A 
remarkable finding was that the individual indigenous brain 
oscillations prior to stimulation dictated the resulting effects 
of tACS, favouring the use of individually tailored stimula-
tion paradigms [124].

Clinical tACS studies

Seven publications studied the application of tACS in 
patients with schizophrenia. They ranged widely in terms 
of the evidence-based medicine hierarchy. Two case reports 
and a case series were reported, while the other four pub-
lications were clinical trials. Two of them were an open-
label non-controlled trial and a single-blind randomized 
controlled trial. Finally, two publications comprised a well-
structured double-blind randomized controlled study.

The two case reports were published by the same research 
group to examine the feasibility of tACS in schizophrenia. 
They were based on previous findings of reduced theta and 
gamma oscillation in relation to working memory, especially 
on the frontal region. One of them showed that one session 
of 20 min tACS applied to the left DLPFC (F3) and the left 
posterior parietal region (P3) in theta frequency (6 Hz), but 
not gamma (40 Hz), was able to improve performance in 
WM task [125]. The same tACS protocol was replicated in 
the other case report but for five consecutive days, resulting 
in improved working memory after 6 Hz-tACS, as well as an 
improvement in other cognitive domains. After 50 days of 
follow-up, these effects remained observable [126].

Similarly, the open case series in schizophrenia investi-
gated the efficacy and safety of theta tACS, as theta waves 
are reduced in the frontal region. The study applied 20 daily 
tACS sessions for 4 weeks on working days in three subjects 
with clozapine-resistant schizophrenia. 4.5 Hz-tACS tar-
geted both right and left DLPFCs with an amplitude of 2 mA 
for 20 min per session. Patients were assessed according to 
their psychiatric clinical symptoms (positive, negative and 
anxiety), and illness insight, as well as tACS adverse events. 
They showed a reduction in negative symptoms, anxiety and 
general psychopathology symptoms with improvement in 
illness insight [127].

Although the abovementioned case reports obtained 
results from only a few patients, they may support the 
feasibility of tACS in schizophrenia research. These 
effects might be long-term and frequency specific. Fur-
thermore, the case series succeeded in reducing the schizo-
phrenia symptoms and improving insight into treatment-
resistant patients without serious side effects. However, 

well-structured controlled clinical trials are necessary to 
confirm these findings and to control for the placebo effect. 
Further research may need to verify modulation of the 
targeted oscillations using pre- and post-stimulation EEG 
recordings.

Motivated by the replicated finding of decreased frontal 
alpha activity in schizophrenia, the open-label non-con-
trolled trial attempted to assess the safety and efficacy of 
alpha tACS on persistent delusions [128]. The trial recruited 
12 patients with schizophrenia who exhibited persistent 
delusions, despite pharmacological treatment. All patients 
received two 20-min sessions per day separated by 3 h for 
5 days. Nine of them received stimulations for five more 
days, and only one participant continued for four more days. 
tACS of 10 Hz was applied with 2 mA intensity via two 
electrodes over AFz and Cz. The study aimed to decrease 
persistent delusions by normalizing alpha oscillations in the 
medial prefrontal region. The patients were monitored by 
the Psychiatry Rating Scale (PSYRATS)—Delusions, the 
Scale for Assessment of Positive Symptoms (SAPS) and 
the Scale for Assessment of Negative Symptoms (SANS) 
and were followed up for one month. The results showed a 
reduction in the delusions, as well as positive and negative 
symptoms, which was maintained for one month. Interest-
ingly, the patients tolerated the twice-daily regiment without 
serious side effects.

This study supports the feasibility of twice-daily stimula-
tion and opens the door for the replication of frontal alpha 
tACS effects on persistent delusions as an add-on option. 
However, major limitations still exist that should be con-
trolled for in further research. The sample size was small 
without a placebo control group, and patients were taking 
different medications, which might have affected the results.

