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Abstract: Obesity and type 2 diabetes mellitus (T2D) represent important comorbidities of the
metabolic syndrome, which are associated with non-alcoholic fatty liver disease (NAFLD)-related
hepatic fibrosis. In total, 160 morbidly obese patients—81 following a low-calorie formula diet (LCD)
program and 79 undergoing bariatric surgery (Roux-en-Y gastric bypass, RYGB)—were examined for
anthropometric and metabolic parameters at base-line and during 12 months of weight loss, focusing
on a putative co-regulation of T2D parameters and liver fibrosis risk. High NAFLD fibrosis scores
(NFS) before intervention were associated with elevated HbA1c levels and T2D. Loss of weight and
body fat percentage (BFL) were associated with improved glucose and lipid metabolism and reduced
risk of NAFLD-related fibrosis, with particularly beneficial effects by RYGB. Both T2D improvement
and NFS decrease were positively associated with high BFL. A highly significant correlation of NFS
reduction with BFL was restricted to male patients while being absent in females, accompanied
by generally higher BFL in men. Overall, the data display the relation of BFL, T2D improvement,
and reduced NAFLD-related fibrosis risk during weight loss in morbidly obese individuals induced
by diet or RYGB. Furthermore, our data suggest a considerable sexual dimorphism concerning the
correlation of fat loss and improved risk of liver fibrosis.

Keywords: type 2 diabetes mellitus; NAFLD; NFS; liver fibrosis; obesity; bariatric surgery; low-calorie
formula diet; HbA1c

1. Introduction

The metabolic syndrome (MetS) represents a severe health issue of global relevance [1]
and comprises a number of morbidities, including obesity, hypertension, dyslipidemia, and
type 2 diabetes mellitus (T2D) [2]. Importantly, metabolic dysregulation is closely related
to concomitant inflammatory processes commonly summarized as “metaflammation” [3].
Non-alcoholic fatty liver disease (NAFLD) [4] is an important representative of metabolic
morbidities [5,6] frequently accompanied by obesity and T2D [7]. As a major entity of
chronic liver disease [7], NAFLD is, due to severe liver damage and hepatic malfunction
by non-alcoholic hepatic steatosis [8], associated with considerably increased mortality
depending on the severity of liver fibrosis [9–11]. Thus, NAFLD fibrosis score (NFS)—being
calculated from the parameters albumin, age, aspartate transaminase/alanine aminotrans-
ferase (AST/ALT) ratio, BMI, hyperglycemia, and platelet count [8]—represents, among
others, an important and non-invasive marker in order to indicate the risk of hepatic fibro-
sis [12]. Most important, genetically driven NAFLD promotes T2D and central obesity and
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vice versa, as was recently shown in a large-scale genome-wide association study (GWAS)
approach [13]. Furthermore, optimal NFS cutoff values were reported to depend on the
severity of obesity in order to rule out advanced hepatic fibrosis [11].

Recently, it was observed by liver biopsy that steatohepatitis represents the sole feature
of liver damage in T2D. Almost all patients with T2D or MetS have NAFLD, which in
patients with T2D means NASH [14].

The strict relationship between NAFLD and T2D involves some pathophysiological
mechanisms still poorly studied or neglected today. In particular, the role of the opioid
system, both on NAFLD [15] and on insulin resistance/obesity, needs further investiga-
tion [16]. Both physiological and pharmacological plasma levels of beta-endorphin are
able to provoke marked islet hormone release in the early phase of human obesity [16]. In
addition, we showed that the loss of endocannabinoid receptor 1 signaling led to reduced
PLIN2 abundance, which triggers lipophagy [17].

Given the known causal relations of metabolic disorders [13], regulation and improve-
ment of T2D and NAFLD under the terms of excessive weight loss in obese individuals
represent a crucial issue for a better understanding of the interactions between distinct
MetS comorbidities and for the development of therapeutic approaches applicable in order
to improve obesity as well as glucose metabolism and liver integrity. Gastric sleeve and
RYGB have been reported to significantly improve hepatic insulin sensitivity [18] and liver
function in obesity-related NAFLD [19] and represent potential therapeutic strategies for
NAFLD treatment [20,21]. In particular, a comparison of metabolic effects induced by
bariatric surgery and diet as alternative approaches is of high interest [22].

The present study aimed to investigate and compare metabolic improvements re-
garding both hepatic injury and T2D in relation to weight loss induced by either invasive
(RYGB) or conservative therapy (low-calorie formula diet) in a large and well-characterized
cohort of morbidly obese individuals. In particular, the focus of the current study lies on
the analysis of the association and possible interaction of T2D improvement and NAFLD
attenuation during obesity therapy.

2. Materials and Methods
2.1. ROBS (Research in Obesity and Bariatric Surgery) Study Cohort

Serum samples were collected from the ROBS (Research in Obesity and Bariatric
Surgery) study cohort [23]. ROBS is an open-label, non-randomized, monocentric, prospec-
tive and observational (explorative and confirmatory) study of patients routinely undergo-
ing either bariatric surgery (gastric sleeve or Roux-en-Y gastric bypass) or a low-calorie
formula diet (LCD) in the tertiary care centre at the University hospital of Giessen, Ger-
many. The detailed information about this study cohort can be drawn from a previous
publication [23]. The present study comprises data for ROBS subjects who completed visits
V (base-line), V3, V6, and V12 (3, 6, and 12 months follow-up) and, thus, represents an
extension of the study cohort introduced by Brock et al. in 2019 [23].

