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Abstract
A twin building consists of two buildings that are twinned by a codistance function.We
prove that the local structure of a twin building uniquely determines the two buildings
up to isomorphism. This has been known for twin buildings satisfying a technical
condition (co).

Keywords Twin buildings · Local structure · Isometries · Classification

Mathematics Subject Classification 20E42 · 51E24

1 Introduction

Twin buildings were introduced by Ronan and Tits in the late 1980s. Their definition
was motivated by the theory of Kac-Moody groups over fields. Each such group acts
naturally on a pair of buildings and the action preserves an opposition relation between
the chambers of the two buildings. This opposition relation shares many important
properties with the opposition relation on the chambers of a spherical building. Thus,
twin buildings appear to be natural generalisations of spherical buildings with infinite
Weyl groups.

One of the most celebrated results in the theory of abstract buildings is Tits’ classi-
fication of irreducible spherical buildings of rank at least 3 in Tits (1986). The decisive
step in this classification is the proof of a local-to-global result for spherical buildings.
In his survey paper Tits (1992) Tits proves several results that are inspired by his
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strategy in the spherical case and he discusses several obstacles for obtaining a similar
local-to-global result for twin buildings. A first observation in this discussion is that
the local-to-global principle seems to be valid only for 2-spherical twin buildings.
But even in this case the question about the validity of the local-to-global principle
remained open. Based on Tits’ contributions in Tits (1992) the local-to-global prin-
ciple was proved in Mühlherr and Ronan (1995) for 2-spherical twin buildings that
satisfy an additional assumption, called Condition (co). InMühlherr andRonan (1995)
Condition (co) is discussed in some detail and it turns out that it is rather mild. On the
other hand, it follows from that discussion that there are affine twin buildings of type
˜C2 that do not satisfy Condition (co).

The question whether the local-to-global principle for 2-spherical buildings holds
without Condition (co) is still open at present. The main result of this paper is a con-
tribution to the local-to-global principle without assuming any additional condition. It
was proved independently by A.C. in [Ch00] and B.M. in [Mu97] but never published.
In the present article we follow the basic strategy of these references. However, sev-
eral contributions to the theory of twin buildings that have been made in the meantime
provided various improvements of the arguments and exposition. Our motivation to
publish the paper at this point is provided by the fact that it can be used to prove
the local-to-global principle for 2-spherical twin buildings under a weaker assump-
tion than Condition (co). This yields in particular the local-to-global principle for all
affine twin buildings of rank at least 3 and in particular for those which do not satisfy
Condition (co). This will be published in a subsequent paper. Thus, the present paper
should be seen as the first in a series of two papers in which we intend to improve the
main result of Mühlherr and Ronan (1995).

Themain result

In order to give the precise statement of the main result it is convenient to fix some
notation.

Let (W , S) be a Coxeter system. We call (W , S) 2-spherical if st has finite order
for all s, t ∈ S.

A building of type (W , S) is a pair � = (C, δ) consisting of a non-empty set C and
a mapping δ : C × C −→ W (see Sect. 2 for the precise definition). The elements
of C are called the chambers of � and the mapping δ is called the Weyl-distance. For
J ⊆ S and c ∈ C, the set RJ (c) := {d ∈ C | δ(c, d) ∈ 〈J 〉} is called the J -residue of
c and for s ∈ S the set Ps(c) := R{s}(c) is called the s-panel of c. The set

E2(c) :=
⋃

J⊆S,|J |≤2

RJ (c)

is called the foundation of � at c. The building � is said to be thick if |Ps(c)| ≥ 3
for all (s, c) ∈ S × C.

A twin building of type (W , S) is a triple � = (�+,�−, δ∗) consisting of two
buildings �+ = (C+, δ+) and �− = (C−, δ−) of type (W , S) and a codistance
function (or twinning)
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δ∗ : (C+ × C−) ∪ (C− × C+) −→ W

and we refer to Sect. 3 for the precise definition. For a chamber c ∈ C+ (resp. c ∈ C−)
the set E2(c) denotes its foundation of �+ (resp. �−) and � is thick if �+ and
�− are thick. Two chambers c+ ∈ C+ and c− ∈ C− are said to be opposite in � if
δ∗(c+, c−) = 1W .

Let� = ((C+, δ+), (C−, δ−), δ∗) and�′ = ((C′+, δ′+), (C′−, δ′−), δ′∗) be twin build-
ings of type (W , S) and let X ⊆ C+ ∪ C−,X ′ ⊆ C′+ ∪ C′− be sets of chambers of �

and �′. An isometry from X to X ′ is a bijection from X onto X ′ which preserves
signs and the Weyl-distance (resp. codistance) for each pair (x, y) ∈ X 2.

We are now in the position to give the precise statement of our main result.
Main result: Let (W , S) be a 2-spherical Coxeter system and let
� = ((C+, δ+), (C−, δ−), δ∗) and �′ = ((C′+, δ′+), (C′−, δ′−), δ′∗) be thick twin build-
ings of type (W , S). Let c+ ∈ C+, c− ∈ C− be opposite chambers in � and let
c′+ ∈ C′+, c′− ∈ C′− be opposite chambers in �′.

Then each isometry

ϕ : E2(c+) ∪ {c−} → E2(c
′+) ∪ {c′−}

extends to an isometry

ψ : C+ ∪ E2(c−) → C′+ ∪ E2(c
′−).

Several remarks on the main result of this paper are in order.

1. Note that our main result does not assert the uniqueness of the extension ψ . At
present, the uniqueness ofψ is an open question that is most relevant for a possible
proof of the local-to-global principle. Indeed, the key observation in Mühlherr and
Ronan (1995) was that the extension ψ is unique if � satisfies Condition (co).

2. A slightly weaker version of our main result was stated by Tits in the early 1990s
(as Théorème 1 in Tits (1989-1990) and as Theorem 2 in Tits (1992)) and an outline
of a proof is given in both references. However, as pointed out in Paragraph 2.8
of Tits (1997-1998), one of the claims made in the outline remains unclear. That
our main result holds for twin buildings satisfying Condition (co) was verified by
Ronan (see Theorem (7.5) in Ronan (2000)).

