I F I G
RESEARCH
REPORT

Institut fiir Informatik

JLU GieBen

ArndtstraBe 2

D-35392 Giessen, Germany
Tel: +49-641-99-32141

Fax: +49-641-99-32149
mail@informatik.uni-giessen.de

www.informatik.uni-giessen.de

INSTITUT FUR INFORMATIK

@

A TiME HIERARCHY FOR
BoOUNDED ONE-WAY
CELLULAR AUTOMATA

Andreas Klein Martin Kutrib

IFIG RESEARCH REPORT 0101
JANUARY 2001

JUSTUS-LIEBIG-

UNIVERSITAT
GIESSEN

IFIG RESEARCH REPORT
IFIG RESEARCH REPORT 0101, JANUARY 2001

A TIME HIERARCHY FOR
BoUNDED ONE-WAY CELLULAR AUTOMATA

Andreas Klein Martin Kutrib?

Institute of Informatics, University of Giessen

Arndtstr. 2, D-35392 Giessen, Germany

Abstract. Space-bounded one-way cellular language acceptors (OCA) are investig-
ated. The only inclusion known to be strict in their time hierarchy from real-time to
exponential-time is between real-time and linear-time! We show the surprising result
that there exists an infinite hierarchy of properly included OCA-language families
in that range. A generalization of a method of Terrier is shown that provides a tool
for proving that languages are not acceptable by OCAs with small time bounds. By
such a language and a translation result the hierarchies are established.

CR Subject Classification (1998): F.1, F.4.3, B.6.1, E4

'E-mail: kutrib@informatik.uni-giessen.de

Copyright © 2001 by the authors

1 Introduction

Linear arrays of interacting finite automata are models for massively parallel
language acceptors. Their advantages are simplicity and uniformity. It has
turned out that a large array of not very powerful processing elements operating
in parallel can be programmed to be very powerful.

One type of system is of particular interest: the cellular automata whose ho-
mogeneously interconnected deterministic finite automata (the cells) work syn-
chronously at discrete time steps obeying one common transition function. Here
we are interested in a very simple type of cellular automata. The arrays are
real-space bounded, i.e., the number of cells is bounded by the number of input
symbols, and each cell is connected to its immediate neighbor to the right only.
Due to the resulting information flow from right to left such devices are called
one-way cellular automata (OCA). If the cells are connected to their both im-
mediate neighbors the information flow becomes two-way and the device is a
(two-way) cellular automaton (CA).

Although parallel language recognition by (O)CAs has been studied for more
than a quarter of a century some important questions are still open. In partic-
ular, only little is known of proper inclusions in the time hierarchy. Most of the
early languages known not to be real-time but linear-time OCA-languages are
due to the fact that every unary real-time OCA-language is regular [4]. In [9]
and [10] a method has been shown that allows proofs of non-acceptance for
non-unary languages in real-time OCAs. Utilizing these ideas the non-closure
of real-time OCA-languages under concatenation could be shown.

Since for separating the complexity classes in question there are no other general
algebraic methods available, specific languages as potential candidates are of
particular interest. In [5] several positive results have been presented. Surpris-
ingly, so far there was only one inclusion known to be strict in the time hierarchy
from real-time to exponential-time. It is the inclusion between real-time and
linear-time languages. In [2] the existence of a non-real-time OCA-language
that is acceptable in n + log(n)-time has been proved yielding a lower upper
bound for the strict inclusion. Another valuable tool for exploring the OCA
time hierarchy is the possible linear speed-up [7] from n + r(n) to n + ¢ - r(n)
for e > 0.

The main contribution of the present paper is to show that there exists an
infinite time hierarchy of properly included language families. These families
are located in the range between real-time and linear-time. The surprising
result covers the lower part of the time hierarchy in detail.

The paper is organized as follows: In Section 2 we define the basic notions
and the model in question. Since for almost all infinite hierarchies in complex-
ity theory the constructibility of the bounding functions is indispensable, in
Section 3 we present our notion of constructibility in OCAs and prove that it
covers a wider range of functions than the usual approach. Section 4 is devoted
to a generalization of the method in [10] to time complexities beyond real-time.
This key tool is utilized to obtain a certain language not acceptable with a

given time bound. Finally, in Section 5 the corresponding proper inclusion is
extended to an infinite time hierarchy by translation arguments.

