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Abstract: Increased vascular permeability is a hallmark of several cardiovascular anomalies, in-
cluding ischaemia/reperfusion injury and inflammation. During both ischaemia/reperfusion and
inflammation, massive amounts of various nucleotides, particularly adenosine 5′-triphosphate (ATP)
and adenosine, are released that can induce a plethora of signalling pathways via activation of
several purinergic receptors and may affect endothelial barrier properties. The nature of the effects on
endothelial barrier function may depend on the prevalence and type of purinergic receptors activated
in a particular tissue. In this review, we discuss the influence of the activation of various puriner-
gic receptors and downstream signalling pathways on vascular permeability during pathological
conditions.

Keywords: Rac1; RhoA; peripheral actin; adenosine; ATP; ADP; UTP; endothelial permeability;
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1. Introduction

The vascular endothelium (VE), consisting of monolayers of endothelial cells (ECs), is
located at the interface between the vascular and perivascular compartments and extends
over a wide surface area. The VE separates strictly two compartments and regulates
the trafficking of ions, solutes, macromolecules and leukocytes across the vessel wall,
thus maintaining tissue homeostasis [1,2]. Additionally, it secretes several vasoactive
agents that not only maintain its integrity but also regulate platelet function and vascular
smooth muscle tone, and thus actively participate in the regulation of blood pressure.
The semipermeable barrier function of VE is dependent on the size of the molecules, and
this size-selective nature of the barrier to plasma proteins is a key factor in establishing
protein gradients, which is required for fluid balance of tissues [1,3]. The loss of this barrier
function of VE results in increased vascular permeability and leakage of blood components,
which may finally result in organ dysfunction and life-threatening oedema formation [2,4].

Endothelial barrier integrity is maintained by the equilibrium of competing adhesive
and contractile forces generated by adhesive molecules located at cell–cell and cell–matrix
contacts and the acto-myosin-based contractile machinery, respectively [5]. ECs are tightly
interconnected by the interaction of junctional proteins such as VE-cadherin, zona occluding
1 (ZO-1), occludins, and catenins that are linked to the actin cytoskeleton of adjacent
cells [6,7]. Therefore, changes in the actin cytoskeleton dynamics and/or activation state
of the EC contractile machinery may affect the stability of cell–cell junctions and barrier
function.
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Two members of the Rho family of GTPases, RhoA and Rac1, are the major regulators
of endothelial actin cytoskeleton dynamics and contraction and thereby play a key role in
the maintenance of endothelial barrier integrity. Constitutive activation of RhoA results
in the loss of basal VE-cadherin and potentiates hypoxia-reoxygenation (H/R)-induced
loss of endothelial barrier function, whereas suppression of RhoA activity attenuates the
agonist-induced increase in endothelial permeability [8,9]. On the other hand, suppression
of Rac1 activity in cultured ECs results in loss of the endothelial barrier and abolishes
the recovery of EC barrier integrity following H/R-induced barrier failure. Accordingly,
constitutive activation of Rac1 results in strong junctional staining of VE-cadherin and
abrogates H/R-induced loss of cell–cell junctions [8].

The activation state of the endothelial contractile machinery is regulated by the phos-
phorylation state of regulatory myosin light chains (MLC), which are phosphorylated
by MLC kinase (MLCK) [10] and dephosphorylated by MLC phosphatase (MLCP) [11].
Activation of Rho/Rho kinase (Rock) and MEK/ERK pathways induces MLC phospho-
rylation via inhibition of MLCP or activation of MLCK, respectively [12–14]. Thrombin
inhibits MLCP by inducing the phosphorylation of its regulatory subunit MYPT1 at T850
and activates MLCK via phospholipase C/inositol tris-phosphate (PLC/IP3)-dependent
release of Ca2+ from intracellular stores [12,14,15]. Both of these actions contribute to its
endothelial barrier destabilisation properties. A schematic presentation of mechanisms
regulating endothelial barrier properties is shown below (Figure 1).