One included publication was a single-blinded, rand-
omized, controlled trial, which attempted to target frontal 
gamma oscillations that are reduced in schizophrenia. Ten 
patients with schizophrenia participated in three separate 
20-min sessions at least three days apart. They randomly 
received one of three stimulation protocols: 40 Hz tACS, 
tDCS and sham stimulation. 40 Hz tACS was delivered on 
the left DLPFC with an amplitude of 2 mA. Meanwhile, 
they performed a working memory task before, during and 
after every stimulation session. The study did not report any 
significant effects of tACS on the task parameters or any 
serious side effects [129].

Given the small sample size, this study did not exclude 
the potential rule of gamma tACS on working memory in 
subjects with schizophrenia. More interestingly, the trial 
obtained neither pre- nor post-EEG recordings and did not 
utilize field modelling tools. The lack of an observed effect 
in response to tACS may be attributed to the difficulties 
of gamma stimulation per se or to different brain dynam-
ics in patients, especially since the same group managed to 
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improve working memory in healthy controls using the same 
stimulation protocol [130].

The remaining two publications on schizophrenia 
addressed the first well-structured randomized, double-blind, 
controlled clinical trial in patients with psychiatric disor-
ders [4, 131]. It investigated the role of alpha tACS based 
on abnormalities in alpha oscillations over the frontal and 
temporal regions in schizophrenia. Twenty-two hallucinating 
participants with schizophrenia were randomized into three 
groups. While one control group received sham stimulation, 
the other active ones received either 10 Hz tACS (2 mA) 
or tDCS. Both were applied to the left frontal and tempo-
ral lobes. All groups received two 20 min sessions per day 
for five consecutive days. The primary outcomes were the 
improvement of auditory hallucinations calculated by the 
Auditory Hallucination Rating Scale (AHRS) and High-
Density Electroencephalogram (hdEEG). Meanwhile, the 
secondary outcomes included the Positive and Negative Syn-
drome Scale (PANSS) and the Brief Assessment of Cogni-
tion in Schizophrenia (BACS). Only the group that received 
10 Hz tACS exhibited modulation of functional connectivity, 
and enhancement of alpha oscillations and the 40 Hz audi-
tory steady-state response (ASSR). Such enhancement cor-
related with a reduction in auditory hallucinations as meas-
ured by AHRS [131]. However, the primary and secondary 
clinical outcomes did not reveal significant effects.

This trial is not only the first clinical trial conducted in 
patients with schizophrenia, but it revealed the ability of 
tACS to modulate disturbed alpha oscillations in schizophre-
nia as well [72, 74]. Interestingly, such a modulation corre-
lated with a reduction in auditory hallucinations as a clinical 
parameter. Despite this correlation, the clinical outcome did 
not reach significance. This might be attributed to the small 
sample size and/or the significant inter-group variation in 
age, especially since tACS showed the largest effect size for 
AHRS. Hence, this study requires further replications with a 
larger sample size and longer duration of follow-up to verify 
the efficacy of normalization of disturbed alpha oscillations 
in improving schizophrenia symptoms. Having reported no 
serious side effects, this study may justify the twice-daily 
stimulation protocol.

Depression

Depression, similar to schizophrenia, shows a comparably 
complex picture of altered brain oscillations [132]. The elec-
trophysiological features of depression manifest some het-
erogeneity, as well as a greater dependence on the frequency 
[132, 133]. Either in terms of the power or the coherence, the 
low-frequency bands (delta, beta and alpha) were enhanced 
during the resting-state in depression, in particular, alpha 
oscillations, which persist even after the transition from 
closed-eyes to open-eyes states [85, 133–136]. Additionally, 

the same waves indicated specific connectivity, interhemi-
spheric asymmetries, and even probable prognostic patterns.

