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Recent advances in laser spectroscopy has made it feasible to measure stable isotopes

of water in high temporal resolution (i.e., sub-daily). High-resolution data allow the

identification of fine-scale, short-term transport and mixing processes that are not

detectable at coarser resolutions. Despite such advantages, operational routine and

long-term sampling of stream and groundwater sources in high temporal resolution

is still far from being common. Methods that can be used to interpolate infrequently

measured data at multiple sampling sites would be an important step forward. This

study investigates the application of a Long Short-Term Memory (LSTM) deep learning

model to predict complex and non-linear high-resolution (3 h) isotope concentrations of

multiple stream and groundwater sources under different landuse and hillslope positions

in the Schwingbach Environmental Observatory (SEO), Germany. The main objective

of this study is to explore the prediction performance of an LSTM that is trained on

multiple sites, with a set of explanatory data that are more straightforward and less

expensive to measure compared to the stable isotopes of water. The explanatory data

consist of meteorological data, catchment wetness conditions, and natural tracers (i.e.,

water temperature, pH and electrical conductivity). We analyse the model’s sensitivity to

different input data and sequence lengths. To ensure an efficient model performance,

a Bayesian optimization approach is employed to optimize the hyperparameters of

the LSTM. Our main finding is that the LSTM allows for predicting stable isotopes of

stream and groundwater by using only short-term sequence (6 h) of measured water

temperature, pH and electrical conductivity. The best performing LSTM achieved, on

average of all sampling sites, an RMSE of 0.7‰, MAE of 0.4‰, R2 of 0.9 and NSE of 0.7.

The LSTM can be utilized to predict and interpolate the continuous isotope concentration

time series either for data gap filling or in case where no continuous data acquisition is
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feasible. This is very valuable in practice because measurements of these tracers are still

much cheaper than stable isotopes of water and can be continuously conducted with

relatively minor maintenance.

Keywords: machine learning, deep learning, long short-term memory, sensitivity analysis, Bayesian

hyperparameter optimization, stable isotopes of water, high-resolution data, isotope hydrology

INTRODUCTION

Catchment hydrological processes are complex and it is
challenging to comprehend how the catchment responds to
precipitation (Uhlenbrook et al., 2002; Zhou et al., 2021). Stable
isotopes of water (δ2H and δ18O) have been widely employed
as conservative natural tracers in catchment hydrology to shed
light on the hydrological processes. Such tracers have proved
to be valuable tools to investigate the origin and formation
of recharged water, surface-groundwater interactions, mixing
processes between various water sources, and differentiation of
evaporation and evapotranspiration (Kendall and McDonnell,
2012; Orlowski et al., 2016). Particularly at the catchment scale,
the stable isotopes of water have been used to differentiate runoff
components via hydrograph separation techniques (Klaus and
McDonnell, 2013), to estimate mean transit times (McGuire and
McDonnell, 2006), to identify flow pathways (Tetzlaff et al.,
2015), to explore groundwater recharge rates (Koeniger et al.,
2016), to understand soil water mixing processes (Sprenger
et al., 2016) and to improve hydrological model simulations
(Windhorst et al., 2014).

Recent advances in laser spectroscopy has made it feasible to
measure stable isotopes in high temporal resolution (i.e., sub-
daily) and in situ. High-resolution data allow the identification
of fine-scale, short-term transport and mixing processes that
are not detectable at coarser resolutions (Birkel et al., 2012).
Previously, studies using sub-daily isotope data focused on
single precipitation events (McGlynn et al., 2004; Wissmeier
and Uhlenbrook, 2007; Berman et al., 2009). Whilst useful,
they are still limited in providing insight into short-term
response variability and mixing processes over a longer-term
catchment behavior. To overcome these limitations, a few
research groups recently developed automated systems for
continuous monitoring of water isotopes directly in the field.
von Freyberg et al. (2017) analyzed isotopes of precipitation
and stream water every 30min over 28 days to derive
fractions of event water from hydrograph separation at eight
precipitation events in the Erlenbach catchment, Switzerland.
The result indicated that the high-resolution measurements
allowed an in-depth comparison of event water fractions through
endmember mixing analysis. Heinz et al. (2014) introduced
the technical design of an automated system and reported
a primary proof-of-concept to monitor isotopes of stream
and groundwater in rice paddies in the Philippines. They
concluded that the high-resolution measurements provided the
foundation for insights into hydrological interactions that could
not be studied previously, particularly with respect to spatially
distributed sampling. Based on this setup, Mahindawansha

et al. (2018) reported impact of seasons and crops on surface
and groundwater isotope concentrations in these rice paddies.
The result showed that groundwater isotopes reacted rapidly
to irrigation under maize dry season, suggesting the process
of preferential flow through deep roots and cracks. Quade
et al. (2019) monitored soil water isotopic composition every
30min during one growing season of sugar beet to partition
evapotranspiration flux at the Selhausen agricultural research
site, Germany. The comparison between non-destructive high-
resolution and destructive coarser resolution sampling of soil
water showed significant discrepancies between the isotopic
compositions of evaporation led in turn to significant differences
in evapotranspiration flux estimation. Sahraei et al. (2020)
analyzed isotopes of stream, groundwater and precipitation
every 20min over approximately 5 months to investigate
hydrological response behavior and role of precipitation and
antecedent wetness conditions in runoff generation in the
Schwingbach Environmental Observatory (SEO), Germany. The
result revealed that maximum event water fractions of stream
and groundwater responded rapidly to precipitation events,
indicating the fast delivery of water to the stream through shallow
subsurface flow pathways.