3. The proof of themain result combines an idea of Tits given in the outlinementioned
in the previous remarkwith a technique that he used inTits (1986).More concretely,
for a chamber c and an apartment containing c in a twin building one can define
two retraction mappings. We call them π - and ω-retractions. The outline in Tits
(1989-1990) and Tits (1992) uses π -retractions and ω-retractions are used in Tits
(1986) for the proof of the local-to-global principle for spherical buildings. The
key observation in this paper is that the main result can proved by using them both.
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2 Preliminaries

Coxeter system

Let S be a set. A Coxeter matrix over S is a matrix M = (mst )s,t∈S , whose entries are
in N ∪ {∞} such that mss = 1 for all s ∈ S and mst = mts ≥ 2 for all s 
= t ∈ S.
For J ⊆ S we set MJ := (mst )s,t∈J . The Coxeter diagram corresponding to M is the
labeled graph (S, E(S)), where E(S) = {{s, t} | mst > 2} and where each edge {s, t}
is labeled bymst for all s, t ∈ S. As the Coxeter matrix and the corresponding Coxeter
diagram carry the same information we do not distinguish between them formally. We
call the Coxeter diagram irreducible, if the underlying graph is connected, and we
call it 2-spherical, if mst < ∞ for all s, t ∈ S. The rank of a Coxeter diagram is the
cardinality of the set of its vertices.

Let M = (mst )s,t∈S be a Coxeter matrix over a set S. A Coxeter system of type M
is a pair (W , S) consisting of a group W and a set S ⊆ W of generators of W such
that the set S and the relations (st)mst for all s, t ∈ S constitute a presentation of W .

Let (W , S) be a Coxeter system of type M . The pair (〈J 〉, J ) is a Coxeter system of
type MJ (cf. (Bourbaki 1968, Ch. IV, § 1 Théorème 2). For an element w ∈ W we put
�(w) := min{k ∈ N0 | ∃s1, . . . , sk ∈ S : w = s1 · · · sk}. The number �(w) is called
the length of w. We call J ⊆ S spherical if 〈J 〉 is finite. Given a spherical subset J
of S, there exists a unique element of maximal length in 〈J 〉, which we denote by rJ
(cf. (Abramenko and Brown 2008, Corollary 2.19)); moreover, rJ is an involution.

Convention 2.1 For the rest of this paper let S be a set, let M be a Coxeter matrix over
S and let (W , S) be a Coxeter system of type M .

Buildings

A building of type (W , S) is a pair � = (C, δ) where C is a non-empty set and where
δ : C×C → W is a distance function satisfying the following axioms, where x, y ∈ C
and w = δ(x, y):

(Bu1) w = 1W if and only if x = y;
(Bu2) if z ∈ C satisfies s := δ(y, z) ∈ S, then δ(x, z) ∈ {w,ws}, and if, furthermore,

�(ws) = �(w) + 1, then δ(x, z) = ws;
(Bu3) if s ∈ S, there exists z ∈ C such that δ(y, z) = s and δ(x, z) = ws.

Let � = (C, δ) be a building of type (W , S). The rank of � is the rank of the
underlying Coxeter system. The elements of C are called chambers. Given s ∈ S and
x, y ∈ C, then x is called s-adjacent to y, if δ(x, y) ∈ 〈s〉. The chambers x, y are
called adjacent, if they are s-adjacent for some s ∈ S. A gallery joining x and y is a
sequence (x = x0, . . . , xk = y) such that xl−1 and xl are adjacent for any 1 ≤ l ≤ k;
the number k is called the length of the gallery.

Given a subset J ⊆ S and x ∈ C, the J -residue of x is the set RJ (x) := {y ∈
C | δ(x, y) ∈ 〈J 〉}. Each J -residue is a building of type (〈J 〉, J ) with the distance
function induced by δ (cf. (Abramenko and Brown 2008, Corollary 5.30)). A residue
is a subset R of C such that there exists J ⊆ S and x ∈ C with R = RJ (x). Since the
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subset J is uniquely determined by R, the set J is called the type of R and the rank
of R is defined to be the cardinality of J . A residue is called spherical if its type is
a spherical subset of S. A panel is a residue of rank 1. An s-panel is a panel of type
{s} for s ∈ S. The building � is called thick, if each panel of � contains at least three
chambers.

Given x ∈ C and k ∈ N0 then Ek(x) denotes the union of all residues of rank at
most k containing x . It is a fact, that the set Ek(x) determines the chamber x uniquely,
if k < |S|.

Given x ∈ C and a J -residue R ⊆ C, then there exists a unique chamber z ∈ R
such that �(δ(x, y)) = �(δ(x, z)) + �(δ(z, y)) for any y ∈ R (cf. (Abramenko and
Brown 2008, Proposition 5.34)). The chamber z is called the projection of x onto R
and is denoted by projR x . Moreover, if z = projR x we have δ(x, y) = δ(x, z)δ(z, y)
for each y ∈ R.

A subset 	 ⊆ C is called convex if projP c ∈ 	 for every c ∈ 	 and every panel
P ⊆ C which meets 	. A subset 	 ⊆ C is called thin if P ∩ 	 contains exactly
two chambers for every panel P ⊆ C which meets 	. An apartment is a non-empty
subset 	 ⊆ C, which is convex and thin. It is a basic fact that in an apartment the map
σc : 	 → W , x �→ δ(c, x) is a bijection for any c ∈ C.

Chamber systems

Let I be a set. A chamber system over I is a pair C = (C, (∼i )i∈I ) where C is a
non-empty set whose elements are called chambers and where ∼i is an equivalence
relation on the set of chambers for each i ∈ I . Given i ∈ I and c, d ∈ C, then c is
called i -adjacent to d if c ∼i d. The chambers c, d are called adjacent if they are
i-adjacent for some i ∈ I .