2 Basic notions

We denote the positive integers {1,2,...} by N and the set NU {0} by No. The
empty word is denoted by A and the reversal of a word w by w®. For the length
of w we write |w|. We use C for inclusions and C if the inclusion is strict.
For a function f : Ng — N we denote its i-fold composition by flI, i € N.
If f is increasing then its inverse is defined according to f~!(n) = min{m €
N | f(m) > n}. As usual we define the set of functions that grow strictly less

than f by o(f) = {g : No = N | limn_)oo% = 0}. In terms of orders of
magnitude f is an upper bound of the set O(f) = {g : No = N | Ing,c €

N:Vn >mng:gn) <c-f(n)}. Conversely, f is a lower bound of the set
Q(f) ={g:No = N[f € O(g)}.

A one-way resp. two-way cellular array is a linear array of identical deter-
ministic finite state machines, sometimes called cells, which are connected to
their nearest neighbor to the right resp. to their both nearest neighbors. The
array is bounded by cells in a distinguished so-called boundary state. For con-
venience we identify the cells by positive integers. The state transition depends
on the current state of each cell and the current state(s) of its neighbor(s). The
transition function is applied to all cells synchronously at discrete time steps.
Formally:

Definition 1 A one-way cellular automaton (OCA) is a system (S, 0, #, A, F'),
where

1. S is the finite, nonempty set of cell states,

. #¢ S is the boundary state,

2

3. A C S is the nonempty set of input symbols,

4. F C S is the set of accepting (or final) states, and
5

. 6:(SU{#})? — S is the local transition function.

If the flow of information is extended to two-way the resulting device is a (two-
way) cellular array (CA) and the local transition function maps from (SU{#})?
to S.

A configuration of a cellular automaton at some time ¢t > 0 is a description of
its global state, which is actually a mapping ¢; : [1,...,n] — S for n € N.

The configuration at time 0 is defined by the initial sequence of states. For
a given input w = a1---a, € AT we set ¢y (i) = a; for 1 <4 < n. During
a computation the (O)CA steps through a sequence of configurations whereby
successor configurations are computed according to the global transition func-
tion A:

Let ¢; for ¢ > 0 be a configuration, then its successor configuration is as follows:

Cty1 = A(Ct) <~
cir1(1) = d(#,c (2))
cir1(i) = (5(ct(z—1) +(1), (i +1)),1 € {2,...,n — 1}
ctr1(n) = d(ce(n — 1), c(n), #)
for CAs and correspondingly for OCAs. Thus, A is induced by §.

If the state set is a Cartesian product of some smaller sets S = Sy x .Sy X--- X .S,
we will use the notion register for the single parts of a state.

s s e se 1 #

Figure 1: A one-way cellular automaton.

An input w is accepted by an (O)CA if at some time i during its course of
computation the leftmost cell enters an accepting state.

Definition 2 Let M = (S, 4, #, A, F) be an (O)CA.

1. An input w € A" is accepted by M if there exists a time step i € N such
that c;(1) € F holds for the configuration ¢; = All(cg).

2. L(M) = {w € AT | w is accepted by M} is the language accepted by
M.

3. Let t : N — N, t(n) > n, be a mapping. If all w € L(M) can be accepted
with at most t(|w|) time steps, then L is said to be of time complexity t.

The family of all languages that are acceptable by some OCA (CA) with time
complexity ¢ is denoted by .Z;(OCA) (£ (CA)). If t equals the identity function
id(n) = n, acceptance is said to be in real-time, and if ¢ is equal to k - id for an
arbitrary rational number k£ > 1, then acceptance is carried out in linear-time.
Correspondingly, we write .Z.+((O)CA) and .Z;((O)CA).