Despite the advantages of high-resolution water isotope data,
the routine measurements are still far from being common.
Long-term, high-resolution sampling of multiple sources are
even less common despite the fact that such measurements
are likely to provide new insight into hydrological processes
and can help to constrain individual endmembers and flow
pathways that contribute to runoff generation. Methods that can
be used to interpolate infrequently measured data at multiple
sampling sites would be an important step forward. Statistical
time series methods such as simple exponential smoothing (SES),
autoregressive (AR), moving average (MA) or autoregressive
integrated moving average (ARIMA) have been traditionally
employed to predict time series problems. The main drawback
of the statistical methods is that they assume that the series
are derived from linear processes and hence they might be
inadequate for water isotope time series that are non-linear
(Zhang et al., 1998; Khashei et al., 2009). Another major
limitation is that the statistical methods are local models, in
which the free parameters are individually estimated for each
time series. It means that it is not possible to share the learning
over multiple time series to extract patterns that cannot be
distinguished at an individual level (Calkoen et al., 2021). In
contrast, machine learning provides a useful tool for the joint
extraction of non-linear patterns form a collection of time series.
The core idea is to predict isotope concentrations with a set of
explanatory data that aremore straightforward and less expensive
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to measure. If the machine learning algorithm is able to predict
isotope concentrations from the explanatory data, data-driven
interpolations of continuous isotope concentration time series
can be acquired.

Machine learning is a data-driven approach that aims to
give computers the ability to automatically learn and extract
patterns from data (Samuel, 1959; Goodfellow et al., 2016).
Machine learning has been increasingly applied in hydrology
and earth system science in recent years, owing to its capability
to efficiently simulate highly non-linear and complex systems
without any a priori knowledge of underlying physical processes.
Extensive reviews have been released for the application of
machine learning in water resources (Lange and Sippel, 2020;
Zounemat-Kermani et al., 2020). Artificial Neural Network
(ANN) is the most commonly used machine learning algorithm
for the prediction of hydrological variables (Maier and Dandy,
2000; Maier et al., 2010). The main advantage of ANN models
is that they are universal function approximators, meaning that
they can automatically fit a wide range of functions with a
high accuracy level (Khashei and Bijari, 2010). The other major
advantage of ANNs is that they have an inherent generalization
capability, meaning that they are able to recognize and respond
to the patterns that are analogous, but not identical to those on
which they have been trained (Benardos and Vosniakos, 2007).
Nevertheless, a drawback of ANNs, which have primarily been
employed for the analysis of time series in the past, is that any
information about the sequence of input features is lost (Kratzert
et al., 2018). Therefore, more advance machine learning models
are required to efficiently handle these temporal dependencies.

Deep learning is an advance sub-field of machine learning that
has drawn significant attention recently. Deep learning generally
refers to deep neural networks with multilayer structures that
can extract high-level representations from complex and high-
dimensional data via a hierarchical learning process applying
multiple non-linear transformations (Shen, 2018; Zuo et al.,
2019). Long Short-Term Memory (LSTM) is the current state-
of-the-art deep learning architecture that is widely adopted to
simulate sequential data like time series (Gers et al., 2002). LSTM
is a type of Recurrent Neural Network (RNN) that was originally
developed by Hochreiter and Schmidhuber (1997). Unlike the
traditional RNN networks, LSTM does not suffer from exploding
and vanishing gradients, which allows the network to learn long-
term dependencies (Hochreiter and Schmidhuber, 1997). This
is beneficial to capture dynamics of catchment processes like
storage effects, which may play an important role in hydrological
processes (Kratzert et al., 2018). Fang et al. (2017) successfully
applied LSTM for the first time in hydrological research
to predict soil moisture using meteorological forcing data,
static physiographic attributes and model-simulated moisture as
inputs. They concluded that the LSTM generalizes well across
regions with different climates and environmental conditions.
Kratzert et al. (2018) used LSTM to model daily runoff using
the Catchment Attributes and Meteorology for Large-sample
Studies (CAMELS) data set over hundreds of catchments in the
USA. The result demonstrated that the LSTM showed better
prediction performance than traditional RNN due to its ability
of learning and storing long-term dependencies. Zhang et al.

(2018b) compared the performance of LSTM with that of a
feed-forward ANN for the prediction of water table depths in
agricultural areas in northwestern China. The result revealed
that the LSTM outperformed the traditional feed-forward ANN.
Liu et al. (2019) investigated the application of LSTM to predict
water quality parameters such as turbidity, dissolved oxygen and
chemical oxygen demand in China. They reported that the LSTM
is a feasible and effective approach for water quality prediction.

To the best of our knowledge, the potential of LSTM has
not been investigated in the field of isotope hydrology yet; and
in general, only few studies have explored the application of
machine learning in this field. Cerar et al. (2018) compared the
performance of multilayer feed-forward ANN network with that
of ordinary kriging, simple and multiple linear regression for
predicting the isotope composition (δ18O) of groundwater over
several locations across Slovenia. They collected 83 groundwater
samples from two campaigns, first in spring and second in
autumn under base flow conditions. The result showed that
feed-forward ANN achieved better performance than the other
three models. Sahraei et al. (2021) investigated the potential of
Support Vector Machine (SVM) and multilayer feed-forward
ANN to predict maximum event water fractions of streamflow in
the Schwingbach Environmental Observatory (SEO), Germany.
They found that the SVM outperformed the ANN model as
it could better captured the dynamics of maximum event
water fractions under distinct hydroclimatic conditions and
flow regimes.

For the first time in the field of isotope hydrology, we
investigate the application of deep leaning to predict stable
isotopes of water. We apply an LSTM to estimate complex and
non-linear high-resolution isotope concentrations of multiple
stream and groundwater sources under different land use
and hillslope positions in the Schwingbach Environmental
Observatory (SEO), Germany. We use an automated in situ
mobile laboratory, the Water Analysis Trailer for Environmental
Research (WATER), to sample and measure high-resolution
(3 h) isotope concentrations in two stream reaches and three
groundwater sources. Explanatory data comprise meteorological
data, catchment wetness conditions, and natural tracers, i.e.,
water temperature, potential of hydrogen (pH) and electrical
conductivity (EC) that are more straightforward and less
expensive to measure compared to the stable isotopes of water.
In particular, we report on: (1) how different combinations of
input data affect the prediction accuracy of the LSTM; and (2)
how short-, medium- and long-term dependencies relate to the
sequence length of input data in the LSTM.

