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Ferroptosis, a newly discovered form of cell death mediated by reactive oxygen species (ROS) and lipid peroxidation,
has recently been shown to have an impact on various cancer types; however, so far there are only few studies about its
role in hepatocellular carcinoma (HCC). The delicate equilibrium of ROS in cancer cells has found to be crucial for cell
survival, thus increased levels may trigger ferroptosis in HCC.
In our study, we investigated the effect of different ROSmodulators and ferroptosis inducers on a human HCC cell line
and a human hepatoblastoma cell line. We identified a novel synergistic cell death induction by the combination of
Auranofin and buthionine sulfoxime (BSO) or by Erastin and BSO at subtoxic concentrations. We found a caspase-
independent, redox-regulated cell death, which could be rescued by different inhibitors of ferroptosis. Both
cotreatments stimulated lipid peroxidation. All these findings indicated ferroptotic cell death. Both cotreatments af-
fected the canonical ferroptosis pathway through GPX4 downregulation. We also found an accumulation of Nrf2
and HO-1, indicating an additional effect on the non-canonical pathway. Our results implicate that targeting these
two main ferroptotic pathways simultaneously can overcome chemotherapy resistance in HCC.
Introduction

The evasion of programmed cell death and the imbalance of redox
homeostasis contribute to tumor formation and lead to failure of anti-
cancer therapies [1–3]. The identification of novel drugs, which re-
induce cell death in tumor cells by addressing the redox system through
modulation of ROS could be a promising new therapeutic strategy.
Ferroptosis has recently been discovered as a new form of programmed
non-apoptotic, oxidative cell death, which is characterized, inter alia,
by fenton reaction caused by redox-active iron pools, increased ROS
production and accumulation of lipid peroxidation [4]. Cells undergo-
ing ferroptosis show morphological changes such as mitochondrial
shrinkage, rupture and condensation of the mitochondrial membrane
and vanishing of the mitochondrial crista [4–6]. Induction of ferroptosis
was found in various kinds of cancer cells including renal cell carci-
noma, diffuse large B-cell carcinoma, breast cancer, lung cancer, pan-
creatic cancer and others [5,7–9].
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Two main pathways for inducing ferroptotic cell death have been de-
scribed: first, the canonical pathway, which is characterized by degradation
or blocking of glutathione (GSH) peroxidase 4 (GPX4), a proteinwhich pro-
tects cell membranes against lipid peroxidation [10,11], and second, the
non-canonical pathway which is mediated by activation of heme
oxygenase-1 (HO-1), resulting in an increase of the labile Fe-(II) pool
thereby inducing ferroptosis. The non-canonical pathway is mainly regu-
lated by decreased levels of Kelch-like ECH-associated protein 1 (KEAP1)
resulting in accumulation of nuclear factor erythroid 2-related factor 2
(Nrf2), which subsequently translocates into the nucleus [10,11]. Target
genes of Nrf2, e.g. thioredoxin reductase (TrxR), are involved in GSH syn-
thesis and elimination of ROS [12].

Ferroptosis-inducing compounds can be further differentiated based on
their mode of inhibition of GPX4 [5]. Class 1 inducers lead to GSH deple-
tion, for example by blocking its synthesis with substances like BSO or by
inhibiting the Xc−-system, which delivers cystine for GSH regeneration. A
known Xc−-inhibitor and ferroptosis inducer is Erastin [4,5,13]. A second
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class, e.g. Ras selective lethal 3 compound (RSL3), directly inhibits GPX4
without GSH depletion [5].

The delicate ROS homeostasis plays an important role in protecting cells
from lipid peroxidation and is therefore another interesting target for in-
ducing ferroptosis in cancer, especially since cancer cells appear to be
more easily damaged by ROS imbalance due to their already elevated
basal ROS levels [1,12,14]. Essential for redox homeostasis is the
thioredoxin (Trx) system, which protects DNA from oxidative stress-
associated damage and lipid peroxidation [15,16]. Auranofin, a gold com-
plex used in antirheumatic therapy, which can inhibit TrxR-1, an enzyme
that maintains the supply of antioxidant Trx, could be another promising
anticancer agent [16,17].