In the alpha-band synchrony, the dorsolateral prefrontal 
cortex (DLPFC) is more connected to the anterior cingu-
late gyrus [137] and temporal and parietal occipital regions 
[136]. Alpha-band interhemispheric comparisons revealed 
frontal alpha asymmetry (FAA) and parietotemporal alpha 
asymmetry, where the left hemisphere shows more alpha 
power and local synchrony than the right hemisphere [132, 
138, 139]. Interestingly, enhanced alpha activity in depres-
sion was associated with better response to antidepressant 
therapies [140, 141]. Though theta waves were also mostly 
increased in depression, especially within the frontal short-
range functional connections [142], in contrast to alpha 
waves, the enhanced frontal theta waves were correlated 
with decreased response [143].

Gamma oscillations differ significantly depending on the 
state, as they were reduced in the anterior cingulate cor-
tex and in the frontal regions during the resting state and 
emotional tasks, respectively [144, 145]. Nevertheless, they 
were enhanced in the frontal and temporal lobes in response 
to spatial and arithmetic tasks [146]. Interestingly, gamma 
activity differentiated unipolar depression from bipolar 
depression according to its power in two different tasks: an 
auditory task augmented gamma ASSR power in unipolar 
depression, while an emotional task enhanced temporal and 
suppressed frontal gamma powers in unipolar depression 
with respect to bipolar depression [147–149]. Different anti-
depressant options exhibited either increased or decreased 
gamma oscillations: serotonergic medications, cognitive 
therapy and deep brain stimulations dampened them; and in 
contrast, noradrenergic drugs, ketamine and TMS induced 
them [145].

Clinical tACS studies

Three eligible articles examined the application of tACS in 
depression: one of them is a well-structured double-blind 
randomized controlled trial, while the other two present two 
case reports. In the double-blind randomized clinical trial, 
tACS targeted pathologically increased alpha waves on the 
left frontal region compared to the right frontal region (i.e., 
FAA). The study aimed to restore the frontal alpha oscil-
lations by synchronously stimulating both frontal regions. 
Therefore, 32 patients with Major Depressive Disorder 
(MDD) were randomly recruited to three study groups: 
two groups were given two verum tACS protocols (10 Hz-
tACS or 40 Hz-tACS) with an amplitude of 4 mA at Cz and 
2 mA at F3 and F4, and the third group received active sham 
stimulation. The session took 40 min and was repeated for 
five consecutive days. The left DLPFC was the stimulation 
target area, aiming to improve clinical symptoms by retain-
ing its normal alpha frequencies. The primary and secondary 
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outcomes included the clinical symptoms applying Mont-
gomery–Asberg Depression Rating Scale (MADRS) at 
4-week follow-up and the normalization of alpha oscilla-
tions using hdEEG, respectively. Hamilton Depression Rat-
ing Scale (HDRS) and the Beck Depression Inventory (BDI) 
were chosen as exploratory outcomes. The study found no 
significant results regarding the primary outcome. In terms 
of MADRS and Hamilton Depression Rating Scale (HDRS), 
there were more responders at the two-week follow-up in the 
group that received 10 Hz-tACS. Concerning hdEEG, the 
same group showed significantly decreased alpha power in 
the left DLPFC on day 5. Moreover, there were no serious 
adverse events, manic shift or suicidal ideation induction 
[150].

This is the first well-structured clinical trial to record an 
effect of tACS stimulation in some patients with depression 
who were treated for two weeks by resetting the oscillatory 
brain disturbances. Such an effect was confined to alpha 
stimulation but not 40 Hz stimulation. This supports the idea 
that only stimulation at a specific frequency alters the oscil-
latory pattern and thus the behavioural outcome. However, 
this effect was not maintained after the 4-week follow-up 
and did not involve the primary outcome. Therefore, a larger 
number of stimulation sessions and longer follow-up peri-
ods should be encouraged since no serious adverse events 
were detected. Although no FAA was detected in the study 
sample at baseline, five sessions of 10 Hz-tACS managed to 
decrease the alpha power over the left frontal region. This 
might contradict that alpha tACS is supposed to enhance the 
alpha power as an immediate after-effect. Therefore, fur-
ther research is needed to identify the possible mechanisms 
through which alpha tACS decreased the alpha power as a 
long-term effect. Given the small number of participants 
in this study, further research should be conducted with a 
larger sample size.