A gallery in C is a sequence (c0, . . . , ck) such that cμ ∈ C for all 0 ≤ μ ≤ k
and such that cμ−1 is adjacent to cμ for all 1 ≤ μ ≤ k. The number k is called the
length of the gallery. Given a gallery G = (c0, . . . , ck), then we put β(G) := c0 and
ε(G) := ck . If G is a gallery and if c, d ∈ C such that c = β(G), d = ε(G), then we
say that G is a gallery from c to d or G joins c and d . The chamber system C is said
to be connected, if for any two chambers there exists a gallery joining them. A gallery
G will be called closed if β(G) = ε(G).

Given a gallery G = (c0, . . . , ck) then G−1 denotes the gallery (ck, . . . , c0) and if
H = (c′

0, . . . , c
′
l) is a gallery such that ε(G) = β(H), then GH denotes the gallery

(c0, . . . , ck = c′
0, . . . , c

′
l).

Let J be a subset of I . A J -gallery is a gallery (c0, . . . , ck) such that for each
1 ≤ μ ≤ k there exists an index j ∈ J with cμ−1 ∼ j cμ. Given two chambers c, d,
then we say that c is J -equivalent with d if there exists a J -gallery joining c and d
and we write c ∼J d in this case. Given a chamber c and a subset J of I then the set
RJ (c) := {d ∈ C | c ∼J d} is called the J -residue of c.

Let � = (C, δ) be a building of type (W , S). Then we define the chamber system
C(�) as follows: The set of chambers is identified with C and two chambers x, y are
defined to be s-adjacent if δ(x, y) ∈ 〈s〉.
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Homotopy of galleries and simple connectedness

In the context of chamber systems there is the notation of m-homotopy and m-simple
connectedness for each m ∈ N. In this paper we are only concerned with the case
m = 2. Therefore our definitions are always to be understood as a specialisation of
the general theory to the case m = 2.

LetC = (C, (∼i )i∈I ) be a chamber system over a set I . Two galleries G and H are
said to be elementary homotopic if there exists two galleries X ,Y and two J -galleries
G0, H0 for some J ⊆ I of cardinality at most 2 such that G = XG0Y , H = XH0Y .
TwogalleriesG, H are said to behomotopic if there exists a finite sequenceG0, . . . ,Gl

of galleries such that G0 = G,Gl = H and such that Gμ−1 is elementary homotopic
to Gμ for all 1 ≤ μ ≤ l.

If two galleriesG, H are homotopic, then it follows by definition thatβ(G) = β(H)

and ε(G) = ε(H). A closed gallery G is said to be null-homotopic if it is homotopic
to the gallery (β(G)). The chamber system (C, (∼i )i∈I ) is called simply connected if
it is connected and if each closed gallery is null-homotopic.

LetX ⊆ C and letX = (X , (∼i )i∈I ) be the chamber system obtained by restricting
the equivalence relations ∼i to X . The subset X will be called simply connected if
the chamber system X is simply connected.

Proposition 2.2 Let � be a building of type (W , S). Then the chamber system C(�)

is simply connected.

Proof This is (Ronan 2009, (4.3) Theorem). ��

3 Twin buildings

Definitions and notations

Let �+ = (C+, δ+),�− = (C−, δ−) be two buildings of the same type (W , S).
A codistance (or a twinning) between �+ and �− is a mapping δ∗ : (C+ × C−) ∪
(C− × C+) → W satisfying the following axioms,where ε ∈ {+,−}, x ∈ Cε, y ∈ C−ε

and w = δ∗(x, y):
(Tw1) δ∗(y, x) = w−1;
(Tw2) if z ∈ C−ε is such that s := δ−ε(y, z) ∈ S and �(ws) = �(w) − 1, then

δ∗(x, z) = ws;
(Tw3) if s ∈ S, there exists z ∈ C−ε such that δ−ε(y, z) = s and δ∗(x, z) = ws.

A twin building of type (W , S) is a triple � = (�+,�−, δ∗) where �+,�− are
buildings of type (W , S) and where δ∗ is a twinning between �+ and �−.

Convention 3.1 For the rest of this paper let � = (�+,�−, δ∗) be a twin building of
type (W , S) where �+ = (C+, δ+) and �− = (C−, δ−).

We put C := C+ ∪ C− and define the distance function δ : C × C → W by setting
δ(x, y) := δ+(x, y) (resp. δ−(x, y), δ∗(x, y)) if x, y ∈ C+ (resp. x, y ∈ C−, (x, y) ∈
Cε × C−ε for some ε ∈ {+,−}).
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Given x, y ∈ C then we put �(x, y) := �(δ(x, y)). If ε ∈ {+,−} and x, y ∈ Cε,
then we put �ε(x, y) := �(δε(x, y)) and for (x, y) ∈ Cε × C−ε we put �∗(x, y) :=
�(δ∗(x, y)).

Let ε ∈ {+,−}. For x ∈ Cε we put xop := {y ∈ C−ε | δ∗(x, y) = 1W }. It
is a direct consequence of (Tw1) that y ∈ xop if and only if x ∈ yop for any pair
(x, y) ∈ Cε × C−ε. If y ∈ xop then we say that y is opposite to x or that (x, y) is a
pair of opposite chambers.

Let C := {(c+, c−) ∈ C+ × C− | δ∗(c+, c−) = 1W }. Then (C, (∼s)s∈S
)

is a
chamber system, where (c+, c−) ∈ C is s-adjacent (s ∈ S) to (d+, d−) ∈ C if cε is
s-adjacent to dε in C(�ε) for each ε ∈ {+,−}. We denote this chamber system by
Opp(�). For c := (c+, c−) ∈ C we define E2(c) := E2(c+) ∪ E2(c−).

A residue (resp. panel) of� is a residue (resp. panel) of�+ or�−; given a residue
R ⊆ C then we define its type and rank as before. Two residues R, T ⊆ C are called
opposite if they have the same type and if there exists a pair of opposite chambers
(x, y) such that x ∈ R, y ∈ T .