Figure 1. Schematic presentation of regulators of endothelial barrier properties. Rock: Rho associated kinase

Endothelial barrier integrity is influenced by several circulating, blood-borne hor-
mones and agents/factors such as adenosine triphosphate (ATP) and its metabolites adeno-
sine diphosphate (ADP) and adenosine. The major sources of vascular nucleotides are
erythrocytes, platelets, and the endothelium [16]. Platelets contain nucleotides in their
granules, and upon degranulation, bulk plasma levels of ATP can reach 50 µM [17], with
even higher local concentrations predicted at the endothelial surface [18]. The endothelium
releases nucleotides in response to shear stress [19], inflammatory mediators like throm-
bin [20], and hypoxia [21,22]. ATP and other nucleotides either released from vascular
cells or applied exogenously can act at endothelial purinoceptors and modulate the barrier
function of the endothelium [21,23,24]. Activation of purinergic receptors also induces the
release of von Willebrand Factor (vWF) from ECs [25], which via reactive oxygen species
(ROS)-dependent upregulation of endothelin-1 [26] may modulate endothelial barrier
function.
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2. Purine Receptors

There are two main classes of purine receptors: P1 receptors activated by adeno-
sine and analogues, and P2 receptors recognised by purine and pyrimidine nucleotides
(ATP, ADP, uridine triphosphate (UTP), uridine diphosphate (UDP)). P1 receptors are
further divided into A1, A2, and A3 subtypes, depending on their affinity for adeno-
sine. P2 receptors are further classified into ionotropic P2X and metabotropic P2Y re-
ceptors [27,28]. Nineteen different human purine receptors have been identified, cloned,
and characterised [29]. Nearly all of these receptors are expressed on various cells of the
cardiovascular system [27,29]. Several types of cells, particularly ECs and platelets, actively
release nucleotides such as ATP that can activate a variety of the purine receptors in the
vicinity [30,31]. This receptor activation scheme may be further complicated by the activity
of ectonucleotidases that hydrolyse ATP to adenosine, which can activate P1 receptors [32].

3. Adenosine and Adenosine (P1) Receptors

Physiological extracellular adenosine levels range from 20 to 300 nM, which rise to a
low micromolar range during exercise and to a high micromolar level under pathological
conditions like ischaemia [33,34]. Under physiological conditions, the major source of
extracellular adenosine is intracellular adenosine released by nucleotide transporters; how-
ever, under stress conditions, it is generated from its precursors ATP, ADP, and adenosine
monophosphate (AMP) by the combined activities of extracellular ectonucleotidases, CD73
and CD39 [35]. Extracellular adenosine mediates its effects via adenosine receptors. There
are four well-characterised adenosine receptors, namely adenosine A1, A2A, A2B, and A3,
which are classified as high (A1, A2A, A3) or low (A2B) affinity for binding their parent
physiological agonist, adenosine [36]. All four adenosine receptors possess seven trans-
membrane domains and belong to the family of G-protein-coupled receptors (GPCR) [37].
The A1 and A3 receptors are coupled to Gq and/or Gi/o, whereas A2A and A2B are coupled
to Gs proteins. Activation of A1 and A3 receptors results in inhibition of adenylyl cyclase
(AC) activity, leading to reduction in cyclic AMP (cAMP) production and suppression
of downstream signalling [37,38]. Their activation also leads to PLC/IP3-dependent re-
lease of Ca2+ from the endoplasmic reticulum (ER), protein kinase C (PKC) activation,
and nitric oxide (NO) production [39–42]. In cardiomyocytes and neurons, activation of
A1 adenosine receptors stimulates the opening and blockade of K+ channels and P- and
N-type Ca2+ channels, respectively [43,44]. Activation of both A1 and A3 receptors leads to
PKC-dependent and independent mitogen-activated protein kinase (MAPK) activation [45].
Activation of both adenosine A2A and A2B receptors results in activation of AC, enhanced
cAMP production, and activation of downstream signalling [36]. Adenosine receptors
are widely distributed throughout the nervous, cardiovascular, respiratory, urogenital,
gastrointestinal, and immune systems. All adenosine receptors are expressed on various
cells of the cardiovascular system, including ECs [37,46].

3.1. Adenosine Receptors and the Endothelial Barrier

Adenosine is a non-selective agonist for all adenosine receptors and produces differ-
ential effects on endothelial permeability of various vascular beds depending on the type
of receptors expressed.