MATERIALS AND METHODS

Study Area and Data Collection
The study was carried out in the headwater catchment of
the Schwingbach Environmental Observatory (SEO) in Hesse,
Germany (Figure 1). The catchment area is 1.03 km2 with
the elevation ranging from 310m in the north to 415m
a.s.l. in the south (Figure 1A). The climate is categorized
as temperate oceanic, with a mean annual precipitation of
623mm and a mean annual air temperature of 9.6◦C (Deutscher
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FIGURE 1 | (A) Schwingbach Environmental Observatory (SEO), (B) study area in the Schwingbach headwater and (C) measuring network along the stream reach of

the Schwingbach headwater.

Wetterdienst, Giessen-Wettenberg station, period 1969–2019).
76% of catchment area is covered by forest that is mostly located
in the east and south, 15% by farmland in the north and west
and 7% by meadows alongside the stream (Figure 1B). The
soil is categorized as Cambisol, covered mainly by forests and
Stagnosols under farmland. The soil texture is predominantly
consists of silt and fine sand with a low clay content. Further
details can be found in Orlowski et al. (2016).

An automated climate station (AQ5, Campbell Scientific
Inc., Shepshed, UK) equipped with a CR1000 data logger
recorded precipitation depth, air temperature, relative humidity,
air pressure, solar radiation and wind speed at 5min intervals
(Figure 1C). Six remote-controlled data loggers (A753, Adcon,

Klosterneuburg, Austria), three at the toeslope (SM1, SM2
and SM3) and three at the footslope (SM4, SM5 and SM6),
were connected to sensors (ECH2O 5TE, METER Environment,
Pullman, USA) to automatically monitor soil moisture at
5 and 15 cm depths at 5min intervals. A stream gauge
(RBC flume, Eijkelkamp Agrisearch Equipment, Giesbeek,
Netherlands) equipped with a pressure transducer (Mini-Diver,
Eigenbrodt Inc., Königsmoor, Germany) automatically measured
water levels at the outlet (SW2) of the catchment at 10min
intervals. The transducer measurements were calibrated against
manual readings and continuous stream discharge was obtained
via the calibrated stage-discharge relationship provided by
the manufacturer.
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An automated mobile laboratory, the Water Analysis Trailer
for the Environmental Research (WATER), was used to
automatically sample and analyse the stable isotopes of water
(δ2H and δ18O), water temperature, potential of hydrogen (pH)
and electrical conductivity (EC) for multiple water sources in situ
from August 8th until December 9th in 2018 and from April
12th until October 10th in 2019. The WATER was equipped with
a continuous water sampler (CWS) (A0217, Picarro Inc., Santa
Clara, USA), coupled to a wavelength-scanned cavity ring-down
spectrometer (WS-CRDS) (L2130-i, Picarro Inc., Santa Clara,
USA) to analyse the isotopic composition of sampled water.
Isotopic ratios are reported in per mill (‰) deviations from the
Vienna Standard Mean Ocean Water (VSMOW). We only used
δ2H time series in the LSTM modeling, as δ18O had a similar
variation but lower precision (precision 0.23‰ for δ18O and
0.57‰ for δ2H). The high-resolution δ2H data were verified with
water samples that were manually collected from the sampling
sites on a weekly basis. A multi-parameter water quality probe
(YSI600R, YSI Inc., Yellow Springs, USA) was installed on the
sampling board of the WATER to measure temperature, pH and
EC of sampled water. For a detailed description of the WATER
and the sampling setup refer to Sahraei et al. (2020).

We measured the stable isotope composition (δ2H), water
temperature, pH and EC of two stream water reaches (SW1 and
SW2) and three groundwater sources (GW1, GW2 and GW3)
(Figure 1C). SW1 was sampled approximately 145m upstream
of the WATER at the edge of farmland and SW2 was sampled at
the outlet of the catchment next to the WATER. Groundwater
was sampled from piezometers made from perforated PVC
tubes sealed in the upper part with bentonite clay to prevent
contamination by surface water. The piezometers of GW1 and
GW2 were located at the toeslope on the farmland and meadow,
respectively. The piezometer of GW3 was located at the footslope
at the edge of the forest. The sampling schedule of the WATER
allowed measuring isotopic composition, water temperature, pH
and EC for each of the stream water reaches at 1.5-h and for each
of the groundwater sources at 3-h intervals.

Data Pre-processing
As the input features for our LSTM model, we selected a set of
explanatory data that aremore straightforward and less expensive
to measure compared to the stable isotopes of water. The input
features were categorized intometeorological, catchment wetness
and natural tracer variables (Table 1). Our collected data set
contained different sampling frequencies. To obtain a uniform
frequency, which matches the frequency of the output variable,
we aggregated all of the observed data to 3-h intervals by
averaging, except the precipitation, which was aggregated to 3-
h intervals by summing up. The winter period (10th December
2018–11th April 2019) was excluded from the data set because
theWATER did not sample during this period due to the freezing
weather conditions. When gaps occurred over small timescales
due to faulty sensors or equipment maintenance, we used linear
interpolation to estimate the missing values. The proportions of
observations, which were gap filled through linear interpolation,
accounted for at most 3% (73 observations) of total length of the
time series for each of the features. We split the observations of

TABLE 1 | Input and output features.

Input features Symbol Unit

Meteorological data

Precipitation P mm

Air temperature Ta
◦C

Relative humidity RH %

Air pressure PR hPa

Solar radiation SR W m−2

Wind speed WS m s−1

Catchment wetness

Stream discharge Q l s−1

Soil moisture at 5 cm depth SM5 %

Soil moisture at 15 cm depth SM15 %

Natural tracers

Temperature Tw
◦C

Potential of hydrogen pH –

Electrical conductivity EC µS cm−1

Output feature

Isotopic composition of water δ2H ‰

The input features are categorized into meteorological, catchment wetness and natural

tracer variables. The output feature is isotope composition (δ2H) at SW1, SW2, GW1,

GW2 and GW3 sampling sites.

all the features into train (70%, 1,700 observations), validation
(15%, 365 observations) and test (15%, 365 observations) sets,
while maintaining the temporal order of the observations. The
train set was used to learn the internal parameters (i.e., weights
and bias) of the model. The validation set was used to optimize
the hyperparameter, and the test set was used to evaluate the
generalization capability of the model. To stabilize the learning
process and to speed up the convergence, the data needs to be
normalized before feeding to the model. For this, the train set was
normalized to be in the range [0–1]. The validation and test sets
were normalized using the parameters obtained from the train set
normalization to avoid data leakage (Hastie et al., 2009).

