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1 Introduction

Context-free grammars are one of the most important and most developed parts
of formal language theory. However, in many situations we are confronted with
naturally non-context-free languages.

“The world is not context-free”: a comprehensive discussion of this observa-
tion giving “seven circumstances where context-free grammars are not enough”
can be found in [4]. So there is considerable interest in grammars based on
context-free rewriting rules that extend the generative capacity but have simi-
lar properties. Several approaches restrict the use of productions in context-free
derivations. They are considered in the framework of regulated rewriting. A
detailed presentation is the monograph [4] and [5], which include references for
the following cited related results.

Particularly related are grammars with partially parallel substitution mode.
One development are Indian parallel grammars where a substitution step con-
sists of the substitution of all instances of one nonterminal according to one and
the same rule. It has turned out that the absence or presence of erasing rules
does not affect their generative capacity, and that the generated language fam-
ily is incomparable with context-free languages. The so-called k-grammars are
parallel rewriting systems where the degree of synchronous rewriting is bounded
by some constant k. Besides the first step in such systems exactly k& nontermi-
nals have to be rewritten during a derivation step. The rules and nonterminals
may be different. Hierarchies depending on k£ have been shown for k-grammars
with and without erasing productions.

The next restriction concerns the choice and the places of applications of the
productions. In scattered context grammars the context-free rewriting rules are
grouped together into matrices. The rules in a matrix must be applied simulta-
neously during one step. The nonterminals to be rewritten in the sentential form
have to appear in the ordering given by the rules in the matrices. A slight mod-
ification where the ordering condition is relaxed yields the unordered scattered
context grammars. The language families of unordered grammars with and
without erasing rules are properly included in the languages generated by their
ordered variants, respectively. Ordered grammars with scattered context and
erasing rules are characterizing the recursively enumerable languages. There
are several other developments, e.g. k-simple grammars where also a hierarchy
depending on k is known.

Common to all of these restrictions is that the conditions for applying a pro-
duction at some time can be verified by inspecting the sentential form at the
same time. If the requirement of applying all rules in a matrix simultaneously is
relaxed, unordered scattered context grammars become unordered vector gram-
mars. The matrices are now called vectors, and the requirement is that once
a production in a vector has been applied, all productions must be applied
during the derivation. Thus, in general it cannot be decided whether a pro-
duction can be applied or not by inspecting just one sentential form. This can



be seen as a vertical context condition. Stronger definitions are given in [10].
Unordered vector grammars have been introduced in [3]. For a subclass with-
out A-productions and unit-productions it was shown in [12] that the generated
languages are belonging to the complexity class LOGCFL. In [11] this result has
been improved to arbitrary languages generated by unordered vector grammars.

Here we investigate grammars with scattered nonterminals which are a natu-
ral extention of regular and context-free grammars. Basically, the idea is to
consider sentential forms of context-free-like grammars where some occurrences
of one and the same nonterminal may be coupled. A derivation step replaces
a nonterminal together with its coupled instances, whereby new couplings are
only established between nonterminals of the derived subforms. The idea is
motivated by the following observation. Some word a; ---a, can be seen as
a set of couples {(a1,1),...,(an,n)} bringing together letters and positions.
If one letter appears at several positions we could write (a,i1,...,%,) instead
of (a,41),...,(a,ip). From this point of view the representation is not unique
since, e.g. (a,%1,%2,%), (@,1%3,...,ip—1) is another one. On the other hand, some
tuples can be seen as in some sense generalized or coupled nonterminals that
are to be rewritten in a context-free fashion.

A formal definition of this notion is given in the next section.

A natural condition is the limitation of the maximal number of coupled-up non-
terminals. This restriction leads to grammars of a certain degree. In Section 3
it will be shown that there exists an infinite degree hierarchy of separated lan-
guage families. The hierarchy has the considerable property that degree one
meets the regular and degree two the context-free languages. So we obtain an
in some sense unified generalization of both families. Moreover, all families will
be shown to belong to the complexity class LOGCFL which is in P and in the
context-sensitive languages.