Briefly, patients were treated by a multidisciplinary team of physicians and profession-
als from Internal Medicine, Endocrinology/Diabetology, Metabolic/Visceral Surgery, Psy-
chosomatic Medicine/Psychotherapy, Nutritional Science/Dietetics, and Sports Medicine
at the Obesity Centre at the University of Giessen, Germany. The study was approved by the
local ethical committee at the University of Giessen, Germany (file: AZ 101/14). All patients
gave informed consent and were informed about the aim of the study. Data anonymization
and privacy policy were accurately applied. Obese patients with a BMI > 40 kg/m2 or
with a BMI > 35 kg/m2 and coexisting T2D were consecutively admitted for bariatric
surgery from January 2015 to April 2021. Exclusion criteria were: pregnancy, evidence
of or suspicion on underlying endocrine diseases, untreated bulimia nervosa and binge
eating behaviour, use of illicit drugs, neoplasm, severe psychiatric disorders, psychosis,
and psychopathologic instability.

In the present study, 160 obese patients were enrolled who either received a Roux-en-Y
gastric bypass (RYGB, n = 79) or underwent conservative obesity therapy with low-calorie
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formula diet (LCD, n = 81). Liver fibrosis scores (BARD, NFS, FIB-4) and Albumin-Bilirubin
(ALBI) score (as a predictor of hepatocellular carcinoma) were assessed according to current
guidelines and applying established calculation formula [24–27].

2.1.1. Roux-en-Y Gastric Bypass

In total, 79 patients receiving RYGB were included in the present study. Before ad-
mission for bariatric surgery, each patient underwent the following examinations (cited as
base-line routine screening program): history and physical examination, 2 mg dexametha-
sone suppression test, routine clinical chemistry and endocrinology examination, 2 h oral
glucose tolerance test (OGTT; non-diabetic patients only), esophagogastroduodenoscopy,
abdominal ultrasound, long-term (24 h) blood pressure monitoring, 12-lead electrocardiog-
raphy, screening for obstructive sleep apnoea, chest radiography, body plethysmography,
bioimpedance analysis, echocardiography, and nutritional and psychosomatic counselling.

A surgeon at a single tertiary care centre performed the RYGB procedure. In this
case, gastric bypass combined with a fundectomy as well as a circular gastrojejunostomy
took place. In this setting, an 8–10 cm pouch was created, and the lengths of the bil-
iopancreatic and alimentary limbs were set at 70–90 and 140–160 cm, respectively. A
multidisciplinary group consisting of physicians and specialists in internal medicine, en-
docrinology/diabetology, metabolic/visceral surgery, psychosomatic medicine and psy-
chotherapy, and nutritional science/dietetics and sports medicine from the University of
Giessen provided further treatment.

2.1.2. Low-Calorie Formula Diet

In total, 81 patients in the LCD group participated in a diet program starting with a
12-week fasting phase with five servings of food substitutes daily. This was followed by
an 8-week conversion phase, during which portions are partially replaced by a mixed diet
and, consecutively, by a stability phase without food substitutes being served. The diet
program was accompanied by weekly group meetings that included medical check-up,
exercise program, behavioural training, and a therapeutically guided group session.

2.2. Data Collection

Data collection was performed at four different time points, before RYGB surgery
or the beginning of dietary intervention (V0) and after 3, 6, and 12 months (V3, V6, and
V12). The examination of the patients included an anthropometric assessment and the
collection of clinical and psychological data as well as medication, smoking habits, and
nutritional status. In addition, a routine laboratory examination (CRLE) was performed and
serum samples (21.5 mL) were collected in the fasting state for subsequent quantifications.
Complete data on the assessed parameters are available for all study subjects with few
exceptions. The individual parameters measured are shown in Tables 1–3.

Table 1. Base-line and 12 months follow-up characteristics of obese patients attending the low-calorie
formula diet program (n = 81). Means are depicted and ranges of values are given in brackets.

Parameters Base-Line 12 Months Follow-Up p

A
Anthropometric Characteristics

Demographic

Age [years] 42.8 (20; 67) - -

Gender
-Female 52 (64.2%) -

Male 29 (35.8%) -
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Table 1. Cont.

Parameters Base-Line 12 Months Follow-Up p

Anthropometric

BMI [kg/m2] 43.6 (31.9; 59.2) 33.5 (24.3; 49.7) <0.001

Body weight [kg] 130 (90.1; 185.4) 99.6 (61; 159) <0.001

Weight loss [%] - 23 (1; 41.4) -

Excessive weight [kg] 61.3 - -

Excessive weight loss [%] - 50.4 -

Body fat [%] 45.9 (28.5; 59.2) 34.8 (15.0; 53.7) <0.001

Waist–hip ratio 0.95 (0.69; 1.25) 0.9 (0.72; 1.13) <0.001

B
Anamnesis and medication

Hypertension
<0.001Yes 40 (49.4) 26 (32.1 %)

no 40 (49.4) 54 (66.7)

Cardiovascular disease
0.317Yes 2 (2.5) 3 (3.7)

No 79 (97.5) 77 (95.1)

Smoking
0.564Yes 18 (22.2) 19 (23.5)

No 63 (77.8) 61 (75.3)

Hormonal contraception
0.059Yes 12 (14.8) 16 (19.8)

No 67 (82.7) 64 (79)

C
Metabolism

Type 2 diabetes mellitus
0.063Yes 14 (17.3) 9 (11.1)

No 66 (81.5) 71 (87.7)

Hyperlipidemia
0.001Yes 37 (45.7) 21 (25.9)

No 44 (54.3) 59 (72.8)