Addressing ROS homeostasis and ferroptosis might be a new promising
strategy for anticancer therapies, especially for human HCC, which is
known for its resistance to most chemotherapeutical regimens. Because of
the late onset of symptoms, HCC is often too advanced to be treatable via
surgery, ablation or radioembolization at the time of diagnosis, and there
are only limited therapeutic alternatives. The effect of approved molecular
targeted agents, so far consisting solely of Sorafenib or Regorafenib, is still
unsatisfactory, showing a median overall survival benefit of only 3 months
compared to placebo [18,19]. Being the second leading cause of cancer
death worldwide with increasing incidence in Europe and North America,
it is crucial to find new therapeutic approaches to treat HCC [20]. Recently
we showed that ROS is a mediator to induce apoptotic cell death in HCC
[21–23]. The fact that Sorafenib, which is by now known to induce
ferroptosis, induces HCC cells to undergo cell death, might suggest that
other ferroptosis-inducing regiments could be effective aswell [24]. And in-
deed, several studies have shown first promising results concerning the in-
duction of ferroptosis in HCC [16,25–27].

Therefore, in the present study we investigated the role of different ROS
modulators and ferroptosis inducers in the induction of cell death in human
HCC cells.

Materials and Methods

Cell Culture and Reagents

The human HCC cell line Huh7 and human hepatoblastoma cell line
HepG2 were purchased from Japan Collection of Research Biosources
(JCRB) Cell Bank (Osaka, Japan) and cultured in DMEMmedium (high glu-
cose, GlutaMAX™; Life Technologies, Inc., Eggenstein, Germany), supple-
mented with 10% fetal calf serum (FCS) (Biochrom, Berlin, Germany),
1% penicillin/streptomycin (Invitrogen, Karlsruhe, Germany) and 1 mM
sodium pyruvate (Invitrogen). All cell lines were maintained in a humidi-
fied atmosphere at 37 °C with 5% CO2.

Auranofin was obtained from Santa Cruz Biotechnology (Santa Cruz,
CA, USA), Necrostatin-1 (Nec-1) from Calbiochem (Darmstadt, Germany)
and the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-
fluoromethylketone (zVAD.fmk) from Bachem (Heidelberg, Germany).
RSL3 was kindly provided by B. Stockwell (Columbia University, New
York, NY, USA). All other chemicals were purchased from Sigma-Aldrich
or Carl Roth (Karlsruhe, Germany) unless indicated otherwise.

Determination of Cell Viability, Cell Death, ROS Production and Lipid
Peroxidation

Cell viability was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) assay according to the manufacturer's
instructions (Roche Diagnostics, Mannheim, Germany).

Cell death was determined by analysis of DNA fragmentation of
propidium iodide (PI)-stained nuclei or forward/side scatter (FSC/SSC)
analysis of PI-stained nuclei using flow cytometry (FACSCanto II, BDBiosci-
ences, Heidelberg, Germany) as described previously [28].

To analyze ROS production cells were incubated with 5 μM CM-
H2DCFDA (Molecular Probes, Inc., Eugene, OR, USA) or 5 μMofMitoSOX™
Redmitochondrial superoxide indicator (Molecular Probes, Inc.) according
2

to the manufacturer's protocol. ROS production was measured by flow cy-
tometry before cells succumbed to cell death. For measuring lipid peroxida-
tion, cells were incubated with 5 μM BODIPY™ 581/591 C11 (Thermo
Fisher Scientific, Waltham, MA, USA) for 30 minutes at 37 °C according
to the manufacturer's protocol and immediately analyzed by flow cytome-
try before cells underwent to cell death.

Determination of TrxR Activity

TrxR activity was measured with the Thioredoxin Reductase Assay Kit
Colorimetric (Abcam, Cambridge, UK) following the instructor's manual.
Protein content of the lysates was determined using the Pierce BCA Protein
Assay Kit (ThermoFisher Scientific) and 80 μg of proteinwere used for each
analysis.

Western Blot Analysis

Western blot analysis was performed as described previously [28]
using the following antibodies: mouse anti-β-Actin (Sigma-Aldrich),
rabbit anti-Nrf2 (Abcam, Cambridge, United Kingdom), rabbit anti-
KEAP1 (Proteintech Group, Rosemont, IL, USA), rabbit anti-HO-1
(Enzo Life Science, Lörrach, Germany) and rabbit anti-GPX4 (R&D Sys-
tems, Minneapolis, MN, USA). Goat anti-mouse IgG and goat anti-rabbit
IgG conjugated to horseradish peroxidase (Santa Cruz Biotechnology,
Santa Cruz, CA, USA) were used as secondary antibodies. Enhanced
chemiluminescence was used for detection (Amershan Bioscience, Frei-
burg, Germany). Representative blots of at least two independent exper-
iments are shown.