In this article we prove:

Theorem 3 Let r1,75 : N — N be two functions such that 5 - log?(rs) € o(r1)
and r7' is constructible, then

Zn—krz(n)(OCA) - gn—l—h(n)(OCA)

Example 4 Let 0 < p < ¢ < 1 be two rational numbers. Clearly, n? - log?(n?)
is of order o(n?). In the next section the constructibility of the inverse of n? will
be established. Thus, an application of Theorem 3 yields the strict inclusion

3 Constructible Functions

For the proof of Theorem 3 it will be necessary to control the lengths of words
with respect to some internal substructures. The following notion of construc-
tibility expresses the idea that the length of a word relative to the length of a
subword should be computable.

Definition 5 A function f : N — N is constructible if there exists an A-free
homomorphism h and a language L € £.4(OCA) such that

h(L) = {aF™ " | n e N}

Since constructible functions describe the length of the whole word dependent
on the length of a subword it is obvious that each constructible function must
be greater than or equal to the identity. At a first glance this notion of con-
structibility might look somehow unusual or restrictive. But A-free homomor-
phisms are very powerful so the family of (in this sense) constructible functions
is very rich, and is, in fact, a generalization of the usual notion. The remainder
of this section is devoted to clarify the presented notion and its power.

The next lemma states that we can restrict our considerations to length pre-
serving homomorphisms. The advantage is that for length preserving homo-
morphisms each word in L is known to be of length f(m) for some m € N.

Lemma 6 Let f : N — N be a constructible function. Then there exists a
length preserving A-free homomorphism h and a language L € .%,;(OCA) such
that

h(L) = {a/ ™" | n € N}

The proof follows immediately from a proof in [1] where the closure of .%;(OCA)
under \-free homomorphisms is characterized by OCAs with limited nondeter-
minism.

Given an increasing constructible function f : N — N and a language L, C AT
acceptable by some OCA with time complexity n + r(n), where r : N — N,
we now define a language that plays an important role in the sequel. Let
the language Ly C BT be a witness for the constructibility of f, i.e., Ly €
Z+(OCA) and h(Ls) = {a/™™p" | n € N} for a length preserving \-free
homomorphism h. The language L1 (L4, Ls) C (AU {u}) x B)™T is constructed
as follows

1. The second component of each word w in Ly (Lg, Ly) is a word of Ly that
implies that w is of length f(m) for some m € N.

2. The first component of w contains exactly f(m) — m blank symbols and
m non-blank symbols.

3. The non-blank symbols in the first component of w form a word in L,.

The following proposition is used in later sections. Besides, it is an example
that demonstrates how to use constructible functions. In Lemma 13 we will
prove that the shown bound for the time complexity of L, is minimal.

Proposition 7 The language Li(L,, Ly) is acceptable by some OCA with time
complexity n + r(f~1(n)).

Proof. We construct an OCA A with three registers that accepts L; obeying
the time complexity n + r(f1(n)).

In its first register A verifies that the second component of each word in L; is
a word of L. By definition of L; this can be done in real-time.

In its second register A checks that the first component of L; contains exactly
f(m)—m blank symbols. Because it can be verified that the second component
of Ly belongs to Ly, we know that the first f(m) — m symbols of the second
component are mapped to a’s and the last m symbols of the second component
are mapped to b’s. The task is to check that the number of a’s in the second
component is equal to the number of blank symbols in the first component.
Therefore, A shifts the blank symbols from right to left. Each symbol a in the
second component consumes one blank symbol. A signal that goes from the
right to the left with full speed can check that no blank symbol has reached the
leftmost cell and that each letter a has consumed one blank symbol, i.e., that
the number of a’s is equal to the number of blank symbols. The test can be
done in real-time.