Number of medications

0.041
0 72 (87.8) 79 (96.3)
1 6 (7.3) 0
2 2 (2.4) 1 (1.2)
3 1 (1.2) 0

Insulin therapy
0.157Yes 5 (6.1) 3 (3.7)

No 76 (93.9) 77 (93.9)

GLP Analogs
0.157Yes 2 (2.5) 0

No 79 (97.5) 80 (98.8)

LDL cholesterol [mg/dL] 132.7 (40; 201) 114.5 (44; 213) <0.001

HDL cholesterol [mg/dL] 48.4 (29; 84) 51.5 (28; 77) 0.001

Total cholesterol [mg/dL] 193.8 (135; 260) 177.8 (94; 299) <0.001

Serum triglycerides [mg/dL] 138 (48; 436) 99 (39; 283) <0.001

CRP [mg/L] 9.2 (0.6; 31.0) 5,1 (0.5; 152) <0.001

HbA1c [%] 5.7 (4.7; 9.0) 5.4 (4.5; 7.7) <0.001
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Table 1. Cont.

Parameters Base-Line 12 Months Follow-Up p

Liver

ALT [U/L] 36.5 (11; 132) 29.8 (8; 418) <0.001

AST [U/L] 25.1 (8; 54) 24.5 (11; 312) 0.008

Alkaline phosphatase [U/L] 75.8 (35; 122) 68.8 (30; 194) <0.001

GGT [U/L] 33.3 (9; 136) 28.5 (5; 514) <0.001

Bilirubin [µmol/L] 10.3 (3.4; 24) 12.4 (3.4; 44.5) 0.002

Albumin [g/L] 44.2 (36.8; 50.2) 43,6 (38.3; 52.8) 0.060

D
Liver scores

BARD

0.009

0 0 3 (3.7)
1 38 (46.9) 23 (28.4)
2 10 (12.3) 11 (13.6)
3 30 (37) 37 (45.7)
4 3 (3.7) 7 (8.6)

ALBI

<0.001
1 11 (13.6) 6 (7.4)
2 64 (79) 71 (87.7)
3 0 1 (1.2)

NFS
1.000<−1.445 46 (56.8) 48 (59.3)

>0.675 8 (9.9) 3 (3.7)

FIB-4
1.000<1.45 70 (86.4) 67 (82.7)

>3.25 0 1 (1.2)

Table 2. Base-line and 12 months follow-up characteristics of bariatric surgery patients receiving
Roux-en-Y gastric bypass (n = 79). Means are depicted and ranges of values are given in brackets.

Base-Line 12 Months Follow-Up p

A
Anthropometric Characteristics

Demographic

Age [years] 40.7 (20; 60) - -

Gender
-Female 65 (82.3%) -

Male 14 (17.7%) -

Anthropometric

BMI [kg/m2] 51.7 (42; 62) 33.1 (24; 42) <0.001

Body weight [kg] 149.4 (109; 244) 94.6 (61; 146) <0.001

Weight loss [%] 35.45 (16.75; 54.91) -

Excessive weight [kg] 82.9 - -

Excessive weight loss [%] 64.4 -

Body fat [%] 52 (30; 62.1) 35.5 (19.6; 49.1) <0.001

Waist–hip ratio 0.96 (0.71; 1.33) 0.88 (0.71; 1.05) <0.001
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Table 2. Cont.

Base-Line 12 Months Follow-Up p

B
Medical history and medication

Hypertension
<0.001Yes 51 (64.6) 30 (38)

no 26 (32.9) 45 (57)

Cardiovascular disease
1.000Yes 3 (3.8) 2 (2.5)

No 74 (93.7) 74 (93.7)

Smoking
0.655Yes 22 (27.8) 21 (26.6)

No 57 (72.2) 55 (69.6)

Hormonal contraception
0.564Yes 14 (17.7) 12 (15.2)

No 63 (79.7) 64 (81)

C
Metabolism

Diabetes mellitus type 2
<0.001Yes 19 (24.1) 6 (7.6)

No 54 (68.4) 67 (84.8)

Hyperlipidemia
<0.001Yes 32 (40.5) 9 (11.4)

No 47 (59.5) 65 (82.3)

Number of medications

0.001
0 60 (75.9) 71 (89.9)
1 11 (13.9) 3 (3.8)
2 6 (7.6) 1 (1.3)
3 2 (2.5) 0

Insulin therapy
0.005Yes 11 (13.9) 0

No 67 (84.8) 74 (93.7

GLP Analogs
0.046Yes 4 (5.1) 0

No 75 (94.9) 75 (94.9)

LDL cholesterol [mg/dL] 128.67 (53; 233) 88,13 (13; 153) <0.001

HDL cholesterol [mg/dL] 47.60 (0; 87) 53.08 (17; 144) <0.001

Total cholesterol [mg/dL] 185.5 (115; 290) 154 (96; 242) <0.001

Serum triglycerides [mg/dL] 142.46 (58; 751) 90.19 (43; 253) <0.001

CRP [mg/L] 14.3 (2.09; 110,89) 3.37 (0,49; 43,0) <0.001

HbA1c [%] 6.0 (4.7; 9.6) 5.3 (4.4; 6.7) <0.001

Liver

ALT [U/L] 41.93 (12; 263) 29.92 (9; 186) <0.001

AST [U/L] 29.16 (12; 140) 22.33 (8; 137) <0.001

Alkaline phosphatase [U/L] 83.227 (36; 131) 82.71 (31; 270) 0.449

GGT [U/L] 64.99 (9; 1867) 20.69 (5; 279) <0.001

Bilirubin [µmol/L] 8.80 (3.4; 23.9) 10.2396 (1.71; 25.66) <0.001

Albumin [g/L] 43.5 (36.1; 51.0) 43.525 (37.4; 51.2) 0.980
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Table 2. Cont.