Another approach is to limit the number of nonterminals which may simul-
taneously appear in a sentential form. These grammars of finite index have
extensively be investigated. E.g., for matrix grammars with context-free rules
an infinite hierarchy has been shown [4]. By means of different closure proper-
ties, which are investigated in Section 4, these grammars and grammars with
scattered nonterminals are generating different languages.

2 Grammars with Scattered Nonterminals

We denote the positive integers {1,2,...} by N and the set NU {0} by Ny. The
empty word is denoted by A and the reversal of a word w by w. For the length
of w we write |w|. The number of occurrences of a symbol a in w is denoted
by |w|e. The Parikh mapping associated with an alphabet T' = {a1,...,a,} is
a map v such that Y(w) = (|w|ay,- -, |wla,)- We use C for inclusions and C if
the inclusion is strict.

Due to the basic motivation and the underlying idea we have terminal and



nonterminal symbols, but we do not regard couplings between terminals. More
formally, let N and T be two finite sets and w € (NUT')*. In order to express the
couplings between symbols from N in w we use a set of tuples whose components
identify the corresponding positions. So (aj ---ay,C) is a word with coupled
symbols from N if and only if a;---a, € (NUT)* and C is a subset of the
tuples which partition {1,...,n} such that for each tuple (i1,...,4,) € C there
is some X € N such that a;; =--- =a;, = X. The set of all couplings obeying
these restrictions for a given word w is denoted by Cn(w).

Now we are prepared to define grammars based on this concept.

Definition 1 A grammar G with scattered nonterminals is a system (N, T, S, P),
where

1. N is the finite set of nonterminals,

2. T is the finite set of terminals,

3. S € N is the axiom (starting symbol),

4. P is the finite set of productions each of one of the forms (S — w,C)
where w € (N\ {S} UT)*, C € Cn(w), or (X — wr,...,wp,C) where
XeN,peN wj € (N\{S}UuT) for1 <j<p, CeCn(w- wp)
such that all (i1,...,1q) € C satisfy ¢ < p.

Since the starting symbol does not appear on the right-hand side of any pro-
duction, productions of the form (S — w, C) are only possible during the first
derivation step. They establish possibly some couplings. Productions of the
form (X — wy,...,wp,C) mean that the instances of a p-fold coupled symbol
X are rewritten by w,...,wp. Since C' € Cy(w; - wp) new couplings are
only possible between nonterminals in the derived subforms. The condition
q < p implies that — besides the first derivation step — the maximal number
of nonterminals in a coupling cannot grow. Thus, a production of the form
(X = wi,...,wp,C) is applicable to

if there exists (i1,...,7p) € D such that u;, =+ = u;, = X.
The application yields v = (vy - - - vy, E), where
/Ul e U’I’L = u]. e u’t’l*lwlui1+1 .o ui271w2ui2+1 .o wpuzp+1 PR um

and E contains exactly the couplings derived from C and D \ {(i1,...,%p)}
by adjusting the symbol positions accordingly. As usual we write u = v if u
directly derives v and =* for the reflexive and transitive closure of =.

The language generated by G is
LG) ={wlweT", (S0)="(w0)}

The condition that a coupling is always between one and the same nonterminal
makes life easier but is not really a restriction or even a limitation. Since
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derivations are in a context-free-like fashion a grammar without this property
can always be transformed to an equivalent one obeying the condition. The
only thing to do is to rename uniquely coupled-up nonterminals that appear on
the left-hand side of a production.

Example 2 The grammar ({4, S}, {a,b,c}, S, P) with
P={(S—A44,{(1,2)}), (A—adbcA{(25)}), (A—abc0})}
generates the language {a"0"c™ | n € N}. The derivation for n =4 is

(5,0) = (A4,{(1,2)}) = (adbcA,{(2,5)})
= (aaAbbccA,{(3,8)}) = (aaaAbbbecccA, {(4,11)})
= (aaaabbbbccece, ()

More figurative the derivation together with the current couplings may be rep-
resented as: — —

-
S = AA = aAbcA = aaAbbccA = - -

Similarly, a grammar for the language {ww | w € {a,b} "} can be constructed.