3.1.1. Adenosine Receptors and Lung Microvascular Permeability

In the lung vasculature, adenosine signalling has largely been shown to enhance
endothelial barrier properties and ameliorate agonist-induced hyperpermeability. In a
mouse model of acute lung injury, knockdown of CD39 or inhibition of CD73, the two
sequential enzymes responsible for adenosine production, resulted in development of
severe lung oedema in response to ventilation compared with wild-type littermates. These
animals were rescued by the addition of exogenous apyrase, suggesting a protective role
played by adenosine [47]. Both adenosine A2A or A2B receptors seem to mediate the
protective effects of adenosine in the lung [48,49]. In an isolated rat lung perfusion model
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of ischaemia/reperfusion (IR), a selective A2-receptor agonist reduced the IR-induced
increase in microvascular permeability [50]. Pharmacological activation of adenosine
A2A and A2B receptors protected against hypoxia and lipopolysaccharide (LPS)-induced
development of lung oedema [51,52], whereas deletion of adenosine A2A or A2B receptors
in mice resulted in loss of adenosine-mediated preservation of the lung microvascular
endothelial barrier [51,52]. These protective effects are mediated via augmented production
of cAMP and downstream activation of Rac1 [53]. Likewise, we have previously shown that
elevation of intracellular cAMP via adrenomedullin receptor activation protects against
lung oedema [54]. On the other hand, too much adenosine also seems to be detrimental
for the lung vasculature. Deletion of adenosine deaminase, an enzyme responsible for
adenosine degradation, resulted in severe respiratory distress and lung inflammation in
mice [55]. However, deletion of A2B receptors in these mice did not rescue but worsened the
conditions, which were accompanied by enhanced loss of pulmonary barrier function [56],
suggesting a protective role of A2B receptors. In contrast to murine lungs, in feline lungs,
adenosine A1 receptor activation mediates IR- and LPS-induced pulmonary microvascular
barrier disruption [57,58]: perfusion with A1 receptor antagonists xanthine amine congener
(XAC)/8-cyclopentyl-1,3-dipropylxanthine (DPCPX) ameliorates IR-induced lung injury
and oedema in these animals. These species differences are probably due to differential
expression of adenosine receptors in murine and feline lungs. Like A2 receptor activation,
pharmacological activation of adenosine A3 receptors with a selective agonist also protects
against reperfusion-induced lung oedema. This protective effect is lost in A3 knockout
mice in vivo [59]. However, the mechanism of this protective effect is still elusive.

3.1.2. Adenosine Receptors and the Blood–Brain Barrier

The blood–brain barrier is a highly specialised structure formed by a very tight
monolayer of microvascular ECs that are distinct from ECs of other vascular beds [60].
The brain ECs form tight junctions consisting of claudins, occludins, VE-cadherin, junc-
tional adhesion molecules (JAMs), and zonula occludens (particularly ZO-1). Human
and murine brain microvascular ECs express adenosine A1 and A2A receptors [61–63].
Adenosine causes an elevation of central nervous system (CNS) barrier permeability. In
an elegant study, Carman et al. demonstrated that a stable adenosine analogue 5’-N-
ethylcarboxamidoadenosine (NECA) and selective A1 and A2A receptor agonists increased
blood–brain barrier permeability to low-molecular-weight dextran [63]. These adenosine
effects were attenuated in mice lacking either A1 or A2A receptors [63]. Similarly, mice
lacking CD73 had low levels of extracellular adenosine and were protected against ex-
perimental autoimmune encephalomyelitis-induced development of brain oedema and
leukocyte infiltration [64]. Accordingly, inhibition of endothelial A2A receptors protected
mice against thromboembolic stroke-induced development of cerebral oedema and leuko-
cyte infiltration [65]. Likewise, regadenson, a selective A2A receptor agonist used clinically
as a coronary vasodilator for myocardial perfusion imaging, increased permeability of the
human blood–brain barrier in vitro [66] and in that of the mouse in vivo [63]. It has recently
been shown that certain viruses and bacteria exploit this reaction of the blood–brain barrier
to adenosine to open the barrier for their entry into the brain by increasing local production
of adenosine, which causes transient opening of the blood–brain barrier and allows their
entry to the central nervous system (CNS) [67,68]. Several groups have also recently tried
to exploit this property of adenosine receptor activation to transiently open the blood–brain
barrier for the local delivery of drugs to the CNS [69–74].