Base-Line 12 Months Follow-Up p

D
Liver scores

BARD

0.093

0 0 3 (3.8)
1 37 (46.8) 23 (29.1)
2 15 (19) 14 (17.7)
3 19 (24.1) 30 (38)
4 8 (10.1) 9 (11.4)

ALBI

0.037
1 15 (19) 11 (13.9)
2 60 (75.9) 65 (82.3)
3 0 0

NFS
1.000<−1.445 18 (22.8) 52 (65.8)

>0.675 6 (7.6) 0

FIB-4
1.000<1.45 75 (94.9) 72 (91.1)

>3.25 0 0

Table 3. Comparison of base-line and 12 months follow-up characteristics of RYGB and LCD patients.

Base-Line 12 months Follow-Up

A
Anthropometric
Characteristics

Demographic LCD
n = 81

RYGB
n = 79 p LCD

n = 81
RYGB
n = 79 p

Age [years] 42.8 (20; 67) 40.7 (20; 60) 0.282 - -

Gender
-Female 52 (64.2%) 65 (82.3%) 0.01 - -

Male 29 (35.8%) 14 (17.7%) - -

Anthropometric -

BMI [kg/m2] 43.6 (31.9; 59.2) 51.7 (42; 62) <0.001 33.5 (24.3; 49.7) 33.1 (24; 42) 0.755

Body weight [kg] 130 (90.1; 185.4) 149.4 (109; 244) <0.001 99.6 (61;159) 94.6 (61; 146) 0.199

Weight loss [%] - - - 23 (1; 41.4) 35.45 (16.75; 54.91) <0.001

Excessive weight [kg] 61.3 82.9 <0.001 - - -

Excessive weight loss [%] - - 50.4 64.4 <0.001

Body fat [%] 45.9 (28.5; 59.2) 52 (30; 62.1) <0.001 34.8 (15.0; 53.7) 35.5 (19.6; 49.1) 0.656

Waist–hip ratio 0.95 (0.69; 1.25) 0.96 (0.71; 1.33) 0.962 0.9 (0.72; 1.13) 0.88 (0.71; 1.05) 0.968

B
Medical history and

medication

Hypertension
0.04 0.333Yes 40 (49.4) 51 (64.6) 26 (32.1 %) 30 (38)

no 40 (49.4) 26 (32.9) 54 (66.7) 45 (57)

Cardiovascular disease
0.61 0.693Yes 2 (2.5) 3 (3.8) 3 (3.7) 2 (2.5)

No 79 (97.5) 74 (93.7) 77 (95.1) 74 (93.7)

Smoking
0.413 0.580Yes 18 (22.2) 22 (27.8) 19 (23.5) 21 (26.6)

No 63 (77.8) 57 (72.2) 61 (75.3) 55 (69.6)
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Table 3. Cont.

Base-Line 12 months Follow-Up

Hormonal contraception
0.617 0.495Yes 12 (14.8) 14 (17.7) 16 (19.8) 12 (15.2)

No 67 (82.7) 63 (79.7) 64 (79) 64 (81)

C
Metabolism

Diabetes mellitus
0.2 0.529Yes 14 (17.3) 19 (24.1) 9 (11.1) 6 (7.6)

No 66 (81.5) 54 (68.4) 71 (87.7) 67 (84.8)

Hyperlipidemia
0.51 0.028Yes 37 (45.7) 32 (40.5) 21 (25.9) 9 (11.4)

No 44 (54.3) 47 (59.5) 59 (72.8) 65 (82.3)

Number of medications

0.03 0.157
0 72 (87.8) 60 (75.9) 79 (96.3) 71 (89.9)
1 6 (7.3) 11 (13.9) 0 3 (3.8)
2 2 (2.4) 6 (7.6) 1 (1.2) 1 (1.3)
3 1 (1.2) 2 (2.5) 0 0

Insulin therapy
0.098 0.094Yes 5 (6.1) 11 (13.9) 3 (3.7) 0

No 76 (93.9) 67 (84.8) 77 (93.9) 74 (93.7

GLP Analogs
0.389 1.000Yes 2 (2.5) 4 (5.1) 0 0

No 79 (97.5) 75 (94.9) 80 (98.8) 75 (94.9)

LDL cholesterol [mg/dL] 132.7 (40; 201) 128.67 (53; 233) 0.384 114.5 (44; 213) 88,13 (13; 153) <0.001

HDL cholesterol [mg/dL] 48.4 (29; 84) 47.60 (0; 87) 0.877 51.5 (28; 77) 53.08 (17; 144) 0.823

Total cholesterol [mg/dL] 193.8 (135; 260) 185.5 (115; 290) 0.102 177.8 (94; 299) 154 (96; 242) <0.001

Serum triglycerides [mg/dL] 138 (48; 436) 142.46 (58; 751) 0.917 99 (39; 283) 90.19 (43; 253) 0.212

CRP [mg/L] 9.2 (0.6; 31.0) 14.3 (2.09; 110,89) <0.001 5,1 (0.5; 152) 3.37 (0,49; 43,0) 0.060

HbA1c [%] 5.7 (4.7; 9.0) 6.0 (4.7; 9.6) 0.049 5.4 (4.5; 7.7) 5.3 (4.4; 6.7) 0.073