Long Short-Term Memory (LSTM) Model
The LSTM is a type of a Recurrent Neural Network (RNN) that
is capable of learning long-term dependencies by overcoming
the exploding and vanishing gradient problems of traditional
RNN networks (Hochreiter and Schmidhuber, 1997). The main
characteristics of the LSTM are the specially designed units
so called memory cell and gates. The memory cell consists of
forget, input and output gates that together control the flow
of information within the LSTM network. The structure of the
LSTM memory cell and the algorithms in the cell are shown in
Figure 2. The memory cell contains a specific status for each time
step, the so-called cell state c, which contains the information for
long-term memory. The forget gate controls which information
is removed from the cell state. The input gate defines which
information is updated to the cell state and the output gate
specifies which information is used from the cell state. Suppose
a sequence of inputs x = [x1, . .., xT] with T time steps, where
each element xt is a vector that contains input at time step
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(1 ≤ t ≤ T), the process within the LSTM cell is represented with
the equations 1–6. The LSTM cell updates six parameters at each
time step. The first parameter is the forget gate parameter ft that
decides howmuch of the information from the previous cell state
ct−1 needs to be forgotten by a sigmoid function (σ ) with a linear
calculation of the current input xt and the previous output ht−1.
W’s and b’s with different subscripts represent the gate-specific
network weights and bias parameters for the linear calculations.
The second parameter is the input gate parameter it that controls
which new information is updated to the cell state by the sigmoid
function with a linear relation on xt and ht−1 as well. The new cell
state candidate ct ′ is calculated by a hyperbolic tangent function
(tanh) with a linear relation on xt and ht−1. The cell state ct is then
updated through an element-wise multiplication

⊙

operator. In
the end, the output parameter ot is calculated by the sigmoid
function with a linear relation on xt and ht−1. The final output
at the current time step ht is the production of ot and the tanh
function value of the cell state ct .

ft = σ
(

Wf ·
[

ht−1, xt
]

+ bf
)

(1)

it = σ
(

Wi ·
[

ht−1, xt
]

+ bi
)

(2)

c
′

t = tanh
(

Wc ·
[

ht−1, xt
]

+ bc
)

(3)

ct = ft
⊙

ct−1 + it
⊙

c
′

t (4)

ot = σ
(

Woxt ·
[

ht−1, xt
]

+ bo
)

(5)

ht = ot
⊙

tanh (ct) (6)

Hyperparameter Optimization
The majority of machine learning algorithms possess several
settings that control the entire learning process (Goodfellow
et al., 2016). These settings are referred to as hyperparameters.
The hyperparameters are exterior to the model and need to be
set before the learning process (Géron, 2019). The performance
and computational complexity of LSTMmodels strongly depend
on the set of hyperparameters that determine many aspects of the
algorithm’s behavior (Nakisa et al., 2018). Therefore, it is essential
to optimize hyperparameters to boost the LSTM performance.
In this study, we used a Sequential Model-Based Optimization
(SMBO) search with the Tree-structured Parzen Estimator (TPE)
algorithm, a Bayesian optimization approach (Bergstra et al.,
2011). Bayesian optimization is a very effective optimization
algorithm that has been shown to outperform well-established
methods i.e., grid and random search (Bergstra et al., 2013;
Eggensperger et al., 2013). It develops a statistical model between
the hyperparameters and the objective function and makes the
assumption that there is a smooth but noisy function that
maps between the hyperparameters and the objective function
(Reimers and Gurevych, 2017). Given the search history of
hyperparameters and objective function, SMBO-TPE suggests
hyperparameters for the next trial that are expected to improve
the objective function. As the number of trials grows, the search
history expands and eventually the hyperparameters become
optimized. In this study, we optimized the number of hidden
units (i.e., neurons), dropout rate, learning rate, number of
epochs and batch size (Table 2). We ran the optimization
evaluation for 1,000 trials through the search space of the

hyperparameters to minimize mean squared error (MSE) on the
validation set. The complete set of optimized hyperparameters
can be found in Table S1 in the Supplementary Material.

LSTM Model Setup
The architecture that we used in this study consists of an input
layer with as many neurons as input features, one LSTM layer,
a dropout layer and a fully connected dense layer with a single
unit for the output feature. We used the Adam optimizer for the
optimization of the learning process (Kingma and Ba, 2014) and
tanh and sigmoid functions as state and gate activation functions,
respectively.We ran the LSTMmodel in a sequence-to-one mode
so that an input sequence of a fixed length was used to predict
a δ2H value at the next time step. The sequence length, i.e., the
look-back window, is the length of past input observations that
the LSTM looks back to predict an output for the next time step.

The performance of deep learning models improves by
making more training data available (Schmidhuber, 2015).
Building a single LSTMmodel that is trained and optimized on all
of the sampling sites instead of training and optimizing a separate
LSTM model for each of the sampling sites, allows the network
to learn more general and abstract patterns of the input–output
relationship (Kratzert et al., 2018). We therefore built a single
LSTMmodel to predict the δ2H values at SW1, SW2, GW1, GW2
and GW3 sampling sites. The LSTM was simultaneously trained
on train sets of all sampling sites to learn the internal parameters
of the model. It simultaneously used validation sets of all the
sampling sites to optimize the hyperparameters and predict the
δ2H values on each test set of the sampling sites to estimate the
generalization capability of the model.

