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Simple Summary: Lameness is the most common cause of reduced performance in equids. Therefore,
its detection, accurate diagnosis, and appropriate treatment are important for animal welfare and
economics. Subjective evaluation of a lame horse by visual assessment is prone to error. To objectify
the examination, several computer-based systems have been developed. While kinematic investi-
gations focus on the detection of movement asymmetries (e.g., of head, pelvis, withers) with the
help of position sensors, kinetic examinations are based on pressure measurement under the hooves.
In the current study, horses with unilateral forelimb lameness were equipped with a non-invasive
pressure measurement system on both forelimbs simultaneously. Bilateral vertical force distribution
(in kg) was evaluated during all phases of stance (landing, midstance, breakover) before and after di-
agnostic anaesthesia. Vertical force was reduced on the lame limb compared to the sound limb before
diagnostic anaesthesia. After positive diagnostic anaesthesia, asymmetries were neutralised: vertical
force increased on the lame limb, with breakover being most affected. In conclusion, the current
pressure measurement system can be used to objectify lameness examinations in a clinical setting.
Both lameness and diagnostic anaesthesia influence the particular phases of stance differently. This
might contribute to a better understanding of equine gait and lead to individually optimised shoes.

Abstract: Kinetic examinations of horses with induced lameness as well as the effect of perineural
anaesthesia in sound horses have shown promise, but clinical studies regarding the effect of diagnostic
anaesthesia during the different stance phases are rare. Fourteen horses with unilateral forelimb
lameness were examined with the Hoof™ System during trot to assess vertical force distribution
(in kg) affecting both front hooves before and after diagnostic anaesthesia during landing, midstance,
and breakover. For statistical analysis, a covariance analysis with repeated measurements regarding
the limb (lame/sound) as well as anaesthesia (before/after) and the covariable body weight was
performed. The p-values for the pairwise comparisons were adjusted using the Bonferroni–Holm
correction (p < 0.05). For all phases of the stance, a significant interaction between the factors limb
and anaesthesia was shown. Before diagnostic anaesthesia, vertical force was significantly reduced
on the lame limb compared to the sound limb during landing (−25%, p < 0.001), midstance (−20%,
p < 0.001) and breakover (−27%, p < 0.001). After anaesthesia, the difference between both forelimbs
was not significant anymore for all phases. The vertical force on the lame limb increased significantly
after positive anaesthesia during the whole stance phase, with breakover being most affected (+27%,
p = 0.001). Pressure measurements with the Hoof™ System can be used to evaluate the effect
of diagnostic anaesthesia in a clinical setting with pain-related vertical force asymmetries being
neutralised after diagnostic anaesthesia. Breakover is the main event influenced by lameness.
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1. Introduction

Visual evaluation of a lame horse before and after diagnostic anaesthesia is part of a
standard lameness investigation. However, the objectivity of this method is limited, and it
can often be an inaccurate assessment method [1–5].

To objectively quantify gait abnormalities, several inertial sensor-based and kinetic
systems, such as pressure mapping-based systems, have been developed [6–11]. However,
until now, kinetic evaluations have focussed on the effect of perineural anaesthesia in
sound horses and those with experimentally induced lameness [12–16], while clinical
studies are rare [17].

Pressure measurements may either be performed with systems embedded in the
runway [10] or with foil-based systems fixed to the hooves. The latter provides the analysis
of bilateral pressure distribution during clinical lameness examinations, as they enable
the analysis of multiple, consecutive strides under various conditions without noticeable
interference with the physiologic gait pattern of the horse [18,19]. Pressure distribution
of the loading area during the different phases of the stance phase can be evaluated [20].
Previous studies showed that pressure distribution under the hoof in lame horses varies
depending on the underlying pathology [21].

The objective of the present study was to determine the effect of diagnostic anaesthesia
on bilateral vertical force distribution (in kg) in horses with unilateral forelimb lameness
during all phases of the stance phase by using a non-invasive pressure measurement
system (Tekscan Hoof System®, Tekscan®, Inc., South Boston, MA, United States) on both
forelimbs simultaneously.