Liver

ALT [U/L] 36.5 (11; 132) 41.93 (12; 263) 0.254 29.8 (8; 418) 29.92 (9; 186) 0.263

AST [U/L] 25.1 (8; 54) 29.16 (12; 140) 0.465 24.5 (11; 312) 22.33 (8; 137) 0.370

Alkaline phosphatase [U/L] 75.8 (35; 122) 83.227 (36; 131) 0.036 68.8 (30; 194) 82.71 (31; 270) <0.001

GGT [U/L] 33.3 (9; 136) 64.99 (9; 1867) 0.431 28.5 (5; 514) 20.69 (5; 279) <0.001

Bilirubin [µmol/L] 10.3 (3.4; 24) 8.8 (3.4; 23.9) 0.012 12.4 (3.4; 44.5) 10.2(1.7; 25.7) 0.081

Albumin [g/L] 44.2 (36.8; 50.2) 43.5 (36.1; 51.0) 0.228 43,6 (38.3; 52.8) 43.525 (37.4; 51.2) 0.529

D
Liver scores

BARD

0.946 0.835

0 0 0 3 (3.7) 3 (3.8)
1 38 (46.9) 37 (46.8) 23 (28.4) 23 (29.1)
2 10 (12.3) 15 (19) 1 (13.6) 14 (17.7)
3 30 (37) 19 (24.1) 37 (45.7) 30 (38)
4 3 (3.7) 8 (10.1) 7 (8.6) 9 (11.4)

ALBI

0.171 0.103
1 11 (13.6) 15 (19) 6 (7.4) 11 (13.9)
2 64 (79) 60 (75.9) 71 (87.7) 65 (82.3)
3 0 0 1 (1.2) 0

NFS
0.282 0.077<−1.445 46 (56.8) 18 (22.8) 48 (59.3) 52 (65.8)

>0.675 8 (9.9) 6 (7.6) 3 (3.7) 0

FIB-4
1 0.303<1.45 70 (86.4) 75 (94.9) 67 (82.7) 72 (91.1)

>3.25 0 0 1 (1.2) 0
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2.3. Statistical Analysis

For explorative data analysis, a statistical software package (SPSS 26.0) was used.
Non-parametric numerical parameters were analyzed by the Mann–Whitney U-test (for
2 unrelated samples), the Kruskal–Wallis test (>2 unrelated samples), the Wilcoxon test
(for 2 related samples) or the Friedman test (>2 related samples). Correlation analysis
of parameters was performed applying non-parametric Spearman-rho test. Distribution
and relationship of categorial variables were analyzed applying chi-square statistics (for
unrelated samples) and McNamere test (for related samples). p values below 0.05 (two
tailed) was considered as statistically significant. In the figures, means are displayed
as dots with whiskers giving the standard error of the mean (1 × SEM). Box plots are
indicating median, upper/lower quartiles, interquartile range, minimum/maximum values
and outliers.

3. Results
3.1. Characteristics of the Study Cohort

A total of 81 obese patients enrolled on a low-calorie formula diet program were
included in the present study. Characteristics concerning anthropometric and physiological
parameters are depicted by Table 1. Patients experienced a significant loss of body weight.
Mean BMI was reduced by 10.1 kg/m2 (p < 0.001).

Among indices of liver function, distributions of ALBI and BARD were significantly
changed towards elevated score levels after 12 months of LCD-induced weight loss, whereas
NFS and FIB-4 remained unaltered (Table 1).

Characteristics of 79 patients undergoing bariatric surgery (RYGB) are given in Table 2.
Compared to LCD participants, loss of body weight and BMI (−18.6 kg/m2) induced by
RYGB was even more pronounced. Importantly and unlike the LCD group, the proportion
of diabetic patients was significantly reduced at 12 months follow-up (p < 0.001) upon
RYGB surgery.

Except for a slight elevation in ALBI scores, the distribution of liver indices was not
significantly changed during 12 months following RYGB (Table 2). In contrast, serum ALT
and GGT, both indicating acute hepatic injury, were reduced by LCD and RYGB.

There was a higher proportion of females among RYGB patients and they exhibited
significantly higher mean body weight, body fat percentage, and BMI (see comparison of
general characteristics at base-line and at 12 months follow-up in Table 3). Of note, the
latter differences were abolished by more efficient body weight loss and excessive weight
loss during 12 months in the RYGB sub-cohort.

Overall, n = 117 female patients participated in the overall study cohort with a mean
age of 41.4 ± 11.5 years at study base-line. Among these, 28 women (23.9%) had a base-line
age of over 50 years, which might be considered a post-menopausal age.

3.2. Base-Line NAFLD Fibrosis Scores Are Associated with T2D

Both in LCD (Figure 1A) and RYGB patients (Figure 1B), NAFLD fibrosis scores
were significantly correlated with HbA1c levels before the beginning of intervention
(p = 0.001 and p < 0.001, respectively). Accordingly, NFS values were significantly ele-
vated in patients suffering from T2D when compared to individuals without T2D in both
subgroups of the study cohort (Figure 1C,D).