One of the included case reports on depression was an 
extension of the previous clinical trial where one participant 
received extra 12 weekly sessions of 10-Hz tACS. After the 
original study, the patient showed a response to the treat-
ment without remission. After the 12 sessions, remission 
was achieved and maintained for at least a 2-month follow-
up [151]. Despite being performed on a single participant, 
this study might support the feasibility of long-term tACS as 
a potentially safe tool in MDD treatment research.

The other case report examined the effect of frontal tACS 
at the gamma frequency band, which is reduced frontally in 
depressed patients [152]. A pregnant female MDD patient 
was recruited into the study at week 6 of pregnancy. She 
received 40 Hz-tACS of 2 mA over both DLPFCs (F3 and 
F4) for 20 min per session. After nine weekly stimula-
tion sessions, she was followed-up at two weeks and three 
months (week 27 of the pregnancy) after the intervention. 
Her depression condition was monitored by HDRS, BDI, 

Positive and Negative Affect Schedule (PANAS) and Trail 
Making Test (TMT). The study only reported phosphenes 
without serious side effects. At the end of the nine stimu-
lation sessions and 2-week follow-up, the patient showed 
improvement in her symptoms and experienced remission 
after three months. However, it is noteworthy that the same 
patient showed remission on tDCS used to treat a previous 
depressive episode. Therefore, the outcome could be attrib-
uted to a placebo effect or the stimulation per se, especially 
because no EEG recordings were done throughout the study 
[152]. Nonetheless, this case report may encourage further 
application of tACS in research on pregnant patients as a 
relatively safer option compared to pharmacotherapeutic 
agents.

Obsessive–compulsive disorder

An enormous body of evidence has shown decreased alpha 
activity in resting state, task-based and symptom-provoca-
tion studies in obsessive–compulsive disorder (OCD), espe-
cially in frontal areas (hyper-frontality), reasoning the men-
tal overactivity in OCD [139, 153–158]. Interestingly, the 
location of the resting alpha reduction was subtype-specific: 
within the frontotemporal areas in doubting OCD subtype; 
while over the parietooccipital regions in the checking sub-
type [159]. Unlike depression, alpha asymmetry is not a 
stable finding in OCD. Nevertheless, it is more pronounced 
in the doubting OCD with decreased left alpha waves [139, 
159]. The decreased alpha activity during the task state may 
reflect the augmented readiness and/or the preoccupation of 
OCD patients by obsessions [160]. Surprisingly, alpha syn-
chronization in working memory was reinforced, proposing 
a compensatory mechanism to inhibit irrelevant information 
[139, 161].

Theta and delta power, especially in frontal regions [157, 
162–165], are augmented in OCD [154, 157, 159, 166, 167], 
where theta augmentation, similar to in depression, is cor-
related with poor response to treatment [168, 169]. The find-
ings of beta oscillations were broadly inconsistent [169], but 
it is thought to be frontally elevated, originating from the 
anterior cingulate gyrus [166, 167]. Moreover, the frontal 
beta showed interhemispheric asymmetry with increased 
activity on the left side [166]. Although gamma-band oscil-
lations are not well studied in OCD, they are thought to be 
generally decreased [85]. TACS might be used to normal-
ize the altered oscillations, to potentiate the compensatory 
changes, and to differentiate subtypes in OCD.

