
I F I G

R e s e a r c h

R e p o r t

Institut für Informatik

JLU Gießen

Arndtstraße 2

35392 Giessen, Germany

Tel: +49-641-99-32141

Fax: +49-641-99-32149

mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

Institut für Informatik

Minimization, Characterizations, and

Nondeterminism for Biautomata

Markus Holzer Sebastian Jakobi

IFIG Research Report 1301

April 2013

IFIG Research Report

IFIG Research Report 1301, April 2013

Minimization, Characterizations, and Nondeterminism

for Biautomata

Markus Holzer1 and Sebastian Jakobi2

Institut für Informatik, Universität Giessen

Arndtstraße 2, 35392 Giessen, Germany

Abstract. We show how to minimize biautomata with a Brzozowski-like algorithm by ap-
plying reversal and powerset construction twice. Biautomata were recently introduced in
[O. Kĺıma, L. Polák: On biautomata. RAIRO—Theor. Inf. Appl., 46(4), 2012] as a
generalization of ordinary finite automata, reading the input from both sides. The correct-
ness of the Brzozowski-like minimization algorithm needs a little bit more argumentation
than for ordinary finite automata since for a biautomaton its dual or reverse automaton,
built by reversing all transitions, does not necessarily accept the reversal of the original lan-
guage. To this end we first generalize the notion of biautomata to deal with nondeterminism
and moreover, to take structural properties of the forward- and backward-transition of the
automaton into account. This results in a variety of biautomata models, which accepting
power is characterized. As a byproduct we give a simple structural characterization of cyclic
regular and commutative regular languages in terms of deterministic biautomata.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Mod-
els of Computation—Automata; F.2.2 [Analysis of Algorithms and Problem Com-

plexity]: Nonnumerical Algorithms and Problems—Computations on discrete structures;
F.4.3 [Mathematical Logic and Formal Languages]: Formal Languages—Classes de-
fined by grammars or automata;

Additional Key Words and Phrases: deterministic and nondeterministic biautomata, cyclic
languages, commutative languages, Brzozowski’s minimization algorithm.

1E-mail: holzer@informatik.uni-giessen.de
2E-mail: jakobi@informatik.uni-giessen.de

Copyright c© 2013 by the authors

1 Introduction

Biautomata were recently introduced in [5] as a generalization of ordinary deter-
ministic finite automata. Simply speaking, a biautomaton is a device consisting
of a deterministic finite control, a read-only input tape, and two reading heads,
one reading the input from left to right, and the other head reading the input
from right to left. Similar two-head finite automata models were introduced,
e.g., in [3, 6, 8]. An input word is accepted by a biautomaton, if there is an
accepting computation starting the heads on the two ends of the word meeting
somewhere in an accepting state. Although the choice of reading a symbol by
either head is nondeterministic, the determinism of the biautomaton is enforced
by two properties: (i) The heads read input symbols independently, i.e., if one
head reads a symbol and the other reads another, the resulting state does not
depend on the order in which the heads read these single letters. (ii) If in a
state of the finite control one head accepts a symbol, then this letter is ac-
cepted in this state by the other head as well. Later we call the former property
the ⋄-property and the latter one the F -property. In [5] it was shown that bi-
automata share a lot of properties with ordinary deterministic finite automata.
For instance, there is a unique (up to isomorphism) minimal deterministic biau-
tomaton for every regular language, which obeys a nice description in terms of
two-sided derivatives or quotients—cf. Brzozowski’s construction for ordinary
minimal deterministic finite automata [1]. Moreover, simple structural charac-
terizations based on biautomata for language families such as the piecewise
testable or prefix-suffix testable languages were given in [5]. Recently in [4]
also descriptional complexity issues for biautomata were addressed. This is the
starting point for our investigation.

We focus on the minimization problem for biautomata. For ordinary de-
terministic finite automata minimization is efficiently solvable. While the algo-
rithm with the best running time of O(n log n) remains difficult to understand,
the most elegant one is that of Brzozowski [2], which minimizes an ordinary
finite automaton A, regardless whether it is deterministic or nondeterministic,
by applying the reversal and powerset construction twice in sequence. Thus, it
computes the automaton P([P(AR)]R), to obtain an equivalent minimal deter-
ministic finite automaton—here the superscript R refers to the reversal or dual
operation on automata and P denotes the powerset construction. Whether this
elegant minimization method can also be applied to a biautomaton A is not com-
pletely clear, since the above mentioned two properties to enforce determinism
may be lost by computing AR or P(AR). To this end we introduce nondetermin-
istic biautomata. It is known that these machines already accept non-regular
languages and characterize the family of linear context-free languages [6], but
as a side result we prove that nondeterministic biautomata with the ⋄-property
accept regular languages only. In the main line of research we show that a
Brzozowski-like minimization of biautomata with ⋄- and F -property, regard-
less whether they are deterministic or nondeterministic, is possible. Since in
Brzozowski’s minimization the powerset construction is used this technique is
exponential. Note that it is easy to see that there are more efficient minimiza-
tion algorithms for deterministic biautomata with both the ⋄- and F -property,

2

by simply adapting other existing minimization algorithms for ordinary deter-
ministic finite automata. As a byproduct of our investigations, we give simple
structural characterizations of cyclic regular languages and commutative regu-
lar languages in terms of deterministic biautomata with ⋄- and F -property.

The paper is organized as follows: In the next section we introduce the nec-
essary notation on biautomata. In addition we also define an analogous to the
F -property, called I-property, which will take care on symbols that are read
from an initial state. Then in Section 3 we show some basic properties on these
devices. In particular we show that nondeterministic biautomata with the ⋄-
property accept regular languages only. Moreover there we also give structural
biautomata characterizations of the families of cyclic and of commutative lan-
guages. In Section 4 we prove the basics on dual automata, which will then
be used in the ultimate section to prove the correctness of the Brzozowski-like
minimization for deterministic biautomata with ⋄- and F -property.

