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Abstract

Background: It was recently reported that dairy cows fed a polyphenol-rich grape seed and grape marc meal
extract (GSGME) during the transition period had an increased milk yield, but the underlying reasons remained
unclear. As polyphenols exert a broad spectrum of metabolic effects, we hypothesized that feeding of GSGME
influences metabolic pathways in the liver which could account for the positive effects of GSGME in dairy cows.
In order to identify these pathways, we performed genome-wide transcript profiling in the liver and lipid profiling
in plasma of dairy cows fed GSGME during the transition period at 1 week postpartum.

Results: Transcriptomic analysis of the liver revealed 207 differentially expressed transcripts, from which 156 were
up- and 51 were down-regulated, between cows fed GSGME and control cows. Gene set enrichment analysis of
the 155 up-regulated mRNAs showed that the most enriched gene ontology (GO) biological process terms were
dealing with cell cycle regulation and the most enriched Kyoto Encyclopedia of Genes and Genomes pathways
were p53 signaling and cell cycle. Functional analysis of the 43 down-regulated mRNAs revealed that a great part
of these genes are involved in endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) and
inflammatory processes. Accordingly, protein folding, response to unfolded protein, unfolded protein binding,
chemokine activity and heat shock protein binding were identified as one of the most enriched GO biological process
and molecular function terms assigned to the down-regulated genes. In line with the transcriptomics data the plasma
concentrations of the acute phase proteins serum amyloid A (SAA) and haptoglobin were reduced in cows fed GSGME
compared to control cows. Lipidomic analysis of plasma revealed no differences in the concentrations of individual
species of major and minor lipid classes between cows fed GSGME and control cows.

Conclusions: Analysis of hepatic transcript profile in cows fed GSGME during the transition period at 1 week
postpartum indicates that polyphenol-rich feed components are able to inhibit ER stress-induced UPR and
inflammatory processes, both of which are considered to contribute to liver-associated diseases and to impair
milk performance in dairy cows, in the liver of dairy cows during early lactation.
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Background
The transition period spanning the time period between
week 3 prepartum and week 3 postpartum represents
the most critical period in the productive life of high-
yielding dairy cows. With the onset of lactation, com-
monly a pronounced negative energy balance (NEB) is
emerging due to the fact that feed intake is limited in
this phase while energy demand is strongly increasing by
milk production. NEB leads to a strong lipolysis of triac-
ylglycerols (TAG) in adipose tissue, leading to the release
of a large amount of non-esterified fatty acids (NEFA)
into the circulation [1]. Approximately one-third of the
whole body NEFA-flux is taken up into the liver. As the
capacity of the liver for B-oxidation of fatty acids is lim-
ited during this phase, a part of the NEFA is esterified to
TAG. Thus, a pronounced NEB during early lactation
undoubtedly is involved in the development of liver-
associated diseases such as fatty liver and ketosis [2].
Newer studies have shown that, besides metabolic stress
induced by NEB, the liver of early lactating cows is also
exposed to diverse inflammatory challenges. The inflam-
matory challenges, which include microbial components,
pro-inflammatory cytokines and reactive oxygen species,
typically result from infectious diseases, like endometri-
tis and mastitis, but also from gastrointestinal disorders,
like subacute rumen acidosis and abomasal displace-
ment [3-5]. Both infectious diseases and gastrointes-
tinal disorders frequently occur during parturition or
the beginning of lactation. Due to of this, transition
dairy cows develop an inflammation-like condition in
the liver [4, 6]. Although this inflammation is mostly of
subclinical nature, it is of great impact for health and
performance of cows during early lactation [7].
Recently, it has been found that metabolic and in-
flammatory stress induces stress of the endoplasmic
reticulum (ER) in the liver of early lactating cows [8].
ER stress is defined as an imbalance between the fold-
ing capacity of the ER and the protein load. As a conse-
quence, unfolded and misfolded proteins accumulate in
the ER lumen, thereby, disturbing ER homeostasis [9].
It is known from studies in humans and rodents that
this causes activation of an adaptive response, termed
unfolded protein response (UPR). While the aim of the
UPR is to rapidly restore ER function [9], chronic
activation of the UPR, as observed in obese or diabetic
rodent models or induced by application of chemical
ER stress inducers, causes various hepatic symptoms
similar to those observed in periparturient dairy cows.
Therefore, it has been proposed that ER stress-induced
UPR contributes to the pathophysiologic conditions
commonly observed in the liver of periparturient cows,
like fatty liver, ketosis or inflammation [10].
Polyphenols are members of a large family of plant-
derived compounds classified as flavonoids and non-
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flavonoids. Numerous studies in humans and rodents
have shown that polyphenols are exerting antioxidative,
antiinflammatory, cardioprotective, cancer chemopre-
ventive and neuroprotective properties [11, 12]. In a
recent study, we investigated the hypothesis that feeding
grape seed and grape marc meal extract (GSGME), an
inexpensive byproduct of wine and grape juice process-
ing rich in flavonoids, to dairy cows might attenuate
inflammation and ER stress in the liver during the tran-
sition period [13]. In that study, cows fed GSGME dur-
ing the transition period had an increased milk yield and
had a reduced mRNA concentration of fibroblast-growth
factor (FGF)-21, a stress hormone, in the liver at week 1
and week 3 postpartum. Relative mRNA concentrations
of various hepatic genes of inflammation and ER stress
in the liver were decreased by 20-50% in the cows fed
GSGME in comparison to the control group. However,
as mRNA concentrations of these genes were not statis-
tically significant different between the two groups of
cows, the effect of polyphenols on hepatic inflammation
and ER stress remains unclear. As polyphenols are exert-
ing a broad spectrum of metabolic effects [14-16], we
hypothesized that feeding of GSGME might influence
other metabolic pathways in the liver which could ac-
count for the positive effects of GSGME observed in
cows during early lactation. In order to investigate this
hypothesis, we used a genome-wide transcript profiling
technique to explore changes in the hepatic transcriptome
of cows supplemented with GSGME during the transition
period. A main advantage of large-scale screening tech-
nologies like transcriptomics is that changes in the
complete transcriptome can be assessed simultaneously,
despite only small amounts of tissue, e.g. biopsy sam-
ples, being available. Using this technique in dairy cows
has strongly increased understanding of the hepatic
molecular adaptations occurring in the periparturient
period [17-19]. Transcriptomics in combination with
the analysis of selected blood metabolites and animal
performance parameters facilitates to relate changes in
the hepatic transcriptome to alterations of liver func-
tion during the periparturient period [17-19].

Recently, a gene-based mapping and pathway analysis
of metabolic traits in dairy cows figured out that hepatic
genes of glycerophospholipid metabolism (e.g., lysopho-
sphatidylcholine acyltransferase 1) are closely linked to
plasma concentrations of NEFA, p-hydroxybutyrate
(BHBA) and glucose, three key factors of the metabolic
status of dairy cows during early lactation [20]. More-
over, signaling lipids, such as ceramides, are implicated
in pathways regulating inflammation [21, 22]. As poly-
phenols have been shown to exert pronounced effects
on hepatic lipid metabolism, particularly under patho-
logical conditions [23], we further aimed to find out
whether feeding of GSGME could influence metabolism
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of glycerophospholipids and ceramides. Therefore, we
performed a lipidomic analysis of plasma samples.