In order to verify that the non-blank symbols in the first component form a
word of L, the automaton A simulates the OCA that accepts L,. But for
every blank-symbol A has to be delayed for one time step, until it receives
the necessary information for the next simulation step. Therefore, A needs
m + r(m) + (f(m) — m) steps for the simulation (m + r(m) time steps for
the simulation itself and f(m) — m time steps delaying time). Substituting
m = f!(n) completes the proof. O

Now we prove that the family of constructible functions is very rich. In par-
ticular, all Fischer-constructible functions are constructible in the sense of Def-
inition 5. A function f is said to be Fischer-constructible if there exists an
unbounded two-way CA such that the initially leftmost cell enters a final state
at time i € N if and only if ¢ = f(m) for some m € N. Thus, the Fischer-
constructibility is an important notion that meets the intuition of constructible
functions. For a detailed study of these functions see [8] where also the name
has been introduced according to the author of [6].

For example, n* for k € N, 27, n!, and p,,, where p,, is the nth prime number, are
Fischer-constructible. Moreover, the class is closed under several operations.

Lemma 8 If a function f : N — N is Fischer-constructible, then it is con-
structible in the sense of Definition 5.

Proof. In [3] it is shown that for every language L' € 4;(CA) there exists a
language L € .%.+(OCA) and an A-free homomorphism h such that h(L) = L'.

Therefore, it is sufficient to prove that for Fischer-constructible functions f the
languages {af(")~"b" | n € N} are linear-time CA-languages:

The initially leftmost cell of an appropriate CA starts the construction of f,
i.e., it enters a final state exactly at the time steps f(1), f(2),... In addition,
the rightmost cell sends initially a signal to the left that runs with full speed.
The CA accepts a word of the form a*b*t if and only if this signal arrives at
the leftmost cell at a time step f(m) for some m € N and the number of b’s is
equal to m. The details of the easy CA construction are straightforward. O

Without proof we mention that the class of constructible functions is closed
under several operations such as addition, multiplication or composition.

4 Equivalence Classes

In order to prove lower bounds for the time complexity we generalize a lemma
that gives a necessary condition for a language to be real-time acceptable by
an OCA. At first we need the following definition:

Definition 9 Let L be a language and X and Y be two sets of words. Two
words w and w' are equivalent with respect to L, X and Y (in short (L, X,Y)-
equivalent) if and only if zwy € L <= aw'y € L forallz € X andy €Y.

Let Ly C {0,1,(,),|}" be a language whose words are of the form

z(xi|yr) - (Tn|yn)y

where z, z;,y,y; € {0,1}* for 1 <i <mn,and (z|y) = (z;|y;) for at least one
ie{l,...,n}.

The language L4 can be thought as a dictionary. The task for the OCA is to
check whether the pair (z |y) appears in the dictionary or not.

Proposition 10 Let X =Y = {0,1}*. Two words w = (z1|y1) - (Zn | Yn)
and w' = (2 |yy) - (2], |y,,) are equivalent with respect to Ly, X and Y if

andOnlyif{(wllyl)v"'a(wn|yn)}:{(‘xi'yi)v""(x'ln”y;n)}'

Proof. First assume that the two sets are equal. Let x € X and y € Y, then
zwy € Ly implies (z|y) = (x;|y;) for some i. Since the two sets are equal
we have (z|y) = (2} |y;) for some j. Therefore, zwy € L, implies zw'y € Lg
and vice versa, i.e., w and w' are (Lg4, X,Y)-equivalent.

Now assume the two sets are not equal. Without loss of generality we can
assume that there exist z € X and y € Y with (z|y) = (;|y;) for some i,
but (z|y) # (27 |y;) forall j = 1,...,m. Then zwy € Ly but zw'y ¢ Lq and,
thus, w and w' are not (Lg4, X, Y)-equivalent. O

Now we are prepared to formulate the lemma we are going to use in order
to prove lower bounds for the time complexities. For the special case L €
Z:+(OCA) the lemma has been shown in [10].

Lemma 11 Let r : N — N be an increasing function, L € £, ,(,)(OCA) and
X and Y be two sets of words. Let s be the minimal number of states needed
by an OCA to accept L in n+ r(n) time steps.

If all words in X are of length m; and all words in'Y are of length ms, then
the number N of (L, X,Y)-equivalence classes of the words at most of length
n — my — me is bounded by

N < smlX|gmatrm)|Y]

Proof. Let A be an OCA with s states that accepts L in n + r(n) time steps.
Let S be the state set of A.