2 Preliminaries

We use a more general notion of biautomata than in [5], but it resembles that
of nondeterministic linear automata as defined in [6], which characterize the
family of linear context-free languages. A nondeterministic biautomaton is a
sixtuple A = (Q, Σ, ·, ◦, I, F), where Q is a finite set of states, Σ is an alphabet,
· : Q × Σ → 2Q is the forward transition function, ◦ : Q × Σ → 2Q is the back-
ward transition function, I ⊆ Q is the set of initial states, and F ⊆ Q is the
set of final or accepting states. The transition functions · and ◦ are extended to
words in the following way, for all words v ∈ Σ∗ and letters a ∈ Σ:

q · λ = {q}, q · av =
⋃

p∈(q·a)

p · v, and q ◦ λ = {q}, q ◦ va =
⋃

p∈(q◦a)

p ◦ v,

and further, both · and ◦ can be extended to sets of states S ⊆ Q, and w ∈ Σ∗

by S·w =
⋃

p∈S p·w, and S◦w =
⋃

p∈S p◦w. The biautomaton A accepts w ∈ Σ∗,
if the word w can be written as w = u1u2 . . . ukvk . . . v2v1, for some ui, vi ∈ Σ∗

with 1 ≤ i ≤ k, such that

[((. . . ((((I · u1) ◦ v1) · u2) ◦ v2) . . .) · uk) ◦ vk] ∩ F 6= ∅. (1)

The language accepted by A is defined as L(A) = {w ∈ Σ∗ | A accepts w }.
A biautomaton A is deterministic, if |I| = 1, and |q · a| = |q ◦ a| = 1 for all
states q ∈ Q and letters a ∈ Σ. In this case we simply write q ·a = p, or q◦a = p
instead of q ·a = {p}, or q◦a = {p}, respectively, treating · and ◦ to be functions
mapping Q×Σ to Q. The automaton A has the confluence or diamond property,
for short ⋄-property, if (q · a) ◦ b = (q ◦ b) · a, for every state q ∈ Q and a, b ∈ Σ.
Further, A has the equal acceptance property, for short F -property, if q·a∩F 6= ∅
if and only if q◦a∩F 6= ∅, for every state q ∈ Q and letter a ∈ Σ. A deterministic
biautomaton that has both the ⋄- and the F -property is exactly what is called
a biautomaton in [5]. Finally, A has the equal initial fan-out property, for short
I-property, if I · a = I ◦ a, for every letter a ∈ Σ. Two biautomata A and B
are equivalent if they accept the same language, which means L(A) = L(B)

3

0

1

2

3

4

5

6

a
a

c

b

c

a

a

b

c

c

b

b

a

a

aa

Fig. 1. A nondeterministic biautomaton A, that has both the ⋄- and the F -property, but not
the I-property.

holds. Further, we need some notation on languages associated with states of
biautomata. For a biautomaton A = (Q, Σ, ·, ◦, I, F) and a state q ∈ Q let

qA = (Q, Σ, ·, ◦, {q}, F) and Aq = (Q, Σ, ·, ◦, I, {q}). We say that L(qA) is the
right language of state q and that L(Aq) is the left language of state q. Two
states p, q ∈ Q are equivalent, if and only if L(pA) = L(pA).

We illustrate these definitions by the following example.

Example 1. Consider the nondeterministic biautomaton A = (Q, Σ, ·, ◦, I, F)
with Q = {0, 1, . . . , 6}, Σ = {a, b, c}, I = {0}, F = {6}, and whose transition
functions ·, and ◦ are depicted in Figure 1—solid arrows denote forward transi-
tions by ·, and dashed arrows denote backward transitions by ◦. One can check,
that A has the ⋄-property, i.e., that (q · d) ◦ e = (q ◦ e) · d, for all inputs d, e ∈ Σ
and states q ∈ Q. For example we have

(0 · a) ◦ c = {0, 1} ◦ c = {2, 4}, and (0 ◦ c) · a = {2} · a = {2, 4}.

Further, A has the F -property, i.e., for all states q ∈ Q, and inputs d ∈ Σ we
have (q ·d)∩F 6= ∅ if and only if (q◦d)∩F 6= ∅. For example both sets 1·b = {3},
and 1 ◦ b = ∅ have an empty intersection with F , and the two sets 5 · a = {5, 6}
and 5 ◦ a = {5, 6} both contain the accepting state 6. However, the biautoma-
ton A does not have the I-property, because {0} · a = {0, 1} 6= ∅ = {0} ◦ a. If we
removed the backward transition loop on letter a in state 5, i.e., if 5 ◦ a = {6},
instead of 5◦a = {5, 6}, then A would not have the ⋄-property anymore (because
then (5 ·a)◦a 6= (5◦a) ·a), but it would still have the F -property. One observes
that the right language of state 2 is L(2A) = a∗ab, the left language of state 2
is L(A2) = a∗c, and the language accepted by A is L(A) = a∗abc. We will show
in Section 3, that a biautomaton with both the ⋄-property, and the F -property
accepts a word w if and only if reading w leads from some initial state to a
final state, while only using forward transitions. With that result, L(A) can be
easily determined in this example. ⊓⊔

Next we generalize the well known powerset construction of ordinary finite
automata to biautomata. For a biautomaton A = (Q, Σ, ·, ◦, I, F), its powerset
automaton is the deterministic biautomaton P(A) = (Q′, Σ, ·′, ◦′, q′0, F

′), where
the state set Q′ ⊆ 2Q consists of all states that are reachable from the initial

4

state q′0 = I, the set of accepting states is F ′ = {P ∈ Q′ | P ∩F 6= ∅ }, and the
forward and backward transition functions are defined as

P ·′ a =
⋃

p∈P

p · a, and P ◦′ a =
⋃

p∈P

p ◦ a,

for every state P ∈ Q′ and letter a ∈ Σ.
To prove the correctness of this construction, we use the following simple

fact: if A = (Q, Σ, ·, ◦, I, F) is a nondeterministic biautomaton that has ⋄-
property, then (S · a) ◦ b = (S ◦ b) · a, and if A has the F -property, then
(S · a) ∩ F 6= ∅ if and only if (S ◦ a) ∩ F 6= ∅, for every S ⊆ Q and a, b ∈ Σ.
Now we prove the following result.

Lemma 2. If A is a nondeterministic biautomaton, then P(A) is equivalent
to A, i.e., L(A) = L(P(A)). Furthermore, for all X ∈ {⋄, F, I}, if A has the
X-property, then the deterministic biautomaton P(A) has the X-property, too.

Proof. Let A = (Q, Σ, ·, ◦, I, F) be a biautomaton, and let its powerset biau-
tomaton be B = P(A) = (Q′, Σ, ·′, ◦′, q′0, F

′). For w ∈ Σ∗, we have w ∈ L(A) if
and only if w = u1u2 . . . ukvk . . . v2v1, with ui, vi ∈ Σ∗, 1 ≤ i ≤ k, and

[((. . . ((((I · u1) ◦ v1) · u2) ◦ v2) . . .) · uk) ◦ vk] ∩ F 6= ∅,

and this in turn is equivalent to

[((. . . ((((I ·′ u1) ◦
′ v1) ·

′ u2) ◦
′ v2) . . .) ·′ uk) ◦

′ vk] ∈ F ′,

which holds if and only if w ∈ L(B). Thus, L(A) = L(B).
Since the transition functions ·′, and ◦′ of B are just the extensions of the

functions ·, and ◦ of A to sets of states, the ⋄-property, the F -property, and the
I-property are preserved by the powerset construction. ⊓⊔

We illustrate the construction in the following example.