Let ε ∈ {+,−}, let J be a spherical subset of S and let R be a J -residue of
�ε. Given a chamber x ∈ C−ε then there exists a unique chamber z ∈ R such that
�∗(x, y) = �∗(x, z) − �ε(z, y) for any chamber y ∈ R (cf. (Abramenko and Brown
2008, Lemma 5.149)). The chamber z is called the projection of x onto R; it will be
denoted by projR x . Moreover, if z = projR x we have δ∗(x, y) = δ∗(x, z)δε(z, y) for
each y ∈ R.

Let 	+ ⊆ C+ and 	− ⊆ C− be apartments of �+ and �−, respectively. Then the
set	 = 	+∪	− is called twin apartment if |xop∩	| = 1 for each x ∈ 	. If (x, y) is
a pair of opposite chambers, then there exists a unique twin apartment containing x and
y. We will denote it by A(x, y) and for ε ∈ {+,−} we put Aε(x, y) := A(x, y) ∩ Cε.
It is a fact that A(x, y) = {z ∈ C | δ(z, x) = δ(z, y)} (cf. Proposition 5.179 in
Abramenko and Brown (2008)).

Lemma 3.2 Let	 ⊆ C be a twin apartment, let x ∈ 	 and let R be a spherical residue
of � which meets 	. Then projR x ∈ 	.

Proof This is (Abramenko and Brown 2008, Lemma 5.173 (6)). ��

Pairs of opposite spherical residues

Throughout this subsection we assume that R ⊆ C+, T ⊆ C− are opposite residues
and that the type J of R and T is spherical.

Lemma 3.3 For each x ∈ R there exists y ∈ T such that x and y are opposite and we
have δ∗(u, v) ∈ 〈J 〉 for all (u, v) ∈ R × T .

Proof These are immediate consequences of (Abramenko and Brown 2008,
Lemma 5.139 (1)). ��
Lemma 3.4 Let (x, y) ∈ R × T . Then the following are equivalent:

(i) projT x = y;
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(ii) δ∗(x, y) = rJ ;
(iii) projR y = x.

Proof Suppose y = projT x and let z ∈ T be such that δ−(y, z) = rJ . Then �∗(x, z) =
�∗(x, y) − �(rJ ) and hence �∗(x, y) ≥ �(rJ ). As δ∗(x, y) ∈ 〈J 〉 by the previous
Lemma, the claim follows.

Suppose now that δ∗(x, y) = rJ and let z := projT x . Since �∗(x, z) ≥ �∗(x, y) =
�(rJ ) and δ∗(x, z) ∈ 〈J 〉, it follows that δ∗(x, z) = rJ . Now �(rJ ) = �∗(x, y) =
�∗(x, z) − �−(z, y) = �(rJ ) − �−(z, y) which implies z = y.

We have shown that (i) and (i i) are equivalent; the equivalence of (i i) and (i i i)
follows by symmetry and we are done. ��
Lemma 3.5 The mappings projTR : T → R, x �→ projR x and projRT : R → T , x �→
projT x are bijections inverse to each other.

Proof This is Proposition (4.3) in Ronan (2000). ��

A technical result

In this paragraph we prove a technical result which will be needed in the proof of
Theorem 6.5.

Lemma 3.6 Let c ∈ C−ε, x ∈ Cε be two opposite chambers and let (x =
d0, d1, . . . , dk, dk+1 = d) be a gallery such that �∗(c, di ) = i for each 0 ≤ i ≤ k
and �∗(c, d) ≤ k. Then there exist chambers x ′, z ∈ Cε such that x ′ ∈ cop,
δ∗(c, z) = δ(x, z) = δ(x ′, z) and �(x ′, d) < k + 1.

Proof We put w := δε(x, dk) and remark that our assumption implies w = δ∗(c, dk).
Furthermore we put s := δε(dk, d) and let P denote the s-panel containing dk and d.
By our assumptions we have δε(x, d) ∈ {w,ws}. We have two cases:
�(ws) = �(w) − 1: As δ∗(c, dk) = w it follows that dk = projP c and δ∗(c, d) = ws.
Let x ′ ∈ Cε be a chamber such that δε(x ′, d) = ws. Then we have x ′ ∈ cop and
δε(x ′, dk) = w = δε(x, dk) = δ∗(c, dk) and �ε(x ′, d) = k − 1 < k + 1. Thus the
assertion follows by setting z := dk .
�(ws) = �(w) + 1: We put z := projP c. As �∗(c, d) ≤ k it follows that z 
= d and
δ∗(c, d) = w. Let x ′ ∈ Cε be a chamber such that δε(x ′, d) = w. Then δε(x ′, z) =
ws = δε(x, z) = δ∗(c, z), and x ′ ∈ cop and the assertion follows. ��
Lemma 3.7 Let ε ∈ {+,−}, c ∈ C−ε and let x, y ∈ cop. Then there exist k ∈ N,
a sequence x = x0, . . . , xk = y of chambers in cop and a sequence z1, . . . , zk of
chambers in Cε such that δ∗(c, zλ) = δε(xλ−1, zλ) = δε(xλ, zλ) for each 1 ≤ λ ≤ k.

Proof Let (x = d0, . . . , dm = y) be a minimal gallery joining x and y. We will prove
the assertion by induction onm := �ε(x, y). Setting z := x = y the assertion is trivial
for m = 0 and we may assume that m > 0.

Let k := max{0 ≤ i ≤ m | �∗(c, di ) = i} and put d := dk+1. By the previous
lemma there are chambers x ′, z ∈ Cε such that x ′ ∈ cop, δε(x, z) = δε(x ′, z) =
δ∗(c, z) and �ε(x ′, d) ≤ k. It follows �ε(x ′, y) < m and we may apply induction to
x ′ and y in order to obtain the desired sequences x = x0, x1 = x ′, . . . , xk = y and
z1 = z, z2, . . . , zk of chambers. ��
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4 Isometries

Let (W , S) be 2-spherical and of rank at least 3. Let � be thick and let �′ =
(�′+,�′−, δ′∗) be a thick twin building of type (W , S). We define C′,�′+,�′−, δ′, �′
as in the case of �.