The following hypotheses were tested:

1. Before diagnostic anaesthesia

(a) Vertical force in kilograms on the lame limb is reduced compared to the sound
limb during all parts of the stance phase (landing, midstance, breakover).

2. After positive diagnostic anaesthesia

(a) Vertical force on the anaesthetised limb increases whereas the vertical force on
the sound limb decreases, which leads to a more symmetrical bilateral vertical
force distribution in kilograms during all parts of the stance phase (landing,
midstance, breakover).

(b) Following diagnostic anaesthesia, the maximum increase in vertical force on
the lame limb occurs during midstance.

2. Materials and Methods
2.1. Horses

Data were acquired prospectively from 14 horses with unilateral forelimb lameness
that were referred for lameness examination. After anamnesis and a general examination,
a complete orthopaedic examination was performed by two independent experienced
veterinarians, and the indication for diagnostic anaesthesia was confirmed. Lameness
severity was divided into five degrees using a modified AAEP lameness score [3], using
half units (e.g., 3.5) at the discretion of the examining clinician. Weight of the horses was
estimated by measuring the chest circumference (Horse & Pony Weighing Tape, William
Hunter Equestrian, Littlehampton, UK).

2.2. Data Collection

All horses were examined with the Hoof™ System (TekScan®, TekScan Hoof System®)
to assess vertical force (in kg) affecting both front hooves before and after diagnostic
anaesthesia (Figure 1). The 0.15 mm thin sensor foils (Hoof Sensors Model #3200E, Tekscan,
Inc., South Boston, United States) of the system detect vertical pressure with a spatial
resolution of 3.9 sensor cells/cm2 and a recording frequency of 250 Hz (Figure 2). After
cutting the sensor foils to the respective size of the hooves they were protected on both
sides with a self-adhesive 2 mm thick foam rubber layer (3M Deutschland GmbH, Neuss,
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Germany) (Figure 3) and fixed underneath both front hooves with adhesive tape (Tesa Duct
Tape 4610, Global Headquarters—Tesa SE, Norderstedt, Germany). The connector of the
sensor was inserted into the data logger on the lateral side of each forelimb. Before each
measurement calibration was performed according to the manufacturers’ instructions and
previous publications [18,22]. Subsequently, horses were trotted on hand at their natural
speeds for 10 seconds in a straight line on a hard surface without sideway movements or
excessive interaction with the leading person on the left-hand side of the horse while data
were recorded and stored.
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Afterwards, diagnostic anaesthesia of the affected leg was performed from distal to
proximal by using defined volumes of 2% mepivacaine hydrochloride solution (Mecain®

20 mg/mL: Puren Pharma GmbH & Co. KG, München, Germany) according to clinical
guidelines [23,24]. Five to ten minutes post-injection, the effect of each regional nerve block
was assessed by testing the skin sensitivity using a blunt item. Effectiveness of diagnostic
intraarticular anaesthesia was assessed by obtaining a reflux of synovial fluid after needle
placement into the synovial cavity and by clinical response.

Ten minutes after diagnostic anaesthesia, the horses were trotted again as described
above to evaluate the subjective lameness degree. After successful anaesthesia, a second
measurement with the Hoof™ System was performed.

Examination protocols were standardised regarding the position of handler and tim-
ings following diagnostic anaesthesia. Horses were allowed to trot at their natural speed
in a controlled environment ensuring regular movement during our investigations. Only
strides from a regular segment were analysed, discarding the first and last strides to
eliminate the effects of acceleration and deceleration.
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2.3. Data Analysis

After completed measurement, data were transferred to the software program FastSCAN
Mobile Research Version 6.68® (FastSCAN Mobile Research Version 6.68® (Tekscan®), Inc.,
South Boston, MA, USA), displaying the information as averaged two-dimensional colour-
coded pressure images (Figure 4) and as averaged pressure–time curves (Figures 5 and 6).
Generally, eight to ten consecutive strides were used for further calculations of the parameters
of interest.
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Figure 5. Averaged pressure–time curve of one horse in the current study with right forelimb
lameness: vertical force in kg on the left (red) and the lame right (green) forelimb during landing
(10% of the stance phase), midstance (50% of the stance phase), and breakover (90% of the stance
phase) before anaesthesia.