Apoptosis Protein Array

For detection of different apoptotic proteins, we used an apoptosis
array purchased by R&D Systems (Minneapolis, MN, USA). Shortly,
HCC cells were treated for 24 hours with Auranofin and BSO or Erastin
and BSO. Approximately 200 μg of protein lysates were used, and the
assay was performed in accordance with the manufacturer's protocol.
The apoptotic proteins are visualized using chemiluminescent detection
reagents.

Statistical Analysis

Statistical significance was assessed by Student's t-Test (two-tailed dis-
tribution, two- sample, unequal variance).

Results

Auranofin/BSO and Erastin/BSO Cotreatment Synergistically Induced Cell
Death in HCC Cells

To investigate whether HCC cells are susceptible to oxidative stress-
mediated cell death we tested the effects of different ROS modulators and
ferroptosis inducers alone and in combination, including Auranofin,
Erastin, BSO and RSL3, in the human liver cancer cell lines Huh7 and
HepG2. Interestingly, Auranofin combined with BSO as well as Erastin
combined with BSO acted in concert to reduce cell viability compared to
treatment with either agent alone in both cell lines (Figure 1A). Other com-
binations exerted no or minimal effects on cell viability loss or exhibited
moderate effects in only one of the two cell lines (Suppl. Figure 1). For
confirming the cooperative cell death induction and performing kinetic
analysis we used another cell death assay. Similarly, Auranofin and BSO
as well as Erastin and BSO acted together to induce cell death in both cell
lines (Figure 1B). Kinetic analysis showed that Auranofin/BSO- and
Erastin/BSO-cotreatment induced a time-dependent increase in cell death
starting after 24 to 48 hours (Figure 1B). Together, these experiments dem-
onstrate that cotreatment of Auranofin/BSO and Erastin/BSO synergisti-
cally induced cell death in both HCC cell lines.
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Figure 1. The effect of different ROSmodulators and ferroptosis inducers on the human liver cancer cell lines Huh7 and HepG2. (A) Huh7 and HepG2were treated for 72 hours with indicated concentrations of Auranofin, BSO and
Erastin. (B) Huh7 cells were treatedwith 0.5 μMAuranofin and/or 10 μMBSOor 1 μMErastin and/or 10 μMBSO for indicated times. HepG2 cells were treatedwith 1 μMAuranofin and/or 10 μMBSOor 2 μMErastin and/or 1.5mM
BSO for indicated times. Cell viability was determined byMTT assay (A) and cell death by analysis of PI-stained nuclei using flow cytometry (B). Mean and SD of three different experiments performed in triplicate are shown. * P<
.05; ** P < .01; *** P < .001.
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Ferrostatin-1 (Fer-1) Inhibited Auranofin/BSO- and Erastin/BSO-Induced Cell
Death

Next, we asked which type of cell death was activated upon
cotreatment with Auranofin/BSO or Erastin/BSO. To address this
question we determined cell death in the absence or presence of Fer-
1, a pharmacological inhibitor of ferroptosis [4]. Importantly, addition
of Fer-1 significantly decreased Auranofin/BSO- or Erastin/BSO-
induced cell death in both cell lines (Figure 2, A and B). Since
ferroptosis is known to be caspase-independent [4,10], we hypothe-
sized that Auranofin/BSO- and Erastin/BSO-cotreatment triggered a
caspase-independent cell death in HCC cells. To clarify whether
caspases are required for the induction of cell death we used the
pan-caspase inhibitor zVAD.fmk. zVAD.fmk was unable to provide
protection against Auranofin/BSO- or Erastin/BSO-mediated cell
death (Figure 3, A and B), whereas it significantly decreased cell
death upon treatment with Sorafenib (Sora) and oleanolic acid (OA)
that was used as positive control for caspase-dependent cell death in-
duction [21,23]. Furthermore, analysis of caspase-3 activation by pro-
tein array showed no caspase-3 activation upon Auranofin/BSO or
Erastin/BSO cotreatment, underlined by the missing expression of ac-
tive cleaved form of caspase-3 (Figure 3C). As positive control, both
cell lines were treated with Sorafenib and oleanolic acid [21,23],
which triggered the activation of pro-caspase-3 and its processing
into the active cleaved caspase-3 (Figure 3C).