We consider the computation of A4 on the word zwy for some z € X and
y € Y. After |w| time steps the interesting part of the configuration of A can
be described by f.,(z)fl,(y) where (cf. Figure 2)

1. fw(z) € S* and f],(y) € S*.

2. |fw(z)] = |z| and |f,,(y)| = y + r(n). During the remaining |zwy| +
r(|lzwy|) — |w| < |z| + |y| + r(n) time steps the result of the computation
of A depends only on the states of the |z| + |y| + r(n) leftmost cells.

3. fi(y) depends only on w and y since no information can move from left

to right.

4. fy(x) depends only on w and z since during |w| time steps only the
leftmost |z| + |w]| cells can influence the states of the leftmost |z| cells.

r(|zwyl)

fuw(@)| /fu(y)

Figure 2: OCA computation in the proof of Lemma 11.

If fu(z) = fu(z) and f,(y) = fl,(y) for allz € X and y € Y, then w and w’
are equivalent with respect to L, X and Y. Thus, if w and w’ are not equivalent,

then fu, # fur or fl, # fly-

Now we count the number of functions f,, and f/. Since f,, maps X into
the set S™! which contains s™! elements, the number of different functions f,,
is bounded by (sm1)|X . Analogously, it follows that the number of different
functions f! is bounded by (s™2*7()IY],

Since each upper bound on the number of pairs (fy, f1,) is also an upper bound
on the number of (L, X, Y)-equivalence classes the lemma follows. O

Now we apply the lemma to the language L.

Proposition 12 Let 7 : N — N be a function. If r(n)log®(r(n)) € o(n), then
)

L, is not acceptable by an OCA with time complexity n +r(n) but Ly belongs
to Z:(OCA).

Proof. For fixed m; € N and ms € N we investigate all words of the form
(z1|y1) - (xk |yr) with z; € {0,1}™ and y; € {0,1}™ for all i € {1,...,k}
and (z;|y;) # (z;|y;) for i # j. We call this words of type (m1, m2).

Since there are at most 2”1 7™2 different pairs (z;,z;) the length of words of
type (m1,mg) is at most 27112 . (my + mgy + 3).

As has been shown in Proposition 10 two words are equivalent iff the sets of
subwords are equal. Thus, there are 22" words of type (mi,mg) which
belong to different equivalence classes with respect to Ly, X = {0,1}" and
Y ={0,1}"2. (For each subset of X x Y there exists one equivalence class.)

Assume L belongs to £, 1,,)(OCA), then an accepting OCA must be able
to distinguish all these equivalence classes. By Lemma 11 there must exist a
number of states s such that

22m1+m2 < gMi2™1 g(ma+7(n))2™2

for n = 2™FM2 . (my + mg + 3) + mq + mo.

In order to obtain a contradiction let m; = c- 2™2 for some arbitrary rational
number c. Approximating the order of n we obtain

n € O(2™M*M2 . (my +ms)) = O2™T™2 . my) = O(2™ 2™ . my) = O(2™m2)

Since r(n)log?(r(n)) € o(n) it holds r(2™m?)log?(r(2™'m32)) € o(2™m3).
Observe 2™ log?(2™) = 2™m? and, therefore, r(2™'m3) and, hence, r(n)
must be of order o(2™). It follows

gM12™M ((ma+r(n))2™2 _ cma12™1 (ma+0(2M1))2M2 _ (mi2™1 (o(2M1)2M2

— gMm12M1+40(2M12M2) _ c2M22M140(2M12M2) _ sc2m2+m1+o(2m1+m2)

Since ¢ has been arbitrarily chosen we can let it go to 0 and obtain

+ +
— 80(2m1 m2) _ 0(22m1 m2)

This is a contradiction, thus, L is not acceptable by an OCA in n + r(n) time.