Methods

Animal experiment

For this investigation, we used liver and plasma samples
collected at 1 week postpartum of an experiment with
dairy cows [13]. At this time point, both metabolic and
inflammatory stress markers, such as plasma NEFA,
plasma BHBA and hepatic mRNA concentrations of
acute phase proteins (APPs), were increased most com-
pared to later sampling time points (week 3 and week 5)
in this study and another study [13, 24]. In this experi-
ment, 28 Holstein cows with an average parity number
of 2.8 were used as experimental animals. The experi-
ment was conducted at the Educational and Research
Centre for Animal Husbandry Hofgut Neumiihle in
Rhineland-Palatinate (Miinchweiler an der Alsenz,
Germany); the experimental protocol was approved by
the Provincial Government of Coblenz, Germany (23
177-07/G12-20-074). The cows were assigned into 2
experimental groups, either a control group (n=14)
or a group supplemented with GSGME (GSGME
group; #n =14), each consisting of 10 multiparous and
4 primiparous cows and having a similar average par-
ity number (control group: 2.8, GSGME group: 2.9).
In the period between week 3 prepartum and calving,
a total mixed ration (TMR) was fed which was calcu-
lated to meet the demand of net energy (NE) and
crude protein (CP) requirement of a dry cow with a
BW of 650 kg and an assumed dry matter intake
(DMI) of 12 kg/d, according to the German Society
of Nutrition Physiology [25]. After calving, all ani-
mals were offered a basal TMR calculated to meet
the demand of net energy and CP requirement for
producing 34 kg of milk, with an assumed daily DMI
of 22 kg [13]. Feed components were collected fort-
nightly and analyzed according to the official
methods of Verband der Deutschen Landwirtschaftli-
chen Untersuchungs- und Forschungsanstalten [26].
The analyzed chemical composition of the TMR of-
fered during dry period and lactation was in average
of control and GSGME group as follows (per kg
DM): 6.5 and 6.8 MJ NE;, 140 and 166 g CP, 383
and 356 g neutral detergent fiber. More details on
the analytical composition of the TMR have been
published recently [13]. In the time period from
3 week before the expected calving date until week 9
postpartum, the basal TMR of the GSGME group
was supplemented with 1% of GSGME (Antaox, Dr.
Eckel, Niederzissen, Germany) based on DM content.
The GSGME product used had a total flavonoid con-
tent of 52 mg gallic acid equivalents per gram. The
TMR of the control group was supplemented with
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1% of wheat bran for an energetic adjustment. Although
the NE; content of the GSGME used in this study was
slightly lower (3.64 MJ NE;/kg DM [27]) than that of
wheat bran (4.18 MJ NE;/kg DM) [28], the NE. content
of the TMR between the two groups was nearly identical
due to the small proportion of GSGME and wheat bran,
respectively, in the TMR [13].

Blood samples and liver biopsies

Each cow was separated from the herd for blood sam-
pling and liver biopsy procedure. Blood was taken from
the vena caudalis at week 1 (day 7 postpartum+2 d)
using ethylenediaminetetraacetic acid-coated collection
tubes (S-Monovette, Sarstedt, Niumbrecht, Germany).
Plasma was separated from blood cells by centrifugation,
and the plasma samples were stored at —20 °C until ana-
lysis. Liver biopsies were taken after sampling of blood
according to the protocol recently described [13] and
immediately snap-frozen in liquid nitrogen and stored at
-80 °C until further analysis.

RNA isolation

Total RNA was isolated from liver samples using Trizol
according to the manufacturer’s protocol and stored at
-80 °C. Prior to sample processing at the Centre of
Excellence for Fluorescent Bioanalytics (KFB) at the Uni-
versity of Regensburg, the concentration and integrity of
RNA was analyzed using an Agilent 2100 Bioanalyzer
(Agilent technologies, Boblingen, Germany). The total
RNA concentrations, optical density A260/A280 ratios,
RNA integrity number (RIN) values and starting total
RNA amounts of all samples were 0.59 + 0.08 pg/uL, 1.93
+0.03, 6.6+05 and 3.8+0.5 pg (mean+SD, n=12),
respectively.

Microarray hybridization

For microarray analysis, six RNA samples each of the
control group (n=6) and the GSGME group (n=26)
were selected. The six RNA samples of each group con-
sisted of five samples randomly selected from the mul-
tiparous cows and one sample randomly selected from
the primiparous cows. Both groups had a similar average
parity number (control group: 2.5, GSGME group: 2.3).
Total RNA samples were processed according to the
GeneChip WT Plus Reagent Kit (Affymetrix, High
Wycombe, UK). In brief, total RNA was transcribed to
first strand and second strand complementary DNA
(cDNA). Then, complementary RNA (cRNA) was syn-
thesized and amplified by in vitro-transcription of the
second-stranded cDNA template using T7 RNA poly-
merase. After purification of cRNA and assessing cRNA
yield and quality, single-stranded (ss) cDNA was synthe-
sized by reverse transcription of cRNA using 2"%-cycle
primers. The ss cDNA was purified and checked again
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for yield and quality. The purified ss cDNA was frag-
mented and the fragmented cDNA labeled by terminal
deoxynucleotidyl transferase using the Affymetrix pro-
prietary DNA labeling reagent that is covalently linked
to biotin. Finally, the labeled ss cDNA was hybridized to
the Affymetrix GeneChip Bovine Gene 1.0 Sense Target
array representing approximately 23,000 bovine tran-
scripts. After hybridization arrays were washed and
stained with the Affymetrix GeneChip Fluidics station
450. Finally, arrays were scanned with an Affymetrix
GeneChip scanner 3000. The quality of hybridization
was assessed in all samples following the manufacturer’s
recommendations. The microarray data have been
deposited in MIAME compliant format in the NCBI’s
Gene Expression Omnibus public repository ([29]; GEO
accession no. GSE86368).

Microarray analysis

After scanning the microarrays, cell intensity files con-
taining a single intensity value for each probe cell were
computed from the image data with the Affymetrix
GeneChip Command Console Software. Background
correction and normalization of probe cell intensity data
was performed with Affymetrix Expression Console
software using the Robust Multichip Analysis (RMA) al-
gorithm. This algorithm is a log scale multi-chip analysis
approach fitting a robust linear model at the probe level
to minimize the effect of probe-specific affinity differ-
ences. Expression levels of transcripts are measured using
log transformed perfect match values, after carrying out a
global background adjustment and across microarray
normalization [30]. The microarrays were annotated using
the Affymetrix BovGene-1_0-st-vl_Probeset_Release 36
annotation file. Transcripts were defined as differentially
expressed when the fold-change (FC) between GSGME
group and control group was > 1.3 or <-1.3 and the P-
value of the unpaired Student’s t-test (two-tailed distri-
bution, two-sample equal variance) for each transcript
was < 0.05. False discovery rates (FDR) according to
Benjamini-Hochberg multiple testing correction were
also calculated. However, the FDR value was not applied
as a cut off criterion, since the FDR-corrected P-values for
all 23,000 transcripts were > 0.05.

Bioinformatic prediction of mRNA targets of differentially
expressed miRNAs

Bioinformatic prediction of mRNA targets for differen-
tially regulated miRNAs was performed using TargetScan
release version 7.1 (http://www.targetscan.org/vert 71/)
for the species “cow”. TargetScan predicts biological tar-
gets of miRNAs by searching for the presence of con-
served 6 to 8mer sites matching the seed region of each
miRNA [31]. In mammals, predictions are ranked based
on the predicted efficacy of targeting as calculated using
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cumulative weighted context++ scores of the sites [32]. A
cumulative weighted context++ score < —0.20 was used as
cut off criterion for predicting mRNAs targets.