The averaged pressure–time curves allowed for analysis of the vertical force distribu-
tion (in kg) at each single hoof and the difference between both forelimbs during landing,
midstance, and breakover (Figures 5 and 6). The x-axis of this curve shows the time of
the whole stance phase. Approximately the first 20% of stance phase represents landing,
followed by midstance, lasting until 80% of the time of stance phase. The last 20% repre-
sents breakover [25,26]. Representative points in time were used to assess vertical force
exerted on the ground during landing (at the 10% point of stance phase in the pressure-time
curves), midstance (at the 50% point of stance phase), and breakover (at the 90% point of
stance phase) (Figures 5 and 6).

For statistical analyses of the data, the software BMDP/Dynamic (BMDP Statistical
Software Manual 1992: BMDP Release 8.1. University of California Press, Berkeley, CA,
USA) was used. All variables were tested prior to the statistical analysis for normal
distribution using the Shapiro–Wilk test. For each variable (vertical force in kilograms on
both front hooves before and after diagnostic anaesthesia during landing, midstance, and
breakover), a two-way analysis of covariance (ANCOVA) with repeated measurements
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regarding the factors limb (lame/sound) and anaesthesia (before/after) and the covariable
body weight was performed. p < 0.05 was regarded as statistically significant. The p-values
for the pairwise comparisons were adjusted using the Bonferroni–Holm correction.
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3. Results

Fourteen horses with unilateral forelimb lameness fulfilled the inclusion criteria.
Horse descriptions are given in Table 1. Results of the lameness examination and diagnostic
anaesthesia are shown in Table 2. On average, the 14 orthopaedic patients showed a mean
lameness score of 2.4 ± 0.7/5 in a straight line on hard ground. Altogether, 10 perineural
anaesthesia at the distal limb, 3 intrasynovial anaesthesia and 1 regional infiltration of
the medial collateral ligament of the elbow joint with local anaesthetic were performed.
Four cases were sound after regional or intrasynovial anaesthesia, seven cases showed a
substantial reduction in lameness, lameness improved in one case and horses developed
contralateral limb lameness following diagnostic anaesthesia in two cases (Table 2).

Table 1. Signalment of horses (age, weight, shod/unshod) with forelimb lameness included in the
current study, divided by breed.

Breed Age (Mean ± SD) Weight (Mean ± SD) Shod Unshod

8 German
Warmblood horses 12 ± 6 years 560 ± 50 kg 4 * 4

2 Icelandic horses 10 ± 5 years 350 ± 50 kg 0 2
2 Cold bloods 15 ± 2 years 650 ± 50 kg 2 † 0
1 Appaloosa 16 years 500 kg 1 † 0

1 Arabian horse 22 years 400 kg 0 1

* 2 × standard shoes, 1 × spider plate shoe, 1 × Eggbar shoe, † normal shoes.

Table 2. Results of lameness examination of horses with forelimb lameness included in the current study
involving the breed, the lame forelimb, and the lameness score as well as location, type, and result of
anaesthesia.

Lame Limb Lameness Score Location of Anaesthesia Type of Anaesthesia Result of Anaesthesia

Warmbloods
1 RF 2 antebrachiocarpal joint intrasynovial positive
2 LF 2 digital flexor tendon sheath intrasynovial positive with slight rest

3 RF 3.5 abaxial sesamoid perineural positive with lameness
on the contralateral limb

4 RF 3 abaxial sesamoid perineural positive with slight rest
5 RF 2 abaxial sesamoid perineural positive with slight rest
6 LF 2 abaxial sesamoid perineural positive
7 RF 2 abaxial sesamoid perineural positive
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Table 2. Cont.