3.3. Dynamics of Obesity-Related Parameters and Serum Lipids during Therapy-Induced
Weight Loss

As is illustrated in Figure 2, RYGB and LCD both induced a significant and consistent
loss of body weight and body fat percentage (Figure 2A–C), with RYGB patients start-
ing from significantly higher levels at base-line, and an improved systemic lipid profile
(Figure 2D–F) during 12 months post-surgery or after the start of the diet program, respec-
tively. The favorable effects on body weight, fat percentage, and LDL levels were more
pronounced in bariatric surgery patients (Figure 2A,B,E).
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Figure 2. Improvement of metabolic parameters during 12 months of weight loss in both LCD
and RYGB patients. For LCD and RYGB patients, body weight (A), body weight loss (B), body fat
percentage (C), serum TAG (D) and serum cholesterol levels (E,F) are displayed at base-line and
at 3, 6, and 12 months after the beginning of intervention. HDL, high-density lipoprotein particle
cholesterol; LCD, low-calorie formula diet; LDL, low-density lipoprotein particle cholesterol; RYGB,
Roux-en-Y gastric bypass; TAG, triglycerides.
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3.4. Improvement of T2D and NAFLD Occurs during Weight Loss

Body weight loss, body fat loss, and improved systemic lipid profile upon intervention
were accompanied by further beneficial metabolic effects. Logistic regression analysis con-
firmed a significant relation of blood HbA1c levels—as an important and long-term marker
of hyperglycemia and T2D—and NFS for the overall study cohort (Figure 3A). HbA1c levels
were significantly decreased 12 months after RYGB surgery or the beginning of dietary
intervention, respectively (Figure 3B). Of note, this improvement of hyperglycemia was
accompanied by lowered mean NAFLD fibrosis scores (NFS) after weight loss (Figure 3C),
with a particularly strong impact of RYGB. Statistical analysis of base-line and 12 months
follow-up distribution concerning individuals with or without manifested T2D revealed no
significant differences for the cohort of LCD participants (Figure 3D), whereas a significant
improvement of T2D (defined as HbA1c below 6.5% at 12 months follow-up without insulin,
GLP1 analogs, and oral anti-diabetic medication) was observed among bariatric surgery
patients after RYGB (Figure 3E). Study subjects, both with or without T2D, exhibited a
significant decrease in NFS during therapy-induced weight loss (Figure 3F).

Of note, changes in HbA1c levels during weight loss were strongly correlated with
base-line NFS both in the LCD and the RYGB sub-cohort (Figure 4A,C). Furthermore,
∆ HbA1c was positively correlated with ∆ NFS during 12 months of LCD-induced weight
loss (Figure 4B), whereas this correlation was absent among RYGB patients (Figure 4D).
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Figure 3. Changes in HbA1c levels, NAFLD fibrosis score, and T2D prevalence during weight
loss induced by bariatric surgery (RYGB) or low-calorie formula diet (LCD). Blood HbA1c levels
and NFS were positively correlated at base-line levels (A) and were significantly improved under
weight loss (B,C). Considerable T2D improvement was associated with weight loss after RYGB
but not during LCD (D,E). NFS was significantly reduced during 12 months in LCD and RYGB
sub-cohorts (F). HbA1c, glycosylated hemoglobin; NFS, NAFLD fibrosis score; T2D, type 2 dia-
betes mellitus. Lower and higher cutoff NFS and HbA1c (in obesity): # NFS < −1.455 no fibrosis
## NFS > 0.76 fibrosis likely * HbA1c ≥ 6.5 diabetes.
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2 diabetes mellitus.

3.5. Relation of T2D Improvement to Body Fat Loss and Changes in NAFLD Fibrosis Score

As depicted in Figure 5, both body fat loss (Figure 5A) and improvement of NFS
(Figure 5B) was not different between non-diabetic individuals and diabetic patients in-
dependent of any diabetes medication. The observed dietary-induced and post-surgery
decline of blood HbA1c levels was more pronounced in diabetic patients receiving insulin
therapy and/or oral antidiabetics when compared to non-diabetic and untreated diabetic
individuals (Figure 5C).

There was a non-significant trend towards a higher mean body fat percentage loss
in diabetic patients experiencing T2D improvement (defined as HbA1c below 6.5% at
12-month follow-up without insulin, GLP-1 analogs or oral anti-diabetic medication) during
12 months of weight loss (p = 0.085; Figure 5D), whereas NFS changes were not different for
unimproved and improved T2D individuals (Figure 5E). HbA1c levels were more strongly
decreased in patients with T2D improvement (p = 0.015; Figure 5F).

3.6. NAFLD Fibrosis Score Improved More in Patients with High Body Fat Loss

For subgroup analysis, the study cohort was subdivided into weak and strong re-
sponders towards obesity therapy concerning change of body fat percentage (Figure 6).
Within the whole study cohort, weak responders (n = 68) experienced an average loss
of 5.47% of body fat compared to a significantly higher loss of 22.4% in the subgroup of
strong responders (n = 68) (Figure 6A). As indicated in Figure 6B, strong responders also
exhibited a stronger reduction in NAFLD fibrosis score (p = 0.028), whereas the decrease in
HbA1c levels did not differ between both subgroups (Figure 6C). However, when focus-
ing on patients with diagnosed T2D at study base-line (n = 26), there was a significantly
higher proportion of T2D improvement among “strong responders” than among “weak
responders” (Figure 6D).
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Figure 5. Relation of body fat loss, HbA1c levels, and NFS to T2D improvement during 12 months
in the overall study cohort. Loss of body fat percentage (A) and ∆ NFS (B) during 12 months were
independent of T2D presence and medication. Decrease in HbA1c levels during weight loss was
pronounced in T2D patients receiving medication (C). Body fat loss, ∆ NFS, and ∆ HbA1c were not
significantly associated with T2D improvement (D–F). HbA1c, glycated hemoglobin; NFS, NAFLD
fibrosis score; T2D, type 2 diabetes mellitus.
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Figure 6. NAFLD improvement and T2D improvement depend on the extent of body fat loss
within the whole study cohort. Patients with above-median body fat loss (A) exhibited significantly
stronger reduction in NFS (B). Changes in HbA1c levels were equal in patients below and above
median body fat loss (C). High body fat loss was associated with significantly higher proportion of
T2D improvement among diabetic patients (n = 26) (below median: 3 out of 11 T2D patients improved;
above median: 11 out of 15) (D). HbA1c, glycosylated hemoglobin; T2D, type 2 diabetes mellitus.
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3.7. Correlation of Body Fat Loss and NAFLD Improvement Is Pronounced in Males

The extent of body fat loss was negatively correlated with changes in NAFLD fibrosis
score (rho = −0.190, p = 0.036), i.e., was correlated with NFS reduction (Figure 7A), without
differences between the subgroups of conservatively treated and bariatric patients. Of
note, a sexual dimorphism was observed. While there was a trend among female patients
(rho = −0.155, p = 0.146), the negative correlation was considerably strong among men
(rho = −0.644, p < 0.001) (Figure 7B).