Gene set enrichment analysis

To extract biological meaning from the identified dif-
ferentially expressed transcripts and predicted mRNA
targets, gene set enrichment analysis (GSEA) with a
modified Fisher’s exact test was performed in order to
identify enriched Gene Ontology (GO) terms within
GO categories (biological process, molecular function,
cellular component) and enriched Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways using the
Database for Annotation, Visualization and Integrated
Discovery (DAVID) 6.7 bioinformatic resource [33, 34].
GO terms and KEGG pathways were defined as
enriched if the FDR-adjusted P-value according to the
Benjamini-Hochberg correction was <0.05. GSEA was
performed separately for the up- and down-regulated
mRNAs and predicted mRNAs, respectively. The ra-
tionale of performing GSEA separately for the up- and
down-regulated transcripts and not for all differentially
expressed transcripts together is that results from
GSEA are better to interpret, i.e. based on this ap-
proach it is assumed that biological processes or mo-
lecular functions and pathways identified as enriched
within up-regulated genes are probably activated,
whereas those enriched with down-regulated genes are
likely inhibited.

Quantitative real-time polymerase chain reaction

(gPCR) analysis

Microarray data of 25 differentially expressed mRNAs
were validated by qPCR. For qPCR analysis, total RNA
from all cows (n =14 per group) was used to generate
c¢DNA by reverse transcription. The cDNA was synthe-
sized using a Mastermix containing 1.2 ug of total RNA,
100 pmol oligo(dT)18 primer (Eurofins MWG Operon,
Ebersberg, Germany), 125 pL dNTP mix (10 mM,
GeneCraft, Ludinghausen, Germany), 5 pL 5x RT reac-
tion buffer (Thermo Fisher Scientific, St. Leon-Rot,
Deutschland) and 60 units M-MuLV Reverse Transcript-
ase (Thermo Fisher Scientific). The cDNA synthesis was
carried out at 42 °C for 60 min and a final inactivating
step at 70 °C for 10 min in a thermocycler (Biometra,
Gottingen, Germany). The relative mRNA expression of
genes was measured with a Rotor-Gene Q system (Qiagen,
Hilden, Germany) using KAPA SYBR FAST qPCR
Mastermix (Peglab, Erlangen, Germany) and gene-specific
primer pairs (Eurofins MWG Operon, Ebersberg,
Germany) that were designed using Primer3 and BLAST.
Primer characteristics of reference genes were recently
published [13]. Primer characteristics of target genes are
shown in Additional file 1: Table S1. Ct-values of reference
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and target genes were obtained using Rotor-Gene Q Soft-
ware (Qiagen). For normalization of relative expression
levels GeNorm normalization factor was calculated from
the three most stable (beta-actin, peptidylprolyl isomerase
A, ribosomal protein S9) out of six reference genes tested
[35]. Raw Ct-values of reference genes were statistically
analyzed to ensure that expression levels did not differ
between groups. Raw Ct-values were transformed into
relative expression values using the 2" equation for the
calculation of the normalization factors. The highest rela-
tive value of each gene was set to 1. From these values,
the normalization factor was calculated as the geometric
mean of expression data of the three most stable reference
genes. Ct-values of target genes were also transformed
into relative expression values using the 2°“* equation
and were normalized with the individual normalization
factor resulting in relative gene quantities that were used
for the statistical analysis. The mean normalized 2
ratios of the control group was set to 1.0 and the mean
and SD of normalized 22" ratios of the GSGME group
was scaled proportionally. PCR products were separated
electrophoretically using a 1.5% agarose gel stained with
GelRed nucleic acid gel stain (Biotium, Hayward, CA,
USA) to confirm the expected size of the PCR products.

Plasma concentration of acute phase proteins

Plasma concentrations of bovine haptoglobin (HP) and
serum amyloid A (SAA) were analyzed using commer-
cial ELISA Kits (CSB-E08585b, CSB-E08592b, Holzel
Diagnostika, Cologne, Germany). The ELISA procedure
was performed based on the instructions provided by
the manufacturer and absorbance read in a microplate
reader (Infinite® 200, Tecan, Mainz, Germany). Accord-
ing to manufacturer’s information, the limits of detection
were 7.8 pug HP/L plasma for the HP ELISA kit and
50 pg SAA/L plasma for the SAA kit. All samples were
measured in duplicate. Intra-assay coefficients of vari-
ability (CV) were < 10% for each sample in both assays.
The average of individual CV was 5.8% and 3.7% for the
measurement of HP and SAA, respectively.

Lipidomic analysis

Lipid extraction was carried out in the presence of non-
naturally occurring lipid species as internal standards
according to the protocol of Bligh and Dyer [36]. Deter-
mination of plasma lipid species was accomplished by
means of direct flow injection electrospray ionization
tandem mass spectrometry (ESI-MS/MS) in positive ion
mode as described in [37, 38]. For phosphatidylcholine
(PC), lysophosphatidylcholine (LPC), and sphingomyelin
(SM) a precursor ion of m/z 184 was used [38, 39]. A
fragment ion of m/z 264 was used to analyze spingosine
based ceramides (Cer) and hexosylceramides (HexCer),
while a fragment ion of m/z 369 was used for the
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analysis of free cholesterol (FC) and cholesteryl esters
(CE) after selective derivatization of FC [38, 40]. Phospha-
tidylethanolamine species (PE) and phosphatidylinositol
(PI) were analysed following neutral loss fragment of 141
and 277 Da, respectively [41, 42]. The analysis of PE-
based plasmalogens (PE-P) with 16:0, 18:0 and 18:1
vinylether bonds was performed as described by
Zemski-Berry [43]. Data analysis was performed with
Mass Lynx software including the NeoLynx tool
(Micromass) and results were exported to Excel and
further processed by self-programmed Excel Macros
[37]. Annotation of lipid species was carried out according
to the LipidomicNet proposal for shorthand notation of
lipid structures derived from mass spectrometry [44].
Glycerophospholipid species annotation was based on the
assumption of even-numbered carbon chains only.
Sphingomyelin species were assigned based on the as-
sumption of a sphingoid base with 2 hydroxyl groups.

Statistical analysis

Values presented in the text are means + SD. All data were
evaluated by Student’s t test using the Minitab statistical
software (Release 13, Minitab Inc., State College, PA, USA).
Multiple testing correction of microarray data was per-
formed by Benjamini and Hochberg FDR.

Results

Identification of differentially expressed transcripts

To investigate the effect of GSGME on the transcrip-
tome in the liver of dairy cows, we used a bovine micro-
array representing approximately 23,000 Bos taurus
transcripts. Taking into account the criteria FC > 1.3 or
FC<-1.3 and P<0.05 a total of 207 transcripts were
found to be differentially expressed in the liver between
cows fed GSGME and control cows. Substantially more
transcripts were up-regulated by GSGME (156), while
only 51 transcripts were down-regulated by GSGME in
the liver of cows. The up-regulated transcripts included
155 protein-coding transcripts (mRNAs) and 1 non-
protein-coding miRNA, whereas the down-regulated
transcripts included 43 mRNAs and 8 miRNAs. The 20
most strongly up- and down-regulated mRNAs are pre-
sented in Table 1 and Table 2, respectively. The FCs of
the most strongly up-regulated mRNAs ranged between
291 and 1.90, while those of the most strongly down-
regulated mRNAs ranged between -1.66 and -1.39. In
Table 3 the differentially regulated miRNAs including
FCs and P-values are shown.