Example 3. Consider the biautomaton A from Example 1, which is depicted in
Figure 1. The powerset biautomaton P(A), which is a deterministic biautoma-
ton, is shown in Figure 2. Note that since the biautomaton A has both the
⋄-property, and the F -property, also the powerset biautomaton P(A) has both
these properties. ⊓⊔

3 Basic Properties of Biautomata

In this section we study the effect of the previously defined properties of bi-
automata. On the one hand, we already know that the most general model
of biautomata, namely nondeterministic biautomata without any restrictions,
characterizes the family of linear context-free languages [6], while on the other
hand, the most restricted biautomaton model, that is, deterministic biautomata
with the ⋄- and F -property, describes the family of regular languages [5]. But
what else can be said about the accepting power of these devices? To this end,
we first take a closer look on the ⋄-property. At first glance, we show that it
also extends to words. Recall, that if a biautomaton A with state set Q has the
⋄-property, then (S · a) ◦ b = (S ◦ b) · a, for every subset S ⊆ Q and a, b ∈ Σ.

5

0 01 3

2 24 6

5 56

a

a

b

c c c c

a

a

b

b b

a

a

a

a

Fig. 2. The powerset biautomaton P(A) for the nondeterministic biautomaton A from Fig-
ure 1. The sink state ∅, and transitions leading to it are not shown.

Lemma 4. Let A = (Q, Σ, ·, ◦, I, F) be a nondeterministic biautomaton with
the ⋄-property. Then (S · u) ◦ v = (S ◦ v) · u, for every S ⊆ Q and u, v ∈ Σ∗.

Proof. First we prove that (S · a) ◦ v = (S ◦ v) · a holds for every S ⊆ Q,
word w ∈ Σ∗, and a ∈ Σ by induction on the length of v. For |v| = 0, that is,
for v = λ, we have (S · a) ◦ v = S · a = (S ◦ v) · a. Now let |v| ≥ 1. Assume that
word v can be written as v = v′b, for some b ∈ Σ and v′ ∈ Σ∗. Then

(S · a) ◦ v = (S · a) ◦ v′b = ((S · a) ◦ b) ◦ v′ = ((S ◦ b) · a) ◦ v′.

Now we can use the inductive assumption on v′ and obtain

((S ◦ b) · a) ◦ v′ = ((S ◦ b) ◦ v′) · a = (S ◦ v′b) · a = (S ◦ v) · a.

Thus, we have shown (S ·a)◦v = (S ◦v) ·a, for every S ⊆ Q, a ∈ Σ, and v ∈ Σ∗.
Now we can prove the statement of the lemma by performing induction on

the length of the word u. The induction base starts with |u| = 0, that is, u = λ.
There we have (S · u) ◦ v = S ◦ v = (S ◦ v) · u. Now let |u| ≥ 1. Assume that u
writes as u = au′, for some a ∈ Σ and u′ ∈ Σ∗. Then

(S · u) ◦ v = (S · au′) ◦ v = ((S · a) · u′) ◦ v,

and by using first the inductive assumption on u′, and then the statement from
above, we obtain

((S · a) · u′) ◦ v = ((S · a) ◦ v) · u′ = ((S ◦ v) · a) · u′ = (S ◦ v) · au′ = (S ◦ v) · u,

which proves the statement of the lemma. ⊓⊔

By iteratively using Lemma 4, it follows that for biautomata with the ⋄-
property the accepting condition shown in Equation (1) is equivalent to the
condition [(I ·u1u2 . . . uk)◦vk . . . v2v1]∩F 6= ∅, i.e., such a biautomaton accepts
a word w ∈ Σ∗ if and only if [(I · u) ◦ v] ∩ F 6= ∅, for some words u, v ∈ Σ∗

with w = uv. The acceptance condition becomes even simpler, if the biautoma-
ton additionally has the F -property, which results from the following lemma.

6

Lemma 5. Let A = (Q, Σ, ·, ◦, I, F) be a nondeterministic biautomaton with
both the ⋄-property, and the F -property. Then [(S · uv) ◦w]∩F 6= ∅ if and only
if [(S · u) ◦ vw] ∩ F 6= ∅, for every S ⊆ Q and u, v, w ∈ Σ∗.

Proof. We prove the statement by induction on the length of v. Note that the
statement holds for |v| = 0, since (S · uv) ◦ w = (S · u) ◦ vw, for v = λ. Now
let |v| ≥ 1. In this case the word v can be written as v = v′a, for some v′ ∈ Σ∗

and letter a ∈ Σ. Then by Lemma 4 it follows

(S · uv) ◦ w = ((S · uv′) · a) ◦ w = ((S · uv′) ◦ w) · a.

Thus, [(S · uv) ◦ w] ∩ F 6= ∅ if and only if [((S · uv′) ◦ w) · a] ∩ F 6= ∅. Since A
has the F -property, the latter holds if and only if [((S · uv′) ◦ w) ◦ a] ∩ F 6= ∅.
Observe, that [((S · uv′) ◦ w) ◦ a] is equal to [(S · uv′) ◦ aw]. Now we use the
inductive assumption on v′, and see that [(S · uv′) ◦ aw] ∩ F 6= ∅ if and only if
[(S ·u) ◦ v′aw]∩F 6= ∅, which in turn is equivalent to [(S ·u) ◦ vw]∩F 6= ∅, and
therefore concludes the proof. ⊓⊔

By iteratively using Lemma 5, it follows that a biautomaton with both the ⋄-
property and the F -property accepts a word w ∈ Σ∗ if and only if [I ·w]∩F 6= ∅,
or equivalently, [I ◦ w] ∩ F 6= ∅. We summarize this in the following corollary.

Corollary 6. If A is a nondeterministic biautomaton with both the ⋄-property,
and the F -property, then L(A) = {w ∈ Σ∗ | [I · w] ∩ F 6= ∅ }. ⊓⊔

We can apply Corollary 6 to the biautomaton A from Example 1, and eas-
ily see that L(A) = a∗abc, by only considering the forward transitions. From
Corollary 6, one can see that L(A) is a regular language, if A has both the
⋄-property, and the F -property. But the F -property is not essential here, since
already the ⋄-property alone guarantees the regularity of the language L(A), as
we show in the following theorem.