Further stratified subgroup analysis revealed that the significant association of “high”
body fat loss (>13.55%) to NFS change displayed in Figure 6B was absent in female patients
(Figure 7C), while being highly significant among male patients (Figure 7D). This observed
sexual divergence proved to be consistent for women at both age subgroups (≤ and
>50 years at base-line), designating the beginning of post-menopausal age (data not shown).
Furthermore, 12 months’ worth of loss of body fat percentage was significantly stronger in
men than in women under LCD (Figure 7E) as well as following RYGB surgery (Figure 7F).
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Figure 7. The correlation of NFS change with body fat loss after 12 months depends on sex. NFS
changes during therapeutic intervention were negatively correlated with body fat loss (A), which was
particularly pronounced in male patients (B). Unlike women (C), men exhibited a strong association
of body fat loss and ∆NFS (D). Loss of body fat percentage was higher in male than in female patients
in both sub-cohorts of the study (E,F). LCD, low-calorie formula diet; NFS, NAFLD fibrosis score,
n.s., not significant; RYGB, Roux-en-Y gastric bypass.

4. Discussion

The present study investigates NAFLD and T2D prevalence within a large obesity
cohort, as well as the impact of both conservative and bariatric (Roux-en-Y gastric bypass,
RYGB) obesity therapy, on the improvement of these metabolic morbidities. Although the
two sub-cohorts of patients differed significantly in the severity of metabolic disorders—
such as BMI, excessive weight, body fat percentage, and HbA1c levels—associated with
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obesity, a general correlation of NAFLD fibrosis score (NFS) with T2D was observed in
both cohorts.

During 12 months of therapy-induced weight loss, a significant improvement in the
systemic parameters of both lipid and glucose metabolism occurred in LCD and RYGB
patients in accordance with previous studies [18,28]. Importantly, RYGB turned out to
be more effective both in terms of weight loss and rate of T2D improvement, resulting
in a significantly reduced proportion of diabetic individuals in the bariatric sub-cohort
12 months after surgery. When interpreting the pronounced weight loss following bariatric
surgery, it is important to consider the significantly higher mean body weight and body fat
percentage of these patients when compared to those in the LCD group at base-line.

NFS was significantly reduced by LCD as well as by RYGB, which is in accordance
with beneficial effects on NAFLD having been reported for bariatric surgery [19,29]. Ap-
pearing somewhat contradictory, mean BARD scores addressing liver fibrosis increased
during 12 months of weight loss in LCD patients. However, the strong impact of an ele-
vated AST/ALT ratio on BARD score has to be considered, which is not specific for hepatic
damage. In a recently published study, the BARD score displayed a lack of specificity for
hepatic fibrosis compared to FIB-4, which is in line with our present results [30]. Further-
more, BARD is primarily applicable in order to predict manifested and advanced fibrosis in
NAFLD, whereas NFS represents a reliable tool for the exclusion of individuals with a low
risk of fibrosis [31]. The latter, therefore, was selected for evaluation of the present study
cohort consisting of patients without diagnosed liver fibrosis.

Overall, both patients with manifest T2D and patients without T2D in the whole study
cohort experienced a significant reduction in NFS during 12 months of intervention. Whilst
significant differences concerning body fat loss or changes in NFS were observed between
diabetic and non-diabetic patients, changes of HbA1c levels during weight loss—indicating
improved glucose metabolism—were negatively correlated with base-line NFS. Similarly,
Vangoitsenhoven et al. recently reported a positive association of liver steatosis with
RYGB-induced T2D remission [32]. Thus, the present data suggest that patients with an
increased risk of liver fibrosis might take particular advantage of both LCD and RYGB in
terms of diabetes improvement and carbohydrate metabolism. We observed that changes
of NFS and HbA1c levels were positively correlated within the LCD sub-cohort but not
among bariatric surgery patients, indicating putative interrelations between weight-loss-
dependent processes improving liver function and glucose metabolism that appear to be
exclusive for dietary intervention. This finding is particularly interesting since, to the best
of our knowledge, the present study represents the first examination of the relation between
NAFLD fibrosis risk and HbA1c dynamics directly comparing effects of bariatric surgery
and the here-applied setting of a balanced low-calorie formula diet in a large cohort of obese
individuals [23]. Of note, as was recently summarized by Watanabe et al. [33], diet regimens
including strong caloric restriction, especially some ketogenic diets, exert beneficial effects
on NAFLD. Since LCD in the present study is not ketogenic, the observed effects are likely
to be mediated not by physiological mechanisms involving forced synthesis of ketone
bodies but rather by hypocaloric conditions per se. A Taiwanese study investigating the
effects of two different very-low-calorie diets (12 weeks; 450 and 800 kcal/day, respectively)
observed improvement of NAFLD as well as blood glucose levels [34]. Similarly, Schwenger
et al. reported improved NAFLD and lowered HbA1c levels in morbidly obese individuals
after attending a pre-bariatric very-low-calorie diet [35]. It, therefore, appears reasonable to
assume that the correlation of NFS and HbA1c decline in the present LCD sub-cohort is
mainly due to parallel hypocaloric effects on both parameters.