Clinical tACS studies

Only one publication on OCD was included, which discussed 
a case series of seven treatment-resistant OCD patients. The 
authors suggested that “DLPFC activity in OCD might be 
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pathologically reduced”, and thus gamma tACS might lead 
to its activation. 40 Hz tACS was administered at both fron-
totemporal sites (Fp1-T3 and Fp2-T4) to stimulate DLPFC. 
Patients received three 20-min sessions per week, while 
the duration of treatment varied across patients from two 
to seven weeks. All patients were clinically evaluated via 
the Yale-Brown Obsessive–compulsive Scale (YBOCS) 
and Clinical Global Impression Scale (CGI) on day 1 before 
tACS stimulation, and 28 and 56 days later. Three patients 
were followed up for 1 year. Symptoms improved in all 
patients, and the improvement lasted throughout the follow-
up duration [3].

The study successfully reduced clinical symptoms of 
OCD, opening the door for further tACS research in OCD. 
However, it lacks EEG recordings to evaluate the effect 
of gamma stimulation on DLPFC. More importantly, it 
addressed only seven patients with different ages and medi-
cation parameters, and the placebo effect cannot be ruled 
out. Further double-blind controlled studies are necessary to 
investigate the reproducibility of such an empirical finding.

Bipolar disorder

Generally, alpha oscillations are inhibited in bipolar patients 
in many aspects: both resting and evoked alpha waves, with 
eyes closed or open, and in euthymic or manic participants 
[170–172]. In contrast, theta and delta oscillatory activity 
is enhanced [170, 173–175]. Likewise, an enhancement in 
the beta power response to different stimuli was recorded, 
which differentiated bipolar disorder from schizophrenia 
[171, 176–178]. Nonetheless, the beta synchronization was 
decreased at rest and in response to an auditory stimula-
tion [179, 180]. Both manic and euthymic patients showed 
a decreased gamma coherence as evoked by diverse stimuli 
[96, 148, 181–183]. In summary, the oscillatory changes in 
bipolar disorder curb the resting-related alpha waves, as well 
as beta and gamma synchronization, leading to restrained 
connectivity between brain regions. These two principal 
findings may explain the disturbed racing thoughts and the 
distractibility in patients [184] and could be targeted by 
tACS for normalization. So far, no clinical study investigat-
ing the role of tACS in bipolar disorder has been reported 
according to the systematic search.

Attention‑deficit/hyperactivity disorder (ADHD)

Only one included article addressed ADHD as a single-
blind randomized controlled trial. In ADHD, the target P300 
amplitude shows some reduction, which is associated with 
typical cognitive performance deficits in ADHD. There-
fore, the trial investigated the role of tACS in potentiating 
the target P300 amplitude as disturbed brain oscillations in 
the theta and delta range. In addition, it aimed to improve 

cognitive performance in patients with ADHD by such P300 
amplification. Therefore, EEG was used to examine brain 
activity in 18 patients with ADHD underlying a visual odd-
ball paradigm. During the task, 1 mA tACS was applied for 
20 min through multiple electrodes on the central, parietal 
and temporal lobes. The stimulation timing and frequency 
were personalized so that the stimulation peaks could coin-
cide with P300 oscillation peaks to amplify them. The study 
found P300 amplitude to be significantly augmented in the 
verum group compared to the sham condition. Interestingly, 
this P300 amplification was accompanied by a behavioural 
improvement in task performance. No serious adverse events 
were reported [185].

This clinical trial is not only the first study to support 
research on the role of tACS in ADHD, but it also substanti-
ates tACS applicability to modulate event-related potentials 
for clinical relevance. Nonetheless, future studies could rep-
licate it with more patients and compare tACS effects in 
patients and healthy controls, especially because a similar 
stimulation protocol did manage to alter P300 parameters 
in healthy participants [186]. However, this study paved the 
way for the feasibility of tACS to modulate event-related 
potential components with subsequent behavioural improve-
ment without serious side effects.