Theorem 7. Let A be a nondeterministic biautomaton with the ⋄-property.
Then L(A) is a regular language.

Proof. Let A = (Q, Σ, ·, ◦, I, F) be a biautomaton with the ⋄-property. Lemma 4
implies, that A accepts a word w ∈ Σ∗ if and only if there are words u, v ∈ Σ∗,
with w = uv, and [(I · u) ◦ v] ∩ F 6= ∅. This means that there are q0, q, qf ∈ Q,
such that q0 ∈ I, q ∈ q0 · u, qf ∈ q ◦ v, and qf ∈ F . Thus, the language L(A)
can be described by

L(A) =
⋃

q∈Q

{u | q ∈ I · u } · { v | q ◦ v ∩ F 6= ∅ },

and it remains to show that both sets L1(q) = {u | q ∈ I · u }, and moreover
L2(q) = { v | q ◦ v ∩ F 6= ∅ } are regular, for every q ∈ Q. The language L1(q)
consists of all the words that, when read forward, lead from some initial state to
state q, and language L2 consists of the words that, when read backwards, lead
from state q to some accepting state. Thus, language L1(q) is accepted by the
nondeterministic finite automaton A1 = (Q, Σ, δ1, I, {q}) with δ1(p, a) = p · a,

7

for every p ∈ Q and a ∈ Σ—this shows that L1(q) is a regular language. Fur-
ther, the language L2(q)

R is accepted by the nondeterministic finite automaton
A2 = (Q, Σ, δ2, {q}, F), with δ2(p, a) = p ◦ a, for every p ∈ Q and a ∈ Σ—since
regular languages are closed under reversal, the set L2(q) is a regular language,
too. Since regular languages are closed under concatenation and union, the
proof is complete. ⊓⊔

The following example shows that the language accepted by a biautomaton
without the ⋄-property may already be non-regular.

Example 8. Let us consider the deterministic biautomaton A, which is defined
as A = ({0, 1, 2}, {a, b}, ·, ◦, {0}, {0}), with the transition functions 0 · a = 1,
1 ◦ b = 0, and all other transitions go to the sink state 2. The biautomaton A is
depicted in Figure 3, where the sink state 2, and all transitions leading to it are
not shown. This biautomaton does not have the ⋄-property, because (0·a)◦b = 0,
while (0 ◦ b) · a = 2. The language accepted by A is L(A) = { anbn | n ≥ 0 },
which is well known to be linear context free but not regular. ⊓⊔

0 1
a

b

Fig. 3. A deterministic biautomaton without the ⋄-property, that accepts a non-regular lan-
guage. The sink state 2, and transitions leading to it are not shown.

Of course there are also biautomata that accept regular languages, although
they may be missing the ⋄-property. From a descriptional complexity point of
view, biautomata without the ⋄-property allow a more succinct representation
of a regular language, when compared to biautomata with this property, or
compared to deterministic finite automata.

The following example presents a small deterministic biautomaton, such
that any equivalent deterministic biautomaton with both the ⋄-property, and
the F -property, as well as any equivalent deterministic finite automaton is at
least of exponential size.

Example 9. Consider the regular language L = (a+ b)n ·a · (a+ b)∗ ·a · (a+ b)n,
which is accepted by the deterministic biautomaton A, that is depicted in Fig-
ure 4. The biautomaton A does neither have the ⋄-property, nor the F -property.

0 . . . n 0′ . . . n′ f
a, b a, b a a, b a, b a

a, b

a, b

Fig. 4. A linear-size deterministic biautomaton B for the language L. Undefined transitions
lead to a non-accepting trap state, which is not shown here.

8

Further, A has O(n) states, but every equivalent deterministic finite automaton
accepting L needs Ω(2n) states. Since the minimal deterministic finite automa-
ton is contained in the minimal deterministic biautomaton with both the ⋄-
property, and the F -property, also every such biautomaton needs Ω(2n) states.
But if we abstain from the F -property, the language L can also be accepted by a
deterministic biautomaton B with the ⋄-property with O(n2) states. The states
of B are pairs (i, j), with i, j ∈ {0, 1, . . . , n, f}, and additionally, a sink state s,
the initial state is (0, 0), the only accepting state is (f, f), and the transition
functions ·B, and ◦B are defined as follows, for all i, j ∈ {0, 1, . . . , n, f}:

(i, j) ·B a =

{

(i + 1, j) if i /∈ {n, f},

(f, j) if i ∈ {n, f},
(i, j) ◦B a =

{

(i, j + 1) if j /∈ {n, f},

(i, f) if j ∈ {n, f},

(i, j) ·B b =

(i + 1, j) if i /∈ {n, f},

s if i = n,

(f, j) if i = f ,

(i, j) ◦B b =

(i, j + 1) if j /∈ {n, f},

s if j = n,

(i, f) if j = f ,

and the sink state s goes to itself on every transition. This automaton counts
the number of symbols it has read from the left in the first component of the
state, and the number of symbols it has read from the right in the second
component of the state. If a counter reaches n, then the next symbol (in the
corresponding reading direction) must be an a. Since the transition function ·
only operates on the first component of a state, and the function ◦ only operates
on the second component of a state, one can see that B has the ⋄-property. But
since (f, n) ·B a = (f, n) 6= (f, f) = (f, n) ◦B a, the F -property is not present
in B.

This example shows that, from a descriptional complexity point of view, it is
expensive to transform a biautomaton that does not have both the ⋄-property,
and the F -property into a biautomaton that has both these two properties. ⊓⊔

It remains to discuss the I-property. If we consider biautomata with the ⋄-
property, and the I-property, then switching from · to ◦ when reading a subword
induces a circular shift on the word, which can be seen in the following lemma.

Lemma 10. Let A = (Q, Σ, ·, ◦, I, F) be a nondeterministic biautomaton with
both the ⋄-property, and the I-property. Then (I · uv) ◦ w = (I · v) ◦ wu, for
every u, v, w ∈ Σ∗.

Proof. We use induction on the length of u. For |u| = 0, that is, in case u = λ
we have (I · uv) ◦ w = (I · v) ◦ w = (I · v) ◦ wu. Now let |u| ≥ 1 and assume
that u = au′, for some a ∈ Σ and u′ ∈ Σ∗. By Lemma 4, and the I-property,
we have

(I ·uv)◦w = ((I ·a) ·u′v)◦w = ((I ◦a) ·u′v)◦w = ((I ·u′v)◦a)◦w = (I ·u′v)◦wa,

and then the proof can be concluded by using the inductive assumption on u′

to obtain
(I · u′v) ◦ wa = (I · v) ◦ wau′ = (I · v) ◦ wu,

which concludes the proof. ⊓⊔

9

Lemma 10 implies that the left language of every state q, i.e., the set of words
leading to q, in a biautomaton with both the ⋄-property, and the I-property
is cyclic. Here a language L ⊆ Σ∗ is cyclic if and only if L = ©(L), where
©(L) = { vu ∈ Σ∗ | uv ∈ L }. In particular, this implies the following result.