Definition and basic facts about isometries

Let X ⊆ C,X ′ ⊆ C′. A mapping ϕ : X → X ′ is called isometry if the following
conditions are satisfied:

Iso1 The mapping ϕ is bijective.
Iso2 For ε ∈ {+,−} we have ϕ(X ∩ Cε) ⊆ C′

ε.
Iso3 If x, y ∈ X then δ′(ϕ(x), ϕ(y)) = δ(x, y).

Given X ⊆ C,X ′ ⊆ C′, an isometry ϕ : X → X ′ and (y, y′) ∈ C × C′, then the pair
(y, y′) will be called ϕ-admissible if the mapping y �→ y′ extends ϕ to an isometry
from X ∪ {y} onto X ′ ∪ {y′}. In particular, (x, ϕ(x)) is ϕ-admissible for any x ∈ X .
For x, y ∈ X with (x, y) ∈ C we define ϕ((x, y)) := (ϕ(x), ϕ(y)). Since the building
has rank at least three it is a fact that for (x, x ′) ∈ C × C′ and ϕ : E2(x) → E2(x ′) an
isometry, we have ϕ(x) = x ′.

Lemma 4.1 Let S,X ⊆ C,S ′,X ′ ⊆ C′ be such that S ∩X = ∅ and S ′ ∩X ′ = ∅. Let
ϕ : S → S ′ and ψ : X → X ′ be two isometries such that (z, ψ(z)) is ϕ-admissible
for any z ∈ X . Then the mapping

ϕ ∪ ψ : S ∪ X → S ′ ∪ X ′, x �→
{

ϕ(x) if x ∈ S,

ψ(x) if x ∈ X .

is an isometry.

Proof Let � := ϕ ∪ ψ . Clearly, � is a bijection satisfying (Iso2). It suffices to show,
that δ(x, y) = δ′(�(x),�(y)) for any x ∈ S, y ∈ X . Let x ∈ S and y ∈ X . Then we
have δ′(�(x),�(y)) = δ′(ϕ(x), ψ(y)) = δ(x, y), because (y, ψ(y)) isϕ-admissible.
This finishes the claim. ��
Lemma 4.2 Let J be a spherical subset of S, let R ⊆ C, R′ ⊆ C′ be J -residues, let
ϕ : R → R′ be an isometry, and let (x, x ′) be a ϕ-admissible pair. Then ϕ(projR x) =
projR′ x ′.

Proof This is Lemma (4.4) of Ronan (2000). ��
Lemma 4.3 Let J be a spherical subset of S, let R+, R− ⊆ C (resp. R′+, R′− ⊆ C′)
be opposite J -residues in � (resp. �′), let ϕ : R+ ∪ R− → R′+ ∪ R′− be an isometry
and let ε ∈ {+,−}. Then ϕ(x) = projR′

ε
ϕ(projR−ε

x) for each x ∈ Rε.

Proof This is a consequence of the previous Lemma and Lemma 3.5. ��
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Lemma 4.4 Let x ∈ C, x ′ ∈ C′, let 	 ⊆ C be an apartment containing x and let
ϕ,ψ : E2(x) → E2(x ′) be two isometries which agree on E1(x). If they also agree
on 	 ∩ E2(x), then we have ϕ = ψ .

Proof For each subset J of S of cardinality 2 we denote the restriction of ϕ (resp. ψ)
on RJ (x) by ϕJ (resp. ψJ ).

Let J ⊆ S be of cardinality 2 and let	 be as in the statement. Then ϕJ andψJ agree
on	 ∩ RJ (x)which is an apartment of RJ (x). The claim follows from Theorem 4.1.1
in Tits (1986). ��
Lemma 4.5 Let ϕ+ : C+ → C′+ be a map and let (ϕx : E2(x) → E2(ϕ+(x)))x∈C+ be
a family of isometries such that ϕx and ϕy agree on E2(x)∩E2(y)whenever x, y ∈ C+
are adjacent. Then ϕ+ is an isometry and ϕx is the restriction of ϕ+ on E2(x) for each
x ∈ C+.
Proof Let x, y ∈ C+ be such that y ∈ E2(x), then we can find a gallery (x =
x0, . . . , xk = y) in a rank 2 residue containing x and y. It follows that y ∈ E2(xλ)

for each 0 ≤ λ ≤ k and using induction one obtains ϕx (y) = ϕy(y) = ϕ+(y). This
shows that ϕx coincides with the restriction of ϕ+ on E2(x).

Now we will show that ϕ+ is surjective. Let y′ ∈ C′+. Let x ∈ C+ and let x ′ :=
ϕ+(x). As ϕx : E2(x) → E2(x ′) is an isometry, it follows that E2(x ′) ⊆ ϕ+(C+).
By induction on the length of a minimal gallery joining x ′ and y′ in C′+ it follows that
y′ ∈ ϕ+(C′+) and hence the surjectivity of ϕ+.

The restriction of ϕ+ on the rank 2 residues being isometries it follows that
ϕ+ : C(�+) → C(�′+) is a 2-covering. Now the injectivity of ϕ+ follows from
Proposition 2.2. ��
Lemma 4.6 Let ϕ+ : C+ → C′+ be an isometry, let (x, x ′) ∈ C− × C′− and suppose
that ϕ+(xop) ⊆ (x ′)op. Then (x, x ′) is a ϕ+-admissible pair.
Proof This is Lemma (7.4) in Ronan (2000). ��

Main results on local extensions of isometries

In this subsection we let c := (c+, c−) ∈ C, c′ := (c′+, c′−) ∈ C′.
Proposition 4.7 Let ϕ : E2(c+) ∪ {c−} → E2(c′+) ∪ {c′−} be an isometry. Then ϕ

extends uniquely to an isometry from E2(c+) ∪ E2(c−) onto E2(c′+) ∪ E2(c′−).