3.1.3. Adenosine Receptors and Coronary Microvascular Barrier

As in the blood–brain barrier, adenosine receptor activation in the coronary microvas-
culature results in loss of barrier integrity. A2 receptor activation increased permeability of
rat coronary microvascular ECs in vitro [75]. Infusion of adenosine in pigs on a high-fat diet
resulted in increased cardiac microvascular permeability in vivo [76]. Similarly, Di Napoli
et al. showed that DPCPX abrogates reperfusion-induced coronary hyperpermeability [77].
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However, the authors used DPCPX at a concentration that blocks all adenosine receptors,
suggesting A2 receptors were also antagonised. In line with these reports, we have previ-
ously demonstrated that reperfusion caused the release of ATP from isolated rat coronary
microvascular ECs that was degraded to adenosine. Inhibition of either ectonucleotidases
or adenosine receptors abrogated endothelial barrier failure, whereas addition of apyrase
and ectonucleotidases worsened reperfusion-induced endothelial barrier failure [21]. In a
follow-up study, we demonstrated that adenosine induced an increase in rat mesentery
microvascular permeability in situ and cardiac oedema in vivo. These adenosine effects
were blocked by adenosine receptor antagonists. Furthermore, we showed that these effects
were due to cAMP-mediated disruption of the microvascular endothelial cytoskeleton [78].
In a related study, we demonstrated that adenosine induced cAMP production (via adeno-
sine A2 receptors) in coronary microvascular ECs [79] that caused an inhibition of RhoA
and Rac1 signalling [80]. This is in contrast to macrovascular ECs, where cAMP production
inhibited RhoA/Rock signalling while activating Rac1 GTPase [81,82]. Inhibition of both
RhoA and Rac1 results in complete breakdown of the EC cytoskeleton and disruption of
cell–cell junctions [78,80]. Activation of Rac1 rescued these cells from the loss of endothelial
barrier integrity [80].

3.1.4. Adenosine Receptors and the Macrovascular Endothelial Barrier

In general, adenosine receptor activation in macrovascular ECs enhances endothelial
barrier properties and ameliorates the effect of barrier-disrupting agents [79,83–85]. The
mechanism involves the production of cAMP via activation of A2A and A2B receptors by
adenosine and its analogues. Enhanced cellular cAMP levels suppress the activity of the
endothelial contractile machinery in a RhoA/Rock-dependent manner and activate Rac1
GTPase via protein kinase A (PKA) and exchange protein directly activated by cAMP
(Epac) activation [82]. Table 1 summarises the major preclinical studies that investigated
purinergic receptors in relation to endothelial barrier function, and Figure 2 summarises
the key mechanisms involved in the adenosine receptors-mediated endothelial barrier
regulation in various vascular beds.

Table 1. Effect of purinergic receptor activation/inhibition on endothelial barrier of various vascular beds.

Receptor/Agonist Model Observation Reference(s)

Adenosine CD39 KO mice Lung oedema [47]
ATP + Apyrase Rat heart perfusion in vivo Increased oedema [78]
A1 antagonist Feline lung (IR) in vivo Reduced lung oedema [57,58]
A1 and A2A KOsA1 and A2A
agonists Mouse BBB in vivo A1/A2A agonists induced BBB

permeability, effects lost in KOs [63,66]

FDA approved A2A agonist
regadenoson Rat model of brain drug deli-very Increased BBB permeability of test drugs [69,70,72,73]

A2A agonist Isolated pig lungs (IR) Reduced lung oedema [48]

A2A KO/A2A agonist Lung permeability in vivo A2A agonist reduced lung
permeability/Effect lost in A2A KO [51]

A2B KO Ventilator-induced lung injury Increased lung oedema [49]

A3 KO/A3 agonist perfusion Lung IR (oedema) in vivo A3 agonist reduced lung oedema/Effect
lost in A3 KO [86]

P2X4 antagonist Brain middle artery occlusion
(IPC-IR) mouse model

P2X4 antagonist abrogates protective
effects of IPC [87]

P2X7 antagonists Rat intracranial
haemorrhage/oedema

P2X7 antagonists alleviate oedema
deve-lopment [88]

P2X7 KO Mouse traumatic brain injury Reduced oedema development in KOs [89]

P2X7 KO Mouse middle cerebral artery
occlusion Aggravated oedema development in KOs [90]

P2Y1/apoE double KO Atherosclerosis Reduced atherosclerotic plaques in
double KOs [91]

P2Y1 agonist Mouse traumatic brain injury P2Y1 agonist ameliorates oedema
development [92]
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Table 1. Cont.

Receptor/Agonist Model Observation Reference(s)

EC-specific P2Y2/apoE
double KO Atherosclerosis Development of stable plaques in double

KOs [93]

P2Y4 KO Myocardial infarction Protection against myocardial infarction
injury [94]

P2Y6/apoE double KO Atherosclerosis Double KOs develop smaller and less
inflamed lesions [95]

P2Y12 antagonist In vitro endothelial barrier model P2Y12 antagonist ameliorates
thrombin-induced hyperpermeability [84]

ATP: adenosine 5′-triphosphate; BBB: Blood–brain barrier; EC: endothelial cell; FDA: United-States food and drug administration; IR:
Ischaemia reperfusion; IPC: Ischaemic pre-conditioning; KO: Knockout.