Validation of microarray data for selected differentially
expressed protein-coding transcripts by qPCR

Validation of microarray data was carried out by qPCR
analysis for 25 differentially regulated mRNAs. The
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Table 1 The 20 most strongly up-regulated mRNAs in the liver of cows fed grape seed and grape marc meal extract (GSGME) versus

control cows at 1 week postpartum

Gene symbol mRNA description FC? P-value
TOP2A topoisomerase (DNA) Il alpha 170 kDa 291 0.013
CDKN3 cyclin-dependent kinase inhibitor 3 264 0.010
ARHGAP11A Rho GTPase activating protein 11A 261 0.029
STMN1 stathmin 1 257 0.015
ECT2 epithelial cell transforming sequence 2 oncogene 253 0.023
DEPDC1 DEP domain containing 1 2.51 0.015
CENPA centromere protein A 249 0.006
CENPF centromere protein F, 350/400 kDa (mitosin) 245 0.017
CKAP2 cytoskeleton associated protein 2 239 0.024
PRR11 proline rich 11 232 0.036
KIF11 kinesin family member 11 225 0.007
KIF20A kinesin family member 20A 221 0017
BUB1B budding uninhibited by benzimidazoles 1 homolog beta 2.20 0.004
LOC618147 histone cluster 1, H2ai-like 217 0.002
KIF4A kinesin family member 4A 213 0018
LOC787465 histone H2B type 1-like 2.10 0.006
GAS2L3 growth arrest-specific 2 like 3 1.99 0018
SMC4 structural maintenance of chromosomes 4 1.98 0.011
SMC2 structural maintenance of chromosomes 2 1.96 0011
RRM2 ribonucleotide reductase M2 1.95 0.046
CASC5 cancer susceptibility candidate 5 1.93 0.029
ESCO2 establishment of cohesion 1 homolog 2 1.93 0.032
HIST2H2BF histone cluster 2, H2bf 1.91 0.039
HELLS helicase, lymphoid-specific 1.90 0013

The FC was calculated from the signal log ratios as follows: 259! 09 ratic if signal |og ratio > 0 and (1) x 2759l leg ratio) jf gigna| |og ratio < 0. Signal log ratios

were calculated from n =6 microarrays per group

transcripts to be validated by qPCR were randomly se-
lected from the most strongly up- and down-regulated
mRNAs. Since the number of transcripts up-regulated
was higher than that down-regulated, we validated 14
up- and 11-down-regulated transcripts by qPCR. Table 4
shows that in the case of most mRNAs (19) the effect
direction was the same between qPCR and microarray
data, but the FCs from qPCR analysis were markedly
lower than from microarray analysis. In the case of
about half (9) of the differentially regulated mRNAs,
qPCR analysis revealed a FC greater than the filter cri-
terion for differential regulation in microarray analysis
(>1.3 or<-1.3). In line with this, statistical analysis re-
vealed that only 5 of these 9 mRNAs were differentially
regulated according to qPCR analysis at a significance
level of P<0.05 (TUBB, PHLDAI1) or at least P< 0.1
(KIF20A, SAA4, HYOUL1). In the case of 15 mRNAs, the
FC determined by qPCR analysis was below the filter
criterion for differential regulation and the P-value was
not significant (P >0.05). In the case of one mRNA

(HMMR) the effect direction determined by qPCR ana-
lysis (FC=-1.34) was contrary to that determined by
microarray analysis (FC=1.87. Regarding these partial
inconsistencies between microarray and qPCR data (stat-
istical results, effect size), three causative factors should
be noted: 1) The number of biological replicates was dif-
ferent between microarray and qPCR analysis (n =6 vs.
n =14) influencing the statistical power of the data. 2)
For microarray analysis six cows (1 primiparous and 5
multiparous) were selected from the control group and
the GSGME group each consisting of 4 primiparous and
10 multiparous cows. Due to this, the average parity num-
ber of the groups used for microarray analysis was slightly
lower than of the groups used for qPCR. 3) The detection
principle of transcript abundance differs between micro-
array and qPCR, ie. for qPCR analysis a 100-250 bp se-
quence of the transcript is amplified by a single primer
pair, whereas for microarray analysis up to 26 unique 25-
mer probes are used for each transcript resulting in a high
coverage across the entire transcript of up to 650 bp.
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Table 2 The 20 most strongly down-regulated mRNAs in the liver of cows fed grape seed and grape marc meal extract (GSGME)

versus control cows at 1 week postpartum

Gene symbol mMRNA description FC? P-value
GLCE glucuronic acid epimerase -1.66 0.036
TBATA chromosome 28 open reading frame, human C100rf27 -160 0.011
MANF mesencephalic astrocyte-derived neurotrophic factor -1.59 0014
XBP1 X-box binding protein 1, transcript variant 1 -1.59 0.003
LOC618817 olfactory receptor, family 6, subfamily B, member 2-like -1.55 0.005
SAA4 serum amyloid A4, constitutive -1.54 0.043
HSPAS heat shock 70 kDa protein 5 (glucose-regulated protein, 78 kDa) -1.51 0.005
GADD458B growth arrest and DNA-damage-inducible, beta -1.51 0.012
WWC1 WW and C2 domain containing 1, transcript variant 2 -1.48 0.037
LOC788587 olfactory receptor, family 4, subfamily D, member 11-like -146 0.001
SOCS3 suppressor of cytokine signaling 3 -145 0.042
C15H110rf9% chromosome 15 open reading frame, human C110rf96 -144 0018
PHLDA1 pleckstrin homology-like domain, family A, member 1 -143 0.012
SDF2L1 stromal cell-derived factor 2-like 1 -141 0012
IRX3 iroquois homeobox 3 -1.40 0.001
LOC784679 peptidylprolyl isomerase A (cyclophilin A)-like -1.39 0.023
HYOU1 hypoxia up-regulated 1, transcript variant 1 -1.39 0.018
ALX3 ALX homeobox 3 -1.39 0.010
CFHR2 complement factor H-related 2 -1.39 0.028
LOC520181 olfactory receptor 5-like -1.39 0.007

®The FC was calculated from the signal log ratios as follows: 259! 09 ratic if signal |og ratio > 0 and (1) x 279! leg ratio) jf signa| |og ratio < 0. Signal log ratios

were calculated from n =6 microarrays per group

Identification of enriched annotation terms associated
with the differentially expressed protein-coding
transcripts

GSEA of the 155 up-regulated mRNAs showed that
the GO terms with lowest FDR-adjusted P-values
(most enriched) from all GO categories (biological

Table 3 The most strongly differentially regulated (FC > 1.3 or
FC<—13 and P <0.05) miRNAs in the liver of cows fed grape
seed and grape marc meal extract (GSGME) versus control cows
at 1 week postpartum

Gene symbol micro RNA description FC® P-value
MIR376C microRNA mir-376¢ 1.40 0.027
MIR365-2 microRNA mir-365-2 -1.31 0.010
MIR2345 microRNA mir-2345 -1.33 0.007
MIR2403 microRNA mir-2403 -134 0.029
MIR2462 microRNA mir-2462 -1.39 0.006
MIR2359 microRNA mir-2359 -141 0.002
MIR2430 microRNA mir-2430 -1.51 0.004
MIR2461 microRNA mir-2461 -1.53 0.010
MIR365 microRNA mir-365 -1.56 0.003

®The FC was calculated from the signal log ratios as follows: 2519ma! leg ratie j
signal log ratio > 0 and (1) x 27619nal leg ratio) i gjgna| |og ratio < 0. Signal log
ratios were calculated from n =6 microarrays per group

process, cellular component, molecular function) were
non-membrane-bounded organelle, intracellular non-
membrane-bounded organelle, chromosome, cell cycle
process, cell cycle, M phase, cell cycle phase, mitotic
cell cycle, M phase of mitotic cell cycle, chromosomal
part, microtubule cytoskeleton, mitosis, nuclear div-
ision, organelle fission, cytoskeletal part, cell division,
spindle, microtubule-based process and cytoskeleton.
Figure 1 shows the GO terms with FDR-adjusted P-
values < 0.05 including the number of genes assigned
to these terms separately for the GO categories bio-
logical process, cellular component and molecular
function.