Lame Limb Lameness Score Location of Anaesthesia Type of Anaesthesia Result of Anaesthesia

8 RF 3 medial collateral ligament
(elbow joint) infiltration positive with distinct rest

Icelandic
horses
9 LF 1 high 4 point perineural positive with slight rest
10 LF 2 low palmar digital perineural positive

Cold bloods

11 RF 2 high palmar digital perineural positive with lameness
on the contralateral limb

12 RF 3 low 4 point perineural positive with slight rest

Appaloosa
13 RF 2 abaxial sesamoid perineural positive with slight rest

Arabian
horse
14 RF 3.5 antebrachiocarpal joint intrasynovial positive with slight rest

3.1. ANCOVA

The statistical analysis showed a significant interaction between the factors limb and
anaesthesia for all phases of stance. The body weight showed a significant impact on the
dependent variables (see Table 3). Due to the results of the ANCOVA, pairwise comparisons
were made.

Table 3. Results of the ANCOVA. Global p-values for the repeated measurements limb (lame/sound)
and anaesthesia (before/after), as well as their interaction and the covariable body weight during
landing, midstance, and breakover.

Landing Midstance Breakover

Impact of body weight p = 0.001 p < 0.001 p = 0.02
Impact of limb (lame/sound) p = 0.008 p = 0.003 p = 0.02

Impact of anaesthesia (before/after) p = 0.6 p = 0.2 p = 0.5
Interaction between limb and anaesthesia p = 0.003 p < 0.001 p < 0.001

3.2. Pairwise Comparisons
3.2.1. Before Diagnostic Anaesthesia

Before diagnostic anaesthesia, vertical force was significantly reduced on the lame
limb compared to the sound limb during landing (−25%, p < 0.001), midstance (−20%,
p < 0.001), and breakover (−27%, p < 0.001) (Table 4).

Table 4. Pairwise comparisons of the bilateral vertical force in kg between the sound and the lame
limb before anaesthesia during landing, midstance, and breakover.

Lame Limb Sound Limb p-Value

Landing 111 ± 28 kg 147 ± 45 kg <0.001
Midstance 265 ± 75 kg 332 ± 110 kg <0.001
Breakover 135 ± 71 kg 185 ± 87 kg <0.001

3.2.2. After Diagnostic Anaesthesia

After diagnostic anaesthesia, the bilateral vertical force distribution became more
symmetrical. Still, the horses continued to exert less vertical force in kg on the anaesthetised
limb during landing (−6%, p = 0.1) and midstance (−3%, p = 0.3), whereas during breakover,
the horses exerted more vertical force on the anaesthetised limb when compared to the
sound limb (+5 %, p = 0.3). This bilateral difference in vertical force distribution was not
significant in any motion event (Table 5).
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Table 5. Pairwise comparisons of the bilateral vertical force in kg between the sound and the lame
limb after anaesthesia during landing, midstance, and breakover.

Lame Limb Sound Limb p-Value

Landing 127 ± 34 kg 136 ± 35 kg 0.1
Midstance 307 ± 76 kg 318 ± 79 kg 0.3
Breakover 170 ± 73 kg 162 ± 63 kg 0.3

3.2.3. Lame Limb before and after Anaesthesia

The vertical force on the lame limb increased significantly after positive anaesthesia during
all motion events (landing +15%, p = 0.009; midstance +16%, p < 0.001). The main increase in
vertical force after anaesthesia was observed during breakover (+27%, p = 0.001) (Table 6).

Table 6. Pairwise comparisons of the vertical force in kg on the lame limb before and after anaesthesia
during landing, midstance, and breakover.

Lame Limb:
Vertical Force

before Anaesthesia

Lame Limb:
Vertical Force

after Anaesthesia
p-Value

Landing 111 ± 28 kg 127 ± 34 kg 0.009
Midstance 265 ± 75 kg 307 ± 76 kg <0.001
Breakover 135 ± 71 kg 170 ± 73 kg 0.001

3.2.4. Sound Limb before and after Anaesthesia

During all motion events of the stance phase, the vertical force on the sound limb
decreased, corresponding to the increase in vertical force on the anaesthetised limb. The
reduction was not significant during landing (−8%, p = 0.06) and midstance (−4%, p = 0.1),
whereas a significant vertical force reduction was again observed during breakover (−13%,
p = 0.02) (Table 7).