Corollary 11. Let A be a nondeterministic biautomaton with both the ⋄- and
the I-property, then L(A) is a regular cyclic language. ⊓⊔

In fact, for the canonical biautomaton, which is the minimal deterministic
biautomaton that has both the ⋄-property, and the F -property [5], also the con-
verse implication holds. For a regular language L ⊆ Σ∗ we define the canonical
biautomaton AL = (QL, Σ, ·L, ◦L, IL, FL) with QL = {u−1Lv−1 | u, v ∈ Σ∗ },
initial states IL = {L}, final states FL = {u−1Lv−1 | λ ∈ u−1Lv−1 }, and
q ·L a = a−1q and q ◦L a = qa−1, where. u−1Lv−1 = {w ∈ Σ∗ | uwv ∈ L },
for u, v ∈ Σ∗. Thus we obtain the following characterization of regular cyclic
languages.

Theorem 12. A regular language is cyclic if and only if its canonical biau-
tomaton has the I-property.

Proof. If A is a biautomaton, not necessarily the canonical one, but with the
I-property, then we know from Corollary 11, that L(A) is a regular cyclic lan-
guage. For the converse implication, let L ⊆ Σ∗ be a regular cyclic language,
and let AL = (Q, Σ, ·, ◦, {q0}, F) be its canonical biautomaton with q0 = L.
Since L is cyclic, for every word v ∈ Σ∗ and a ∈ Σ, we have av ∈ L if and only
if va ∈ L. Thus, for every a ∈ Σ, we obtain q0 · a = a−1L = { v ∈ Σ∗ | av ∈ L }
which is equal to the set { v ∈ Σ∗ | va ∈ L } = La−1 = q0 ◦ a, so A has the
I-property. This proves the stated claim. ⊓⊔

We can also characterize commutative regular languages by the structure
of their canonical biautomaton. A regular language L ⊆ Σ∗ is commutative
if for all words u, v ∈ Σ∗ and symbols a, b ∈ Σ we have uabv ∈ L if and
only if ubav ∈ L. One can see by induction that this condition is equivalent to
the condition that for all words u, v, x, y ∈ Σ∗ we have uxyv ∈ L if and only
if uyxv ∈ L.

Theorem 13. Let L ⊆ Σ∗ be a regular language and A = (Q, Σ, ·, ◦, I, F) its
canonical biautomaton. Then L is commutative if and only if q · a = q ◦ a, for
every q ∈ Q and a ∈ Σ.

Proof. Let L ⊆ Σ∗ be a regular language, and let A = (Q, Σ, ·, ◦, I, F) be the
canonical biautomaton of L, with q · a = q ◦ a, for all q ∈ Q and a ∈ Σ.
Then, by Corollary 11, all the right languages L(qA) of states q ∈ Q are cyclic,
since qA has the I-property. Since the right languages of states of the canonical
biautomaton are quotients u−1Lv−1, for u, v ∈ Σ∗, all these quotients are cyclic.
Thus, for all u, v, x, y ∈ Σ∗ we have xy ∈ u−1Lv−1 if and only if yx ∈ u−1Lv−1.
It follows that L is commutative.

For the converse, assume L is commutative, and consider a symbol a ∈ Σ,
and a state q ∈ Q that corresponds to a quotient u−1Lv−1, for some u, v ∈ Σ∗.

10

Then we have

q · a = [u−1Lv−1] · a = (ua)−1Lv−1 = {x ∈ Σ∗ | uaxv ∈ L },

q ◦ a = [u−1Lv−1] ◦ a = u−1L(av)−1 = {x ∈ Σ∗ | uxav ∈ L },

and since L is commutative, it follows q · a = q ◦ a. ⊓⊔

Note that the condition q·a = q◦a together with the ⋄-property in particular
implies that (q · a) · b = (q · b) · a holds for the forward transition function of
the canonical biautomaton. This nicely shows the connection to commutative
finite automata [7], where δ(q, ab) = δ(q, ba) holds for the transition function δ
of the finite automaton.

4 The Dual of a Biautomaton

For classical finite automata, an automaton for the reversal of the accepted
language can be obtained by constructing the reversal, or dual automaton,
i.e., by reversing the transitions, and interchanging initial and final states. For
biautomata, one obtains an automaton for the reversal of the language by simply
interchanging the transition functions · and ◦. Nevertheless, it is interesting to
see what happens, if we apply a similar construction as for finite automata to
biautomata. We will see in Section 5, that similar to finite automata, the dual
of a biautomaton can be used to construct a minimal biautomaton. Now let
us define the reversal, or dual of the biautomaton A = (Q, Σ, ·, ◦, I, F) as the
biautomaton AR = (Q, Σ, ·R, ◦R, F, I), that is obtained from A by interchanging
the initial and final states, and by reversing all transitions, such that p ∈ q ·Ra if
and only if q ∈ p ·a, and p ∈ q◦R a if and only if q ∈ p◦a. Note that (AR)R = A.

Lemma 14. Let A = (Q, Σ, ·, ◦, I, F) be a nondeterministic biautomaton, and
let AR = (Q, Σ, ·R, ◦R, F, I) be the dual of A. Then for every states p, q ∈ Q
and words u, v ∈ Σ∗, we have q ∈ (p · u) ◦ v if and only if p ∈ (q ◦R vR) ·R uR,
and q ∈ (p ◦ v) · u if and only if p ∈ (q ·R uR) ◦R vR.