LSTM Model Sensitivity to Input Features
and Sequence Length
We examined how different combinations of input features
affect the prediction performance of the LSTM model. It
allows us to identify which combinations give us the most
accurate predictions of isotope concentrations in the stream
and groundwater sampling sites. We tested seven different
input feature scenarios shown in Table 3. The first three
scenarios (S1, S2 and S3) investigate the effect of meteorological
data, catchment wetness conditions and natural tracers on
the prediction performance separately. S4, S5 and S6 test
the prediction performance when we combine the first three
scenarios together and S7 examines the predication performance
when we use all of the input features for training of the LSTM.
We also used the labels of the sampling sites as input features
in all of the seven scenarios. By using the labels of sampling
sites as input features, we allow the model to know on which
site it trains and hence it produces a unique output for each
individual site. This is especially beneficial when using the
meteorological data as input features. Since the meteorological
data is the same for all sites, the model would otherwise produce
the same outputs for them if we do not consider their labels
as input features. We used one-hot encoding technique to
encode the site labels to the numeric features (Heaton, 2015).
This technique creates unique binary columns for each of the
labels so that SW1, SW2, GW1, GW2 and GW3 labels are
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FIGURE 2 | The architecture of LSTM memory cell.

TABLE 2 | Hyperparameter set for the LSTM model.

Hyperparameter Choices

Number of hidden units 10, 20, 30, 40, 50, 60, 70, 80, 90, 100

Dropout rate 0.1, 0.2, 0.3, 0.4, 0.5

Learning rate 0.00001, 0.0001, 0.001, 0.01, 0.1

Number of epochs 2, 3, 5, 7, 10, 15, 20, 25, 30, 35, 40, 45,

50, 60, 70, 80, 90, 100

Batch size 32, 64, 128, 256

encoded to [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]
and [0, 0, 0, 0], respectively. Moreover, we used the month of
the year of the measurements’ time stamp as an input feature
in all seven scenarios to represent the inherent seasonality of
the data.

We also examined the effect of the sequence length of input
data on the prediction performance of our LSTM model. The
sequence length is intrinsically connected to the underlying
physical processes driving the dynamics of output variables
(Duan et al., 2020). A proper sequence length should be large
enough to incorporate all historical information relevant to the
prediction of the isotopic compositions. However, too large
sequence lengths increase the model complexity and training
time that can in turn reduce the performance (Duan et al.,
2020). Some previous studies have set the sequence length to an
arbitrary number (Zhang et al., 2018a; Le et al., 2019; Tennant
et al., 2020), whereas some other studies have reported that

TABLE 3 | Input feature scenarios for the LSTM model.

Scenario label Input features

S1 Meteorological data

S2 Catchment wetness

S3 Natural tracers

S4 Meteorological data, catchment wetness

S5 Meteorological data, natural tracers

S6 Catchment wetness, natural tracers

S7 Meteorological data, catchment wetness, natural tracers

Month of the year and label of sampling sites are used as input features in all of

seven scenarios.

the sequence length affects the model performance (Fan et al.,
2020; Meyal et al., 2020; Xiang et al., 2020). We therefore
investigated the LSTM sensitivity to the sequence length. We
defined nine different sequence lengths into three categories
to represent short-, medium- and long-term dependencies. We
tested sequence lengths of 6, 12 and 24 h for short-term, 72
(3), 168 (7) and 336 (14) h (days) for medium-term and
720 (30), 1,440 (60) and 2,160 (90) h (days) for long-term
dependencies. We examined all of these nine sequence lengths
for each of the seven input feature scenarios resulting in
63 different scenarios for the sensitivity analysis. We trained
the LSTM model and optimized its hyperparameters for each
of these scenarios separately to ensure a fair comparison
between them.
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Evaluation Metrics
We evaluated the prediction performance of the LSTM model
using four statistical metrics (goodness-of-fit criteria). We used
root mean squared error (RMSE), mean absolute error (MAE),
coefficient of determination (R2) and Nash–Sutcliffe efficiency
(NSE) according to equations 7–10.
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where N is the number of observations, Oi is the observed
value, Pi is the predicted value, O is the mean of observed
values and P is the mean of predicted values. RMSE and
MAE explain the average deviation of predicted from observed
values with smaller values indicating a better performance. R2

is a good indicator for the temporal correspondence between
observed and predicted values ranging between [0–1], with
higher values indicating stronger correlations. NSE assesses the
model’s capability to predict values different from the mean and
gives the proportion of the initial variance accounted for by the
model (Nash and Sutcliffe, 1970). The NSE is a preferred criterion
in many hydrological studies as it particularly describes a model’s
capability of matching higher values, extremes and outliers. NSE
ranges between [–∞ to 1]. The closer the NSE value is to 1,
the better is the match between observed and predicted values.
A negative value of the NSE denotes that the mean of observed
values is a better predictor than the proposed model. Following,
Moriasi et al. (2007), model performance can be rated as: very
good (0.75<NSE≤ 1.00), good (0.65<NSE≤ 0.75), satisfactory
(0.50 < NSE ≤ 0.65) and unsatisfactory (NSE ≤ 0.50).

Setup of Numerical Experiments
We conducted the numerical experiments with Python 3.7
programming environment (van Rossum, 1995) onUbuntu 20.04
with AMD EPYC 745-core processor, 125 GB of random access
memory (RAM) and NVIDIA GTX 1050 Ti graphical processing
unit (GPU). The LSTM model was built with Keras 2.3.1
deep learning framework (Chollet, 2015) on top of TensorFlow
backend 2.0 (Abadi et al., 2016). Hyperopt 0.2.5 (Bergstra
et al., 2013) and Hyperas 0.4.1 (Pumperla, 2019) libraries were
used to implement hyperparameter optimization. Scikit-Learn
0.22.2 (Pedregosa et al., 2011), Pandas 1.0.1 (McKinney, 2010),
Numpy 1.18.1 (Van Der Walt et al., 2011), and Scipy 1.4.1
(Virtanen et al., 2020) libraries were used for pre-processing
and data management. The Matplotlib 3.1.3 (Hunter, 2007) and
Seaborn 0.9.1 (Waskom et al., 2020) libraries were used for the
data visualization.