For the 43 down-regulated mRNAs GSEA revealed
only three enriched GO terms with FDR-adjusted P-
values < 0.05, namely ER lumen, ER part and ER. These
GO terms belonged exclusively to the GO category
cellular component.

Identification of enriched regulatory pathways associated
with the differentially expressed protein-coding
transcripts

To identify regulatory pathways associated with the dif-
ferentially expressed transcripts GSEA was performed
using the KEGG database. The most enriched pathways
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Table 4 Validation of microarray data for selected differentially
expressed transcripts by gPCR

Mean FC P-value

Gene symbol Microarray gPCR Microarray gPCR
STMN1 2.57 1.37 0.015 0.269
ECT2 253 145 0.023 0.246
CENPA 249 1.16 0.006 0514
CENPF 245 1.07 0.017 0.788
CKAP2 2.39 1.20 0.023 0.557
PRR11 232 193 0.036 0.181
KIF20A 2.21 1.66 0.017 0.088
BUB1B 2.20 1.22 0.004 0.528
RRM2 1.95 1.56 0.046 0.263
ESCO2 193 -1.02 0.032 0.905
SPC25 1.88 -1.19 0.034 0.207
CCNA2 1.87 -1.07 0.030 0.762
HMMR 1.87 -134 0018 0.100
TUBB 1.85 1.38 0.013 0.040
GLCE -1.66 -1.2 0.036 0.195
MANF -1.59 -123 0014 0.235
SAA4 -1.54 -1.31 0.043 0.057
SOCS3 -145 -1.14 0.042 0.522
PHLDA1 -143 -134 0012 0.006
HYOU1 -1.39 -133 0.018 0.081
DNAJB11 -1.37 -1.23 0.026 0.170
BAG3 -1.37 1.07 0.032 0674
UAP1 -1.34 1.05 0.005 0674
CCNL1 -1.33 -1.26 0.009 0.067
CXCL14 -1.31 -1.16 0.036 0459
The microarray FC was calculated from the signal log ratios as follows: 259!
leg ratio if signal log ratio > 0 and (1) x 279l leg ratio) jf signa) Jog ratio < 0.

Signal log ratios were calculated from n =6 microarrays per group. The gPCR
FC was calculated analogously from normalized 22 ratios. Normalized 274
expression was calculated from n =14 samples per group

with FDR-adjusted P-values <0.05 identified from the
155 up-regulated mRNAs included pathways regulating
systemic lupus erythematosus and cell cycle, while no
enriched pathways FDR-adjusted P-values<0.05 were
identified from the 43 down-regulated mRNAs.

Prediction of mRNA targets of the differentially expressed
miRNAs and functional analysis

As described above, several miRNAs were identified as
differentially expressed by microarray analysis of the
cow livers. In order to identify further protein-coding
transcripts that are influenced by feeding GSGME in the
liver of cows, we performed bioinformatic target predic-
tion for the 9 differentially regulated miRNAs. Consider-
ing a cumulative weighted context++ score<-0.20, a
total of 185 target genes were identified for the up-
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regulated mir-376c, and 2,412 target genes for the highly
conserved down-regulated miRNAs (mir-2345, mir-
2403, mir-2462, mir-2359, mir-2430, mir-365). Data
including gene names, total and 8mer, 7mer and 6mer
sites and cumulative weighted context++ score are
shown in Additional file 2: Table S2.

To elucidate the biological functions of the predicted
target genes we carried out GSEA using GO category
“biological process” and KEGG pathways separately for
the targets identified for the up- and the down-regulated
miRNAs. However, GSEA of the target genes of the up-
regulated miRNA revealed no enriched biological
process terms and KEGG pathways with FDR-adjusted
P-values < 0.05.

GSEA of the target genes of the down-regulated miR-
NAs identified the following enriched GO biological
process terms (FDR-adjusted P-value < 0.05): intracellu-
lar signaling cascade, positive regulation of macromolecule
metabolic process, positive regulation of macromolecule
biosynthetic process, positive regulation of biosynthetic
process, positive regulation of cellular biosynthetic process
and positive regulation of transcription. No enriched
KEGG pathways with FDR-adjusted P-values < 0.05 could
be identified by GSEA of target genes of the down-
regulated miRNAs.

Plasma concentrations of acute phase proteins

Plasma concentration of the positive APPs SAA and HP
were decreased in cows fed the GSGME compared to
the control group (P < 0.05; Fig. 2).

Plasma lipid profile

Using lipidomic analysis, we were able to detect individ-
ual species of major (cholesterol, PC, SM, LPC) and
minor (PE, PE plasmalogens, PI, ceramides) lipid classes
in plasma samples of the cows. For all these lipid classes,
there were no differences between the two groups of
cows in the concentrations of any of the individual mo-
lecular species (P >0.05, data are shown in Additional
file 3: Tables S3-S9). Moreover, for all the lipids ana-
lyzed, the concentrations of species with no double bond
(SFA), one double bond (MUFA) or two or more double
bounds (PUFA) in the fatty acid moieties did not differ
between the two groups of cows (P >0.05, Table 5). In
the PE plasmalogen fraction, there were moreover no
differences in the concentrations of species with 16:0,
18:0 and 18:1 vinyl ether bonds between the two groups
of cows (P > 0.05, Table 5).

Discussion

Recently, we observed that feeding GSGME to dairy
cows from 3 week antepartum to 9 week postpartum in-
creases milk yield and causes some beneficial changes in
mRNA concentrations of hepatic genes, such as reduced
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Fig. 1 The most enriched gene ontology (GO) terms assigned to the up-regulated mRNAs including the number of genes. The GO terms were
sorted by their enrichment P-values (EASE score) (top: lowest P-value, bottom: highest P-value) within the GO categories biological process,
cellular component and molecular function. Only GO terms with FDR-adjusted P-values < 0.05 are shown
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Fig. 2 Plasma concentration of a serum amyloid A and b haptoglobin in cows fed grape seed and grape marc meal extract (GSGME) and control
cows at 1 week postpartum. Bars are means + SD for n =14 cows per group. Asterisk denotes difference between cows fed GSGME and control
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mRNA concentration of FGF21, an indicator of meta-
bolic and ER stress [13]. As the reasons underlying these
effects could not be elucidated in the recent study, the
aim of the present study was to identify changes in po-
tentially critical signaling or metabolic pathways by using
transcriptomic and lipidomic analyses. For this end, we
considered liver and plasma samples obtained at 1 week
postpartum regarding that metabolic and infectious
stress in dairy cows is greatest at this early time after
birth [6, 8, 17].