Proof For a proof see Proposition (6.2) of Ronan (2000). ��
Proposition 4.8 Let d ∈ C such that c is adjacent to d inOpp(�) and let ϕ : E2(c) →
E2(c′) be an isometry. Then there exists a unique isometry ψ : E2(d) → E2(ϕ(d))

such that ϕ and ψ agree on the intersection of their domains.

Proof This is Proposition (6.4) of Ronan (2000). ��
Theorem 4.9 Let J be a subset of S of cardinality at most 2 and let R± := RJ (c±). Let
R := (R+ × R−) ∩ C and let ϕ : E2(c) → E2(c′) be an isometry. Then there exists a
unique system of isometries (ϕx : E2(x) → E2(ϕ(x)))x∈R such that the following is
satisfied:
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(a) ϕc = ϕ;
(b) If x, y ∈ R are adjacent in Opp(�), then ϕx and ϕy agree on the intersection of

their domains.

Proof This is a consequence of Proposition (6.6) and Corollary (6.7) in Ronan (2000).
��

Using Opp(1) to extend isometries

Let c ∈ C, c′ ∈ C′, ϕ : E2(c) → E2(c′) be an isometry and let G = (c =
x0, . . . , xk = d) be a gallery in Opp(�). Then - by Proposition 4.8 - we obtain
recursively a unique chamber d

′
ϕ,G and a unique isometry ϕd,G : E2(d) → E2(d

′
ϕ,G).

Lemma 4.10 The following hold:

(i) Given any gallery G starting at c, then c′
ϕ,G G

−1 = c′ and ϕ
c,G G

−1 = ϕ.

(ii) Given any closed gallery G in a rank 2 residue of c, then c′
ϕ,G

= c′ and ϕc,G = ϕ.

(iii) If two galleries G, H joining c and d are homotopic, then d
′
ϕ,G = d

′
ϕ,H and

ϕd,G = ϕd,H .

Proof Part (i) follows from the uniqueness assertion inProposition 4.8; part (ii) follows
from Theorem 4.9, and part (iii) is a consequence of (i) and (ii). ��
Proposition 4.11 LetX ⊆ C be simply connected and suppose that c ∈ X . Then there
exists amappingϕ : X → C′ anda systemof isometries (ϕx : E2(x) → E2(ϕ(x)))x∈X
such that ϕc = ϕ and such that ϕx and ϕy agree on the intersection of their domains
for any two adjacent chambers x, y ∈ X . The mapping ϕ and the family of isometries
ϕx are uniquely determined by these properties.

Proof As X is simply connected it is connected by definition. Given x ∈ X we
obtain for each gallery G joining c and x a unique chamber x ′

ϕ,G
and an isometry

ϕx,G : E2(x) → E2(x ′
ϕ,G

). It follows by part (i i i) of the previous Lemma that

x ′
G

= x ′
H

for any two galleries G, H from c to x because X is simply connected.
Thus we obtain a mapping ϕ and a system of isometries (ϕx )x∈X .

Let x, y ∈ X be adjacent. By considering a gallery joining c and x which passes
through y it is seen that it follows by construction that ϕx and ϕy agree on the inter-
section of their domains.

The uniqueness of ϕ and (ϕx )x∈X follows from the uniqueness assertion of Propo-
sition 4.8 and an obvious induction. ��

5 Retractions

Convention 5.1 For the rest of this paper let (W , S) be 2-spherical and of rank at least
3. Furthermore, let � be thick and let �′ = (�′+,�′−, δ′∗) be a thick twin building of
type (W , S). We define C′,�′+,�′−, δ′, �′ as in the case of �.
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�-retractions

Let c ∈ C−, let 	 ⊆ C− be an apartment of �− containing c and put γ := (c, 	).
Then we define the mapping πγ : C+ → 	 via δ−(c, πγ (x)) = δ∗(c, x) for all x ∈ C+
and we put �γ := {(x, πγ (x)) | x ∈ C+}.
Lemma 5.2 Let γ = (c, 	) be as above, then the following hold:

(π1) πγ preserves s-adjacency.
(π2) The chamber πγ (x) is opposite to x for each chamber x ∈ C+.
(π3) Given x ∈ C+, then c ∈ A(x, πγ (x)).

Proof The first two assertions are proved in Lemma (7.1) in Ronan (2000). For the
third assertion we notice that δ−(c, πγ (x)) = δ∗(c, x) by definition and hence the
claim follows. ��
Lemma 5.3 Let γ = (c, 	) be as above, then the mapping C+ → �γ , x �→
(x, πγ (x)) is an s-adjacence preserving bijection. In particular, �γ is a simply con-
nected subset of C.
Proof The first statement is immediate from Lemma 5.2. The second follows from
Proposition 2.2. ��

!-retractions

Let c := (c+, c−) be a pair of opposite chambers and let 	 = A−(c+, c−). Then we
define the mapping ωc : C+ → 	 via δ−(c−, ωc(x)) = δ+(c+, x) for all x ∈ C+.
Furthermore we set �c := {(x, ωc(x)) | x ∈ C+}. A gallery (x = x0, . . . , xk = y) in
Opp(�) will be called ω-gallery if there exists a chamber c ∈ C such that xλ ∈ �c

for each 0 ≤ λ ≤ k.

Lemma 5.4 Let c ∈ C. Then the following hold:

(ω1) ωc preserves s-adjacency.
(ω2) The chamber ωc(x) is opposite to x for each chamber x ∈ C+.
(ω3) Given x ∈ C+, then c+ ∈ A(x, ωc(x)).