RESULTS AND DISCUSSION

Temporal Dynamics
In the following, we briefly describe the dynamics of the
observed data over the sampling period (Figures 3–6). During
the sampling period of 2018, precipitation is very lowwith respect
to the long-term historical record (Deutscher Wetterdienst,
Giessen-Wettenberg station, period 1969-2019, mean annual
precipitation of 623mm), with a total annual precipitation of
452mm (Figure 3), stating the unusual dry conditions in 2018
(Vogel et al., 2019). More precipitation is observed during
the sampling period of 2019 with an annual sum of 624mm.
Air temperature, relative humidity, air pressure, solar radiation
and wind speed show strong diurnal fluctuations during the
sampling period (Figure 3). However, during the precipitation
periods, these fluctuations tend to decrease particularly in case
of air temperature and relative humidity, and tend to increase
in case of wind speed. Air temperature, relative humidity and
solar radiation represent seasonal trends, whereas air pressure
and wind speed do not depict a clear trend during the
sampling period.

Stream discharge and soil moisture reflect the drought of
2018 with only few small peaks during the precipitation periods
(Figure 4). The catchment wetness increases in 2019 and stream
discharge as well as soil moisture react similarly to precipitation
inputs. Soil moisture of shallower depth (i.e., 5 cm) generally
shows more clear responses to precipitation than at deeper
depths (i.e., 15 cm) at all soil moisture stations. This response
is more pronounced in the meadow (SM2, SM3 and SM6)
than in the farmland (SM1 and SM4). However, soil moisture
of deeper depths in the farmland generally reveal a higher
responsiveness to rainfall than equivalent depths in the meadow.
The shallower depths of SM2 and SM3 at the toeslope depict
a similar reaction pattern to SM6 in footslope suggesting the
extension of linkage between toeslope and footslope during
precipitation events. On average, SM1 and SM3 show the lowest
(8 ± 4.3%, mean ± standard deviation, for 5 cm depth, 14 ±

4.6% for 15 cm depth) and highest (29.4 ± 11%, 24.3 ± 6.8%)
soil moisture among the SM stations, respectively.

Figure 5 displays that stream water temperature strongly
matches the diurnal fluctuations of air temperature, whereas the
groundwater temperature follows the overall long-term pattern
of air temperature without any high-temporal fluctuations. SW1
and SW2 exhibit similar temperature patterns with means of 11.8
± 2.7 and 11.7 ± 2.7◦C over the sampling period, respectively.
However, groundwater temperatures at the sampling sites slightly
differs from each other with the mean of 11.3 ± 1.8, 13.0 ± 2.1
and 12.3 ± 1.8◦C for GW1, GW2 and GW3, respectively. The
patterns of pH dynamics in stream and groundwater sources are
almost identical over the sampling period (Figure 5). The pH
shows an increasing trend while the air temperature decreases
in 2018 and then remains almost stable in 2019 with some
fluctuations. The EC of stream and groundwater is highly
responsive to precipitation inputs (Figure 5). Rapid reductions
of EC are observed upon in the course of precipitation events
that are followed by a fast recovery. The EC of stream as well
as groundwater is relatively high in 2018, followed by a smooth
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FIGURE 3 | Time series of meteorological data. From the top, we report precipitation, air temperature, relative humidity, air pressure, solar radiation and wind speed.
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FIGURE 4 | Time series of catchment wetness conditions. From the top, we report precipitation, discharge and soil moisture at SM1, SM2, SM3, SM4, SM5 and SM6

stations.
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FIGURE 5 | Time series of natural tracers at stream and groundwater sampling sites. From the top, we report precipitation, water temperature, pH and electrical

conductivity (EC) at stream and groundwater sampling sites.
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FIGURE 6 | Time series of precipitation and stable isotope concentrations at stream and groundwater sampling sites. From the top, we report, precipitation and δ2H

values at stream and groundwater sampling sites.
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decline toward the end of the sampling period. The EC of SW1
(336.9 ± 59.3 µS cm−1) is slightly higher than that of SW2
(325.5 ± 58.3 µS cm−1), whereas the difference between the EC
of groundwater sampling sites is higher with means of 228.7 ±

61.2, 321.9 ± 59.9 and 239.3 ± 50 µS cm−1 for GW1, GW2 and
GW3, respectively.

Figure 6 presents the high temporal resolution of δ2H at the
stream and groundwater sampling sites. The δ2H of stream and
groundwater responds promptly to precipitation, and is strongly
synchronized with the response patterns of EC. These rapid
isotopic responses in stream as well as groundwater indicate the
strong linkage between stream and subsurface flow pathways
during the precipitation events (Sahraei et al., 2020). The δ2H
values are lighter with stronger diurnal variations in 2018
compared to those during sampling period of 2019. Seasonal
variations are observed during the sampling period with heavier
δ2H values in May–June and lighter in November–December.
Figure 7 shows the distribution of the isotopic compositions in
the stream and groundwater sources over the sampling period.
Both stream sampling sites indicate similar variations for δ2H.
The mean values of δ2H for SW1 and SW2 are −60.7 ± 2.7‰
and −60.6 ± 2.5‰, respectively. However, the variations of δ2H
tend to increase from GW1 to GW3. On average, GW1 (−60.1
± 2.1‰) and GW2 (−60 ± 1.9‰) at the toeslope depict slightly
heavier mean δ2H values compared to GW3 at the footslope (60.5
± 2.6‰).

LSTM Model Sensitivity to Input Features
and Sequence Length
We investigated the impact of input features and sequence length
on the prediction performance of the optimized LSTM model.
Figure 8 shows the heatmaps of the prediction performance
using four statistical metrics for the combination of seven input
feature scenarios and nine sequence lengths at the stream and
groundwater sampling sites (SW1, SW2, GW1, GW2 and GW3).
It is apparent that using the meteorological data (scenario S1)
and catchment wetness conditions (scenario S2) alone as the
input features does not lead to a good prediction performance.
Although using meteorological and catchment wetness data
together (scenario S4) slightly decreases prediction errors for
some cases, yet the performance is not satisfying. For these
scenarios, the NSE values are mainly near to zero and even
negative. This emphasizes that the model is not able to predict
the peak values properly. It suggests that the relations of
meteorological data and catchment wetness variables with the
water isotope concentrations are not strong enough to transfer
enough information that is required for an adequate learning of
the LSTM to predict peak values of isotope concentrations.