Dementia

To the best of our knowledge, there is no available study 
using tACS as a treatment in either Alzheimer’s disease 
(AD) or dementia. Only a single included study examined 
the role of tACS as a prognostic factor in predicting the 
progression of patients with mild cognitive impairment 
(MCI) to AD. The study was based on findings of decreased 
gamma-band connectivity in AD [187–192] and increased 
local gamma-band power in contrast to MCI during resting 
and task conditions [193]. The study questioned whether 
the response to gamma tACS could differentiate MCI from 
AD and predict the progression of MCI to AD. The authors 
recruited 35 AD and 25 MCI individuals, as well as 27 
age-matched healthy participants, and followed them up 
for 2 years. On a weekly basis, each participant randomly 
received both sham stimulation over the left primary motor 
area (M1) and five verum stimulation sessions. Gamma-
band tACS was applied for 10 min to one of the following 
sites per verum session: M1, premotor area (PMA), sup-
plementary motor area (SMA), DLPFC, or the dorsomedial 
prefrontal cortex (DMPFC). Stimulation of 1 mA was set to 
vary continuously and randomly in a range between 40 and 
120 Hz at steps of 20 Hz, with zero-degree phase-lag. EEG 
was recorded before and after each session in addition to a 
follow-up EEG after 2 years.

tACS caused enhancement of gamma-band oscilla-
tions and a clinical improvement according to different 
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neuropsychological tests in MCI patients. AD patients, how-
ever, showed neither. After 2 years, a group of MCI patients 
progressed to AD. Interestingly, this group did not report any 
tACS after-effects before the 2-year follow-up period [194]. 
The sessions were well tolerated by the patients.

This is the first publication to report the use of tACS on 
dementia. Its results might help to identify the potential role 
of tACS in the differential diagnosis of MCI and AD and 
in prognosis prediction for MCI. Nevertheless, it is still far 
from providing a biomarker for dementia progression given 
the discrepancy between connectivity within and local power 
of gamma oscillations. Further research should replicate this 
study in larger sample sizes to verify the reproducibility of 
these findings. Moreover, follow-up time points should be 
encouraged with EEG recordings to obtain electrophysi-
ological markers of the disease progression.

General discussion

To the best of our knowledge, this is the first systematic 
literature search to report studies that apply tACS in clini-
cal psychiatric research. tACS publications on five different 
psychiatric disorders were reported. First, in schizophrenia, 
frontal alpha tACS was promising as an add-on treatment for 
persistent delusions [128] and was capable of normalizing 
disturbed alpha oscillations correlated with a decrease in 
auditory hallucinations [4, 131]. On the other hand, frontal 
gamma tACS has not shown effects so far [125, 129]. Case 
reports revealed that frontal theta tACS could be helpful for 
improving clinical symptoms, even in schizophrenia with 
clozapine resistance [125–127]. Second, in depression, 
bifrontal alpha tACS was able to normalize alpha oscilla-
tions and concurrently showed a higher response rate for at 
least two weeks [150]. Two case reports showed that tACS 
might be safely tolerated, even for a large number of sessions 
or during pregnancy [151, 152]. Third, a case series in OCD 
with seven patients revealed an empirical improvement in 
symptoms after frontal gamma tACS [3]. Fourth, a single-
blind trial managed to amplify P300 in ADHD patients with 
subsequent improvement in working memory task [185]. 
Finally, frontal gamma tACS might support a potential role 
for tACS as a diagnostic or prognostic tool in MCI and AD 
[194]. All the studies reported neither serious side effects 
nor exacerbation of clinical symptoms (i.e., manic shift or 
worsening of the clinical phenotype) [3, 4, 125–129, 131, 
150–152, 185].