Together, these findings are consistent with caspase-
independent, ferroptotic cell death upon Auranofin/BSO or Erastin/BSO
cotreatment.
Huh7

Aura
BSO
Fer-1

-
-
-

-
-
+ 

+
-
-

+
-
+  

-
+
-

-
+
+  

+
+
-

+
+
+  

0

20

40

60

80

100

ce
ll

de
at

h
[%

]

*

0

20

40

60

80

100

ce
ll

de
at

h
[%

]

***

Era
BSO
Fer-1

-
-
-

-
-
+ 

+
-
-

+
-
+  

-
+
-

-
+
+  

+
+
-

+
+
+  

A

Figure 2. Fer-1 inhibited Auranofin/BSO- and Erastin/BSO-induced cell death. (A) Huh
Erastin and/or 10 μMBSO for 72 hours in the presence or absence of 10 μMFer-1. (B) He
or 1.5 mM BSO for 72 hours in the presence or absence of 10 μM Fer-1. Cell death was d
three different experiments performed in triplicate are shown. * P < .05; *** P < .001
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Lipoxygenase (LOX) Inhibitors and Ferroptosis Inhibitors Blocked Auranofin/
BSO and Erastin/BSO Cotreatment-Induced Cell Death and Lipid Peroxidation

To confirm the hypothesis that Auranofin/BSO or Erastin/BSO
cotreatment triggers ferroptosis we tested Liproxstatin-1 (Lip-1) as another
pharmacological inhibitor of ferroptosis that acts via inhibition of accumu-
lation of lipid hydroperoxides [29]. Importantly, Lip-1 potently rescued
both cell lines from Auranofin/BSO- or Erastin/BSO-induced cell death
(Figure 4, A and B). Since LOX has recently been implicated in the regula-
tion of ferroptosis [10], we also determined the effect of LOX inhibitors.
Of note, the addition of nordihydroguaiaretic acid (NDGA), a pan-LOX in-
hibitor [30] and Baicalein, a selective 12/15-LOX inhibitor [31], signifi-
cantly reduced Auranofin/BSO- or Erastin/BSO-induced cell death in both
cancer cell lines (Figure 4, A and B).

In the next step, we assessed lipid peroxidation by using BODIPY-C11, a
fluorescent dye that detects lipid peroxidation [32,33]. Auranofin/BSO and
in particular Erastin/BSO cotreatment caused a significant increase in lipid
peroxidation in both cell lines (Figure 5, A and B). This Auranofin/BSO- or
Erastin/BSO-stimulated increase in lipid peroxidation was significantly re-
duced in the presence of the ferroptosis inhibitors Lip-1 and Fer-1 (Figure 5,
A and B). These findings confirm that the Auranofin/BSO and Erastin/BSO
cotreatment trigger ferroptosis in HCC cells.

Auranofin/BSO and Erastin/BSOCotreatment Led to ROS Production and ROS-
Dependent Cell Death

Since ferroptosis is characterized by the accumulation of lipid-based
ROS [4], we next used the fluorescent dye CM-H2DCFDA, which has been
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Figure 3.Auranofin/BSO- and Erastin/BSO-cotreatment triggered caspase-independent cell death. (A) Huh7 cells were treatedwith 0.5 μMAuranofin and/or 10 μMBSO for
48 hours or 1 μMErastin and/or 10 μMBSO for 72 hours in the presence or absence of 50 μMzVAD.fmk. (B)HepG2 cells were treatedwith 1 μMAuranofin and/or 10 μMBSO
or 2 μM Erastin and/or 1.5 mM BSO in the presence or absence of 50 μM zVAD.fmk for 72 hours. Cell death was determined by the analysis of PI-stained nuclei using flow
cytometry. As positive control for caspase-dependent cell death, we treated both cell lines with 5 μM Sorafenib (Sora) and 60 μM oleanolic acid (OA). Mean and SD of three
different experiments performed in triplicate are shown. n.s. = not significant; *** P < .001. (C) Caspase-3 activation was measured with a Proteome Profiler® Human
Apoptosis Array Kit as described in the Material & Methods section. Huh7 cells were treated with 0.5 μM Auranofin and 10 μM BSO or 1 μM Erastin and 10 μM BSO for
24 hours. HepG2 cells were treated with 1 μM Auranofin and 10 μM BSO or 2 μM Erastin and 1.5 mM BSO for 24 hours. As positive control, both cell lines were treated
with 5 μM Sorafenib and 60 μM oleanolic acid for 24 hours. Representative blots are shown.
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reported to detect ROS such as hydrogen peroxides, hydroxyl radicals or
peroxyl radicals. Remarkably, Auranofin/BSO as well as Erastin/BSO
cotreatment led to a significant increase in ROS production (Figure 6A).
This increase in ROS production was confirmed by another ROS dye, i.e.
MitoSOX™ Red (Suppl. Figure 2), which is known to be a selective dye for
detection of mitochondrial ROS [34,35]. Addition of the lipophilic ROS
scavengers α-Tocopherol (α-Toc), a Vitamin-E derivate [36], significantly
reduced Auranofin/BSO- or Erastin/BSO-stimulated ROS production in
both cell lines (Figure 6A). By comparison, N-acetyl-cysteine (NAC), an an-
tioxidant and GSH precursor [37,38], suppressed ROS production by
Auranofin/BSO or Erastin/BSO in Huh7 cells, while NAC failed to prevent
the increase in ROS levels in HepG2 cells (Figure 6A).