In contrast, using the natural tracers (scenario S3), i.e., water
temperature, pH and EC of the sampling sites, as the input
features achieves good prediction performance. It indicates that
these easy-to-measure tracers are able to indirectly simulate
complex interactions between controlling drivers and water
isotope concentrations in the Schwingbach catchment. With a
closer look to the prediction errors across the sequence lengths
of this scenario, we can see that the model performs the best at

all of the sampling sites when we use short sequence lengths (6
and 12 h). This implies that the most recent input data contain
the most relevant information for the prediction of isotope
concentrations and that there is no significant benefit using older
input data. This behavior can also be noticed for the prediction
of peak values, which is measured by NSE metric. The NSE
values are higher for shorter sequence lengths indicating that
the model can better predict the reaction of isotope signatures
during precipitation events by using the recent input data. This
can be associated to the rapid response characteristics of the
Schwingbach catchment (Orlowski et al., 2014, 2016; Sahraei
et al., 2020). The responses of isotopes in stream and groundwater
during precipitation events often reveal a rapid mixing of water
at the sampling sites with the event water. It takes, on average, 6 h
for streamwater and 7–8 h for groundwater at the toeslope (GW1
and GW2) and footslope (GW3), respectively, that the isotope
signatures reach peak values. After that, they immediately return
to pre-event water conditions (Sahraei et al., 2020). This short-
term response behavior together with the synchronized behavior
of isotopic compositions with electrical conductivity makes it
sufficient for the model to extract the dynamics of isotopic
compositions. In contrast, the model performance declines when
we use medium and long sequence lengths. This is possibly due
to the noise generated by irrelevant inputs (Xiang et al., 2020).

We combined the natural tracers with meteorological and
catchment wetness variables (scenarios S5 and S6) to test if
this boosts the prediction performance of the LSTM model.
Comparing scenario S3 with S5, we can see that the LSTM still
performs better at scenario S3 when using short sequence lengths.
However, the model tends to perform better at scenario S5 for
medium and long sequence lengths. Similarly, the inclusion of
catchment wetness (scenario S6) provides some improvements in
the model performance for medium and long sequence lengths.
The physical explanation underlying the improved performance
of the model when we provide longer historical meteorological
and catchment wetness information, may be related to the
climatological and storage characteristic of the catchment. It
could well be that long-term dependencies exist between the
dynamics of isotope concentrations and climatic conditions as
well as soil water content of the catchment. The ability of
the LSTM to learn and remember the long-term dependencies
provides the opportunity to identify such storage effects within
the catchments (Kratzert et al., 2018, 2019). A comparison
between prediction errors of scenario S5 and S6 indicates that the
model generally performs better at scenario S5. This suggests that
the meteorological condition has a higher impact on the dynamic
of isotope concentrations compared to the soil moisture state
in the catchment, which is in line with the previous findings in
the Schwingbach catchment (Orlowski et al., 2014; Sahraei et al.,
2020).

We also tested the prediction performance for all
meteorological, catchment wetness and natural tracer variables as
input features (scenario S7). In general, the model performance
does not improve remarkably and it even deteriorates in some
cases compared to performance of model at scenario S3, S5 and
S6. The inclusion of too many input features increases the model
complexity. Using too complex models augments the chance of
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FIGURE 7 | Boxplots of the isotopic compositions at stream and groundwater sampling sites. The average is indicated by a black square and the median by the bar

separating a box.

overfitting (Maier et al., 2010). Overfitting arises when the model
learns the details and noises in the training data to an extent that
it is unable to generalize to new data.

Visualization of the LSTM Prediction
Performance
We built a single LSTMmodel to predict the high-resolution δ2H
values at SW1, SW2, GW1, GW2 and GW3 sampling sites in the
Schwingbach catchment. Ideally, we do not want to train and
optimize the model specifically for each sampling site to achieve
the best performance, but rather, we intend to train and optimize
the model once for all of the sampling sites using only one
specific input feature scenario and sequence length. Therefore, we
trained and optimized the model with the input feature scenario
and sequence length, at which the model performs on average
the best for all of the sampling sites. According to the results
presented in Figure 8, LSTM achieves the best performance when
measurements of the last 6 h of water temperature, pH and EC are

used as input features (scenario S3). It achieves, on average of all
sampling sites, an RMSE of 0.7‰, MAE of 0.4‰, R2 of 0.9, and
NSE of 0.7.

In the following, we visualize the prediction performance of
the best LSTM model on the test sets to better illustrate its
generalization ability on the unseen data. Figures 9, 10 show the
performance of the LSTM using a sequence length of 6 h for
scenario S3 at SW1 and GW3 sampling sites, respectively. The
LSTM captures the timing of hydrologic events and base flow
conditions of δ2H at stream and groundwater sites quite well,
but it still underestimates the peak of the hydrograph. This is a
commonly known issue with LSTMs and in general, ANNmodels
that they cannot learn adequately the phenomenon in respect of
extremes. The major reason that the LSTM may not be able to
capture extreme values is the lack of a large number of extremes
in the training data (Adnan et al., 2019). The other major reason
could be the fact that the range of extreme values in the training
data is smaller than those of the validation and test data (Adnan
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FIGURE 8 | Heatmaps of the prediction performance using four statistical metrics for the combination of seven input feature scenarios and nine sequence lengths at

stream and groundwater sampling sites. The dark blue indicates good prediction performance (low values of RMSE and MAE and high values of R2 and NSE),

whereas the light blue indicates poor prediction performance (high values of RMSE and MAE and low values of R2 and NSE).
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FIGURE 9 | Comparison of observed and predicted δ2H values by the best LSTM using a sequence length of 6 h for water temperature, pH and electrical conductivity

measurements (scenario S3-6 h) with an RMSE of 0.9‰, MAE of 0.5‰, R2 of 0.9 and NSE of 0.6 at SW1 site.