One striking finding of transcriptome analysis in the
liver of cows was that within the limited number of
protein-coding genes down-regulated by GSGME there
was a large number of genes involved in ER stress-
induced UPR, such as X-box binding protein 1 (XBP1),
heat shock 70 kDa protein 5 (HSPA5)/GRP78, homo-
cysteine inducible ER protein with ubiquitin like domain
1 (HERPUDI1), DnaJ (Hsp40) homolog, subfamily C,
member 5G (DNAJC5QG), calreticulin (CALR), protein
disulfide isomerase family A, member 4 (PDIA4), DnaJ
(Hsp40) homolog, subfamily B, member 11 (DNAJB11),
pleckstrin homology-like domain, family A, member 1
(PHLDA1)/TDAGS5]1, protein phosphatase 1 regulatory
subunit 3C (PPP1R3C), growth arrest and DNA damage
inducible beta (GADD45B), BCL2-associated anthano-
gene 3 (BAG3), hypoxia up-regulated 1 (HYOU1) and
mesencephalic astrocyte-derived neurotrophic factor
(MANF). This is interesting because we have recently re-
ported that ER stress-induced UPR occurs in the liver of
dairy cows during early lactation [8] as evident from in-
duction of XBP1, HSP5A, HERPUDI, DNAJC3, PDIA4,
inositol-requiring enzyme 1 (IRE1), protein kinase (RNA)-

like endoplasmic reticulum kinase (PERK), activating tras-
cription factor 6 ATF6 (ATF6), ER degradation enhancing
alpha-mannosidase-like protein 1 (EDEM1), ATF4, BCL2
antagonist/killer 1 (BAK1), BCL2 associated X, apoptosis
regulator (BAX), caspase 3 (CASP3), CASP8, CASP9,
CASP12, tryptophanyl-tRNA synthetase (WARS) and
DNA damage inducible transcript 3 (DDIT3)/C/EBP
homologous transcription factor protein (CHOP). In line
with this, Loor [45] identified a large number of XBP1 tar-
get genes as up-regulated in the liver of dairy cows during
the transition from late pregnancy to lactation. The sig-
nificance of ER stress in the liver of dairy cows is its puta-
tive causative role in the development of liver-associated
diseases in high-yielding dairy cows [10], which impairs
metabolic function of the liver, overall health status, and
productive and reproductive performance. UPR target
genes encode proteins that mediate protective cellular re-
sponses aiming to reduce ER stress and restore ER
homeostasis. Therefore, typical proteins encoded by UPR
target genes, which were identified as down-regulated by
GSGME, are chaperones (e.g. HSPA5, PDIA4, HYOU]1,
CALR) and co-chaperones (e.g. DNAJC5G, DNAJBI,
BAG3), both of which are implicated in the refolding of
proteins, and components of the ER-associated degrad-
ation (ERAD) machinery (e.g. HERPUD1). The ERAD ma-
chinery is involved in the clearance of misfolded proteins
that cannot be refolded in the ER and, therefore, are retro-
translocated to the cytosol, where they become degraded
by the proteasome after being ubiquitinated by E3 ubiqui-
tin ligases [46]. Down-regulation of these UPR target
genes by GSGME is likely mediated by the identified
down-regulation of XBP1. The spliced (s) XPBl is a
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Table 5 Plasma lipid profile of cows fed grape seed and grape marc meal extract (GSGME) versus control cows at 1 week

postpartum
Lipid class Group Total SFA MUFA PUFA
Major lipid classes
CE, uM Control 3070 + 663 135+388 206 £57.0 2730+ 5747
GSGME 3079+ 794 131+324 204 +57.7 2743 £7149
FC, uM Control 411 +111 - - -
GSGME 444 + 124 - - -
LPC, uM Control 770202 556+ 139 935+325 12.1£4.05
GSGME 80.7+21.2 574+150 100+2.78 133+4.18
PC, uM Control 996 =+ 285 22.8+£5.80 279+£91.8 598 + 164
GSGME 999 £ 293 226+59 285£870 594+ 181
SM, uM Control 169 £46.1 116+£275 444+£125 88+6.0
GSGME 170+ 522 116+ 33.1 442+134 99+60
Minor lipid classes
Cer-d18:1, uM Control 1.28+0.24 1.11+£023 0.18+0.04 -
GSGME 128027 1.09+0.23 0.19+0.05 -
HexCer-d18:1, uM Control 022 +£0.05 0.11+£0.03 0.11+£0.02 -
GSGME 023+0.06 0.12+£0.04 0.12+£0.03 -
Pl, uM Control 9.65+2.34 0.07 £0.01 202£0.74 757 £1.68
GSGME 958 +2.89 0.06 £0.02 208 £0.76 744 +2.18
PE, uM Control 636+ 1.96 0.19+0.07 099+ 030 497 £1.66
GSGME 6.36 = 1.64 0.17£0.07 1.02£0.25 495+ 140
PE-P-16:0, uM Control 6.73+1.27 061 £0.05 1.01£0.25 511£1.06
GSGME 6.99 £ 1.69 059+0.10 1.09+0.29 5311137
PE-P-18:0, uM Control 4.09+039 0.57 £0.06 0.70£0.10 2.82+0.27
GSGME 3.87£0.52 0.51£0.06 067 £0.11 269 +£0.38
PE-P-18:1, uM Control 448 £ 040 0.59+0.04 0.77+0.14 3.12+029
GSGME 441 +0.64 0.56+0.08 0.79+£0.13 3.06 £0.50

Values are means + SD for n = 14 cows per group

critical transcriptional regulator of ER stress response by
inducing genes that cope with ER stress factors (ER chap-
erones, ERAD components) and stimulating phospholipid
biosynthesis which leads to an expansion of the ER
membrane [9, 47, 48]. Transcriptional regulation of ER
stress-responsive genes by sXBP1 and other ER stress-
sensitive transcription factors is mediated by binding to
ER stress-dependent regulatory promoter motifs [e.g.
endoplasmic reticulum stress element (ERSE)]. Func-
tional ERSEs regulated by XBP1 were reported for the
MANF and GADD45B genes [49], both of which were
identified as down-regulated transcripts in the liver of
cows fed GSGME. While GADD45B is localized in the
mitochondria and is an activator of pro-survival p38
mitogen-activated protein kinase signaling, MANF is
located in the luminal side of the ER and is proposed to
help to remove misfolded proteins from the ER by deg-
radation and/or enhancing protein folding [50].
Another ER stress-inducible protein identified as down-