Proof. We prove the first part of the statement, namely q ∈ (p ·u)◦v if and only
if p ∈ (q ◦R vR) ·R uR, by induction on |uv|. The second part of the statement
then follows by symmetric argumentation, since (AR)R = A. For |uv| = 0, i.e.,
for u = v = λ, we have (p · u) ◦ v = {p} = (p ◦R vR) ·R uR, so the statement
holds in this case. Now let |uv| ≥ 1, then we have uv = u′av′, with u′, v′ ∈ Σ∗,
and a ∈ Σ, such that either u = u′a, or v = av′. First consider the case u = u′a.
Then we have q ∈ (p · u) ◦ v if and only if there are states p1, p2 ∈ Q, such
that p1 ∈ p · u′, p2 ∈ p1 · a, and q ∈ p2 ◦ v. Now we can apply the inductive
assumption on the words u′, and v, since both are shorter than uv = u′av′, and
see that p1 ∈ p · u′ holds if and only if p ∈ p1 ·

R u′R, and q ∈ p2 ◦ v holds if and
only if p2 ∈ q◦R vR. Further, by definition of ·R, we have p2 ∈ p1 ·a if and only if
p1 ∈ p2 ·

R a. Putting all this together, we have q ∈ (p · u) ◦ v if and only if there
are states p1, p2 ∈ Q, such that p2 ∈ q ◦R vR, p1 ∈ p2 ·

R a, and p ∈ p1 ·
R u′R,

i.e., if and only if p ∈ (q ◦R vR) ·R uR. The other case, v = av′ can be shown
similarly: q ∈ (p · u) ◦ v = ((p · u) ◦ v′) ◦ a if and only if there is a state p1 ∈ Q,

11

such that p1 ∈ (p · u) ◦ v′, and q ∈ p1 ◦ a. By the inductive assumption, we have
p1 ∈ (p · u) ◦ v′ if and only if p ∈ (p1 ◦

R v′R) ·R uR, and by the definition of ◦R,
we have q ∈ p1 ◦ a if and only if p1 ∈ q ◦R aR. Thus, we have q ∈ (p · u) ◦ v if
and only if p ∈ ((q ◦R aR) ◦R v′R) ·R uR = (q ◦R vR) ·R uR. ⊓⊔

Note that if A has the ⋄-property, then the statement of Lemma 14 can be
simplified to q ∈ (p · u) ◦ v if and only if p ∈ (q ·R uR) ◦R vR.

Lemma 15. Let A be a nondeterministic biautomaton, then the following holds:

1. A has the ⋄-property if and only if AR has the ⋄-property.
2. A has the F -property if and only if AR has the I-property.
3. A has the I-property if and only if AR has the F -property.

Proof. Let A = (Q, Σ, ·, ◦, I, F) be a biautomaton, and AR = (Q, Σ, ·R, ◦R, F, I)
be its dual. Assume A has the ⋄-property, i.e., (q·a)◦b = (q◦b)·a, for every q ∈ Q
and a, b ∈ Σ. To see that AR has the ⋄-property, consider a state q ∈ Q, and note
that by Lemma 14 we have (q ·R a) ◦R b = { p ∈ Q | q ∈ (p ◦ b) · a }. Since A has
the ⋄-property, we know that { p ∈ Q | q ∈ (p◦ b) ·a } = { p ∈ Q | q ∈ (p ·a)◦ b },
and by using Lemma 14 again, we obtain { p ∈ Q | q ∈ (p ·a)◦ b } = (q ◦R b) ·R a.
Thus, we have shown (q ·Ra)◦Rb = (q◦Rb)·Ra, for every q ∈ Q and a, b ∈ Σ. We
have shown that the ⋄-property of A implies the ⋄-property of AR. The reverse
implication immediately follows, since (AR)R = A, so the first statement is
proven.

Now we show that the F -property of A implies the I-property of AR. If A
has the F -property, then { q ∈ Q | (q · a)∩F 6= ∅ } = {q ∈ Q | (q ◦ a)∩F 6= ∅ },
for every a ∈ Σ. Since by Lemma 14 we have

F ·R a =
⋃

f∈F

f ·R a =
⋃

f∈F

{ q ∈ Q | f ∈ q · a } = { q ∈ Q | (q · a) ∩ F 6= ∅ }

and

F ◦R a =
⋃

f∈F

f ◦R a =
⋃

f∈F

{ q ∈ Q | f ∈ q ◦ a } = { q ∈ Q | (q ◦ a) ∩ F 6= ∅ },

the dual AR has the I-property—note that F is the set of initial states of AR.
For the reverse implication note that (q · a) ∩ F 6= ∅ if and only if q ∈ F ·R a,
and if AR has the I-property, then q ∈ F ·R a if and only if q ∈ F ◦R a, and the
latter again holds if and only if (q ◦ a) ∩ F 6= ∅. Thus, the second statement is
proven. The final statement now follows from the fact that (AR)R = A. ⊓⊔

If we have a biautomaton A with both the ⋄- and the F -property, then
Lemma 15 implies that the dual of the biautomaton A has the ⋄- and the I-
property. Further, Lemma 10 implies, that the language accepted by the dual
is cyclic. In fact, we can show the following result.

Corollary 16. Let A = (Q, Σ, ·, ◦, I, F) be a nondeterministic biautomaton
that has both the ⋄- and the F -property, and let AR = (Q, Σ, ·R, ◦R, F, I) be
the dual of A. Then L(AR) = ©(L(A)R), i.e., automaton AR accepts the cyclic
shift of the reversal of L(A).

12

Proof. Let w ∈ L(A), then by Corollary 6, we have (I · w) ∩ F 6= ∅, i.e., there
is a state p ∈ I, and a state q ∈ F , such that q ∈ p · w. By Lemma 14, this
is equivalent to p ∈ q ·R wR, which means that wR is accepted by AR. Since
by Corollary 11, the language L(AR) is cyclic, we know that ©(wR) ⊆ L(AR),
for every w ∈ L(A), so ©(L(A)R) ⊆ L(AR). For the other inclusion let w ∈
L(AR), then we know that there are words u, v ∈ Σ∗, with uv = w, such that
q0 ∈ (qf ·R u) ◦R v, for some qf ∈ F , and q0 ∈ I. Lemma 10 implies that also
q0 ∈ qf ·R vu, which is equivalent to qf ∈ q0 ·R (vu)R, by Lemma 14. This
means that (vu)R is accepted by A, so vu ∈ L(A)R. Since w = uv ∈ ©(vu), we
have w ∈ ©(L(A)R). ⊓⊔

What can be said about L(AR), if A is a biautomaton with both the ⋄- and
the I-property? Unfortunately, the language cannot be identified by some oper-
ation on the language L(A), because a regular cyclic language can be accepted
by structurally different biautomata that have the ⋄- and the I-property. From
these structural differences, also different dual automata, that accept different
languages, can result, as the following example shows.