FIGURE 10 | Comparison of observed and predicted δ2H values by the best LSTM using a sequence length of 6 h for water temperature, pH and electrical

conductivity measurements (scenario S3-6 h) with an RMSE of 0.4‰, MAE of 0.3‰, R2 of 0.7 and NSE of 0.7 at GW3 site.

et al., 2019; Malik et al., 2020). This results in difficulties for
extrapolation in ANN models (Kisi and Aytek, 2013; Kisi and
Parmar, 2016). Several scholars have also reported this limitation
in the implementation of the LSTM in previous studies (Kratzert

et al., 2018; Chen et al., 2020; Fan et al., 2020; Müller et al.,
2020; Xiang et al., 2020). The prediction performances of the best
LSTM at SW2, GW1 and GW2 sampling sites are provided in
the Supplementary Figures 1–3. The development of the LSTM
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model assumed stable boundary conditions with regard to land
use and cover. Changes of these during the study period have not
been taking place in the SEO. However, such changes could be
part of long-term simulations in the LSTM model if information
were available on this.

The power of LSTM as a deep learning model is that it
can synthesize information from multiple sampling sites and
situations into a single model. An LSTM trained on multiple
sites under different landuse and hillslope conditions can learn
different patterns of isotopic behavior. It is evident from
Figures 9, 10 and Supplementary Figures 1–3 that the LSTM
performs efficiently at the stream as well as groundwater sites.
Since we trained a single LSTM on stream and groundwater sites
with different landuse and hillslope positions with a range of
different isotope concentrations and magnitudes of response to
precipitation events, the LSTM tends to balance the error so that
it minimizes the error between predicted and observed isotope
concentrations for all of the sampling sites at the same time.
The trained LSTM can be used to spatially estimate the isotope
concentrations for multiple sites across the catchment with only
simple-to-measure tracers. This leads not only to a substantial
reduction of the cost of measurements, but also to an increase
in the spatiotemporal knowledge of hydrological processes in
the catchment.

One of the challenging tasks in hydrology is the spatial
transferability of the models, particularly to data-scarce
catchments. Most of hydrological models need to be rebuilt from
scratch using newly collected data when the distribution of data
is changed in the feature space. However, collecting adequate
data is still challenging in many catchments due to the time
consuming and expensive measurement procedures. “Transfer
learning” is a powerful technique of deep learning that reduces
the need and effort to collect the data in data-scarce catchments.
Transfer learning is a method that transfers the knowledge
obtained in the source domain to the target domain when the
latter has few data (Pan and Yang, 2010). Generally, if the deep
learning model exhibits satisfying performance in the source
catchment, it can be then generalized to target catchments and
achieve good prediction performances without much additional
data. The transfer learning is efficient in the LSTM because the
hidden layers that have been trained to digest shape information,
are still effective even when applied to data-scarce catchments
(Shen, 2018). In order to apply the proposed LSTM to another
catchment, the last fully connected layers are trained on the new
data with initial randomweights (Yosinski et al., 2014). Although
the data is different from the one on which the model is already
trained, the low-level features are similar. Therefore, transferring
parameters from the “pre-trained LSTM” can provide the new
target model with powerful feature extraction ability and reduce
the data demand as well as computation or monitoring costs.

The prediction performance of LSTM and in general deep
learning models could be enhanced when having more training
data available (Schmidhuber, 2015). Providing longer historical
data from multiple years for the training process in future
research may allow the model to capture long-term seasonal
trends under various flow regimes and hydroclimatic conditions,
and hence extract more related information that can effectively

reproduce the dynamic of the isotope concentrations. It will
be particularly interesting to investigate how extreme weather
events impact on the LSTM outcome. For the future, we might
be able to test this given the current rather wet weather patterns
of 2021, which are substantially different to the study period of
our current work, which considers rather dry weather conditions
from 2018 and 2019.

CONCLUSION

This study investigates the application of Long Short-Term
Memory (LSTM) deep learning model to predict high-resolution
(3 h) isotope concentrations of multiple stream and groundwater
sources under different landuse and hillslope positions in
the Schwingbach Environmental Observatory (SEO), Germany.
The core objective of this study is to explore the prediction
performance of an LSTM that is trained on multiple sites,
with a set of explanatory data that are more straightforward
and less expensive to measure compared to the stable isotopes
of water. The explanatory data consist of meteorological data,
catchment wetness conditions and natural tracers (i.e., water
temperature, pH and electrical conductivity). This study further
conducts a sensitivity analysis to examine how different input
features and their sequence lengths affect the performance of
the LSTM. The ability of the LSTM that inherently considers
the impact of environmental factors such as evaporation and
evapotranspiration on fractionation of water isotopes without
an explicit representation of the underlying processes provides
the opportunity to efficiently apply the proposed model to
isotope hydrology. The result showed that the LSTM could
successfully predict stable isotopes of stream and groundwater
sites when using only short-term sequence (6 h) of measured
water temperature, pH and electrical conductivity. The LSTM
prediction can be utilized to predict and interpolate the
continuous isotope concentration time series either for data
gap filling or in case where no continuous data acquisition is
feasible. This is very valuable in practice because measurements
of these tracers are still much cheaper than stable isotopes
of water and can be continuously carried out with relatively
minor maintenance.

For the future research, we will be collecting more data to
enhance the prediction performance of the LSTM. There is
still room to capture the peak isotope concentrations better.
New input features like groundwater table should be used
to potentially improve the model performance in the future.
The data-hungry nature of deep learning models is a potential
barrier for applying them in data-scarce catchments. Since many
catchments of potential application may lack the length of
the data available in this work, the sensitivity of prediction
performance to the length of the training data warrants further
investigation. The use of pre-trained LSTM is a promising
approach to mitigate the large demand for data in a single
catchment. The future research direction also includes applying
the LSTM to predict high-resolution water quality parameters
such as nitrate, pH and water temperature.
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