regulated by GSGME is PHLDA1/TDAG51, which en-
codes a protein promoting apoptotic cell death. Apop-
tosis is induced as consequence of ER stress in the case
that ER stress-induced damage is overwhelming and
homeostasis cannot be restored [51, 52]. The large pro-
portion of ER stress-induced UPR target genes of total
down-regulated transcripts was also reflected by GSEA,
according to which ER lumen, ER part and ER were
identified as enriched GO annotation terms.
Noteworthy, the chemokine ligands C-X-C motif che-
mokine ligand 14 (CXCL14) and C-C motif chemokine
ligand 3 like 1 (CCL3L1) were also identified as tran-
scripts down-regulated in the liver of cows fed GSGME.
These two chemokine ligands belong to a family of
about 50 chemokines which as a common feature are
key regulators of leukocyte chemotaxis, migration and
function, thus playing fundamental roles both in physio-
logical and pathological immune responses, including in-
flammatory processes [53]. Inflammation is also induced
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as a consequence of ER stress through IRE1-mediated
activation of nuclear factor kappa B (NF-kB) [9, 54]. NF-
KB plays a key role in regulating the transcription of a
large set of genes involved in all aspects of inflammation
(e.g. chemokines, proinflammatory cytokines, inflamma-
tory enzymes, adhesion molecules and various receptors)
[55]. Thus, the observed down-regulation of inflamma-
tory chemokines in the liver of cows fed GSGME is not
only an indicator of inhibition of hepatic inflammation
but likely also of inhibition of ER stress by GSGME. In
line with the assumption of an inhibition of hepatic
inflammation by GSGME is a further finding of tran-
scriptome analysis that the APP SAA4 was one of the
genes down-regulated by GSGME. Hepatic synthesis of
APPs, like SAA, HP, ceruloplasmin, and C-reactive pro-
tein, is greatly induced during systemic inflammation [7]
triggered by pro-inflammatory cytokines [56]. In line
with the view that high-yielding dairy cows suffer from
systemic inflammation in the days after parturition, sev-
eral studies have demonstrated that APPs are elevated in
blood of cows during this phase, even in the absence of
clinical signs of disease [7, 57, 58]. Thus, in order to sub-
stantiate our observation from transcriptome analysis
that GSGME is able to attenuate the acute phase
response of the liver, we determined the concentrations
of SAA and HP in plasma of cows. In fact, the concen-
trations of both APPs were reduced in plasma of cows
fed GSGME confirming our assumption that GSGME
inhibits hepatic inflammation.

miRNAs were also identified as differentially regulated
transcripts by GSGME in our transcriptome analysis and
single miRNAs can regulate the expression of a large
number of protein-coding target mRNAs, mainly at the
posttranscriptional level. This is mediated by binding to
complementary mRNA sequences, thereby causing their
degradation or repression of protein translation, and,
thus, inhibition of gene expression. Due to the great
regulatory potential of miRNAs for regulating gene
expression, we performed bioinformatic target predic-
tion. Interestingly, the 185 target mRNAs predicted for
mir-376c¢, which was up-regulated by GSGME, included
several inflammatory chemokines, chemokine receptors,
interleukins (ILs) and IL receptors [CCL15, CCL28, C-
X9-C motif containing 4 (CMC4), CCR9, IL33, IL20RB].
Noteworthy, the target mRNAs predicted for mir-376¢
also included genes involved critically in the UPR in-
cluding DDIT3/CHOP, eukaryotic translation initiation
factor 2A (EIF2A) and the chaperone HSPD1. Although
the predicted UPR target genes were not identical with
the UPR target genes identified as differentially regu-
lated, these findings strengthen our observation that
GSGME causes down-regulation of ER stress target
genes. Interestingly, CHOP is regulated by all branches
of the UPR, in particular by ATF6, and is a powerful
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inducer of apoptosis during ER stress [59], while EIF2A
encodes the initiator of protein translation elF2a and in-
hibition of elF2a phosphorylation in response to ER
stress has long been known to be a cytoprotective mech-
anism, because inhibition of translation reduces global
protein synthesis and thus work load of the ER [60].
Considering that mRNAs from up-regulated miRNAs
are targeted for degradation and thus less transcribed,
indicates that expression of genes involved in immune
responses and critical genes of the UPR are inhibited by
GSGME.

Nevertheless, we have recently reported that hepatic
mRNA abundances of UPR target genes determined by
qPCR analysis, such as ATF4, BAK1, BAX, CASP3,
DDIT3, EDEM1, HSPAS5, PDIA4 and XBP1, are not dif-
ferent between cows fed GSGME and control cows [13],
because statistical evaluation of these data indicated no
significant effect. Despite this, it was particularly striking
that qPCR analyses showed a marked and consistent re-
duction in the mRNA abundances of all UPR target
genes by 44% in average of all genes (variation between
25-65%). In addition, our recent study revealed that
GSGME causes a strong and significant down-regulation
of FGF21 in the liver of these cows. FGF21 is an import-
ant metabolic hormone regulating fatty acid oxidation
and ketogenesis [61] and recent evidence indicated that
FGF21 acts also as a stress hormone and is induced as a
consequence of ER stress [62]. Thus, it is not surprising
that FGF21 in the liver of dairy cows is dramatically in-
duced during early lactation [63-65], because ER stress
and various other stressors (negative energy balance, mi-
crobial pathogens) are present during the periparturient
phase.

In connection with our results from transcriptome
analysis, we are confident to postulate that GSGME is
able to inhibit ER stress in the liver of dairy cows. Al-
though we have no direct evidence for this, it is possible
that attenuation of ER stress and inflammation was re-
sponsible for an increased utilization of energy and nu-
trients in these cows as reported recently [13]. Immune
system activation is an energy-demanding process that
necessitates a reallocation of nutrients and energy from
dispensable functions such as growth and production
[7]. It is well known that even subclinical inflammation
increases the requirement of energy and amino acids,
e.g. for the production of APPs and moreover has
adverse effects on metabolism, e.g. by an increase of
plasma cortisol [6, 66, 67]. The hypothesis that milk pro-
duction is increased by an attenuation of inflammation
has been confirmed in several studies in which supple-
mentation of dairy cows with non-steroidal anti-
inflammatory drugs during early lactation caused an
increased milk yield [68-70]. The observed inhibition of
ER stress and the parallel increase of milk yield by
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GSGME [13] is noteworthy regarding the relatively low
amount of GSGME fed to the cows (1% of DM in the
TMR). Other studies dealing with the effect of grape
products in ruminants (cows or ewes) used markedly
higher concentrations, such as 5 kg dried GM per cow
and day [71], 10% grape residue silage of feed DM [72],
and 300 g GS per ewe and day [73]. Despite the feeding
of much higher amounts of grape products in these
studies, only one study observed a slight improvement
of milk yield compared to the control group [71]. How-
ever, none of these studies investigated the effect of
grape products on ER stress and inflammatory signaling
pathways, but on methanogenesis and intraruminal and
total tract nutrient digestibility. Therefore, further stud-
ies dealing with the effects of grape products, with
particular consideration of dose—response relationships,
on ER stress and inflammatory pathways in the liver of
high-yielding dairy cows during the transition period are
required, in order to confirm potential beneficial effects
of grape products on these pathways and to figure out
the optimum supplementary dose.