Figure 2. Key mechanisms involved in adenosine receptors-mediated endothelial barrier regulation.
In lung microvasculature and macrovascular endothelium, A2 receptor activation causes an activation
of Rac1 and an inhibition of RhoA, leading to stabilisation of the endothelial barrier. On the other
hand, in coronary microvascular ECs, inhibition of both RhoA and Rac1 results in disruption of
endothelial cytoskeleton and barrier failure. Black arrows indicate sequence of signal transduction,
broken arrow indicates involvement of multiple steps in between, and green arrows indicate increase
in cellular levels of indicated second messenger. Red bocks mean inhibition. AC: adenylyl cyclase;
cAMP: cyclic adenosine monophosphate; GEF: guanine exchange factor; IP3: inositol triphosphate;
PKA: protein kinase A; PKC: protein kinase C; PLC: phospholipase C.

4. P2X Receptors and Signalling

The family of P2X receptors are non-selective ion channels comprising one or more
of seven monomeric proteins (P2X1–P2X7). Each monomeric P2X protein consists of two
transmembrane domains (TM1 and TM2) linked via an extracellular ligand-binding loop.
The monomeric P2X proteins combine to form trimeric homomultimeric or heteromul-
timeric ion pores [96–99]; thus, each P2X receptor complex contains three ATP binding
sites. At least 13 different trimeric combinations (P2X1, P2X2, P2X3, P2X4, P2X5, P2X7,
P2X1/2, P2X1/4, P2X1/5, P2X2/3, P2X2/5, P2X2/6, and P2X4/6) have been reported and
functionally characterised in vitro and partly in vivo [28,99]. Of note, P2X6 exists only in
heteromeric combinations. Binding of ATP to the extracellular ligand-binding domain
induces conformational changes in the multimeric ion pore, leading to opening of the
pore and allowing the passage of ions into the cell. P2X receptors are generally known as
non-selective cation channels, mainly permeable to Na+, K+, and Ca2+ under physiological
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conditions, although a recombinant P2X5 receptor has been shown to allow the passage
of Cl¯. Excitable cells are thus depolarised upon activation of P2X receptors. Moreover,
increased intracellular Ca2+ levels initiate a diverse array of Ca2+-dependent signalling
pathways, both in excitable and non-excitable cells, that regulate various cellular processes,
including cell migration, proliferation, necrosis, and apoptosis.

P2X Receptors and Endothelial Barrier

P2X receptors are widely expressed throughout the cardiovascular system. mRNA
and protein of all P2X receptors have been detected in the endothelium of various types
of blood vessels [100–107], but—with the possible exceptions of P2X4 and to some extent
P2X7—their roles are unclear [100,103,108]. Human venous endothelium expresses higher
levels of P2X4 than arterial endothelium [109]. The most studied human primary ECs are
umbilical vein ECs (HUVECs), which express primarily P2X4 and P2X7 and low levels
of P2X6 receptors [107] (unpublished data). P2X4 receptors mediate shear stress-induced
Ca2+ currents in endothelium [110] that may be responsible for shear stress-mediated
endothelial NO production and vasodilation [111]. The vessels from P2X4(−/−) mice do
not show an EC response to flow, such as calcium influx and subsequent production of
NO [112]. A loss-of-function mutation in the human P2X4 receptor is associated with
increased pulse pressure [113]. Cardiac ectopic expression of the P2X4 receptor was pro-
tective in a mouse model of heart failure [114]. Accordingly, the P2X4 receptor was the
major regulator of ischemic preconditioning-mediated neuroprotection [87]. In HUVECs,
the P2X4 receptor associates with VE-cadherin and may be involved in the regulation of
cell–cell junctions [100]. In this context, we observed that ivermectin, a positive modulator
of the P2X4 receptor, attenuated thrombin-induced HUVEC monolayer hyperpermeability
(Figure 3). On the other hand, the P2X4 receptor is also reported to be an inflammation-
regulated purinergic receptor. In rabbit aortic endothelium, the expression of P2X4 was
upregulated after balloon injury followed by a high-fat diet [115]. A high-glucose and
palmitate diet induced upregulation of P2X4 and P2X7 receptors accompanied by hyper-
permeability of HUVEC monolayers that was attenuated by respective antagonists [116].
In line with this, ATP-mediated coronary microvascular endothelial barrier stabilisation
was strengthened in the presence of P2X4 receptor antagonist (5-(3-bromophenyl)-1,3-
dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD)) and attenuated in the presence
of the receptor modulator ivermectin [78]. Differential effects of P2X4 receptor activation
on endothelial barrier function under different experimental conditions may be partly
explained by the downstream signalling mechanisms. For example, under basal conditions,
ECs express high levels of endothelial NO synthase (eNOS), which has been reported to be
downregulated under chronic inflammatory conditions that may result in an upregulation
of reactive oxygen species production, leading to barrier failure.