A natural condition is the limitation of the maximal number of coupled-up
nonterminals. This restriction leads to grammars of a certain degree.

Definition 3 Let m € N be a constant. A grammar with scattered nontermi-
nals

1. is of degree 2m if for its productions (S = w, C) all (i1,...,i,) € C satisfy

g < m (i.e. the maximal number of nonterminals in a coupling is bounded

by m).
2. It is even of degree 2m — 1 if in addition for its productions (S — w,C)
resp. (X — wy,...,wy,C) a coupling (i1,...,4,) € C implies i, = |w|

resp. iy, = |wy - wy,| (i.e. iy, is the position of the rightmost symbol on
the right-hand side).

Roughly speaking, the degree of a grammar determines the maximal number
of subwords that may be lengthened during one derivation step in a coupled
fashion (a nonterminal may have left and right neighboring subwords). For odd
degrees the rightmost coupled nonterminal is forced to have only left neighbors
if the number of symbols in that coupling is maximal. This is in some sense a
generalization of right-linearity. In general, for a grammar of degree k the max-
imal number £ of nonterminals in one coupling can be derived during the first
transition step. In subsequent steps this number cannot be increased. In case
of even degrees there may occur more than one coupling with k£ nonterminals.
In case of odd degrees for maximal couplings it is requested that the rightmost
symbol on the right-hand side of a production belongs to the coupling. This
implies that there may occur at most one maximal coupling in any sentential
form. But nevertheless there may occur other couplings which are not maximal.



For example, the language {a™b"c™ | n € N} in Example 2 is generated by a
grammar of degree three. The construction can be adapted such that for any
k € N the language Lj = {af ---a} | n € N} over the alphabet {a1,...,a;} is
generated by a grammar of degree k.

The family of all languages which can be generated by grammars with scattered
nonterminals is denoted by .Z(SN). If the productions are restricted to degree
k we use the notion .Z(k-SN).

Corollary 4 Let k € N be a constant, then Ly € £ (k-SN).

3 Generative Capacity

Taking a closer look at the definitions leads to the observation that in case of
degree two on the right-hand sides of the productions there is always a single
word. Moreover, the maximal number of nonterminals in a coupling is one.
This means that there are no useful couplings at all and, hence, the grammar
is a context-free one.

The situation in case of degree one is more restrictive. If a nonterminal appears
on the right-hand side of some production, then it has to be the rightmost
symbol since again the maximal number of symbols coupled together is one.
This implies that there is at most one nonterminal on each right-hand side.
Together it follows that the grammar is right-linear. We denote the regular
languages by .Z(REG) and the context-free languages by .Z(CF).

Corollary 5 Z(1-SN) = Z(REG) and Z(2-SN) = Z(CF)

The corollary relates the generative capacity of degree one and two to the reg-
ular and context-free languages, respectively. A fundamental result concerning
arbitrary degrees is immediately derived from the definition and a well-known
result about context-free languages. A language L is semilinear if its set of
Parikh vectors {¢(w) | w € L} is semilinear.

Lemma 6 FEach of the languages in .Z(SN) or Z(k-SN) for some k € N is
semilinear.

Proof. Let G be some grammar under consideration. The right-hand sides of
its productions can be rearranged such that coupled symbols are placed joint
together. In general, the resulting grammar G’ generates a different language
but L(G) and L(G') are letter-equivalent. Since the coupled nonterminals of
G' appear joint together they can be replaced by just one single nonterminal,
respectively, without changing the generated language. Now we have a context-
free grammar G” such that L(G") and L(G) are letter-equivalent. In [8] it has
been shown that every context-free language is semilinear. Trivially, letter-
equivalence preserves semilinearity. O



3.1 Strictly Monotone Derivations

In order to investigate the relationships between degrees k and k + 1, in partic-
ular, to prove an infinite hierarchy, we need a tool for proving negative results.
This will be a pumping argument. In order to prove this and other results it is
helpful to simplify an arbitrary grammar. A production (X — wy,...,wp,C)
is said to be strictly monotone if it inserts more symbols than it replaces, i.e.,
if |wy - - - wp| > p. Otherwise we call a production non-increasing.