Next, we explored whether these changes in redox signaling contribute
to cell death upon Auranofin/BSO or Erastin/BSO cotreatment. Impor-
tantly, the addition of α-Toc or NAC almost completely rescued HCC cells
from Auranofin/BSO- or Erastin/BSO-induced cell death (Figure 6B). This
indicates that Auranofin/BSO and Erastin/BSO cotreatment trigger a
redox-dependent form of cell death.

Auranofin/BSO and Erastin/BSOCotreatment Increased Levels of Nrf2 andHO-
1 and Decreased GPX4 Levels

To further explore changes in redox regulation upon Auranofin/BSO or
Erastin/BSO cotreatment wemonitored TrxR activity by ELISA. Auranofin/
BSO cotreatment caused a significant reduction of TrxR activity in both cell
lines (Figure 7A), consistent with the reported inhibition of TrxR by
Auranofin, leading to a reduction of the antioxidant Trx [17,39]. By com-
parison, Erastin/BSO cotreatment did not suppress TrxR activity
(Figure 7A).

Furthermore, monitoring of regulators of redox homeostasis and
ferroptosis by Western blotting revealed decreased protein levels of
5

KEAP1 along with increased levels of Nrf2 (Figure 7B), consistent with ox-
idative stress. Interestingly, both Auranofin/BSO and Erastin/BSO de-
creased protein expression of GPX4 (Figure 7B), the only GPX that is able
to reduce hydroperoxides within membranes [40]. In addition,
Auranofin/BSO or Erastin/BSO cotreatment caused a strong increase in ex-
pression levels of HO-1(Figure 7C), which has been reported to promote
lipid peroxidation by increasing the Fe-(II) pool [11].

In summary, Auranofin/BSO and Erastin/BSO cotreatment alters redox
homeostasis by increasing levels of Nrf2 and HO-1 and decreasing GPX4
levels.

Discussion

Addressing redox homeostasis in cancer cells could be a promising
novel therapeutic approach, since cancer cells often harbor increased ROS
levels [1]. On the one hand, ROS has been shown to be implied in tumori-
genesis, because it activates survival pathways, induces DNA damage, leads
to mutations and helps tumor cells to escape senescence [1]. On the other
hand, excessive ROS accumulation in cancer cells can limit tumor forma-
tion and progression by promoting cell death [1,16,41]. Lipid ROS plays a
key role in a recently identified form of cell death, i.e. ferroptosis [4].
Since different animal studies have shown that inhibition of ferroptosis
could be a new treatment possibility in pathological cell death conditions
(e.g. ischemia/reperfusion injury, Huntington's disease), many publications
are currently presenting the induction of ferroptosis as a new option for
cancer therapy as well [7,9,11,42–44].