Despite the very limited number of studies applying tACS 
in psychiatry, its efficiency seems promising in the psychi-
atric field keeping in mind the following considerations: (1) 
some studies have recruited treatment-resistant patients, and 
managed to diminish their symptoms [3, 127]; (2) the rela-
tively good safety profile of tACS may advocate twice-daily 

stimulations, use in pregnancy, or large stimulation doses 
without fear of clinical worsening [128, 131, 150–152]; 
(3) the novelty of its treatment approach targeting specific 
alterations of brain functions at specific locations makes it 
significantly differ from conventional treatment strategies, 
such as pharmacotherapy. Although psychotropic drugs are 
widely accepted and approved in psychiatry, they still pose 
substantial problems with resistance, compliance and safety 
profile [195–197]; (4) tACS could help to target baseline 
oscillations, as well as event-related potentials [185]; (5) 
utilization of tACS should not be restricted to therapeutic 
purposes. The reactivity of the brain circuits to the stimula-
tion protocol could serve as a possible tool to determine 
the diagnosis, classification or prognosis of psychiatric dis-
orders, for instance, in patients with MCI [194]. However, 
tACS in psychiatric research is still far from being approved 
as a reliable tool for the management of psychiatric condi-
tions. Further research is necessary to replicate these find-
ings and to answer important questions.

An intriguing problem might be whether disturbed brain 
oscillations are causally related to the disorder or represent 
just an association. Moreover, it is not yet clear whether 
tACS can be investigated as a stand-alone therapeutic tool 
or rather an add-on option to target specific residual symp-
toms. The concomitant use of drugs while applying tACS 
could complicate future research. Drug-naïve and drug-
non-compliant patients could be recruited to rule out effects 
of the drugs or to prove a synergistic or antagonistic effect 
between both tACS and pharmacotherapy. Along with this, 
the therapeutic role of tACS should be precisely defined with 
respect to whether it can improve the whole clinical picture 
of psychiatric illness [150] or is confined to targeting a spe-
cific modality of symptoms [185] that did not respond to 
other therapeutic options. Referring to the phenomenon of 
Arnold tongues, the weak tACS current could entrain the 
brain activity associated with a certain brain state when the 
stimulation targets these brain oscillations at their frequency. 
Hence, a certain brain state may be induced in participants to 
maximize these oscillations, so they can easily be entrained 
by tACS (i.e., state-dependent stimulation) [198]. In that 
sense, tACS could be initially used to target a pattern of 
brain oscillations driven by a single modality or symptom of 
psychiatric disorders. This was shown to be possible in tar-
geting P300 amplitude driven by WM in ADHD and gamma 
oscillations induced by WM in MCI [185, 194].

The discrepancy of brain dynamics and response to 
tACS between healthy participants and patients constitutes 
an enigma that should be considered during replication of 
similar stimulation protocols. Healthy participants may be 
more susceptible to specific tACS stimulation protocols than 
patients with psychiatric disorders [129, 130] or vice versa 
[185, 186]. Similarly, acute and chronic patients may show 
distinct tACS responses, especially tACS after-effects, which 
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necessitates long-term plasticity that might be affected in 
chronic patients [199]. Future research may try to determine 
potential responders to tACS based on their electrophysi-
ological markers or clinical phenotype.

In light of these future research questions, several points 
could be highlighted. The more individualized the stimula-
tion protocol is designed, the more effectively it normalizes 
the disturbed oscillations, for example, in the schizophrenic 
case reports and the ADHD study [125, 126, 185]. tACS 
effects do not depend on the direct application of a spe-
cific frequency per se but on modulation of the pre-existing 
endogenous oscillations that are coupled with the specific 
brain state. Accordingly, it might be helpful to personalize 
future stimulation paradigms, by individually defining dis-
turbed EEG patterns regarding frequency and localization 
of interest prior to stimulation and then tailoring the stimu-
lation parameters (frequency and location of stimulation) 
accordingly [200, 201]. Such personalisation of the stimu-
lation protocols stands in accordance with previous find-
ings of the heritable electrophysiological endophenotypes 
associated with some psychiatric disorders [202, 203]. For 
this, tACS modelling techniques might be recommended to 
optimize stimulation parameters and obtain better results 
[13]. Overall, in the same context, electrophysiological 
recording via EEG or MEG could be valuable to observe 
achievement of the desired change in brain electrical activity 
and to individualize the stimulation protocol [204]. Finally, 
multicentre double-blind clinic trials could be fostered to 
investigate larger sample sizes. This may also facilitate the 
utility of different stimulation protocols in different patients 
or within the same individuals to rule out a stimulation effect 
per se [4, 125, 131, 150] and to question the potential syn-
ergism of different stimulation parameters, respectively (for 
more technical guidance: [12, 205–207]).