Next we are going to show how to remove non-increasing productions possibly
with the exceptions (S — a, () for a € TU{A} if the empty word or some words
of length one have to be generated.

Lemma 7 For every grammar G of degree k € N there exists an equivalent
grammar G' of degree k whose only non-increasing productions are of the form
(S — a,0) where a € T U {\}.

Proof. Let G be some grammar of degree k. At first we construct a grammar
G from G as follows.

Let r = (X — wy,...,wp, C') be a non-increasing production of G. For all pro-
ductions r; whose right-hand sides contain a p-fold coupled X a new production
7 is included in G, where the p-fold coupled X is replaced by wy, ... ,wp. The
set of couplings of 7; is simply given by C and the couplings of r;. Besides the
(new) productions 7; the (0ld) productions r and r; are also included in G. This
step is repeated until the resulting set of productions remains unchanged.

Since during the construction none of the old productions is deleted and the
right-hand sides of the newly included productions never get longer the con-
struction process terminates. (There exist only finitely many productions which
may be included.)

The equivalence L(G) = L(G) follows immediately. In general, G has still non-
increasing productions but, on the other hand, if w belongs to L(G), then there
exists a derivation (S, () =* (w, ) in G, where the only non-increasing step is

the first one.

This claim can be shown as follows. Let
(87 ®) = (U()?CO) = (Ulvol) == (,Unvc’n) = (U},(D)

be a derivation of w where the number n of steps is minimal under all derivations
of w. Assume that in some step (v;,C;) = (vi+1,Ciy1) for 1 < i <n—-1a
non-increasing production (X — wy,...,w,,C) is applied. To this end the
p-fold coupled X must have been generated of some step before. Let us say
in step (v;,C;) = (vj+1,Cj41), 0 < j < i — 1, by the production r = (Y —
wy, ..., wy, C'). Due to the construction of G there exists a production 7 =
(Y — wfi,...,wy,C") where the coupled X on the right-hand side of r is
replaced by wi,...,wy. By applying 7 instead of r, the latter step (v;, C;) =



(vi+1, Cit1) can be omitted and

(vo, Co) =" (vj, Cj) = (vj41,Cj11) =" (Vi 1,Ci 1) = (vis1, Cip1) =" (vn, Cn)
is a derivation of w. Since the length of the derivation is n — 1 we have a
contradiction to the minimality of n. Therefore, the assumption is not true and
the claim follows.

Now we can delete all non-increasing productions whose left-hand sides are not
S without affecting the generated languages. It remains to remove productions
(S = Y,C) where Y € N. This can be achieved by inserting a new produc-
tion (S — w,C) for every production (Y — w,C). Since the latter has been
shown to be strictly monotone and S never appears on the right-hand side of
a production, now (S — Y, C) can be deleted without changing the generated
language. The resulting grammar G’ is of the desired form. O

3.2 Hierarchy

The following pumping lemma is a useful tool for separating language families
since it allows to prove negative results. It is in some sense weaker than others
since it contains no statement about the usual ordering in which the repeated
subwords appear.

Lemma 8 Let G be a grammar of degree k € N. Then there exists a con-
stant n € N such that every w € L(G) with |w| > n may be written as
TOY1T1Y2 - - - YpTk, where 1 < |y1y2---yk| < n, and for all i € N there exists a
word w' € L(G) such that w' is in some order a concatenation of the (sub)words
xo,..., Tk and ¢ times y; for each 1 < j < k.