Unlike P2X4 receptors, activation of P2X7 receptors in ECs is primarily linked to a
proinflammatory and hyperpermeability response. In an in vitro model of the blood–brain
barrier, ATP induced an increased production of matrix metallopeptidase 9 (MMP9) in
an interleukin (IL)-1β-dependent manner, which was responsible for the degradation of
tight junction proteins [117]. These ATP effects were abrogated by P2X7 receptor antag-
onist, suggesting that they were P2X7 receptor-dependent. Similarly, hyperglycaemia
induced the production of IL-1β via P2X7 receptor activation and caused damage to the
retinal endothelial cell–cell junctions and barrier that was abrogated by a selective P2X7
receptor antagonist [118]. Likewise, in an in vivo model of intracranial haemorrhage, an
upregulation of P2X7 receptor expression accompanied by the development of cranial
oedema was observed. Pharmacological inhibition or siRNA-mediated knockdown of
P2X7 receptors attenuated the disruption of the blood–brain barrier and the resultant
oedema [88]. These effects were mediated via P2X7-induced activation of the RhoA/Rock
pathway. Likewise, P2X7(−/−) mice were protected against traumatic brain injury-induced
development of brain oedema [89] and also the development of lung inflammation and
oedema in vivo [119]. In contrast, Kaiser et al. [90] reported a protective role of P2X7
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receptors in a cerebral transient IR model of brain injury and oedema formation. The mice
deficient in P2X7 receptors developed more severe oedema after transient cerebral artery
occlusion compared with their wild-type littermates [90].

Figure 3. Effect of P2X4 receptor modulator (ivermectin; IVM) and antagonist ((5-(3-bromophenyl)-
1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one: 5-BDBD) on thrombin-induced endothelial
hyperpermeability. HUVEC monolayers cultured on filter membranes were exposed to human
thrombin (Thr, 0.3 IU/mL) in the absence (red) or presence (green) of ivermectin (IVM; 50 µM)
and the flux of labelled albumin was measured as described previously [84]. In a parallel set of
experiments, P2X4 receptor antagonist (5-BDBD; 10 µM) was added before the addition of ivermectin
and thrombin. n = 4, * p < 0.05 vs. control, # p < 0.05 vs. Thr alone, § p < 0.05 vs. IVM + Thr. For
experimental details, please see methods in Supplementary File.

5. P2Y Receptors and Signalling

P2Y receptors are membrane-bound class A GPCRs for extracellular nucleotides [120].
At present, eight mammalian P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11,
P2Y12, P2Y13, and P2Y14) have been cloned and are further classified into two sub-families
based on sequence similarities and signal transduction pathways [121–128]. The P2Y1-like
subfamily includes the P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11 receptors that are coupled to Gq
proteins. The P2Y11 receptors are coupled additionally to Gs proteins, activation of which
leads to an activation of AC and enhanced production of cAMP [128,129]. The P2Y12-like
subfamily includes P2Y12, P2Y13, and P2Y14 receptors, which mediate cellular signalling
via Gi proteins [128], activation of which leads to inhibition of AC and reduction in cellular
cAMP levels [127,128]. Moreover, activation of several P2Y receptors is associated with
activation of the MAPK pathway, and consequently these receptors are involved in cell
survival and proliferation [123,130].

P2Y Receptors and Endothelial Barrier

ECs express several of the P2Y receptor subtypes that are distributed over the entire
vasculature. The endothelial P2Y receptors have been investigated primarily within the
context of their NO-mediated vasorelaxant properties; therefore, fewer data are available
in relation to their role in maintaining the endothelial barrier. The P2Y1 receptor is a
ubiquitously expressed endothelial purinergic receptor on most EC types. It is a Gq-
linked GPCR that has been well-studied in platelet biology, for which ADP acts as a
natural agonist and ATP an antagonist [131,132]. P2Y1 knockout mice are viable, fertile,
normal in size, and do not present gross physical or behavioural abnormalities [133].
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P2Y1
(−/−) homozygous mice are more susceptible to lung infections and are resistant to