To see that L is acceptable in linear-time, we construct an appropriate OCA.
Starting with an input word of the form z (z1|y1) -+ (Zm |ym)y the OCA
shifts the subword y with full speed to the left. During the first n time steps
the OCA marks all pairs (z; | y;) with y; = y. Each marked pair starts moving
to the left with half speed. Each time a pair (z;|y) reaches the left hand

side the OCA checks whether z; = z. The pairs of the form (z;|y) reach the
leftmost cell sequentially because y moves with full speed but the pairs of form
(z; |y) with half speed only. This guarantees that the OCA has sufficient time
to check whether x = x;. Figure 3 illustrates the computation. The basic task
for the OCA is to check whether y = y;. This is equivalent to the acceptance
of the real-time OCA-language {w e w | w € {0,1}"}. O

x($1|y1)($2|y2)y

Figure 3: Linear-time acceptance of L;. The black triangles mark the areas
where a check of the form y; = y takes place. It is easy to see that the black
triangels are disjoint, i.e., the checks can be done one after the other with a
finite number of states.

5 Time Hierarchies

The last section is devoted to the proof of the main result which has been
stated in Theorem 3. The next step towards the proof is a translation lemma
that allows to extend a single proper inclusion to a time hierarchy.

Lemma 13 Let t1,t2 : N — N be two functions and let L, be a language that
belongs to £, 4, (n)(OCA) but is not acceptable by any OCA within n+o(t2(n))
time as can be shown by applying Lemma 11. Further let f : N — N be a
constructible function and ri,r9 : N — N be two functions such that r1(f(n)) €
Q(t1(n)) and ro(f(n)) € o(ta(n)). Then

Zn—krg(n)(OCA) - gn—i—rl(n)(OCA)

Proof. For f(n) € O(n) we have r2(O(n)) € o(t2(n)) what implies ra2(n) €
o(t2(n)) and, thus, L, ¢ £, 4,,(n)(OCA). Conversely, r1(O(n)) € Q(t1(n))

10

and, therefore, r1(n) € Q(t1(n)). It follows L, € £, 1, (n)(OCA) and, hence,
the assertion.

In order to prove the lemma for n € o(f(n)) let Ly be a language that proves
the constructibility of f in Lemma 6. At first we show that we can always find
such an Ly whose words are of the form a"wb" with |w| = f(n) — 2n.

By w/3 we denote the word w compressed by the factor 3, i.e., one symbol of
w/3 is interpreted as three symbols of w.

Now define Ly such that af (M)—n—3f(n) (w/3)b" € Ly iff w € Ly. Clearly, the
words of Ly are of the desired form since n € o(f(n)). Moreover, there exists
a trivial \-free, length preserving homomorphism that maps L; to {af(™) " |
n € N}. Also, Ly belongs to .%,4(OCA) since an OCA can verify in real-time
that an input w

e belongs to Ly,

e the length of the word afM=n—3f() (w/3)b"™ € Ly is equal to the length
of w, and

e that n is equal to the number of b’s in h(w) where h denotes the homo-
morphism that maps Ly to {af(™=7b" | n € N}.

Thus, from now on we may assume w.l.o.g. that the words of L are of the form
a™wb" with |w| = f(n) — 2n. From Proposition 7 follows that the language
Li(Lg, Ly) belongs to £, 14, (r-1(n)) (OCA). By the assumption on r1(f(n)) we
obtain r(n) = ri(f(f~*(n))) € Qt(f*(n))) and, therefore, Li(Ly,L¢) €
Zn—km(n)(OCA)'

It remains to show that Li(Lq, Lf) ¢ Z54ry(n)(OCA).

Since r9(f(n)) € o(t2(n)) and L, is not acceptable within n + o(t2(n)) time
by any OCA, the language L, is not acceptable within n + 79(f(n)) time by
any OCA, either. Due to the assumption, by Lemma 11 for every s € N
there must exist sets X and Y and an n € N such that all words in X are
of length mq, all words in Y are of length mo, and the number of (L,, X,Y)-
equivalence classes of the words at most of length n — my — mo is not bounded
by sm1IXIg(matra(f(n)))Y],

Define

X' ={(z1,0) - (xmy,a) |z =21 ... T, € X}

and
V' ={(y1,0) - (Yma>0) |y =91 Ymy, €Y}

and for every word v = v1 -+ Uy, —m, & word v’ by

v' = (’017 wl) Tt (Un—ml—m27 wn—rm—mg)(‘-'; wn—ml—m2+1) e (‘-'7 wf(n)fm1*m2)

where @™ wy « -+ We(n)—my —m, ™ is @ word of Ly. (Remember that each word
in Ly starts with n symbols a and ends with n symbols b and m; + mo < n.)