Proof. Since G has only finitely many productions for every long enough word
w from L(G) there exists a derivation such that some production(s) with the
same left-hand side are applied at least twice. Moreover, the second application
is on symbols derived from the first application (cf. Figure 1). Obviously, for a
given grammar the necessary word length for such a situation can be calculated.
It defines the constant n.

Assume for a moment the degree of G is even. Then for the core derivation we
have

S == ugAuiAug - - uj_1Auj = -+ = UPVIULV2U - - Uj_1VjU; = > W

where A€ N, 1 <j < %, Ug, - --,uj € T™ and vy - - - v; contains a j-fold coupled
A and some terminal symbols. Without loss of generality we may assume that
u; are terminal words and v; are terminal words with the exception of the
coupled A, since the derivation of other nonterminals can be finished without
affecting the A.



\ 1
S =* ug Aup Aug---uj_1 Auj
j j

v2 vj

U1
—— ——~

=* wy Y1 u1 Y2 Ays Ayg ug--uj1 yoi1 A yoj uj
1 v2 vj
——— L——

=>* uoyrur Yo Y1 Y3 Yo Ays Ays yauz---Yoj1 Y21 A yaj Yoj Uj

=" upyiul Ya Y1 Yz Y2 V] Y3 Uy Yaya Uz Yoio1 Y21 Uy Y25 Yoj Uj

Figure 1: Derivation scheme of Lemma 8.

The word vy is derived from the first of the coupled A, vy from the second and
so on. Since vy ---v; contain a j-fold coupled A there must exist derivations
in which this loop appears arbitrary times. In order to determine the pumped
portions of w we have to consider the positions of the A in the words vy, ..., v;.

We define subwords y,,, 1 < m < 2j of vy -+ v; as follows. From left to right a
Ym Starts either at the beginning of a word v; or immediately after a nonterminal
A. A y,, ends either at the end of a word v; or immediately before a nonterminal
A. Clearly, some of the y,, may be empty. But due to the fact that we may
assume strictly monotone productions at least one of the y,, is not empty.

Next we define the subwords x; which are not pumped. These are the already
derived subwords o, ...,u; and, in addition, the terminal subwords v{, ... ,v;-
to which the j-fold coupled A is finally derived. They are numbered from left
to right according to their appearance. Again, some of the xg, ..., r2; may be

empty.

For the even degree case the lemma follows since j is at most g and, thus, we
found subwords xg, ...,z and y1,...,y as claimed.

In case of an odd degree j is at most [%] For j < [%1 the lemma has been
shown. For j = [%] the subword u; must have been derived during the first
step. Afterwards during the pump loops the rightmost symbol is always the
unique nonterminal which is j-fold coupled.

Therefore, yo; is always empty and at most 2j — 1 portions can be pumped.
Since k is odd we obtain 2j — 1 = 2[£] —1 = 28 1 = k, and the lemma



follows for the odd degree case, too. O

We apply the pumping lemma to the languages Ly = {a}---a} | n € N} of
Example 2 and Corollary 4.

Lemma 9 Let k € N be a constant, then Ly, does not belong to £ (k-SN).

Proof. Assume Ly belongs to .Z(k-SN). Let n be the constant of Lemma 8
and consider the word w = af - - - ay, ;. Since we may pump at most k portions
of w the result would not be a word in L. O

The lemma immediately implies the hierarchy of grammars with scattered non-
terminals.

Theorem 10 Let k € N be a constant, then £ (k-SN) C Z((k + 1)-SN) and
Z(k-SN) C Z(SN).

Proof. The inclusions .Z(k-SN) C Z((k + 1)-SN) C .Z(SN) are due to struc-
tural reasons. The strictness follows from Lemma 8, Example 2, Corollary 4
and the identity Z(SN) = |Jz2; -Z(k-SN). 0

The languages L are witnesses for the hierarchy. On the other hand, for any
k € N the language Ly belongs to the family £ (SN). Thus, in some sense the
infinite hierarchy converges to .Z(SN):

Z(1-SN) € Z(2-SN) C - C L(k-SN) C --- C Z(SN)

3.3 Comparison with LOGCFL

We now turn to the question where the hierarchy ends up. To this end we
can compare Z(SN) with other families. Since .Z(1-SN) and .Z(2-SN) are
equal to Chomsky families a natural candidate for comparisons is the family of
context-sensitive languages -Z(CS).