In the present study, we therefore investigated the questionwhether the
inhibition of antioxidant pathways that protect HCC cancer cells from oxi-
dative stress and the induction of ferroptosis provides a new therapeutic ap-
proach in HCC cells. Here, we identified a novel synergistic interaction of
Auranofin/BSO and Erastin/BSO in HCC cells. Mechanistic studies showed
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Figure 4.Auranofin/BSO- and Erastin/BSO-cotreatment induced ferroptotic cell death. (A) Huh7 cells were treated with 0.5 μMAuranofin and 10 μMBSO for 48 hours or 1
μMErastin and 10 μMBSO for 72 hours in the presence or absence of 1 μMNDGA, 0.5 μMBaicalein or 25 nMLip-1. (B) HepG2 cells were treatedwith 1 μMAuranofin and 10
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different experiments performed in triplicate are shown. * P < .05; ** P < .01; *** P < .001.
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that Auranofin/BSO and Erastin/BSO cotreatment triggered a redox-
dependent ferroptotic cell death in HCC cells. This conclusion is supported
by data showing that a) pharmacological inhibitors of ferroptosis rescued
cell death in both cancer cell lines and b) Auranofin/BSO- or Erastin/
BSO-stimulated cell death is associated with lipid peroxidation, a typical
feature of ferroptosis, which was reversed by inhibitors of ferroptosis. Con-
sistently, we demonstrated that Auranofin/BSO and Erastin/BSO
cotreatment led to a ROS-dependent form of cell death.

Our findings are in linewith different studies postulating that the imbal-
ance of ROS production and its removal are involved in liver fibrosis and
hepatocarcinogenesis [45–47]. Interestingly, the level of mitochondrial
ROS in HCC is associated with tumor progression and with the prognosis
of patients with HCC [48]. Another study showed that ROS levels in sera
from patients with HCC treated with Sorafenib can predict the response
to Sorafenib [49]. Cellular redox homeostasis and protection of cells from
oxidative stress are mainly regulated by the Trx system and the GSH-
dependent system [15,50,51]. It seems that in certain cancer cells address-
ing only one antioxidant pathway by stimulating ROS accumulation could
be compensated by increased ROS-scavenging enzymes caused by redox ad-
aptation through another existing antioxidant pathway [52].

In our study, we showed that simultaneous pharmacological inhibition
of the twomain antioxidant pathways, i.e. the Trx system and the GSH syn-
thesis pathway, through Auranofin/BSO cotreatment could be a promising
new anticancer strategy in HCC, especially given the fact that neither
Auranofin nor BSOmonotherapy prompted cell death in HCC cells. The ad-
dressing of the Trx system is shown by the significant reduction of TrxR ac-
tivity by the Auranofin/BSO cotreatment. Another work by Lee et al.
6

demonstrated that pharmacological inhibition of TrxR-1 by Auranofin sup-
pressed tumor growth and sensitizes HCC cells to Sorafenib [16]. Further
promising results of Auranofin have been presented in different studies
and in first human clinical trials for the treatment of leukemia, lymphoma,
non-small lung cancer and ovarian cancer [53,54]. Also, the combination of
BSO and Auranofin could be an anticancer strategy, for example in head
and neck cancer and rhabdomyosarcoma cells, and could sensitize breast
cancer stem cells to radiation therapy [55–58]. The anticancer activity of
BSO in combination with melphalan in high-risk neuroblastoma in pediat-
ric patients has been described in first clinical trials [59,60].

In addition to the combination of Auranofin/BSO, we identified
Erastin/BSO cotreatment as another new approach to induce ferroptotic
cell death in HCC. Erastin is an inhibitor of the xc− cystine/glutamate sys-
tem which mediates cystine uptake into the cell, thereby maintaining the
thiol-containing pool of ROS scavengers, particularly of GSH [4]. Conse-
quently, Erastin/BSO cotreatment leads to a significant depletion of intra-
cellular GSH [42] resulting in a reduction of GPX4, a GSH-dependent
enzyme, as shown in our work. Furthermore, the impairment of cystine
uptake by Erastin leads to the production of lethal lipid ROS [4]. The fact
that only Erastin/BSO cotreatment induces cell death in HCC goes in line
with the above described hypothesis that cancer cells have the capacity to
adapt their antioxidant systems. The Erastin analogue PRLX 93936 has
been tested in two clinical phase I/II trials in patients with multiple
myeloma (NCT01695590) and in various advanced cancer forms
(NCT00528047).