Table 7. Pairwise comparisons of the vertical force in kg on the sound limb before and after anaesthe-
sia during landing, midstance, and breakover.

Sound Limb:
Vertical Force

before Anaesthesia

Sound Limb:
Vertical Force

after Anaesthesia
p-Value

Landing 147 ± 45 kg 136 ± 35 kg 0.06
Midstance 332 ± 110 kg 318 ± 79 kg 0.1
Breakover 185 ± 87 kg 162 ± 63 kg 0.02

4. Discussion

To our knowledge, this study is the first to show that after positive diagnostic anaes-
thesia of a lame limb, the main increase in vertical force on the lame limb and the main
decrease in vertical force on the sound limb occur mainly during the breakover phase.

The results of this study confirmed our first hypothesis that before diagnostic anaes-
thesia, significant differences in vertical force between lame and sound limbs are detectable
with the Hoof™ System. At a trot, a significant vertical force reduction on the lame limb
compared to the sound limb occurred during landing, midstance, and breakover. This
would be expected, as it has been documented by previous studies [12–14,17]. Additionally,
the biggest difference in vertical force between lame and sound limbs occurred during
breakover, followed by landing, which leads to the speculation that bilateral vertical force
in these two phases is more sensitive to the presence of pain than the vertical force acting
during midstance phase, which displayed a smaller difference between sound and lame
limbs. It has been assumed that during landing, high forces affect the limb as impact peaks,
shock, and vibration [27] probably accentuate lameness caused by articular or osseous
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disorders and energy storing tendons, e.g., the superficial digital flexor tendon and the
suspensory ligament [28]. In contrast, during breakover, high forces are transferred to the
ground for limb propulsion immediately before the swing phase; in particular, tendons
such as the deep digital flexor tendon and muscles and ligaments such as the accessory
ligament of the deep digital flexor tendon are subject to high strain [29–31], so pain as-
sociated with lesions of these structures may become more obvious. Further studies are
warranted to investigate whether changes in the stance phase vary depending on the nature
of the painful structure. Another potential cause is that vertical force on the sound limb
is increased during breakover in order to propulse the horse, reducing the vertical force
on the lame limb during the following stance phase [12]. In return, the vertical force on
the lame limb is decreased during breakover because of pain and in order to lower the
head during the following stance phase of the sound limb. Subsequently, the difference
in vertical force between both forelimbs is greatest during breakover. During midstance,
there is pure vertical loading with no acceleration, thus reducing microvibrations and
instabilities associated with landing or breakover [32]. This may explain our findings and a
lesser contribution of the midstance phase to lameness. These findings need to be further
investigated as the Hoof™ System allows discrimination between phases of locomotion,
which may be further considered for lameness management strategies. The differentiation
of which part of the stance phase is mostly affected may also complement the output of
trunk-mounted IMU sensor-based lameness detection systems, which are incapable of such
discrimination, as they only perform a comparison of motion symmetry into impact and
push-off lameness representing the first and second half of the stance phase [33].

The second hypothesis referred to the changes seen after diagnostic anaesthesia and
can also be supported by the results of this study since following diagnostic anaesthesia, the
vertical force affecting the anaesthetised limb increased significantly, whereas the vertical
force on the sound limb decreased, which led to a more symmetrical bilateral vertical force
during all parts of the stance phase. This was expected, as a more symmetric movement
resulting from a more even loading between lame and sound limbs occurs following
positive diagnostic anaesthesia, as described by a previous study [17]. The Hoof™ System
could detect and calculate these changes numerically, which makes the system potentially
useful to monitor the effect of diagnostic anaesthesia objectively in a clinical setting.