Proof Let x, y ∈ C+ and s ∈ S such that x, y are s-adjacent, and let w ∈ W such
that δ+(c+, x) = w. Then δ+(c+, y) ∈ {w,ws} by (Bu2). If δ+(c+, y) = w then
δ−(c−, ωc(x)) = δ−(c−, ωc(y)). Since c−, ωc(x), ωc(y) ∈ 	 we obtain ωc(x) =
ωc(y). Now we assume that δ+(c+, y) = ws. Let P be the s-panel containing ωc(y).
Sinceωc(y) ∈ P∩	weobtain |P∩	| = 2because any apartment is thin. Letωc(y) 
=
y′ ∈ P ∩ 	. Using (Bu2) we obtain δ−(c−, y′) ∈ {w,ws}. Since c−, y′, ωc(x) ∈ 	

and δ−(c−, y′) = δ−(c−, ωc(x)), we obtain y′ = ωc(x) as above. Thus ωc preserves
s-adjacency.

Let x ∈ C+ and w ∈ W such that δ+(x, c+) = w. Then δ−(c−, ωc(x)) =
δ+(c+, x) = w−1. Sinceωc(x) ∈ A(c+, c−)wehave δ∗(ωc(x), c+) = δ−(ωc(x), c−) =
w. Now we have δ∗(ωc(x), x) = ww−1 = 1W by Lemma 5.140 of Abramenko and
Brown (2008) and the claim follows.
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Let x ∈ C+. Since ωc ∈ A(c+, c−) we obtain δ∗(c+, ωc(x)) = δ−(c−, ωc(x)).
Furthermore, we have δ+(c+, x) = δ−(c−, ωc(x)). Combining these two facts we
obtain c+ ∈ A(x, ωc(x)) as required. ��
Lemma 5.5 Let P be an s-panel in �+, let x, y ∈ P be such that �+(c+, y) =
�+(c+, x) + 1 and let Q denote the s-panel of �− containing ωc(x) and ωc(y). Then
the following hold:

(i) projP c+ = x;
(ii) projQ c+ = ωc(y);
(iii) projP ωc(y) = x;
(iv) projQ x = ωc(y).

Proof Part (i) follows from �+(c+, y) = �+(c+, x) + 1. Since c+ ∈ A(y, ωc(y)) ∩
A(x, ωc(x))we have �∗(c+, ωc(y)) = �+(c+, y) = �+(c+, x)+1 = �∗(c+, ωc(x))+
1 which yields part (i i). To prove part (i i i) we use the fact that c+ ∈ A(y, ωc(y)).
As projP c+ = x , it follows by Lemma 3.2, that x ∈ A(y, ωc(y)). Applying
Lemma 3.2 again we obtain that projP ωc(y) ∈ {x, y}, since A+(y, ωc(y)) is thin.
As �∗(y, ωc(y)) = 0 we have projP ωc(y) = x as claimed. Part (iv) follows now
from part (i i i) and Lemma 3.5. ��
Lemma 5.6 The mapping C+ → �c : x �→ (x, ωc(x)) is an s-adjacence preserving
bijection between C+ and �c. In particular, �c is a simply connected subset of C.
Proof The first statement is immediate from Lemma 5.4. The second follows from
Proposition 2.2. ��
Lemma 5.7 Let c ∈ C−, let 	 be an apartment of �− containing c and let γ :=
(c, 	). Let x, y ∈ cop and suppose that there exists a chamber z ∈ C+ such that
δ+(x, z) = δ∗(c, z) = δ+(y, z). Then there exists an ω-gallery joining (x, c) and
(y, c) in �γ ∩ �(z,πγ (z)).

Proof We put z := (z, πγ (z)). Then we obtain that ωz(z) = πγ (z), ωz(x) = πγ (x) =
c and δ−(ωz(x), ωz(z)) = δ+(x, z) = δ−(πγ (x), πγ (z)). Since πγ and ωz preserve
s-adjacency by (π1) and (ω1), it follows that they map any chamber on a minimal
gallery joining x any z to a chamber on a minimal gallery joining πγ (x) = ωz(x) to
πγ (z) = ωz(z). Thus we obtain πγ (v) = ωz(v) for each chamber v on a minimal
gallery joining x and z. The same is true for y instead of x andweobtainπγ (u) = ωz(u)

for each chamber u on a minimal gallery joining y and z. This yields the claim. ��

6 Constructing an isometry

Werecall that the set S has at least three elements. In this subsection let c := (c+, c−) ∈
C, c′ := (c′+, c′−) ∈ C′ and let ϕ : E2(c) → E2(c′) be an isometry. We set 	 :=
A−(c+, c−),	′ := A−(c′+, c′−) and denote the unique isometry from 	 onto 	′
extending the mapping c− �→ c′− by α. We set ω := ωc, ω

′ := ωc′ and � := �c. For
x ∈ C+ we put x := (x, ω(x)).

By Lemma 5.6 and Proposition 4.11 we get a mapping ϕ : � → C′ and a system
of isometries (ϕx : E2(x) → E2(ϕ(x)))x∈C+ such that
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(i) ϕc = ϕ;
(ii) ϕx andϕy coincide on the intersectionof their domainswhenever x, y are adjacent.

Furthermore, we define the mapping ϕ+ : C+ → C′+, x �→ ϕx (x) and denote the
restriction of ϕx on E2(x) by ϕx .

Lemma 6.1 The mapping ϕ+ is an isometry from C+ to C′+ and ϕx is the restriction of
ϕ+ on E2(x) for each x ∈ C+.

Proof Given two adjacent chambers x, y ∈ C+, then x and y are adjacent. By property
(i i) above it follows that ϕx and ϕy coincide on E2(x) ∩ E2(y). This shows that ϕ+
and (ϕx )x∈C+ satisfy the conditions of Lemma 4.5 and we are done. ��
Lemma 6.2 Let P ⊆ C+, P ′ ⊆ C′+ be panels of �+ and �′+ having the same type
and let x := projP c+, x ′ := projP ′ c′+. Suppose that δ+(c+, x) = δ′+(c′+, x ′) and let
ψ : E2((x, ω(x))) → E2((x ′, ω′(x ′))) be an isometry. Given y ∈ P, thenψ(ω(y)) =
ω′(ψ(y)).