We showed, that Auranofin/BSO as well as Erastin/BSO cotreatment
have prompted the activation of the canonical pathway of ferroptosis via
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Figure 5. Lipid peroxidation contributed to Auranofin/BSO- and Erastin/BSO-induced cell death and could be rescued by different inhibitors of ferroptosis and lipid
peroxidation. (A) Huh7 cells were treated with 0.5 μM Auranofin and 10 μM BSO or 1 μM Erastin and 10 μM BSO in the presence or absence 25 nM Lip-1 or 10 μM Fer-1
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GPX4 inhibition. Additionally, we also observed an involvement of the
non-canonical ferroptotic pathway via the Nrf2/KEAP1 system, seen in
both cotreatments. Remarkably, the Nrf2/KEAP1 pathway has been
shown to be one of the most frequently mutated pathways in HCC
[61,62]. The non-canonical pathway has been described to involve acti-
vation of HO-1, a detoxification enzyme which plays a dual role in can-
cer cells: On the one hand, elevated HO-1 levels contribute to cancer
progression and chemotherapy resistance by protecting cells from oxi-
dative stress and, on the other hand, very high cellular ROS levels can
enforce HO-1 to become a mediator for ferroptosis by promoting uncon-
trolled iron, Fe-(II) accumulation through heme degradation, finally
leading to lipid peroxidation [63].

There are only few studies exploring ferroptosis as promising anticancer
therapy in HCC. Mainly, these studies focus on investigating the role of the
first-line therapy drug Sorafenib in ferroptosis and/or improving its thera-
peutic efficacy by combination therapies. Louandre et al. showed that the
cytotoxic effects of Sorafenib were mediated by oxidative stress and led to
ferroptosis in HCC cells [24]. But Sorafenib is also able to induce apoptosis
[21,23,64,65]. Louandre et al. suspected that the induced pathway (apo-
ptosis vs. ferroptosis) depends on the state that the cells are in while adding
Sorafenib [24]. In pro-apoptotic states (e.g. by adding other pro-apoptotic
agents or sensitizer) Sorafenib tends to induce apoptosis. Furthermore,
they assumed that Sorafenib used as a single compound is a probably a bet-
ter inducer of ferroptosis than apoptosis in HCC cell lines [24]. They further
detected the retinoblastoma protein, which is induced by Sorafenib, as a
7

regulator of ferroptosis in HCC [66]. The loss of function of this retinoblas-
toma protein is a common event during hepatocarcinogenesis [66].

Another study described that Haloperidol, a psychotropic drug, aug-
mented the effect of Erastin- or Sorafenib-induced ferroptosis in HCC by in-
ducing the expression of the sigma receptor 1, which seems to be involved
in oxidative stress metabolism [26,67]. Beyond that, Sauzay et al. investi-
gated the effect of Sorafenib on the regulation of protein biosynthesis and
discovered that Sorafenib can both prompt ferroptosis as a single agent
and protect HCC cells from Erastin-induced ferroptosis by inhibition of pro-
tein biosynthesis with increasing the availability of amino acids for GSH
synthesis [24,26,66,68].

Despite promising data on the induction of ferroptosis as an anticancer
strategy, the role of ferroptosis in the development in liver fibrosis and cir-
rhosis remains poorly understood and the data are partially contradictory.

The work by Tsurusaki et al. see ferroptosis as an important trigger for
chronic inflammation of the liver and the development of steatohepatitis,
which could lead to liver fibrosis, cirrhosis and finally to the development
of HCC [69]. In contrast, another work showed that the induction of
ferroptosis by Sorafenib and Erastin in hepatic stellate cells remarkably im-
proved liver fibrosis [70]. Due to the contradictory data, further work and
studies are required to finally evaluate the importance of ferroptosis in pa-
tients with liver cirrhosis or fibrosis.

In our study, we achieved important results for the future development
of ROS-modulating therapies in HCC. First and foremost, Auranofin/BSO
and Erastin/BSO cotreatment could be promising approaches for new
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therapies for the treatment of HCC. Second, the combination of the com-
pounds described above at subtoxic concentrations resulted in synergistic
ferroptotic cell death induction. Third, Auranofin/BSO- and Erastin/BSO-
induced cell death is redox-regulated. Fourth, simultaneous targeting of dif-
ferent antioxidant systems, as shown by the coactivation of the canonical
and the non-canonical pathway, can overcome chemotherapy resistance
in cancer cells.

In conclusion, addressing ROS homeostasis and ferroptosis by
Auranofin/BSO or Erastin/BSO cotreatment could be an interesting anti-
cancer strategy in HCC, which warrants further investigations.
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