For z € X and y € Y let 2’ and 3’ denote the corresponding words in X’ and
Y'.

11

By construction zvy € L, iff z'v'y’ € Ly. (The word z'v'y’ belongs to L if
the second component of z'v'y’ is a word in Ly, which is always true, and the
first component of z'v'y’ is a word in L, concatenated with some blank sym-
bols, i.e., xzvy € L,.) Thus, the (L,, X, Y)-equivalence classes have correspond-
ing (L1, X', Y')-equivalence classes and the number of (L;, X', Y')-equivalence

classes under the words whose length is at most f(n) —mj —mg is not bounded
by g™ X|g(matr2(£(n)Y]

Applying Lemma, 11 with Ly, X', Y' and f(n) in place of L,, X, Y and n yields
that Ly ¢ 25, 1,,(n)(OCA). This completes the proof. O

Finally the main Theorem 3 is just a combination of the preceding lemmas:

Theorem 3. Let 71,75 : N = N be two functions such that r-log?(rs) € o(r1)
and 77" is constructible, then

gn—krg(n)(OCA) - gn—}-rl(n)(OCA)

Proof. Proposition 12 shows that the previously defined language L is accept-
able in linear-time but is not acceptable in n+r(n) time if r(n) log?(r(n)) € o(n).
Now set t1(n) = n and tp such that t2(n) log?(t2(n)) = n.

Inserting yields r(n)log?(r(n)) € o(ta(n)log®(ta(n))). We conclude r(n) €
o(t2(n)) and, thus, Ly is not acceptable in n + o(t2(n)) time. In order to
apply Lemma 13 we consider the constructible function f = r 1

Clearly, 1 (f(n)) = n € Q(n) = Q(t1(n)).
Since ro(n)log?(ro(n)) € o(ri(n)) we have

r2(f(n))log*(r2(f(n))) € o(r1(f(n))) = o(n) = o(tz(n) log*(t2(n)))
We conclude 2(f(n)) € o(ta(n)).

Now all conditions of Lemma 13 are satisfied and an application proves the
assertion &, ., (OCA) C &, 1, (n)(OCA). O

References

[1] Buchholz, Th., Klein, A., and Kutrib, M. One guess one-way cellular
arrays. Mathematical Foundations of Computer Science 1998, LNCS 1450,
1998, pp. 807-815.

[2] Buchholz, Th., Klein, A., and Kutrib, M. On tally languages and gener-
alized interacting automata. Developments in Language Theory I'V. Foun-
dations, Applications, and Perspectives, 2000, pp. 316-325.

[3] Buchholz, Th., Klein, A., and Kutrib, M. On interacting automata with
limited nondeterminism. Fund. Inform. (2001), to appear.

[4] Choffrut, C. and Culik I, K. On real-time cellular automata and trellis
automata. Acta Inf. 21 (1984), 393—407.

12

Dyer, C. R. One-way bounded cellular automata. Inform. Control 44 (1980),
261-281.

Fischer, P. C. Generation of primes by a one-dimensional real-time itera-
tive array. J. Assoc. Comput. Mach. 12 (1965), 388-394.

Ibarra, O. H. and Palis, M. A. Some results concerning linear iterative
(systolic) arrays. J. Parallel and Distributed Comput. 2 (1985), 182-218.

Mazoyer, J. and Terrier, V. Signals in one dimensional cellular automata.
Theoret. Comput. Sci. 217 (1999), 53-80.

Terrier, V. On real time one-way cellular array. Theoret. Comput. Sci.
141 (1995), 331-335.

Terrier, V. Language not recognizable in real time by one-way cellular
automata. Theoret. Comput. Sci. 156 (1996), 281-287.

13