Metabolic alterations are caused by several factors. For example, hepatitis C virus
(HCV) infection is now considered to cause metabolic alterations instead of simply being a
viral infection. Recently, a prospective multicenter case-control study showed that HCV
clearance by direct-acting antiviral (DAA) treatment reduces T2D incidence probably by
restoring the HCV-induced alteration of glucose homeostasis mechanisms [36].
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A stronger decrease in NFS was detected in patients who experienced higher body
fat loss, i.e., higher than the median of 13.55% (“strong responders”) compared to patients
with a lower body fat loss. Regarding the change in body fat percentage as a valid indicator
of obesity therapy success, it, therefore, seems reasonable to conclude that a reduced risk of
NAFLD-related fibrosis is correlated with successful fat loss. Furthermore, over-median
body fat percentage loss was accompanied by a significantly higher proportion of T2D
improvement among diabetic individuals when compared to the group of patients with
less pronounced reduction in relative fat mass.

NAFLD and IR are bidirectionally correlated and, consequently, the development
of pre-diabetes and diabetes is the most direct consequence at the extrahepatic level. A
very recent review explains in an updated and complete way the pathophysiological
mechanisms that support this relationship [37]. Current NAFLD guidelines were designed
to be relevant to practice and show a clear way out of the current drug-based “therapeutic
nihilism”. Diagnostic and therapeutic algorithms are based on metabolic comorbidities,
e.g., T2D and fibrosis stage to improve applicability [38].

For the whole study cohort, an only modest negative correlation of NFS change and
body fat loss was observed. Most interestingly, subgroup analysis revealed a very strong
negative correlation of these parameters among male patients. Absence of this negative
correlation in females indicates a potential sexual dimorphism concerning the association
of body fat loss and reduced NAFLD-related fibrosis risk. Compared to men, women are
better protected against NAFLD [39] and visceral obesity [40] in premenopausal age. Rather
complex sex differences are known in the context of dysregulated glucose metabolism, with
higher prevalence of impaired fasting glucose in men and rather prevalent impairment
of glucose intolerance in women [41]. Given the positive correlation of NAFLD risk with
visceral fat accumulation [13], which is predominantly abundant in male obesity [40], the
observed strong correlation of body fat loss and NFS decrease might be explained by the
reduction in visceral rather than subcutaneous fat mass in men. In the present study, male
patients overall experienced a significantly stronger loss of body fat percentage than females
both in the LCD and RYGB group. This is in accordance with previous reports on a sexual
dimorphism in long-term laparoscopic surgery effects with higher weight loss in male
patients [42]. Therefore, it appears reasonable to assume that the pronounced reduction in
body fat percentage in men might be causally linked with a stronger decrease in NAFLD-
related fibrosis risk. On the other hand, a recent study from Schmitz et al. suggested male
sex as one of several factors impeding the recovery of liver function in bariatric surgery [19].
Thus, a rather complex sexual dimorphism regarding the therapeutic impact of diet and
bariatric surgery both on obesity and liver fibrosis should definitely be considered and
will have to be examined in detail by further studies. Future approaches addressing this
issue should investigate effects of predominantly male/female fat distribution as well
as sexual hormones on mechanisms of fat loss and associated improvements concerning
metabolism and metaflammation. Of particular interest, estrogens have a crucial and
beneficial role in liver function, such as glucose and lipid homeostasis, as well as in NAFLD
and NASH [43]. Post-menopausal women exhibit an increased risk of severe liver fibrosis
in NASH, which can be significantly attenuated by estrogen replacement therapy [44]. On
the other hand, androgens appear to exhibit a rather ambiguous relationship to fatty liver
disease phenotype, e.g., while dihydrotestosterone was reported to exert protective effects
against NAFLD in a male rat model [45], testosterone might represent a risk factor for
NASH and associated fibrosis in young women [46]. In general, published data on sexual
hormones affecting the relation of NAFLD fibrosis and therapeutically induced fat loss
in obese individuals under therapeutic conditions comparable to the present study are
scarce. Since this issue was not in the primary focus of the ROBS study and relevant sexual
hormones, therefore, have not been quantified throughout the time-course of weight loss,
their potential role in the observed differences between female and male patients remains
somewhat speculative at the present state. Of note, we did not observe an impact of female
age on this sexual divergence, thus rather questioning a potential role of post-menopausal
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age and associated changes in estrogen levels. Furthermore, a previous study reported
elevated NAFLD risk in menopausal and post-menopausal women not to be correlated
with estrogen replacement [47], arguing for a rather complex hypothetical relation between
female sexual hormones and fatty liver diseases. This issue and its implicit potential
for innovative therapy options will have to be specifically addressed by future clinical
investigation and evaluation.

5. Conclusions

Non-alcoholic fatty liver disease (NAFLD)-related fibrosis score (NFS) in obesity is
associated with type 2 diabetes mellitus (T2D) prevalence and is positively correlated
with plasma HbA1c levels. During therapy-induced weight loss, both T2D improvement
and the decrease in NFS are correlated with loss of body fat percentage whilst not being
significantly correlated with each other. Pronounced loss of body fat is associated with
improved fibrosis risk in men but not in women. In summary, our data suggest that the
improvement of T2D and the improvement of NAFLD (especially fibrosis) are associated
with the success of obesity therapy.
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