Example 17. Consider the cyclic language L = {ab, ba}, which is accepted by all
the three biautomata A1, A2, and A3, that are depicted in Figure 5. Note that

0

1 2

3

a

a

b

b

b

b

a

a

0

1 2

3

a

a

b

b

b

a

0

1 2

3

a

a

b

b

b

a

Fig. 5. Three different nondeterministic biautomata A1 (left), A2 (middle), and A3 (right),
all accepting the language {ab, ba}.

these three automata have both the ⋄- and the I-property. The corresponding
dual automata AR

1 , AR
2 , and AR

3 are depicted in Figure 6. Note that these
three automata have both the ⋄- and the F -property. Further note, that the
languages L(AR

1) = {ab, ba}, L(AR
2) = {ab}, and L(A3)

R = {ba} accepted by
the dual automata are pairwise distinct. ⊓⊔

5 Brzozowski-Like Minimization for Biautomata

An interesting algorithm for minimizing deterministic finite automata is that of
Brzozowski [2]: given a (deterministic or nondeterministic) finite automaton A,
it computes P([P(AR)]R), which turns out to be the minimal deterministic fi-
nite automaton for L(A). While the minimality of the constructed automaton
needs some argumentation, the facts that it accepts the correct language, and
that it is a deterministic finite automaton are easy to see, since the dual BR

13

0

1 2

3

a

a

b

b

b

b

a

a

0

1 2

3

a

a

b

b

b

a

0

1 2

3

a

a

b

b

b

a

Fig. 6. The dual automata AR

1 (left), AR

2 (middle), and AR

3 (right) of the corresponding
biautomata from Figure 5 accepting pairwise different languages.

of a finite automaton B accepts the reverse of the language accepted by B,
i.e., L(BR) = L(B)R. We have seen in the Section 4, that the relation between
the languages accepted by a biautomaton A and its dual AR is not as simple
as for classical finite automata. Nevertheless we can show that Brzozowski’s
minimization algorithm can still be used for minimization of biautomata. More
precisely, we prove that for every (deterministic or nondeterministic) biautoma-
ton A with both the ⋄- and the F -property, the automaton P([P(AR)]R) is
the unique minimal deterministic biautomaton, that has both the ⋄- and the
F -property. Note that the middle automaton P(AR) is a deterministic biau-
tomaton, that has the I-property. The following lemma starts with this middle
automaton.

Lemma 18. Let A be a deterministic biautomaton with both the ⋄- and the
I-property, and with no unreachable states. Then P(AR) is a minimal biau-
tomaton with both the ⋄- and the F -property.

Proof. Let A = (Q, Σ, ·, ◦, q0, F) be a deterministic biautomaton with both
the ⋄- and the I-property, where all states q ∈ Q are reachable. Further, let
AR = (Q, Σ, ·R, ◦R, F, {q0}) be its dual biautomaton, and let B = P(AR) be
the powerset biautomaton of AR. Assume that B = (QB, Σ, ·B, ◦B, qB

0 , FB).
Lemmas 2 and 15 imply that B has both the ⋄- and the F -property. In the
following, we prove that B does not have a pair of distinct, but equivalent
states. Since by definition of P all states in B = P(AR) are reachable, the
minimality of B then follows from [5].

Let P1, P2 ∈ QB be two distinct states of B, then we may assume that there
is an element q ∈ Q, with q ∈ P1 \ P2. Since q is reachable in the deterministic
biautomaton A, there are words u, v ∈ Σ∗, such that q = (q0 ·u)◦v. Since A has
both the ⋄- and the I-property, Lemma 10 implies q = q0 · vu. This means that
in the dual automaton AR, we have q0 ∈ q ·R (vu)R, by Lemma 14. Furthermore,
this means that in the powerset biautomaton B we have q0 ∈ (P1 ·B (vu)R),
because q ∈ P1. Since the accepting states of B are the sets P ∈ QB with q0 ∈ P ,
it follows that the word (vu)R is accepted by B, when starting from state P1.
Now assume, for the sake of contradiction, that (vu)R is also accepted by B,
when starting from state P2. Then, since B has the ⋄- and the F -property, we
know from Corollary 6, that q0 ∈ P2 ·B (vu)R, i.e., that there is a state p ∈ P2,
with q0 ∈ p ·R (vu)R. From Lemma 14, and the fact that A is deterministic,

14

we obtain p = q0 · vu = q, which is a contradiction to q /∈ P2. We have shown
that (vu)R is accepted by B when starting from state P1, but not when starting
from state P2, so P1 and P2 cannot be equivalent. ⊓⊔

Now we are able to prove the main result of this section.

Theorem 19. Let A be a (deterministic or nondeterministic) biautomaton
with both the ⋄- and the F -property. Then P([P(AR)]R) is the unique mini-
mal biautomaton with both the ⋄- and F -property, for the language L(A).

Proof. Let A = (Q, Σ, ·, ◦, I, F) be a biautomaton with both the ⋄- and the
F -property. Then let B = P(AR) and C = P(BR), where we assume that
B = (QB, Σ, ·B, ◦B, qB

0 , FB), and C = (QC , Σ, ·C , ◦C , qC
0 , FC). Then B is a

deterministic biautomaton with the ⋄- and the I-property, with no unreachable
states. So by Lemma 18, the automaton C is a minimal biautomaton with the ⋄-
and the F -property. It follows from [5], that C is the unique minimal automaton,
among all biautomata with these two properties, accepting L(C). It remains to
prove L(A) = L(C), which, due to Corollary 6, can be done by only reasoning
about forward transitions: For all words w ∈ Σ∗, we have w ∈ L(A) if and only
if (I ·w)∩F 6= ∅. By Lemma 14, this holds if and only if (F ·RwR)∩I 6= ∅, which
is the same as qB

0 ·B wR ∈ FB, by definition of B. We again use Lemma 14, to see
that qB

0 ·B wR ∈ FB holds if and only if qB
0 ∈ FB ·RB w, which by definition of C

is equivalent to qC
0 ·C w ∈ FC . Thus, we have w ∈ L(A) if and only if w ∈ L(C).

⊓⊔

We illustrate the algorithm in the following example.

Example 20. Let A = (Q, {a, b}, ·, ◦, I, F) be a nondeterministic biautomaton
with Q = {0, 1, 2, 3, 4}, I = {0, 1}, F = {1, 4}, and whose transition functions ·,
and ◦ are depicted on the left in Figure 7. Note that A has both the ⋄- and the
F -property. The corresponding powerset biautomaton B = P(AR) of the dual
of A is depicted in the middle in Figure 7. Finally, the minimal deterministic
biautomaton C = P(BR) is depicted on the right in Figure 7, where again
the sink state ∅, and all transitions leading to it are omitted. Let us follow the
argumentation in the proof of Lemma 18, to show that the states p and s cannot
be equivalent. Note that p = { {0}, {1, 3}, {1, 4} }, and s = { {1, 3}, {1, 4} } differ
in the element {0}, which is reachable in the biautomaton B, for example by
first reading a with a forward transition, and then b with a backward transition:
({1, 4} · a) ◦ b = {0}. One can check that by Lemma 10, this state of B is also
reached by first reading b forwards, and then a forwards: ({1, 4} · b) · a = {0}.
This in turn means by Lemma 14 that the word ba is accepted from state p, but
not from state s, since {0} ∈ p \ s. Thus, states p, and s cannot be equivalent.