The inclusion Z(SN) C Z(CS) follows immediately from the fact that after
the first step the derivations according to a grammar of arbitrary degree are
strictly monotone. So they can be simulated by a linearly space bounded non-
deterministic Turing machine what implies context-sensitivity.

The inclusion is even strict: Z(SN) C Z(CS). For example the language
L = {a"(b"c")" | n € N} is context-sensitive. By using the pumping lemma it
is easy to see that L cannot be generated by any grammar of any degree k& € N.
Since L is not semilinear the same result follows alternatively from Lemma 6.

In order to strengthen this inclusion .Z(SN) must be compared with other
language families properly included in .Z(CS). An interesting candidate is
LOGCFL, the class of languages which are log-space reducible to .Z(CF).
LOGCFL is properly contained in P and .Z(CS), respectively, and has several
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characterizations. A collection of problems in LOGCFL can be found in [2].
In [13] it has been characterized in terms of nondeterministic auxiliary push-
down automata working in polynomial time and logarithmic space. Such au-
tomata are nondeterministic devices having an unbounded pushdown store and,
in addition, a logarithmically bounded read-write working tape.

Theorem 11 Z(SN) C LOGCFL

Proof. Let G = (N,T,S, P) be an arbitrary grammar with scattered nonter-
minals, say of degree k € N. At first we construct a nondeterministic auxiliary
pushdown automaton .4 working in polynomial time and logarithmic space,
such that A accepts L(G). Let w = ay,...,a, be an input. The main task of A
is to compute predicates test(A4, s1,01,...,8m,lm) where A € N, m € N, and
81ye--38m € Ny l1,...,0l, € Ng such that s; +1; < s;41 and sy + 1, < n for
1< <m.

The predicate test is true if and only if an m-fold coupled A € N can be derived
to the m portions of the input which are given by their starting positions s;
and their lengths [;, respectively. Le.,

(A™ {(1,...,m)}) =" (v1-- vy, 0)

where for 1 < ¢ <m we have v; = X if [; = 0 and v; = a, - - - a5;+1,—1 otherwise.

Assume for a moment the arguments of test are written on the working tape.
The positions s; and lengths [; are given in binary on 2 - m tracks. Since the
maximal number of symbols in a coupling is bounded by [£] (with respect
to the given grammar) the maximal number of tracks needed is also bounded.
Therefore, the arguments are written in logarithmic space.

The first step of A is to guess an applicable production (A — w1, ..., wny,C)
from P. Then A has successively to guess partitions s;,,/;,,...,8;,,l;, of the
intervals s;, . .., 8;+[;—1 according to the symbols in w; = u;; -~ u;,, 1 <4 < m.
In order to guess partitions for i, A starts with s;; = s;. If u;, is a terminal,
then I;, is set to 1. If u;, is a nonterminal, then A guesses the length I;,
of the terminal (sub)word derived from w;,. This can be done by sweeping
over an empty track and guessing the bits. During another sweep the length
can be added to s; in order to obtain s;. Now A proceeds until u;, where
si, +1i, —1 = s; +1; — 1 is checked. Observe that this behavior works also fine
in cases where parts of coupled nonterminals are derived to the empty word. In
such situations /; would be 0 and s;4+1 equals s;.

Since the number of symbols of any of the right-hand sides of the productions
in P is bounded by a constant we may assume that there exist as many tracks
as needed for the partitioning task. Thus, it can be performed in logarithmic
space. Moreover, each computation of a bound in the partitions takes at most
O(log(n)) steps. Therefore, the whole partitioning takes O(log(n)) time.

Once all partitionings are available on the working tape, A creates computation
batch jobs for the predicate test.