ADP/collagen-induced thrombin formation [133,134]. Moreover, P2Y1
(−/−) apoE(−/−)

double knockout mice have reduced amounts of atherosclerotic lesions [91] that were
not affected by transplanting wild-type bone marrow to the knockouts, suggesting the
vascular but not the haematopoietic P2Y1 receptor may be involved in the atherogenic
response [91]. Moreover, leukocyte recruitment to inflamed vessels was reduced in vivo
and leukocyte transendothelial migration was reduced in P2Y1 knockout as well as P2Y1
receptor antagonist-treated ECs in vitro [135]. These studies suggest that the P2Y1 receptor
may potentiate vascular inflammation and hyperpermeability. However, in a mouse model
of traumatic brain injury, development of cerebral oedema was ameliorated in mice treated
with the P2Y1 agonist 2-methylthioadenosine 5′diphosphate (2MeSADP). These protective
effects of the P2Y1 agonist were lost in inositol 3-phosphate receptor 2 (IP3R2)-knockout
mice, suggesting that it is an IP3/Ca2+-dependent phenomenon [92]. We observed that
P2Y1 mRNA is expressed in HUVECs, and treatment of cultured HUVEC monolayers with
ADP as well as P2Y1-selective agonist 2MeSADP antagonised thrombin-induced HUVEC
hyperpermeability (Figure 4). This barrier-protective effect of P2Y1 agonist is probably
mediated via Gq/IP3/Ca2+-dependent activation of Rac1 [136].

Figure 4. Effect of ADP and P2Y1 antagonist (MRS2500) on thrombin-induced endothelial hyperper-
meability: HUVEC monolayers cultured on filter membranes were exposed to human thrombin (Thr,
0.3 IU/mL) in the absence (red) or presence (blue) of P2Y1 receptor agonist ADP (10 µM), and the flux
of labelled albumin was measured as described previously [84]. In a parallel set of experiments P2Y1

receptor antagonist (MRS2500; 10 µM; black) was added before the addition of ADP and thrombin.
n = 4, * p < 0.05 vs. control, # p < 0.05 vs. Thr alone, § p < 0.05 vs. ADP + Thr.

P2Y2 and P2Y4 are Gq/G11-coupled receptors that are activated by both UTP and
ATP [128]. Global deletion of the P2Y2 gene reduces shear stress-induced vasodilation
and hypertension [137]. However, P2Y2-knockout mice show reduced inflammatory cell
infiltration into injured vessels [138], and endothelial-specific deletion of the P2Y2 recep-
tor in apoE(−/−) mice results in reduced inflammatory response and increased plaque
stability [93], suggesting a pathological role of chronic P2Y2 receptor activation under
inflammatory conditions. Accordingly, knockdown of P2Y2 receptors in HUVECs amelio-
rated LPS-induced transendothelial migration of activated neutrophils [139].

P2Y4-null mice are viable but display microcardia (small hearts), suggesting that the
P2Y4 receptor plays a role in postnatal heart development [140]. Interestingly, cardiac ECs
and not cardiomyocytes express the P2Y4 receptor, and loss of the P2Y4 receptor in cardiac
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ECs results in reduced growth and migratory capacity in vitro [140]. Surprisingly, P2Y4
knockout mice are protected from myocardial ischaemic injury, cardiac inflammation, and
fibrosis in a left anterior descending (LAD) coronary artery ligation model [94]. Moreover,
P2Y4-knockout mice are protected from an LPS-induced cardiac microvascular hyperper-
meability response. These data suggest that although the endothelial P2Y4 receptor is
required for normal development of the heart in mice, its activation may induce vascular
hyperpermeability under pathological conditions.

P2Y6 is a Gq-coupled receptor activated by UDP [128] that is expressed on aortic
and cerebral ECs [141,142]. Global loss of P2Y6 receptors results in macrocardia (larger
heart), and mice lacking the P2Y6 receptor show an amplified pathological cardiac hyper-
trophic response [143]. However, vascular deficiency of P2Y6 receptors results in reduced
vascular inflammation and ameliorated neointima formation in an atherosclerosis mouse
model [95,144]. In contrast, inhibition of cerebral P2Y6 receptors with a selective antag-
onist aggravates development of cerebral oedema in a mouse model of ischaemic brain
injury [145].

P2Y11 is the only known human P2Y receptor coupled to Gs [124,128,129]. The murine
orthologue of the P2Y11 receptor does not exist or at least has not yet been identified.
Moreover, the lack of selective agonists and antagonists for this receptor as well as specific
detection tools (antibodies) make functional investigations of the P2Y11 receptor diffi-
cult [146]. We did not detect P2Y11 mRNA in HUVECs, but other EC types were not
investigated. Presumably, if it is expressed in some EC type, one would expect its acti-
vation would raise intracellular cAMP levels that can interact with multiple signalling
pathways, e.g., Rac1-dependent actin cytoskeleton rearrangement and MLCP-mediated
inactivation of the contractile machinery, thus modulating endothelial barrier properties.