A further striking observation from transcriptome ana-
lysis was that the most enriched GO terms associated
with the genes up-regulated by GSGME are dealing with
cell cycle regulation, such as M phase, cell cycle phase,
mitotic cell phase, microtubule cytoskeleton, mitosis,
nuclear and cell division. This is due to the fact that
many of the proteins encoded by the up-regulated genes,
like topoisomerase (DNA) II alpha (TOP2A), cyclin
dependent kinase inhibitor 3 (CDKN3), stathmin 1
(STMN1), epithelial cell transforming 2 (ECT2), DEP
domain containing 1 (DEPDC1), centromere protein A
(CENPA), CENPE, CENPO, cytoskeleton associated pro-
tein 2 (CKAP2), kinesin family member 11 (KIF11),
KIF20A, KIF4A, KIF20B, KIF15, BUB1B mitotic check-
point serine/threonine kinase B (BUB1B), growth arrest
specific 2 like 3 (GAS2L3), structural maintenance of
chromosomes 4 (SMC4), SMC2, SPC25 NDC80 kin-
etochore complex component (SPC25), cyclin A2
(CCNA2), NDC80 kinetochore complex component
(NUF2), B-tubulin (TUBB) and many others, have
important biological functions within mitosis, cell
cycle arrest, mitotic spindle organization, cytokinesis,
mitotic chromosome condensation, metaphase/ana-
phase transition, chromosome organization, regulation
of cyclin-dependent kinases and nucleosome assembly.
For instance, KIF11, KIF20A, KIF4A, KIF20B and
KIF15 encode proteins of the kinesin superfamily, a
group of microtubule-dependent molecular motors.
Proteins of the kinesin superfamily provide force for
intracellular transport and cell division and are essen-
tial for mitosis and meiosis [74]. An important role
during mitosis also plays topoisomerase Ila, encoded
by the most strongly up-regulated gene TOP2A (2.9-
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fold), in resolving anaphase bridges between sister
chromatids to ensure that daughter cells receive only
one copy of each chromosome [75]. In this regard,
centromer proteins, like CENPA, CENPF, CENPO, all
of which were also up-regulated by GSGME, are local-
ized to centromeric DNA, also called kinetochores,
throughout the cell cycle and ensure correct chromo-
some attachment to the microtubules, equal segrega-
tion of sister chromatids, and their movement to the
opposite poles [76]. Also in agreement with the obser-
vation that genes involved in mitosis and cell cycle are
induced by GSGME is that several genes encoding
histone proteins, which play a role for nucleosome
assembly and thus affect chromatin structure, were
up-regulated by GSGME. Although it is difficult to es-
timate the precise biological implication of an up-
regulation of genes involved in mitosis or cell cycle
regulation by GSGME in the context of early-lactating
dairy cows, this effect might be explained, at least in
part, by the well-described effects of different poly-
phenolic compounds contained in GSGME on cell
cycle regulation and apoptosis, effects that are made
responsible for the anti-cancer activities of many poly-
phenols [77]. For instance, quercetin [78], curcurmin
[79], ellagic acid [80], epigallocatechin-3-gallate [81]
and resveratrol [82] were found to induce the critical
cell cycle regulator p53 and, subsequently, cell cycle
arrest and apoptosis in different cancer cells. On the
other hand, induction of p53-mediated cell cycle arrest
by polyphenolic compounds in normal cells allows
complete repair of DNA damage before continuing
with cellular division through p53-induced formation
of different DNA repair proteins, like mutL homolog 1
and Rad51 recombinase [83, 84]. Due to the central
role of p53 for cell cycle regulation and the large num-
ber of up-regulated genes involved in this process, it
was not surprising to identify cell cycle as an enriched
KEGG pathway.

Besides their anti-inflammatory properties, pronounced
effects of polyphenols on lipid metabolism have been re-
ported. In rodent models, it has been shown that dietary
polyphenols are able to lower plasma lipid concentrations
and prevent the development of fatty liver by influencing
several pathways of lipid metabolism, including inhibition
of lipogenesis and activation of P-oxidation [23, 85]. In
dairy cows, hepatic lipid metabolism is a physiological key
aspect of health in dairy cows. It has been well established
that disturbances of hepatic lipid metabolism, such as a
low rate of B-oxidation and a limited capacity of the liver
for the secretion of lipids into the blood are critical events
in the development of fatty liver and ketosis [86, 87]. Re-
cently, it has been observed that hepatic metabolism of
glycerol- and ether phospholipids is closely linked to
plasma concentrations of NEFA, BHBA and glucose, three
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key factors of the metabolic status of dairy cows during
early lactation [20]. Imhashly et al. [88] recently showed,
using lipidomic analysis of plasma, that concentrations of
some unsaturated PC, LPC and SM species (such as PC
36:4, PC 36:5, PC 36:6, LPC 18:1, LPC 18:2, LPC 18:3, SM
39:1, SM 43:3) in dairy cows are continuously increasing
after birth. A common feature of these phospholipids is
their requirement for the secretion of hepatic TAG as very
low-density lipoprotein particles. Thus, an increased for-
mation and secretion of these phospholipids after birth
has been regarded as a means of the liver to prevent accu-
mulation of lipids [88]. In the present study, we observed
that concentrations of all the individual phospholipids,
and even their molecular species, in plasma of dairy cows
in week 1 postpartum are not influenced by feeding
GSGME. As the greatest part of plasma phospholipids is
synthesized in the liver, this finding strongly suggests that
phospholipid metabolism in the liver was not influenced
by polyphenols from GSGME. The finding that fatty acid
moieties of plasma phospholipids were also not changed
in the group of cows supplemented with GSGME indi-
cates that polyphenols also did not influence hepatic de-
saturation and elongation of fatty acids. This finding is of
relevance as the fatty acid composition of phospholipids
not only influences properties of cellular membranes
[89], but certain phospholipid-bound fatty acids such
as arachidonic acid are serving also as precursors for
the synthesis of pro-inflammatory eicosanoids [90].
The finding that supplementation of GSGME did not
influence the concentrations of free cholesterol and
cholesterol esters indicates that polyphenols do not
modify hepatic cholesterol metabolism. This finding
agrees with our recent study which showed that
GSGME does not influence hepatic cholesterol concen-
tration [13]. Ceramide and ceramide-derived sphingoli-
pids are structural components of membranes. In
plasma, ceramides are transported as components of
low-density lipoproteins of hepatic origin [91]. Cera-
mides are of physiological relevance as their plasma
concentrations have been linked to insulin resistance,
oxidative stress, and inflammation [22, 92-94], condi-
tions which are commonly observed in dairy cows dur-
ing the transition period. Recently, Rico et al. [91] have
shown that overweight dairy cows have increased
plasma concentrations of ceramides and these are
closely linked with the progression of insulin resist-
ance. These authors suggested that ceramides may have
a fundamental role in the homeorhetic adaptation to
early lactation in dairy cows. Our lipidomic analysis
revealed that polyphenols from GSGME do not influence
plasma concentrations and the molecular profile of cera-
mides in plasma. Thus, we conclude that beneficial effects
of GSGME on inflammation and ER stress in the liver
were independent of metabolism of ceramides.
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Conclusion

The present findings from transcriptome analysis of the
liver of cows fed GSGME during the transition period at
1 week postpartum indicates that polyphenol-rich feed
components, such as GSGME, are able to down-regulate
a large set of genes involved in ER stress-induced UPR
and inflammatory processes. The observation that
GSGME induces specific miRNAs, which are known to
bind and thus degrade mRNAs encoding proteins of the
UPR and inflammation, indicates that at least some of
the GSGME effects on the hepatic transcriptome of
dairy cows are mediated by miRNA-mRNA interactions.
In contrast, transcriptome analysis of the liver of these
cows did not reveal alterations in the expression of genes
involved in important metabolic pathways, such as lipid
metabolism. This finding is in agreement with our re-
sults from plasma lipid profiling demonstrating no dif-
ferences in the concentrations of individual species of
major and minor lipid classes between cows fed GSGME
and control cows. Considering that both ER stress and
inflammatory processes are considered to contribute to
liver-associated diseases, which frequently occur during
early lactation in high-yielding dairy cows, and to impair
milk performance in dairy cows, it is likely that inhib-
ition of ER stress and inflammation is responsible for
the recently observed increase in milk yield of dairy
cows fed GSGME.
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