11



Since the couplings between nonterminals in the words wi, ..., wy,, are totally
determined by the applied production, and this production is known, A pro-
ceeds symbolwise from left to right in wy - - w,,. If it finds a nonterminal A’

then the guessed intervals s3,11,...,s/ ,,I! , for the nonterminal itself and possi-
bly for its coupled instances are arguments to a job test(A’, s,14,...,s /.1 ).

This job is pushed onto the stack which takes O(log(n)) time.

If A finds a terminal symbol a, then the corresponding guessed interval s, [}
has length one and A verifies whether the input symbol at position s} equals
a. To this end the input head is moved to the first input symbol. Subsequently
the value s} is successively decremented whereby the input head is moved one
position to the right, respectively. Since the decrementation takes O(n) time
steps [9], the time needed for the verification is O(n).

So, altogether this phase of A takes O(n) time steps.

Now the body part of the computation of the call of test is done. It remains
to compute the jobs on the stack. Therefore, after finishing the last phase A
clears its working tape and loads another job from its pushdown store. The
computation of A stops successfully if no further jobs are available. If A is
initialized with test(S,1,n), then a successful computation implies that the
input can be derived from the starting symbol S and leads to acceptance.

The initialization of A takes O(n) time. Every body computation of test
takes O(n) time also. We may assume that the productions of G are strictly
monotone. Therefore, at most n derivation steps are possible. Since for every
step we have one body computation of test, A obeys the time complexity
O(n?). Together with the space complexity O(log(n)) this proves that .#(SN)
is included in LOGCFL. The strictness of the inclusion follows from the fact
that the already mentioned language {a"(b"c")* | n € N} belongs to LOGCFL
but cannot be generated by any grammar of any degree k£ € N and, thus, does
not belong to .Z(SN). ]

The following lemma, can alternatively be used to prove the strictness of the
inclusion .Z(SN) C LOGCFL. In addition, it generalizes a well-known result for
context-free languages and is a useful tool for proving negative results.

Lemma 12 Every unary language belonging to £ (SN) is regular.

Proof. In the proof of Lemma 6 it has been shown that every language
L € Z(SN) is letter-equivalent to some context-free language L'. For unary
languages this implies L = L'. Since every unary context-free language is
regular [6] the lemma follows. 0

For example, the LOGCFL-language {a®" | n € N} does not belong to .#(SN).
Finally, the lemma holds for all families .2 (k-SN), too.
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4 Closure Properties

Some closure properties of the families .Z(SN) and .Z(k-SN) are investigated.
It turns out that these properties are similar to the properties of context-free
languages.

4.1 Closure

We start the investigation by showing the closure under union, concatenation,
iteration and arbitrary homomorphisms.

Lemma 13 Let k € N be a constant, then £ (k-SN) and .Z(SN) are closed
under union.

Proof. Let G = (N,T,S,P) and G’ = (N',T',S’, P') be two grammars in
question. As usual we can construct a grammar G” = (N UN'U {S"},T U
T',58", P") for L(G) U L(G'). Thereby we assume that N and N’ are disjoint
and S” is a new symbol. P” is given by PU P’ U{(S" —» w,C) | (S —» w,C) €
Por (S — w,C) € P'}. Thus, the degree of G” is the maximum of the degrees
of G and G'. O

In general, for proving positive closure properties constructively, we have to
cope with the problem of preserving the degree. Thereby special attention has
to be paid for odd degrees.

Theorem 14 Let k € N be a constant, then .Z(k-SN) and .£(SN) are closed
under concatenation.

Proof. Let G = (N,T,S,P) and ¢’ = (N',T",5', P') be two grammars in
question. The idea of introducing a new starting symbol S” and the production
(§" — S5',0) does not help, since the maximal number of nonterminals in a
coupling must not grow.

But for even degrees we can concatenate the right-hand sides of the productions
(S = w,C) € Pand (S —» w',C") € P to (S" — ww', D), where D are the
couplings according to C' and C’. The construction preserves the degree and
yields to a grammar for L(G)L(G').