Despite the relative safety profile of tACS, several side 
effects could coincide with the stimulation period: phos-
phenes, dizziness, headache and skin sensations, such as 
tingling, itching, etc.[205]. Phosphenes tend to be more 
frequent upon frontal montages due to retinal stimulation. 
On the other hand, dizziness is more common in posterior 
montages due to vestibular stimulation. Skin adverse events, 
as well as phosphenes, frequently co-occur with higher fre-
quencies and/or intensities [208–210]. Headache could out-
last the stimulation phase, especially with longer stimulation 
duration [211, 212]. In contrast to tDCS, tACS induces less 
serious (e.g., epilepsy) and less persistent (e.g., burn and 
dermatitis) adverse events [208, 213].

To display a balanced overview of the current insuffi-
cient knowledge on tACS, two major limitations should be 
presented: (1) some studies failed to show an effect in both 
healthy participants and patients, and (2) entrainment of 
brain oscillations is confounded by other proposed mecha-
nisms of action. The individual functional as well as the 

structural variability of the brain, the wide range of stimula-
tion parameters and technical difficulties could explain why 
tACS failed to alter the behavioural outcomes [67, 129, 186, 
214, 215]. In this regard, strict modelling techniques and 
peri-stimulation EEG recordings could decipher the inabil-
ity of tACS to induce electrophysiological or behavioural 
outcomes. Consistently, this limitation is complicated by the 
obstacle of stimulation artefact rejection in EEG or MEG 
[216, 217]. Future research may be needed to identify opti-
mal tACS parameters to ensure a consecutive effect.

A second major drawback of tACS is the indirect mecha-
nisms of action rather than direct entrainment of endogenous 
brain oscillations. Stimulation of peripheral nerves and the 
retina could account for the entrainment of brain oscillations 
[213, 218–222]. Similarly, cranial electrotherapy stimula-
tion, a close alternating current stimulation tool applied on 
the forehead and mastoids, induces electrical brain changes 
via direct stimulation of cranial nerves [223, 224]. Although 
this hypothesis of the retina and peripheral somatosensory 
stimulation cannot be fully excluded, evidence supports the 
direct causality of tACS to entrain brain oscillations [20, 
222, 225]. Consistent with this conclusion, tACS revealed 
frequency-, phase- and montage- and state-specific effects 
[67, 198, 222, 226]. Further research could try to estimate 
the contribution of these indirect mechanisms to the whole 
tACS using modelling techniques, as well as active control 
groups [222].

Conclusions

tACS, a unique form of NIBS, results in both online and 
offline brain changes by entraining brain oscillations and 
inducing neuroplasticity, respectively. It has been exten-
sively used to alter electrophysiological brain activity, and 
thus cognitive functions in healthy participants. Similarly, 
disturbed brain oscillations in psychiatric conditions may 
constitute a potential target for modulation by tACS without 
major adverse events. Its first few applications in psychiatry 
seem promising and encouraging for more research to dis-
cover its full potential with respect to therapeutic and diag-
nostic roles. Given its safety profile, these first studies may 
support tACS feasibility in altering disturbed brain oscil-
lations, thus improving behavioural outcomes. However, 
further well-structured double-blind controlled trials with 
larger sample sizes and longer follow-up durations are still 
needed to replicate the current findings. They may help to 
detect response predictors and control for various confound-
ing factors. In this regard, electrophysiological recordings, 
as well as modelling techniques, are encouraged to optimize 
stimulation protocols and to detect possible factors contrib-
uting to the effects of tACS.
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