The P2Y12-like subfamily comprises three members: P2Y12, P2Y13, and P2Y14. All of
these receptors are coupled to Gi, and their activation leads to suppression of AC activity
and cAMP production [128]. P2Y12 is well-studied in relation to platelet biology, and its
antagonists are used clinically as anticoagulants in various pathological conditions. In
human cardiac-derived mesenchymal cells, ticagrelor, a P2Y12 receptor antagonist, induces
the release of anti-apoptotic exosomes [147] that may also modulate the coronary microvas-
cular endothelial barrier. Endothelial expression of both P2Y12 [84,148] and P2Y13 [104] has
been documented. Recently, we demonstrated the expression of P2Y12 receptor mRNA and
protein in HUVECs, and a specific P2Y12 antagonist increased intracellular cAMP levels
and protected against thrombin-induced hyperpermeability [84]. We also observed the
expression of P2Y13 but not P2Y14 mRNA in primary HUVECs (unpublished). In vasa
vasorum ECs, ADP mediates a mitogenic response partly via P2Y13 receptors [104]. The ex-
pression of P2Y14 receptor has been reported in rat primary brain microvascular ECs [149],
and activation of this receptor induces a pro-inflammatory response in ECs. Moreover,
UDP-glucose (an agonist for P2Y14 receptor) mediated a contractile response in isolated
pancreatic arteries in an endothelium-dependent manner, and this effect was abrogated
by a selective P2Y14 receptor antagonist [150]. No further data are available related to the
involvement of P2Y13 and P2Y14 receptors in the control of endothelial barrier properties.
Figure 5 presents an overview about the effects of various P2Y receptors’ activation on
endothelial barrier function.
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Figure 5. Schematic presentation of effect of various P2Y receptors’ activation on endothelial barrier function. Activation
of P2Y1 receptor stabilises while chronic activation of P2Y2, P2Y4, and P2Y6 receptors results in atherosclerosis. Loss
of endothelial barrier integrity is one of the early features of development of atherosclerotic plaques. The molecular
mechanisms are not clear yet. P2Y12 receptor is Gi-linked and its activation results in inhibition of adenylyl cyclase (AC)
and reduction in intracellular cAMP content that leads to endothelial barrier destabilisation. The P2Y11 is Gs-linked and its
activation would lead to opposite effects and endothelial barrier stabilisation. The effects of P2Y11 are hypothetical based on
available information about the P2Y11 receptor. Black solid arrows indicate sequence of signalling, broken arrows indicate
multiple steps in between, green arrow shows increase in cellular cAMP levels, and red arrows indicate signalling via Gi
leading to reduction in cAMP and endothelial barrier disruption. Red blocks mean inhibition.

6. Conclusions and Perspective

Endothelial barrier properties are influenced by extracellular nucleotides via activation
of various purinergic receptors. The response depends on the type of receptor(s) present
and the local concentration of the nucleotides. Adenosine, primarily via activation of A2A
and A2B receptors, raises intracellular levels of cAMP in the lung microvascular bed and
thus strengthens the barrier properties and ameliorates hypoxia- and inflammation-induced
development of oedema. Selective agonists for adenosine A2 receptors are available that
may be tested (for local application) for clinical use in various oedematous abnormalities
of the lung, e.g., acute lung injury. Conversely, A2 receptor activation in brain and coronary
microvasculature results in transient opening of the cell–cell junction in a cAMP-dependent
manner. This property of the brain microvasculature can be exploited for local delivery of
drugs to the CNS. P2 receptors are also widely distributed in the vascular bed. Chronic
P2X receptor activation leads to endothelial barrier destabilisation and oedema formation,
an effect primarily attributed to the P2X7 receptors. There is a need for the development of
more selective and potent P2X7 receptor antagonists to ameliorate inflammation-induced
loss of endothelial barrier function. There is also a lack of selective P2Y receptor agonists
and antagonists, which makes the investigation of P2Y receptors in relation to endothelial
barrier function difficult. We and others have documented that ATP at low micromolar
concentrations stabilises endothelial barrier function, mainly via activation of various
P2Y receptors, whereas at high concentration (in the millimolar range), it may act as a
danger-associated molecular pattern (DAMP) [151], amplifying the inflammatory response.
Inhibition of the P2Y12 receptor blocks inflammation-induced increases in endothelial
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permeability [84]. Further studies are needed to identify specific P2Y receptors that mediate
endothelial barrier stabilisation and destabilisation.
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