Proof If x = y there is nothing to prove, so we may assume that x 
= y. As x =
projP c+ we have �+(c+, y) = �+(c+, x) + 1. We put y′ := ψ(y). We have y′ ∈ P ′
and x ′ 
= y′ because ψ is an isometry. As x ′ = projP ′ c′+ it follows �′+(c′+, y′) =
�′+(c′+, x ′) + 1. Let Q (resp. Q′) denote the panel containing ω(x) (resp. ω′(x ′))
opposite to P (resp. P ′). By Lemma 5.5 and Lemma 4.3 it follows that ψ(ω(y)) =
projQ′ ψ(projP ω(y)) = projQ′ ψ(x) = projQ′ x ′ = ω′(y′) which yields the claim. ��
Proposition 6.3 Let x, y ∈ C+ be such that ω(x) = ω(y), then the restrictions of ϕx

and ϕy on E2(ω(x)) coincide.

Proof Using Lemma 6.2 it follows by induction on �+(c+, u) that ϕu(ω(u)) =
ω′(ϕ+(u)) for each u ∈ C+. As ϕ+ is an isometrymapping c+ onto c′+ (cf. Lemma 6.1)
it follows that α(ω(u)) = ω′(ϕ+(u)) for each u ∈ C+.

Let u ∈ C+ and let z ∈ E2(ω(u))∩	. Then there exists v ∈ E2(u) with z = ω(v).
Let (u = x0, . . . , xk = v) be a gallery in a rank 2 residue joining u and v. It follows
that v ∈ E2(xλ) and hence z ∈ E2(ω(xλ)) for each 0 ≤ λ ≤ k. Using property (i i) of
the system (ϕu)u∈C+ , it follows by induction on k that ϕu(z) = ϕv(z). Combining this
with the previous considerations we obtain ϕu(z) = α(z) for each z ∈ E2(ω(u))∩	.

We complete the proof of the proposition by induction on �+(c+, x) = �+(c+, y).
If �+(c+, x) = 0 then x = c+ = y and there is nothing to prove. Let �+(c+, x) > 0,
then there exists s ∈ S such that �(δ+(c+, x)s) = �+(c+, x)−1. Let Px , Py denote the
s-panels containing x and y, respectively, and put x1 := projPx c+, y1 := projPy c+.
Then �+(c+, x1) = �+(c+, x)− 1 and we obtain ω(x1) = ω(y1). Using property (i i)
of the system (ϕx )x∈C+ and the induction assumption we obtain ϕx (z) = ϕx1(z) =
ϕy1(z) = ϕy(z) for each z ∈ E1(ω(x)). By the previous considerations we have that
ϕx and ϕy agree on E2(ω(x)) ∩ 	 and therefore the claim follows from Lemma 4.4.

��
A consequence of Proposition 6.3 is the following corollary which will be needed

in the next subsection.
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Corollary 6.4 Let x := (x, z), y := (y, z) ∈ C, let x ′ ∈ C′ and letψ : E2(x) → E2(x ′)
be an isometry. Let G be an ω-gallery joining x and y in Opp(�). Then ψy,G and ψ

coincide on E2(z).

Proof Since ω(x) = z = ω(y), the claim follows from Proposition 6.3 and the
definition of ψy,G . ��

Proof of themain theorem

Theorem 6.5 Let c := (c+, c−) ∈ C, c′ := (c′+, c′−) ∈ C′. Then every isometry
ϕ : E2(c+) ∪ {c−} → E2(c′+) ∪ {c′−} extends to an isometry from C+ ∪ E2(c−) onto
C′+ ∪ E2(c′−).

Proof By Proposition 4.7 the isometry ϕ extends to an isometry from E2(c) onto
E2(c′). We choose an apartment 	 ⊆ C− containing c− and set π := π(c−,	),� :=
�(c−,	). For x ∈ C+ we put x := (x, π(x)). By Lemma 5.3 and Proposi-
tion 4.11 we obtain a mapping ϕ : � → C′ and a system of isometries
(ϕx : E2(x) → E2(ϕ(x)))x∈C+ with the properties (i) and (i i) of the previous subsec-
tion.We define the mapping ϕ+ : C+ → C′+, x �→ ϕx (x) and we denote the restriction
of ϕx on E2(x) by ϕx . Then ϕ+ is an isometry from C+ onto C′+ and ϕ+, ϕx agree on
E2(x) for each x ∈ C+ by Lemma 6.1.

Let x, y ∈ cop− . Using Lemma 3.7 there exist k ∈ N, a sequence x0 := x, . . . , xk :=
y of chambers in cop− and a sequence z1, . . . , zk of chambers in C+ such that
δ∗(c−, zλ) = δ+(xλ−1, zλ) = δ+(xλ, zλ) for each 1 ≤ λ ≤ k. By Lemma 5.7
there exists for any 1 ≤ λ ≤ k an ω-gallery joining (xλ−1, c−) and (xλ, c−) in
�γ ∩ �(zλ,πγ (zλ)). Now we obtain that ϕx , ϕy agree on E2(c−) by Corollary 6.4. We
let ϕ− : E2(c−) → E2(c′−), z �→ ϕx (z) denote this common restriction for some
x ∈ cop− and for z ∈ E2(c−) we put z′ := ϕ−(z).

We want to show now, that ϕ+(zop) ⊆ (

z′
)op for each z ∈ E2(c−). Let v ∈ zop then

there exists x ∈ cop− such that v ∈ E2(x) by Lemma 3.3. Since ϕ+(v) = ϕx (v), ϕx =
ϕx |E2(x) and since ϕx is an isometry from E2(x) onto E2(ϕ(x)) whose restriction on
E2(c−) is ϕ− it follows that ϕ+(v) ∈ (

z′
)op.

By Lemma 4.6 the pair (z, z′) = (z, ϕ−(z)) is ϕ+-admissible. Applying Lemma 4.1
to the isometries ϕ+ and ϕ− we obtain an isometry ϕ+ ∪ ϕ− as required. ��
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