⊓⊔

References

1. Brzozowski, J.A.: Derivatives of regular expressions. J. ACM 11, 481–494 (1964)
2. Brzozowski, J.A.: Canonical regular expressions and minimal state graphs for definite

events. In: Mathematical Theory of Automata, MRI Symposia Series, vol. 12, pp. 529–
561. Polytechnic Press, NY (1962)

15

0 1

2 3

4

a

a
b

a

a

b

b

a

a

a

1, 4

2

1, 3

0

a

a

b b

a

a

b

a

a

p r

q s

t

b

a a aa

a, b
a

a

a

b

Fig. 7. Left: The nondeterministic biautomaton A with the ⋄- and the F -property. Middle:
The deterministic biautomaton B = P(AR), with the ⋄- and the I-property. Right: The
minimal deterministic biautomaton C = P(BR) with the ⋄- and F -property. The state sym-
bols p, q, r, s, t are abbreviations for subsets of the state set of B. It is p = {{0}, {1, 3}, {1, 4}},
q = {{0}, {2}, {1, 3}, {1, 4}}, r = {{1, 3}}, s = {{1, 3}, {1, 4}}, and t = {{1, 4}}. The sink
state ∅ in the biautomata B and C and transitions leading to it are not shown.

3. Champarnaud, J.-M., Dubernard, J.-P., Jeanne, H., Mignot, L.: Two-sided derivatives for
regular expressions and for hairpin expressions. arXiv:1301.3316v1 [cs.FL] (2012)

4. Jirásková, G., Kĺıma, O.: Descriptional complexity of biautomata. In: Kutrib, M., Moreira,
N., Reis, R. (eds.) Proceedings of the 14th International Workshop Descriptional Complex-
ity of Formal Systems. LNCS, vol. 7386, pp. 196–208. Springer, Braga, Portugal (2012)

5. Kĺıma, O., Polák, L.: On biautomata. RAIRO–Informatique théorique et Applications /
Theoretical Informatics and Applications 46(4), 573–592 (2012)

6. Loukanova, R.: Linear context free languages. In: Jones, C.B., Liu, Z., Woodcock, J. (eds.)
Proceedings of the 4th International Colloquium Theoretical Aspects of Computing. LNCS,
vol. 4711, pp. 351–365. Springer, Macau, China (2007)

7. Pin, J.-E.: Handbook of Formal Languages, Vol. 1, Word, Language, Grammar, vol. 1,
chap. Syntactic Semigroups, pp. 679–746. Springer (1997)

8. Rosenberg, A.L.: A machine realization of the linear context-free languages. Inform. Control
10, 175–188 (1967)

16

Institut für Informatik

Justus-Liebig-Universität Giessen

Arndtstr. 2, 35392 Giessen, Germany

Recent Reports

(Further reports are available at www.informatik.uni-giessen.de.)

A. Malcher, K. Meckel, C. Mereghetti, B. Palano, Descriptional Complexity of Pushdown Store
Languages, Report 1203, May 2012.

M. Holzer, S. Jakobi, On the Complexity of Rolling Block and Alice Mazes, Report 1202,
March 2012.

M. Holzer, S. Jakobi, Grid Graphs with Diagonal Edges and the Complexity of Xmas Mazes,
Report 1201, January 2012.

H. Gruber, S. Gulan, Simplifying Regular Expressions: A Quantitative Perspective, Re-
port 0904, August 2009.

M. Kutrib, A. Malcher, Cellular Automata with Sparse Communication, Report 0903, May
2009.

M. Holzer, A. Maletti, An n log n Algorithm for Hyper-Minimizing States in a (Minimized)
Deterministic Automaton, Report 0902, April 2009.

H. Gruber, M. Holzer, Tight Bounds on the Descriptional Complexity of Regular Expressions,
Report 0901, February 2009.

M. Holzer, M. Kutrib, and A. Malcher (Eds.), 18. Theorietag Automaten und Formale
Sprachen, Report 0801, September 2008.

M. Holzer, M. Kutrib, Flip-Pushdown Automata: Nondeterminism is Better than Determinism,
Report 0301, February 2003

M. Holzer, M. Kutrib, Flip-Pushdown Automata: k + 1 Pushdown Reversals are Better Than
k, Report 0206, November 2002

M. Holzer, M. Kutrib, Nondeterministic Descriptional Complexity of Regular Languages, Re-
port 0205, September 2002

H. Bordihn, M. Holzer, M. Kutrib, Economy of Description for Basic Constructions on Ra-
tional Transductions, Report 0204, July 2002

M. Kutrib, J.-T. Löwe, String Transformation for n-dimensional Image Compression, Re-
port 0203, May 2002

A. Klein, M. Kutrib, Grammars with Scattered Nonterminals, Report 0202, February 2002

A. Klein, M. Kutrib, Self-Assembling Finite Automata, Report 0201, January 2002

M. Holzer, M. Kutrib, Unary Language Operations and its Nondeterministic State Complexity,
Report 0107, November 2001

A. Klein, M. Kutrib, Fast One-Way Cellular Automata, Report 0106, September 2001

M. Holzer, M. Kutrib, Improving Raster Image Run-Length Encoding Using Data Order, Re-
port 0105, July 2001

M. Kutrib, Refining Nondeterminism Below Linear-Time, Report 0104, June 2001

M. Holzer, M. Kutrib, State Complexity of Basic Operations on Nondeterministic Finite Au-
tomata, Report 0103, April 2001

M. Kutrib, J.-T. Löwe, Massively Parallel Fault Tolerant Computations on Syntactical Pat-
terns, Report 0102, March 2001

A. Klein, M. Kutrib, A Time Hierarchy for Bounded One-Way Cellular Automata, Re-
port 0101, January 2001

M. Kutrib, Below Linear-Time: Dimensions versus Time, Report 0005, November 2000

M. Kutrib, Efficient Universal Pushdown Cellular Automata and their Application to Com-
plexity, Report 0004, August 2000

M. Kutrib, J.-T. Löwe, Massively Parallel Pattern Recognition with Link Failures, Report 0003,
June 2000