Our final hypothesis stating that the maximum effect of diagnostic anaesthesia occurs
during midstance has to be rejected, as we observed the maximum increase in vertical force
on the anaesthetised limb during breakover. This result emphasises the meaning of this
phase for equine locomotion and compensation mechanisms of painful processes in the
limb [12,20,34] so that the loss of sensory feedback after diagnostic anaesthesia [35] might
become more obvious during this part of the stance phase.

The observation that loading of front limbs was not completely symmetric after
diagnostic anaesthesia was probably due to the different underlying pathologies inevitably
leading to a variable improvement in lameness after diagnostic anaesthesia. In addition, it
has been shown by pressure measuring that even sound horses may show an asymmetric
bilateral loading [36]. This has to be considered in horses with mild lameness or those not
responding to diagnostic anaesthesia. Theoretically, subtle hindlimb lameness becoming
more dominant after positive anaesthesia of a lame front limb may also have influenced
front limb loading through mechanisms of compensation [37]. To date, no threshold value
for lameness has been found for the pressure mapping system used in the current study, as
it has been described for body-mounted inertial sensor systems [9]. This will be necessary
to support its routine clinical use. In a former study, it was reported that the Hoof™ System
is not reliable compared to a force platform when being fixed with an equine hoof boot [22].
The reliability of mounting the sensor foils with adhesive tape was not evaluated in the
current or former studies [18,19,21,34], which may have had an influence on the results.
Another study could show reliability within but not between sessions when the sensor foils
were attached with a glue-on shoe [38]. A potential cause for missing reliability between
sessions could be sensel damage due to creases and delamination. Signs of disintegration,
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as described above, could also be observed in the current study, as measurements were
performed on concrete flooring so that foam rubber and sensor foils were subject to abrasion,
leading to the replacement of the sensors. To avoid the effect of humidity on sensor output,
measurements took only place during dry weather [39].

In the current study, naturally lame horses were included, as we intended to investigate
the system’s performance under real clinical circumstances. In contrast to an experimental
model, this study design inevitably led to several limitations. The variation in lameness
degree between individuals may have influenced the results and may be responsible for
the large standard deviation seen in our samples. It is possible that individuals with
higher degrees of lameness had the highest impact on our results. Further investigations
regarding the effect of the degree of lameness on the changes in the different parts of
the stance phase will be of interest. Whether abnormal gait patterns caused by disorders
of the musculoskeletal system not diagnosed in the current study would lead to other
deviations from normal gait patterns during the different parts of the stance phase will
have to be proved by including more cases classified by specific disorders in future studies.
As described above, our standardised examination protocols concerned the position of
the handler, timings following diagnostic anaesthesia, and the speed of horses. While the
first two were easily controlled, we did not measure the speed of horses, which may have
influenced the results, as time, force, and spatial parameters are velocity-dependent [40].
At higher speed, more horses with subtle lameness are assessed as sound during subjective
lameness evaluation, whereas more prominent lameness becomes more visible with higher
speed [41,42]. While sound horses likely trot at a constant speed [43], lame horses tend
to increase their speed after diagnostic anaesthesia [42]. At the same time, peak vertical
force increases with increasing velocities [40]. This might have contributed, along with
the analgetic effect of the local anaesthetic [23], to the significant increase in vertical force
on the lame limb after anaesthesia. On the other hand, this is a potential reason why the
vertical force reduction on the sound limb after diagnostic anaesthesia is not significant.
The influence of the handler position was considered low, as in a previous study on sound
horses, the handler position did not affect limb loading and hoof balance [15].

5. Conclusions

Diagnostic anaesthesia eliminates the vertical force distribution asymmetries between
both forelimbs seen in unilaterally lame horses as evaluated by pressure measurements. In
lame horses, differences in vertical force distribution found between the components of the
stance phase contribute to a better understanding of equine gait and facilitate customised
shoeing solutions, with breakover being the most affected. Hoof™ System measurements
can be used to evaluate symmetric loading at a trot and to evaluate the effect of diagnostic
anaesthesia in a clinical setting. Further studies including a larger number of horses with
specific disorders are warranted to confirm the results of the current study.
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