In case of odd degrees at most one maximal coupling is allowed since an instance
of the nonterminals in maximal couplings must be the rightmost symbol on the
right-hand side. In order to cope with this problem we utilize the following
observations.

If a maximal coupling exists in any sentential form, then the rightmost symbol
of the form belongs to the coupling. Considering an arbitrary derivation, then
either during the first step only non-maximal couplings are created or there ex-
ists exactly one step that produces a sentential form without maximal coupling
from a sentential form having a maximal coupling.
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The idea is to modify such productions such that the rightmost nonterminal
is rewritten by its original word concatenated by a right-hand side of start
productions of the second grammar. Formally, let m = [£7, then " = (N U
N' . TuUT' S, P"UP'") where P" = P, U P, U P;U Py with

P ={(X = w,...,wp,C) € P|p<m}
Py, = {(S = w,C) € P | there exists (i1,...,iq) € C: ¢ =m}
U{(X = wr,...,wp,C) € P | there exists (i1,...,i4) € C: ¢ =m}
Py ={(S—ww,D)|(S—wC)€eP\Pand (8 - w', C') € P and
D are couplings according to C and C'}

Py ={(X -5 wy,...,upw',D) | (X = wi,...,wp,C) € P\ P, and
(S" = w',C") € P and D are couplings according to C and C'}

The construction preserves odd degrees and yields to a grammar for L(G)L(G').
a

For odd degrees, the closure under iteration can be shown by a straightfor-
ward modification of the construction for concatenation. The problem for even
degrees is that the rightmost symbol in sentential forms is not necessarily a
nonterminal. On the other hand, we may insert as many maximal couplings as
needed.

Theorem 15 Let k € N be a constant, then £ (k-SN) and Z(SN) are closed
under iteration.

Proof. Let G = (N,T,S,P) be a grammar in question. For odd degrees
a grammar G’ for (L(G))* is constructed as for concatenation. The necessary
modifications are straightforward.

For even degrees we provide a new nonterminal A which is always maximally
coupled. Moreover, its positions are always adjacent at the right end of a
sentential form. So let m = £ then ¢’ = (N U {4}, T, S, P') with

P ={(S—=>\0),(S— A" {(1,...,m)})}
U{(A—-w A ...,\C)|(S—w,C) e P}
U{(A— wA™,D) | (S = w,C) € P and D are the couplings of C
joint with (¢1,...,%,) where i1, ..., i, are the positions of A™}

preserves an odd degree and generates (L(G))*. O

The next operations for which we obtain positive closure properties are homo-
morphisms.

Theorem 16 Let k € N be a constant, then .Z(k-SN) and .Z(SN) are closed
under arbitrary homomorphisms.
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Proof. Since all productions are context-free-like, we only need to modify the
right-hand sides of the productions such that terminals are replaced by their
homomorphic images (Of course, the couplings need to be adjusted, too). O

4.2 Non-Closure

Now we turn to the remaining Boolean operations complementation and inter-
section and show the non-closure of the families.

Theorem 17 Let k > 2 be a constant, then £ (k-SN) and .Z(SN) are not
closed under intersection.

Proof. All families in question contain the context-free languages. Moreover,
they are closed under homomorphisms. Since every recursively enumerable
language can be represented as the homomorphic image of the intersection of
two context-free languages [7] the closure under intersection would contradict
Theorem 11. O

Theorem 18 Let k > 2 be a constant, then .Z(k-SN) and .Z(SN) are not
closed under complement.

Proof. Since the families are closed under union by L; U Ly = Ly N Lo the
closure under complement would imply the closure under intersection what
contradicts Theorem 17. O

Corollary 19 Let k > 2 be a constant, then .Z(k-SN) and .Z(SN) are not
closed under set difference.

The non-closure under complement yields another proof of the properness of
the inclusion .Z(SN) C LOGCFL by means of different closure properties. In [1]
the closure of LOGCFL under complement has been shown.
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